
 
 

Delft University of Technology

Preventing Soft Errors and Hardware Trojans in RISC-V Cores

Annink, Edian B.; Rauwerda, Gerard; Hakkennes, Edwin; Menicucci, Alessandra; Mascio, Stefano Di;
Furano, Gianluca; Ottavi, Marco
DOI
10.1109/DFT56152.2022.9962340
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 35th IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, DFT 2022

Citation (APA)
Annink, E. B., Rauwerda, G., Hakkennes, E., Menicucci, A., Mascio, S. D., Furano, G., & Ottavi, M. (2022).
Preventing Soft Errors and Hardware Trojans in RISC-V Cores. In L. Cassano, S. Chakravarty, & A. Bosio
(Eds.), Proceedings - 35th IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, DFT 2022 (Proceedings - IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems, DFT; Vol. 2022-October). IEEE.
https://doi.org/10.1109/DFT56152.2022.9962340
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DFT56152.2022.9962340
https://doi.org/10.1109/DFT56152.2022.9962340


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Preventing Soft Errors and Hardware Trojans in
RISC-V Cores

Edian B. Anninka, Gerard Rauwerdab, Edwin Hakkennesb, Alessandra Menicuccid

Stefano Di Masciod,e, Gianluca Furanoe, Marco Ottavia,c

aUniversity of Twente, Enschede, the Netherlands, bTechnolution B.V., Gouda, the Netherlands
cUniversity of Rome Tor Vergata, Rome, Italy, dDelft University of Technology, Delft, the Netherlands

eEuropean Space Agency, European Space Research and Technology Centre, Noordwijk, the Netherlands
edianannink@gmail.com, {gerard.rauwerda, edwin.hakkennes}@technolution.nl

{a.menicucci, s.dimascio}@tudelft.nl, gianluca.furano@esa.int, m.ottavi@utwente.nl

Abstract—Soft errors in embedded systems’ memories like
single-event upsets and multiple-bit upsets lead to data and
instruction corruption. Therefore, devices deployed in harsh
environments, such as space, use fault-tolerant processors or
redundancy methods to ensure critical application dependability.
Another rising concern in secure, critical space applications is the
possible introduction of hardware Trojans in an untrusted phase
of the manufacturing process. Besides environmental side-effects,
an adversary that has injected a malicious mechanism e.g., in
the processor or memory can trigger unwanted behavior or leak
sensitive information. Techniques to prevent or mitigate hardware
Trojans are important to ensure hardware security. Leveraging
the openness of the RISC-V ISA, this paper introduces a novel
solution to improve the security and dependability of softcores
with a low area and latency overhead. The instruction validator
which is the first part of this solution can effectively detect
hardware Trojans and multiple-bit upsets in the instruction
memory by checking instruction/address pairs using a Bloom
filter probabilistic data structure. The second part of the solution
is the proposal of an error correction code instruction memory
using Hamming single-error correction to detect and correct
single-event upsets. It has also been proven that the Hamming
decoder improves the detection performance of the instruction
validator.

Index Terms—RISC-V, Hardware Security, Hardware Depend-
ability, Hardware Trojans, Bloom Filters

I. INTRODUCTION

The increase in capacity introduced by successive VLSI
nodes resulted in more hardware per die and an increased
complexity which, in turn, introduced negative side-effects
such as security issues and more dependency on cell stability
issues such as single-event upsets (SEUs) and multiple-bit
upsets (MBUs). More hardware per area and smaller noise
margins mean that SEUs and MBUs occur more frequently [1].
This trend, although mitigated, is visible also for space/critical
embedded systems, where the use of larger and larger SRAM-
based FPGAs, with processor soft cores and complex single-
event effects (SEE) behavior is becoming the rule rather than
the exception [2], [3].

A well-known hardware security issue is a hardware Trojan
(HWT) which is a malicious, intentional modification of a
circuit design that results in undesired behavior when the
circuit is deployed [4]. HWTs may even lead to catastrophic
system failures depending on the type of HWT [5]. The

complexity of each step in the fabrication process of an
integrated circuit (IC) or deployment of modern FPGAs makes
it difficult to prevent HWTs. Reducing cost and a fast time to
market (TTM) often forces research and development (R&D)
departments to buy intellectual property circuits from other
companies which increases the risk of HWTs even further [6].

Important phenomena that affect hardware dependability are
SEUs and MBUs. SEUs cause single-bit errors per word and
MBUs cause double or more bit errors per word and both cause
a temporary change of memory contents or commands in an
instruction stream [7]. SEUs and MBUs in space originate
from heavy ions coming from cosmic rays or high-energy
protons coming from solar flares. SEUs and MBUs can also
occur from secondary cosmic rays which can reach the Earth’s
surface. SEUs and MBUs often result in data corruption
which may lead to system malfunctioning. While radiation
hardening leads to fewer SEU and MBU cases in spacecraft,
it is important to find other ways to mitigate or decrease SEUs
and MBUs in digital circuits. Especially systems that can have
a big impact on the environment and human lives such as
space, missile, and avionics systems [7].

The spread of an open and free ISA like RISC-V already
enabled a vast field of research activities for terrestrial ap-
plications (e.g. security, AI, etc.). RISC-V is quickly being
adopted in the space sector [8] as a replacement for the aging
SPARC ISA and opens strong opportunities to develop highly
reliable architectures. Recent studies [9]–[11] show that the
number of fault-tolerant RISC-V cores that prevent SEUs and
MBUs is still limited. While this is still true, the number of
researchers and the industry that is developing fault-tolerance
solutions for RISC-V is growing. The first example of fault-
tolerant RISC-V cores is the RISC-V core protected by triple
modular redundancy (TMR) and Hamming codes based on
the unprivileged specification proposed by Santos et al. [10].
A second example is the addition of ECC-protected memory
to the out-of-order Rocket core BOOM by Berkeley proposed
by Dörflinger et al. [9]. Ramos et al. [12] researched the
impact of SEUs on multiple soft processors using SRAM-
based FPGA implementations including the lowRISC SoC.
SEUs were introduced using the Soft Error Mitigation (SEM)
IP of Xilinx. The conclusion was that Application Output Mis-
matches caused by Silent Data Corruptions (SDC) and Hangs978-1-6654-5938-9/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
D

ef
ec

t a
nd

 F
au

lt 
To

le
ra

nc
e 

in
 V

LS
I a

nd
 N

an
ot

ec
hn

ol
og

y 
Sy

st
em

s (
D

FT
) |

 9
78

-1
-6

65
4-

59
38

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
D

FT
56

15
2.

20
22

.9
96

23
40

Authorized licensed use limited to: TU Delft Library. Downloaded on December 27,2022 at 11:52:59 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Harvard architecture diagram

(infinite loop) were the most common faults besides hard faults
(exception) and Architecture Internal Failures which means
that the output is correct, but the internal state of the architec-
ture is not. They ultimately claim that fault-tolerant techniques
should be applied to lowRISC if it is going to be used in
space missions. A study by A. E. Wilson et al. [13] tested
the fault-tolerance of RISC-V softcores on Xilinx SRAM-
based FPGAs. They have proven that while dependability is
improved when using TMR, the dependability of the core is
still limited by multiple factors including MBUs affecting two
or three TMR domains. Another study by M. Ottavi et al. [14]
investigates a signature-based checker that mitigates SEUs in a
complex instruction set computer (CISC): The Intel 8051 8-bit
microcontroller. This checker checks the control flow integrity
by analyzing the signature that is created for every sequence
of instructions before every program branch. This signature
is generated by linear feedback shift registers (LFSR) and is
compared with preloaded signatures. An error is raised if the
signature does not exist. This checker provided an average of
98.86% coverage, a high level of protection against freezes,
and a correlation of 50% between control flow errors and
wrong computations.

The development of defense mechanisms against HWTs is
relatively lagging according to a recent survey on RISC-V
security regarding hardware and architecture [15]. This survey
features multiple proposals that try to detect HWTs in RISC-
V. Linscott et al. [16] focus on HWTs that are introduced in
the fabrication process of silicon. The proposal is to mitigate
HWTs by mapping the security-critical portions of a processor
design to a one-time programmable, LUT-free fabric. This
results in an area overhead of 27% when using the Rocket
BOOM RISC-V core. Takahashi et al. [17] propose two
detection methods based on machine learning and side-channel
analysis. The methods were successful in detecting HWTs
in PicoRV and Freedom RISC-V cores. The third proposal
by Bolat et al. [18] introduces a protection architecture to
detect HWTs in the instruction and data memory in RISC-
V using a Bloom filter (BF). Hoque et al. [19] introduce a
new HWT class that targets SRAM arrays. They conclude that
these HWTs can evade industry-standard post-manufacturing
testing. A study by A. Palumbo et al. [20] introduces a pro-
tection architecture by storing fragmented instruction/address
pairs.

The number of HWT, SEU, and MBU countermeasures in
RISC-V is still limited and results in a large overhead in terms
of area and latency according to recent studies and surveys.
A lot of work must yet be done to ensure that RISC-V-based
ASICs and softcores are fault-tolerant and resistant to HWTs.

II. THEORETICAL BACKGROUND

A. Fault model

It is unlikely that one solution covers all HWTs, SEUs, and
MBUs. A fault model and threat model must be introduced to
get an overview of the behavior of HWTs, SEUs, and MBUs.
Consider the Harvard CPU architecture displayed in Fig. 1.

The instruction memory and data memory are most likely
to be influenced by SEUs and MBUs as they take up the most
area. The dependability of the instruction and data memory
cannot be guaranteed in this case. In this work, we will focus
on instruction memory.

B. Threat model

In [5] it is shown that different types of HWTs exist. The
presented taxonomy shows that HWTs can be classified by
looking at the insertion phase, abstraction level, activation
mechanism, effects, and location. As mentioned before, this
paper focuses on the presence of HWTs in the instruction
memory. This is an important scope as HWTs could also
be implemented in other components of the processor. For
example, an HWT can modify the functionality of the registers
or the arithmetic logic unit (ALU). This means that HWT
detection located in the instruction memory can be bypassed as
instructions are changed after the instruction fetch (IF) phase
of the processor. Fig. 2 displays the proposed threat model of
this type of HWT. This so-called instruction memory HWT
is part of the class (∈) or is not part (/∈) of the class in each
attribute.

An HWT that resides in instruction memory can be inserted
in every phase. A requirement in the specification phase can
be added that simplifies adding HWTs in a later phase. A
possible example is that a third-party memory IP block is
used in the design phase that injects malicious instructions into
the instruction memory. Another example is that a developer
can add malicious HDL code that implements an HWT in
the instruction memory. In the worst case, an alternative
photomask can be used to change or replace the instruction
memory. If the testing phase is also modified to prevent the
detection of this malicious change, an HWT can be introduced
in the fabrication phase of the IC. The same is the case for
assembly and packaging. If the memory is separated from the
processor on a PCB, a malicious memory component can be
used.

Fig. 2. Instruction memory HWTs classified by the HWT taxonomy [5]
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Fig. 3. CF and BF area overhead compared to IM

The HWT can also be implemented at every abstraction
level as instruction memory can be maliciously modified or
replaced on every level.

This specific HWT also supports every activation mech-
anism or trigger mechanism. The HWT can be always-on,
internally triggered, and externally triggered.

All effects, also called payloads, are supported. The func-
tionality can be changed such as changing instructions or
injecting malicious instructions. Performance can be down-
graded by spamming instructions or repeating instructions.
Information can be leaked by injecting instructions that copy
sensitive data to memory addresses that can be read by the
adversary. Denial-of-Service (DoS) is also a possibility, e.g.,
completely disabling the instruction memory. No instructions
can be written to the instruction memory and reading the
instruction memory results in undefined signals which com-
pletely halts the pipeline.

This HWT only resides in the instruction memory; hence,
the other locations are not part of the classification.

C. Probabilistic data structures

The Bloom filter (BF) and Cuckoo filter (CF) probabilistic
data structures were analyzed.

The BF, introduced by Howard Bloom in 1970 [21], is the
most used data structure that solves the membership problem
for a dataset which is a task to decide whether some element
belongs to the dataset or not [22]. The BF supports inserting
and testing elements. The BF introduces a small percentage
of errors which increases with the number of elements in the
filter, also known as the false positive probability (FPP) (i.e.
the BF returns that an element is part of the set while it was
not inserted).

The CF proposed by B. Fan et al. in 2014 [23] also solves
the membership problem like the BF. The CF supports deletion
besides insertion and testing.

As the focus of this paper is embedded RISC-V cores, area
overhead is an important criterion. A study by P. Reviriego et
al. [24] showed that the BF false positive probability curve is
lower than the CF FPP curve for a growing table occupancy.
This means that in practice, the BF has a better false positive
rate (FPR) with a growing table occupancy. While this is true,
the CF consumes less memory than the BF with a maximum
table occupancy of 95% and an FPP ≤ 0.39%. The CF and
BF can both be evaluated by plotting the theoretical overhead
compared to the instruction memory when varying the FPP.
Fig. 3 displays the amount of area overhead for the CF and

BF compared to the instruction memory (IM) for multiple
configurations. The CF starts using fewer bits per item than the
BF at an FPP threshold of 0.39%. This threshold corresponds
to an overhead of 35.98% without using ECC and 30.30%
when using a Hamming(38, 32) SEC code. An FPP threshold
of 0.39% results in a large overhead of up to 35.98%. To
conclude, the BF was chosen as the best candidate. An FPP
this small is outside of the scope of this paper and results in an
overhead that is unacceptable when considering strict memory
requirements.

D. Non-cryptographic hash functions

Latency overhead must be minimized as checking the in-
struction/address pairs should not take multiple pipeline cycles
to prevent major damage caused by faults or HWTs. For
this reason, hash techniques that are used in network-based
FPGA applications become relevant. Two studies from R.
Dobai et al. show that while CRC is not designed as a hash
function, it is often used in hardware applications. A CRC-
based implementation was used for a hardware implementation
on an FPGA that allows for fast lookups in dynamic packet
filtering [25], [26] which is comparable to a fast lookup of
instruction/address pairs concurrently to a RISC-V pipeline.
Another study from M. J. Lyons et al. [27] evaluates the design
of a BF for ultra-low-power systems by proposing a hardware
accelerator for compressed BFs. In this hardware accelerator,
the Multiply and Shift hash is used which was originally
introduced by Dietzfelbinger et al. [28]. The MultiplyShift
hash is a universal hashing scheme and can be computed using
eq. 1.

ha(x) =

⌈
ax mod 2k

2k−l

⌉
, for 0 ≤ x, a < 2k (1)

III. SEE AND HWT PROTECTION ARCHITECTURE

Fig. 4 displays the instruction validator design using the BF.
The first step is to hash the instruction/address pair using the
MultiplyShift or CRC-32C hash. The second step is testing
the instruction/address hashes in the BF. As proposed in the
study by Bolat et al. [18], each hash function can have its
memory element that consists of a part of the total BF bit
array. This separation allows for concurrently reading all the
memory elements instead of reading the memory elements

Fig. 4. High-level hardware design of the instruction validator and ECC
instruction memory with the RISC-V core
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Algorithm 1 m and k optimization with m
k being a power of

two
Require: ϵ ≤ 1
Require: n ≤ 232

kopt ← 0
mopt ←∞
ϵopt ← 0
while k ≤ 7 do

while x ≤ 18 do

p←
(
1− e−

k·n
k·2x

)k

if p < (ϵ · 1.05) ∧ k · 2x < mopt then
kopt ← k
mopt ← k · 2x
ϵopt ← p

end if
end while

end while

sequentially. To prevent using modulo and use bit slicing, the
m-k optimization algorithm and rounding optimization were
introduced. To achieve this, both optimizations ensure that the
individual bit array sizes are a power of two. The rounding
optimization rounds the individual bit array size up to the
next power of two. The m-k optimization algorithm displayed
in Algorithm 1 computes the most optimal number of hash
functions and bit array size with m

k being a power of two
based on specified n and ϵ. The minimum in this optimization
is the lowest total bit array size while p is lower than ϵ · 1.05
which represents allowing a 5% deviation. The constraints for
k and 2x = m can be set accordingly which are 7 and 18 in
this case. Variables kopt, mopt and ϵopt hold the most optimal
k, m and ϵ after executing this algorithm.

A NAND gate can be connected to all outputs of the
memory elements and becomes high when one of the memory
elements tests negative when testing instruction/address pairs.
The instruction validator validates all the instruction/address
pairs and checks for MBUs on top of SEUs that the ECC
instruction memory is handling. This means that detecting
double errors using Hamming SEC-DED is redundant and
Hamming SEC suffices and results in less area overhead.

IV. EXPERIMENTAL RESULTS

A. Simulation results
Fig. 5 displays the simulation setup. The Python module

COroutine based COsimulation TestBench (cocotb) [29] was
used to simulate the instruction validator and ECC. The so-
called VHDL generator script was developed which gener-

Fig. 5. Simulation setup

Fig. 6. ECC flow

ates the instruction validator, RAM elements containing the
individual BF bit arrays, the MultiplyShift or CRC-32C hash,
and the instruction memory as shown in the test harness.
The instruction memory is preloaded with Hamming SEC
encoded instructions as displayed in Fig. 6. The saboteur
before the Hamming decoder was used to inject SEUs and
MBUs. The saboteur after the Hamming decoder was used to
inject HWTs. The VHDL generator script was imported by an
automation flow to simulate all different optimization/program
configurations executing the following test cases:

1) Testing without injecting faults
2) Testing while injecting SEUs and MBUs
3) Testing while triggering different types of HWTs

All the test cases were executed using instruction/address pairs
from the following benchmark programs provided by MiBench
[30] compiled with the RISC-V GNU toolchain: Rijndael AES,
Blowfish, Dijkstra, FFT, Patricia, SHA, and Quicksort.

Testing without faults verified the correct functioning of the
ECC instruction memory and instruction validator. Running
the test resulted in the illegal signal of the instruction validator
staying low for all program/hash/optimization configurations.

Multiple cocotb methods were developed to test the instruc-
tion validator and Hamming decoder. All single-bit errors were
successfully detected and corrected by the Hamming decoder.
When injecting double- and triple-bit errors in 10 different
runs, the FPR of all configurations using the MultiplyShift
hash stayed below the set FPP of 0.05 with a small deviation.
Observing the simulation waves in more detail resulted in
an interesting finding. The Hamming decoder occasionally
miscorrects bits when introducing MBUs as displayed in Table
I which results in a better overall FPR for the instruction
validator. This effect was proven by running all the MBU
simulations without the Hamming decoder which resulted in
an overall higher FPR. Another interesting observation was
when applying a modulo with a power of two on the CRC-
32C hash output to decrease area overhead, all tests failed.
An additional analysis was executed on the CRC-32C hash by
looking at single output bits. This resulted in the conclusion
that the CRC-32C output could not be sliced and the complete
hash output must be used to get a strong distribution and
respect the set FPP.

A flow was developed that dynamically injected two HWT
types. Each HWT type was injected with a probability of
0.1 per instruction fetch. The Dijkstra program was executed
10000 times while HWTs were injected in different parts of
the program in each execution. The injecting HWT attack
injected random instructions and became fully detected with a

Output Codeword Data bits
Instruction ROM 11111101011000100001001101100010010110 11111110110001000010010110000011
Saboteur 11111101011000100001010001100010010110 11111110110001000010100110000011
Hamming decoder 11111101011000100001010011100010010110 11111110110001000010101110000011

TABLE I
HAMMING DECODER INTRODUCING AN EXTRA FAULT
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Checker LUTs FFs BRAM size (kbit) Fmax (MHz) DSP Blocks
MultiplyShift with m-k 268 127 90 175 18
MultiplyShiftPipelined with m-k 272 94 90 175 15
Proposal in [18] 1539 89 64 106 0
Proposal in [20] 75 31 208 275 0

TABLE II
COMPARING SYNTHESIS RESULTS TO OTHER CHECKERS WITH DIJKSTRA

AND ϵ = 0.01

Component Dynamic P (W) LUTs FFs BRAMs DSP blocks
FreNox RISC-V core 0.012 2363 1654 1 4
Instruction memory 0.019 0 0 4 (and 1 BRAM for check bits) 0
Data memory 0.013 38 0 4 0
ECC encoder < 0.001 20 0 0 0
ECC decoder 0.009 97 0 0 0
Instruction validator 0.019 322 75 2.5 15
Overhead1 63.6% 18.3% 4.5% 38.9% 375%
Overhead2 56% 11.2% 2.9% 38.9% 375%

TABLE III
SYNTHESIS RESULTS OF FRENOX SOC-E

sequence length of four instructions with the CRC-32C hash.
The MultiplyShift with m-k optimization which approximates
the performance of CRC-32C detected all HWT attacks at a
sequence length of five instructions. The MultiplyShift with
rounding optimization was able to detect all HWT attacks at
a sequence length of three instructions. However, this was the
case as the rounding optimization increased the total bit array
sizes which results in a better FPR. The modifying HWT attack
modified instructions by executing an AND operation with a
NOP instruction which has the same effect as skipping the
instruction. This attack became fully detected at an instruction
sequence length of three for all hash/optimization configura-
tions.

B. Synthesis results

All instruction validator program/hash/optimization config-
urations generated by the VHDL generator script were syn-
thesized for the Arty A7-100T containing the Xilinx Artix-7
XC7A100TCSG324-1 FPGA. The instruction validator with
the CRC-32C hash failed the timing requirements of 100MHz
because the modulo operation resulted in too large a slack.
Nevertheless, using CRC-32C might still be useful for ASICs
as multipliers needed by MultiplyShift consume a large
amount of area in ASICs. Table II displays the synthesis results
of the instruction validator with the MultiplyShift hash and
the checkers introduced in [18] and [20]. The Sudoku Solver
program synthesis results from [18] and [20] are displayed
in the table. The Sudoku Solver program consists of 475
instructions which is similar to the number of instructions
in the Dijkstra program which consists of 451 instructions.
It can be observed that the amount of LUTs is higher than
the proposal in [18] while being significantly lower than the
proposal in [20]. The amount of FFs is higher than both
proposals which are consumed by the instruction validator
hash functions. The BRAM size is slightly bigger than [20]
while being significantly lower than [18]. This has to do with
the fact that the proposal in [18] allocates a fixed amount of

1Overhead of the instruction validator, ECC encoder/decoder and ECC
check bits compared to the FreNox RISC-V core and the instruction/data
memory

2Overhead of the instruction validator, ECC encoder/decoder and ECC
check bits compared to the components in the table and other components
part of the FreNox SoC-e

Fig. 7. Integration with FreNox

memory to store instruction/address pairs. The Fmax is between
the proposal in [18] and [20]. The biggest difference between
the instruction validator and both proposals is the amount of
DSP blocks.

C. Implementation results

The instruction validator was integrated with the FreNox
SoC-e; a SoC instantiating Technolution’s RISC-V core called
FreNox [31] and ECC instruction memory as displayed in
Fig. 7. The FreNox SoC-e was synthesized with a separate
Hamming SEC-DED encoder/decoder and the instruction val-
idator was configured with the MultiplyShift hash and m-k
optimization. The Hamming decoder being part of the pipeline
critical path resulted in a frequency of 80 MHz, equal to a
decrease of 20%. The instruction validator did not introduce
any latency overhead. Compared to all components instantiated
by the FreNox SoC-e, the instruction validator and Hamming
encoder/decoder introduced a power overhead of 56%, a LUT
overhead of 11.2%, and a FF overhead of 2.9% as displayed
in Table III. A 1024 bit register file, 1460 32-bit instructions,
a total bit array size of 10240 and an 8608 bit data memory
resulted in a total area overhead of 10240+6·1460

32·1460+1024+8608 = 33.7%
including the 6 check bits introduced by Hamming SEC
encoding. A DSP block overhead of 375% was introduced
which is acceptable as this makes up for just 7.9% of the
available DSP blocks with the 4 DSP blocks consumed by
the FreNox RISC-V core. Finally, the same tests that were
introduced in the simulation were executed with FreNox. This
again proved the functionality and advantages of both the ECC
instruction memory and the instruction validator. All single-bit
errors were detected and corrected by the Hamming decoder.
Introducing double- and triple-bit faults resulted in hangs and
crashes in the FreNox RISC-V core which were successfully
detected by the instruction validator. An HWT attack was
introduced in the QuickSort program based on the modifying
HWT attack that overwrote a jump and link instruction. This
resulted in the QuickSort algorithm subroutine being bypassed
and failing to sort the array. While this attack only consisted
of one instruction, it was also successfully detected by the
instruction validator.

V. CONCLUSION

This paper introduced a novel solution to improve the
security and dependability of RISC-V softcores with a low
area and latency overhead. It has been proven that the proposed
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instruction validator can effectively detect HWTs and MBUs
in the instruction memory by checking instruction/address
pairs using a BF probabilistic data structure. ECC instruction
memory using Hamming SEC was proposed to detect and
correct SEUs which improved the detection performance of the
instruction validator besides error correction. An automation
framework was developed to generate, simulate and synthesize
the instruction validator for different configurations which
presents the designer with different options based on the
application requirements. Besides this automation framework,
two BF optimizations were proposed that decrease the BF area
overhead. To conclude, the instruction validator and ECC were
successfully tested and integrated into the FreNox SoC-e with
the FreNox RISC-V core on the Digilent Arty A7-100T devel-
opment board using the Xilinx Artix-7 XC7A100TCSG324-1
FPGA. Integrating the instruction validator and ECC led to an
area overhead of 33.7%. The introduction of ECC resulted in
a maximum frequency reduction of 20%.

This proves that the instruction validator and ECC in-
struction memory are suitable to use for embedded RISC-V
softcores with strict security and dependability requirements.
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