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Summary

This thesis research has focused on developing an analytical solution for low-thrust transfer orbits.
Low-thrust propulsion is an attractive option for space manoeuvres and transfers, since it provides a
large specific impulse and hence efficient use of propellant. Thus, the propellant mass can be de-
creased, which brings advantages such as higher payload mass and extended mission life.

Two constraints have been posed on the thrust acceleration, which often appear as a result of op-
timal solutions. Firstly, only bang-bang control is allowed, thus the rocket engine can only be turned
on or off. Secondly, no radial thrust is allowed, such that no gravity losses occur.

To describe the trajectory, three different sets of coordinates have been considered, namely spher-
ical coordinates, Kepler orbital elements and modified equinoctial elements. The latter set was chosen,
as it excludes singularities at zero eccentricity and zero inclination and offers a system of first-order
differential equations. To simplify the dynamics, no perturbations other than the thrust force have been
assumed to act on the spacecraft. This assumption is valid if the thrust acceleration is not too small.
Furthermore, circular orbits have been assumed. That is, the eccentricity of the orbit is set to zero.
While this seems as a substantial restriction on the developed method, it is shown that the analytical
solution provides very reasonable results for eccentricities smaller than 0.2.

Analytical solutions have been derived with both the true longitude and time as independent variable.
However, the time-based analytical solutions provided better results, thus these have been selected
for further analysis. An attempt has been made to improve the analytical solutions by adding some
additional assumptions (some variables were allowed to vary and more parameters were used), but
these did not yield better results. Furthermore, separate analytical expressions have been developed
when no in-plane thrust acts on the spacecraft. The original analytical derivations contained a singu-
larity for this case, and thus did not allow a solution.

For the implementation of the bang-bang control, each individual revolution around the central body is
allowed to have two thrust arcs and two coasts arcs, where the analytical solutions have been used to
describe the motion of the spacecraft during the thrust arcs. By cleverly choosing the switching points
where the rocket engine is turned on and off, the transfer orbit is achieved in an efficient way.

The performance of the developed algorithm has been assessed for different input parameters. More
specifically, different magnitudes of thrust accelerations have been analyzed. Furthermore, the lengths
of the thrust and coast arcs, together with the direction of the thrust force, have been varied to eval-
uate the applicability of the algorithm. Lastly, the algorithm has been tested with the introduction of
a stop criterion, which determines the required propellant and time of flight to arrive at a set target
element.

The algorithm has proved to give results with relatively good accuracy for orbits with an eccentric-
ity smaller than 0.2. For example, if a case is considered with a thrust acceleration of 10ዅኾ m/sኼ and
an transfer time of 10 years, the average result in the semi-major axis is approximately 0.65%. Also
the results for the inclination show a small difference of 0.17 degrees on average. The difference in
eccentricity is 0.006, which can be neglected for first-order estimates. Also the results of the longitude
of the ascending node and the argument of latitude show good accuracies. However, if the time of
flight becomes excessively large (i.e. beyond 10-20 years), the algorithm is not able to provide a solu-
tion within reasonable errors. Also, should the thrust acceleration become too high (e.g. 10ዅኽ m/sኼ),
the inaccuracies of the results increase. These larger inaccuracies are due to the eccentricity, which
then increases more rapidly and reaches the given limit faster. Finally, the developed method seems
unfit to determine the argument of periapsis.
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vi Preface

The developed algorithm has only been tested for transfers on the Solar System scale (i.e. helio-
centric orbit). A recommendation for future work would be to extend this analysis to geocentric orbits.
Furthermore, the algorithm could be used in an optimization process. Then, the parameters for the
transfer orbit could be determined and an optimal trajectory could be achieved.
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1
Introduction

Low-thrust electric propulsion has acquired an increased interest in recent years. An advantages of this
type of propulsion when compared to high-thrust propulsion, is the very high specific impulse, reducing
the required propellant for a transfer trajectory. Thus, apart from the fact that more payload can be
taken aboard, the mission lifetime can also be extended and the launch can be cheaper [1].

Already in 1911, Tsiolkovksy mentioned in a publication the large exhaust velocities that could be
achieved by electrons in cathode rays [2]. Also Goddard described the use of cathode rays for electric
propulsion in his notes at an even earlier date in 1906 [2]. However, the first mission using elec-
tric propulsion for major manoeuvres, although using ions instead of electrons, did not fly until 1998,
when the National Aeronautics and Space Administration (NASA) launched the Deep Space 1 mission
[2]. Other missions followed, such as Small Missions for Advanced Research in Technology-1 (SMART-
1), Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and Bepi Colombo launched by
the European Space Agency (ESA). However, low-thrust propulsion also comes with a disadvantage.
Since only a small acceleration force is applied on the spacecraft, more time is required to perform
the desired orbit change. Differently from chemical propulsion, the effect of which can be modelled
as instantaneous changes in velocity, low-thrust propulsion has to be continuously active in order to
obtain the required impulse change. Impulsive thrusting assumes two impulses at the start and end of
the transfer orbit, while the transfer orbit itself is modelled as a Kepler orbit. This is easy to propagate
as the elements remain constant. Thus, only two thrust vectors have to be optimized. Low-thrust con-
tinuous thrusting requires the thrust vectors at each instance in time [3]. This makes the optimization
more challenging, as no comprehensive analytical expression is available to model the trajectory.

The aim of this thesis research is to investigate an analytical solution for low-thrust transfer orbits.
It is assumed that no exact solution will be found, thus the resulting expression would only offer a
first-order estimate of the transfer trajectory. However, such first-order estimates prove to be useful
for preliminary mission design and subsequent more accurate numerical optimization processes, which
need a good initial guess in order to converge (within reasonable time). From these high-accuracy op-
timizations, it is known that optimal solutions often include bang-bang control, i.e. the rocket engine
is either on or off, and zero radial accelerations, to reduce gravity losses. These two constraints on the
thrust acceleration will be directly implemented in the developed method, in an attempt to arrive faster
and more efficiently at the optimal solution. Also, the resulting transfer orbit is expected to lie closer
to the true optimum. Considering the discussion above, the research question can be formulated as:

Is it possible to develop an analytical solution for low-thrust trajectories while assuming bang-bang
control without gravity losses"

From this research question, two sub-questions can be formulated:

• What is the accuracy of the developed solution"

• To what extent is the developed solution applicable"

5



6 1. Introduction

This report is structured as follows. Chapter 2 describes previous work done on analytical expres-
sions for low-thrust orbits, bang-bang control and gravity losses. Secondly, the astrodynamics of the
problem and the chosen set of coordinates are discussed in Chapter 3. The next two chapters are
dedicated to finding the analytical solutions. While Chapter 4 derives the equations with respect to
true longitude, Chapter 5 uses time as the independent variable. Next, the development of the al-
gorithm is explained in Chapter 6, where the bang-bang control thrust profile is implemented. Then,
the performance of the developed method is assessed in Chapter 7. Note that the newly developed
algorithm is not applied in a mission design environment yet. In Chapter 8, conclusions are drawn and
recommendations are made for future work.



2
Heritage

Low-thrust transfer orbits are particularly more difficult to optimize than transfer orbits induced by
a short, high-impulse thrust force from the engine. While for the latter it can be assumed that the
thrust force is applied instantaneously, such that the transfer orbit itself is by a first-order estimation
a Kepler orbit, low-thrust propulsion continuously provides a thrusting force on the spacecraft, making
the dynamics more complicated and finding optimal solutions more difficult.

The aim of this thesis project is to develop an optimization method that efficiently delivers a first-
order estimate of a low-thrust transfer orbit. For an efficient optimization process, an analytical solution
of the Equations of Motion (EoMs) is attractive. Without the need for a computationally expensive
numerical integration of the satellite’s position in orbit, the transfer orbit can be optimized more quickly.
Furthermore, bang-bang control will be used exclusively and the radial thrust force will be eliminated.

Analytical solution for low-thrust transfers have been studied before. So-called shape-based meth-
ods assume the orbit to have a certain shape, which is given by an analytical expression. An optimization
process then determines the parameters to comply with certain mission requirements (e.g. departure
and target orbit, total transfer time etc.). Various shape-based methods have been developed. An
overview is given in Section 2.1. Transfer orbits without radial thrust have also been a subject of
study before. Section 2.2 elaborates on one such study, which arrives at an analytical solution for
two-dimensional orbits. Finally, also bang-bang control has been used in combination with low-thrust
transfers before. Frequently this is achieved with Lawden’s primer vector theory. An example is shown
in Section 2.3.

2.1. Shape-Based Methods

Multiple shape-based methods have been developed over the years. A short overview of the most
important characteristics is given in Table 2.1. The inverse polynomials shaping method has been
originally developed for two-dimensional cases, and was later extended to three dimensions. Hereafter,
each method is discussed briefly.

7



8 2. Heritage

Table 2.1: Comparison of the various shape-based methods.

Method
Assumed
thrust direc-
tion

Thrust constraint Dimen-
sions Ref.

Exposins Tangential None 2 [4]
Pseudo-equinoctial
elements None Maximum thrust acceleration limit 3 [5]

Inverse polynomials Tangential None 2 or 3 [6] [7]
Spherical shaping None None 3 [8]

Finite Fourier series Tangential
Maximum allowed value is limited,
approximate on-off thrusting can
be achieved

2 [9] [10]
[11]

Hodographic shaping None Thrust acceleration can be limited
but is not done in the paper 3 [12]

Exponential Sinusoids
The very first shape-based method was introduced by Petropoulos and Longuski in [4], which was
based on the PhD dissertation of Petropoulos [13]. A computational implementation of this method
was given in a succeeding paper [14]. Petropoulos assumed that the shape of the trajectory could be
represented by an exponential sinusoid, or exposin. This shaping function is shown in Equation 2.1.

𝑟 = 𝑘ኺ𝑒፤Ꮃ ዷይዲ(፤Ꮄ᎕ዄᎫ) (2.1)

In the above equation 𝑟 and 𝜃 are the radial distance and polar angle as defined for the polar
coordinates and 𝑘ኺ, 𝑘ኻ, 𝑘ኼ and 𝜙 are constants. Examples of the sinusoidal shape for two values of 𝑘ኼ
are shown in Figure 2.1.

Figure 2.1: Example of the exposin shape for two different values of ፤Ꮄ [14].

This shape function forms a convenient basis to solve for the EoMs expressed in polar coordinates,
as shown in Equations 2.2 and 2.3.

�̈� − 𝑟�̇�ኼ + 𝜇
𝑟ኼ = 𝐹 sin(𝛼) (2.2)

1
𝑟
𝑑
𝑡 (𝑟

ኼ�̇�) = 𝐹 cos(𝛼) (2.3)

In the above equations, 𝐹 represent the thrust acceleration, while 𝛼 defines the angle of the thrust
with respect to the local horizon. 𝜇 is the gravitational parameter of the main attracting body and 𝑟 is
the radial distance.

If the thrust acceleration is assumed to point in the tangential direction (along or opposite to the
velocity vector), the EoMs can be solved to find an expression for the angular rate and normalized thrust
acceleration as a function of the shaping parameters 𝑘ኻ, 𝑘ኼ and 𝑘ኽ. These are shown in Equations 2.4
and 2.5.



2.1. Shape-Based Methods 9

�̇�ኼ = ( 𝜇𝑟ኽ)
1

tanኼ(𝛾) + 𝑘ኻ𝑘ኼኼ𝑠 + 1
(2.4)

𝑎 = (−1)፧ tan 𝛾
2 cos 𝛾 [ 1

tanኼ 𝛾 + 𝑘ኻ𝑘ኼኼ𝑠 + 1
− 𝑘ኼኼ(1 − 2𝑘ኻ𝑠)
(tanኼ 𝛾 + 𝑘ኻ𝑘ኼኼ𝑠 + 1)ኼ

] (2.5)

with,

𝑠 = sin(𝑘ኼ𝜃 + 𝜙) (2.6)

Also, the flight path angle can be expressed as in Equation 2.7.

tan(𝛾) = 𝑘ኻ𝑘ኼ cos(𝑘ኼ𝜃 + 𝜙) (2.7)

The additional constraint |𝑘ኻ𝑘ኼኼ| < 1 excludes unfeasible solutions. However, with the current
method, the TOF constraint can only be achieved by forward targeting. Izzo [15] used the exposins to
solve Lambert’s problem. A reduction in free variables was achieved by fixing 𝑘ኼ. Also, the free variable
𝜙 is changed to the initial flight path angle 𝛾ኻ using Equation 2.7 (with 𝜃ኻ = 0). If the parameters 𝑘ኻ
and 𝑘ኼ are used to satisfy the initial and final positions, then the last free parameter 𝛾ኻ can be used to
satisfy the TOF constraint. The range of the search space for 𝛾ኻ is given by the additional constraint for
𝑘ኻ and 𝑘ኼ as discussed above. Then, when the number of revolutions is chosen, the three parameters
can be computed to satisfy the three boundary conditions. A drawback of this shape-based method
is that no constraints on the maximum thrust acceleration can be set, which can result in unfeasible
thrust profiles. Also, the method is limited to planar problems (although a patch was introduced later,
but with errors).

Pseudo-Equinoctial Elements
Rather than shaping the radius of the spacecraft during the transfer, as done with the exponential
sinusoids, the orbital elements can be shaped. De Pascale and Vasile [5] used the modified equinoctial
elements (see Chapter 3) as the basis for their shaping functions. The advantage of using orbital
elements is that the problem is automatically defined in three dimensions, thus not constraining the
solutions to in-plane transfers.

Firstly, the independent variable 𝑡 was changed to true longitude 𝐿, such that the number of revo-
lutions required by low-thrust transfer orbits is better represented. Then, by assuming that the orbit
shows perturbative motion induced by the low-thrust propulsion only, the elements are approximated
as shown in Equation 2.8.

�̃�። = �̃�ኺ። + 𝐸።(𝐿,𝜆𝜆𝜆) (2.8)

In the above equation, �̃�ኺ። is the initial value of element 𝑖, and 𝐸።(𝐿,𝜆𝜆𝜆) is the shaping function
describing the change in elements over time. The elements �̃�። are called the pseudo-equinoctial ele-
ments, since these are an approximation of the actual modified equinoctial elements. They only satisfy
the EoMs as given by Gauss’ form of Lagrange’s planetary equations when the thrust acceleration is
zero.

Two shaping functions are considered, representing two types of low-thrust propulsion. The first
one is shown in Equation 2.9. This shape, called the linear-trigonometric shape, can be associated
with solar electric propulsion, where the thrust decreases quadratically with the distance to the Sun.
The parameters 𝜆𝜆𝜆 = [𝜆ኻ, 𝜆ኼ, 𝜆ኽ]ፓ determine the shape of the elements, with 𝜆ኻ shaping the element
𝑝, 𝜆ኼ shaping the elements 𝑓 and 𝑔 and 𝜆ኽ shaping the elements ℎ and 𝑘. The parameters �̃̃��̃�𝛼ኻ are
determined by the final state of the spacecraft.

�̃̃��̃�𝛼 = �̃̃��̃�𝛼ኺ + �̃̃��̃�𝛼ኻ(𝐿 − 𝐿ኺ) + 𝜆𝜆𝜆 sin(𝐿 − 𝐿ኺ + 𝜙) (2.9)

The second shaping function, representing nuclear electric propulsion systems that provide constant
thrust, is shown in Equation 2.10 and is called the exponential trigonometric shape.

�̃̃��̃�𝛼 = �̃̃��̃�𝛼ኺ + �̃̃��̃�𝛼ኻ𝑒᎘᎘᎘(ፋዅፋᎲ) sin[𝜔(𝐿 − 𝐿ኺ) + 𝜙] (2.10)
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The frequency and phase parameters 𝜔 and 𝜙 in Equations 2.9 and 2.10 were found empirically.
Moreover, 𝜔 was found to be close to zero and was dropped altogether, reducing Equation 2.10 to an
exponential shape.

The free constants present in the pseudo-equinoctial elements shaping functions are �̃̃��̃�𝛼ኺ, �̃̃��̃�𝛼ኻ and 𝜆𝜆𝜆.
The first two sets, �̃̃��̃�𝛼ኺ and �̃̃��̃�𝛼ኻ, are used to satisfy the boundary conditions. The remaining three shaping
parameters 𝜆ኻ, 𝜆ኼ and 𝜆ኽ are used to satisfy the thrust constraints. The required thrust acceleration is
obtained when using the general EoM for perturbed motion:

𝑢𝑢𝑢 = �̈̈��̈�𝑟 + 𝜇 𝑟
𝑟𝑟
𝑟ኽ (2.11)

The change in variables introduces an additional constraint for the transfer time, visualized in Equa-
tion 2.12. In this equation, 𝑇 is the required time of flight.

𝑇 = ∫
ፋᑗ

ፋᎲ

𝑑𝑡
𝑑𝐿𝑑𝐿 (2.12)

When the propagated and shaped elements were compared, it was found that the shapes give a
good approximation of the elements. Although the exponential shape did not capture the oscillatory
motion, it did show the correct mean behaviour. The solutions for the elements 𝑓 and 𝑔 for the two
different functions are shown in Figures 2.2 and 2.3. When applied to an optimization problem, the
shape-based elements in combination with an evolutionary algorithm produce good results in terms of
Δ𝑉 and TOF, although being suboptimal.

Figure 2.2: The comparison for the elements ፟ and ፠ using the linear-trigonometric shape [5].

Figure 2.3: The comparison for the elements ፟ and ፠ using the exponential shape [5].
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Inverse Polynomials
This shape-based method has been developed by Wall and Conway [6] and is similar to the exponential
sinusoids shape-based method. The shape of the trajectory is approximated by an inverse polynomial,
as shown in Equation 2.13.

𝑟 = 1
𝑎 + 𝑏𝜃 + 𝑐𝜃ኼ + 𝑑𝜃ኽ + 𝑒𝜃ኾ + 𝑓𝜃 (2.13)

The same EoMs expressed in polar coordinates (Equations 2.2 and 2.3) are used to solve for the
shape parameters 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒. Six parameters have been chosen in order to satisfy six boundary
conditions. The boundary conditions concern the initial and final positions, the initial and final flight
path angles and initial and final angular velocities. Again, the thrust acceleration is assumed to point
in the tangential direction. This simplifies the EoMs so that a solution can be found for the angular
motion, as shown in Equation 2.14.

�̇�ኼ = 𝜇
𝑟ኾ

1
[(1/𝑟) + 2𝑐 + 6𝑑𝜃 + 12𝑒𝜃ኼ + 20𝑓𝜃ኽ] (2.14)

The flight path angle can be determined with Equation 2.15.

tan(𝛾) = −𝑟 ⋅ (𝑏 + 2𝑐𝜃 + 3𝑑𝜃ኼ + 4𝑒𝜃ኽ + 5𝑓𝜃ኾ) (2.15)

Using Equations 2.13, 2.14 and 2.15 and the six boundary conditions, the six shape parameters can
be determined by solving a set of linear equations. The thrust time is found by numerically integrating
the result of Equation 2.14.

To solve the Lambert problem, an additional parameter is needed to meet the time constraint. This
extra parameter is achieved by simply expanding the polynomial:

𝑟 = 1
𝑎 + 𝑏𝜃 + 𝑐𝜃ኼ + 𝑑𝜃ኽ + 𝑒𝜃ኾ + 𝑓𝜃 + 𝑔𝜃ዀ (2.16)

The six parameters satisfying the boundary conditions can once again be found directly by solving a
system of linear equations. The last parameter though, satisfying the time constraint, has to be found
iteratively using a root-finding algorithm.

The method has been extended to three dimensions in [7], by adding the third component of the
cylindrical coordinates:

�̈� = − 𝜇𝑠ኽ 𝑧 + 𝑇ፚ፳ (2.17)

where,

𝑠 = √𝑟ኼ + 𝑧ኼ (2.18)

The shaping function for this component is shown in Equation 2.19.

𝑧(𝜃) = 𝑎፳ + 𝑏፳𝜃 + 𝑐፳𝜃፪ዅኻ + 𝑑፳𝜃፪ (2.19)

It is however assumed that 𝑧 is relatively small compared to 𝑟 in order to arrive at a solution.
Consequently, the method has a limited range for inclination changes, being only valid for inclination
changes of less than 15 degrees.

The above method is used in combination with a genetic algorithm in order to search for an optimum.
For a transfer from Earth to Mars, the shape-based optimal solution gave a final mass that only differed
0.5% from the true optimal solution. The resulting transfer orbit can be seen in Figure 2.4. However,
since the thrust acceleration is not constrained, the resulting thrust acceleration profile may require
thrust accelerations that are out of range of the mission design variables.
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Figure 2.4: Example of the inverse polynomial shape: Earth-Mars rendezvous trajectory (modified from [7]).

Spherical Shaping
The spherical shaping method has been developed by Novak and Vasile [8]. Their starting point is the
parameterization of the spherical coordinates 𝑟, 𝜃 and 𝜙 (radius, azimuth angle and elevation angle).
However, 𝜃 is chosen as the independent parameter. Thus, instead of a shaping function for 𝜃, a
function of time expressed in 𝜃 is formulated. The three shaping function are denoted as 𝑟 = 𝑅(𝜃),
𝜙 = Φ(𝜃) and 𝑡 = 𝑇(𝜃).

The EoMs that will need to be resolved with these shaping functions are shown in Equation 2.20.

�̇�ኼ 𝑑
ኼ𝑟𝑟𝑟
𝑑𝜃ኼ + �̈�

𝑑𝑟𝑟𝑟
𝑑𝜃 = −𝜇

𝑟𝑟𝑟
𝑟ኽ +𝑢𝑢𝑢 (2.20)

The shaping functions for 𝑟 and 𝜙 are shown in Equations 2.21 and 2.22, respectively. These are
chosen in such a way that 𝑟 is similar to the radius expressed in Kepler elements and that 𝜙 is oscillating.

𝑅 = 1
𝑎ኺ + 𝑎ኻ𝜃 + 𝑎ኼ𝜃ኼ + (𝑎ኽ + 𝑎ኾ𝜃) cos(𝜃) + (𝑎 + 𝑎ዀ𝜃) sin(𝜃)

(2.21)

Φ = (𝑏ኺ + 𝑏ኻ𝜃) cos(𝜃) + (𝑏ኼ + 𝑏ኽ𝜃) sin(𝜃) (2.22)

The evolution of the time 𝑇(𝜃) is more difficult to shape, however. Therefore, the following rela-
tionship for the derivative is set:

𝑇ᖣ = √𝐷𝑅
ኼ

𝜇 (2.23)

where,

𝐷 = −𝑟ᖥ + 2𝑟
ᖣኼ

𝑟 + 𝑟ᖣ𝜙ᖣ𝜙
ᖥ − sin𝜙 cos𝜙
𝜙ᖣኼ + cosኼ 𝜙 + 𝑟(𝜙ᖣኼ + cosኼ 𝜙) (2.24)

Equation 2.24 has been derived by analyzing the relationship between the angular rate �̇� and the
thrust acceleration in the normal direction. Thus, the time function is completely defined by the shaping
functions 𝑅(𝜃) and Φ(𝜃). Also, by defining the time function as in Equation 2.23, it follows from the
EoMs that the thrust acceleration in normal direction is zero.

The spherical shaping method has been compared with the pseudo-equinoctial shaping method and
the results from the Direct Interplanetary Trajectory Analysis (DITAN) tool. In general, the spherical
shaping method produces better results than the pseudo-equinoctial shaping method, although at the
cost of larger computation time. Also, the results are relatively close to the optimized results from
DITAN.
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Finite Fourier Series
Instead of fixing the shape of the trajectory with a specific shaping function, one can also approximate
the trajectory by a sum of basis functions. Taheri and Abdelkhalik [9] introduced a shape-based method
using the finite Fourier series (FFS) as basis functions. Approximating the trajectory by a sum of basis
functions can be classified as a pseudo-spectral method. This has also been developed for ordinary
polynomials in [16].

The functions of the distance and polar angle are expressed as a function of time with FFS as shown
in Equations 2.25 and 2.26. Both the radius and the polar angle are set as a function of time to yield:

𝑟(𝑡) = 𝑎ኺ
2 +

፧ᑣ
∑
፧ኻ

(𝑎፧ cos (
𝑛𝜋
𝑇 𝑡) + 𝑏፧ sin (

𝑛𝜋
𝑇 𝑡)) (2.25)

𝜃(𝑡) = 𝑐ኺ
2 +

፧ᒍ
∑
፧ኻ

(𝑐፧ cos (
𝑛𝜋
𝑇 𝑡) + 𝑑፧ sin (

𝑛𝜋
𝑇 𝑡)) (2.26)

The number of Fourier terms is determined by 𝑛፫ and 𝑛᎕ for 𝑟(𝑡) and 𝜃(𝑡), respectively. The time
of flight is denoted as 𝑇.

Equations 2.25 and 2.26 are used to solve the EoMs for perturbed satellite motion that are expressed
in polar coordinates. Once again, tangential thrust is assumed to simplify the derivation. Then, the
two EoMs can be rewritten to form a combined EoM, as shown in Equation 2.27.

𝑟ኼ(�̇��̈� − �̇��̈�) + �̇�(𝜇 − 2𝑟�̇�ኼ) − (𝑟�̇�)ኽ = 0 (2.27)

After Equations 2.25 and 2.26 are substituted in the above EoM, the FFS coefficients can be solved.
In order to do this, the above equation is evaluated at a number of discretization points to form a
nonlinear programming problem. In addition, the coefficients need to be initialized, which is done by
assuming very simplistic shapes for the trajectory that satisfy the boundary conditions. The number
of discretization points and Fourier terms are case-dependent, however a range has been determined
that can be used for most transfer problems.

While the computation of the coefficients might seem computationally expensive, especially when
compared with the earlier discussed methods, the computation times are similar to those of the time-
constrained inverse polynomial shaping method. An advantage of the FFS shaping method is that the
thrust acceleration can be constrained. This is shown in Equation 2.28. In this case, a feasible solution
is not always present. This yields longer computation times.

𝐶 ∶ ( 𝑇ፚ
𝑇ፚ,፦ፚ፱

)
ኼ

≤ 1 (2.28)

In addition, the FFS method has been further developed to include approximate on-off thrusting
[10]. The thrust acceleration constraint is then defined as follows:

𝐶 ∶ 𝑇ፚ
𝑇ፚ,፦ፚ፱

+ 𝜎። = 1 (2.29)

In the above equation, 𝜎። is a slack variable that can be either 0, 1 or 2, depending on the magnitude
and direction of the thrust. The resulting thrust profile for an Earth-Mars transfer is shown in Figure
2.5, where 1 DU = 149,598,000 km and 2𝜋 TU = 1 year. However, using this thrust constraint, the
computation time increases by an order of three to four.
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Figure 2.5: The approximate on-off thrust profile for an Earth-Mars transfer resulting from the FFS shaping method [10].

Finally, the FFS method has been proven to work even for restricted three-body problems [11].
Since the FFS method does not assume a particular shape, it is suitable to represent these kind of
trajectories, which are significantly different from spirals.

Hodographic Shaping
The hodographic-shaping method has been developed by Gondelach and Noomen [12]. For this
method, the shape of the velocity as represented by a hodograph has been parameterized, instead
of the shape of the position of the spacecraft. An example of the hodographic shape with the corre-
sponding trajectory is shown in Figure 2.6, where 𝑉፭ and 𝑉፫ are the velocity in tangential and radial
direction, respectively. Also, the EoMs are expressed in cylindrical coordinates directly, allowing the
problem to be solved in three dimensions.

Figure 2.6: Example of the hodographic shape: a) the trajectory and b) velocity hodograph [12].

The velocities are expressed as a sum of simple base functions, such as sine or power function.
The requirement is that the integration of these functions is straightforward. The minimum number of
base functions 𝑛 depends on the number of boundary conditions, since each base functions introduces
a free parameter 𝑐።.

The independent variable of the velocity functions can be either time or polar angle. The shape
function expressed in time is shown in Equation 2.30.

𝑉(𝑡) =
፧

∑
።ኻ
𝑐።𝑣።(𝑡) (2.30)

Nine boundary conditions have been established in order to solve for the transfer problem, namely
the initial velocity, the final velocity and the travelled distance (in three dimensions). Since the shape
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functions are linear, the coefficients can be determined without the need for iteration, resulting in
reduced computation time.

The velocity can also be shaped as a function of polar angle. However, since the transverse direction
is defined as the polar angle, the time is defined as a function of polar angle. The time of flight can
then be easily determined by integrating the resulting function to the final polar angle. Again, the
boundary conditions include the initial and final conditions, and the difference in position. For the time
shape function, the time of flight is taken instead of the travelled distance.

If more than three coefficients per velocity direction are taken, extra degrees of freedom are intro-
duced. These can be used to optimize the ΔV, or to satisfy thrust acceleration constraints.

The final results in velocities have been compared to numerically propagated trajectories. For the
numerical propagation, the accelerations resulting from the hodographic method are used as input.
The differences in results were small, with the position differing less than 1000 km and the velocity less
than 0.1 m/s. Furthermore, the hodograph shape functions have been used for optimization problems,
which are compared to results from the direct trajectory analysis tool DITAN, but also to the results
from the pseudo-equinoctial and spherical shaping methods. Good results for ΔV and the maximum
required thrust acceleration were found, however trajectories with many revolutions performed worse.

2.2. Gravity Losses
Eliminating the radial thrust component as a possible solution for the thrust vector will simultaneously
impose zero gravity losses during transfer. Quarta and Mengali [17] have studied this type of transfer
for the planar case. Assuming a constant thrust, the EoMs expressed in polar coordinates can be
written as in Equations 2.31.

�̇� = 𝑢 (2.31a)

�̇� = 𝑣
𝑟 (2.31b)

�̇� = − 𝜇𝑟ኼ +
𝑣ኼ
𝑟 (2.31c)

�̇� = −𝑢𝑣𝑟 + 𝜏𝑎፩ (2.31d)

These EoMs seem different from the EoMs given in Section 2.1 for polar coordinates, but are actually
an alternative form. By substituting Equations 2.31a and 2.31b into Equations 2.31c and 2.31d the
exact same formulation will be found.

For the derivation, no coast arcs are considered. However, the direction of the acceleration can be
either along the velocity or in the opposite direction. Thus, in Equation 2.31d, 𝜏 is either 1 or -1, but
never zero. It is furthermore assumed that the satellite starts in a circular parking orbit.

The system of differential equations is simplified by a change of variable, using the semi-latus
rectum instead of time as independent variable. Also, the dimensionless variables that are shown in
Equations 2.32 are substituted.

�̃� = 𝑟
𝑟ኺ

(2.32a)

𝑦 = �̃�ኼ (2.32b)

�̃�፩ =
𝑎፩

(𝑚/𝑟ኼኺ )
(2.32c)

�̃� = 𝑝
𝑟ኺ

(2.32d)

Then, the relationship shown in Equation 2.33 can be found, where the prime indicates the derivative
with respect to the dimensionless semi-latus rectum.

(2�̃�𝑦” + 𝑦ᖣ)(𝜏�̃�፩𝑦)ኼ = �̃� − √𝑦 (2.33)

The assumption can now be made that the term �̃�፩𝑦 is much smaller than 1, since the thrust
acceleration is small. This is valid as long as 𝑦 does not increase too much. This means that the position
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of the spacecraft in orbit may not diverge too much from the initial distance 𝑟ኺ. This assumption results
in Equation 2.34.

√𝑦 ≃ �̃� (2.34)

The radius of the trajectory can then be approximated by the Equation 2.35, where �̃� is the dimen-
sionless time defined as 𝑡/√𝑟ኽኺ /𝜇.

�̃� ≃ 1
(1 − 𝜏�̃�፩�̃�)ኼ

(2.35)

This radial and circumferential velocity can then be approximated in the following way:

�̃� ≃ 2𝜏�̃�፩√�̃�ኽ (2.36a)

�̃� ≃ 1
√�̃�

(2.36b)

The above analysis only holds if �̃� and 𝑦 are indeed relatively small. To quantify the accuracy of the
solution found, the following condition can be defined:

|√𝑦፦�̃� − 1| = 𝜖 (2.37)

In the above equation, √𝑦፦ = �̃�፦ is the maximum value the dimensionless radial distance can take
for the solution to still be within the accuracy of a given 𝜖. The change in �̃� over time can be obtained
by numerically integrating Equation 2.33. The results for various values of 𝜖 and 𝑎፩ are shown in Figure
2.7. Lower values of acceleration allow for higher maximum radii for the same level of accuracy. Since
the thrust acceleration is constant, the required ΔV is directly dependent on the time of flight. If the
radius is approximated by the analytical solution within a certain range that is defined by 𝜖, this will
also influence the required time of flight, since these are related by Equation 2.35. Thus, both the
required Δ𝑉 and TOF are influenced directly by the accuracy defined by 𝜖.

Figure 2.7: The maximum dimensionless radius as a function of the dimensionless
propulsive acceleration, for different values of Ꭸ [17].

2.3. Bang-Bang Control
Bang-bang control implies that the total thrust acceleration is either zero or maximum during flight.
This is also referred to as on-off thrust. This thrust profile often appears as the optimum profile when
fuel consumption is minimized [18]. In Figure 2.8, an example of a transfer orbit with coasting and
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thrusting arcs is shown. Here, a trajectory from Earth to Mars is optimized [18]. In order to do this,
Lawden’s primer vector theory has been used, based on the calculus of variations.

Figure 2.8: Earth-Mars transfer orbit with thrust (black) and coast (grey) arcs [18].

The objective of the transfer problem was to minimize the propellant consumption or equivalently
maximize the final mass of the spacecraft. This can be formulated as shown in Equation 2.38, which is
the design performance index. In this equation, 𝑚(𝑡፟) is the final mass of the satellite. Note that the
problem is defined to minimize the performance index, thus a minus sign is added to the final mass.

𝐽 = min[−𝑚(𝑡፟)] (2.38)

Then, the EoMs are defined as shown in Equations 2.39 to 2.41. In these equations, 𝛼𝛼𝛼 is the unit
vector denoting the direction of the thrust, 𝐼፬፩ is the specific impulse, 𝑔ኺ is the standard gravitational
acceleration at sea-level and �̇� is the mass flow.

�̇̇��̇�𝑟 = 𝑣𝑣𝑣 (2.39)

�̇̇��̇�𝑣 = − 𝜇𝑟ኽ𝑟𝑟𝑟 +
𝐹
𝑚𝛼𝛼𝛼 (2.40)

�̇� = − 𝐹
𝑔ኺ𝐼፬፩

(2.41)

In order to optimize Equation 2.38, three co-state variables are introduced, namely 𝜆𝜆𝜆፫, 𝜆𝜆𝜆፯ and 𝜆፦.
These are used to construct the Hamiltonian function, as shown in Equation 2.42.

𝐻 = 𝜆𝜆𝜆ፓ፫ �̇̇��̇�𝑟 + 𝜆𝜆𝜆ፓ፯ �̇̇��̇�𝑣 + 𝜆፦�̇� (2.42)

The optimal thrusting direction then follows from Equation 2.43

𝛼∗𝛼∗𝛼∗ = − 𝜆𝜆𝜆፯
||𝜆𝜆𝜆፯||

(2.43)

In addition, the switching moments are determined by using the switching function 𝑆 as shown
in Equation 2.44. These moments are chosen according to the conditions shown in Equation 2.45, 𝐹
being a constant thrust amplitude [18].

𝑆 = 𝜕𝐻
𝜕𝐹 =

𝜆𝜆𝜆ፓ፯𝛼∗𝛼∗𝛼∗
𝑚 − 𝜆፦

𝑔ኺ𝐼፬፩
= −||𝜆

𝜆𝜆፯||
𝑚 − 𝜆፦

𝑔ኺ𝐼፬፩
(2.44)



18 2. Heritage

{ 𝐹
∗ = 0 𝑖𝑓 𝑆 > 0 (𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔 𝑎𝑟𝑐)
𝐹∗ = 𝐹 𝑖𝑓 𝑆 < 0 (𝑡ℎ𝑟𝑢𝑠𝑡𝑖𝑛𝑔 𝑎𝑟𝑐) (2.45)

The optimal bang-bang structure in Figure 2.8 has been achieved with a continuation technique
on the thrust amplitude. In order to do so, first a solution for the optimal transfer with minimum
thrust is calculated. Starting from Lambert’s problem, the co-state variables for a two-impulse transfer
are obtained. Then, the minimum-thrust transfer is determined by gradually decreasing the thrust
amplitude, until the rocket engine has to be on continuously for a feasible trajectory. This final thrust
amplitude is then the minimum required thrust amplitude. Note that the corresponding switching
function does not necessarily comply with Equation 2.45, that is 𝑆 ≤ 0 (because no coast arcs are
present). Therefore, a positive constant is used to scale the co-state variables, such that switching
function becomes less or equal to zero for the entire transfer.

The minimum thrust amplitude is then used as the initial amplitude for the continuation technique.
The gradual increase in thrust amplitude is determined with Equation 2.46, where 𝑐 is an adaptive
constant.

𝐹፧ዄኻ = (1 + 𝑐)𝐹፧ , 𝑛 = 0, 1, 2... (2.46)

For each thrust amplitude, the sequence of thrust arcs and coast arcs and the switching moments
are derived from the corresponding switching function. This continuation process is stopped when the
length of the thrust arcs is small enough to be negligible, so that they can be approximated by an
impulse.

For the optimization of the transfer from Earth to Mars, the behaviour of the switching functions
is shown in Figure 2.9. Three cases are presented: the minimum thrust amplitude, where 𝑆 ≤ 0, the
impulsive thrust, where 𝑆 ≥ 0 (the impulses are applied at the points where 𝑆 = 0), and a thrust
amplitude in between these two extremes, where a bang-bang thrust profile is present. For this last
case, where the thrust amplitude is equal to 0.3 N, five thrust arcs and three coast arcs can be derived
from Figure 2.9. Also, the switching moments can be determined using this figure. The total time of
flight is a given parameter for the optimization process (and in this case set to 793 days). Note that
this case corresponds to the trajectory shown in Figure 2.8.

Figure 2.9: The behaviour of switching functions for the minimum, finite and impulsive thrust cases.[18].

The final mass for the Earth-Mars transfer with a thrust amplitude of 0.3 N is equal to 1649.22 kg.
The required Δ𝑉 can then be computed using Tsiolkovsky’s equation as shown in Equation 2.47 [19].
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Δ𝑉 = 𝑉፣ ln (
𝑀ኺ
𝑀፞
) (2.47)

In this equation, 𝑀ኺ and 𝑀፞ are the initial mass and final mass, respectively, and 𝑉፣ is the exhaust
velocity, defined by Equation 2.48 [20].

𝑉፣ = 𝐼፬፩𝑔ኺ (2.48)

For the Earth-Mars transfer problem described above, 𝐼፬፩ = 3000 s and 𝑀ኺ = 2000 kg. Then, it
follows that Δ𝑉 = 5.68 km/s.





3
Astrodynamics

As discussed in the previous chapter, having an analytical expression for the motion of the spacecraft
would increase the optimization efficiency. Apart from developing an analytical solution, two other
concepts will be used to potentially increase the efficiency of the optimization process. Often it is
assumed that the thrust of a spacecraft is directed tangentially, aligned with the velocity vector. A great
number of shape-based methods discussed in the previous chapter make use of such an assumption.
However, having tangential thrust means that a (small) component of the thrust force (the magnitude
depends on the flight path angle) will be directed in the radial direction, towards the center of gravity
of the main attracting body. This introduces gravity losses, which indicates that the propellant is being
used inefficiently. Therefore, a possible way to arrive at a first-order solution that is closer to the true
optimal solution is to assume from the start that no gravity losses are allowed, i.e. that no thrust
component will be directed radially.

Furthermore, optimal solutions often include bang-bang control or a similar thrust profile, that is,
the rocket engine is either on or off, and the thrust level is fixed. This will be discussed in more detail in
Chapter 6. In this chapter, the most important features regarding the astrodynamics of the problem will
be discussed and the basis will be set for deriving an analytical solution. In Section 3.1, the perturbing
accelerations that act on the spacecraft are analyzed and a selection is made of which accelerations
are taken into account. In Section 3.2, a suitable coordinate system is chosen and the EoMs are set
up.

3.1. Perturbing Accelerations
The analytical solution can be found by integrating the EoMs. These can be represented in a number of
ways. But before setting up the EoMs, it is important to specify which forces acting on the spacecraft
will be taken into consideration. Besides the central gravity of the main attracting body and the thrust
force provided by the engine, there are many perturbing forces acting on the spacecraft, such as solar
radiation pressure, atmospheric drag and third-body perturbations. However, one has to keep in mind
that an analytical solution is sought, and therefore the EoMs would eventually be too complex to solve
if too many forces are taken into account.

The magnitude of the thrust acceleration can be obtained by an analysis of existing low-thrust en-
gines. Three main categories can be distinguished for low-thrust propulsion systems, depending on
their working principle: electrothermal propulsion systems, including resistojets and arcjets, electro-
static propulsion systems, including ion thrusters, and electromagnetic propulsion system, including
magnetoplasmadynamic (MPD) thrusters, pulsed plasma (PPT) thrusters and Hall-effect thrusters [1]
[21]. Table 3.1 gives a summary of the most important characteristics of these thrusters.

21
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Table 3.1: Characteristics of various electric propulsion systems (modified from [1]).

Specific Kinetic Power
Impulse Thrust per Unit Flown in

Type Thrust (mN) (sec) Duration Thrust (W/mN) Space Mission
Resistojet (thermal) 200-300 200-350 Months 0.5-6 TET-1 (2012) [22]
Arcjet (thermal) 200-1000 400-800 Months 2-3 OSCAR-40 (2000) [23]
Ion thruster 0.01-500 1500-8000 Years 10-70 SES-15 (2017) [24]
Solid PPT 0.05-10 600-2000 Years 10-50 Pegasus (2017) [25]
MPD 0.001-2000 2000-5000 Weeks 100 SFU (1995) [26]
Hall thruster 0.01-2000 1500-2000 Months 100 Asiasat-9 (2017) [27]

The accelerations that the thruster provides can be deducted from Table 3.1. However, MPD
thrusters will not be taken into account, since these have not been flown frequently and are only
experimental. If a spacecraft mass of 1000 kg is assumed, it follows from Table 3.1 that the accelera-
tion can range from 10ዅዂ m/sኼ to 10ዅኽ m/sኼ.

The magnitude of the perturbing accelerations near Earth is shown in Figure 3.1. This figure also
indicates the range of the low-thrust accelerations.

Figure 3.1: Overview of the main perturbing accelerations for a geocentric orbit with respect to low-thrust propulsion
(highlighted region) (modified from [19]).

Atmospheric drag is only significant for orbits relatively close to the Earth, and decreases rapidly
with increasing altitude. Also the 𝐽ኼ,ኼ perturbation decreases as the orbital radius increases. The 𝐽ኼ
perturbation remains significant however, for a larger range of altitudes. Also, the third-body per-
turbations from the Moon and Sun increase as the spacecraft moves away from the Earth. Thus, the
influence of the perturbing accelerations on the motion of the spacecraft depends heavily on the orbital
radius. However, the thrust magnitude can be chosen in such a way, that it becomes relatively larger
than the remaining perturbations. For example, the SMART-1 mission, which achieved a low-thrust
transfer from the Earth to the Moon, had a thrust acceleration in the order of 10ዅኾ m/sኼ. Then, only
the 𝐽ኼ perturbation will bring a large factor of inaccuracy when ignored in modelling a geocentric orbit.

For heliocentric orbits, the main perturbations are shown in Figure 3.2. Again, the highlighted
area indicates the range of the thrust acceleration. From this figure, it is clear that the third-body
perturbations only become significant if the spacecraft approaches a particular celestial body. Also, the
solar radiation pressure decreases as the distance to the Sun increases. For outward transfer orbits
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from Earth, the thrust acceleration forms the most important source of perturbation, assuming the
acceleration is not too small (e.g. in the order of 10ዅኾ m/sኼ).

Figure 3.2: Overview of the main perturbing accelerations for a heliocentric orbit with respect to low-thrust propulsion (dark
red region) (modified from [28]).

In conclusion, only the thrust force and the central gravity force of the main attracting body will be
taken into account. For heliocentric orbits, this assumption is fair as long as the spacecraft does not
enter the sphere of influence of a planet during the transfer and keeps a distance of at least 0.5 AU
with respect to the Sun. For geocentric orbits, the inaccuracy might be significant for very low orbits,
but nevertheless should give a reasonable first-order estimate.

3.2. Equations of Motion
With the acting forces now established, the EoMs of the spacecraft can be set up. To increase the
applicability of the derived solution, a three-dimensional coordinate system is desired. The most basic
coordinate system is the Cartesian coordinate system, which is defined by three orthogonal axes 𝑥, 𝑦
and 𝑧, see Figure 3.3.

Figure 3.3: Cartesian Coordinate System [29].

The EoMs in Cartesian coordinates are showed in Equations 3.1, where 𝑓፱, 𝑓፲ and 𝑓፳ are the thrust
accelerations in the 𝑥-, 𝑦- and 𝑧-direction, respectively.

�̈� + 𝜇 𝑥𝑟ኼ = 𝑓፱ (3.1a)
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�̈� + 𝜇 𝑦𝑟ኼ = 𝑓፲ (3.1b)

�̈� + 𝜇 𝑧𝑟ኼ = 𝑓፳ (3.1c)

The above EoMs have the disadvantage that the radial thrust acceleration is not explicitly stated,
thus setting this thrust component to zero is not straightforward. Another possible representation of
the EoMs can be given in spherical coordinates. The definition of the spherical coordinates is shown in
Figure 3.4. The description of the axes is given below.

• 𝑟 is the radial distance from the origin

• 𝜃 is the azimuth angle, between the x-axis and the line from the origin to the projection of the
point on the x-y plane

• 𝜙 is the polar angle, between the positive z-axis and the line from the origin to the point

Figure 3.4: Spherical Coordinate System [30].

The EoMs expressed in spherical coordinates are given in Equations 3.2 [31], where 𝑓፫, 𝑓Ꭻ and 𝑓᎕
represent the thrust accelerations in the �̂�-, �̂�- and �̂�-direction as shown in Figure 3.4.

�̈� − 𝑟�̇�ኼ − 𝑟�̇�ኼ sinኼ(𝜙) + 𝜇
𝑟ኼ = 𝑓፫ (3.2a)

𝑟�̈� + 2�̇��̇� − 𝑟�̇�ኼ sin(𝜙) cos(𝜙) = 𝑓Ꭻ (3.2b)

𝑟�̈� sin(𝜙) + 2�̇��̇� sin(𝜙) + 2𝑟�̇��̇� cos(𝜙) = 𝑓᎕ (3.2c)

The spherical coordinates are convenient, since the acceleration in the radial direction is explicitly
stated in the first equation of motion. This makes it easy to satisfy the first constraint (no gravity losses
allowed), by setting 𝑓፫ equal to zero. However, these equations make a complex set to solve, since
they are highly non-linear and coupled second-order differential equations. Finding expressions for 𝑟,
𝜃 and 𝜙 that comply with these equations is quite challenging, if possible at all.

A satellite’s orbit can also be described by using the Kepler orbital elements. For an unperturbed
orbit, these elements remain constant over time (apart from the last element). The elements are
defined as described below.

• 𝑎 is the semi-major axis of the orbit

• 𝑒 is the eccentricity of the orbit
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• 𝑖 is the inclination, which is the angle between the orbital plane and the reference frame

• 𝜔 is the argument of pericenter, which is measured from the ascending node to the pericenter of
the orbit

• Ω is the longitude of the ascending node, which is measured from a reference direction in the
reference frame to the ascending node (the point where the spacecraft crosses the reference
frame traveling from South to North) of the orbit

• 𝜃 is the true anomaly, the angle between the pericenter and the spacecraft in the orbital plane

The definitions of 𝑎 and 𝑒 are shown in Figure 3.5, while the definitions of 𝑖, 𝜔, Ω and 𝜃 are shown
in Figure 3.6.

Figure 3.5: Definition of semi-major axis and eccentricity [19].

Figure 3.6: Definition of inclination, argument of periapsis, longitude of the ascending node and true anomaly[19].

The EoMs expressed in Kepler elements are given by Gauss’ form of the Lagrange planetary equa-
tions, as shown in Equations 3.3 [19].

𝑑𝑎
𝑑𝑡 = 2

𝑎ኼ

√𝜇𝑝
[𝑓ፒ𝑒 sin(𝜃) + 𝑓ፍ

𝑝
𝑟 ] (3.3a)

𝑑𝑒
𝑑𝑡 = √

𝑝
𝜇 [𝑓ፒ sin(𝜃) + 𝑓ፍ(cos(𝐸) + cos(𝜃))] (3.3b)
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𝑑𝑖
𝑑𝑡 = 𝑓ፖ

𝑟
√𝜇𝑝

cos(𝑢) (3.3c)

𝑑𝜔
𝑑𝑡 = −√

𝑝
𝜇 [𝑓ፖ

𝑟
𝑝 cot(𝑖) sin(𝑢) +

1
𝑒 [𝑓ፒ cos(𝜃) − 𝑓ፍ(1 +

𝑟
𝑝) sin(𝜃)] (3.3d)

𝑑Ω
𝑑𝑡 = 𝑓ፖ

𝑟
√𝜇𝑝 sin(𝑖)

sin(𝑢) (3.3e)

𝑑𝑀
𝑑𝑡 = 𝑛 − 𝑓ፒ[

2𝑟
√𝜇𝑎

− 1 − 𝑒
ኼ

𝑒 √
𝑎
𝜇 cos(𝜃)] − 𝑓ፍ

1 − 𝑒ኼ
𝑒 √

𝑎
𝜇(1 +

𝑟
𝑝) sin(𝜃) (3.3f)

The directions of the thrust accelerations 𝑓ፒ, 𝑓ፍ and 𝑓ፖ are shown in Figure 3.7.

Figure 3.7: Directions of the accelerations in the Gauss’ form of the planetary equations [19].

This set of equations has an advantage over the spherical coordinates by being first-order differ-
ential equations, rather than second-order. The radial thrust acceleration can again be set to zero
directly. However, these equations have the disadvantage of containing singularities for orbits with
zero eccentricity and zero inclination. It would therefore be advantageous to find a set of first-order
differential equations without these singularities. This problem has been studied by Walker et al., who
developed the modified equinoctial elements as an alternative for the Kepler elements. The definition
of the modified equinoctial elements is shown in Equation 3.4 [32]. Note that the first parameter 𝑝 is
the semi-latus rectum, and the last parameter 𝐿 is the true longitude.

𝑝 = 𝑎(1 − 𝑒ኼ) (3.4a)

𝑓 = 𝑒 cos(𝜔 + Ω) (3.4b)

𝑔 = 𝑒 sin(𝜔 + Ω) (3.4c)

ℎ = tan(𝑖/2) cos(Ω) (3.4d)

𝑘 = tan(𝑖/2) sin(Ω) (3.4e)

𝐿 = Ω + 𝜔 + 𝜃 (3.4f)

For converting the modified equinoctial elements to Kepler elements, Equations 3.5 can be used
[33]. Note that the argument of latitude 𝑢 is mentioned rather than the true anomaly 𝜃, since the true
anomaly is not defined for circular orbits. The four-quadrant inverse tangent is used for the conversion
of the argument of periapsis, the longitude of the ascending node and the argument of latitude.
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𝑎 = 𝑝
1 − 𝑓ኼ − 𝑔ኼ (3.5a)

𝑒 = √𝑓ኼ + 𝑔ኼ (3.5b)

𝑖 = 2 atan(√ℎኼ + 𝑘ኼ) (3.5c)

𝜔 = atan2(𝑔, 𝑓) − atan2(𝑘, ℎ) (3.5d)

Ω = atan2(𝑘, ℎ) (3.5e)

𝑢 = 𝐿 − atan2(𝑘, ℎ) (3.5f)

The equations of motion expressed in modified equinoctial elements, derived from Lagrange’s plan-
etary equations, are shown in Equations 3.6 [32].

𝑑𝑝
𝑑𝑡 = 2

𝑝
𝑤√

𝑝
𝜇𝑓ፍ (3.6a)

𝑑𝑓
𝑑𝑡 = √

𝑝
𝜇 [ sin(𝐿)𝑓ፒ +

1
𝑤((𝑤 + 1) cos(𝐿) + 𝑓)𝑓ፍ −

𝑔
𝑤(ℎ sin(𝐿) − 𝑘 cos(𝐿))𝑓ፖ] (3.6b)

𝑑𝑔
𝑑𝑡 = √

𝑝
𝜇 [ − cos(𝐿)𝑓ፒ +

1
𝑤((𝑤 + 1) sin(𝐿) + 𝑔)𝑓ፍ −

𝑓
𝑤(ℎ sin(𝐿) − 𝑘 cos(𝐿))𝑓ፖ] (3.6c)

𝑑ℎ
𝑑𝑡 = √

𝑝
𝜇
(𝑠ኼ cos(𝐿))

2𝑤 𝑓ፖ (3.6d)

𝑑𝑘
𝑑𝑡 = √

𝑝
𝜇
(𝑠ኼ sin(𝐿))

2𝑤 𝑓ፖ (3.6e)

𝑑𝐿
𝑑𝑡 = √

𝑝
𝜇
1
𝑤(ℎ sin(𝐿) − 𝑘 cos(𝐿))𝑓ፖ + √𝜇𝑝(

𝑤
𝑝 )

ኼ

(3.6f)

with,

𝑤 = 1 + 𝑓 cos(𝐿) + 𝑔 sin(𝐿) (3.7a)

𝑠ኼ = 1 + ℎኼ + 𝑘ኼ (3.7b)

These form a convenient set of equations as basis for an analytical solution, but need to be further
simplified before starting the derivation. The first simplification occurs naturally by implementation
of the zero-radial-thrust constraint, i.e. setting 𝑓ፒ to zero. However, the equations remain strongly
coupled. In an attempt to decouple them, one could assume the eccentricity to be approximately
zero. Since only low-thrust transfers are taken into consideration, one can presume that the change in
eccentricity at any moment of time during the transfer is close to zero. This would also imply that only
circular-to-circular orbit transfers are suitable for the to-be-developed method.

Setting the eccentricity approximately to zero has the following implications:

𝑓 ≈ 0 (3.8a)

𝑔 ≈ 0 (3.8b)

𝑤 ≈ 1 (3.8c)

Another point of simplification can be found when considering the course of the true longitude
𝐿. When looking closely at its derivative with respect to time (Equation 3.6f), an oscillatory and non-
oscillatory term can be distinguished. Since low-thrust transfer orbits usually entail a long transfer time,
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one can expect that the oscillatory behaviour cancels out over time, and is left with the non-oscillatory
term, representing the mean motion. Thus, one can consider only the mean motion.

Therefore, the simplified EoMs become:

𝑑𝑝
𝑑𝑡 = 2𝑝√

𝑝
𝜇𝑓ፍ (3.9a)

𝑑𝑓
𝑑𝑡 = √

𝑝
𝜇2 cos(𝐿)𝑓ፍ (3.9b)

𝑑𝑔
𝑑𝑡 = √

𝑝
𝜇2 sin(𝐿)𝑓ፍ (3.9c)

𝑑ℎ
𝑑𝑡 = √

𝑝
𝜇
(1 + ℎኼ + 𝑘ኼ) cos(𝐿)

2 𝑓ፖ (3.9d)

𝑑𝑘
𝑑𝑡 = √

𝑝
𝜇
(1 + ℎኼ + 𝑘ኼ) sin(𝐿)

2 𝑓ፖ (3.9e)

𝑑𝐿
𝑑𝑡 = √𝜇𝑝(

1
𝑝)

ኼ

(3.9f)

The above equations apply for moments when the engine is on, i.e. during a thrust arc. However,
bang-bang control implies the rocket engine can be turned off, too. These coast arcs will be introduced
in Chapter 6. Furthermore, the total thrust acceleration 𝑓፭፨፭ is constant during a thrust arc. Therefore,
the thrust acceleration in transverse direction 𝑓ፍ and perpendicular to the orbital plane 𝑓ፖ are decom-
posed from the total thrust by the steering angle 𝛼 (Equations 3.10 and 3.11). This angle is defined
in Figure 3.8. Finally, a last simplification is made by setting the steering angle 𝛼 also as a constant
during each individual thrust arc.

Figure 3.8: Definition of the steering angle (modified from [19]).

𝑓ፍ = 𝑓፭፨፭ cos(𝛼) (3.10)

𝑓ፖ = 𝑓፭፨፭ sin(𝛼) (3.11)



4
Analytical Solution using True

Longitude

In this chapter, an analytical solution for low-thrust transfer orbits is investigated. In the previous
chapter, the EoMs expressed in modified equinoctial elements have been chosen as the basis for the
analytical solution. Moreover, assumptions and simplifications have been applied to facilitate the ana-
lytical solution so that no use of a numerical integrator is required. At first glance, Equations 3.9 seem
to depend on the true longitude 𝐿, rather than on time 𝑡. Therefore, as a first attempt the functions
are integrated with respect to 𝐿 rather than 𝑡. In Section 4.1 this derivation is presented. Section
4.2 describes the characteristics of some special functions that appear in the analytical solutions. It is
important to understand these functions as their behaviour influences the applicability of the resulting
solution. The accuracy of the analytical solutions are assessed using a numerical integrator. The tuning
of the numerical integrator is discussed in Section 4.3. Finally, the results are shown and discussed in
Section 4.4.

4.1. General Solution
In order to arrive at an analytical solution expressed as a function of true longitude, the differential
equations as shown in Equations 3.9 have to be expressed as a derivative with respect to 𝐿 instead of 𝑡.
This can be achieved by dividing each equation by 𝑑𝐿/𝑑𝑡, such that the dependency on 𝑡 disappears.
In the previous chapter, it has been decided that only mean motion will be taken into account. This
significantly facilitates the change of variables. The resulting EoMs are all expressed as a function of
𝐿, as shown in Equations 4.1.

𝑑𝑝
𝑑𝐿 = 2

𝑝ኽ
𝜇 𝑓ፍ (4.1a)

𝑑𝑓
𝑑𝐿 = 2

𝑝ኼ
𝜇 cos(𝐿)𝑓ፍ (4.1b)

𝑑𝑔
𝑑𝐿 = 2

𝑝ኼ
𝜇 sin(𝐿)𝑓ፍ (4.1c)

𝑑ℎ
𝑑𝐿 =

𝑝ኼ
2𝜇 (1 + ℎ

ኼ + 𝑘ኼ) cos(𝐿)𝑓ፖ (4.1d)

𝑑𝑘
𝑑𝐿 =

𝑝ኼ
2𝜇 (1 + ℎ

ኼ + 𝑘ኼ) sin(𝐿)𝑓ፖ (4.1e)

Note that both 𝑓ፍ and 𝑓ፖ are assumed to be constant during each individual thrust arc. Thus,
Equation 4.1a can be solved by separation of variables, as shown in Equation 4.2.

𝑑𝑝
𝑝ኽ =

2𝑓ፍ
𝜇 𝑑𝐿 (4.2)

29
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Integration leads to:

− 1
2𝑝ኼ =

2𝑓ፍ
𝜇 𝐿 + 𝐶፩ (4.3)

which can be rearranged as:

𝑝ኼ = 𝜇
−4𝑓ፍ𝐿 − 2𝜇𝐶፩

(4.4)

or,

𝑝(𝐿) = √
−𝜇

4𝑓ፍ𝐿 + 2𝜇𝐶፩
(4.5)

The integration constant 𝐶፩ is obtained with the initial condition 𝑝(𝐿ኺ) = 𝑝ኺ:

𝐶፩ = −
1
2𝑝ኼኺ

− 2𝜇𝑓ፍ𝐿ኺ (4.6)

The remaining differential equations for 𝑓, 𝑔, ℎ and 𝑘 (Equations 4.1b - 4.1e) all contain the term 𝑝ኼ,
which can now be expressed with Equation 4.4. Firstly, this expression is substitued in the differential
equations for 𝑓 and 𝑔. After rearranging the terms, the resulting differential equations can be expressed
as shown in Equations 4.7 and 4.8.

𝑑𝑓
𝑑𝐿 = −𝑓ፍ

cos(𝐿)
2𝑓ፍ𝐿 + 𝜇𝐶፩

(4.7)

𝑑𝑔
𝑑𝐿 = −𝑓ፍ

sin(𝐿)
2𝑓ፍ𝐿 + 𝜇𝐶፩

(4.8)

The differential equations for 𝑓 and 𝑔 are now completely uncoupled and depend only on the
variable 𝐿. Thus, these can be directly integrated analytically. When neglecting the scaling factors,
one can see that the integral for 𝑑𝑓/𝑑𝐿 has the following form:

∫ 𝑐𝑜𝑠(𝑥)𝑎𝑥 + 𝑏𝑑𝑥 (4.9)

The primitive of this function is obtained with Wolfram Mathematica and is shown in Equation 4.10.

∫ 𝑐𝑜𝑠(𝑥)𝑎𝑥 + 𝑏𝑑𝑥 =
cos(𝑏/𝑎)𝐶𝑖(𝑏/𝑎 + 𝑥)

𝑎 + sin(𝑏/𝑎)𝑆𝑖(𝑏/𝑎 + 𝑥)𝑎 + 𝐶 (4.10)

Two special functions appear in this primitive, namely 𝑆𝑖(𝑥) and 𝐶𝑖(𝑥). These will be discussed in
more detail in Section 4.2.

Applying the above generalization to Equation 4.7 results in an expression for 𝑓 as shown in Equation
4.11.

𝑓(𝐿) = −12[ cos (
𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿) + sin (
𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿)] + 𝐶፟ (4.11)

Again, the constant 𝐶፟ can be found by using the initial condition 𝑓(𝐿ኺ) = 𝑓ኺ.

𝐶፟ = 𝑓ኺ +
1
2[ cos (

𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿ኺ) + sin (
𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿ኺ)] (4.12)

The differential equation of 𝑔 takes a similar form, with the primitive shown in Equation 4.13.

∫ 𝑠𝑖𝑛(𝑥)
𝑎𝑥 + 𝑏𝑑𝑥 =

cos(𝑏/𝑎)𝑆𝑖(𝑏/𝑎 + 𝑥)
𝑎 − sin(𝑏/𝑎)𝐶𝑖(𝑏/𝑎 + 𝑥)𝑎 + 𝐶 (4.13)

The expression for 𝑔 is then given by Equation 4.14.
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𝑔(𝐿) = −12[ cos (
𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿) − sin (
𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿)] + 𝐶፠ (4.14)

The integration coefficient is given by Equation 4.15.

𝐶፠ = 𝑔ኺ +
1
2[ cos (

𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿ኺ) + sin (
𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿ኺ)] (4.15)

Finally, the elements ℎ and 𝑘 remain to be integrated. Substituting Equation 4.4 in Equations 4.1d
and 4.1e and rearranging the terms results in Equations 4.16 and 4.17.

𝑑ℎ
𝑑𝐿 = −𝑓ፖ(1 + ℎ

ኼ + 𝑘ኼ) cos(𝐿)
8𝑓ፍ𝐿 + 4𝜇𝐶፩

(4.16)

𝑑𝑘
𝑑𝐿 = −𝑓ፖ(1 + ℎ

ኼ + 𝑘ኼ) sin(𝐿)
8𝑓ፍ𝐿 + 4𝜇𝐶፩

(4.17)

However, these are still coupled by the term (1+ℎኼ+𝑘ኼ). Using Equations 3.4d and 3.4e, this term
can be rewritten as 1+tanኼ(𝑖/2). The behaviour of this term shows little variation over time, especially
when the inclination does not vary too much over time. However, although the modified equinoctial
elements do not have a singularity at zero inclination, they do have a singularity at 𝑖 = 180 degrees, in
which case the tangent goes to infinity. Nevertheless, as a first approximation and without considering
inclinations near 180 degrees, the term can be set to its initial value (1 + ℎኼኺ + 𝑘ኼኺ). In this way, the
equations decouple and are integrated as:

ℎ(𝐿) = 𝐶፡ −
1
8 tan(𝛼)(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ)[ cos (

𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿) + sin (
𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿)] (4.18)

with,

𝐶፡ = ℎኺ +
1
8 tan(𝛼)(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ)[ cos (

𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿) + sin (
𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿)] (4.19)

and,

𝑘(𝐿) = 𝐶፤ −
1
8 tan(𝛼)(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ)[ cos (

𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿) − sin (
𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿)] (4.20)

with,

𝐶፤ = 𝑘ኺ +
1
8 tan(𝛼)(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ)[ cos (

𝜇𝐶፩
2𝑓ፍ

)𝑆𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿) − sin (
𝜇𝐶፩
2𝑓ፍ

)𝐶𝑖(
𝜇𝐶፩
2𝑓ፍ

+ 𝐿)] (4.21)

4.2. Special Functions: Sine and Cosine Integral
In the resulting equations for 𝑓, 𝑔, ℎ and 𝑘, as discussed in the previous section, the special functions
𝑆𝑖(𝑥) and 𝐶𝑖(𝑥) appear. These are the sine and cosine integral, respectively, and their definition is
shown in Equations 4.22 and 4.23 [34].

𝑆𝑖(𝑥) = ∫
፱

ኺ

sin(𝑠)
𝑠 𝑑𝑠 (4.22)

𝐶𝑖(𝑥) = −∫
ጼ

፱

cos(𝑠)
𝑠 𝑑𝑠 (4.23)



32 4. Analytical Solution using True Longitude

The cosine integral can also be expressed as [35]:

𝐶𝑖(𝑥) = 𝛾 + ln(𝑥) + ∫
፱

ኺ

cos(𝑠) − 1
𝑠 𝑑𝑠 (4.24)

In the above equation, 𝛾 is Euler’s constant (0.577) and 0 < 𝑎𝑟𝑔 𝑥 < 𝜋.
For negative 𝑥, the following properties hold [35][36]:

𝑆𝑖(−𝑥) = −𝑆𝑖(𝑥) (4.25)

𝐶𝑖(−𝑥) = 𝐶𝑖(𝑥) ± 𝑖𝜋 (4.26)

The property in Equation 4.26 can be explained by looking at Equation 4.24. If the argument of the
cosine integral is negative, ln(𝑥) has a negative argument too. This can be rewritten as follows:

ln(−𝑥) = ln(−1) + ln(𝑥) (4.27)

In the real plane, ln(−1) is not defined. However, in the imaginary plane, the following relationship
holds:

− 1 = 𝑒±። (4.28)

Then, it logically follows that:
𝑙𝑛(−1) = ±𝑖𝜋 (4.29)

Notice that 𝑖𝜋 can either be positive or negative; both represent an angle of 180 degrees, rotating
either clockwise or counterclockwise in the imaginary plane, but arriving at the same value −1 + 0𝑖.
For the remaining of this section, the positive value will be taken. The two functions are plotted in
Figure 4.1.
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Figure 4.1: The special functions Si(x) and Ci(x).

Since imaginary numbers do not occur in the real world, it is worth to further look into the cosine in-
tegral before limiting the solutions to positive arguments only. The function ዅ፨፬(፱)

፱ , which is integrated
to arrive at the cosine integral (see Equation 4.23), is plotted in Figure 4.2.
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Figure 4.2: A snapshot of the function -cos(x)/x.

Looking at Figure 4.2, it can be seen that this function is odd, having the following property:

𝑓(𝑥) = −𝑓(−𝑥) (4.30)

It is therefore expected that if this function is integrated from −𝑥 to +𝑥, the resulting value will be
zero. However, a singularity appears at 𝑥 = 0, where a vertical asymptote is present. This is where
the imaginary number comes in when integrating the function from x < 0 to infinity.

The singularity can be avoided by using the Cauchy’s principal value, which is defined as shown in
Equation 4.31, with 𝑎 ≤ 𝑐 ≤ 𝑏 [37].

𝑃𝑉[∫


ፚ
𝑓(𝑥)𝑑𝑥] = lim

Ꭸ→ኺᎼ
[∫

ዅᎨ

ፚ
𝑓(𝑥)𝑑𝑥 + ∫



ዄᎨ
𝑓(𝑥)𝑑𝑥] (4.31)

If the cosine integral has a negative argument, the integral can be split as:

𝐶𝑖(−𝑥) = −∫
ጼ

ዅ፱

cos(𝑠)
𝑠 𝑑𝑠 = −∫

፱

ዅ፱

cos(𝑠)
𝑠 − ∫

ጼ

፱

cos(𝑠)
𝑠 (4.32)

The principal value of 𝐶𝑖(−𝑥) is then found by taking the principal value of the first integral, which
contains the singularity at 𝑥 = 0:

𝑃𝑉[𝐶𝑖(−𝑥)] = 𝑃𝑉[ − ∫
፱

ዅ፱

cos(𝑠)
𝑠 ] − ∫

ይዲዪ

፱

cos(𝑠)
𝑠 = ... (4.33)

... = lim
Ꭸ→ኺᎼ

[ − ∫
ኺዅᎨ

ዅ፱

cos(𝑠)
𝑠 − ∫

፱

ኺዄᎨ

cos(𝑠)
𝑠 ] − ∫

ይዲዪ

፱

cos(𝑠)
𝑠 = ...

... = 0 − ∫
ይዲዪ

፱

cos(𝑠)
𝑠 = 𝐶𝑖(𝑥)

Since the function ዅ፨፬(፱)
፱ is odd, the limit becomes zero, such that the remaining function is equal

to 𝐶𝑖(𝑥), i.e. the positive argument. Thus, in the practical implementation of the cosine integral, the
absolute value of the argument will be taken when evaluating the function. To test this proposal, a few
function evaluations of the cosine integral are shown in Table 4.1, which shows that the positive and
negative argument produce indeed the same results, not taking into consideration the imaginary part.
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Table 4.1: Some function evaluations on the cosine integral.

x Ci(x) Ci(-x)
1 0.3374 0.3374 + 3.1416i
5 -0.1900 -0.1900 + 3.1416i
10 -0.0455 -0.0455 + 3.1416i
20 0.0444 0.0444 + 3.1416i
25 -0.0068 -0.0068 + 3.1416i

4.3. Tuning the Numerical Integrator

In order to assess the accuracy of the solutions obtained in Section 4.1, these will be compared to
a numerical propagation of the trajectory. The numerical propagation will be done with Tudat (TU
Delft Astrodynamics Toolbox). A variable step-size Runge-Kutta-Fehlberg 7(8) has been chosen for the
integration, and Cowell’s method will be used for the propagation to ensure robustness. A reference
trajectory will be used throughout this report, the parameters of which are summarised in Table 4.2.

Table 4.2: The input parameters for the numerical reference trajectory.

parameter value
𝜇፬፮፧ 1.327 ⋅ 10ኼኺ mኽ/sኼ
a 149.60 ⋅ 10ዃ m
e 0.0
i 20.0 deg
𝜔 0.0 deg
Ω 15.0 deg
𝜈 0.0 deg
TOF 5 years
𝛼 20.0 deg
𝑓፭፨፭ 10ዅኾ m/sኼ

A spacecraft in orbit around the Sun is simulated, with its initial semi-major axis being equivalent
to Earth’s. The initial eccentricity is set to zero, since this is one of the assumptions made in Chapter
3. The argument of periapsis is also set to zero, although one has to keep in mind that this parameter
is undefined for circular orbits. The inclination and longitude of the ascending node values are taken
randomly. A relative long transfer time of 5 years is taken, since low-thrust transfers often tend to
span several years. The steering angle is set to a value between -90 deg and 90 deg, such that the
transfer orbit spirals outward, towards the outer Solar System. Finally, the thrust acceleration is set to
10ዅኾ m/sኼ.

The initial step size is set to 100 𝑠, but is controlled by the error tolerance during the integration,
since a variable step size is used. The error tolerance thus also defines the accuracy. Figure 4.3 shows
the resulting modified equinoctial elements for tolerances ranging from 10ዅኻ to 10ዅኻዀ. The minimum
and maximum step sizes are set to 10ዅ and 10ኻኺ, respectively. Although the time of flight is set to 5
years, some of the numerical integrations in Figure 4.3 seem to stop at a later moment in time. This
can be explained by the large step sizes that occurs at high tolerances. The integrator checks after
every step if the final time has been achieved. However, if the step size is very large, the next moment
in time at which the termination condition is checked is already far from the given time of flight. If a
smaller step size is used, as is the case for lower tolerances, this overshoot is significantly smaller.
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Figure 4.3: Numerical integration results for tolerances ranging from 10ᎽᎳ to 10ᎽᎳᎸ.

Table 4.3 shows the maximum differences between two consecutive runs with different tolerances.
Since a variable-step-size integrator is used, spline interpolation is used to be able to compare the
resulting states at close but different epochs. As the tolerance decreases, i.e. the accuracy increases,
the differences become increasingly smaller. Between tolerance 10ዅኻ and 10ዅኻዀ, the difference has
become negligible. The difference in element 𝑝might seem quite large still, but is relatively insignificant
compared to the scale of the problem (𝑝 ∼ 10ኻኻ m). It can be concluded that an error tolerance of
10ዅኻ is sufficiently accurate for an assessment of the quality of the analytical solution, and thus this
tolerance will be used for the remaining numerical integrations.

Table 4.3: The maximum differences in modified equinoctial elements between two numerical integrations with different
tolerances.

tol. run 1 tol. run 2 Δp (m) Δf (-) Δg (-) Δh (-) Δk (-) ΔL (deg)
1E-1 1E-2 3.94E+09 9.35E-03 1.18E-02 5.51E-04 8.93E-04 1.56
1E-2 1E-3 1.07E+09 1.33E-02 8.03E-02 6.53E-04 8.21E-03 1.11
1E-3 1E-4 3.12E+08 9.03E-04 2.98E-03 1.36E-04 2.89E-04 8.01E-02
1E-4 1E-5 7.11E+07 7.27E-05 2.18E-03 1.11E-05 2.23E-04 8.53E-03
1E-5 1E-6 1.45E+07 1.01E-04 6.31E-04 6.03E-06 6.42E-05 5.00E-03
1E-6 1E-7 1.15E+08 6.72E-04 3.53E-03 9.22E-05 3.60E-04 4.93E-03
1E-7 1E-8 2.23E+06 2.52E-05 4.46E-05 2.92E-06 4.59E-06 2.39E-04
1E-8 1E-9 8.38E+05 7.16E-06 2.41E-05 8.88E-07 2.47E-06 5.14E-05
1E-9 1E-10 3.45E+05 3.34E-06 8.57E-06 4.01E-07 8.78E-07 1.79E-05
1E-10 1E-11 1.20E+05 1.26E-06 2.53E-06 1.48E-07 2.61E-07 9.64E-06
1E-11 1E-12 1.04E+05 1.10E-06 2.11E-06 1.29E-07 2.17E-07 9.30E-06
1E-12 1E-13 4.38E+05 4.61E-06 9.13E-06 5.41E-07 9.38E-07 3.76E-05
1E-13 1E-14 8.62E+03 9.48E-08 1.55E-07 1.10E-08 1.60E-08 9.47E-07
1E-14 1E-15 2.61E+04 2.84E-07 4.95E-07 3.30E-08 5.10E-08 2.67E-06
1E-15 1E-16 4.33E+02 4.78E-09 7.62E-09 5.53E-10 7.86E-10 4.90E-08
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With the numerical integration established, the behaviour of the term (1+ℎኼ+𝑘ኼ) can now be analyzed
in more detail. In Section 4.1, this term has been assumed to be constant and equal to its initial value.
Figure 4.4 shows that indeed this term does not vary much in time, with its maximum error being
approximately 0.006 or 0.63%. Thus, it is expected that this assumption will still provide sufficiently
accurate results.

0 2 4 6 8 10 12 14 16

t (s) 107

1.028

1.029

1.03

1.031

1.032

1.033

1.034

1.035

1.036

1.037

1.038

1 
+

 h
2  +

 k
2

Figure 4.4: The behaviour of the term ኻ ዄ ፡Ꮄ ዄ ፤Ꮄ.

4.4. Results and Discussion
The analytical solution derived in Section 4.1 is implemented in C++. The GNU Scientific Library (GSL)
is used for the special functions Si(x) and Ci(x). The analytical results are compared to the numerical
propagation, which is performed as discussed in the previous section. According to the range of thrust
accelerations observed in Chapter 3, three thrust accelerations are selected for comparison: 10ዅ, 10ዅኾ

and 10ዅኽ m/sኼ. The remaining input parameters are taken from Table 4.2.
In Figure 4.5, the modified equinoctial elements from both the numerical and the analytical solution

are shown. The analytical solution seems to follow the numerical one reasonably well. The largest
deviation can be seen in the element 𝑘, where the maximum absolute difference is around 1.3⋅10ዅኾ.
For 𝑝, the maximum difference is approximately 1.2⋅10 km. Since the order of magnitude of the
absolute differences varies greatly, it is helpful to look at the relatives differences as well. These are
computed using Equation 4.34, where 𝑥 represents an arbitrary element.

%𝑑𝑖𝑓𝑓 =
𝑥ፚ፧ፚ፥፲፭።ፚ፥ − 𝑥፧፮፦፞፫።ፚ፥

𝑥፧፮፦፞፫።ፚ፥
⋅ 100% (4.34)

The relative difference for 𝑝 is then 0.0075%, which is considered to be a good accuracy. The
relative difference for 𝑘 is 0.28%, which is also considered to be good, regarding that 𝑘 shows the
largest deviation in Figure 4.5.

To get a better physical understanding of the transfer orbit, the modified equinoctial elements
are converted to Kepler elements. These are shown in Figure 4.6. Here, the largest deviation is
noticed for the element Ω. This corresponds to the large deviation of 𝑘 of the modified equinoctial
elements, since Ω depends on this element (Equation 3.5e). The elements 𝑖 and 𝜔 also depend on 𝑘
(Equations 3.5c and 3.5d), but the deviations are less visible for these elements. Still, the largest error
for the Kepler elements occurs for 𝜔, being 4.1%. Overall, the differences between the numerical and
analytical solutions are relatively small, with the maximum differences for 𝑎 and 𝑖 being just 0.01%.
The maximum difference for the eccentricity is 2.27⋅10ዅኾ, which can be regarded as negligible for
first-order estimates.
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Figure 4.5: The modified equinoctial elements as a function of true longitude for a thrust acceleration of 10ᎽᎷ m/sᎴ.
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Figure 4.6: The Kepler elements as a function of true longitude for a thrust acceleration of 10ᎽᎷ m/sᎴ.

Exploiting the analytical solution further, its behaviour is also analyzed for the higher thrust accel-
eration value of 10ዅኾ m/sኼ. Figure 4.7 shows the comparison in modified equinoctial elements, while
the Kepler elements are shown in Figure 4.8. Larger differences are noticed in this case, especially
towards the end of the propagation. The difference in semi-major axis goes up to 136.1%, and also
the differences for 𝜔 and Ω are fairly high, being 13.6% and 53.0%. The difference for the inclination,
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however, is 4.4%, which is relatively small compared to the other elements. It should be noticed that
the inclination does not vary as much over time as 𝜔 and Ω do. Furthermore, the analytical solution
seems to be continuously diverging, thus the difference would have been larger, if the time of flight
would have been longer.
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Figure 4.7: Modified equinoctial elements as a function of true longitude for a thrust acceleration of 10ᎽᎶ m/sᎴ.
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Figure 4.8: Kepler elements as a function of true longitude for a thrust acceleration of 10ᎽᎶ m/sᎴ.
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The analytical solutions for the case in Figures 4.7 and 4.8 clearly do not follow the numerical
solution well. It seems like the analytical solution is tending towards extreme behaviour towards the
end of the simulation. Looking more closely at the derivation in Section 4.1, it is noticed that the
solution for 𝑝 (Equation 4.5) only exists for 4𝑓ፍ𝐿 + 2𝜇𝐶፩ < 0. The denominator is indeed initially
negative (𝐶፩ is negative, conform Equation 4.6) but depends on the positive and increasing value of
𝐿. Thus, as the denominator approaches zero, the solution starts behaving asymptotically. Should the
denominator cross zero and become positive, then the solution for 𝑝 will become imaginary, since the
square-root of a negative number will be taken. The squared solution for 𝑝 is used in all subsequent
derivations, such that all elements exhibit this asymptotic behaviour as the denominator approaches
zero. Another parameter influencing the denominator is the thrust acceleration. The higher the thrust
acceleration, the faster the denominator becomes positive.

The denominator for all three thrust accelerations is plotted in Figure 4.9. For 𝑓፭፨፭ = 10ዅ m/sኼ, the
denominator stays clear from the value zero, and therefore no extreme behaviour is noticed in Figures
4.5 and 4.6. For 𝑓፭፨፭ = 10ዅኾ m/sኼ however, the slope of the denominator is significantly higher and
approaches zero towards the end of the simulation, corresponding to the behaviours seen in Figures
4.7 and 4.8. For 𝑓፭፨፭ = 10ዅኽ m/sኼ, the denominator crosses the zero value at just over 𝐿 = 100
degrees and becomes positive. Thus, it is expected that 𝑝 will tend to infinity at this time as well and
no physically reasonable solutions will be available from L = 100 degrees onwards (actually, already
slightly before).
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Figure 4.9: The denominator of Equation 4.5 for the thrust accelerations of 10ᎽᎷ, 10ᎽᎶ and 10ᎽᎵ m/sᎴ.

However, when analyzing the results for 𝑓፭፨፭ = 10ዅኽ m/sኼ, which are depicted in Figure 4.10, it is
not only the analytical solution that displays an interesting development. In addition, the numerical
propagation shows some rather extreme behaviour, too. Translating the modified equinoctial elements
into the more intuitive Kepler elements (Figure 4.11), one can see an exponential rise in eccentricity
occurring after approximately 200 degrees. Another phenomenon has taken place during the transfer:
the orbit has gone from elliptic through parabolic to become a very eccentric hyperbolic orbit. Also the
semi-major axis shows this transition by the sharp peak that is noticeable when the eccentricity goes
through one, after which it becomes negative. This can be more clearly seen in Figure 4.12, where the
semi-major axis and eccentricity plots are zoomed in to provide a better picture of this point of interest.
In this zoomed-in plot of the semi-major axis, it can also be seen that the prediction of the analytical
solution stopping at just over 𝐿 = 100 degrees is justified. The remaining elements show a sharp peak
at this point, indicating that the denominator has gone through zero, but do continue afterwards to
produce (inaccurate) results. The reason for this is that although the solution 𝑝(𝐿) contains a square
root, the remaining elements contain the squared variable 𝑝ኼ, eliminating the square root and only
having a singularity when the denominator is zero. Also, it is noticed that the analytical solution runs
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’ahead’ of the numerical solution, reaching the hyperbolic state around 100 degrees earlier. This is in
agreement with the results for 𝑓፭፨፭ = 10ዅኾ m/sኼ (Figure 4.8), where the analytical solution diverged
increasingly towards the end, heading much faster towards 𝑒 = 1.

0 100 200 300 400

L (deg)

0

2

4

6

8

10

12

14

p 
(k

m
)

1011

analytical
numerical

0 100 200 300 400

L (deg)

-40

-20

0

20

40

60

f (
-)

analytical
numerical

0 100 200 300 400

L (deg)

-300

-250

-200

-150

-100

-50

0

g 
(-

)

analytical
numerical

0 100 200 300 400

L (deg)

-0.1

0

0.1

0.2

0.3

0.4

h 
(-

)

analytical
numerical

0 100 200 300 400

L (deg)

-0.6

-0.4

-0.2

0

0.2

0.4

k 
(-

)

analytical
numerical

Figure 4.10: The modified equinoctial as a function of true longitude elements for a thrust acceleration of 10ᎽᎵ m/sᎴ.
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Figure 4.11: The Kepler elements as a function of true longitude for a thrust acceleration of 10ᎽᎵ m/sᎴ.
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Figure 4.12: Zoom of the results for the semi-major axis and eccentricity for a thrust acceleration of 10ᎽᎵ m/sᎴ.

Thus, it can be concluded that the analytical solution fails to portray the trajectory in the hyper-
bolic situation. This is not surprising, since one of the assumptions discussed in Chapter 3 was zero
eccentricity. More importantly, the numerical solution shows that continuously thrusting at a level of
10ዅኽ m/sኼ for five years does not prove to be a realistic case, since a transfer that requires going from
𝑒 = 0 to 𝑒 = 300 is not expected to be part of a reasonable mission design. Therefore, this case will
be omitted from further analysis.

For a better comparison of the remaining two cases (i.e. 𝑓፭፨፭ = 10ዅ and 10ዅኾ m/sኽ), the absolute
and relative differences are summarized in Table 4.4 and 4.5, respectively. Both the differences in
modified equinoctial elements and Kepler elements are presented. Note that since the argument of
periapsis is theoretically undefined for circular orbits, erratic results can occur when converting to Kepler
elements while the eccentricity is still very small. Therefore, the difference in argument of periapsis is
only taken into account when 𝑒 > 0.001.

Table 4.4: The maximum absolute differences between the numerical solution and the analytical solution based on true
longitude for the modified equinoctial elements (MEE) and Kepler elements (KE), with a time of flight of 5 years.

MEE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ KE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ
Δ p (m) 1.23E+07 3.46E+11 Δ a (m) 1.28E+07 8.84E+11
Δ f (-) 7.39E-05 2.91E-01 Δ e (-) 2.27E-04 2.89E-01
Δ g (-) 2.23E-04 1.85E-01 Δ i (deg) 2.56E-03 8.79E-01
Δ h (-) 1.16E-05 2.61E-02 Δ 𝜔 (deg) 8.93 1.05E+01
Δ k (-) 1.30E-04 2.92E-02 Δ Ω (deg) 4.16E-02 1.27E+01

Table 4.5: The maximum differences in percentages between the numerical solution and the analytical solution based on true
longitude for the modified equinoctial elements (MEE) and Kepler elements (KE), with a time of flight of 5 years.

MEE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ KE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ
Δ p 0.0075 60.4 Δ a 0.01 136.1
Δ f 5.0 433.5 Δ e 3.34 84.1
Δ g 3.7 54.8 Δ i 0.01 4.4
Δ h 0.0068 16.0 Δ 𝜔 4.1 13.6
Δ k 0.28 40.6 Δ Ω 0.27 53.0

From Tables 4.4 and 4.5 it can be concluded that the results are satisfactory for f፭፨፭ = 10ዅ m/sኼ,
with a maximum difference of only a few percent. For f፭፨፭ = 10ዅኾ m/sኼ however, where large differences
are observed, there is room for improvement. In particular, the asymptotic behaviour of the solution
for 𝑝 may be postponed or bypassed when a time-based solution is derived. Also, other assumptions
may lead to more accurate results. Thus, a few possible options to improve the results are:
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• Derive a time-based analytical solution

• Derive the equations with ℎ and 𝑘 as variables

• Assume that 𝑓 and 𝑔 are equal to their initial values

• If the eccentricity becomes too high, start a coast arc, such that the thrust may be resumed at a
point that decreases the eccentricity

The first three points will be discussed in the next chapter, where a time-based approach to the
derivation of the analytical solution is discussed. The final point is further elaborated in Chapter 6,
where the bang-bang control constraint is addressed.



5
Analytical Solution using Time

The previous chapter discussed an analytical solution of Gauss’ planetary equations as a function of
the true longitude 𝐿. However, the results show a limitation due to extreme behaviour as 𝐿 increases
caused by the denominator of the expression for 𝑝. This chapter follows a different approach to the
derivation of the analytical solution, by using the variable 𝑡 rather than 𝐿. This different approach
may lead to better results by following the numerical propagation more closely. The derivation of the
analytical solution is discussed in Section 5.1. A limitation of the result is found when no in-plane thrust
is applied, i.e. 𝑓ፍ = 0. A new derivation for this special case is discussed in Section 5.2. Section 5.3
elaborates on the results of this time-based analytical solution. Alternative variations to this solution
are discussed in Section 5.4.

5.1. General Solution
Inspecting the simplified EoMs once more as shown in Equations 3.9, it is noticed that the differential
equation 𝑑𝑝/𝑑𝑡 does not need a change of variables in order to be solved. Equation 3.9a is repeated
below for convenience.

𝑑𝑝
𝑑𝑡 = 2𝑝√

𝑝
𝜇𝑓ፍ (5.1)

As a separation of variables is possible, both the left-hand and right-hand side can be integrated:

∫ √𝜇2 𝑝
ዅኻ.𝑑𝑝 = ∫𝑓ፍ𝑑𝑡 (5.2)

Integrating both sides results in:

−√
𝜇
𝑝 = 𝑓ፍ𝑡 + 𝐶፩ (5.3)

Rewriting the above equation leads to the following analytical result of the semi-latus rectum as a
function of time:

𝑝(𝑡) = 𝜇
(𝑓ፍ𝑡 + 𝐶፩)ኼ

(5.4)

The integration constant 𝐶፩ can be determined using the initial state of the spacecraft. Then, from
Equation 5.3 it follows that:

𝐶፩ = −√
𝜇
𝑝ኺ
− 𝑓ፍ𝑡ኺ (5.5)

43
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Having 𝑝 expressed as a function of time, it can be substituted in the differential equation of 𝐿. This
is show in Equation 5.6.

𝑑𝐿
𝑑𝑡 = √𝜇𝑝(

1
𝑝)

ኼ

= √𝜇
𝑝ኽ/ኼ =

√𝜇

( ᎙
( ᑅ፟፭ዄፂᑡ)Ꮄ

)
ኽ/ኼ (5.6)

Since 𝑑𝐿/𝑑𝑡 is only dependent on 𝑝, and 𝑝 is a function of time, the above differential equation can
be directly integrated. The result in shown in Equation 5.7.

𝐿(𝑡) = √𝜇(𝑓ፍ𝑡 + 𝐶፩)

4𝑓ፍ(
᎙

( ᑅ፟፭ዄፂᑡ)Ꮄ
)
ኽ/ኼ + 𝐶ፋ (5.7)

This equation can be rewritten as:

𝐿(𝑡) =
(𝑓ፍ𝑡 + 𝐶፩)((𝑓ፍ𝑡 + 𝐶፩)ኼ)ኽ/ኼ

4𝑓ፍ𝜇
+ 𝐶ፋ (5.8)

In the above equation, the numerator of the fraction requires some attention. At first glance,
once expects that it can be simplified to (𝑓ፍ𝑡 + 𝐶፩)ኾ, however great care has to be taken of which
sign the final expression will have. Looking in more detail, the term ((𝑓ፍ𝑡 + 𝐶፩)ኼ)ኽ/ኼ is equivalent to
(𝑓ፍ𝑡 + 𝐶፩)ኼ√(𝑓ፍ𝑡 + 𝐶፩)ኼ. Thus, it will always result in a positive value. Therefore, the sign of the
numerator is determined by the first term (𝑓ፍ𝑡 + 𝐶፩). Then, the expression for 𝐿 can be written as:

𝐿(𝑡) =
𝑠𝑖𝑔𝑛(𝑓ፍ𝑡 + 𝐶፩)(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
+ 𝐶ፋ (5.9)

where the term 𝑠𝑖𝑔𝑛(𝑥) indicates which sign (+1 or -1) of 𝑥 should be taken. The integration
constant is given by:

𝐶ፋ = 𝐿ኺ −
𝑠𝑖𝑔𝑛(𝑓ፍ𝑡ኺ + 𝐶፩)(𝑓ፍ𝑡ኺ + 𝐶፩)ኾ

4𝑓ፍ𝜇
(5.10)

Both the solution for 𝑝 and 𝐿 can now be substituted in the differential equations of 𝑓, 𝑔, ℎ, and 𝑘.
The resulting equations for 𝑓 and 𝑔 are shown in Equation 5.11 and 5.12.

𝑑𝑓
𝑑𝑡 = √

𝑝
𝜇2 cos(𝐿)𝑓ፍ = (5.11)

= 2
√𝜇
√

𝜇
(𝑓ፍ𝑡 + 𝐶፩)ኼ

cos (
(𝑓ፍ𝑡 + 𝐶፩)((𝑓ፍ𝑡 + 𝐶፩)ኼ)ኽ/ኼ

4𝑓ፍ𝜇
+ 𝐶ፋ)𝑓ፍ

𝑑𝑔
𝑑𝑡 = √

𝑝
𝜇2 sin(𝐿)𝑓ፍ = (5.12)

= 2
√𝜇
√

𝜇
(𝑓ፍ𝑡 + 𝐶፩)ኼ

sin (
(𝑓ፍ𝑡 + 𝐶፩)((𝑓ፍ𝑡 + 𝐶፩)ኼ)ኽ/ኼ

4𝑓ፍ𝜇
+ 𝐶ፋ)𝑓ፍ

The equations for 𝑓 and 𝑔 are once again decoupled, and thus can be directly solved.
Let

𝑆 = 𝑠𝑖𝑔𝑛(𝑓ፍ𝑡 + 𝐶፩) (5.13)

then,

𝑓(𝑡) = 𝐶፟ +
1
2𝑆[ cos(𝐶ፋ)𝐶𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) − sin(𝐶ፋ)𝑆𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
)] (5.14)



5.2. Thrust Perpendicular to the Orbital Plane 45

and,

𝑔(𝑡) = 𝐶፠ +
1
2𝑆[ sin(𝐶ፋ)𝐶𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) + cos(𝐶ፋ)𝑆𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
)] (5.15)

Substituting 𝑝(𝑡) and 𝐿(𝑡) in the differential equations for ℎ and 𝑘 results in Equations 5.16 and
5.17, respectively.

𝑑ℎ
𝑑𝑡 =

1
2√

𝑝
𝜇(1 + ℎ

ኼ + 𝑘ኼ) cos(𝐿)𝑓ፖ = (5.16)

= 1
2√𝜇

√
𝜇

(𝑓ፍ𝑡 + 𝐶፩)ኼ
(1 + ℎኼ + 𝑘ኼ) cos (

(𝑓ፍ𝑡 + 𝐶፩)((𝑓ፍ𝑡 + 𝐶፩)ኼ)ኽ/ኼ
4𝑓ፍ𝜇

+ 𝐶ፋ)𝑓ፖ

𝑑𝑘
𝑑𝑡 =

1
2√

𝑝
𝜇(1 + ℎ

ኼ + 𝑘ኼ) sin(𝐿)𝑓ፖ = (5.17)

= 1
2√𝜇

√
𝜇

(𝑓ፍ𝑡 + 𝐶፩)ኼ
(1 + ℎኼ + 𝑘ኼ) sin (

(𝑓ፍ𝑡 + 𝐶፩)((𝑓ፍ𝑡 + 𝐶፩)ኼ)ኽ/ኼ
4𝑓ፍ𝜇

+ 𝐶ፋ)𝑓ፖ

Consistent with the assumption made in Chapter 4, the term (1+ℎኼ+𝑘ኼ) will be fixed as a constant
that is set to its initial state, therefore also decoupling the differential equations for ℎ and 𝑘. Integration
then leads to the results shown in Equations 5.18 and 5.19. The integration constants 𝐶፟, 𝐶፠, 𝐶፡ and
𝐶፤ can be determined in a similar way as 𝐶ፋ, using the initial state.

ℎ(𝑡) = 𝐶፡ +
1
8 tan(𝛼)(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ)𝑆[ cos(𝐶ፋ)𝐶𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) − sin(𝐶ፋ)𝑆𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
)] (5.18)

𝑘(𝑡) = 𝐶፤ +
1
8 tan(𝛼)(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ)𝑆[ sin(𝐶ፋ)𝐶𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) + cos(𝐶ፋ)𝑆𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
)] (5.19)

5.2. Thrust Perpendicular to the Orbital Plane
In some cases it is beneficial to thrust only in the direction perpendicular to the orbital plane (e.g. when
a change in inclination is required). In this case, 𝛼 = 90 or 270 deg, and the normal thrust acceleration
𝑓ፍ equals zero (Equation 3.10). However, when examining the solution for 𝐿(𝑡) (Equation 5.9) in the
previous section more carefully, one can see that this introduces a singularity in the solution, because
𝑓ፍ is present as a factor in the denominator. Subsequently, the solutions for 𝑓, 𝑔, ℎ and 𝑘 contain this
singularity too. Therefore, the derivation as presented in Section 5.1 is not suitable for this special case.

Another solution may be derived when evaluating the simplified planetary equations as laid out in
Equations 3.9 once more, setting 𝑓ፍ = 0. The resulting EoMs are shown in Equations 5.20.

𝑑𝑝
𝑑𝑡 = 0 (5.20a)

𝑑𝑓
𝑑𝑡 = 0 (5.20b)

𝑑𝑔
𝑑𝑡 = 0 (5.20c)

𝑑ℎ
𝑑𝑡 = √

𝑝
𝜇
(1 + ℎኼ + 𝑘ኼ) cos(𝐿)

2 𝑓ፖ (5.20d)
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𝑑𝑘
𝑑𝑡 = √

𝑝
𝜇
(1 + ℎኼ + 𝑘ኼ) sin(𝐿)

2 𝑓ፖ (5.20e)

𝑑𝐿
𝑑𝑡 = √𝜇𝑝(

1
𝑝)

ኼ

(5.20f)

The derivatives of the first three elements become zero, implying that these remain constant and
equal to their initial value. This is as expected, as the semi-major axis and eccentricity do not change
when no in-plane thrust is applied, and 𝑝, 𝑓 and 𝑔 are entirely defined by these Kepler elements.
Moreover, since 𝑝 is constant, 𝑑𝐿/𝑑𝑡 is also constant, making the solution for 𝐿 linear with time:

𝐿(𝑡) = √𝜇
𝑝ኺ√𝑝ኺ

𝑡 + 𝐶ፋ (5.21)

with,

𝐶ፋ = 𝐿ኺ − √𝜇
𝑝ኺ√𝑝ኺ

𝑡ኺ (5.22)

The expression for 𝐿 can be substituted in the remaining two differential equations for ℎ and 𝑘.
These are then only dependent on time, so that they can be directly integrated. This leads to:

𝑑ℎ
𝑑𝑡 = √

𝑝ኺ
𝜇
1
2(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ) cos ( √𝜇

𝑝ኺ√𝑝ኺ
𝑡 + 𝐶ፋ)𝑓ፖ (5.23)

so,

ℎ(𝑡) = 𝐶፡ +
𝑝ኼኺ
𝜇
1
2(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ) sin ( √𝜇

𝑝ኺ√𝑝ኺ
𝑡 + 𝐶ፋ)𝑓ፖ (5.24)

and,

𝑑𝑘
𝑑𝑡 = √

𝑝ኺ
𝜇
1
2(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ) sin ( √𝜇

𝑝ኺ√𝑝ኺ
𝑡 + 𝐶ፋ)𝑓ፖ (5.25)

which results in,

𝑘(𝑡) = 𝐶፤ −
𝑝ኼኺ
𝜇
1
2(1 + ℎ

ኼ
ኺ + 𝑘ኼኺ) cos ( √𝜇

𝑝ኺ√𝑝ኺ
𝑡 + 𝐶ፋ)𝑓ፖ (5.26)

5.3. Results and Discussion
The analytical solutions derived in the previous sections are once again compared with the numerical
propagation as presented in Section 4.3. To make a fair comparison between the currently discussed
analytical solution and the one presented in the previous chapter, the same input parameters are used
for the simulation (see Table 4.2). Also, the same values for the thrust acceleration are used (10ዅ and
10ዅኾ m/sኼ).

First of all, the results for a total thrust acceleration of 10ዅ m/sኼ are analyzed. The comparisons
between analytical and numerical solution in modified equinoctial and Kepler elements are shown in
Figures 5.1 and 5.2, respectively. The results show a slight improvement for the maximum difference
in inclination, going from 2.56⋅10ዅኽ to 4.96⋅10ዅኾ degrees. The largest improvement is noticed for the
element 𝑝, of which the maximum difference has decreased by a factor of 3. Also 𝑎, which is directly
related to 𝑝, shows a similar improvement. The results for eccentricity are slightly worse, going from
2.27⋅10ዅኾ to 2.29⋅10ዅኾ. However, this difference is considered to be negligible. The sixth Kepler ele-
ment can be compared as well, since time is the independent parameter in this case. The maximum
difference for the argument of latitude is 0.79 degrees, which is just 0.43%.
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Figure 5.1: The modified equinoctial elements as function of time for a thrust acceleration of 10ᎽᎷ m/sᎴ, with TOF = 5 years
and ᎎ = 20 degrees.
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Figure 5.2: The Kepler elements as a function of time for a thrust acceleration of 10ᎽᎷ m/sᎴ, with TOF = 5 years
and ᎎ = 20 degrees.

More interestingly are the results for a total thrust acceleration of 10ዅኾ m/sኼ, since these results
showed larger differences between numerical and analytical solution in the previous chapter. The
results for the new analytical solution are shown in Figures 5.3 and 5.4.
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Figure 5.3: The modified equinoctial elements as a function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 5 years
and ᎎ = 20 degrees.
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Figure 5.4: The Kepler elements as a function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 5 years
and ᎎ = 20 degrees.

When comparing Figure 5.3 with Figure 4.7, the time-based method shows a clear improved be-
haviour of the analytical solution. The analytical result for 𝑝 follows the numerical result more closely
and diverges less near the end of the simulation. The analytical solutions for 𝑓 and 𝑔 also seem to stay
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closer to the values of the numerical solution, although a slight shift to the right is observed, especially
for the element 𝑓. This also occurs in the results for ℎ and 𝑘. When looking at the Kepler elements,
also the behaviour of these results is improved (see Figures 5.4 and 4.8). In particular, the results for
𝑎, 𝑒 and Ω are in better agreement. For 𝑖 and 𝜔, the results seem to be slightly worse.

The maximum differences between the numerical and analytical solutions of the cases presented above
are summarized in Tables 5.1 and 5.2 (absolute and relative, respectively). Overall, smaller differences
are perceived compared to Tables 4.4 and 4.5, where the maximum errors of the true-longitude based
analytical solution are shown. The improvement for 𝑎 is evident, where the differences for 𝑓፭፨፭ = 10ዅኾ
m/sኼ differ by an order of magnitude. Also the 𝑒 and Ω show an improvement for this thrust value.
The inclination however is slightly worse, going from 0.88 to 1.58 degrees. Also the argument of peri-
apsis, which goes from 10.5 to 18.4 degrees, is slightly less accurate. However, apart from these two
values, the results show an overall increase in accuracy. Thus, the time-based analytical solution is to
be preferred over the true-longitude-based solution.

Table 5.1: The maximum absolute differences between the numerical solution and the analytical solution based on time for the
modified equinoctial elements (MEE) and Kepler elements (KE), with a time of flight of 5 years.

MEE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ KE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ
Δ p (m) 3.69E+06 2.80E+10 Δ a (m) 4.21E+06 5.83E+10
Δ f (-) 5.78E-05 1.06E-01 Δ e (-) 2.29E-04 4.51E-02
Δ g (-) 2.53E-04 4.98E-02 Δ i (deg) 4.96E-04 1.58
Δ h (-) 1.06E-05 1.12E-02 Δ 𝜔 (deg) 9.15 1.84E+01
Δ k (-) 4.56E-05 9.85E-03 Δ Ω (deg) 1.51E-02 1.34
Δ L (deg) 7.75E-01 3.21E+01 Δ u (deg) 7.89E-01 3.34E+01

Table 5.2: The maximum differences in percentages between the numerical solution and the analytical solution based on time
for the modified equinoctial elements (MEE) and Kepler elements (KE), with a time of flight of 5 years.

MEE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ KE f፭፨፭ = 10ዅ m/sኼ f፭፨፭ = 10ዅኾ m/sኼ
Δ p 0.0022 4.9 Δ a 0.0025 9.0
Δ f 7.2 158.1 Δ e 3.4 13.1
Δ g 5.8 14.8 Δ i 0.0025 7.8
Δ h 0.0062 6.9 Δ 𝜔 4.2 23.8
Δ k 0.10 13.7 Δ Ω 0.10 5.6
Δ L 0.40 18.3 Δ u 0.43 22.1

It seems that the solution for 𝑓፭፨፭ = 10ዅኾ m/sኼ is not showing very extreme behaviour, but one has
to keep in mind that the time period of five years was taken rather arbitrarily. If the time period were
to be extended to ten years, the same pattern would show up as the results for f፭፨፭ = 10ዅኽ m/sኼ in
the previous chapter. In fact, the time at which the solutions reach their limit can be computed with
Equation 5.27.

𝑡፥።፦።፭ =
−𝐶፩
𝑓ፍ

(5.27)

Using the definition for 𝐶፩ as shown in Equation 5.5 and the initial conditions from Table 4.2 and
setting 𝑓፭፨፭ = 10ዅኾ m/sኼ, a limit time of 3668.5 days is computed. Looking at the results for a time
period of ten years, which are shown in Figures 5.5 and 5.6, the plots indeed show a spike at this
moment in time. As the orbit gets more and more hyperbolic, the semi-latus rectum increases more
and more. At a certain point, the orbit will approach a straight line, and the semi-latus rectum will
go to infinity. The limit of the analytical solutions thus represents a physical limit. However, this limit
occurs much earlier than is seen from the numerical propagation, which does not yet show extreme
behaviour. It has, however, reached an eccentricity of 4, and thus it has become a hyperbolic orbit.
Taking into consideration that the analytical solution was derived for zero eccentricity, it is fair to say
that the limit case is far outside its range of recommended operation.
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Figure 5.5: The modified equinoctial elements as a function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 10
years and ᎎ = 20 degrees.
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Figure 5.6: The Kepler elements as a function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 10 years
and ᎎ = 20 degrees.
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So far, only outward motion has been considered for analysis. However, when 𝛼 is between 90 and
270 degrees, the semi-major axis of the orbit decreases as the spacecraft moves closer to the Sun. To
also test this case, 𝛼 is set to 120 degrees. The results are shown in Figures 5.7 and 5.8.

0 500 1000 1500 2000

t (days)

0.9

1

1.1

1.2

1.3

1.4

1.5

p 
(k

m
)

108

analytical
numerical

0 500 1000 1500 2000

t (days)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

f (
-)

analytical
numerical

0 500 1000 1500 2000

t (days)

-0.04

-0.03

-0.02

-0.01

0

g 
(-

)

analytical
numerical

0 500 1000 1500 2000

t (days)

0.162

0.164

0.166

0.168

0.17

0.172

0.174

0.176

h 
(-

)

analytical
numerical

0 500 1000 1500 2000

t (days)

0.045

0.05

0.055

0.06

0.065

k 
(-

)

analytical
numerical

0 500 1000 1500 2000

t (days)

0

100

200

300

400

L 
(d

eg
)

analytical
numerical

Figure 5.7: The modified equinoctial elements as a function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 5 years
and ᎎ = 120 degrees (inward motion).
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Figure 5.8: The Kepler elements as function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 5 years
and ᎎ = 120 degrees (inward motion).
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The relative and absolute differences for both the modified equinoctial elements and the Kepler
elements are shown in Table 5.3 for the case of inward motion (𝛼 = 120 deg). The most notable result
is the eccentricity, that stays relatively contained compared to the results when 𝛼 = 20 deg. Looking
at Table 5.3, the absolute maximum error is indeed small, but the percentage error is 23.9%. These
contrasting results can be explained by looking at Equation 4.34, with which the relative difference is
computed. Since the eccentricity is near zero, the absolute difference, although being small, is also
divided by a small number. This makes the resulting relative difference rather large, and is thus not a
good measure of error. Therefore, the governing difference is the absolute one for the eccentricity.

Table 5.3: The maximum differences (absolute and in percentages) between the numerical solution and the analytical solution
based on time for the modified equinoctial elements (MEE) and Kepler elements (KE), with a time of flight of 5 years and ᎎ =

120 degrees (inward motion).

MEE absolute relative KE absolute relative
Δ p (m) 7.74E+07 0.054 Δ a (m) 7.21E+07 0.051
Δ f (-) 1.41E-03 -101.6 Δ e (-) 6.87E-03 23.9
Δ g (-) 6.84E-03 -23.8 Δ i (deg) 1.07E-01 0.53
Δ h (-) 1.18E-03 0.69 Δ 𝜔 (deg) 1.04E+01 3.5
Δ k (-) 6.18E-03 10.0 Δ Ω (deg) 1.98 9.9
Δ L (deg) 3.67 1.9 Δ u (deg) 1.98 1.6

Finally, the quality of the analytical solution derived in Section 5.2 for thrust perpendicular to the
orbital plane is assessed. The results are shown in Figures 5.9 and 5.10. The numerical result closely
follows the analytical result. For 𝑝, 𝑓 and 𝑔, the differences are negligible. The argument of periapsis is
not taken into consideration, since this element is not defined for zero eccentricity. The maximum error
in inclination is 0.05%, while the maximum error in Ω is 0.12%. Thus, ℎ and 𝑘 are well approximated.
The maximum error in 𝑢 is 0.009%, which proves that the solution for true longitude is accurate as
well.

0 500 1000 1500 2000

t (days)

1.4959787069098

1.49597870690985

1.4959787069099

1.49597870690995

1.49597870691

1.49597870691005

1.4959787069101

1.49597870691015

p 
(k

m
)

108

analytical
numerical

0 500 1000 1500 2000

t (days)

-2

0

2

4

6

8

10

f (
-)

10-15

analytical
numerical

0 500 1000 1500 2000

t (days)

-1

0

1

g 
(-

)

10-14

analytical
numerical

0 500 1000 1500 2000

t (days)

0.16

0.165

0.17

0.175

0.18

h 
(-

)

analytical
numerical

0 500 1000 1500 2000

t (days)

0.045

0.05

0.055

0.06

0.065

k 
(-

)

analytical
numerical

0 500 1000 1500 2000

t (days)

0

100

200

300

400

L 
(d

eg
)

analytical
numerical

Figure 5.9: The modified equinoctial elements as a function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 5 years
and ᎎ = 90 degrees (analytical solution for thrust perpendicular to the orbital plane).
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Figure 5.10: The Kepler elements as a function of time for a thrust acceleration of 10ᎽᎶ m/sᎴ, with TOF = 5 years
and ᎎ = 90 degrees (analytical solution for thrust perpendicular to the orbital plane).

In Section 2.2, an analytical method developed by Quarta and Mengali [17] was discussed, which
modelled a transfer orbit with zero radial thrust acceleration. The radial distance was assumed to be
approximately equal to the semi-latus rectum (Equation 2.34). It was concluded that the accuracy of
the method depended on the magnitude of the applied thrust acceleration, as shown in Figure 2.7, and
could be computed with Equation 2.37. For example, if the thrust acceleration was �̃�፩ = 0.5%, then
the maximum error would be 𝜖 = 5%, if 𝑟፦ ≈ 5 (𝑟፦ = √𝑦፦, with 𝑦፦ being calculated numerically).
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Figure 5.11: The error determined by Equation 5.28 as a function of the dimensionless radial distance.

To make the same comparison for the above developed analytical solution, the following equation
could be used to compute the error:

| 𝑟፧፮፦፞፫።ፚ፥𝑝፧፮፦፞፫።ፚ፥
−
𝑟ፚ፧ፚ፥፲፭።ፚ፥
𝑝ፚ፧ፚ፥፲፭።ፚ፥

| = 𝜖፦፞፞ (5.28)
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Using Equation 2.32c, �̃�፩ = 0.5% corresponds for the heliocentric case with 𝑟ኺ = 1 AU to a thrust
acceleration of approximately 3⋅10ዅ m/sኼ. The steering angle is set to zero degrees, since only the
planar case is addressed in [17]. Then, Equation 5.28 can be plotted against the dimensionless radial
distance (𝑟፧፮፦፞፫።ፚ፥/𝑟ኺ, which is equivalent to �̃�፦) as shown in Figure 5.11. For 𝑟፧፮፦፞፫።ፚ፥/𝑟ኺ = 5, 𝜖፦፞፞
is around 3%, which is less than 5%. Thus, the above derived analytical solution performs better than
the analytical method developed in [17].

5.4. Variations
In an attempt to improve the results obtained in the previous section, variations of the solutions pre-
sented in Section 5.1 are investigated.

For the solutions of ℎ and 𝑘, the term (1 + ℎኼ + 𝑘ኼ) was assumed to be constant in order to
decouple the differential equations. An alternative way for decoupling is to assume just one of the
variables constant, while the other is still allowed to vary, see Equations 5.29 and 5.30. By letting ℎ be
a variable in 𝑑ℎ/𝑑𝑡 and 𝑘 be a variable in 𝑑𝑘/𝑑𝑡, the two equations remain decoupled.

𝑑ℎ
𝑑𝑡 = √

𝑝
𝜇
(1 + ℎኼ + 𝑘ኼኺ) cos(𝐿)

2 𝑓ፖ (5.29)

𝑑𝑘
𝑑𝑡 = √

𝑝
𝜇
(1 + ℎኼኺ + 𝑘ኼ) sin(𝐿)

2 𝑓ፖ (5.30)

The differential equations can then be solved by separation of variables:

𝑑ℎ
(1 + ℎኼ + 𝑘ኼኺ)

= √
𝑝
𝜇
cos(𝐿)
2 𝑓ፖ𝑑𝑡 (5.31)

𝑑𝑘
(1 + ℎኼ + 𝑘ኼኺ)

= √
𝑝
𝜇
(1 + ℎኼኺ + 𝑘ኼ) sin(𝐿)

2 𝑓ፖ𝑑𝑡 (5.32)

Integration of Equations 5.31 and 5.32 leads to Equations 5.33 and 5.34, in which 𝑆 is defined by
Equation 5.13.

ℎ(𝑡) = √1 + 𝑘ኼኺ tan (√1 + 𝑘ኼኺ{𝐶፡ +
1
8 tan(𝛼)𝑆[ cos(𝐶ፋ)𝐶𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) − sin(𝐶ፋ)𝑆𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
)]})

(5.33)

𝑘(𝑡) = √1 + ℎኼኺ tan (√1 + ℎኼኺ{𝐶፤ +
1
8 tan(𝛼)𝑆[ sin(𝐶ፋ)𝐶𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) + cos(𝐶ፋ)𝑆𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
)]})

(5.34)
Figure 5.12 shows the resulting graphs from the numerical propagation, the analytical solution

derived in Section 5.1 and its variation as depicted above. Again, the initial values from Table 4.2 are
used. The inclination and longitude of the ascending node are also plotted, since these are directly
influenced by ℎ and 𝑘.
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Figure 5.12: The behaviour of ፡, ፤, ።  resulting from the numerical propagation, the original analytical solution and the
variation on the analytical solution with ᑥ፟ᑠᑥ = 10ᎽᎶ m/sᎴ.

Figure 5.12 shows that the two analytical solutions lie very close together, thus the new approach
on decoupling does not affect the results notably. When comparing both solutions with the numerical
propagation, as seen in Table 5.4, the original analytical solution even proves to give slightly better
results than its variation (although the difference is very small). Thus, no improvements have been
reached by the alternative method of decoupling the differential equations for ℎ and 𝑘.

Table 5.4: The maximum differences between the numerical propagation and the two analytical solutions for ፡, ፤, ። and ,
both absolute and in percentages.

absolute differences relative differences in %
element original variation original variation
Δ h 1.12E-02 1.12E-02 6.9 6.9
Δ k 9.85E-03 9.93E-03 13.7 13.8
Δ i 1.58 1.58 7.8 7.8
Δ Ω 1.34 1.36 5.6 5.7

Inspired by the approach for ℎ and 𝑘 of setting variables to their initial values, the same assumption
can be attempted for 𝑓 and 𝑔. Of course, setting 𝑓 and 𝑔 to their initial values with the assumption
that the eccentricity is equal to zero will naturally lead to the exact same results, since 𝑓ኺ = 𝑔ኺ = 0.
However, when the eccentricity is slightly higher than zero, the analytical result starts deviating from
the numerical result, as shown in Figure 5.13. In this figure, the eccentricity is set to 0.2, with the
rest of the initial parameters being identical to the prior cases (with f፭፨፭ = 10ዅ m/sኼ). It seems that
the numerical propagation shows a linear decrease as time increases, while the analytical solution
continues to oscillate around the same equilibrium.
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Figure 5.13: The behaviour of ፟, ፠, ፚ and ፞ resulting from the numerical propagation and the original analytical solution with
ᑥ፟ᑠᑥ = 10ᎽᎷ m/sᎴ.

Thus, if a linear term is introduced in the analytical derivation, the result may behave more similar
to the numerical propagation. This linear term can be introduced by substituting the initial values of 𝑓
and 𝑔 in the first term on the right-hand side of their differential equations (Equations 3.6b and 3.6c).
This leads Equations 5.35 and 5.36.

𝑑𝑓
𝑑𝑡 = √

𝑝
𝜇 [

1
𝑤ኺ
((𝑤ኺ + 1) cos(𝐿) + 𝑓ኺ)𝑓ፍ] (5.35)

𝑑𝑔
𝑑𝑡 = √

𝑝
𝜇 [

1
𝑤ኺ
((𝑤ኺ + 1) sin(𝐿) + 𝑔ኺ)𝑓ፍ] (5.36)

Integrating the above expressions leads to Equations 5.37 and 5.38.

𝑓(𝑡) = 𝐶፟ +
(𝑤ኺ + 1)
4𝑤ኺ

𝑆[ cos(𝐶ፋ)𝐶𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
) − sin(𝐶ፋ)𝑆𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) + 4𝑓ኺ
(𝑤ኺ + 1)

ln|𝑓ፍ𝑡 + 𝐶፩|]

(5.37)

𝑔(𝑡) = 𝐶፠ +
(𝑤ኺ + 1)
4𝑤ኺ

𝑆[ sin(𝐶ፋ)𝐶𝑖(
𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ

4𝑓ፍ𝜇
) + cos(𝐶ፋ)𝑆𝑖(

𝑆(𝑓ፍ𝑡 + 𝐶፩)ኾ
4𝑓ፍ𝜇

) + 4𝑔ኺ
(𝑤ኺ + 1)

ln|𝑓ፍ𝑡 + 𝐶፩|]

(5.38)
These new analytical solutions are plotted in Figure 5.14, together with the numerical propagation

and the original analytical solution as a reference. The same input parameters have been used as for
Figure 5.13.
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Figure 5.14: The behaviour of ፟, ፠, ፚ and ፞ resulting from the numerical propagation, the original analytical solution and the
variation on the analytical solution with ᑥ፟ᑠᑥ = 10ᎽᎷ m/sᎴ.

From the figures above it becomes immediately clear that the variation on the analytical solution
shows not improvement over the original one. Moreover, the solution seems to deviate in the opposite
direction. This is also confirmed by the absolute and relative differences shown in Table 5.5.

Table 5.5: The maximum differences between the numerical propagation and the two analytical solutions for ፟, ፠, ፚ and ፞,
both absolute and in percentages.

absolute differences relative differences in %
element original variation original variation
Δ f 1.71E-02 2.53E-02 9.8 14.4
Δ g 8.29E-03 9.73E-03 17.1 20.1
Δ a 2.98E+08 7.22E+08 0.2 0.4
Δ e 1.71E-02 2.45E-02 9.2 13.4

In conclusion, none of the variations that have been attempted resulted in better results than what
have been shown in Section 5.3 in Tables 5.1 and 5.2. However, the analytical solutions that have been
obtained in Sections 5.1 and 5.2 provide results that are sufficiently satisfactory to continue developing
this method. Looking back at the end of Chapter 4, the first three bullet points have been addressed
in this chapter: a time-based analytical solution has been derived in Section 5.1, and the variations in
the derivations for ℎ, 𝑘, 𝑓 and 𝑔 have been addressed in this section. The final bullet point states that
the increase in eccentricity can be stopped if coast arcs are introduced. The thrust will then restart
at a different place in the orbit, causing the eccentricity to decrease. In this way, the eccentricity will
be confined within bounds. This will be discussed further in the next chapter, where coast arcs are
introduced in order to satisfy the bang-bang control constraint.





6
Algorithm Development

In the previous chapters, an analytical solution for Gauss’ form of Lagrange’s planetary equations
expressed in modified equinoctial elements was derived. However, apart from the absence of radial
thrust, which was readily implemented in the analytical solution, another constraint on the acceleration
set in Chapter 3 was that only bang-bang control would be allowed. Thus, besides thrust arcs, coasts
arcs need to be introduced as well. Section 6.1 will explain in detail the steps taken to implement the
bang-bang control into the algorithm. Thereafter, Section 6.2 will present and discuss the results. The
algorithm will be analyzed in more detail in Chapter 7.

6.1. Bang-Bang Control
Bang-bang control implies that only two states of thrust exists; either the engine is on, and an acceler-
ation is acting upon the spacecraft, or the engine is off, and the spacecraft will follow its Kepler orbit.
In Chapter 5, an analytical solution has been found for the motion of the spacecraft during a thrust arc.
Since the motion of the spacecraft during a coast arc is trivial (i.e. the elements remain constant, only
the fast variable 𝐿 needs to be propagated), the problem remains of determining the points at which
the engines are switched on and off. If these switching points are chosen wisely, an efficient transfer
orbit will result from the optimization process. As already mentioned in Chapter 4, the switching points
can be chosen in such a way that the eccentricity stops to increase infinitely, but rather constrains itself
to values close to zero. Keeping this in mind, a logical implementation would be to place the thrust
arcs at 180 degrees from each other, such that the eccentricity increases at one end, but decreases at
the other. Furthermore, from the figures shown in Chapters 4 and 5 (for example Figure 5.2), it can be
seen that the inclination does not show a linear increase in time, rather, it oscillates around its initial
value. Better insight is obtained when observing Gauss’ form of the planetary equations expressed in
Kepler elements, as shown in Chapter 3. The differential equation for the inclination is repeated here
for convenience:

𝑑𝑖
𝑑𝑡 = 𝑓ፖ

𝑟
√𝜇𝑝

cos(𝑢) (6.1)

According to the above equation, the maximum change in inclination occurs when cos(𝑢) = 1, i.e.
when u = 0 or u = 180 degrees. Furthermore, the direction of the thrust force should switch 180
degrees every time the spacecraft passes the nodes in order for the inclination to increase. Thus,
when an inclination change is desired, the location of the thrust arcs can be set at these angles. One
has to keep in mind that a variation in the longitude of the ascending node occurs in the exact opposite
manner, with its largest changes occurring at u = 90 degrees and u = 270 degrees:

𝑑Ω
𝑑𝑡 = 𝑓ፖ

𝑟
√𝜇𝑝 sin(𝑖)

sin(𝑢) (6.2)

Taking the above discussion into consideration, an orbit can be divided into four arcs: two thrust
arcs and two coast arcs alternating each other. This results in four switching points in total. The orbit
is now defined by the following parameters:
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• the lengths of the thrust and coast arcs

• the direction of the thrust force

• the timing of the switching points

For the implementation of the code, a few assumptions have been made on the above-mentioned
points. First of all, the lengths of the two thrust arcs are the same, set as a design variable that is
expressed as an angle (the thrust arc angle or 𝑡𝑎𝑎). As such, the length of the thrust arc can be used
as a design parameter to optimize the transfer orbit. The coast arcs also have the same length, which
follows directly from the length of the thrust arcs.

The direction of the thrust is determined by the steering angle 𝛼, of which the definition was given
in Chapter 3. In addition, the choice can be made whether the thruster points in the same direction
during the entire orbit or it ’flips’ its direction during the second thrust arc, thrusting in the opposite
direction. This complies to the requirement that has been discussed above regarding a successful
inclination change.

Finally, the timing of the switching points is determined by the argument of latitude 𝑢. The argument
of latitude at which the first thrust arc is introduced is a design variable (𝑢ኻ); the second angle (𝑢ኼ) is
automatically set 180 degrees further.

𝑢ኼ = 𝑢ኻ + 180፨ (6.3)

The angles at which the switching points (𝑠𝑤𝑝ᖣ𝑠) occur, are then determined as follows:

𝑢፬፰፩ኻ = 𝑢ኻ − 𝑡𝑎𝑎/2 (6.4)

𝑢፬፰፩ኼ = 𝑢ኻ + 𝑡𝑎𝑎/2 (6.5)

𝑢፬፰፩ኽ = 𝑢ኼ − 𝑡𝑎𝑎/2 (6.6)

𝑢፬፰፩ኾ = 𝑢ኼ + 𝑡𝑎𝑎/2 (6.7)

The switching points dividing an individual orbit into the thrust and coast arcs are visualized in
Figure 6.1. Switch points 1 and 2 and 3 and 4 always enclose a thrust arc, while a coast arc lies
between switch points 2 and 3 and 4 and 1.

Figure 6.1: Sketch of the switching points for an individual orbit.

However, since the argument of latitude is not one of the modified equinoctial elements, a relation
has to be found between 𝑢 and one of the computed elements. Looking at its definition, the argument
of latitude can be expressed in Kepler elements as follows [19];

𝑢 = 𝜔 + 𝜃 (6.8)

The definition of the true longitude in terms of Kepler elements has already been shown in Chapter
3 and is repeated here for convenience:
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𝐿 = Ω + 𝜔 + 𝜃 (6.9)

Thus, the following relation between the true longitude and argument of latitude can be found:

𝐿፬፰፩ = Ω + 𝑢፬፰፩ (6.10)

The above expression is convenient, because the true longitude is available as a function of time.
If Ω is known, the switching time can be found with Equation 5.9 by solving for 𝑡. During a coast
arc, Ω is constant and can be computed with Equation 3.5e. During a thrust arc however, Ω is subject
to change: determining 𝐿፬፰፩ requires an iterative process. Keeping in mind that this algorithm will
ultimately be used for optimization purposes, keeping the number of computations as low as possible
is of great importance. Therefore, Ω at the start of the thrust arc is used to compute the next switch
time. The inaccuracies introduced by this assumption vary as 𝑢ኻ and 𝑢ኼ vary, since the change in Ω is
dictated by 𝑢 (see Equation 6.2).

Finding the switching time with Equation 5.9 is not straightforward due to the sign-term, that in
itself is dependent on time. However, when looking more carefully at Equation 5.13, a resemblance
with the denominator in Equation 5.4 can be seen. As already mentioned, the denominator introduces a
singularity in the solution when reaching zero, indicating a highly eccentric hyperbolic orbit (approaching
a straight line). In Equation 5.13, the sign would switch at this point. Having declared this outside the
scope of the developed method, the sign can be determined once at the start of the thrust arc, and
remains unchanged for the rest of the thrusting period. Moreover, when substituting Equation 5.5 into
Equation 5.13 and evaluating it at the initial time, the following observation is made:

𝑆 = 𝑠𝑖𝑔𝑛(𝑓ፍ𝑡ኺ −√
𝜇
𝑝ኺ
− 𝑓ፍ𝑡ኺ) = 𝑠𝑖𝑔𝑛( − √

𝜇
𝑝ኺ
) (6.11)

Seeing that 𝜇 > 0 and 𝑝ኺ > 0, 𝑆 = −1 for all initial conditions. The switching time is then given by
Equation 6.12.

𝑡፬፰፩ኼ,ኾ = −
((𝐶ፋ − 𝐿፬፰፩ኼ,ኾ)4𝑓ፍ𝜇)ኻ/ኾ − 𝐶፩

𝑓ፍ
(6.12)

If 𝑓ፍ = 0, Equation 5.21 describes the true longitude, rendering the switching time to be:

𝑡፬፰፩ኼ,ኾ,፩፞፫፩ = (𝐿፬፰፩ኼ,ኾ − 𝐶ፋ)
𝑝√𝑝
√𝜇

(6.13)

For a coast arc, all the elements apart from the true longitude stay constant. Therefore, the same
solution as for the perpendicular-thrust case is true for the true longitude, so that the times of the
other two switching points can be expressed as:

𝑡፬፰፩ኻ,ኽ = (𝐿፬፰፩ኻ,ኽ − 𝐶ፋ)
𝑝√𝑝
√𝜇

(6.14)

In Chapter 5 it was stated that the integration constants 𝐶፩, 𝐶፟, 𝐶፠, 𝐶፡, 𝐶፤ and 𝐶ፋ could be found
using the initial state at the start of the transfer. However, by introducing coast arcs, the initial state
is changed at the start of every thrust arc. Therefore, the integration constants are determined each
time at the start of an individual thrust arc. For the coast arc, only 𝐶ፋ needs to be calculated, since the
rest of the elements remains constant.

An extra stop criterion can be added to the algorithm, to facilitate targeting a final orbit. Instead
of propagating until the final time has been reached, the simulation can be stopped when an orbital
element has achieved a particular target value. After each thrust arc, the relevant element is checked.
If its value has surpassed the target value, a secant root finder is used to find the exact time at which
this has happened. This is then the total time of flight (TOF). Another parameter of interest is Δ𝑉,
which is a measure of the required propellant. Because constant thrust is applied, the total Δ𝑉 can be
computed fairly simple with Equation 6.15, in which Δ𝑡። is the time period of a thrust arc and 𝑛 is the
total number of thrust arcs of the transfer.
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Δ𝑉 =
፧

∑
።ኺ
𝑓፭፨፭Δ𝑡። (6.15)

6.2. Results and Discussion
The results of the algorithm described in the previous section are presented in Figure 6.2. The input
parameters from Table 4.2 have been used, with a thrust acceleration of 10ዅኾ m/sኼ. Furthermore, the
thrust arc angle has been set to 40 degrees, 𝑢ኻ is set to zero degrees and the thrust switches to the
opposite direction at the start of each thrust arc. Comparing Figure 6.2 to Figure 5.4, it is noticed that
the analytical solution lies closer to the numerical propagation once the bang-bang control has been
implemented.The eccentricity does not increase exponentially, instead it stays rather close to zero.
This allows the analytical solution to perform better, since it has been derived for zero eccentricity.
Also, the inclination now shows a step-wise increase, because each thrust arc the thrust direction is
flipped. At first glance, the solution for Ω seems to diverge. However, when looking at the scale, the
difference is relatively small. This is in agreement with Equation 6.2, which indicates that no change in
Ω occurs if the thrust is applied at 𝑢 = 0 or 180 degrees, as is the case here. Therefore, even if the two
solutions are slightly different, the overall difference is not large. For 𝜔, at the start the results show
rather erratic behaviour. Since the eccentricity as this moment is very low, the argument of periapsis
is ill-defined. Later on, it shows a steady increase, and the numerical and analytical solution seem to
lie close to each other.
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Figure 6.2: The Kepler elements for a thrust acceleration of 10ᎽᎶ m/sᎴ for 5 years, with ፭ፚፚ = 40 deg and ፮Ꮃ = 0.

In Table 6.1, the maximum error for each element is listed, together with the percentage difference.
Furthermore, the analytical and numerical values at this point are also tabulated. The difference in 𝜔
has only been computed when 𝑒 > 0.001. This is to avoid the ill-defined argument of periapsis when
the eccentricity is close to zero.

As expected, the difference in Ω is relatively small, as well as the difference in 𝑎 and 𝑖. However,
the relative difference for the eccentricity is 43.9%. As explained in Section 5.3, this is because the
eccentricity is used as a divider in Equation 4.34. Since the eccentricity is small, the percentage error
is high. Therefore, the absolute error should be taken as the better measure of accuracy.
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Further inspection of Table 6.1 reveals a relative difference of 27.8% for 𝜔. This does not seem to
strike with Figure 6.2, where no large difference between the two solutions are observed. However, an
explanation for this can be found by examining the last element 𝑢. Although the difference between
the analytical and numerical result is not very large, differing at most by only 1.3 degrees, this does
have a great impact on the remaining elements. This is because the switching times are based on 𝑢,
thus a difference in this element causes a longer or shorter thrusting time. In Figure 6.2, this is most
clearly seen in the plot for the eccentricity, where the analytical result constantly overshoots compared
to the numerical result. The change in 𝜔 is apparently so abrupt, that the small shift in 𝑢 causes a
large error. Thus, the analytical result for 𝜔 is relatively inaccurate.

Table 6.1: The maximum differences between numerical and analytical solution for the Kepler elements for ᑥ፟ᑠᑥ = 10ᎽᎶ m/sᎴ,
TOF = 5 years, ፭ፚፚ = 40 deg and ፮Ꮃ = 0.

element analytical numerical abs. diff. rel. diff. (%)
a (m) 1.80E+11 1.80E+11 1.93E+08 0.11
e (-) 5.30E-03 9.45E-03 4.15E-03 43.9
i (deg) 21.9 21.9 8.48E-03 0.039
𝜔 (deg) 232.9 322.5 89.5 27.8
Ω (deg) 15.0 15.0 3.18E-02 0.21
u (deg) 108.5 109.8 1.30 1.2

To test the stop criterion for the target element, a transfer to 𝑎 = 1.5 AU (Mars’ semi-major axis) is
simulated. The results are shown in Figure 6.3. It can be seen that both the numerical and analytical
solution reach 1.5 AU.
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Figure 6.3: The Kepler elements for transfer orbit to a = 1.5 AU, with ᑥ፟ᑠᑥ = 10ᎽᎶ m/sᎴ, ፭ፚፚ = 40 deg and ፮Ꮃ = 0.

The differences are depicted in Table 6.2. These are computed differently than has been done so
far. For an optimal transfer orbit, the most important task is to arrive at the right target orbit. Thus, the
differences at the final TOF are computed. As expected and satisfying the stop criterion, the final semi-
major axis of the numerical and analytical solution lie close together. Again, the percentage difference
for the eccentricity is not a good representation of the error, but the absolute difference shows that
the two results are in good agreement.
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Table 6.2: The differences of the final state between numerical and analytical solution for the Kepler elements for a transfer
orbit to a = 1.5 AU, with fᑥᑠᑥ = 10ᎽᎶ m/sᎴ, ፭ፚፚ = 40 deg and ፮Ꮃ = 0.

element abs. diff. rel. diff. (%)
Δ a 700.2 3.12E-07
Δ e 4.49E-03 44.6
Δ i 3.53E-03 0.01
Δ 𝜔 7.51 4.8
Δ Ω 5.74E-02 0.39
Δ u 0.44 0.24



7
Performance Assessment

In the previous chapters, a method has been developed for simulating low-thrust transfer orbits without
gravity losses and with bang-bang control. This chapter will elaborate on a more general assessment of
the qualities of this method. As demonstrated in previous analyses, the method’s inaccuracy increases
as the transfer time increases. Thus, to visualize this increase in error, four time periods have been
considered. The results will be discussed in Section 7.1. Hereafter, the method using a stop criterion
has been assessed. This is discussed for various cases in Section 7.2.

During the assessment of the method, two limitations of the method have been established. Firstly,
from the results found in Chapter 5 it can be seen that the results become less accurate as the ec-
centricity increases. This is a logical consequence of the assumption that has been made in Chapter
3, where the eccentricity was assumed to be zero. Therefore, in order to obtain relatively accurate
results, an upper limit of 𝑒 = 0.2 has been set. Furthermore, as explained in Chapter 4, the modified
equinoctial elements have a singularity at 𝑖 = 180 degrees. Thus, the analytical solution will not be
able to provide good results. To prevent this, a limit has been set to 𝑖 = 175 degrees, and the algorithm
will identify all results with a higher inclination as infeasible.

7.1. Fixed Time Periods
Four time periods are considered, namely 2.5, 5, 7.5 and 10 years. Two input parameters have been
varied: the thrust arc angle within the range from 5 to 175 degrees (so the length of the coast arc
is between 175 and 5 degrees), and the steering angle from 0 to 90 degrees. No thrust arc of 180
degrees is considered, since this would imply continuous thrusting, which does not comply with the
bang-bang control constraint. Furthermore, the steering angle flips its direction at the start of each
thrust arc. Finally, this has been repeated for three thrust acceleration values, 𝑓፭፨፭ = 10ዅ, 10ዅኾ and
10ዅኽ m/sኼ. As usual, the maximum errors are obtained by taking the difference between the analytical
and the numerical trajectories.

The results for 𝑓፭፨፭ = 10ዅ m/sኼ are shown in Figure 7.1. Overall, the errors are relatively small
for this thrust value. For the semi-major axis, the largest errors occur at a small steering angle and
high thrust arc angle. This is logical, since the largest change in 𝑎 occurs when the thrust vector
lies completely in-plane, and when the thrust acceleration is applied for a longer period of time. The
largest errors for the eccentricity occur, just as for the semi-major axis, in the lower right corner.
Again, the change in eccentricity is here the largest, resulting in the largest deviations with respect to
the numerical propagation.

For the inclination, the area with the largest errors seems to have shifted upwards for a time of
flight of 2.5 years. Here, the influence of the assumption on the eccentricity becomes visible; the
more the eccentricity increases (and thus is less close to zero), the larger the errors of the solution.
Since the eccentricity changes the most for the largest thrust arc angles, the largest errors are present
at the right side of the error plot. However, the inclination hardly increases at small steering angles,
because an out-of-plane acceleration component is required to do so. Thus, the largest errors occur
at the center, where the steering angle has a considerable influence on both the eccentricity and the
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Figure 7.1: Maximum errors in elements for TOF = 2.5, 5, 7.5, 10 years ( ᑥ፟ᑠᑥ = 10ᎽᎷ m/sᎴ, ፮Ꮃ = 0 deg).
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inclination. As the time of flight becomes larger, the maximum errors shift upwards, to the upper right
corner. Apparently, here the increase in inclination becomes the more important error source, as the
error builds up with every thrust arc. Nevertheless, the errors are still very small (in the order of 10ዅኽ

degrees) and indeed negligible when compared relatively (0.6% in the maximum case).
The errors in argument of periapsis show similar behaviour to the eccentricity, which is as expected.

However, as the time of flight increases, the area with the largest errors slightly shifts to the left. Also,
the maximum error increases rapidly with increasing time of flight. These results can indicate that the
argument of periapsis may not be very well estimated by the developed method. Before making a
conclusion, the results for the thrust accelerations of 10ዅኾ m/sኼ and 10ዅኽ m/sኼ will be analyzed first.

For the longitude of the ascending node, the errors behave similarly to the errors of the inclination,
which is as expected, since the change in this element is also caused by an out-of-plane component of
the thrust acceleration (see also Equation 6.2). Note that the area with the largest errors stays at the
center of the right side; unlike the inclination, the change in Ω is the smallest at the chosen values of
argument of latitude (𝑢ኻ = 0 degrees and 𝑢ኼ = 180 degrees).

Finally, the argument of latitude shows relatively small errors for all time of flights. A few outliers
are noticed at the top of the error plot, where the steering angle is 90 degrees. These could have been
introduced by the numerical propagation. While a separate analytical solution has been derived for the
case 𝑓ፍ = 0, forcing the elements 𝑎 and 𝑒 to remain constant over time, the numerical propagation
deals with truncation inaccuracies, allowing (very small) variation over time. However, since the ar-
gument of latitude is computed using 𝜔 and 𝜃 (see Equation 6.8), and since these two elements are
ill-defined for low eccentricities, erroneous results for the numerical propagation occur. Nevertheless,
the largest error is around 3.5 degrees, which is deemed acceptable.

From Figure 7.2 it can be clearly seen that at a higher thrust value, the errors increase. This was
expected, because larger orbit changes are achieved at larger thrust values. It is also noticed that at
high thrust arc angles and steering angles, the solutions become infeasible, that is, the eccentricity
increases to a value above 0.2. The algorithm discards these results, because the transfer orbit starts
to deviate too much from the assumption made during the development of the analytical model (the
eccentricity is equal to zero). These infeasible solutions are marked with white in the error plots. As
the time of flight increases, the area of infeasible solutions becomes larger. As could be expected from
Figure 7.1, the infeasible solutions occur at the lower right corner of the error plot, where the thrust
arc angle is large and the steering angle is small. As already explained, the change in eccentricity is
here the largest, as a large in-plane acceleration acts on the satellite. The errors in the semi-major axis
might seem large, varying up to the order 10 km, but viewed from the perspective of the problem,
namely a heliocentric orbit, the errors are relatively small (on average 0.65% for TOF = 10 years).

The errors in eccentricity can also be considered small. As the time of flight increases, a few
combinations at the border of the infeasible white area show a high error compared to the rest of the
results. This is where the eccentricity has come close to the limiting value of 0.2, but has not quite
reached it. Still, the average error for TOF = 10 years is 0.008, yielding the results satisfactory. The
results for the inclination are also satisfactory. Again, peaks in error are observed at the boundary
of the infeasible area. For the inclination, these peaks are located at the upper side, rather than at
the lower side for the eccentricity. This is because a higher steering angle has a higher impact on
the inclination, while the eccentricity is influenced the most by a lower steering angle. Nevertheless,
the average error is 0.17 degrees for the highest time of flight (10 years), which can be considered
negligible.

The errors in argument of periapsis do not show a very clear pattern. They are small for small
thrust arc angles or high steering angles, but show a sudden (very large) increase for thrust arc angles
between approximately 20 and 45 degrees. These large errors could be explained by the phenomenon
that has been explained in Section 6.2, where it has been said that 𝜔 changes very abruptly when
the rocket engine is turned on. Then, if the numerical and analytical results for 𝑢 do not coincide
exactly, the thrust arcs will start at different times, causing large errors in 𝜔. However, the errors in 𝜔
decrease as the thrust arc angle increases, while one would expect that a larger thrusting time results
in a larger error. Even so, the large errors, which are over 100 degrees, yield the analytical results for
𝜔 as inaccurate and they are not recommended to be used as an indication for preliminary mission
design. An exception could be made for small thrust arc angles (smaller than 20 degrees) or high
steering angles (higher than 85 degrees). The errors in Ω show similar behaviour to the inclination.
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Figure 7.2: Maximum errors in elements for TOF = 2.5, 5, 7.5, 10 years ( ᑥ፟ᑠᑥ = 10ᎽᎶ m/sᎴ, ፮Ꮃ = 0 deg).



7.1. Fixed Time Periods 69

 TOF = 2.5 yrs

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

5

10

15

106
a (km)

 

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

0.02

0.04

e

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

5

10

i (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

20

40

60

80

100

120
u (deg)

 TOF = 5 yrs

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

2

4

6

8

10

107
a (km)

 

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

0.1

0.2

e

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

20

40

60
i (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

50

100

150

u (deg)

 TOF = 7.5 yrs

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0.5

1

1.5

2

108
a (km)

 

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

0.05

0.1

0.15

e

50 100 150
taa (deg)

0

20

40

60

80
 (

de
g)

0

20

40

i (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

50

100

150

u (deg)

 TOF = 10 yrs

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0.5

1

1.5

2

108
a (km)

 

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

0.05

0.1

0.15

e

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

20

40

i (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

0

50

100

150

 (deg)

50 100 150
taa (deg)

0

20

40

60

80

 (
de

g)

50

100

150

u (deg)

Figure 7.3: Maximum errors in elements for TOF = 2.5, 5, 7.5, 10 years ( ᑥ፟ᑠᑥ = 10ᎽᎵ m/sᎴ, ፮Ꮃ = 0 deg).
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Again, peaks are noticed at the upper end of the infeasible area. The average error for TOF = 10 years
is 0.045 degrees, making the overall results acceptable.

Looking at the results for 𝑢, a few relatively large errors are noticed, reaching over 20 degrees for
a flight of time of 10 years. These large errors partly form the cause for the large errors perceived
at the borders of the infeasible areas in the remaining elements. Because the analytical solution for
the argument of latitude does not represent the numerical solution well, the thrust and coast arcs are
started at different times, naturally inducing errors in the rest of the elements. On average though,
the error in 𝑢 is approximately 4 degrees (TOF = 10 years). This indicates that the analytical solution
can be used well outside of this border area.

When the thrust acceleration is increased to 10ዅኽ m/sኼ, few combinations remain possible, as can
be seen in Figure 7.3. The eccentricity increases rapidly and the orbit can become hyperbolic, as has
already been established in Chapter 4. Feasible solutions occur at low 𝑡𝑎𝑎 or high 𝛼. Again, these are
the cases where the increase in eccentricity is relatively small, and the assumption on eccentricity is
violated the least. As the time of flight increases, the results for a high 𝛼 become less and less feasible,
such that the feasible solutions are mostly located in the upper left corner. For TOF = 2.5 years, the
average relative error for the semi-major axis is 1.1%, while for TOF = 10 years this is 2.7%. The
largest errors in eccentricity are high, some even reaching 0.2. The results of the analytical solution
in these cases are clearly not acceptable, considering that the upper limit for the eccentricity was also
set to 0.2. Looking at the average, the error for TOF = 5 years is around 0.02. Thus, on average the
results are good, but some cases are not well filtered by the limits imposed on the analytical solution.

Similarly, the results for the inclination do not seem to perform well when looking at the maximum
errors, especially at TOF = 5 years. However, when taking the average, the error is only around 8.8
degrees. In the discussion of the results for f፭፨፭ = 10ዅኾ m/sኼ, it was concluded that the developed
method does not yield good results for 𝜔. This is confirmed by the results in Figure 7.3, where some of
the errors reach 180 degrees, thus meaning that the argument of periapsis is located at the opposite
side of the orbit. Also some errors in Ω and 𝑢 are approaching 180 degrees, especially at higher thrust
arc angles. For TOF = 2.5 years, the average error for Ω is around 7.3 degrees and for 𝑢 around 8.8
degrees. However, these averages quickly increase as the time of flight goes up. To obtain better
averages, the results at the right side of the plots should be excluded from analysis (that is, the high
thrust arc angles). Thus, for a thrust acceleration of 10ዅኽ m/sኼ, feasible results only occur at low thrust
arc angles.

In conclusion, the developed method shows good results for the Kepler elements, apart from the
results for 𝜔. However, some very high errors are noticed close to the infeasible area. In these cases,
the eccentricity approaches the 0.2 limit, but does not reach it. This could mean that the limit for the
eccentricity was not chosen correctly, and a lower limit should be imposed in order to eliminate the
(few) peaks in errors.

7.2. Stop Criterion
To assess the influence of reaching a final destination, four cases have been analyzed. These cases
are:

• Change in semi-major axis from 1 AU to 1.524 AU (Mars’ semi-major axis).

• Change in semi-major axis from 1 AU to 5.2 AU (Jupiter’s semi-major axis).

• Change in inclination from 20 degrees to 22 degrees.

• Change in inclination from 20 degrees to 40 degrees.

The maximum flight times have been set to 10 years, with the exception of 30 years for the mission
to Jupiter. The remaining initial parameters are set as depicted in Table 4.2, and 𝑓፭፨፭ = 10ዅኾ m/sኼ. A
small and large inclination change have been chosen, to show the method’s capability to model both.
The results are shown in Figures 7.4 to 7.7. Rather than the maximum errors, here the differences
between the final states from the numerical propagation and the analytical solution are compared.
Furthermore, the required Δ𝑉 and final TOF are computed as well. The results in the lower left corner
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Figure 7.4: The errors between the final Kepler elements of the numerical and analytical solutions (upper six plots), the
required ጂፕ and TOF to achieve target orbit resulting from the analytical solution (lower left plots), and the errors between ጂፕ

and TOF of numerical and analytical solution (lower right plots) (stop criterion is ፚ = 1.524 AU, ᑥ፟ᑠᑥ = ኻኺᎽᎶ m/sᎴ and
maximum TOF = 10 years).
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are given by the analytical solution. The lower right corner gives the difference with respect to the
numerical propagation. The TOF is simply the time at which the propagation has been stopped due
to the stop criterion. The Δ𝑉 is computed by multiplying each thrust arc time period by the thrust
acceleration, since the acceleration is constant. The Δ𝑉’s of each thrust arc are then added together
(see Equation 6.15). The infeasible solutions include also the combinations where the target element
has not been reached within the maximum TOF.

For the first case, Figure 7.4 shows that the results have a good accuracy. The difference in ec-
centricity and inclination are negligible, and also the avergage difference in Ω is relatively small. For 𝜔,
the difference does become significant for several combinations of input angles, and has a relatively
high error in general. As already concluded before, the developed algorithm is not able to estimate 𝜔
well. The difference in semi-major axis may be unexpected though, since the stop criterion has been
set to a certain value of the semi-major axis. However, it is noticed that the numerical propagation
and analytical solution use different methods to arrive at this final condition, therefore numerical errors
are inevitable. While the analytical solution computes the final 𝑎 in an exact way, the numerical prop-
agation depends on the step size. Thus, a small overshoot can occur when the stop criterion is met.
However, the final differences in 𝑎 are also relatively small, when compared to the scale of the problem.
This means that the erratic patterns of the Δ𝑎 values can be ignored because of their insignificance.

The required Δ𝑉 and TOF show expected behaviour. As the steering angle increases, the required
Δ𝑉 increases too. This is because the larger the out-of-plane component of the thrust acceleration, the
smaller the change in semi-major axis. Thus, it also takes longer to arrive at the target orbit, which
is reflected by the high TOFs for these input values. High TOFs are also noticed for small values of
the thrust arc angle. Logically, if less thrust is applied during one revolution, the spacecraft will need
a higher number of revolutions before arriving at the target orbit.

The differences of Δ𝑉 show good accuracy as well, with the maximum error in Δ𝑉 being just 1.4%.
The differences in TOF however show some high peaks at specific combinations of thrust arc angle
and steering angle. This is the result of the error in 𝑢, which causes the thrust and coast arcs to start
and end at slightly different moments for the numerical and analytical results. Also, the elements of
the numerical and analytical solution have already obtained an error at the end of the propagation.
Therefore, it may happen that while the analytical solution has reached the target value just within
the last thrust arc, the numerical propagation will introduce one extra coast arc before also arriving
at the target value shortly after. The introduction of the coast arc therefore causes the TOF to differ
significantly. When designing a mission, this difference can be neglected though, as the only adjustment
would be to thrust for a slightly longer period during the last thrust arc.

For the second case (Figure 7.5), the combinations yielding feasible solutions are far more sparse. On
the one hand, the restriction of 30 years for the TOF might have been too strict (10,000 days in the plot
for TOF corresponds to 30 years, which is the upper limit). No feasible results are present when the
thrust arc angle is small (i.e. the rocket engine is active for a shorter period of time), which indicates
that not enough force is applied in order to change the orbit to the desired semi-major axis. On the other
hand, the accuracy of the developed method decreases as the time increases, as concluded in Chapter
6. This is because the eccentricity becomes large, and therefore the assumption of zero eccentricity is
no longer valid. Thus, large thrust arc angles yield infeasible results because the eccentricity crosses
the upper limit. Finally, a higher steering angle results in less change of semi-major axis during one
orbit, such that the target value cannot be achieved within the given TOF. For the combinations that
are feasible, the results vary largely.

The largest relative error for the inclination is just over 3%, which is still acceptable. However, taking
into account that the focus is on changing the semi-major axis, no large increase in the inclination is
anticipated. Indeed, the results for the higher steering angles (where the inclination change is large)
are mostly infeasible, because the required 𝑎 cannot be reached. Similarly to previous results, 𝜔 shows
relatively large differences and is not considered to be a good approximation. The eccentricity reaches
in some cases an error of 0.2, which is equal to the feasible range. This, of course, will yield inaccurate
results. For the argument of latitude, some cases yield acceptable errors, but some also show very
high deviations of the analytical solution. For an optimization process, this would be disadvantageous,
since 𝑢 is used to define the thrust profile (the start of the thrust and coast arcs). This also has a large
impact on the required Δ𝑉, which is directly related to the thrust profile. Thus, the resulting preliminary
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Figure 7.5: The errors between the final Kepler elements of the numerical and analytical solutions (upper six plots), the
required ጂፕ and TOF to achieve target orbit resulting from the analytical solution (lower left plots), and the errors between ጂፕ
and TOF of numerical and analytical solution (lower right plots) (stop criterion is a = 5.2 AU, ᑥ፟ᑠᑥ = ኻኺᎽᎶ m/sᎴ and maximum

TOF = 30 years).
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optimum mission may look very differently from the actual case, when the high-accuracy optimizers are
used. In conclusion, while some combinations may yield good results with fair accuracies, the method
does not occur to be reliable enough to design problems including large TOFs.
The results for the two-degrees inclination change are shown in Figure 7.6. It can be seen that the
stop criterion for the inclination works better than for the semi-major axis, since the errors are in the
order of 10ዅኾ degrees. It is also noticed that a large number of feasible solutions exist to arrive at the
target orbit. Unfeasible solutions occur at low thrust arc angles, where the applied acceleration is not
large enough to provide the required impulse, and at low steering angles, since an inclination change
requires an out-of-plane thrust component. The overall accuracy of the elements is good. The relative
average error for 𝑎 is 0.06%. The eccentricity shows a maximum error of approximately 0.04, but the
average error is 0.002. Also for Ω, where a few distinct results achieve an error of around 0.5 degrees,
the average error is far smaller, being around 0.07 degrees.

As could be expected from the results of the first case, the errors for 𝑢 are relatively small, but
show some very large values at specific combinations, caused by an extra coast arc inserted at the end
of the transfer as explained for the first case. For the required Δ𝑉 and TOF, the opposite behaviour is
seen compared to Figure 7.4. Naturally, the largest inclination change occurs at the highest steering
angle, unlike the change in semi-major axis. Therefore, the largest values for the required Δ𝑉 and TOF
appear at the lower part of the plot. Large TOFs are still noticed at low thrust arc angles, just as in
the first case. The peaks in TOF for certain combinations are again attributed to the phenomenon as
described for the first case, and coincide with the peaks found in the errors for 𝑢.

The final case is shown in Figure 7.7. The feasible solution space has visibly decreased compared to
the previous inclination change. Since the input parameters are the same for both cases, it is reason-
able that the higher inclination change will be achieved less often. Again, the results for 𝜔 may be
discarded, since these show large errors. The results for the inclination however are in good agree-
ment, confirming that the algorithm works well when 𝑖 is given as stop criterion. Apart from one result,
with an error of around 0.22 degrees, the errors seem to be very small, with the average error being
just 0.0012 degrees. The results for the semi-major axis also have good accuracies, with an average
relative error of 0.14%. For Ω, the average error is 1.26%.

Just as with the previous results, 𝑢 shows small errors, except from some distinct cases, which
are mimicked by the errors for the time of flight. The average error is nevertheless just 7.1 degrees,
including the large errors. This shows that the remaining have a good accuracy. Also the required TOF
shows a good accuracy, with an average errors of approximately 18 days. As explained above, the few
large deviations for the TOF does not have to mean that the true optimum lies far from the preliminary
optimum for these cases, since the last thrust arc can be slightly lengthened to a achieve the target
element. Finally, the average error for Δ𝑉 is 0.0564 km/s, which also indicates a good accuracy. For
the total required Δ𝑉, the largest value occur at the largest thrust arc angles, which correspond to
the longest thrusting times. The largest TOF is required at the smallest (feasible) thrust arc angle, as
expected.

Since no optimization has been performed, it is difficult to make a comparison with the results from
other methods as presented in Chapter 2. However, an indication can be provided using the algorithm
with the stop criterion. In Section 2.3, a transfer from Earth to Mars has been optimized using bang
bang control. An average thrust acceleration of 1.6⋅10ዅኾ m/sኼ is applied on the spacecraft. This is used
as the input acceleration for the developed algorithm. Furthermore, the initial Kepler elements are set
to 𝑎 = 1 AU, 𝑒 = 0.017, 𝑖 = 0 degrees and Ω = 0 degrees, which are the Kepler elements of the Earth
orbit around the Sun [38]. The element 𝜔 has note been taken into account, since this element proved
to be estimated inaccurately by the algorithm. Also, for the sake of simplicity, the time of transfer and
the initial and final 𝑢 have not been taken into account and it is assumed that Mars will be in position
when the spacecraft reaches its orbit. Both 𝜔 and 𝑢 are therefore set to 0 degrees. The stop criterion
is once again set to 1.524 AU, which is Mars’s semi-major axis. Then, a similar grid search to the ones
presented above is performed. The results are inspected not only on the lowest Δ𝑉, but also on the
three remaining elements. Mars’s orbit has the following Kepler elements: 𝑒 = 0.093, 𝑖 = 1.85 degrees
and Ω = 49.56 degrees. When 𝛼 = 10 degrees and 𝑡𝑎𝑎 = 120 degrees, the differences between the
final results of the algorithm and Mars’s orbit are 𝑑𝑒 = 0.0038, 𝑑𝑖 = 0.077 degrees and 𝑑Ω = 308.9
degrees. The differences in 𝑒 and 𝑖 are acceptable, but the difference in Ω seems high. However, this
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Figure 7.6: The errors between the final Kepler elements of the numerical and analytical solutions (upper six plots), the
required ጂፕ and TOF to achieve target orbit resulting from the analytical solution (lower left plots), and the errors between ጂፕ

and TOF of numerical and analytical solution (lower right plots) (stop criterion is i = 22 degrees, ᑥ፟ᑠᑥ = ኻኺᎽᎶ m/sᎴ and
maximum TOF = 10 years).
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Figure 7.7: The errors between the final Kepler elements of the numerical and analytical solutions (upper six plots), the
required ጂፕ and TOF to achieve target orbit resulting from the analytical solution (lower left plots), and the errors between ጂፕ

and TOF of numerical and analytical solution (lower right plots) (stop criterion is i = 40 degrees, ᑥ፟ᑠᑥ = ኻኺᎽᎶ m/sᎴ and
maximum TOF = 10 years).
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difference could be expected, as the thrust is applied at the positions in orbit when the change in 𝑖 is
highest, but the change in Ω lowest. Thus, the correct Ω could be achieved by thrusting at 𝑢 = 90 and
270 degrees with 𝛼 = 90 degrees. Nevertheless, this case serves as a good indication for the required
Δ𝑉, which is equal to 5.65 km/s. This is similar to the result presented in Section 2.3, where the final
Δ𝑉 was 5.68 km/s. Also the TOF’s are similar, being 727 days for the developed algorithm, compared
to 793 days from Section 2.3.

In Section 2.1, a transfer from Earth to Mars was optimized using the Finite Fourier Series method
with approximate on-off thrusting. From Figure 2.5 it can be seen that the approximate thrust acceler-
ation is 0.02 DU/TUኼ, or 1.2⋅10ዅኾ m/sኼ. The total Δ𝑉 can be roughly estimated by assuming the rocket
engine has turned on after 5 TU or 291 days and stayed on until 13.5 TU or 785 days, which results
in Δ𝑉 = 5.1 km/s. Using the same initial parameters as above, but with the new thrust acceleration
value, the total required Δ𝑉 given by the algorithm is 5.6 km/s, with TOF = 754.9 days. The differences
are 𝑑𝑒 = 0.0012 and 𝑑𝑖 = 0.22 degrees, while the corresponding angles are 𝛼 = 10 degrees and 𝑡𝑎𝑎
= 145 degrees. Although the calculations above only give a rough indication for the comparison with
the optimized results, they still show that, even without a rigorous optimization process, the algorithm
gives results that are similar to the optimized results from other low-thrust transfer methods.

In conclusion, the developed algorithm performs well provided that the TOF is not too large. Also,
both small and large inclination changes can be modelled with good accuracy. The observed errors
have different natures, and a summary of these possible sources of error is given below.

• The periodical variation of the true longitude is neglected for the analytical solution.

• The assumption that 𝑒 = 0 is only exact at the start of the transfer. Hereafter, the eccentricity
will increase due to the thrust acceleration acting on the spacecraft.

• Within the code, several while-loops ensure that the solution converges to the desired result,
e.g. the target 𝑢 for the numerical propagation, or the target element for both analytical and
numerical propagation. However, these are not always able to converge to the set tolerance, and
therefore are terminated after a maximum number of loops. This introduces a variable inaccuracy
which is difficult to quantify in general.

• The error in argument of latitude arising from the above error sources further deviates the re-
sults, as the switching times are dependent on this element. Differences will therefore results in
difference thrusting periods, such that the change in elements is larger or smaller.

• In addition, for the computation of the switching time for the analytical solution, an approximate
value for Ω is used, which may cause the final 𝑢 to deviate from the target 𝑢.





8
Conclusions and Recommendations

The aim of this research was to develop an algorithm to analytically model low-thrust transfer orbits,
with two constraints on the acceleration. The first one, bang-bang control, fixed the shape of the
thrust profile by only allowing on-off thrusting. The second one implied that no radial thrust would be
applied on the spacecraft, to reduce gravity losses. An analytical solution has been found to describe
the motion of the spacecraft during the thrust arc. Section 8.1 discusses the main conclusions arising
from this research, while Section 8.2 provides recommendations for future research.

8.1. Conclusions
For the derivation of the analytical solution for low-thrust transfer orbits, the modified equinoctial el-
ements have been used. This set of coordinates is characterized by first-order differential equations,
which makes the derivation significantly easier. Furthermore, these elements are free from singulari-
ties at zero eccentricity and zero inclination. Besides the low-thrust acceleration provided by the rocket
engine, no other perturbations have been taken into account. Also, originating from the thrust con-
straints mentioned above, the radial thrust is set to zero. This was the starting point of the analytical
derivation. The research question, as posed in the introduction, was:

Is it possible to develop an analytical solution for low-thrust trajectories while assuming bang-bang
control without gravity losses"

If Lagrange’s planetary equations are simplified by assuming that the eccentricity is zero, an analytical
solution can indeed been found for low-thrust trajectories. This analytical solution has been imple-
mented in an algorithm, which simulates bang-bang control thrust profiles by switching the thrust on
and off at cleverly chosen points during the orbit.

Two sub-questions arised from the main research question:

• What is the accuracy of the developed solution"

• To what extent is the developed solution applicable"

The accuracy of the developed algorithm proved to be good. The differences have been assessed
for steering angles ranging from 0 to 90 degrees and thrust arc angles ranging from 5 to 175 degrees.
For a transfer of 10 years with a thrust acceleration of 10ዅኾ m/sኼ, an average relative difference of
just 0.65% for the semi-major axis is perceived. The average difference for the eccentricity in this
case is 0.006, while for the inclination it is 0.17 degrees. For the longitude of the ascending node and
argument of pericenter the average errors are 0.045 and 4 degrees, respectively. The method failed
however to make a good prediction of the argument of periapsis. Furthermore, it is noticed that as the
thrust acceleration becomes higher, e.g. 10ዅኽ m/sኼ, the results become more inaccurate. This can be
explained by a larger increase in elements, which also causes the eccentricity to deviate increasingly
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from the assumption made. The same is true for a longer time of flight (TOF). As the time is increased
from 2.5 to 10 years, less combinations of thrust arc angles and steering angles remain feasible.

With the addition of a stop criterion, the required Δ𝑉 and TOF for different combinations of input
parameters can be computed. The analytical results showed good correspondence with the numerical
results, apart from some high errors that were noticed for the TOF. These have been attributed to the
difference in switching times between the two methods, causing one method to arrive at the target
value at the end of the final thrust arc, while the other achieves the final element at the beginning of
the next; thus, an additional coast arc is inserted. This is also noticed in the final difference in 𝑢. In
conclusion, the accuracy of the developed method is deemed to be fit for arriving at first-order guesses
of an optimal solution.

The largest assumption that has been made to simplify the equations of motion directly influences
the applicability of the method. Since zero eccentricity is assumed, the analytical solution only provides
good results for relatively small eccentricities. Based on the comparison between the analytical and
numerical methods, an upper limit of 𝑒 = 0.2 has been set. However, it is believed that a considerable
range of mission design problems can still be achieved with the developed method, since there are
several planetary bodies with orbits not exceeding this eccentricity. Moreover, it has been found that
the accuracy of the method decreases if the time of flight increases. Therefore, the maximum time of
flight needs to be restricted. From the results it could be concluded that a TOF of 30 years exceeds the
applicable range of the method. Also, the planetary equations of the modified equinoctial elements do
not offer a solution when the inclination is 180 degrees. Therefore, the algorithm should be stopped
when a value for the inclination near this limit is achieved. Finally, the method did not yield accurate
results for the argument of pericenter. However, since the eccentricities are assumed to be near-zero,
this is not expected to form a large source of error for the final optimum result.

8.2. Recommendations
Although it has been proven that the developed method provides sufficiently accurate results, within
certain limits, it still has to implemented into an optimization scheme. The optimization process would
then make a more rigorous search within the design space to arrive at the optimum solution. The
design parameters include:

• the thrust acceleration 𝑓፭፨፭
• the steering angle 𝛼

• the thrust arc angle 𝑡𝑎𝑎

• the position of the switching points, determined by 𝑢ኻ and 𝑢ኼ
• the maximum time of flight

In addition, the optimization could also be allowed to vary the steering angles and thrust arc angles.
In the current method, these angles are fixed at the start of the simulation, and cannot be changed
during the transfer. However, one could imagine cases where a change would be desirable. For
example, if both a change in semi-major axis and inclination are required, a possible solution would
be that the steering angle is mostly in-plane at the start, and gains an out-of-plane component as it
reaches the target orbit. Moreover, if the change in inclination is small, the thrust arc angle can be
reduced in the final stages of the transfer.

Since the method can not be used to directly constrain the solution to the boundary conditions, a
forward targeting method should be used to arrive at the optimum. Two different parameters can be
chosen to optimize, either the Δ𝑉 or TOF, or a combination of these two. In addition, the differences
between the achieved final elements and the target final elements should be minimized. This can be
done by means of a penalty function. The weights are then varied depending on the requirements of
the mission.

Finally, in the analysis of the developed method, only heliocentric transfers have been taken into
account. However, the method is developed for a general transfer around any attracting body, requiring
a different 𝜇. Interesting cases to further analysis would transfers in Earth orbit, such as LEO-to-GEO
transfers.
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