
 
 

Delft University of Technology

Algorithmic improvements of the material-point method and Taylor least-squares function
reconstruction

Wobbes, Lisa

DOI
10.4233/uuid:e4b0ddb1-26d8-4ba6-8c4d-4894cd77b2be
Publication date
2019
Document Version
Final published version
Citation (APA)
Wobbes, L. (2019). Algorithmic improvements of the material-point method and Taylor least-squares
function reconstruction. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:e4b0ddb1-26d8-4ba6-8c4d-4894cd77b2be

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:e4b0ddb1-26d8-4ba6-8c4d-4894cd77b2be
https://doi.org/10.4233/uuid:e4b0ddb1-26d8-4ba6-8c4d-4894cd77b2be


ALGORITHMIC IMPROVEMENTS OF THE
MATERIAL-POINT METHOD AND TAYLOR

LEAST-SQUARES FUNCTION RECONSTRUCTION





ALGORITHMIC IMPROVEMENTS OF THE
MATERIAL-POINT METHOD AND TAYLOR

LEAST-SQUARES FUNCTION RECONSTRUCTION

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Wednesday 18 December 2019 at 10:00 o’clock

by

Elizaveta Dmitrievna WOBBES

Master of Science in Applied Mathematics, Delft University of Technology, the
Netherlands

born in Ryazan, the Union of Soviet Socialist Republics



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus chairman
Prof. dr. ir. C. Vuik Delft University of Technology, promotor
Dr. M. Möller Delft University of Technology, copromotor

Independent members:
Prof. dr. M. Berzins The University of Utah, the United States of America
Prof. dr. A. M. Pandolfi Polytechnic University of Milan, Italy
Prof. dr. C. Augarde Durham University, the United Kingdom
Prof. dr. M. Hicks Delft University of Technology
Prof. dr. ir. A. W. Heemink Delft University of Technology

Keywords: material-point method, function reconstruction, Taylor least squares,
optimal transportation meshfree method, B-spline, grid-crossing er-
ror, spatial accuracy

Printed by: ProefschriftMaken || proefschriftmaken.nl

Front & Back: Kate Ladenheim

Copyright © 2019 by E.D. WOBBES
ISBN 978-94-6384-089-7

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

Summary v

I Introduction and background 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Dissertation objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Overview of the material-point method 9
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Continuum-based framework . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Meshfree methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Particle-In-Cell and Fluid-Implicit Particle methods . . . . . . . . . 11

2.2 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Governing equations. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Spatial discretization. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Remarks on conservation properties . . . . . . . . . . . . . . . . . 18

2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.4 Related methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.5 Other improvements . . . . . . . . . . . . . . . . . . . . . . . . . 29

II Methodological improvements of the material-point method 31

3 Further development of the B-spline material-point method 33
3.1 B-spline basis functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Application to MPM . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Mapping of material-point data to the background grid . . . . . . . . . . 36
3.2.1 Function reconstruction . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Application to B-spline material-point method . . . . . . . . . . . 39

i



ii CONTENTS

3.3 Extension to unstructured triangular grids using Powell-Sabin splines . . . 40
3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 B-spline material-point method . . . . . . . . . . . . . . . . . . . 43
3.4.3 Mapping of material-point data with cubic-spline function recon-

struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Application to unstructured triangular grids using Powell-Sabin splines

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Comparison and unification with OTM method 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Optimal transportation meshfree method . . . . . . . . . . . . . . . . . 48

4.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Local maximum-entropy basis functions . . . . . . . . . . . . . . . . . . 53

4.3.1 Weight functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Comparison of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Unified approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.1 Bar with fixed ends. . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.2 Bar with dynamic traction boundary conditions . . . . . . . . . . . 67
4.6.3 Plate undergoing axis-aligned displacement . . . . . . . . . . . . . 69

4.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III Taylor least-squares function reconstruction and its application to the material-
point method 73

5 Conservative TLS reconstruction with application to MPMs 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Taylor least-squares function reconstruction . . . . . . . . . . . . . . . . 76

5.2.1 Least-squares approximation . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Taylor basis functions . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 Examples of Taylor least-squares reconstruction . . . . . . . . . . . 79

5.3 Application of TLS technique to the material-point methods . . . . . . . . 81
5.3.1 Mapping of particle data . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Conservation of mass and momentum. . . . . . . . . . . . . . . . 85

5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Bar with fixed ends. . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.2 Column compaction . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Discussion 95
6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 Rectangular elements . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.2 Triangular elements . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS iii

6.2 Examples of Taylor least-squares reconstruction . . . . . . . . . . . . . . 100
6.2.1 Rectangular grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Triangular grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Application of TLS technique to the material-point method . . . . . . . . 103
6.3.1 Preliminary numerical results . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

IV Closure 107

7 Conclusions 109
7.1 Summary of the literature study. . . . . . . . . . . . . . . . . . . . . . . 110
7.2 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Suggestions for future research . . . . . . . . . . . . . . . . . . . . . . . 112

References 115

Acknowledgements 129

Curriculum Vitæ 131

List of Publications 133





SUMMARY

The material-point method (MPM) is a continuum-based numerical tool to simulate
problems that involve large deformations. Within MPM, a continuum is discretized by
defining a set of Lagrangian particles, called material points, which store all relevant ma-
terial properties. The method adopts an Eulerian background grid, where the equations
of motion are solved at every time step. The solution on the background grid is used to
subsequently update all material-point properties, such as displacement, velocity, and
stress. In this way, MPM incorporates both Eulerian and Lagrangian descriptions. Sim-
ilarly to other combined Eulerian-Lagrangian techniques, MPM attempts to avoid the
numerical difficulties arising from nonlinear convective terms associated with an Eule-
rian problem formulation, while preventing grid distortion, typically encountered within
meshbased Lagrangian formulations.

Over the years, MPM has been successfully applied to many complex problems from
engineering and computer graphics. Despite its impressive performance for these appli-
cations, the method still suffers from several numerical shortcomings, such as stability
issues, inaccurate mapping of the material-point data, and unphysical oscillations that
arise when material points travel from one element to another, the so-called grid cross-
ing errors. This dissertation provides an overview of the existing literature that addresses
these drawbacks, and introduces new mathematical techniques that improve the perfor-
mance of MPM.

Previous studies have indicated that the use of higher-order B-spline basis functions
within MPM mitigates the grid-crossing errors, thereby improving the accuracy of the
method. This thesis combines the B-spline approach, known as BSMPM, with an al-
ternative technique to project the information from material points to the background
grid. The mapping technique is based on cubic-spline interpolation and Gauss quadra-
ture. The numerical results show that the proposed approach further increases the ac-
curacy of the method and leads to higher-order convergence. Moreover, the extension
of BSMPM to unstructured grids using Powell-Sabin splines is discussed.

After that, this dissertation compares MPM to the optimal transportation meshfree
(OTM) method. Both MPM and the OTM method have been developed to efficiently
solve partial differential equations that arise from the conservation laws in continuum
mechanics. However, the methods are derived in a different fashion and have been stud-
ied independently of one another. This thesis provides a direct step-by-step compari-
son of the MPM and OTM algorithms. Based on this comparison, the conditions, under
which the two approaches can be related to each other, are derived, thereby bridging
the gap between the MPM and OTM communities. In addition, the thesis introduces a
novel unified approach that combines the design principles from BSMPM and the OTM
method. The proposed approach is significantly cheaper and more robust than the stan-
dard OTM method and allows for the use of a consistent mass matrix without stability
issues that are typically encountered in MPM computations.

v



vi SUMMARY

Finally, this thesis introduces a novel function reconstruction technique that com-
bines the well-known least-squares method with local Taylor basis functions, called Tay-
lor least squares (TLS). The technique reconstructs functions from scattered data, while
preserving their integral values. In conjunction with MPM or a related method, the
TLS technique locally approximates quantities of interest, such as stress and density,
and when used with a suitable quadrature rule, conserves the total mass and linear
momentum after transferring the material-point information to the grid. The integra-
tion of the technique into MPM, dual domain material-point method (DDMPM), and
BSMPM significantly improves the results of these methods. For the considered one-
dimensional examples, the TLS function reconstruction technique resembles the ap-
proximation properties of the highly-accurate cubic-spline reconstruction, while pre-
serving the physical aspects of the standard algorithm.
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1
INTRODUCTION

This chapter gives a brief introduction to this dissertation. Section 1.1 provides the mo-
tivation for the conducted research. Section 1.2 presents its main objectives. Section 1.3
describes the structure of the dissertation.

3
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4 1. INTRODUCTION

1.1. MOTIVATION
The material-point method (MPM) [1, 2] is a numerical tool to simulate problems that
involve large deformations. In MPM, the material is represented by a set of particles that
move through a fixed background grid. These particles are referred to as material points.
They carry the physical properties of the continuum such as the mass, strain, and stress.
Similarly to the finite element method (FEM) [3], the discretized governing equations
are assembled and subsequently solved at the background grid. Essentially, within each
time step throughout the simulation, MPM performs the following solution procedure.
First, the information available at the material points is projected to the nodes of the
background grid. Then, the discretized governing equations are assembled and solved
on the grid nodes. Finally, the obtained information is mapped back to update the ma-
terial points.

MPM has proven to be successful in solving complex engineering problems that in-
volve large strains, multi-phase interactions, and history-dependent material bahavior.
Over the years, MPM has been applied to a wide range of applications, including mod-
eling of failure phenomena in single- and multi-phase media [4–9], pile installation [10],
crack growth [11, 12], fluid-structure and fluid-membrane interaction [13–16], snow and
ice dynamics [17–19], explosion and shock waves [20, 21], metal forming [22], and soft
tissue damage [23]. Figure 1.1 provides application examples of MPM.

Figure 1.1: Modeling of soft tissue damage [23] (left) and snow dynamics [17] (right) using MPM.

Despite its impressive performance for a variety of computer graphics and engineer-
ing problems, MPM still suffers from several shortcomings. For example, when ma-
terial points travel from one cell to another, they generate unphysical oscillations in
the forces, frequently referred to as grid-crossing error [24]. This is due to the use of
piecewise-linear basis functions, whose gradients are discontinuous on element bound-
aries. The direct mapping of the scattered material-point data to the background grid
can also introduce significant numerical inaccuracies [25, 26]. In addition, MPM con-
tains FEM-type type errors originating from mass-lumping and interpolation, as well as
time-stepping errors [27, 28].

Due to the complex interplay between the background grid and particles within the
method, the application of theories developed for closely related FEM is problematic.
Therefore, MPM lacks a generic framework to analyze its numerical artifacts. Never-
theless, much research has been conducted to overcome the numerical shortcomings
of MPM. For instance, methods such as the generalized interpolation material-point
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(GIMP) method [24], the convected particle-domain interpolation (CPDI) method [29],
the dual domain material-point method (DDMPM) [30], and the B-spline material-point
method (BSMPM) [28, 31] have been designed to overcome the grid-crossing error.

1.2. DISSERTATION OBJECTIVES
This dissertation has the following objectives:

• Overview of the existing development trends within MPM. A significant part of ex-
isting research on MPM is dedicated to further development and improvement of
the method. It includes studies on time integration within MPM, its formulation,
and reduction of grid-crossing errors. However, to the author’s best knowledge, no
detailed overview of such studies has been provided in the literature yet. There-
fore, this thesis aims to identify the main development courses within MPM re-
search and categorize the existing studies accordingly.

• Connection to meshfree methods. MPM originates from particle methods, but is
frequently classified as a meshfree method (see Chapter 2 for more details). This
dissertation highlights the connection between MPM and meshfree methods by
showing a close relation between MPM and the optimal transportation meshfree
(OTM) method [32], which is a genuinely meshfree method. This study bridges the
gap between the MPM and OTM communities. In addition, it proposes a possible
way to unify BSMPM and the OTM method.

• Further development of BSMPM. BSMPM provides a fundamental solution to the
grid-crossing issue in MPM by replacing piecewise-linear basis functions with at
least C 1-continuous higher-order B-spline basis functions. This dissertation fur-
ther improves the accuracy of BSMPM by combining the method with advanced
techniques for mapping the material-point information to the degrees of freedom
(DOFs). Moreover, it discusses the extension of BSMPM to unstructured grids,
which typically originate from complex real-life problems.

• Development of an advanced technique to reconstruct functions from scattered data
points and its application to MPM and related methods. As was mentioned previ-
ously, numerical shortcomings of MPM are partially caused by the direct mapping
of material-point data to the background grid. Although a modified mapping gen-
erally improves the accuracy of the MPM solution, the standard reconstruction
techniques might lead to the loss of physical properties of the method. In fact,
while MPM projection conserves the mass and linear momentum of the system,
most standard mapping techniques do not guarantee that. For this reason, this
thesis introduces a novel technique to reconstruct functions from scattered data
points, which preserves the a priori known integral values. This allows for the con-
servation of the mass and linear momentum of the system when material-point
information is mapped to the background grid within MPM. It should be noted
that despite being developed within the MPM framework, the proposed technique
can be applied as a conservative projection scheme to problems unrelated to MPM
or meshfree methods.
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1.3. DISSERTATION OUTLINE
This dissertation consists of four parts and is divided into seven chapters:

Chapter 1: Introduction
An introuction to the dissertation is provided.
Chapter 2: Overview of the material-point method
MPM is introduced and an overview of studies that further develop and improve
the method is given.

Part I: Introduction and background

Chapter 3: Further development of the B-spline material-point method
First, BSMPM is combined with an advanced technique to map the material-
point data to the background grid. After that, the extension of the method to
unstructured grids is discussed.
Chapter 4: Comparison and unification with optimal transportation mesh-
free method
The OTM method is introduced. Conditions, under which the MPM and OTM
algorithms can be related, are identified. A possible manner to unify the meth-
ods is proposed.

Part II: Methodological improvements of MPM

Chapter 5: Conservative Taylor least-squares reconstruction with application
to material-point methods
A novel function reconstruction technique, called Taylor least squares (TLS), is
proposed. The TLS technique is applied within one-dimensional MPM compu-
tations.
Chapter 6: Discussion: Extension of Taylor least-squares function recon-
struction technique to two-dimensional problems and its application to the
material-point method
The TLS technique is extended to two-dimensional problems. Issues with its
application within two-dimensional MPM simulations are discussed.

Part III: Taylor least-squares function reconstruction and its application to MPM

Chapter 7: Conclusions
The conclusions are drawn and outlook to further research is provided.

Part IV: Closure

The notation used throughout this dissertation is introduced in the first part of Chap-
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ter 2. For an advanced reader, who is familiar with BSMPM, Chapter 3 provides addi-
tional insights into it, but is not essential for the understanding of other chapters. Fur-
thermore, Parts II and III of the dissertation can be considered independently of one
another.





2
OVERVIEW OF THE

MATERIAL-POINT METHOD

This chapter introduces the material-point method (MPM) and gives the details of its
single-phase formulation. Although multi-phase formulations are generally used for the
simulation of complex materials, such as saturated soils, the single-phase formulation
provides sufficient complexity to analyze the method from the mathematical point of
view. The chapter is structured as follows. Section 2.1 explains the main physical as-
sumptions behind MPM, places it in the context of meshfree methods, and gives a short
description of its predecessors. Section 2.2 introduces the governing equations that can
capture the deformation of a one-phase material. Section 2.3 discretizes these equa-
tions in space and time. Section 2.4 provides the original MPM algorithm as well as a
modified version. Section 2.5 describes the basis functions that are typically adopted
for MPM computations. Finally, Section 2.6 attempts to categorize the fundamental re-
search on MPM in a number of groups. Sections 2.6.1 to 2.6.4 are devoted to the main
development trends in the MPM community, while Section 2.6.5 describes a number of
techniques that combine different research areas as well as improvement strategies that
do not fall within the general research trends from the previous sections. Although this
chapter discusses some applications of MPM and related methods, this topic forms a
voluminous subject and is outside the scope of this thesis.

9
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10 2. OVERVIEW OF THE MATERIAL-POINT METHOD

2.1. BACKGROUND

2.1.1. CONTINUUM-BASED FRAMEWORK
As was mentioned previously, the material-point method is a numerical method that
was designed to simulate materials that undergo large deformations. Although in re-
ality, any matter is composed of discrete molecules and atoms, the physical model of
MPM is based on the assumption that matter is distributed continuously throughout
the occupied space. This hypothetical material is called a continuum. Alternatively,
matter can be treated discretely as a collection of separate blocks or particles. Discrete
modeling techniques, such as the molecular dynamics [33, 34] method and the discrete
element method [35], are particularly suitable for simulations where the problem size
and discontinuities of the material are on a comparable scale. However, discrete models
of macroscopic problems are computationally expensive. Therefore, continuum-based
methods are typically used for large-scale simulations.

The deformation of a continuum is captured by means of its kinematical descrip-
tion (e.g., [36]). Two classical descriptions frequently used in continuum mechanics
are the Lagrangian and Eulerian descriptions. The Eulerian description fixes attention
on a given region of space and considers spatial coordinates and time as independent
variables. In the Lagrangian description, the independent variables are time and mate-
rial coordinates. This implies that an individual particle of the continuum is followed
through space and time. Traditionally, this is envisioned by a boat drifting down a river.
In the Lagrangian description, the flow is observed from the boat, while in the Eulerian
description the observation point is a fixed place on the river bank. Furthermore, de-
pending on the frame of reference, two formulations can be developed in the Lagrangian
framework. The total Lagrangian formulation describes the motion with respect to the
initial material coordinates, whereas the updated Lagrangian formulation uses the up-
dated material coordinates as the frame of reference.

When numerical methods rely on the computational mesh (or grid) and are based
on the purely Lagrangian description, each node of the mesh follows the correspond-
ing material particle during the motion. Such techniques are mainly applied to prob-
lems in structural mechanics. The Lagrangian description allows these methods to im-
pose boundary conditions and track free surfaces and interfaces between materials in a
straightforward manner. They also facilitate the treatment of history-dependent mate-
rials [37]. The main disadvantage of these so-called meshbased or meshdependent La-
grangian methods is that they require frequent remeshing to follow very large deforma-
tions of the continuum. This shortcoming is avoided by meshbased methods based on
the Eulerian description, because they fix the computational grid, while the continuum
moves through it. However, the treatment of boundary conditions and the definition
of free surfaces and interfaces between materials become significantly more complex.
Moreover, due to the relative motion between the computational mesh and deforming
continuum, governing equations of Eulerian methods contain convective terms. Ac-
cording to Donea et al. [38], the non-symmetric structure of the convection operators
can lead to numerical difficulties. Despite this, Eulerian methods are widely used to
model fluid dynamics.

While most continuum-based numerical techniques can be categorized as either La-
grangian or Eulerian methods, some techniques, such as MPM and the arbitrary La-
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grangian-Eulerian (ALE) methods [39], combine the Eulerian and Lagrangian approaches
in an attempt to incorporate their best features and minimize their drawbacks. The main
idea behind the ALE methods is that the nodes of the computational mesh may move to-
gether with the continuum as in purely Lagrangian methods, but they can also remain
fixed following the Eulerian approach or even be moved in an arbitrarily specified way.
For instance, the nodes belonging to the boundary of the material can be moved together
with it, while the nodes describing the internal part of the continuum might move arbi-
trarily to optimize the shapes of the elements. The ALE approach is adopted in the con-
text of finite-difference, finite-volume and finite-element methods (e.g., [40–42]). Since
the ALE methods strongly rely on a mesh, they belong to the family of meshdependent
methods. At the same time, MPM combines a fixed Eulerian background mesh and a
set of Lagrangian point masses, called material points (or particles). Although it is not
derived directly from a classical meshfree or meshless method, MPM is described as a
meshfree approach and is actively discussed within the meshfree community due to its
similarities, in terms of advantages and challenges, with typical meshfree methods.

2.1.2. MESHFREE METHODS
This section provides a brief introduction to meshfree methods. For a detailed overview
the reader is referred to, for example, the work of Li and Liu [43], Belytschko et al.[44],
and Chen et al. [45]. The conventional meshbased methods enable efficient and reli-
able solutions to a large number of computational problems, but for some processes of
practical engineering interest, such as the simulation of land- and flowslides or metal
forming processes, their underlying structure is not well suited. In general, meshbased
methods do not cope adequately with problems that involve large deformations, moving
discontinuities, fracture, irregular domains, etc. The use of meshdependent methods for
such problems is expensive and frequently results in slow convergence, deterioration of
accuracy, or even breakdown of the computation. For such cases, meshfree methods
offer an acceptable alternative to meshbased schemes.

The development of meshfree methods started about 40 years ago with the smoothed
particle hydrodynamics (SPH) method [46, 47]. SPH is a particle method that uses an
integral representation of variables, or kernel approximation [48, 49], to solve the gov-
erning equations. It was originally introduced for modeling astrophysical phenomena,
but was later extended to problems in solid mechanics, which could not be solved easily
with meshbased techniques. Nowadays, there exist a wide variety of meshfree schemes:
element free Galerkin [50–52], generalized finite-element [53, 54], and optimal trans-
portation mehsfree [32] methods are just a few examples. The estimation in meshfree
methods can be based on different concepts, such as moving least squares, partition of
unity, kernels, and maximum entropy [44, 45]. The common feature of meshfree meth-
ods is that they approximate unknowns based on scattered points without mesh con-
nectivity [45].

2.1.3. PARTICLE-IN-CELL AND FLUID-IMPLICIT PARTICLE METHODS
MPM is an adaptation of the Fluid-Implicit Particle (FLIP) [55, 56] method to solid me-
chanics. FLIP belongs to the large family of particle methods and descends from the
Particle-In-Cell (PIC) [57] method, which can be tracked back to the middle of the 1950s
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[58]. PIC was originally developed for fluid-dynamics problems by the group of Harlow
at Los Alamos National Laboratory in the USA. The success of PIC arose from the fact that
it offered an alternative to meshbased techniques by simply and effectively combining
Lagrangian and Eulerian approaches. In PIC, the Lagrangian particles are used to advect
all transported quantities of the material, while an Eulerian computational grid is used to
solve the governing equations. However, the early PIC schemes suffered from significant
dissipation caused by frequent interpolation of the grid values to the particles [55]. This
issue is addressed by the Fluid-Implicit Particle method. In contrast to PIC, FLIP trans-
fers only the increments of the grid values to the particles. Various techniques based
on PIC and FLIP are applied for computer-graphics calculations, fluid dynamics, and
plasma modeling (e.g., [59–63]).

2.2. PHYSICAL MODEL
The application of the principles from continuum mechanics requires respecting the
conservation laws. For the problems studied with MPM, it suffices to consider the con-
servation laws related to thermomechanical systems. These laws are the conservation of
mass, the conservation of linear and angular momentum, and the conservation of en-
ergy. Their comprehensive derivation can be found, for instance, in the work of Malvern
[36]. Although the conservation laws should be valid for all continua, they have to be
extended by constitutive (or material) models to describe the mechanical behavior of a
particular material. Constitutive relations form a voluminous research subject, but are
not a focus of this thesis. For a detailed information on constitutive modeling the reader
is referred to, for example, Spencer [64]. This section provides only a short overview
of the conservation equations and gives the description of the constitutive models that
are relevant to this thesis. Furthermore, after Sulsky et al. derived an MPM formulation
for single-phase problems, several multi-phase formulations (e.g., [6, 65, 66]) have been
proposed to further expand its applicability range. A summary of these formulations is
given in Section 2.6.1.

We start by introducing some notation from continuum mechanics. It is assumed
that the considered one-phase continuum occupies the domain Ω0 ⊆ R3 at the initial
time t 0 and domain Ωt ⊆ R3 at any later time t > t 0. The initial position of the material
is denoted by x0 = [x0

1 , x0
2 , x0

3]T, while the position at time t is x = [x1, x2, x3]T. In the
abstract formulation, the deformation mapping is defined asϕ : R3×[t 0,T ] →R3, where
T is the final time. For a fixed time t , the mapping Ω0 7→ Ωt can be considered as the
’push forward’ operator, which needs to be bijective, so that the current domain can also
be ’pulled back’ to the initial one via ϕ−1(x, t ) :Ωt →Ω0. Likewise, it links the initial and
current positions:

x =ϕ(x0, t ), x0 =ϕ−1(x, t ). (2.1)

The displacement, velocity, and acceleration vectors are, denoted by

u = [u1, u2, u3]T, v = [v1, v2, v3]T, a = [a1, a2, a3]T, (2.2)

respectively. The displacement at time t is defined as the difference between the current
and initial positions:

u(x, t ) = x−x0. (2.3)
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Ωt

ϕ

Ω0

x0
x

u

Figure 2.1: Schematic representation of the deformation of a continuum.

This is illustrated in Figure 2.1. The velocity and acceleration are defined by means of

the material time derivative. Using ∇=
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]T
, the material time derivative can

be written as
d

d t
= ∂

∂t
+v ·∇. (2.4)

Since the convective effects can be neglected in Lagrangian computations (e.g., Donea
et al.[38]), the velocity and acceleration are obtained from

v(x, t ) = d

d t
u(x, t ) = ∂

∂t
u(x, t ), (2.5)

a(x, t ) = d

d t
v(x, t ) = ∂

∂t
v(x, t ). (2.6)

For the description of the constitutive relation, some models rely on the rate of defor-
mation tensor, while other models are based on the deformation gradient tensor. The
deformation gradient tensor F is defined as

F = I+ ∂u

∂x0 = I+
{
∂uk

∂x0
l

}
, (2.7)

where I is the identity matrix. The rate of deformation tensor D is the symmetric part of
the velocity gradient:

D = 1

2

(
∂v

∂x
+

(
∂v

∂x

)T
)

. (2.8)

In this thesis, the deformation gradient tensor is used to present the constitutive laws,
whereas the rate of deformation tensor is required to describe the conservation of en-
ergy.
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2.2.1. GOVERNING EQUATIONS

CONSERVATION OF MASS

The conservation of mass states that when mass is not entering or leaving the domain
Ωt (i.e., the domain contains no source or sink terms), the change of mass with time
should be equal to zero. In the updated Lagrangian form adopted within MPM, this can
be expressed as follows:

∂ρ

∂t
+∇· (ρv

)= 0, (2.9)

where ρ is the mass density of the material.

CONSERVATION OF MOMENTUM

The conservation of linear momentum represents the equation of motion of a contin-
uum body. In other words, it is equivalent to Newton’s second law of motion. Denoting
the Cauchy stress tensor by σ and a body force by b, the conservation of linear momen-
tum can be written as

∂
(
ρv

)
∂t

−∇·σ−ρb = 0 (2.10)

The conservation of angular momentum implies that the stress tensor is symmetric:

σ=σT. (2.11)

Since the conservation of angular momentum does not add a new equation, the conser-
vation of linear momentum is usually referred to as the momentum equation.

CONSERVATION OF ENERGY

Assuming that mechanical work is the only source of energy, the conservation of energy
can be written as

ρ
∂r

∂t
= tr(Dσ) . (2.12)

Here, r is the internal energy per unit mass.

CONSTITUTIVE MODELS

In this thesis, only linear elastic and neo-Hookean (or hyperelastic) constitutive relations
are considered. A multi-dimensional linear elastic model can be described as

σ=λI tr

(
1

2

(
F+FT

)
− I

)
+2µ

(
1

2

(
F+FT

)
− I

)
, (2.13)

where λ and µ are Lamé’s first parameter and the shear modulus, respectively. Denoting
the determinant of F by J , the neo-Hookean material model is given by

σ= λ ln(J )

J
I+ µ

J

(
FFT − I

)
. (2.14)

For the mathematical research that is presented in this thesis, it is sufficient to consider
simple elastic constitutive equations. However, for many applications of MPM, these
models are typically replaced by (visco-)elasto-plastic constitutive equations in order to



2.3. DISCRETIZATION

2

15

properly represent the behavior of complex materials. For instance, an elasto-plastic
Mohr-Coulomb model is used to simulate the failure of a dam [6], predict the run-outs
of landslides in brittle soils [67], and test the bearing capacity of a deep foundation in
cohesive soil [68].

2.3. DISCRETIZATION
For the discretization, MPM simplifies Equation (2.10) by assuming that the density is
constant in time and solves the simplified equation on the fixed background grid by
adopting a variational formulation. To obtain the weak form of the momentum equa-
tion, it is first multiplied with a so-called test function and integrated over the domain
Ωt . Letting ω denote an element of the test space that consists of all functions, which
are sufficiently smooth and zero on the part of the boundary where essential boundary
conditions are prescribed, the following expression is obtained:∫

Ωt
wρ

∂v

∂t
dΩt =

∫
Ωt

w(∇·σ) dΩt +
∫
Ωt

wρb dΩt . (2.15)

Applying integration by parts and Gauss’ theorem yields the weak form of the momen-
tum equation:∫

Ωt
wρ

∂v

∂t
dΩt =

∫
∂Ωt

wn ·σ dΓt −
∫
Ωt

∇w ·σ dΩt +
∫
Ωt

wρb dΩt . (2.16)

The first integral on the right-hand side is over the boundary Γt = ∂Ωt of the domainΩt

and n is the outward unit normal vector.

2.3.1. SPATIAL DISCRETIZATION
Following the standard approach in FEM, Equation (2.16) is discretized in space by ap-
proximating the acceleration by a linear combination of basis functions φ j :

a(x, t ) ≈ ah(x, t ) =
N∑
j=1

a j (t )φ j (x) (2.17)

with subscript h indicating a spatially discretized form and N being the total number
of nodes on the background grid. By substituting Equation (2.17) into Equation (2.16),
interchanging the order of summation and integration, and choosing the test function
w equal to φi , the following expression is obtained for all i = 1, . . . , N :

N∑
j=1

(∫
Ωt
φiρφ j dΩt

)
a j =

∫
∂Ωt

φi n ·σ dΓt −
∫
Ωt

∇φi ·σ dΩt +
∫
Ωt
φiρb dΩt . (2.18)

For each direction xk , Equation (2.18) can be written in the matrix-vector form:

Māk = f̄k , (2.19)
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where āk = [
ak,1, ak,2, . . . , ak,N

]T is the unidirectional vector of the unknown coefficients1,

M = [
Mi j

] ∈ RN ×N is the consistent mass matrix, and f̄k = [
fk,1, fk,2, . . . , fk,N

]T is the
unidirectional force vector. The entries of the mass matrix and force vector are given by

Mi j =
∫
Ωt
φiρφ j dΩt , (2.20)

fk,i =
∫
∂Ωt

φiτk dΓt −
∫
Ωt

3∑
l=1

∂φi

∂xl
σl k dΩt +

∫
Ωt
φiρbk dΩt , (2.21)

respectively. Here, τ(x, t ) is the prescribed traction at the boundary. In general, MPM
can be implemented combining Equation (2.19) for each k into one linear system. The
implementation procedure of a multi-dimensional MPM can be found, for instance, in
the thesis of Kafaji [37].

In MPM computations, the consistent mass matrix is typically replaced by the row-
sum lumped mass matrix ML , which can be obtained by summing the off-diagonal en-
tries of M in each row, adding them to the diagonal entry, and subsequently setting the
off-diagonal entries to zero:

M L
i i =

N∑
j=1

Mi j . (2.22)

If the basis functions maintain a partition of unity within the domain, that is

N∑
j=1

φ j (x) = 1 ∀ x ∈Ωt , (2.23)

the diagonal entry of the lumped mass matrix can be expressed as follows:

M L
i i =

N∑
j=1

Mi j =
N∑
j=1

∫
Ωt
φiρφ j dΩt =

∫
Ωt
φiρ

N∑
j=1

φ j dΩt =
∫
Ωt
φiρ dΩt . (2.24)

This implies that the diagonal entries can be computed directly from the final integral of
Equation (2.24), which significantly increases the efficiency of the simulation by avoid-
ing the generation of the off-diagonal terms.

In MPM, material points represent the material and carry all physical information
about it (e.g., the mass, strain, and stress). While most material-point properties vary in
time, the mass is time independent. This assures that the conservation of mass, Equa-
tion (2.9), is satisfied. Furthermore, throughout a simulation, the integrals in Equations
(2.20) and (2.21) are approximated by projecting the material-point information onto
the background grid. Let the continuum be discretized by M material points, then the
integral of an arbitrary vector-valued function g (x) is approximated by∫

Ω
g (x)dΩ=

M∑
p=1

Vp g
(
xp

)
, (2.25)

1We remark that the unknown coefficients correspond to the classical “nodes” located at the vertices of the
cells for linear Lagrangian finite element basis functions but can also be of modal type for B-spline basis
functions presented in Chapter 3. To simplify the presentation for the reader who is more familiar with nodal
basis functions, we will stick to the terminology of “nodes” unless stated otherwise.
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where Vp and xp represent the material-point volume and position, respectively. The
information obtained by solving Equation (2.19) is then mapped back to update the ma-
terial points.

2.3.2. TEMPORAL DISCRETIZATION

In the considered version of MPM, the Euler-Cromer time-stepping scheme [69] is used
for temporal discretization. The scheme applies the forward Euler method to advance
the velocity, but employs the backward Euler method for the displacement:

vs+1
i = vs

i +
(
t s+1 − t s)as

i , (2.26)

us+1
i = us

i +
(
t s+1 − t s)vs+1

i , (2.27)

where s = 0,1, . . . , N−1 is the time-step counter. The Euler-Cromer scheme is energy con-
servative for oscillatory problems (see [70] for more details). Its combination with finite-
element discretization results in a conditionally stable solution algorithm [71]. More-
over, assuming a constant time-step size, the Euler-Cromer scheme is second-order ac-
curate in the displacement and first-order accurate in the velocity. To the author’s knowl-
edge this has not been mentioned previously in the MPM literature. Therefore, a short
explanation is provided below.

First, note that it follows from Equation (2.27) that

vs
i =

1

∆t

(
us

i −us−1
i

)
, (2.28)

where∆t denotes the constants time-step size. Therefore, the displacement at time step
s +1 can be rewritten as

us+1
i = us

i +∆t
(
vs

i +∆t as
i

)
= us

i +∆t

(
1

∆t

(
us

i −us−1
i

)+∆t as
i

)
= 2us

i −us−1
i +∆t 2as

i . (2.29)

The above expression is obtained by first substituting Equation (2.26) into Equation (2.27),
and then using Equation (2.28). Equation (2.29) corresponds to the central difference
scheme for the second derivative of the displacement:

as
i =

1

∆t 2

(
us+1

i −2us
i +us−1

i

)
, (2.30)

which is known to be second-order accurate.
At the beginning of each time step, the material-point information is projected from

the particles to the nodes of the background grid, where the discretized governing equa-
tions are assembled and subsequently solved. The obtained information is then mapped
back to update the material points. A schematic representation of the MPM solution
strategy that is followed within each time step is provided in Figure 2.2.
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(a) (b)

(c) (d)

Figure 2.2: Schematic representation of the MPM solution strategy within each time step: (a) projection of
the material-point information onto the background grid; (b) solution of the governing equations at the grid
nodes; (c) update of the material-point information; (d) update of the material-point positions with respect to
the grid.

2.3.3. REMARKS ON CONSERVATION PROPERTIES

From the above derivation of the scheme, it follows that MPM conserves the mass and
momentum by design, but does not enforce the conservation of energy. Much research
has been conducted with regard to this issue (e.g., Bardenhagen [72], Nairn [11], Love
and Sulsky [27, 73]). It has been shown that the conservation of energy strongly depends
on the version of the MPM algorithm [72]. This is further discussed in Section 2.6.3.
Moreover, a consistent mass matrix is required to conserve energy while mapping the
information from the material points to the background grid and vice versa [27]. How-
ever, the employment of a consistent mass matrix can significantly reduce the stability
of an MPM simulation and is computationally more expensive.

2.4. ALGORITHMS

This section presents two versions of the MPM algorithm: the original version [1], which
is also known as update stress last (USL), and a modified one [2], modified update stress
last (MUSL) or, alternatively, update velocity first (UVF). The algorithms adopt the no-
tation used previously for the unidirectional acceleration and force vectors, āk and f̄k ,
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for global nodal vectors (e.g., the nodal velocity vector in the direction xk is denoted by

v̄k = [
vk,1, vk,2, . . . , vk,N

]T). Furthermore, it is assumed that only a constant body force
is acting externally. It should be noted that Algorithms 1 and 2 contain consistent mass
matrices. However, as was already mentioned in Section 2.3.1, MPM typically uses the
lumped mass matrix.

The names USL and MUSL refer to the fact that the material-point stress is updated
at the last stage within a time step. The main difference between the USL and MUSL
algorithms is that USL computes the nodal velocities directly from the nodal accelera-
tions, while MUSL obtains them from the material-point velocities. Nairn [11] explains
in detail that assuming that both algorithms adopt a lumped mass matrix, the modified
version can avoid extremely small nodal masses that lead to ill-conditioned mass ma-
trices in the original version of the algorithm. This greatly improves the stability of the
scheme. Furthermore, Bardenhagen [72] explains that MUSL slowly dissipates energy,
but still recommends its use, because it damps out numerical artifacts and the damping
is consistent with the accuracy of the solution. In addition to USL and MUSL, there ex-
ist the update stress first algorithm [72] and update stress averaged scheme [11] that are
described in Section 2.6.3.

————————————————————————————————————–
————————————————————————————————————–
Input: Nodal coordinates x0

i , material-point coordinates x0
p , velocities v0

p ,

volumes V 0
p , densities ρ0

p , masses mp , deformation gradients F0
p , stresses

σ0
p , body forces bp

1 Set s = 0
2 while s < N do

3 Compute basis functions φ0
i

(
xs

p

)
and gradients ∇φ0

i

(
xs

p

)
from initial nodal set{

x0
i

}
and advected material-point set

{
xs

p

}
4 Compute mass matrix Ms , linear momentum vector q̄s

k , and force vector f̄s
k :

M s
i j =

M∑
p=1

φ0
i

(
xs

p

)
mpφ

0
j

(
xs

p

)
(2.31)

q s
k,i =

M∑
p=1

φ0
i

(
xs

p

)
mp v s

k,p (2.32)

f s
k,i =

M∑
p=1

(
3∑

l=1

∂φ0
i

∂xl

(
xs

p

)
σs

lk,p +φ0
i

(
xs

p

)
ρs

p bk,p

)
V s

p (2.33)

5 Compute nodal accelerations:

ās
k = (

Ms)−1 f̄s
k (2.34)

6 Compute nodal velocities and incremental nodal displacements:
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v̄s
k = (

Ms)−1 q̄s
k (2.35)

v̄s+1
k = v̄s

k +
(
t s+1 − t s) ās

k (2.36)

∆x̄s+1
k = (

t s+1 − t s) v̄s+1
k (2.37)

7 Update material-point coordinates:

xs+1
p = xs

p +
N∑
i=1

φ0
i

(
xs

p

)
∆xs+1

i (2.38)

8 Update material-point velocities:

vs+1
p = vs

p + (
t s+1 − t s) N∑

i=1
φ0

i

(
xs

p

)
as

i (2.39)

9 Update material-point deformation gradients:

∇vs+1
p =

N∑
i=1

∇φ0
i

(
xs

p

)
vs+1

i (2.40)

Fs+1
p =

(
I+ (

t s+1 − t s)∇vs+1
p

)
Fs

p (2.41)

10 Update material-point volumes:

V s+1
p = det

(
Fs+1

p

)
V 0

p (2.42)

11 Update material-point densities:

ρs+1
p = mp

V s+1
p

(2.43)

12 Compute material-point stresses σs+1
p from Fs+1

p using the constitutive
equation (e.g., Equation 2.13 or 2.14)

13 Set s = s +1
end

Algorithm 1: Update stress last (USL) version of material-point method.
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————————————————————————————————————–
————————————————————————————————————–
Input: Nodal coordinates x0

i , material-point coordinates x0
p , velocities v0

p ,

volumes V 0
p , densities ρ0

p , masses mp , deformation gradients F0
p , stresses

σ0
p , body forces bp

1 Set s = 0
2 while s < N do

3 Compute basis functions φ0
i

(
xs

p

)
and gradients ∇φ0

i

(
xs

p

)
from initial nodal set{

x0
i

}
and advected material-point set

{
xs

p

}
4 Compute mass matrix Ms and force vector f̄s

k :

M s
i j =

M∑
p=1

φ0
i

(
xs

p

)
mpφ

0
j

(
xs

p

)
(2.44)

f s
k,i =

M∑
p=1

(
3∑

l=1

∂φ0
i

∂xl

(
xs

p

)
σs

lk,p +φ0
i

(
xs

p

)
ρs

p bk,p

)
V s

p (2.45)

5 Compute nodal accelerations:

ās
k = (

Ms)−1 f̄s
k (2.46)

6 Update material-point velocities:

vs+1
p = vs

p + (
t s+1 − t s) N∑

i=1
φ0

i

(
xs

p

)
as

i (2.47)

7 Compute linear momentum vector q̄s
k :

q s
k,i =

M∑
p=1

φ0
i

(
xs

p

)
mp v s+1

k,p (2.48)

8 Update nodal velocities:

v̄s+1
k = (

Ms)−1 q̄s
k (2.49)

9 Compute incremental nodal displacements:

∆x̄s+1
k = (

t s+1 − t s) v̄s+1
k (2.50)

10 Update material-point coordinates:

xs+1
p = xs

p +
N∑
i=1

φ0
i

(
xs

p

)
∆xs+1

i (2.51)

11 Update material-point deformation gradients:

∇vs+1
p =

N∑
i=1

∇φ0
i

(
xs

p

)
vs+1

i (2.52)
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Fs+1
p =

(
I+ (

t s+1 − t s)∇vs+1
p

)
Fs

p (2.53)

12 Update material-point volumes:

V s+1
p = det

(
Fs+1

p

)
V 0

p (2.54)

13 Update material-point densities:

ρs+1
p = mp

V s+1
p

(2.55)

14 Compute material-point stresses σs+1
p from Fs+1

p using the constitutive
equation (e.g., Equation 2.13 or 2.14)

15 Set s = s +1
end

Algorithm 2: Modified update stress last (MUSL) version of material-point method.

2.5. BASIS FUNCTIONS
This section completes the description of standard MPM by presenting the piecewise-
linear Lagrange (P1) basis functions. Since the multivariate P1 basis functions can be
built from the univariate ones by taking the tensor product, this section presents only
the univariate P1 basis functions. To simplify the notation x1 is replaced by x for one-
dimensional descriptions throughout this dissertation.

The univariate P1 basis functions are defined using a set of nodes {xi }Ni=1:

φi =


0 if x < xi−1,

(x −xi−1)/(xi −xi−1) if xi−1 ≤ x < xi ,

1− (x −xi )/(xi+1 −xi ) if xi ≤ x < xi+1,

0 if x ≥ xi+1.

(2.56)

The corresponding derivatives are equal to

dφi

d x
=


0 if x < xi−1,

1/(xi −xi−1) if xi−1 ≤ x < xi ,

−1/(xi+1 −xi ) if xi ≤ x < xi+1,

0 if x ≥ xi+1.

(2.57)

The univariate P1 basis functions and their derivatives are illustrated in Figure 2.3.
On the one hand, P1 basis functions have several advantages:

P. 1. They satisfy the partition of unity property:

N∑
i=1

φi (x) = 1 ∀x ∈Ω.
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Figure 2.3: Univariate piecewise-linear Lagrange basis functions and their derivatives.

P. 2. Each φi has compact support. For i = 2,3, . . . ,N − 1, φi is supported by element
i −1 and i . The compact supports of basis functions φ1 and φN are contained in
element 1 and N −1, respectively.

P. 3. Each φi is non-negative over its entire support.

P. 4. They allow for row-sum mass lumping due to P. 3. (see Equation 2.22).

P. 5. They allow for direct mass lumping due to P. 1. (see Equation 2.24).

Furthermore, P1 basis functions can be implemented in a straightforward manner. On
the other hand, the gradients of the piecewise-linear basis functions, just as the gra-
dients of all other C 0-continuous basis functions, are discontinuous on the element
boundaries, which can lead to unphysical oscillations in the internal forces when ma-
terial points cross those boundaries.

2.6. DEVELOPMENT

2.6.1. FORMULATIONS
After Sulsky et al. derived an MPM formulation for single-phase problems, several multi-
phase formulations have been proposed to further expand the applicability range of
MPM. We distinguish between two categories of multi-phase formulations. The first cat-
egory consists of the so-called one-point formulations that assign all considered phases
to the same material point. For example, the behavior of saturated soil is modeled by a
two-phase one-point formulation where each material point represents both solid and
liquid phases. Zhang et al. [74] suggested a two-phase one-point formulation with the
velocity of fluid and hydraulic pressure as primary variables to model dynamic responses
of saturated soil subjected to contact or impact of solid bodies. Jassim et al. [75] devel-
oped a coupled dynamic one-point formulation with the velocities of solid and liquid
phases as primary variables and applied it to simulate the pore pressure development
under wave attack on a sea dike. Zabala and Alonso [6] proposed a two-phase form of
governing equations whereby the solid acceleration and the pressure increment were
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computed at the background grid, while the velocity of the liquid phase was obtained at
the material points. Their formulation was applied to model the progressive failure of
the Aznalcóllar dam. More recently, Yerro et al. [76] introduced a three-phase one-point
formulation by including a gas phase in a one-point formulation and applied it to study
unsaturated soils.

The second category of multi-phase MPM formulations uses a different set of mate-
rial points for each considered phase. So far, this strategy has only been applied to two-
phase problems. A so-called double-point formulation allows for relative motion of the
two phases, while conserving their masses [77]. Zhang et al. [78] used a double-point
formulation to simulate failure phenomena in multi-phase porous media. Shin [79]
and Mackenzie-Helnwein et al. [80] proposed a two-phase double-point formulations
to model solid-fluid mixtures. Abe et al. [65] developed a coupled double-point formu-
lation based on the Biot’s mixture theory. His approach was further improved by Ban-
dara and Soga [66] by including the relative acceleration of fluid with respect to the solid
skeleton. Despite a high number of existing MPM formulations, their development re-
mains a principal topic in the MPM community. One of the reasons for further research
is that many of the formulations are only designed for small deformations [66]. In ad-
dition, double-point formulations can be highly computationally expensive and require
great care when interface regions that separate saturated soil from dry soil or free water
are modeled [77].

2.6.2. TIME INTEGRATION
Typically, MPM advances the solution in time using explicit integration schemes (e.g., [5,
18, 81–84]). Explicit time integration is well-suited for simulations involving impacts at
high velocities and fast transient problems. Although originally MPM was introduced
with the Euler-Cromer scheme, computations with the centered-difference, Runge-Kutta,
Adams-Bashforth-Moulton, and Predictor-Corrector Newmark methods have been per-
formed as well [18, 84]. After studying different integration schemes, Wallstedt and Guilkey
[84] concluded that the choice of the scheme has an impact on the overall accuracy of a
simulation, but the spatial errors remain dominant in the explicit version of MPM.

Several studies have adopted MPM with implicit time integration (e.g., [85–89]). The
implicit formulation can be applied to problems with, for instance, quasi-static load-
ing, or small rate of deformation. Sulsky and Kaul [86] derived an implicit version of
MPM based on the combination of Newton’s method with the conjugate gradient (CG)
method and generalized minimum residual (GMRES) method. Guilkey and Weiss [85]
proposed an implicit approach that combined Newton’s method and Newmark integra-
tion scheme. It has been shown that the results of implicit MPM are in close agree-
ment with the results obtained using implicit FEM [85]. In addition, the implicit ver-
sion of MPM has been demonstrated to be significantly more accurate than explicit
MPM [85, 86].

2.6.3. ALGORITHMS
As was mentioned in Section 2.4, next to the USL and MUSL algorithm, there exist the
update stress first (USF) algorithm and update stress averaged (USAVG) scheme. Both
USF and USAVG attempt to improve the energy conservation within MUSL. USF and
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MUSL are closely related: the only algorithmic difference between them is that USF up-
dates the stress at the beginning of a time step, based on the material-point velocity at
time level s, whereas MUSL does that at the end of the time step using the velocity at time
level s+1. In contrast to MUSL that slowly dissipates energy, USF tends to slowly increase
the energy [11]. For this reason, USAVG is designed as an average of the USF and MUSL
schemes [11]. Bardenhagen [72] points out that USF and USL algorithms provide differ-
ent results only for unresolved modes, that is when the oscillation-mode wavelength of
the considered problem is comparable to the element size. The advantage of MUSL is
that it damps out those unresolved modes, and its damping is consistent with the accu-
racy of the solution [72].

2.6.4. RELATED METHODS
Methods described here are used to reduce or completely eliminate the so-called grid(-
cell)-crossing instabilities [24]. Grid-crossing instabilities arise when material points tra-
vel from one element to another and are due to the use of piecewise-linear basis func-
tions, whose gradients are discontinuous on element boundaries. These instabilities
generate unphysical oscillations in the forces and lead to inaccurate results mainly in
terms of the stress, but can also significantly influence velocity and displacement.

GENERALIZED INTERPOLATION MATERIAL-POINT METHOD

Bardenhagen and Kober [24] introduced a generalization of MPM, the generalized in-
terpolation material-point (GIMP) method, where particles are represented by particle-
characteristic functions. GIMP assumes that the information mapping from material-
points to the grid in MPM takes the following form:

gi =
M∑

p=1
g

(
xp

)
φi

(
xp

)
. (2.58)

This can be rewritten as

gi =
M∑

p=1
g

(
xp

) ∫
Ωt φi (x)δ

(
x−xp

)
dΩt∫

Ωt δ
(
x−xp

)
dΩt

, (2.59)

where δ
(
x−xp

)
is the Dirac delta distribution centered at the particle position xp . GIMP

then replaces δwith a general particle-characteristic function χp
(
x−xp

)
that is centered

at xp . In other words, Equation (2.58) is changed to

gi =
M∑

p=1
g

(
xp

)
φ̂i

(
xp

)
, (2.60)

where φ̂i is a weighting function, given by

φ̂i

(
xp

)= ∫
Ωt φi (x)χp

(
x−xp

)
dΩt∫

Ωt χp
(
x−xp

)
dΩt

. (2.61)
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Moreover, the gradient of the basis function is modified as follows:

∇̂φi

(
xp

)= ∫
Ωt ∇φi (x)χp

(
x−xp

)
dΩt∫

Ωt χp
(
x−xp

)
dΩt

. (2.62)

One-dimensional particle-characteristic functions are frequently chosen to be piecewise-
constant. The piecewise-constant particle-characteristic functions can be defined as a
combination of step functions H :

χp =H

(
x −

(
xp − lp

2

))
−H

(
x −

(
xp + lp

2

))
. (2.63)

Here, lp is the measure of the current particle shape. The particle shape, which is also
frequently called particle or material-point domain, describes the spatial extent occu-
pied by the particle. In one dimension, the measure of the particle shape can be defined
as the time-dependent material-point volume Vp .

Similarly to the piecewise-linear basis functions, multivariate GIMP basis functions
can be constructed as the tensor product of the univariate GIMP basis functions. In the
multivariate case, the main question is how to define the measure of the material-point
shape after the shape starts to deform. One option is to use the initial shape regard-
less of the time level. Sadeghirad et al. [29] refer to this version as the uniform GIMP
(uGIMP) method. Another option is to obtain the particle shape in each direction from
the diagonal components of the material-point deformation gradient tensor. Sadeghirad
et al. [29] denote this method as the contiguous-particle GIMP (cpGIMP) method. The
cpGIMP method ensures that the particle shapes remain rectangular or cuboid through-
out the simulation. Finally, the GIMP method can also be combined with a structured
mesh-refinement technique in order to adjust the particle shape [90]. To update the
material-point shape this refinement technique places massless tracking particles at the
corner of the initial shapes and advects them with the grid velocity.

The GIMP methods have been applied to many engineering problems such as mod-
eling of landslides [4], the densification of real foam microstructures [91], dynamic crack
growth [92], and seepage failure [93]. However, it should be noted that the standard
GIMP and uGIMP methods are only suited for problems that involve small deforma-
tions [24, 84]. For relatively accurate simulations of large deformations, the use of the
more advanced cpGIMP method and the GIMP method with the structured mesh-refine-
ment technique is essential [24, 29, 84]. The main disadvantages of the latter versions is
that they neglect shear distortion and employ tracking techniques to update material-
point shapes [29, 30, 84].

CONVECTED PARTICLE-DOMAIN INTERPOLATION METHOD

The convected particle-domain interpolation (CPDI) [29] method modifies the GIMP
method in order to capture material-point shapes after shearing. Assuming that particle
shapes are parallelograms and the deformation gradient is constant over each shape, the
shape deformation can be expressed as

ls+1
p,1 = Fs+1

p l0
p,1, (2.64)

ls+1
p,2 = Fs+1

p l0
p,2, (2.65)
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where (l0
p,1, l0

p,2) and (ls+1
p,1 , ls+1

p,2 ) are the vectors defining material-point shapes at the ini-
tial and updated configurations. In addition, the CPDI method proposes to use alter-
native basis functions within Equations (2.61) and (2.62). The CPDI basis functions are
constructed by interpolating the standard piecewise-linear basis functions at the four
corners of each particle domain. The P1 and CPDI basis functions are different in the
interior of the material-point shape, but are the same at the particle corners.

Compared to the GIMP family of methods, the CPDI method has higher accuracy and
better stability properties [29]. Nevertheless, the CPDI2 [94] method has been proposed
to further increase the accuracy of the method. The material-point shapes in the CPDI2
method are described as quadrilaterals in two dimensions and hexahedra in three di-
mensions. Recently, the CPDI method has also been extended to arbitrary grids [95, 96]
significantly increasing its range of applications. It has been reported that the method
has convergence issues and produces pressure spikes within shock wave simulations
when the number of material points per element is relatively high [21]. At the same
time, the method has been successfully used for complex problems including modeling
of ceramics [96], pile driving [97], and fully saturated porous media [98].

B-SPLINE MATERIAL-POINT METHOD

The B-spline material-point method (BSMPM) [28, 31] replaces the piecewise-constant
Lagrange basis functions by higher-order B-spline basis functions (see Chapter 3 for a
detailed description of B-spline basis functions). Two approaches have been proposed
to construct the B-spline basis functions.

First of all, it is possible to define the B-spline basis functions separately for each
node. That implies that to construct the univariate quadratic B-spline basis function for
the grid node i with 1 < i < N − 1, the knot vector (i.e., a sequence of ordered nonde-
creasing points in R called knots) {xi−3/2, xi−1/2, xi+1/2, xi+3/2} is adapted, where xi+1/2

is defined as 1
2 (xi +xi+1). For example, an internal zero-centered quadratic B-spline ba-

sis function is given by

φ(x) =


1

2h2 x2 + 3
2h x + 9

8 if − 3
2 h ≤ x ≤− 1

2 h,

− 1
h2 x2 + 3

4 if − 1
2 h ≤ x ≤ 1

2 h,
1

2h2 x2 − 3
2h x + 9

8 if 1
2 h ≤ x ≤ 3

2 h,

0 if otherwise,

(2.66)

where h is the grid spacing. For i = 1, the knot vector becomes {x0, xi−1/2, xi+1/2, xi+3/2},
whereas for i = 0, it is equal to the sum of two B-splines defined by the knot vectors
{xi , xi , xi+1, xi+3/2} and {xi , xi , xi , xi+1/2}. A similar strategy is applied to i =N −1 and
i = N . The tensor product of univariate B-spline basis functions is used to obtain the
multivariate B-spline basis functions.

A different approach is to construct all B-spline basis functions from a single knot
vector that consists of the knots from the whole domain. This technique is described in
detail in Chapter 3. Regardless of the construction approach, the B-spline basis func-
tions satisfy the partition of unity property, have a compact support, are non-negative,
and have at least C 0-continuous gradients. However, only the first construction tech-
nique guarantees that for a uniform grid, the peaks of the basis functions are centered
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over the grid nodes. On the other hand, B-spline basis functions created from a single
knot vector are easier to implement. The use of higher-order B-spline basis functions has
been shown to not only lead to lower errors, but also to significantly improve the conver-
gence behavior of MPM [31]. In addition, it outperforms the GIMP and CPDI methods
for plate impact problems [99].

DUAL DOMAIN MATERIAL-POINT METHOD

The dual domain material-point method (DDMPM) [30] method uses piecewise-linear
basis functions, but replaces their gradients by smoother ones. For the construction
of the new gradients, the method introduces a weight function α and the gradient ∇̃φi

defined as

∇̃φi (x) =
N∑
j=1

φ j (x)

V j

∫
Ω
φ j (x)∇φi (x)dΩ,

where V j is the volume associated with node j and given by V j =
∫
Ωφ j (x)dΩ. The weight

function is required to be zero on the cell boundaries, but is not uniquely specified [30].
In Chapter 5, where DDMPM is applied to one-dimensional problems, the following ex-
pression for the weight function is adopted:

α(x) = 2
N∑
i=1

φi (x)φi+1(x).

DDMPM substitutes the gradients of the piecewise-linear basis functions by

∇φi (x) =α(x)∇φi (x)+ (1−α(x))∇̃φi (x) ∀i = {1, . . . ,N },

An example of the DDMPM gradients is given in Figure 2.4. From Section 2.4, it follows
that DDMPM modifies the computation of the forces and velocity gradients.

i-2 i-1 i i+1 i+2
-1/h

0

1/h

Figure 2.4: The derivatives of univariate basis functions that are used in DDMPM. Here, h represents the ele-
ment length.

A version of DDMPM with an alternative strategy for numerical integration has been
proposed by Dhakal and Zhang [21]. This version allows for a lower number of ma-
terial points per cell and, hence, lower computational costs compared to the original
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DDMPM method. Although from the mathematical point of view, the combination of
P1 basis functions with smoother gradients can be considered as less fundamental than
the GIMP, CPDI, and BSMPM methods, DDMPM has been shown to be effective within
different applications (e.g., shock wave propagation [21] and ductile void growth [100]).
In addition, it has been pointed out that, for shock wave simulations, DDMPM is a viable
alternative to MPM, the GIMP method, and the CPDI method [21].

2.6.5. OTHER IMPROVEMENTS

Although Sections 2.6.1 to 2.6.4 attempt to provide a summary of fundamental research
categories in the MPM community, there exist a significant number of highly valuable
research studies that either do not entirely fit the categories of the aforementioned sec-
tions or combine multiple research areas. This section describes a small fraction of such
contributions.

Much research has been performed to reduce the grid-crossing instabilities in multi-
phase simulations. For example, Liu et al. [93] re-derived the two-phase double-point
formulation of Bandara and Soga [66] for GIMP, while Zheng et al. [98] combined the
two-phase formulation introduced by Zhang et al. [74] with CPDI. At the same time, the
double-point formulation derived by Bandara and Soga was used in conjunction with an
implicit time scheme [101]. Furthermore, an important contribution to mutli-phase for-
mulations was made by Zhang et al. [102], where they proposed an improved approach
for multi-phase calculations that ensured that the continuity condition (i.e., the volume
fractions of all considered materials sum to one) was satisfied.

From the mathematical point of view, significant development of MPM was made by
Gritton and Berzins [103], who proposed a null-space filter based on a singular-value-
decomposition technique. A null-space filter can be required to ensure that non-zero
material-point values do not result in zero nodal values after being mapped to the grid.
Moreover, Cortis et al. [104] worked on the application of essential boundary conditions
in MPM, focusing on the cases when the boundary of the problem domain does not co-
incide with the grid-element edges. On the other hand, Bing et al. [105] investigated
B-spline based Dirichlet and Neumann boundary conditions. Furthermore, Sulsky and
Gong [25, 26] looked at function reconstruction within MPM and improved the accu-
racy of the method by adopting higher-order reconstruction techniques. The volumetric
locking issue in MPM was addressed by Love and Sulsky [73] as well as Coombs et al.
[106], while the choice of computational mesh and spatial discretization order are dis-
cussed by Andersen and Andersen [107].

While some studies unite different research directions within the MPM community
(e.g., [93, 98, 101, 108]), a number of studies extend the use of MPM and related methods
by combining them with other numerical tools for solving partial differential equations.
For instance, Lian et al. [109, 110] and Chen et al. [111] couple MPM with FEM. Alterna-
tively, MPM can be combined with other meshfree methods or even discrete modeling
techniques. Raymond et al. [112] and He et al. [113] couple MPM with SPH, whereas Lu
et al. [114] use MPM in conjunction with molecular dynamics. Moreover, Dhakal et al.
propose the joint application of molecular dynamics with DDMPM [115]. Table 2.1 pro-
vides an overview of the research studies discussed in Section 2.6. Although a numerical
comparison of existing methods would be highly valuable for their further evaluation, it
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is not a focus of this thesis.

Table 2.1: Overview research areas in MPM.

Research area Subdivision Examples of existing research

Formulation

one-point one-phase [1, 2]
one-point two-phase [6, 74, 75, 98]
one-point three-phase [76]
double-point [65, 66, 78–80, 93]

Time integration
explicit [5, 18, 81–84]
implicit [85–89, 101, 108]

Algorithm

USL [1]
MUSL [2, 11, 72]
USF [11, 72]
USAVG [11]

Related method

GIMP [4, 24, 84, 90–93]
uGIMP
cpGIMP
CPDI [29, 94–96, 98]
CPDI2
BSMPM [28, 31, 99, 116]
DDMPM [21, 30, 100, 115]

Other – [25, 26, 93, 98, 101–115]
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3
FURTHER DEVELOPMENT OF THE

B-SPLINE MATERIAL-POINT

METHOD

This chapter considers the version of B-spline material-point method (BSMPM), where
the basis functions are constructed from a single knot vector. It introduces a mapping
technique that allows for the projection of the material-point information to the back-
ground grid using cubic-spline interpolation and Gauss quadrature rules. In addition,
a possible manner to extend BSMPM to unstructured grids is presented. The chapter is
structured as follows. Section 3.1 discusses the construction and properties of B-spline
basis functions. Section 3.2 introduces the proposed mapping strategy. It presents the
general concept of the technique and its individual components. Section 3.3 gives a
short description of MPM with Powell-Sabin splines. Section 3.4 introduces the bench-
mark problems and provides the obtained results. Finally, Section 3.5 draws the conclu-
sions.

Parts of this chapter have been published as a contribution to the proceedings of the MPM 2017 confer-
ence [117] and submitted to a journal [118]. The contribution of Elizaveta Wobbes to the above publications
is limited to numerical validation of the proposed approaches (i.e., selection and implementation of several
benchmarks).

33



3

34 3. FURTHER DEVELOPMENT OF THE B-SPLINE MATERIAL-POINT METHOD

3.1. B-SPLINE BASIS FUNCTIONS
A B-spline basis function is a piecewise-polynomial function of a certain degree on its
support interval that spans a particular spline space. Figure 3.1 provides examples of
linear, quadratic, and cubic univariate B-spline basis functions and their derivatives.
Clearly, linear B-spline basis functions are identical to the P1 basis functions described
in Section 2.5. A linear combination of B-spline basis functions defines a B-spline curve.
B-splines form building blocks for non-uniform rational B-splines (NURBS) [119]. Both
B-splines and NURBS are commonly employed to model and discretize geometries in
computer-aided design (CAD) and solve partial differential equation in isogeometric
analysis, a generalization of the standard, polynomial-based, FEM introduced by Hughes
et al. [119], [120–123].

3.1.1. CONSTRUCTION
Generally, a B-spline basis function is defined in the parametric space, based on a knot
vector. As was mentioned in Section 2.6.4, a knot vector in one dimension is a sequence

of ordered nondecreasing coordinates. It is typically denoted asΞ=
{
ξ1,ξ2, . . . ,ξnb̄+d̄+1

}
,

where ξ j ∈R is the j th knot, nb̄ is the total number of basis functions, and d̄ is the poly-
nomial order. The knot vector is uniform when its knots are distributed equidistantly.
The knots are called repeated when more than one knot is positioned at the same coor-
dinate in the parametric space. An open knot vector contains the first and last knots d̄+1
times ensuring that the resulting basis functions are interpolatory at the boundaries of
the domain. A non-empty knot interval

[
ξ j ξ j+1

)
is referred to as a knot span. For an

open uniform knot vector, the number of spans is equal to nb̄ − d̄ .
The Cox-de Boor formula [124] defines B-spline basis functions recursively, starting

with piecewise constants (no repeated knots, i.e., d̄ = 0):

φ0
j (ξ) =

{
1 if ξ j ≤ ξ< ξ j+1,

0 otherwise.

For d̄ > 0, the basis functions are given by

φd̄
j (ξ) = ξ−ξ j

ξ j+d̄ −ξ j
φd̄−1

j (ξ)+
ξ j+d̄+1 −ξ

ξ j+d̄+1 −ξ j+1
φd̄−1

j+1 (ξ) ξ ∈ ẑ,

where ẑ is the parametric domain. The derivatives of the B-spline basis functions can be
computed from [124]:

dφd̄
j (ξ)

dξ
= d̄

ξ j+d̄ −ξ j
φd̄−1

j (ξ)− d̄

ξ j+d̄+1 −ξ j+1
φd̄−1

j+1 (ξ) .

It should be noted that in the considered implementation of BSMPM, the parametric
and physical domains are the same.

3.1.2. PROPERTIES
B-spline basis functions satisfy the following properties:
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(a) Linear
(
d̄ = 1

)

(b) Quadratic
(
d̄ = 2

)

(c) Cubic
(
d̄ = 3

)
Figure 3.1: Univariate B-spline basis functions and their derivatives.
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P. 1. They form a partition of unity:

nb̄∑
j=1

φd̄
j (ξ) = 1 ∀ξ ∈ ẑ.

P. 2. They have a compact support. The support of each φd̄
j is contained within the

interval
[
ξ j ,ξ j+d̄+1

]
.

P. 3. Each φd̄
j is non-negative in its support:

φd̄
j (ξ) ≥ 0 ∀x ∈

[
ξ j ,ξ j+d̄+1

]
.

P. 4. They allow for row-sum mass lumping due to P. 3. (see Equation 2.22).

P. 5. They allow for direct mass lumping due to P. 1. (see Equation 2.24).

P. 6. They attain C d̄−κ j continuity, where κ j denotes the multiplicity of the j th knot
(i.e., the number of times knot j is duplicated). When the multiplicity of a knot is
equal to d̄ , the basis function is interpolatory at that knot.

Properties P. 1.-P. 5. are similar to the properties of piecewise-linear basis functions. The
main difference lies in property P. 6. This property makes B-spline basis functions partic-
ularly well suited for MPM simulations, because the smoothness of the basis functions
is required to prevent the unphysical oscillations resulting from grid crossing.

3.1.3. APPLICATION TO MPM
This thesis considers only second-order B-splines. These basis functions require a rela-
tively small interval for their support and are sufficiently smooth (i.e., C 1-continuous).
In this section and Chapter 5, the B-spline basis functions are used within the MUSL
algorithm, described in Algorithm 2.

3.2. MAPPING OF MATERIAL-POINT DATA TO THE BACKGROUND

GRID
MPM can be viewed as a version of standard FEM, where the material points serve as
the integration points to provide information for the background grid. In this thesis,
we refer to this type of particle data mapping as direct. Sulsky and Gong [25, 26] point
out that the direct mapping procedure reconstructs functions using a particular case of
Shepard interpolation [125] that can introduce significant errors. The authors improve
the accuracy of the method by adopting higher-order reconstruction techniques. In the
modified versions, the velocity, density, and stress fields are reconstructed from the par-
ticle data and evaluated either at the nodes or element centres. The MPM-integration is
then replaced by a one-point quadrature rule.

Based on the mapping strategy presented by Sulsky and Gong, this section provides
an alternative approach to project the material-point information to the background



3.2. MAPPING OF MATERIAL-POINT DATA TO THE BACKGROUND GRID

3

37

grid. The approach is presented for one-dimensional problems. The extension to multi-
dimensional computations is possible, but is outside the scope of this dissertation. Fig-
ure 3.2 shows schematic representations of the direct and modified mappings. The gen-
eral methodology of the proposed cubic spline (CS) mapping can be described as fol-
lows:

• cubic-spline interpolation globally reconstructs certain quantities of interest from
scattered material-point information,

• the obtained approximation is evaluated at the integration points (e.g., Gauss
points),

• the resulting values are projected to the background grid by means of exact nu-
merical integration (e.g., Gauss quadrature).

material points reconstructed function

grid integration points

direct CS mapping

| | |

Figure 3.2: Schematic representation of direct data mapping and mapping using cubic-spline (CS) interpola-
tion.

3.2.1. FUNCTION RECONSTRUCTION
Given a limited amount of data describing a real-valued function f (e.g., a set of M

distinct one-dimensional data points,
{

xp
}M

p=1, and the function values at these points,{
f
(
xp

)}M

p=1), function reconstruction techniques determine intermediate values of the

function or values outside of the provided data range. In general, a function can be re-
constructed by interpolating or approximating the known values. An interpolating tech-
nique assures that the values of the reconstructed function z coincide with the known
values of f :

z
(
xp

)= f
(
xp

) ∀p = {1, . . . ,M } . (3.1)

Approximation techniques do not necessarily respect this property. Commonly used
function reconstruction techniques are linear or higher-order Lagrange interpolation,
Hermite interpolation, spline interpolation, and (weighted or moving) least-squares ap-
proximation [126, 127].
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CUBIC-SPLINE INTERPOLATION

A spline is a piecewise-polynomial curve that is differentiable up to a prescribed order.
Assuming that x1 < x2 < ·· · < xM , a spline of degree d is defined as

z(x) =



z1(x) for x ∈ [x1, x2],

z2(x) for x ∈ [x2, x3],
...

zM−1(x) for x ∈ [xM−1, xM ],

(3.2)

where zp (x) is a polynomial of degree d̄ on [xp , xp+1], such that zp (x) and its derivatives
are connected smoothly at xp and xp+1 to the neighbouring polynomials. This implies
that a cubic spline interpolation has the following properties:

• On each interval [xp , xp+1], z is a third degree polynomial zp with p = {1, . . . ,M−1},

• z
(
xp

)= f
(
xp

)
for p = {1, . . . ,M },

• z(q)
p

(
xp+1

)= z(q)
p+1

(
xp+1

)
for q = {0,1,2} and p = {1, . . . ,M −2},

• z(2)
1 (x1) = z(2)

M−1(xM ) = 0.

It should be noted that the last property is not fundamental: it is required to uniquely
define the spline but can be replaced with other conditions that allow for the uniqueness
of the unknowns.

In MPM, the material points serve as data points. When large deformations are in-
volved, the material-point distribution can become non-uniform, containing regions
sparsely occupied by the material points. For this reason, Figure 3.3 illustrates the cubic-
spline reconstruction of f (x) = sin(x)+2 on [0,4π] with different types of data distribu-
tion. Since no data point is located at 4π, the reconstruction involves extrapolation at
the right boundary. It is observed that the quality of the reconstruction is high, when the
data points are distributed uniformly, but decreases if the distances between the data
points become relatively large.

Figure 3.3: Cubic-spline (CS) reconstruction of f (x) = sin(x)+2 on [0,4π]. Data distribution differs within each
interval [n̄π, (n̄ +1)π] with n̄ = {0,1,2,3}.
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3.2.2. NUMERICAL INTEGRATION
Since the reconstructed function is a third degree polynomial, it allows for an analytical
computation of its integral within each element. However, numerical integration can be
significantly cheaper and similarly accurate. Essentially, numerical integration approxi-
mates a definite integral to a given degree of accuracy employing a finite summation:∫ b

a
z(x)d x ≈

ng∑
g=1

ωg z
(
xg

)
. (3.3)

Here, a and b (with a < b) are the boundaries of the integration domain, ng is the to-
tal number of integration points, ωg is the weight of an integration point, and xg is its
position. Although there exist many types of numerical integration rules, such as the
midpoint and Newton-Cotes formulas, we restrict our attention to Gaussian quadrature.

GAUSS QUADRATURE RULES

Typically numerical integration techniques choose the positions of the integration points
first and determine their weights afterwards. Gaussian quadrature determines the posi-
tions and weights simultaneously. Gauss quadrature rules are based on the idea that the
use of ng Gauss points should yield the exact integration for polynomials up to degree
2ng +1. In the case of a single integration point, its weight and position are computed
by assuming that the Gaussian quadrature is exact for polynomials up to order one:∫ b

a
d x = b −a =ωg , (3.4)∫ b

a
xd x = 1

2

(
b2 −a2)=ωg xg . (3.5)

From this, it follows that ωg = b −a and xg = 1
2 (a +b), so that the Gauss point is located

exactly in the middle of the integral. Conventionally, the general integration domain of
integration [a,b] is transformed into [−1,1]. On [−1,1], the one-point Gauss rule results
in ωg = 2 and xg = 0, whereas two-point Gauss rule prescribes the weight of 1 to both

points and locates them at ±
√

1
3 .

3.2.3. APPLICATION TO B-SPLINE MATERIAL-POINT METHOD
The mapping technique proposed in this section can be applied to standard MPM as
well as to its related methods, such as BSMPM and DDMPM. This is demonstrated in
Chapter 5. Here, a detailed description of the application is provided only for BSMPM.
To adopt the technique for other methods, elements should be considered instead of
knot spans.

The CS mapping replaces the MPM-integration by Gauss quadrature for the compu-
tation of internal forces from Equation (2.45):

fint,i =
M∑

p=1

∂φ0
i

∂x

(
xp

)
σpVp (3.6)

as well as the nodal velocity (Equation 2.49). First, the proposed technique uses cubic-
spline interpolation to reconstruct the stress, density, and momentum fields from the



3

40 3. FURTHER DEVELOPMENT OF THE B-SPLINE MATERIAL-POINT METHOD

scattered material-point data. This is done for the complete domain and the recon-
structed fields are denoted by σ̂, ρ̂, and ρ̂v for the stress, density, and momentum, re-
spectively. The obtained fields are subsequently evaluated at the Gauss points. For an
accurate approximation of the integrals, four Gauss points are placed within each knot
span: two within each half of a knot span. An example of the Gauss-point positions is
given in Figure 3.4. After that, the internal force, mass and total momentum are calcu-
lated with the two-point Gauss rule in each half of each knot span:

fint,i ≈
Ns∑

k1=1

2∑
k2=1

2∑
g=1

∂φ0
i

∂x

(
xg

)
σ̂

(
xg

)
ωg =

Ng∑
g=1

∂φ0
i

∂x

(
xg

)
σ̂

(
xg

)
ωg , (3.7)

qi ≈
Ns∑

k1=1

2∑
k2=1

2∑
g=1

φ0
i

(
xg

)
(ρ̂v)

(
xg

)
ωg =

Ng∑
g=1

φ0
i

(
xg

)
(ρ̂v)

(
xg

)
ωg , (3.8)

Mi j ≈
Ns∑

k1=1

2∑
k2=1

2∑
g=1

φ0
i

(
xg

)
ρ̂

(
xg

)
φ0

j

(
xg

)
ωg =

Ng∑
g=1

φ0
i

(
xg

)
ρ̂

(
xg

)
φ0

j

(
xg

)
ωg (3.9)

where Ns is the total number of knot spans, k2 refers to the number of intervals within
each knot span, and Ng is the total number of Gauss points. From this, the nodal velocity
vector can be obtained as

v = (M)−1q. (3.10)

ξ j ξ j+1

Figure 3.4: Illustration of Gauss points within a knot span.

3.3. EXTENSION TO UNSTRUCTURED TRIANGULAR GRIDS US-
ING POWELL-SABIN SPLINES

On structured rectangular grids, adopting B-spline basis functions within MPM not only
eliminates grid-crossing errors but also yields higher-order spatial convergence [28, 31,
99, 128]. Several research studies also demonstrate that BSMPM is a viable alternative
to the GIMP, CPDI methods and DDMPM, which have been introduced in Chapter 2
[31, 99, 129, 130]. While the CPDI method and DDMPM can be used on unstructured
grids [30, 95, 96], to the best of our knowledge, BSMPM for unstructured grids does not
yet exist. This implies that its applicability to real-world problems is limited compared
to the CPDI method and DDMPM.

The use of quadratic Powell-Sabin (PS) splines [131] extends BSMPM to unstruc-
tured triangulations to combine the benefits of B-splines with the geometric flexibility
of triangular grids. The method employs quadratic PS splines and is referred to as PS-
MPM. These splines are piecewise higher-order polynomials defined on a particular re-
finement of any given triangulation and are typically used in computer-aided geometric
design and approximation theory [132–135]. PS splines are C 1-continuous and hence
overcome the grid-crossing issue within MPM by design. We remark that although this
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paper focuses on PS splines, other options such as refinable C 1 splines [136] can most
likely be used to extend MPM to unstructured triangular grids. To construct PS-splines
on an arbitrary triangulation, a Powell-Sabin refinement is required (i.e., dividing each
triangle into sub-triangles). Dierckx et al. [133, 137] provide the details of the construc-
tion process.

3.4. NUMERICAL RESULTS

This section provides the numerical results obtained with BSMPM, its combination with
the mapping technique that uses cubic-spline basis functions, also referred to as the CS
mapping in this thesis, and Powell-Sabin splines on unstructured triangular grids.

3.4.1. BENCHMARKS

Two benchmarks are considered in this section. A one-dimensional vibrating bar is
adopted to illustrate the results obtained with BSMPM and its combination with the CS
mapping, whereas the performance of Powell-Sabin splines is studied based on a two-
dimensional vibrating plate.

BAR WITH FIXED ENDS

This example describes the vibration of a one-phase bar with fixed ends. The motion
triggered by an initial velocity that varies along the bar as illustrated in Figure 3.5.

v(x)

x0 l

Figure 3.5: Vibrating bar with fixed ends.

Moreover, the gravitational force is neglected. The following initial and boundary
conditions are prescribed:

u(x0,0) = 0, v(x0,0) = v0
max sin

(
πx0

l

)
, σ(x0,0) = 0;

u(0, t ) = 0, u(l , t ) = 0.

For small strains, the analytical solution in terms of displacement, velocity, and stress
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is given by

u(x0, t ) = v0
max l

π
√

E/ρ
sin

(
π
√

E/ρ t

l

)
sin

(
πx0

l

)
,

v(x0, t ) = v0
max cos

(
π
√

E/ρ t

l

)
sin

(
πx0

l

)
,

σ(x0, t ) = v0
max

√
E/ρ sin

(
π
√

E/ρ t

l

)
cos

(
πx0

l

)
.

The material-point solutions are considered at the particle positions.

Table 3.1 provides two sets of exemplary parameter values for the vibrating bar bench-
mark under small deformations. For the simulations performed with the parameters
from set 1, the domain is divided into 510 elements for MPM and 510 knot spans for
BSMPM with 12 particles per cell (PPC). The domain is discretized by 40 knot spans with
12 PPC, when the parameters from set 2 are adopted.

Table 3.1: Exemplary parameters allowing for small deformations in the vibrating bar problem.

Parameter Symbol Value set 1 Value set 2 Unit
Height l 1.00 1.00 m
Initial density ρ 2.00 ·103 2.00 ·103 kg/m3

Young’s modulus E 8.00 ·107 7.00 ·106 Pa
Max. initial velocity v0

max 0.60 0.28 m/s2

Time-step size ∆t 1.0 ·10−5 1.0 ·10−7 s
Total time T 1.0 ·10−3 1.9 ·10−6 s

PLATE UNDERGOING AXIS-ALIGNED DISPLACEMENT

This benchmark [29] considers a two-dimensional neo-Hookean plate that is fixed at
the entire boundary. The plate is assumed to be a unit square (l × l with l = 1 m) and
its motion is triggered by a body force. An analytical solution for this problem is con-
structed using the method of manufactured solutions: the analytical solution in terms
of displacement is assumed a priori, from which the corresponding body forces are cal-
culated. The displacement is given by

ux1 (x0
1 , t ) = B sin

(
2πx0

1

l

)
sin

(
cπt

l

)
, (3.11)

ux2 (x0
2 , t ) = B sin

(
2πx0

2

l

)
sin

(
cπt

l
+π

)
. (3.12)
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Here, ρ0 = 103 kg/m3, B = 0.05 m, and E = 107 Pa. The corresponding body forces [29]
are equal to

gx1 =π2ux1

(
4µ

ρ0 − E

ρ0 −4
λ [ln(F11F22)−1]−µ

ρ0F 2
11

)
, (3.13)

gx2 =π2ux2

(
4µ

ρ0 − E

ρ0 −4
λ [ln(F11F22)−1]−µ

ρ0F 2
22

)
, (3.14)

where λ is the Lamé constant, µ is the shear modulus, and F11 and F22 are the normal
components of the deformation gradient. F11 and F22 are defined as

λ= Eν

(1+ν)(1−2ν)
, µ= E

2(1+ν)
, (3.15)

F11 = 1+2Bπcos
(
2πx0

1

)
sin

(√
E/ρ0πt

)
, (3.16)

F22 = 1+2Bπcos
(
2πx0

2

)
sin

(√
E/ρ0πt +π

)
. (3.17)

It is assumed that Poisson’s ratio is equal to ν= 0.3. This problem is simulated with MPM
and PS-MPM, using an unstructured triangular grid with material points initialized uni-
formly over the domain, as shown in Figure 3.6. A time step size and the total simulation
time are set to ∆t = 2.25 ·10−4 s and T = 0.02 s, respectively.

Figure 3.6: The exact solution where particles (marked with dots) move back and forth along the marked vec-
tors (left) and the unstructured grid with the initial particle configuration (right). The axes are given in meters.
Both figures were obtained in collaboration with Pascal de Koster.

3.4.2. B-SPLINE MATERIAL-POINT METHOD
The performance of BSMPM is illustrated by means of the one-dimensional vibrating bar
with the parameters from set 1 in Table 3.1. Figure 3.7 shows that the method completely
removes the unphysical oscillations in the velocity field that causes grid crossing artifacts
in standard MPM. In addition, it demonstrates the close agreement of BSMPM with the
analytical solution.
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Figure 3.7: Stress distribution in the vibration bar problem with grid crossing. The results are obtained with
standard MPM and BSMPM using the parameters from value set 1 in Table 3.1.

BSMPM results are also provided and discussed in detail in Chapter 5. It is shown that
in some cases (e.g., Figure 5.10), the use of B-spline basis functions causes oscillations
at the boundary of the domain, which prevents the method from achieving higher-order
convergence.

3.4.3. MAPPING OF MATERIAL-POINT DATA WITH CUBIC-SPLINE FUNCTION

RECONSTRUCTION

Figure 3.8: Absolute error obtained using BSMPM with and without CS mapping for the stress distribution in
the vibrating bar problem without grid crossing. The results are computed using the parameters from set 2.

For BSMPM, replacing direct material-point data projection to the background grid
by the mapping with cubic-spline reconstruction can be used to eliminate the oscilla-
tions at the domain boundary. This is shown in Figure 3.8. In addition to reducing the
absolute error at the boundary, the proposed approach significantly decreases the value



3.4. NUMERICAL RESULTS

3

45

of the error over the complete domain. Finally, for this benchmark, the mapping with
cubic-spline reconstruction leads to third-order convergence for displacement and ve-
locity, and second-order convergence for the stress (see Figure 5.9). A lower order of
convergence in terms of stress is caused by its computation from the displacement by
taking the derivative, instead of discretizing the stress field directly.

3.4.4. APPLICATION TO UNSTRUCTURED TRIANGULAR GRIDS USING POWELL-
SABIN SPLINES

Figure 3.9 illustrates that Powell-Sabin splines can be successfully used to extend BSMPM
to unstructured triangular grids. The results are provided in terms of the normal stress
in the x1-direction. It is shown that the proposed approach eliminates the grid-crossing
errors observed with standard MPM and accurately resembles the analytical solution.
Although the method demonstrates excellent results for this benchmark, its application
to more complex problems is problematic. Further research is required to assure the ro-
bustness of the presented method to computations that involve partially filled elements.
De Koster et al. [118] discuss this issue in detail.

Standard MPM PS-MPM

Exact

Figure 3.9: The interpolated particle stress in the x-direction at t = 0.016 s. The figure was obtained in collab-
oration with Pascal de Koster.
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3.5. CONCLUSIONS
This chapter presents a possible way to use B-spline basis functions within an MPM al-
gorithm. The basis functions are constructed from a knot vector that contains the knots
over the complete domain, and are computed using the Cox-de Boor formula. The use
of B-spline basis functions in MPM can be combined with a mapping technique that
allows for the projection of the material-point data to the background grid using cubic-
spline interpolation. The numerical results show that this modified technique provides
more accurate results on the boundaries of the domain, yields higher-order conver-
gence, and reduces the absolute error. Furthermore, this section discusses the exten-
sion of BSMPM to unstructured triangular grids by employing Powell-Sabin splines. The
approach demonstrates promising results for relatively simple problems, but has to be
further investigated for its successful application to problems that contain partially filled
elements.



4
COMPARISON AND UNIFICATION

WITH OPTIMAL TRANSPORTATION

MESHFREE METHOD

Both the material-point method (MPM) and optimal transportation meshfree (OTM)
method have been developed to efficiently solve partial differential equations that are
based on the conservation laws from continuum mechanics. However, the methods are
derived in a different fashion and have been studied independently of one another. In
this chapter, we provide a direct step-by-step comparison of the MPM and OTM algo-
rithms and introduce a novel unified approach that combines the design principles from
B-spline MPM (BSMPM) and OTM methods. This chapter is structured as follows. Sec-
tion 4.1 gives a short introduction. Section 4.2 describes the OTM scheme and provides
its computational algorithm. Section 4.3 gives an overview of local maximum-entropy
basis functions, which are typically used within the OTM method. Section 4.4 gives a
comparison of the algorithms. After that, Section 4.5 introduces the unified approach.
Section 4.6 reports the results that show the difference between the MPM and OTM
methods numerically. In addition, it demonstrates the results obtained with our uni-
fied approach and gives a comparison with BSMPM. Finally, Section 4.7 summarizes the
main conclusions of this study.

Parts of this chapter have been published as a contribution to the proceedings of the MPM 2019 confer-
ence [117] and submitted to a journal [138]. The chapter is based on the original work of Elizaveta Wobbes
with the contribution of Roel Tielen to the numerical numerical results from Section 4.6.3 and the derivation
of Equation (4.27).

47
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4.1. INTRODUCTION
The optimal transportation meshfree (OTM) method [32] has been developed to sim-
ulate general solid and fluid flows and applied to a wide range of problems [139–142].
The OTM method uses the concepts from optimal transportation theory (an overview
is provided by Villani [143]) to translate the mass and momentum balance equations
into a minimization problem for the total action of the solid over a time interval. OTM
employs two sets of points: nodal points and material points. Nodal points carry infor-
mation about the positions, while material points represent the continuum. This up-
dated Lagrangian method is typically used with maximum entropy (maxent) basis func-
tions [144, 145] that are fully defined by the nodal set and the domain of analysis.

Many similarities can be found between MPM and the OTM method. For instance,
they both employ the idea of material points that represent the continuum, but are not
used directly to compute the solution of the governing equations. Moreover, an alterna-
tive derivation of the OTM scheme has been provided by Weißenfels and Wriggers [146],
where the method is obtained from the weak form of the equation of motion. Despite
this, MPM and the OTM method have evolved and been studied independently from
each other. An in-depth analysis and direct comparison of the methods provides a bet-
ter understanding of their relation, with potential improvements of MPM based on the
present knowledge of the OTM method and vice versa.

The presented study consists essentially of two parts. The first part offers new in-
sights into the relation between the MPM and OTM methods by drawing a detailed com-
parison of their algorithms. Based on this comparison, it identifies the conditions under
which the two approaches can be related to each other, and highlights their fundamental
differences. The second part of the study presents a novel unified approach that com-
bines the design principles from the B-spline MPM (BSMPM) and OTM methods. The
main idea behind the approach is to use the similarities between B-spline and maxent
basis functions, which are typically used in conjunction with the OTM method [147].
For example, both of them are non-negative, smooth, and possess the partition of unity
property. The proposed approach is significantly cheaper than the standard OTM method
and allows for the use of a consistent mass matrix without stability issues that are typi-
cally encountered in MPM computations. Although in this chapter, the unified approach
is applied to relatively simple examples, all derivations are presented in their general
form enabling its straightforward extension to more complex problems.

4.2. OPTIMAL TRANSPORTATION MESHFREE METHOD
The OTM method is a meshless updated Lagrangian method that is based on the con-
cepts from optimal transportation theory. In contrast to MPM, the OTM method explic-
itly includes the dependence of the mass density on time. For an arbitrary time interval[
t 0,T

]
it assumes that the density at time t 0 and T are prescribed:

ρ
(
x0, t 0)= ρ0 (

x0) , (4.1)

ρ (x,T ) = ρT (x) , (4.2)

where x0 and x are given in Equation (2.1). Benamou and Brenier [148] note that the
mass and momentum balance equations together with Equations (4.1) and (4.2) can be
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translated into a minimization problem for the action of the solid over the time interval.
The action over

[
t 0,T

]
is given by

A
(
ρ,v

)= ∫ T

t 0
K

(
ρ,v

)
d t , (4.3)

where K (ρ,v) is the kinetic energy, which is equal to

K
(
ρ,v

)= ∫
ΩT

ρ

2
|v|2 dΩT . (4.4)

Although Equations (4.3) and (4.4) are expressed in terms of mass density and velocity, in
the OTM framework the flow is described by means of the deformation mapping ϕ that
is defined in Equation (2.1). The deformation mapping is related to velocity and density
in the following way [32]:

v(x, t ) = ∂ϕ

∂t

(
x0, t

)
, (4.5)

ρ(x, t ) = ρ0 (
x0)/det

(∇ϕ(
x0, t

))
. (4.6)

Benamou and Brenier [148] also demonstrate that the deformation mapping that mini-
mizes the action in Equation (4.3) is given in terms of McCann’s displacement interpola-
tion [149]:

ϕ
(
x0, t

)= T − t

T − t 0 x0 + t − t 0

T − t 0 ϕ
(
x0,T

)
. (4.7)

Here, ϕ
(
x0,T

)
is the optimal transportation map of ρ0 into ρT with respect to the cost

function [32]:

C 0→T (
γ
)= ∫

Ω0

∣∣γ(
x0,T

)−x0∣∣2
ρ0 (

x0) dΩ0, (4.8)

in which γ
(
x0, t

)
is a generic mapping of mass density.

To generate a numerical scheme, Equation (4.3) is discretized in space and time. The
time interval

[
t 0,T

]
is divided into sub-intervals

[
t s , t s+1

]
with s = 0,1, . . . , N−1, to which

the above theory developed for
[
t 0,T

]
is still applicable. The OTM method approximates

a flow using the concept of the free energy of the solid U [140]:

U
(
ϕ

(
xs , t

))= ∫
Ωs

f
(∇ϕ(

xs , t
))
ρs (

xs) dΩs , (4.9)

where f is the local free-energy density per unit volume. Furthermore, the method em-
ploys the Wasserstein distance dW between mass densities at two consecutive time in-
stances [32, 139]:

d 2
W

(
ρs (

xs) ,ρs+1 (
xs+1))= inf

γ: Ωs→Ωs+1

ρs=ρs+1 det(∇γ(xs ,t s+1))

∫
Ωs

∣∣γ(
xs , t s+1)−xs ∣∣2

ρs (
xs) dΩs

= inf
γ: Ωs→Ωs+1

ρs=ρs+1 det(∇γ(xs ,t s+1))

C s→s+1 (
γ
)

. (4.10)
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Figure 4.1: Schematic representation of the OTM method. Discretization of the domain by nodes (nodal points)
and material points before and after deformation.

For elastic materials in unforced systems, the semi-discrete action sum is equal to [139]

A0→N (
ϕ0, . . . ,ϕN )= N−1∑

s=0

(
1

2

d 2
W

(
ρs ,ρs+1

)(
t s+1 − t s

)2 − 1

2

(
U

(
ϕs)+U

(
ϕs+1)))(

t s+1 − t s) , (4.11)

where ϕs is the deformation mapping at time t s . For the spatial discretization of Equa-
tion (4.11), the OTM method employs two sets of points: nodal points and material
points (see Figure 4.1). Nodal points carry position information, while material points
represent the continuum body and arise from the spatial approximation of the mass den-
sities by point masses:

ρs (x) ≈ ρs
h(x) =

M∑
p=1

mpδ
(
x−xs

p

)
, (4.12)

where δ
(
x−xs

p

)
is the Dirac delta distribution centered at xs

p . Material points are con-

vected by the deformation:

xs+1
p =ϕs→s+1

h

(
xs

p

)
, (4.13)

in whichϕs→s+1
h (x) is the incremental deformation map. Fedeli et al. [141] explain that it

can be described by general linear interpolation schemes of the form:

ϕs→s+1
h (x) =

N∑
i=1

φs
i (x)xs+1

i , (4.14)

whereby the basis functions are assumed to be consistent. Consistent basis functions
satisfy the following conditions:

• Partition of unity property:

N∑
i=1

φs
i (x) = 1 ∀ x ∈Ωs . (4.15)

• Linear completeness:
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N∑
i=1

xs
iφ

s
i (x) = x ∀ x ∈Ωs . (4.16)

Moreover, material points carry a fixed mass, serve as integration points, and store all
local state data. In order to fully discretize Equation (4.11), the Wasserstein distance
d 2

W

(
ρs

h ,ρs+1
h

)
is expressed as follows:

d 2
W

(
ρs

h ,ρs+1
h

)= inf
γ: Ωs→Ωs+1

ρs
h=ρs+1

h det(∇γ(xs ,t s+1))

∫
Ωs

∣∣γ(
xs , t s+1)−xs ∣∣2

ρs
h

(
xs) dΩs (4.17)

=
∫
Ωs

∣∣ϕ(
xs , t s+1)−xs ∣∣2

ρs
h

(
xs) dΩs (4.18)

=
∫
Ωs

∣∣ϕ(
xs , t s+1)−xs ∣∣2

M∑
p=1

mpδ
(
xs −xs

p

)
dΩs (4.19)

=
M∑

p=1
mp

∫
Ωs

∣∣ϕ(
xs , t s+1)−xs ∣∣2

δ
(
xs −xs

p

)
dΩs (4.20)

=
M∑

p=1
mp

∣∣∣ϕ(
xs

p , t s+1
)
−xs

p

∣∣∣2
(4.21)

=
M∑

p=1
mp

∣∣∣xs+1
p −xs

p

∣∣∣2
. (4.22)

Here, we used the fact that ϕ
(
xs , t s+1

)
is the optimal transportation map of ρs into ρs+1

with respect to C s→s+1 for the second equality, while Equation (4.12) for the third equal-
ity. Moreover, a similar procedure is followed to approximate the free energy U

(
ϕs

h

)
:

U
(
ϕs

h

)= ∫
Ωs

f
(∇ϕs

h

)
ρs

hdΩs (4.23)

=
∫
Ωs

f
(∇ϕs

h

) M∑
p=1

mpδ
(
x−xs

p

)
dΩs (4.24)

=
M∑

p=1

∫
Ωs

f
(∇ϕs

h

)
mpδ

(
x−xs

p

)
dΩs (4.25)

=
M∑

p=1
mp f

(∇ϕs
h

)
. (4.26)

Substituting Equations (4.22) and (4.26) into Equation (4.11) leads to the fully discrete
action:

A0→N
h

(
ϕ0

h , . . . ,ϕN
h

)= N−1∑
s=0

M∑
p=1

(
mp

2

∣∣∣xs+1
p −xs

p

∣∣∣2

(
t s+1 − t s

)2 − mp

2

(
f
(
∇ϕs

h

(
xs

p

))
+ f

(
∇ϕs+1

h

(
xs+1

p

))))(
t s+1 − t s) . (4.27)

The OTM algorithm originates from applying the discrete Hamilton’s principle [150] to
the fully discrete action [32, 151].



4

52 4. COMPARISON AND UNIFICATION WITH OTM METHOD

4.2.1. ALGORITHM
————————————————————————————————————–
————————————————————————————————————–
Input: Nodal coordinates x0

i , material-point coordinates x−1
p , x0

p , volumes V 0
p ,

densities ρ0
p , masses mp , deformation gradients F0

p , stresses σ0
p , body

forces bp

1 Set s = 0
2 while s < N do

3 Compute basis functions φs
i

(
xs

p

)
and derivatives ∇φs

i

(
xs

p

)
from advected

nodal set
{

xs
i

}
and advected material-point set

{
xs

p

}
4 Compute mass matrix Ms , linear momentum vector q̄s

k , and force vector f̄s
k :

M s
i j =

M∑
p=1

φs
i

(
xs

p

)
mpφ

s
j

(
xs

p

)
(4.28)

q s
k,i =

M∑
p=1

φs
i

(
xs

p

)
mp

xs
k,p −xs−1

k,p

t s − t s−1 (4.29)

f s
k,i =

M∑
p=1

(
3∑

l=1

∂φs
i

∂xl

(
xs

p

)
σs

kl ,p +φs
i

(
xs

p

)
ρs

p bk,p

)
V s

p (4.30)

5 Update nodal coordinates:

x̄s+1
k = x̄s

k +
(
t s+1 − t s)(Ms)−1

(
q̄s

k +
t s+1 − t s−1

2
f̄s

k

)
(4.31)

6 Update material-point coordinates:

xs+1
p =ϕs→s+1

h (xs
p ) (4.32)

7 Update material-point volumes:

V s+1
p = det

(
∇ϕs→s+1

h

(
xs

p

))
V s

p (4.33)

8 Update material-point densities:

ρs+1
p = mp

V s+1
p

(4.34)

9 Update material-point deformation gradients:

Fs+1
p =∇ϕs→s+1

h

(
xs

p

)
Fs

p (4.35)

10 Compute material-point stresses σs+1
p from Fs+1

p using the constitutive
equation (e.g., Equation 2.13 or 2.14)

1212 Set s = s +1
13 end

Algorithm 3: Optimal transportation meshfree method.



4.3. LOCAL MAXIMUM-ENTROPY BASIS FUNCTIONS

4

53

A basic OTM algorithm for a solid material is summarized in Algorithm 3. For more
details on the OTM method, we refer to the work of Li et al. [32] and Habbal [151].

4.3. LOCAL MAXIMUM-ENTROPY BASIS FUNCTIONS
Maxent basis functions were introduced by Sukumar [144] for the construction of poly-
gonial interpolants. Arroyo and Ortiz [145] presented local maxent basis functions and
first used them within a meshfree method. After that, local maxent basis functions have
been integrated within several meshfree schemes such as point collocation methods [152].
The schemes that combined meshfree methods with maxent basis function have been
applied to a variety of problems including simulations of shear-deformable plates [153]
and thin-shell analysis [154].

The construction of maxent basis functions combines elements from probability the-
ory and optimization. In fact, within a convex hull of the nodal set

{
xi

}
(i.e., the smallest

convex set that contains all nodes), the set of local maxent basis functions
{
φi (x) ≥ 0

}N
i=1

form the solution of the following constrained optimization problem [155]:

max
φ ∈ RN+

−
N∑
i=1

φi (x) ln

(
φi (x)

wi (x)

)
(4.36)

subject to

N∑
i=1

φi (x) =1, (4.37)

N∑
i=1

φi (x)(xi −x) =0, (4.38)

where wi (x) is a non-negative weight function or prior estimate of φi . The solution of
this problem is typically found using the method of Lagrange multipliers [156] and can
be written as

φi (x) = Zi (x,λ)

Z (x,λ)
(4.39)

with

Zi (x,λ) = wi (x)exp(−λ · (xi −x)), (4.40)

Z (x,λ) =∑
i

Zi (x,λ), (4.41)

whereλ represents the Lagrange multipliers.
In practice, the primal problem of maximization is transferred into the dual problem

of minimization [144]. Considering the new formulation, λ is expressed as [157, 158]

λ= argminln(Z ). (4.42)

The Lagrange multipliers are typically found via Newton’s method. The solution proce-
dure of this method (e.g., [159]) requires an initial guess forλ and both first- and second-
order partial derivatives of ln(Z ) with respect to λ. Figure 4.2 demonstrates an example
of the convergence path of the Newton’s method for a one-dimensional computation.
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Figure 4.2: Example of a convergence path of Newton’s method for a one-dimensional computation.

The first derivatives of the local maxent basis functions are given by (e.g., [160])

∇φi =φi

(
(x−xi ) · (H−1 −H−1A

)− ∇wi

wi
+

N∑
j=1

φ j
∇w j

w j

)
, (4.43)

in which the matrices H and A are computed in the following way:

H =
N∑
j=1

φ j (x−x j )
⊗

(x−x j ), (4.44)

A =
N∑
j=1

φ j (x−x j )
⊗ ∇w j

w j
. (4.45)

Here,
⊗

is the dyadic product (i.e., the dyadic product of any two vectors is equal to
a

⊗
b = abT).

4.3.1. WEIGHT FUNCTIONS
In the above description, the weight function remained unspecified due to a large num-
ber of viable options (e.g., Gaussian prior, cubic or quartic spline). In general, the prior
functions are defined by means of the normalized radius of the support domain, ri for
node i :

ri (x) = ||x−xi ||
di

, (4.46)

where || · || is the L2-norm, and di is the size of the domain of support of node i , which is
a user-defined parameter. In this thesis, di is equal to

di = dmaxζi , (4.47)

in which dmax is a factor with a typical value between 2.0 and 4.0 (this value is selected
by the user), and ζi is the distance between node i and its nearest neighboring node.
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Alternative definitions of the normalized radius of the support domain can be found, for
instance, in the work of Sukumar and Wright [161] and Yaw et al. [160].

Cubic spline weight functions, which are used in this thesis, are given by

wi (x) =


2
3 −4r 2

i (x)+4r 3
i (x), for 0 < ri (x) ≤ 1

2 ,
4
3 −4ri (x)+4r 2

i (x)− 4
3 r 3

i (x), for 1
2 < ri (x) ≤ 1,

0, for ri (x) > 1.

(4.48)

In one dimension, the derivative of a cubic spline basis function is computed as

d wi

d x
= d wi

dri

dri

d x
=


1

di

(−8ri (x)+12r 2
i (x)

)
sign(x −xi ), for 0 < ri (x) ≤ 1

2 ,
1

di

(−4+8ri (x)−12r 2
i (x)

)
sign(x −xi ), for 1

2 < ri (x) ≤ 1,

0, for ri (x) > 1.

(4.49)

In two dimensions, the derivatives are obtained from

∇wi =
[

dwi
dri

∂ri
∂x1

, dwi
dri

∂ri
∂x2

]T
(4.50)

In the above expression, the partial derivatives of ri can be written as

∂ri

∂xk
= xk −xk,i

di ||x−xi ||
. (4.51)

Figure 4.3 shows the one-dimensional cubic spline basis functions and their derivatives,
as well as the corresponding local maxent basis functions together with the derivatives.
Figure 4.5 illustrates the two-dimensional prior functions, local maxent basis functions,
and the partial derivatives of the local maxent basis functions for an interior node and
a corner node. The domain discretization as well as the evaluation points are shown in
Figure 4.4. The Python implementation of the maxent basis functions, which was used
in this thesis, is validated by a comparison with the Matlab implementation provided by
Ortiz-Bernardin [162].

4.3.2. PROPERTIES
Local maxent basis functions possess many desirable properties for meshfree algorithms.
First of all, they are entirely defined by the nodal set and the domain of analysis. They are
also non-negative, satisfy the partition of unity property, and provide an exact approx-
imation for affine functions [145]. Furthermore, the local maxent basis functions have
the so-called weak Kronecker-delta property [145]. The weak Kronecker-delta property
implies that the Kronecker-delta property holds only for the basis functions φi corre-
sponding to the nodes xi on the boundary of a convex hull. The Kronecker-delta prop-
erty can be stated as follows:

φi (xi ) = δi j =
{

1 for i = j ,

0 otherwise,
(4.52)

In other words, the weak Kronecker-delta property states that the maxent basis functions
are interpolatory at the boundary nodes, which allows for direct imposition of Dirichlet
boundary conditions [145, 146].
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Figure 4.3: 1D cubic spline weight functions, local maxent basis functions, and their derivatives for dmax = 2.0.

Figure 4.4: Example of the discretization of a two-dimensional domain.
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Figure 4.5: Examples of 2D weight functions, local maxent basis functions and their derivatives corresponding
to cubic spline weight functions with dmax = 2.0. The domain descritization is shown in Figure 4.4, the basis
functions are evaluated at (0,0) (left) and (1,−1) (right).
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However, the local maxent basis functions are defined only within a convex hull of
the nodal set. If non-convex domains are considered, the basis functions lose the weak
Kronecker-delta property at the non-convex parts of the domain [145]. In addition, the
calculation of Lagrange multipliers is numerically challenging [151] and frequently re-
quires significant computational costs.

4.4. COMPARISON OF ALGORITHMS
While the derivations of MPM and the OTM method are fundamentally different, the
resulting algorithms have many similarities. This section provides a side-by-side com-
parison of the computational steps from Algorithm 1 (USL-MPM) and 3 (OTM). Based
on this comparison, it summarizes the conditions required to further relate the methods
and highlights the principal differences between them.

• In the beginning of the simulation, both algorithms intialize the nodal coordi-
nates and material-point properties. While the MPM computation requires the
material-point velocity for time step s = 0, the OTM method expects the material-
point positions to be known at s = −1. This difference arises from the explicit
definition of the material-point velocity in MPM and its implicit use in the OTM
method. This is further explained in the discussion of step 4 of both schemes.

• After the initialization phase, the time step counter s is set to zero, which identifies
the start of the solution phase. At the end of each time step, s is increased by one
until the maximum number of time steps N is reached.

• In step 3, the schemes compute the basis functions and their derivatives. How-
ever, in the OTM method the basis functions are updated in each time step based
on the nodal velocities, while in MPM the basis functions remain fixed over time.
This is an important difference between the methods. To distinguish between the
basis functions, the OTM basis functions are denoted by φs

i and the MPM basis
functions by φ0

i .

• On the other hand, the schemes can be related in step 4. Assuming that the material-
point velocity in MPM can be written as

vs
p = 1

t s − t s−1

(
xs

p −xs−1
p

)
. (4.53)

A direct substitution of Equation (4.53) into the expression for the linear momen-
tum in the MPM algorithm (Equation 2.32) leads to the linear momentum formula
used in the OTM method (Equation 4.29).

• Furthermore, steps 5 and 6 of the USL algorithm are implicitly included in step 5 of
the OTM algorithm, where the nodal coordinates at time step s +1 are computed.
More precisely, from step 5 in the OTM algorithm, we obtain

∆x̄s+1
k = x̄s+1

k − x̄s
k = (

t s+1 − t s)(Ms)−1
(

q̄s
k +

t s+1 − t s−1

2
f̄s

k

)
. (4.54)
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At the same time, the incremental nodal displacement in MPM can be written as

∆x̄s+1
k = (

t s+1 − t s)((Ms)−1 q̄s
k +

(
t s+1 − t s) ās

k

)
= (

t s+1 − t s)(Ms)−1 (
q̄s

k +
(
t s+1 − t s) f̄s

k

)
. (4.55)

It can be seen that Equation (4.55) is equal to Equation (4.54) for constant time step
sizes. From this it can be concluded that the update of nodal positions is identical
for both methods when the time-step size is fixed.

• The definition of the incremental transport map (Equation 4.14) implies that, in
step 6 of the OTM algorithm, material-point positions are obtained from

xs+1
p =

N∑
i=1

φs
i

(
xs

p

)
xs+1

i , (4.56)

while step 7 in the MPM algorithm states that

xs+1
p = xs

p +
N∑
i=1

φ0
i

(
xs

p

)
∆xs+1

i . (4.57)

The equality of the above expressions can be shown if linear completeness (see
Equation 4.16) of the MPM basis functions is imposed. That is, if the following
condition is satisfied:

N∑
i=1

φ0
i (x)xs

i = x ∀ x ∈Ωs . (4.58)

In this case, Equation (4.57) can be rewritten as

xs+1
p =

N∑
i=1

φ0
i

(
xs

p

)
xs

i +
N∑
i=1

φ0
i

(
xs

p

)
∆xs+1

i =
N∑
i=1

φ0
i

(
xs

p

)
xs+1

i . (4.59)

• Moreover, the OTM scheme avoids a direct update of the material-point velocity
by adopting Equation (4.53), whereas MPM performs the update in step 8. Never-
theless, assuming that

N∑
i=1

φ0
i

(
xs

p

)
vs

i = vs
p , (4.60)

it is possible to relate the methods again. Substituting Equation (4.60) into step 8
of MPM gives

vs+1
p =

N∑
i=1

φ0
i

(
xs

p

)
vs

i +
(
t s+1 − t s) N∑

i=1
φ0

i

(
xs

p

)
as

i =
N∑
i=1

φ0
i

(
xs

p

)(
vs

i +
(
t s+1 − t s)as

i

)
.

(4.61)
Substituting step 6 of the MPM algorithm yields

vs+1
p =

N∑
i=1

φ0
i

(
xs

p

)
vs+1

i . (4.62)
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Therefore, the updated material-point velocity in MPM is equal to

vs+1
p = 1

t s+1 − t s

N∑
i=1

φ0
i

(
xs

p

)
∆xs+1

i = 1

t s+1 − t s

(
xs+1

p −xs
p

)
. (4.63)

The above equalities follow from the computation of the incremental nodal dis-
placements in steps 6, and the update of material-point coordinates in step 7 of
the MPM algorithm.

The final expression in Equation (4.63) is identical to the implicit material-point
velocity update in the OTM algorithm. Although an extra assumption is required
to establish a connection between the methods, it does not lead to an essential
disparity between them.

• Step 9 of both schemes can be shown to be identical as well. From step 6 in the
OTM algorithm and the OTM definition of material-point velocity presented in
Equation (4.53), it follows that

∇ϕs→s+1
h

(
xs

p

)
=∇xs+1

p =∇
(
xs

p + (
t s+1 − t s)vs+1

p

)
= I+ (

t s+1 − t s)∇vs+1
p . (4.64)

Therefore, step 9 is the same for the MPM and OTM algorithm.

• Next, the update of the material-point volumes is investigated. MPM performs this
update in step 10, while the OTM method computes the volume in step 7. To prove
the equivalence of those steps, we need to show that

det
((

I+ (
t s+1 − t s)∇vs+1

p

)
Fs

p

)
V 0

p = det
(
∇ϕs→s+1

h

(
xs

p

))
V s

p . (4.65)

The identity is proved using mathematical induction. For s = 0, the MPM update
can be written as

det
((

I+ (t 1 − t 0)∇v1
p

)
F0

p

)
V 0

p (4.66)

= det
(
I+ (t 1 − t 0)∇v1

p

)
det

(
F0

p

)
V 0

p (4.67)

= det
(
I+ (t 1 − t 0)∇v1

p

)
det(I)V 0

p (4.68)

= det
(
I+ (t 1 − t 0)∇v1

p

)
V 0

p (4.69)

= det
(
∇ϕ0→1

h

(
xs

p

))
V 0

p , (4.70)

where the last equality is based on Equation (4.64). Thus, the statement from
Equation (4.65) holds for the base case. Assuming that the desired identity also
holds for time step s ∈N, the following expression is obtained:

det
(
I+ (

t s − t s−1)∇vs
p

)
det

(
Fs−1

p

)
V 0

p = det
(
∇ϕs−1→s

h

(
xs−1

p

))
V s−1

p . (4.71)

The substitution of Equation (4.64) leads to the following expression:

det
(
I+ (

t s − t s−1)∇vs
p

)
det

(
Fs−1

p

)
V 0

p = det
(
I+ (

t s − t s−1)∇vs
p

)
V s−1

p . (4.72)
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It should be noted that det
(
I+ (

t s − t s−1
)∇vs

p

)
= 0 only if

∂vk

∂xl
=

{
− 1

t s−t s−1 for k = l ,

0 otherwise.
(4.73)

For det
(
I+ (

t s − t s−1
)∇vs

p

)
6= 0, Equation (4.72) reduces to

det
(
Fs−1

p

)
V 0

p =V s−1
p . (4.74)

Assuming that det
(
Fs−1

p

)
6= 0 and V s−1

p 6= 0, for time step s +1, the left-hand side of

Equation (4.65) can be written as

det
((

I+ (
t s+1 − t s)∇vs+1

p

)
Fs

p

)
V 0

p (4.75)

= det
(
I+ (

t s+1 − t s)∇vs+1
p

)
det

(
Fs

p

)
V 0

p (4.76)

= det
(
I+ (

t s+1 − t s)∇vs+1
p

)
det

(
Fs

p

) V s−1
p

det
(
Fs−1

p
) (4.77)

= det
(
I+ (

t s+1 − t s)∇vs+1
p

) V s
p

V s−1
p

V s−1
p (4.78)

= det
(
I+ (

t s+1 − t s)∇vs+1
p

)
V s

p (4.79)

= det
(
∇ϕs→s+1

h

(
xs

p

))
V s

p . (4.80)

In the above expression, the second equality is obtained from Equation (4.74), the
third equality follows from the volume update in the MPM algorithm (i.e., Equa-
tion 2.42), and the last equality is derived using Equation (4.64). Therefore, we
conclude that by induction the MPM and OTM schemes update the material-point
volumes in the same manner.

• The remaining steps are identical for MPM and OTM.

In this section, we have shown that under certain conditions the MPM and OTM algo-
rithms can be related to each other. Namely, assuming a constant time step and the
validity of Equations (4.53), (4.58), and (4.60) for the MPM scheme, the only difference
between the algorithms emerges from the update of the basis functions and their gradi-
ents.

However, this difference is fundamental. Since the nodes are fixed to their initial po-
sitions in the MPM basis-function update (step 3 of the USL algorithm), the method is
considered to be a combination of Lagrangian and Eulerian approaches. At the same
time, the OTM method is an updated Lagrangian particle method. For the implementa-
tion of the methods, this implies that the OTM method only discretizes the initial mate-
rial domain, while MPM discretizes the complete domain, where the material is allowed
to move, as well as the initial material domain. Consequently, the OTM method does not
include inactive elements.
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4.5. UNIFIED APPROACH

The unified approach combines the OTM scheme and B-spline MPM (BSMPM) [28, 31].
Similarly to BSMPM, the proposed approach uses B-spline basis functions as described
in Chapter 3. However, it computes them based not only on the updated material-point
positions, but also on the advected degrees-of-freedom set. B-spline basis functions
of any order possess the partition of unity property, but only first-order B-spline basis
functions satisfy the linear completeness property. Therefore, according to the defini-
tion in Section 4.2, higher-order basis functions are not consistent. Since Algorithm 2
is designed for consistent basis functions, the unified algorithm is mainly based on Al-
gorithm 1 to ensure the compatibility of the unified algorithm with the higher-order
B-spline basis functions. Furthermore, the proposed approach employs the consistent
mass matrix. The unified algorithm is presented in Algorithm 4.

Both MPM and OTM provide motivation for the proposed unified method. On the
one hand, the addition of the advected nodal points to update the basis functions is
supposed to stabilize the computation when BSMPM is combined with a consistent
mass matrix. Consistent mass matrices frequently cause stability issues in MPM [27] and
BSMPM inherits these issues. For this reason, MPM and BSMPM are generally used with
a lumped mass matrix. While mass lumping has little influence on the solution quality of
lower order methods, its O (h2) approximation of the consistent mass matrix [28] can sig-
nificantly influence the spatial convergence of higher-order methods such as BSMPM.
Moreover, previous studies demonstrate that methods similar to the unified approach
can be used successfully for complex simulations. In fact, a method closely related to the
unified approach, the so-called moving-mesh MPM, has been applied to model the bio-
logical mechanics of cells [163] and the texture evolution in polychrystalline nickel [164].

On the other hand, within the OTM framework, the use of B-spline basis functions
is expected to significantly reduce the computational costs. In contrast to maxent ba-
sis functions, B-spline basis functions do not require the adoption of iterative methods
and have a purely analytical definition. It has been pointed out by Cyron et al. [147]
that maxent and higher-order B-spline basis functions have many common properties.
For example, they are both smooth, non-negative, have compact support, and satisfy
the partition of unity property. Therefore, the use of B-spline basis functions provides
a viable alternative to the massively parallel implementation of OTM (pOTM) [165]. In
addition, B-spline basis functions do not require the use of search algorithms, frequently
added to the standard OTM scheme for stabilization [146, 151]. Finally, the adoption of
higher-order B-spline basis functions can lead to higher-order spatial convergence.

We remark that in contrast to the OTM scheme, the proposed unified approach can
not be viewed as a meshless method. However, the study from Chater 3 shows the poten-
tial of BSMPM on arbitrary grids. The extension of the BSMPM to arbitrary grids in com-
bination with an efficient remeshing technique (e.g., the remeshing strategy for large
deformations proposed by Erhart et al. [166]) might bring the unified approach closer to
the meshless algorithms. In this chapter, the examples are restricted to relatively sim-
ple problems to study the basic properties of the considered methods. Thus, further
research is required to evaluate the effect of mesh distortion on the proposed unified
approach.
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4.5.1. ALGORITHM
————————————————————————————————————–
————————————————————————————————————–
Input: Coordinates at degrees of freedom x0

i , material-point coordinates x0
p ,

velocities v0
p , volumes V 0

p , densities ρ0
p , masses mp , deformation gradients

F0
p , body forces bp

1 Set s = 0
2 while s < N do

3 Compute basis functions φs
i

(
xs

p

)
and gradients ∇φs

i

(
xs

p

)
from advected nodal

set
{

xs
i

}
and advected material-point set

{
xs

p

}
4 Compute mass matrix Ms , linear momentum vector q̄s

k , and force vector f̄s
k :

M s
i j =

M∑
p=1

φs
i

(
xs

p

)
mpφ

s
j

(
xs

p

)
(4.81)

q s
k,i =

M∑
p=1

φs
i

(
xs

p

)
mp v s

k,p (4.82)

f s
k,i =

M∑
p=1

(
3∑

l=1

∂φs
i

∂xl

(
xs

p

)
σs

lk,p +φs
i

(
xs

p

)
ρs

p bk,p

)
V s

p (4.83)

5 Compute accelerations at degrees of freedom:

ās
k = (

Ms)−1 f̄s
k (4.84)

6 Compute incremental displacement and updated coordinates for degrees of
freedom:

∆x̄s+1
k = (

t s+1 − t s)(Ms)−1
(

q̄s
k +

t s+1 − t s−1

2
f̄s

k

)
(4.85)

x̄s+1
k = x̄s

k +∆x̄s+1
k (4.86)

7 Update material-point coordinates:

xs+1
p = xs

p +
N∑
i=1

φs
i

(
xs

p

)
∆xs+1

i (4.87)
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8 Update material-point velocities:

vs+1
p = vs

p + (
t s+1 − t s) N∑

i=1
φs

i

(
xs

p

)
as

i (4.88)

9 Update material-point deformation gradients:

Fs+1
p =

(
I+ (

t s+1 − t s)∇vs+1
p

)
Fs

p (4.89)

10 Update material-point volumes:

V s+1
p = det

(
Fs+1

p

)
V s

p (4.90)

11 Update material-point densities:

ρs+1
p = mp

V s+1
p

(4.91)

12 Compute material-point stresses σs+1
p from Fs+1

p using the constitutive
equation (e.g., Equation 2.13 or 2.14)

13 Set s = s +1
end

Algorithm 4: Unified approach.

4.6. NUMERICAL RESULTS

In this section, three benchmarks are considered to illustrate the performance of the
discussed methods. The one-dimensional benchmarks describe the vibration of a bar,
but have fundamentally different motion triggers and boundary conditions. In the first
benchmark, where both ends of the bar are fixed, the domain contains only filled ele-
ments allowing for a straightforward implementation and analysis. The second bench-
mark, where a traction force is acting at one of the boundaries, contains multiple empty
cells throughout the simulation, thereby serving as a representative example for the sta-
bility analysis. The last benchmark is two-dimensional, it further extends the numerical
analysis of the considered algorithms.

The results are provided for the USL version of the MPM scheme (Algorithm 1) and
OTM algorithms, as well as the proposed unified approach. For MPM, piecewise-linear,
second-order B-spline, and maxent basis functions are employed. The OTM algorithm is
used only with consistent basis functions (i.e., piecewise-linear and maxent basis func-
tions). For the one-dimensional benchmarks, the factor dmax is set to 2.0 to compute the
maxent basis functions, while for the two-dimensional problem, its value depends on
the considered algorithm.

4.6.1. BAR WITH FIXED ENDS

This benchmark has been presented in Chapter 3, which also provides its analytical so-
lution in terms of displacement, velocity, and stress. Here, the length of the bar is set to
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1 m, Young’s modulus is set to 4 kPa, while the initial density and amplitude of the ve-
locity v0 are equal to 1 kg/m3 and 0.6 m/s, respectively. The total simulation time is set
to 0.001 s, while the time-step size is equal to 10−5 s. This relatively small time step is re-
quired to minimize the contribution of the temporal error to the total one. Moreover, the
number of nodes varies between 8 and 512, while the number of material points per ele-
ment remains equal to 12. The analytical solution in terms of displacement, velocity, and
stress can be found in Chapter 3. For the convergence analysis, the Root-Mean-Square
(RMS) error in the displacement is computed. RMS error is defined as follows:√√√√ 1

M

M∑
p=1

(u(x0
p ,T )−up ), (4.92)

where u(x0
p ,T ) and up are, respectively, the analytical and numerical solutions at posi-

tion x0
p at time T .
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Figure 4.6: Comparison of the results obtained with MPM and the OTM method with piecewise-linear basis
functions (left), and the unified approach (right) to the analytical solution. For MPM and the OTM method,
the number of nodes is equal to 512, while for the unified approach only 32 nodes were used.

The left part of Figure 4.6 depicts the final stress profiles obtained using MPM and the
OTM method with piecewise-linear basis functions. Grid crossing causes severe oscilla-
tions in the MPM stress profile. The calculation of the basis functions with the advected
nodal coordinates in the OTM method prevents these inaccuracies, significantly improv-
ing the results. Although the OTM-P1 method avoids grid crossing errors, it provides only
a piecewise-constant approximation of the stress profile due to the gradients of the P1
basis functions. The right part of Figure 4.6 illustrates the performance of the unified
approach. The use of second-order B-spline basis functions prevents the grid crossing
errors and improves the accuracy of the solution. The results obtained with maxent basis
functions are similar to those computed with the unified approach. To avoid repetition,
these results are not shown.

Table 4.1 provides the results in terms of computational time obtained with the in-
house implementation of the considered methods in Python. We remark that the maxent
computations were performed without a search algorithm. The table shows the simula-
tion time of all considered methods for 32 and 512 nodes. Based on this information, it
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can be concluded that the simulations with the B-spline basis functions are considerably
cheaper compared to those with the maxent basis functions. More precisely, replacing
maxent by B-spline basis functions reduces the computational time by at least a factor
of 6 for MPM and by at least a factor of 8 for the OTM algorithm.

Table 4.1: Computational time required for the considered methods normalized with respect to the MPM-P1
computational time with the corresponding number of nodes.

Method Time [s]
32 nodes 512 nodes

OTM - P1 1.12 1.04
MPM - maxent 16.22 6.96
OTM - maxent 26.04 9.07

BSMPM 1.00 1.11
Unified approach 1.23 1.15

Figure 4.7: Convergence behavior of the considered methods.

In addition, Figure 4.7 illustrates the spatial convergence behavior of the considered
methods at the end of the simulation. When piecewise-linear basis functions are used,
both MPM and the OTM method demonstrate second-order convergence for relatively
coarse grids. However, for fine meshes, the methods behave differently. In fact, MPM
suffers from grid-crossing errors that result in a loss of the convergence. The OTM-P1
method preserves the second-order convergence until the final refinement, where only
first-order convergence is achieved. A sudden decrease of the convergence rate is also
observed in the computations when maxent and B-spline basis functions are employed
within both MPM and OTM schemes. For this reason, it may be assumed that the loss
of the convergence order is unrelated to the choice of the basis functions. Inaccurate
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numerical integration, time-integration errors, round-off errors, or a combination of the
above can contribute to the reduction of the convergence rate [25, 28, 84]. Furthermore,
Figure 4.7 shows that maxent basis functions lead to significantly lower errors than the
piecewise-linear basis functions for both MPM and OTM schemes. With maxent basis
functions, the convergence of MPM and the OTM method varies between linear and
quadratic. It should be noted that the accuracy of MPM and the OTM method with
maxent basis functions can be further improved by adapting more advanced implemen-
tations [145, 167–169]. The use of B-spline basis functions leads to similar results for
BSMPM and the unified approach. These methods have third-order convergence untill
the limiting value is reached.

4.6.2. BAR WITH DYNAMIC TRACTION BOUNDARY CONDITIONS
This benchmark describes the motion of a neo-Hookean bar with one free end. The bar
is fixed at x0 = 0 and subjected to a traction force at the free end x0 = l . The forcing
function is equal to τ

(
x0, t

)= δ(
x0 − l

)
σ

(
x0, t

)
. Defining ω=π/l , the stress is given by

σ
(
x0, t

)=


0 for t ∈ [
0, l −x0

)
,

sin
(
ω

(
t +x0

))
for t ∈ [

l −x0, l +x0
)

,

sin
(
ω

(
t +x0

))+ sin(ω(t −x0)) for t ∈ [
l +x0,3l −x0

)
,

sin
(
ω

(
t −x0

))
for t ∈ [

3l −x0,3l +x0
)

,

0 for t ∈ [
3l +x0,4l

]
.

(4.93)

The initial length of the bar is set to 1 m, the density is equal to 100 kg/m3, and Young’s
modulus is equal to 100 Pa. The length of the computational domain is set to 1.25 m. A
more detailed description that includes an analytical solution for displacement is pro-
vided by Steffen et al. [31]. To illustrate the stress profile obtained with different meth-
ods, the material domain is discretized by 68 nodes, which results in 85 nodes for the
complete domain. The material-domain discretization is sufficient for the unified and
OTM methods due to their updated Lagrangian nature, whereas MPM requires the dis-
cretization of the complete domain. Each active element initially contains 4 particles.
The computational time is set to 0.4 s and the time-step size is equal to 10−4 s.

Figure 4.8 depicts the obtained results. It shows that maxent and B-spline basis func-
tions eliminate the grid crossing error in MPM. However, MPM-maxent and BSMPM do
not follow the analytical solution at the right edge of the bar. Within BSMPM, these in-
accuracies can be significantly reduced by increasing the initial number of particles per
elements. This suggests that the errors are caused by insufficient accuracy of the numer-
ical integration in MPM. Thus, advanced numerical integration techniques (e.g., Taylor
least squares, which is described in Chapter 5) may improve the BSMPM solution at the
boundary. The inaccuracies within MPM-maxent have a different origin. They are most
probably caused by the incomplete set of maxent basis functions, which arise from the
presence of inactive elements throughout an MPM simulation. Figure 4.8 also shows
that the OTM-P1, OTM-maxent, and unified methods provide significantly more accu-
rate solutions than their MPM equivalents.

Similarly to the benchmark discussed in Section 4.6.1, the use of B-spline basis func-
tions instead of maxent basis functions considerably decreases the computational time
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Figure 4.8: Comparison of the considered methods to the analytical solution. The material domain is dis-
cretized by 68 nodes.

for both MPM and OTM methods. In fact, the unified approach and BSMPM compu-
tations are approximately 10 times faster than the OTM and MPM computations with
maxent basis functions (without a search algorithm) with the settings used for Figure 4.8.

Furthermore, the unified approach and BSMPM have the lowest RMS error and high-
est convergence rates compared to the other methods. This is illustrated in Figure 4.9. To
minimize quadrature and time integration errors, this figure is obtained placing 12 par-
ticles per cell at the beginning of the simulation and reducing the computational time
to 0.1 s. In general, the obtained convergence orders of the considered algorithms are
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slightly lower than expected. This can be related to the discontinuities in the solution for
the stress field.

The main advantage of the unified method over BSMPM arises from its stability prop-
erties. When a material point enters an empty element, BSMPM inherits stability issues
from MPM. For instance, changing the total number of nodes to 81 results in a termina-
tion after 0.3 s. This issue in MPM is discussed in detail by, for example, Kafaji [37] and
requires the use of the MUSL algorithm with a lumped mass matrix to circumvent the
breakdown.

Figure 4.9: Convergence behavior of the considered methods. The number of nodes, in this case, refers to the
number of nodes used to discretize the material domain.

4.6.3. PLATE UNDERGOING AXIS-ALIGNED DISPLACEMENT
The final benchmark describes a two-dimensional neo-Hookean plate from Chapter 2.
Here, the maximum amplitude of the displacement B is set to 0.005 m, Young’s modulus
E is equal to 107 Pa, and initial mass density ρ0 is set to 1·107 Pa. Furthermore, Poisson’s
ratio is equal to 0.3. The domain is discretized by 33 nodes in each direction and each el-
ement contains initially 16 particles. The computational time is set to 3.5 ·10−3 s and the
time-step size equals 10−4 s. The tensor product of the one-dimensional basis functions
is adopted for discretization.

Figure 4.10 shows the normal stress in x1-direction σ11 along the plate for material
points with x0

2 ≈ 0.07 m. Employing piecewise-linear basis functions within both MPM
and the OTM method leads only to a piecewise-constant approximation of the stress
field. Due to grid-crossing errors, the stress profile obtained using MPM with piecewise-
linear basis functions deviates significantly from the analytical solution. The simulations
performed with the maxent basis functions show considerably more accurate stress ap-
proximations for both methods. To obtain these results with the MPM algorithm the
user-defined factor dmax is set to 3.0, while for the OTM method, dmax = 2.0 is taken. The
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Figure 4.10: Comparison of the considered methods to the analytical solution. The material domain is dis-
cretized by 33 nodes in each direction. The figures were obtained in collaboration with Roel Tielen.
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unified approach and BSMPM lead to an even smoother stress profiles which are in close
agreement with the analytical solution.

4.7. CONCLUSIONS
The first part of this study provides a comparison between the MPM and OTM schemes.
While the methods were derived in fundamentally different manners, the resulting al-
gorithms are closely related. In fact, assuming a constant time step, the validity of the
backward Euler scheme for material-point displacement in MPM, as well as the linear
completeness of the MPM basis functions and their ability to translate nodal velocities
into material-point velocities, the only difference between the algorithms emerges from
the update of the basis functions. However, this difference is fundamental. Since MPM
uses initial nodal positions in the basis-function update, it is viewed as a combination of
Lagrangian and Eulerian approaches. At the same time, the OTM method is a fully up-
dated Lagrangian method. Moreover, MPM is typically used with piecewise-linear basis
functions, whereas the OTM method generally employs maximum-entropy basis func-
tions.

In the second part of the study, a unified approach is proposed. This approach com-
bines BSMPM and OTM methods. Similarly to BSMPM, the proposed approach uses
B-spline basis functions. However, it computes the basis functions based not only on
the updated material-point positions, but also on the advected degrees-of-freedom set.
The obtained numerical results demonstrate that the proposed method preserves the
convergence properties of BSMPM and remains stable when a consistent mass matrix is
adopted. Furthermore, the unified approach does not contain user-defined parameters
and is significantly cheaper and more stable than the standard OTM computation.
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5
CONSERVATIVE TAYLOR

LEAST-SQUARES RECONSTRUCTION

WITH APPLICATION TO

MATERIAL-POINT METHODS

This chapter introduces a novel technique to reconstruct functions from scattered data,
to which we refer as the Taylor least-squares (TLS) function-reconstruction technique.
The main feature of the TLS technique is that it preserves the a priori known integral
values of the reconstructed functions. In this chapter, the TLS reconstruction is pre-
sented for one-dimensional problems and applied to the material-point method (MPM)
and related methods in order to reduce the spatial errors within them. The chapter is
structured as follows. Section 5.1 gives a short introduction to the family of least-squares
methods. Section 5.2 describes the building blocks of the TLS approximation and pro-
vides an example of its application. Section 5.3 motivates the use of the TLS technique
within MPM and related methods, outlines how it can be applied within an MPM algo-
rithm, and gives a mathematical analysis of its conservation properties. Section 5.4 dis-
cusses the numerical results obtained for vibrating bar and column compaction prob-
lems. Finally, Section 5.5 provides the conclusions.

Parts of this chapter have been published in the International Journal for Numerical Methods in Engineering
117(3) (2019) [130] and as a contribution to the conference proceedings of ECCM 6/ECFD 7 [170].
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5.1. INTRODUCTION
As was pointed out in Chapter 3, function reconstruction from scattered data can be
achieved by interpolating or approximating the known values. While Chapter 3 focuses
on an interpolation technique, this chapter addresses function reconstruction by means
of approximation. One of the most widespread approaches to find the best polyno-
mial approximation to scattered data is the least-squares method [171]. Assuming a
linear relation for the provided data, the least-squares method finds the line that mini-
mizes the sum of squared distances (deviations) from itself to each data point (see Sec-
tion 5.2.1 for a detailed mathematical description). A generalization of the least-squares
approach can be achieved by assigning unequal weights to the deviations and is known
as the weighted least-squares (WLS) method. For smoothing and interpolating data,
Lancaster and Salkauskas [172] introduced the so-called moving least-squares (MLS)
method, which starts with a WLS formulation for an arbitrary fixed point inside the con-
sidered domain, and then moves this point over the domain while computing and eval-
uating a WLS fit at each point individually. A detailed description of the MLS and WLS
methods is provided by, for example, Nealen [127]. The least-squares methods have been
applied to problems in a variety of fields including statistical regression (e.g., [173, 174]),
computer-aided geometric design and computer graphics (e.g., [175, 176]), image pro-
cessing (e.g., [177]), computational aerodynamics (e.g., [178]), and meshfree methods
(e.g., [26, 179, 180]). It has also been shown that the approximations obtained with the
least-squares techniques are highly accurate (e.g., [179, 181]). However, little informa-
tion is available on the approximation methods that allow for the preservation of an a
priory known integral value of the function.

In this chapter, we propose a novel reconstruction technique, called Taylor least squares
(TLS), which reconstructs functions from scattered data, while preserving their integral
values. TLS combines the least-squares method with the Taylor basis functions [182] to
locally approximate quantities of interest. The technique is applied within MPM and re-
lated methods to reduce spatial errors arising from the direct mapping of material-point
data to the background grid.

5.2. TAYLOR LEAST-SQUARES FUNCTION RECONSTRUCTION

5.2.1. LEAST-SQUARES APPROXIMATION

Given a set of M distinct one-dimensional data points,
{

xp
}M

p=1, and the data values of

these points,
{

f
(
xp

)}M

p=1, we assume that f ∈ F , where F is a normed function space

on R, and P = span
{
ψi

}nb
i=1 ⊂ F is a set of nb basis functions. The least-squares [171]

approximation at a point x ∈ R is the value w∗ ∈ P that minimizes, among all w ∈ P , the
least-squares error:

E =
M∑

p=1

(
w

(
xp

)− f
(
xp

))2 .

Using the basis-function vector, ψ(x) = [
ψ1(x), ψ2(x), . . . ,ψnb (x)

]T, and the vector of

unknown coefficients, a = [
a1, a2, . . . , anb

]T, the least-squares approximation can be
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Figure 5.1: Example of least-squares approximation with a standard polynomial basis.

written as

w∗(x) =
nb∑

i=1
aiψi (x) =ψT(x)a.

Note thatψT is a row vector, while a is a column vector. An example of the least-squares
approximation with a standard polynomial basis is provided in Figure 5.1. In order to
compute the coefficient vector, ∂E

∂ai
is set to zero for i = 1,2, . . . ,nb , leading to the normal

equations:
M∑

p=1
ψ

(
xp

)(
ψT (

xp
)

a− f
(
xp

))= 0.

From that, we obtain the following expression for the unknown coefficients:

a =
(

M∑
p=1

ψ
(
xp

)
ψT (

xp
))−1 M∑

p=1
ψ

(
xp

)
f
(
xp

)
. (5.1)

Defining the matrices D and B and the function vector U as

D =
M∑

p=1
ψ

(
xp

)
ψT (

xp
)

, (5.2)

B = [
ψ(x1), ψ(x2), . . . , ψ(xM )

]
, (5.3)

U = [
f (x1), f (x2), . . . , f (xM )

]T , (5.4)

the least-squares solution is given by

w∗(x) =ψT(x)D−1BU . (5.5)

It should be noted that the basis for P is not yet specified.
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5.2.2. TAYLOR BASIS FUNCTIONS
A viable choice for the basis for P that leads to an overall conservative reconstruction
scheme is the local Taylor basis functions [182]. To define these basis functions we in-
troduce the concept of the volume average of a function f over the cell e:

f = 1

|Ωe |
∫
Ωe

f dΩe , (5.6)

where |Ωe | is the volume of cell e. In one dimension, Ωe = [xmin, xmax] with xmax > xmin,
and |Ωe | = xmax −xmin.

The first three Taylor basis functions are then given by

ψ1 = 1,

ψ2 = x −xc

∆x
,

ψ3 = (x −xc )2

2∆x2 − (x −xc )2

2∆x2 , etc.

Here, xc = xmax+xmin
2 is the centroid xc of the cell e, and ∆x = xmax−xmin

2 (see Figure 5.2).
The first three Taylor basis functions are illustrated in Figure 5.3. An important aspect

Ωe
∆x

xcxmin xmax

Figure 5.2: Illustration of xc and ∆x for one dimensional elements.

of the Taylor basis that will ensure the conservation property of the reconstruction tech-
nique is [182]: ∫

Ωe

ψi dΩe =
{
|Ωe | if i = 1,

0 if i 6= 1.
(5.7)

Figure 5.3: First three Taylor basis functions.
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5.2.3. EXAMPLES OF TAYLOR LEAST-SQUARES RECONSTRUCTION
The TLS approach uses local Taylor basis functions for the least-squares approximation
of a function f :

f (x) ≈ f̂ (x) =
nb∑

i=1
aiψi (x).

Suppose that
∫
Ωe

f (x) dΩe = c with c ∈ R should be conserved by the reconstruction.
Then, using Equation (5.7), we obtain:∫

Ωe

f̂ (x) dΩe =
∫
Ωe

nb∑
i=1

aiψi (x) dΩe =
nb∑

i=1
ai

∫
Ωe

ψi (x) dΩe = a1|Ωe |. (5.8)

Therefore, the reconstruction procedure preserves the integral quantity if we set

a1 := c

|Ωe |
. (5.9)

It should be noted that Equation (5.9) can be enforced explicitly.
We illustrate this property by reconstructing f (x) = sin(x)+2 on [0,4π]. In this case,

the integral is equal to 8π. The domain is divided into four elements of size π and con-
tains 11 data points. Two data points are located at the boundaries of the first element,
(i.e., 0 and π). In [2π,3π], the data points are distributed uniformly in the interior of the
domain. The remaining data points have random positions creating different types of
data distribution within an element. It should be noted that the data point at the right
boundary of the first element is used for both the first and second elements.

0 2 3 4
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1

1.5

2

2.5

3

Figure 5.4: Cubic-spline (CS) and TLS reconstructions of f (x) = sin(x)+2 on [0,4π] for different types of data
point distribution within an element.

The TLS approximation is obtained using three Taylor basis functions. We compare
its performance with that of the cubic-spline reconstruction in terms of the Root-Mean-
Square (RMS) error for function f and the relative error for the integral of f . The RMS
error is computed using 100 Gauss points per element, while for the numerical inte-
gration, the reconstructed function is evaluated only at two Gauss points within each
element. Figure 5.4 visualizes the data point distribution, and the cubic-spline and TLS
reconstructions of f for 10 Gauss points per element, whereas Table 5.1 provides the
corresponding errors.
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Table 5.1: Errors of the TLS and cubic-spline reconstruction for f (x) = sin(x)+2 and its integral on [0,4π] with
four elements and eleven data points.

Error Cubic-splines TLS
RMS error for function 6.0867 ·10−2 3.9967 ·10−2

Relative error for integral 4.2759 ·10−2 2.7903 ·10−15

Table 5.1 shows that for the considered example, the TLS technique outperforms the
cubic-spline reconstruction when the conservation and accuracy properties are consid-
ered. In fact, the TLS approach preserves the integral up to machine precision. However,
Figure 5.4 shows that the performance of the TLS technique depends on the distribution
of the data points within each element. More precisely, the TLS approximation within
the interval [2π,3π], where the data points are distributed uniformly, is more accurate
than, for instance, in the interval [0,1π].

In some rare cases, data distribution can locally decrease the quality of the TLS ap-
proximation, but has little influence on the cubic-spline interpolation. An example is
provided in Figure 5.5, where [π,2π] contains only two data points located atπ and 5π/3.
This particular data distribution leads to a linear dependence between the columns of
matrix D from Equation (5.5) and, hence, distorts the TLS approximation within this in-
terval. It is possible to use the condition number of D to detect the data distributions that
decrease the accuracy of the TLS technique. In addition, the quality of the TLS technique
in such situations can be improved easily.

0 2 3 4
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0

1

2

3

Figure 5.5: Comparison of the cubic-spline and TLS reconstructions of f (x) = sin(x)+2 on [0,4π] for a chal-
lenging local data distribution.

First of all, the singularity of D can be prevented by reducing the number of basis
functions used for the reconstruction on [π,2π]. Although this strategy will preserve the
conservative properties of the TLS technique and can be implemented in a straightfor-
ward manner, it will lower the accuracy of the method. Therefore, we suggest an alter-
native approache that uses the information from the neighboring intervals to maintain
the high quality of the reconstruction scheme. On the one hand, it is possible to evaluate
the TLS approximation of f associated with [2π,3π] at 2π and add the obtained value to
the set of data points upon which the TLS approximation is based on [π,2π]. However,
this so-called virtual data point at 2π should be excluded from the computation of a1 in
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Equation (5.9). Thus, virtual points do not influence the conservative properties of the
technique. Figure 5.6 illustrates the improved approximation in this case. On the other
hand, the data points from the neighboring intervals can also be used directly. For the
considered example, the closest neighboring point to interval [π,2π] is located within
interval [2π,3π]. This approach is slightly less accurate than the one with virtual points,
but the approximation remains conservative as long as the computation of a1 preserves
the values within each element. The TLS reconstruction that employs neighboring data
points is depicted in Figure 5.7.
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Figure 5.6: Comparison of the cubic-spline and TLS reconstructions of f (x) = sin(x)+2 on [0,4π] with a virtual
data point at 2π.
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Figure 5.7: Comparison of the cubic-spline and TLS reconstructions of f (x) = si n(x)+2 on [0,4π] with a neig-
bouring data point.

5.3. APPLICATION OF TAYLOR LEAST-SQUARES TECHNIQUE TO

THE MATERIAL-POINT METHODS
Although modified mapping techniques generally reduce the spatial errors that are caused
by the direct mapping of material-point data to the background grid, the standard recon-
struction techniques, such as spline interpolation presented in Chapter 3, might lead to
the loss of physical properties of the material-point methods. MPM, as well as the dual
domain material-point method (DDMPM), and B-spline MPM (BSMPM) preserve the
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total massM and linear momentumQ of the system. This implies that the methods con-
serve the mass and momentum while mapping the information from material-points to
the background grid. To show this, the row-lumped mass from Equation 2.22 is written
in the following way:

M L s
i j =

{
mi with mi =∑M

p=1φ
0
i

(
xs

p

)
mp , for i = j ,

0, for i 6= j .
(5.10)

In the one-dimensional case, Equation (5.10), Equation (2.49) from Algorithm 2 and the
partition of unity property of the basis functions yield:

M=
N∑
i=1

mi =
N∑
i=1

M∑
p=1

mpφi
(
xp

)= M∑
p=1

mp

N∑
i=1

φi
(
xp

)= M∑
p=1

mp ,

Q=
N∑
i=1

mi vi =
N∑
i=1

mi
1

mi

M∑
p=1

mpφi
(
xp

)
vp =

M∑
p=1

mp vp

N∑
i=1

φi
(
xp

)= M∑
p=1

mp vp .

The time index is dropped to simplify the notation.
Integration of the TLS reconstruction within MPM allows for the preservation of these

conservative properties of MPM, while improving the accuracy of the method. The idea
behind the use of the TLS reconstruction within MPM is similar to that described in Sec-
tion 3.2.1:

• scattered material-point information is used to reconstruct certain quantities of
interest over the material domain,

• the obtained approximation is evaluated at the integration points (such as Gauss
points),

• the resulting values are projected to the background grid by means of exact nu-
merical integration.

In contrast to the spline interpolation, the TLS technique reconstructs functions locally,
within each element. This implies that the reconstructed function may contain discon-
tinuities at the element boundaries (see Figure 5.8). Therefore, numerical integration is
performed separately within each active element as in any element-based discretization.

While the TLS reconstruction can be used autonomously within the MPM algorithm,
it can also be combined with techniques like the convected particle-domain interpola-
tion (CPDI) method or BSMPM in order to further reduce the spatial errors. To avoid
stability issues, TLS is applied within the MUSL algorithm, presented in Algorithm 2,
with a lumped mass matrix. Since previous studies have indicated that DDMPM and
BSMPM are viable alternatives not only for MPM, but also for the generalized interpola-
tion material-point (GIMP) method and the CPDI method [21, 30, 99], we have applied
the TLS reconstruction technique within MPM, DDMPM, and BSMPM. The methods
are tested on two one-dimensional benchmarks describing the deformation of a vibrat-
ing bar and column compaction under slowly increasing body force, respectively. The
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grid integration points

direct TLS mapping

| | |

Figure 5.8: Schematic representation of the TLS mapping.

conservation property of the TLS reconstruction technique is verified by computing the
total mass and momentum before and after projecting the particle information to the
background grid. The accuracy of the material-point methods with TLS approximation
is investigated either qualitatively or based on the spatial errors and convergence rates.
In addition, the obtained results are compared to those computed with the cubic-spline
reconstruction technique.

5.3.1. MAPPING OF PARTICLE DATA
When the TLS reconstruction is considered as part of MPM or a related method, particles
serve as data points. To conserve the integral of a certain quantity within each element,
the coefficient of the first basis function is specified according to Equation (5.9). The re-
maining coefficients are calculated from Equation (5.1) excludingψ1, thereby leaving the
integral value unchanged. When the conservation of the reconstructed quantity is not
required, a standard least-square approach is followed. This implies that all coefficients
are treated as unknowns and their values are obtained from Equation (5.1).

A TLS reconstruction is applied to replace the MPM-integration for the computation
of internal forces:

fint,i =
M∑

p=1

∂φ0
i

∂x

(
xp

)
σpVp , (5.11)

which is part of Equation (2.45), as well as the nodal velocity from Equation (2.49) by an
exact method, such as an element-wise Gauss quadrature. We obtain the approxima-
tions with a quadratic TLS reconstruction. This implies that only the first three Taylor
basis functions are used (i.e, nb = 3). In this case, a two-point Gauss rule within each el-
ement leads to an exact integration. The nodal internal forces are computed as follows:

1. Apply a quadratic TLS approach to reconstruct the stress field from the particle
data within each active element without specifying the coefficient of the first Tay-
lor basis function:

σ̂e =
nb∑

i=1
siψi , (5.12)
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where si is the coefficient corresponding to Taylor basis function ψi . Outside of
element e, σ̂e is zero. The global approximation of the stress function, σ̂, is then
equal to

σ̂=
Ne∑
e=1

σ̂e , (5.13)

where Ne is the total number of elements.

2. Integrate the stress approximation using a two-point Gauss quadrature:

fint,i ≈
∫
Ω

∂φ0
i

∂x
(x)σ̂(x, t ) dΩ=

Ng∑
g=1

∂φ0
i

∂x

(
xg

)
σ̂

(
xg

)
ωg ,

where Ng is the total number of Gauss points, xg is the global position of a Gauss
point, and ωg is its weight.

The material-point velocities are mapped to the nodes in the following manner:

1. Apply a quadratic TLS approach to reconstruct the density and momentum fields
from the particle data within each active element, while preserving the mass and
momentum of the element:

ρ̂e =
nb∑

i=1
riψi with r1 = 1

|Ωe |
∑

{p|xp∈Ωe }
mp

(ρ̂v)e =
nb∑

i=1
γiψi with γ1 = 1

|Ωe |
∑

{p|xp∈Ωe }
mp vp . (5.14)

where ri and γi are the coefficients corresponding to Taylor basis function i . Out-
side of element e, ρ̂e and (ρ̂v)e are equal to zero. The global approximations are
then equal to

ρ̂ =
Ne∑
e=1

ρ̂e and (ρ̂v) =
Ne∑
e=1

(ρ̂v)e . (5.15)

2. Integrate the approximations using a two-point Gauss quadrature to obtain the
linear momentum and the consistent mass matrix:

qi =
Ng∑
g=1

φ0
i

(
xg

)
(ρ̂v)

(
xg

)
ωg , (5.16)

Mi j =
Ng∑
g=1

φ0
i

(
xg

)
ρ̂

(
xg

)
φ0

j

(
xg

)
ωg . (5.17)

It should be noted that the consistent mass matrix may be replaced by a lumped
mass matrix without loss of the conservation property of the algorithm.

3. Compute the velocity vector:
v = M−1q. (5.18)
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From Section 5.2.3, it follows that the optimal performance of the TLS technique re-
quires at least three particles in each element at the beginning of the simulation. Since
this particle distribution is not preserved under large deformations, virtual data points
or material points from neighboring elements may be used to improve the accuracy of
the approximation within elements that contain only one or two material points.

5.3.2. CONSERVATION OF MASS AND MOMENTUM
As mentioned in Section 5.3.1, the TLS technique reconstructs the density and linear
momentum fields inside each element in the following way:

ρe ≈ρ̂e =
nb∑

i=1
riψi with r1 = 1

|Ωe |
∑

{p|xp∈Ωe }
mp ,

(ρv)e ≈(ρ̂v)e =
nb∑

i=1
γiψi with γ1 = 1

|Ωe |
∑

{p|xp∈Ωe }
mp vp .

According to Equations (5.8) and (5.9), this preserves the massMe and momentumQe of
element e. As a result, the total mass and momentum of the system are conserved after
the TLS reconstruction:

M=
Ne∑
e=1
Me =

Ne∑
e=1

∑
{p|xp∈Ωe }

mp =
Np∑
p=1

mp , (5.19)

Q=
Ne∑
e=1
Qe =

Ne∑
e=1

∑
{p|xp∈Ωe }

mp vp =
Np∑
p=1

mp vp .

The mass- and momentum-conservation properties of the mapping obtained using TLS
reconstruction and Gauss quadrature can be shown as well.

Since the total mass is equal to the sum of the entries in the mass matrix from Equa-
tion (5.17), it can be written as

M=
N∑
i=1

N∑
j=1

Mi j =
N∑
i=1

N∑
j=1

Ng∑
g=1

φi
(
xg

)
ρ̂

(
xg

)
φ j

(
xg

)
ωg

=
Ng∑
g=1

ρ̂
(
xg

)
ωg

N∑
i=1

φi
(
xg

) N∑
j=1

φ j
(
xg

)= Ng∑
g=1

ρ̂
(
xg

)
ωg . (5.20)

The last equality is derived using the partition of unity property of piecewise-linear and

B-spline basis functions. In the remaining part of the proof, we assume that nb ≤ 2Ng

Ne

and that there are
Ng

Ne
integration points per element (or knot span), so that the Gauss

quadrature is exact. Therefore, the following holds:

M=
Ng∑
g=1

ρ̂
(
xg

)
ωg =

Ne∑
e=1

∑
{g |xg ∈Ωe }

ρ̂e
(
xg

)
ωg =

Ne∑
e=1

∫
Ωe

ρ̂e dΩe =
Ne∑
e=1
Me =

M∑
p=1

mp .

The last two steps emerge from the conservation of mass per element and Equation (5.19).
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For the linear momentum, we also assume that nb ≤ 2Ng

Ne
and that there are

Ng

Ne
inte-

gration points per element (or knot span). Following the above steps, the total momen-
tum after the mapping can be written as

Q=
N∑
i=1

qi =
N∑
i=1

Ng∑
g=1

φi
(
xg

)
(ρ̂v)(xg )ωg

=
Ng∑
g=1

(ρ̂v)(xg )ωg

N∑
i=1

φi
(
xg

)= Ng∑
g=1

(ρ̂v)
(
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)
ωg (5.21)

=
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e=1

∑
{g |xg ∈Ωe }

(ρ̂v)e
(
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)
ωg =

Ne∑
e=1

∫
Ωe

(ρ̂v)e dΩe

=
Ne∑
e=1
Qe =

M∑
p=1

mp vp .

Therefore, we have shown that if the Gauss quadrature is performed using a sufficient
number of integration points per element, the mass and momentum balance is satisfied
not only by the TLS function reconstruction, but also by its combination with the Gauss
quadrature.

5.4. NUMERICAL RESULTS
We study the conservation property of the material-point methods by calculating the
maximum relative errors in the total mass and momentum over all time steps before
and after the computation of the velocity at the nodes or DOFs. For MPM, DDMPM, and
BSMPM, the errors in the mass and momentum are bounded by 1·10−15 for the vibrating
bar benchmark, and 1 · 10−13 for the column compaction example. Therefore, the TLS
results are only compared to those obtained with the cubic-spline reconstruction.

5.4.1. BAR WITH FIXED ENDS
This benchmark has been presented in Chapter 3, which also provides its analytical solu-
tion in terms of displacement, velocity, and stress. Table 5.2 provides exemplary param-
eter values for the vibrating bar benchmark under small deformations. For the spatial
convergence analysis, we minimize the contribution of temporal errors by using an arti-
ficially small time-step size and a short simulation time. In fact, the time-step size and
total simulation time of, respectively, 1 ·10−7 s and 1.9 ·10−6 s eliminate the contribution
of the temporal errors and are significantly increased for the grid-crossing study pre-
sented later in this section. Furthermore, the number of elements (knot spans) is varied
from 5 to 40, while the initial PPC is fixed to 12. These settings ensure that grid crossing
does not occur, and the maximal observed strain is equal to 5.3 ·10−7 m.

The results in terms of spatial errors are shown in Figure 5.9. As expected, MPM with
piecewise-linear basis functions demonstrates second-order convergence in both the
displacement and velocity. Since the stress is not discretized directly, but is computed
from the displacement by taking the derivative, its convergence rate is one. The applica-
tion of the TLS reconstruction technique, as well as the cubic-spline interpolation, has
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Table 5.2: Exemplary parameters allowing for small deformations in the vibrating bar problem.

Parameter Symbol Value Unit
Length L 1.00 m
Initial density ρ 2.00 ·103 kg/m3

Young’s modulus E 7.00 ·106 Pa
Max. initial velocity v0 0.28 m/s2

almost no influence on the stress, but decreases the displacement error by a factor of 1.7.
For DDMPM, the application of the reconstruction techniques tends to reduce not only
the error in the displacement, but also in the stress. However, velocity results are similar
to those obtained for MPM.
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Figure 5.9: Spatial convergence of material-point methods for the vibrating bar problem without grid crossing.
The results are shown for the material-point methods without reconstruction techniques, with cubic-spline
reconstruction (CS) and TLS reconstruction: (a) MPM, (b) DDMPM, (c) BSMPM.

The use of quadratic B-splines basis functions leads to a significant decrease in the
error and a higher convergence order for the velocity, but causes problems at the bound-
aries of the domain for both stress and displacement. The absolute error in the stress
over the domain is shown in Figure 5.10. The large values of the error at the boundaries
prevent the reduction of the RMS error and worsen the convergence properties of the
method. However, the use of BSMPM with a function reconstruction technique elimi-
nates the boundary issues. An example is provided in Figure 5.11. Consequently, third-
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Figure 5.10: Absolute error obtained with BSMPM for stress distribution in the vibrating bar problem without
grid crossing.

order convergence is obtained for all considered quantities. It should also be noted that
the integration of the TLS or spline reconstruction in BSMPM produces more accurate
results than the other considered methods.
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Figure 5.11: Absolute error obtained with BSMPM-TLS for stress distribution in the vibrating bar problem
without grid crossing.

Table 5.3 compares the relative error in the mass and momentum made using the
TLS and cubic-spline reconstructions. The results are provided for MPM, DDMPM, and
BSMPM applied to the vibrating bar problem discretized by 40 elements (knot spans)
and 12 PPC. They demonstrate that while the cubic-spline interpolation tends to accu-
rately conserve the mass, it produces errors of order 10−6 for the linear momentum. The
errors produced by the TLS approach consistently remain close to machine precision
and, hence, are orders of magnitude smaller than those generated by the cubic-spline
interpolation.

For large-deformation simulations, the parameters from Table 5.4 are used. The
time-step size and the simulation time are increased to 1 ·10−4 s and 0.1 s, respectively.
The domain is discretized using 20 elements (knot spans) with initially 8 PPC. The max-
imal strain that is reached is 0.056 m. Since the analytical solution is not available when
the vibrating bar experiences large deformations, the numerical results are compared
to the solution obtained with the Updated Lagrangian Finite Element Method (ULFEM)
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Table 5.3: Maximum relative errors in the total mass and momentum over the simulation run with cubic-spline
and TLS reconstructions when grid crossing does not occur. The vibrating bar is discretized using 40 elements
(knot spans) and 12 PPC.

Method Reconstruction technique Error mass Error momentum
MPM Cubic-spline 2.3825 ·10−12 3.7053 ·10−6

MPM TLS 7.5033 ·10−15 2.1007 ·10−16

DDMPM Cubic-spline 3.9211 ·10−13 3.7053 ·10−6

DDMPM TLS 7.3896 ·10−15 2.5208 ·10−16

BSMPM Cubic-spline 7.3896 ·10−15 1.7859 ·10−6

BSMPM TLS 7.5033 ·10−15 1.7623 ·10−16

Table 5.4: Exemplary parameters allowing for large deformations in the vibrating bar problem.

Parameter Symbol Value Unit
Length L 1.00 m
Initial density ρ 2.00 ·103 kg/m3

Young’s modulus E 4.00 ·104 Pa
Max. initial velocity v0 0.80 m/s2

[183].
In the standard MPM simulation, material points cross the element boundaries more

than 100 times leading to significant inaccuracies in the results. Although grid crossing
influences the computation of the displacement and velocity, its most evident conse-
quences are in the stress distribution. DDMPM and BSMPM reduce the grid-crossing
error, but their results still significantly deviate from the solution provided by ULFEM.
This is shown in Figures 5.12 and 5.13.

Table 5.5: Maximum relative errors in the total mass and momentum over the simulation run with cubic-spline
and TLS reconstructions when grid crossing occurs. The vibrating bar is discretized using 20 elements (knot
spans) and 8 PPC.

Method Reconstruction technique Error mass Error momentum
MPM Cubic-spline 8.2084 ·10−5 8.0098 ·10−5

MPM TLS 2.9104 ·10−14 5.8262 ·10−15

DDMPM Cubic-spline 3.5869 ·10−5 3.7566 ·10−5

DDMPM TLS 2.8990 ·10−14 5.7562 ·10−15

BSMPM Cubic-spline 7.3889 ·10−7 1.5794 ·10−5

BSMPM TLS 2.8876 ·10−14 5.7186 ·10−15

Figures 5.12 and 5.13 also illustrate that the application of the TLS approximation
or the cubic-spline reconstruction leads to good agreement of the MPM, DDMPM, and
BSMPM solutions with that of ULFEM. The maximal reduction of the relative error in
the L2-norm made by standard MPM is achieved when the reconstruction techniques
are combined with BSMPM. More precisely, the integration of the spline interpolation
or the TLS reconstruction in BSMPM decreases the MPM error by a factor of 13.5 and
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(a) MPM
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Figure 5.12: Stress distribution and corresponding relative errors in the L2-norm in the vibrating bar problem
with grid crossing. The results are obtained for MPM and DDMPM without reconstruction technique, with
cubic-spline reconstruction (CS) and TLS reconstruction, and are compared to the ULFEM results.

9.9, respectively. On the other hand, the combination of the reconstruction techniques
with DDMPM leads to highly accurate results as well. The spline and TLS reconstruc-
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Figure 5.13: Stress distribution and corresponding relative errors in the L2-norm in the vibrating bar problem
with grid crossing. The results are obtained for BSMPM without reconstruction technique, with cubic-spline
reconstruction (CS) and TLS reconstruction, and are compared to the ULFEM results.

tion reduces the MPM error by a factor of 8.9 and 7.8, respectively. As expected, the
TLS approximation conserves the total mass and linear momentum significantly more
accurately than the spline interpolation, regardless of the material-point method. The
conservative properties of the reconstruction techniques are provided in Table 5.5.

5.4.2. COLUMN COMPACTION
This example considers the response of a column of material to a compressive body
force. The body force increases linearly with time during the simulation. A detailed
description of the problem that includes the analytical solution is provided by Barden-
hagen and Kober [24].

Table 5.6: Exemplary parameters for the column compaction problem.

Parameter Symbol Value Unit
Initial height H 50.0 m
Initial density ρ 1.00 kg/m3

Young’s modulus E 1.00 ·106 Pa
Max. body force b f -200 N

Parameter values used for the simulation are listed in Table 5.6. The time-step size
and total simulation time are 1 · 10−4 s and 0.5 s, respectively. Moreover, the number
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of elements (knot spans) is equal to 50, while the initial PPC is set to 20. When the stan-
dard MPM is used, material points cross element boundaries 180 times, and the maximal
strain is equal to 0.27 m.

Table 5.7: Maximum relative errors in the total mass and momentum over the simulation run with cubic-spline
and TLS reconstructions for column compaction problem.

Method Reconstruction technique Error mass Error momentum
MPM Cubic-spline 3.0803 ·10−6 3.5400 ·10−6

MPM TLS 1.0526 ·10−12 5.6413 ·10−13

DDMPM Cubic-spline 4.7571 ·10−7 2.0403 ·10−6

DDMPM TLS 1.0524 ·10−12 5.6464 ·10−13

BSMPM Cubic-spline 1.5112 ·10−9 1.4039 ·10−7

BSMPM TLS 1.0527 ·10−12 5.6578 ·10−13

Table 5.8: Relative error in the L2-norm for the stress, comparison with the relative error in the L2-norm of
DDMPM-TLS, and computational time normalized with respect to DDMPM-TLS obtained using DDMPM with
subpoints for the column compaction problem.

Number of subpoints Esubpoi nt s Esubpoi nt s /ET LS tsubpoi nt s /tT LS

2 3.4086 ·10−2 4.9518 0.3037
4 2.7207 ·10−2 3.9524 0.4224
8 2.1469 ·10−2 3.1189 0.6793
16 1.5236 ·10−2 2.2134 1.2786
32 8.1219 ·10−3 1.1799 3.3569
64 6.2274 ·10−3 0.9047 6.3747
128 5.6118 ·10−3 0.8152 14.422

The obtained results are shown in Figure 5.14. The influence of grid-crossing error
on the solution is clearly evident for the standard MPM. While DDMPM only slightly
smoothens the oscillations, BSMPM significantly improves the results. In fact, the use of
B-spline basis functions reduces the relative error in L2-norm by a factor of 10.

Both the TLS reconstruction technique and cubic-spline reconstruction interpola-
tion provide considerably more accurate results than MPM and DDMPM. They also fur-
ther improve the accuracy of BSMPM, but their influence is less distinct in this case. It
should be noted that the error produced with the cubic-spline reconstruction is slightly
lower than that achieved with the TLS approach. However, the TLS technique outper-
forms the former method by accurately conserving the mass and linear momentum. As
was mentioned previously in this section, the maximum relative errors of MPM, DDMPM,
and BSMPM are bounded by 1 · 10−13. While the TLS approach has little influence on
these errors, the spline reconstruction technique increases them to 2.04·10−6 (Table 5.7).

From the table it follows that for a low number of subpoints, the technique of Dhakal
and Zhang effectively decreases the relative error of 4.4555 ·10−2 produced by DDMPM
and is less computationally intensive than the TLS technique. However, its performance
may be limited by computational time and memory when a higher accuracy has to be
reached. In fact, the method approaches the accuracy of the TLS reconstruction tech-
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Figure 5.14: Stress distribution and corresponding relative errors in the L2-norm in the column compaction
problem with grid crossing. The results are obtained for material-point methods without reconstruction tech-
nique, with cubic-spline reconstruction (CS) and TLS reconstruction, and are compared to the analytical solu-
tion.
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nique when 128 subpoints per particle are used leading to a significant (factor of 14.4)
increase in the computational time.

5.5. SUMMARY AND CONCLUSIONS
In this chapter, we have introduced a novel reconstruction approach, called Taylor least-
squares function reconstruction, and applied it to MPM and related methods. The pro-
posed technique combines the least-squares approximation with local Taylor basis func-
tions to accurately reconstruct the quantities of interest (e.g., stress and density fields)
from scattered particle data within each element. We have shown that in contrast to
standard reconstruction techniques, the TLS approximation conserves the mass and lin-
ear momentum of the system after the material-point data is mapped to the integration
points. More importantly, in conjunction with a sufficiently accurate numerical quadra-
ture method, the technique preserves the total mass and momentum after the informa-
tion is projected to the degrees of freedom of the grid. This implies that the TLS recon-
struction maintains the physical properties of the standard material-point methods.

The TLS technique was applied to MPM, DDMPM, and BSMPM within the bar-with-
fixed-ends vibration and column compaction problems. For the bar-with-fixed-ends
problem in the absence of grid crossing, the reconstruction technique had little influ-
ence on MPM and DDMPM, but was able to improve the convergence properties of
BSMPM. When material points started to cross cell boundaries in both considered ex-
amples, the TLS approximation smoothened the solutions of MPM and related methods
and brought them closer to the solution computed analytically or by ULFEM.

Furthermore, the novel TLS reconstruction technique was compared to the global
spline reconstruction technique used within BSMPM in Chapter 3. In general, the dif-
ferences in spatial accuracy of the techniques were negligible, but the error in total mass
and linear momentum was consistently much lower for the TLS reconstruction. For the
column compaction problem, it was also shown that the TLS technique integrated into
DDMPM reaches a higher accuracy than the conservative DDMPM method with sub-
points, while requiring lower computational costs. Therefore, this study has demon-
strated that the combination of MPM and related methods with the TLS technique leads
to a higher accuracy of the material-point methods and preserves their fundamental
physical properties.



6
DISCUSSION: EXTENSION OF

TAYLOR LEAST-SQUARES FUNCTION

RECONSTRUCTION TECHNIQUE TO

TWO-DIMENSIONAL PROBLEMS

AND ITS APPLICATION TO THE

MATERIAL-POINT METHOD

After a comprehensive introduction of the Taylor least-squares (TLS) function recon-
struction technique and its successful application to one-dimensional material-point
method (MPM) simulations in Chapter 5, this chapter describes the extension of the
technique to two-dimensional problems. This constitutes the first step towards the ap-
plication of the TLS reconstruction to more complex and realistic examples. However,
further research is required to optimize the use of the TLS reconstruction within two-
dimensional MPM computations, in terms of efficiency and robustness. For this rea-
son, this chapter also summarizes the main issues encountered when the technique is
adopted within two-dimensional MPM simulations. Section 6.1 outlines the construc-
tion of the TLS approximation on both rectangular and triangular grids. Section 6.2
shows a number of examples of the TLS function reconstruction and demonstrates its
convergence behavior. Section 6.3 considers the application of the technique to two-
dimensional MPM simulations, shows the preliminary results, and explains the main
difficulties associated with it. Finally, Section 6.4 draws the conclusions.
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6.1. CONSTRUCTION
On two-dimensional domains, the construction of the TLS approximation is similar to
the one-dimensional procedure presented in Section 5.2. Since the extension of the

least-squares method to two-dimensional data sets
{

xp
}M

p=1 is trivial, this section fo-

cuses solely on the local Taylor basis functions. In general, the first six normalized two-
dimensional Taylor basis functions are given by [182]

ψ1 = 1, (6.1)

ψ2 = x1 −x1c

∆x1
, (6.2)

ψ3 = x2 −x2c

∆x2
, (6.3)

ψ4 = (x1 −x1c )2

2∆x2
1

− (x1 −x1c )2

2∆x2
1

, (6.4)

ψ5 = (x2 −x2c )2

2∆x2
2

− (x2 −x2c )2

2∆x2
2

, (6.5)

ψ6 = (x1 −x1c ) (x2 −x2c )

∆x1∆x2
− (x1 −x1c ) (x2 −x2c )

∆x1∆x2
. (6.6)

Here, the notation for the volume average from Chapter 5 is adopted (see Equation 5.6),
and xkc with k = {1,2} denote the coordinates of the cell centroid. Further evaluation of
the local Taylor basis functions strongly depends on the element type.

6.1.1. RECTANGULAR ELEMENTS

For rectangular elements, x1c = x1max+x1min
2 , x2c = x2max+x2min

2 , ∆x1 = x1max−x1min
2 , and

∆x2 = x2max−x2min
2 . The volume |Ωe | of a rectangular cell e is equal to

|Ωe | = (x1max −x1min) (x2max −x2min) . (6.7)

The first three Taylor basis functions are computed by substituting the above expressions
into Equations (6.1) to (6.3). Using the definition of the volume average of a function,ψ4,
ψ5, and ψ6 can be obtained from

ψ4 = (x1 −x1c )2

2∆x2
1

− 1

2∆x2
1 (x1max −x1min)

(
1

3

(
x3

1max −x3
1min

)−x1c
(
x2

1max −x2
1min

)
(6.8)

+x2
1c (x1max −x1min)

)
, (6.9)

ψ5 = (x2 −x2c )2

2∆x2
2

− 1

2∆x2
2 (x2max −x2min)

(
1

3

(
x3

2max −x3
2min

)−x2c
(
x2

2max −x2
2min

)
(6.10)

+x2
2c (x2max −x2min)

)
, (6.11)
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ψ6 = (x1 −x1c ) (x2 −x2c )

∆x1∆x2
−

(
1

∆x∆y |Ωe |
(

1

2

(
x2

1max −x2
1min

)−x1c (x1max −x1min)

)
· (6.12)(

1

2

(
x2

2max −x2
2min

)−x2c (x2max −x2min)

))
. (6.13)

The basis functions are illustrated in Figure 6.2. The figure shows that all basis func-
tions have zero integral value, except ψ1, whose integral value is equal to the element’s
volume.

6.1.2. TRIANGULAR ELEMENTS
While the computation of the Taylor basis functions within a rectangular element can be
performed generically, on a triangular mesh, the calculation is significantly simplified by
transferring the elements into a reference triangle. Such transformations are common
for FEM and are also required for quadrilateral elements other than the discussed above
rectangular elements.

MAPPING FROM A GENERAL TO THE REFERENCE TRIANGLE

A schematic representation of the mapping from a general triangle to the reference tri-
angle is shown in Figure 6.1.

(0,0)
(1,0)

(0,1)

( 1
3 ,0

)
(
0, 1

3

)

x2 r e f

x1 r e f

(ax1 , ax2 )

(bx1 ,bx2 )

(cx1 ,cx2 )

x2 g en

x1 g en

y

Figure 6.1: Schematic illustration of the mapping to the reference triangle.

The affine map y from a general to the reference triangle can be written as follows [184]:

y(xg en) = A

(
xg en −

(
ax1

ax2

))
= xr e f , (6.14)

where xg en and xr e f are the coordinated within the general and reference triangles, rep-
sectively. The matrix A is defined as follows:

A = 1(
cx1 −ax1

)(
bx2 −ax2

)− (
cx2 −ax2

)(
bx1 −ax1

) [
bx2 −ax2 −(

bx1 −ax1

)
−(

cx2 −ax2

)
cx1 −ax1

]
. (6.15)
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Figure 6.2: The first six Taylor basis functions on a rectangular element.
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Figure 6.3: The first six Taylor basis functions on the reference triangle.
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LOCAL TAYLOR BASIS FUNCTIONS

For the standard triangle, ∆x1 = ∆x2 = 1
2 and |Ωe | = 1

2 . The cell centroid is located at( 1
3 , 1

3

)
. The first three Taylor basis functions are obtained by simply substituting these

values into Equations (6.1) to (6.3). The local Taylor basis functions requiring the com-
putation of the volume average can be written as

ψ4 =2

(
x1 − 1

3

)2

− 1

9
, (6.16)

ψ5 =2

(
x2 − 1

3

)2

− 1

9
, (6.17)

ψ6 =4

(
x1 − 1

3

)(
x2 − 1

3

)
+ 1

18
. (6.18)

The local Taylor basis functions on the reference triangle are shown in Figure 6.3. As pre-
viously, the figure demonstrates that all basis functions have zero integral value, except
ψ1, whose integral value is equal to the element’s volume.

6.2. EXAMPLES OF TAYLOR LEAST-SQUARES RECONSTRUCTION

6.2.1. RECTANGULAR GRID

To illustrate the TLS approximation on a rectangular grid, the function f (x1, x2) defined
as = sin(x1)cos(x2) is reconstructed on the [0,5] × [0,5] domain. The corresponding
integral value is approximately equal to −6.8691 · 10−1. The domain is discretized by
1×1 rectangular elements with 6 data points are placed within each element. Their x1-
coordinates are set equal to x1min+ 1

3 and x1max− 1
3 , and x2-coordinates set to x2min+ 1

4 ,
x2min+x2max

2 , and x2max − 1
4 . Six Taylor basis functions are used for the approximation and

four Gauss points per element are defined to compute the RMS and relative errors. The
RMS error for the function is equal to 6.17 ·10−3, while the relative error for the integral
is equal to 6.6613 ·10−16. The reconstruction is visualized in Figure 6.4.

After that, the TLS approximation is produced using 150 randomly distributed data
points, while keeping all other settings unchanged. In this case, the RMS error for f
reaches 5,48 · 10−2, but the relative error for the integral of the reconstructed function
remains accurate to machine precision (i.e., 1.1102 ·10−16). The results are illustrated in
Figure 6.5.

The convergence properties of the two-dimensional Taylor basis functions are de-
picted in Figure 6.6. The reconstruction is obtained on the [0,10]× [0,10] domain for
f (x1, x2) = sin

( x1
10

)
cos

( x2
10

)
, which excludes high frequency oscillations from the coarsest

grid and hence allowing for an accurate reconstruction on all considered meshes. Data
points are distributed uniformly within the domain and each element contains 9 data
points. As expected, when only the first Taylor basis function ψ1 is used the conver-
gence order is equal to one, whereas with the first three basis functions {ψ1,ψ2,ψ3} the
second-order convergence is obtained and with the first six basis functions the conver-
gence order is equal to three.
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Figure 6.4: TLS reconstructions of f (x1, x2) = sin(x1)cos(x2) on [0,5]× [0,5] using 25 rectangular elements
with 6 data points within each element: side and top view. The TLS reconstruction is evaluated at Gauss-point
positions within each element.

Figure 6.5: TLS reconstructions of f (x1, x2) = sin(x1)cos(x2) on [0,5]× [0,5] using 25 rectangular elements
with randomly distributed data points: side and top view. The TLS reconstruction is evaluated at Gauss-point
positions within each element.
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Figure 6.6: Convergence behavior of the two-dimensional TLS approximation. The basis functions are con-
structed on the [0,10]× [0,10] domain using nine equally distributed data points within each rectangular ele-
ment.

6.2.2. TRIANGULAR GRID

Here, it is briefly illustrated that similar results can be obtained for the TLS reconstruc-
tion on a triangular grid. Using 300 data points uniformly distributed over the [0,5]×[0,5]
domain, the RMS error for f (x1, x2) = sin(x1)cos(x2) is equal to 1.80 ·10−3, while the in-
tegral is preserved to machine precision. The reconstructed function is shown in Fig-
ure 6.7.

Figure 6.7: TLS reconstructions of f (x1, x2) = sin(x1)cos(x2) on [0,5]× [0,5] using 30 triangular elements with
6 data points within each element: side and top view. The TLS reconstruction is evaluated at Gauss-point
positions within each element.
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6.3. APPLICATION OF TAYLOR LEAST-SQUARES TECHNIQUE TO

THE MATERIAL-POINT METHOD
The application of the TLS function reconstruction technique within two-dimensional
MPM simulations is strongly related to the procedure described in Section 5.3. There-
fore, this section focuses only on the multi-dimensional aspects of the approach. In
order to compute the two-dimensional internal forces, the TLS reconstruction is applied
to all the components of the stress tensor separately (see Equation 5.12 and 5.13). The
obtained approximations are used for Gauss integration in the following way:

fi ntx1 ,i ≈
Ng∑
g=1

(
∂φ0

i

∂x1

(
xg

)
σx1x1

(
xg

)+ ∂φ0
i

∂x2

(
xg

)
σx1x2

(
xg

))
ωg , (6.19)

fi ntx2 ,i ≈
Ng∑
g=1

(
∂φ0

i

∂x2

(
xg

)
σx2x2

(
xg

)+ ∂φ0
i

∂x1

(
xg

)
σx1x2

(
xg

))
ωg . (6.20)

Here, σxk xl with k, l = {1,2} represents a component of the stress tensor.
Similarly, the TLS technique is applied for the computation of the linear momentum

field
(
ρ̂v

)
, which is used to compute the components of the linear momentum. More pre-

cisely, Equations (5.14) , (5.15), and (5.16) are extended to both the x1- and x2-directions.
This allows for the components of the nodal velocity to be obtained in analogy with
Equation (5.18). Moreover, the extension of the TLS method to two dimensions does not
affect its properties in terms of the conservation of mass and momentum within MPM
and related methods. While this is directly evident for the mass conservation, the mo-
mentum conservation can be shown by repeating the proof in Equation (5.21) for both
directions.

6.3.1. PRELIMINARY NUMERICAL RESULTS
The benchmark describing the plate undergoing axis-aligned displacement, which has
been described in Chapter 2, is considered in order to investigate the performance of the
TLS function reconstruction within two-dimensional MPM simulations. As previously,
the plate is assumed to be a square with length and width of 1 m. Young’s modulus
and Poisson’s ratio are set to 104 kPa and 0.3, respectively. The initial density is equal to
1000 kg/m3 and the maximum amplitude of displacement is limited to 0.05 m. The time
step size and total simulation time are set to 1.25 ·10−4 s and 0.015 s, respectively.

Table 6.1: Maximum relative errors in the total mass and and absolute errors in the momentum over the sim-
ulation run with MPM and MPM with the TLS reconstruction. The plate is discretized using rectangular mesh
with 1024 elements and a triangular mesh with 1058 elements with 24 material points per element.

Method Mesh ErrorM ErrorQx [Pa] ErrorQy [Pa]
MPM Rectangular 7.2100 ·10−13 8.7421 ·10−13 1.9854 ·10−13

MPM-TLS Rectangular 7.3351 ·10−13 8.1654 ·10−11 4.7041 ·10−11

MPM Triangular 3.3253 ·10−13 1.0270 ·10−12 1.7689 ·10−11

MPM-TLS Triangular 3.3265 ·10−13 6.9142 ·10−13 7.7780 ·10−12
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Figure 6.8: Numerical results in terms of the normal stress in x2-direction for material points with x0
1 = 0.5 m.

The results are obtained for a rectangular mesh with 1024 elements (left) and a triangular mesh with 1058
elements (right) with 24 material points per element. The stresses distributions are obtained for standard
MPM and MPM with the TLS reconstruction.

Figure 6.8 illustrates that the TLS technique significantly improves the MPM results
for both triangular and rectangular elements. In addition, Table 6.1 shows that the use of
the TLS approximation within MPM preserves the physical properties of standard MPM
with respect to mass and linear momentum conservation during the mapping of the
material-point data to the background grid. This is similar to the results in Chapter 5,
where it was additionally shown that the cubic-spline reconstruction does not posses
such conservation properties. Nevertheless, the MPM-TLS results are strongly depen-
dent on the number of material points and their location within each element. For in-
stance, simulations performed on a triangular grid with 1058 elements and 12 or 16 uni-
formly distributed material points per element terminate prematurely due to the linear
dependence of the columns of the matrix D = ∑M

p=1ψ
(
xp

)
ψT (

xp
)

in the least-squares
computation (see Section 5.2.1). This imposes a major limitation of the approach, be-
cause large deformations do not allow to control the number and positions of the parti-
cles within elements.

6.3.2. FUTURE RESEARCH

Section 6.3.1 indicates that data-point distribution becomes a critical issue for the ap-
plication of the TLS function reconstruction technique within two-dimensional MPM
simulations. Although limited information from the data points posed a problem for
one-dimensional simulations as well, in general, the availability of only three data points
with distinct locations was sufficient to enable linear independence of the columns of



6.3. APPLICATION OF TLS TECHNIQUE TO THE MATERIAL-POINT METHOD

6

105

the matrix D . A number of options that assure a successful TLS computation regardless
of the information available from the data points were presented in Section 5.2.3. A sim-
ilar study is required for two-dimensional simulations. The following topics should be
considered:

• Data distribution. First of all, the properties of data-point (or material-point, in
case of MPM-TLS computations) distributions, which support linear independence
of the columns of the matrix D , should be identified. According to Section 6.3.1,
the accuracy of the TLS reconstruction depends on the data distribution within
the domain. In addition, Section 6.3.1 indicates stability issues within MPM-TLS
simulations that are related to the number and position of material points.

• Completion strategy. After the specifications for the data distribution are identi-
fied, a suitable method to achieve these specifications should be found. For one-
dimensional examples, Section 5.2.3 proposes either the direct use of neighboring
data points or application of the TLS technique to obtain the data for the virtual
points. Theoretically, both techniques are suitable for two-dimensional compu-
tations. However, their implementation requires access to neighboring elements
and a search algorithm, which may affect the efficiency of the computation. Nev-
ertheless, obtaining extra information directly from the neighboring data points is
cheaper than its preliminary mapping to the virtual data points. Thus, given a ro-
bust and efficient search algorithm, the extension of the neighboring-data-point
technique can offer an effective solution for two-dimensional problems.

• Mesh-refinement techniques. The accuracy of the TLS approximation can be fur-
ther increased by mesh-refinement techniques. These techniques should be used
to avoid prescribing non-zero function values to the parts of an element where no
material, and hence, no material points are located (see Figure 6.9).

Figure 6.9: An example of mesh refinement to prevent non-zero function values in the top left corner of the
domain, which does not contain the continuum.

• Computational costs. It was illustrated in Chapter 5 that the TLS approximation re-
quires considerable computational effort for one-dimensional problems. For two-
dimensional problems, the computational costs increase further, even without a
completion strategy or a mesh-refinement technique. A reduction of computa-
tional time can be achieved by exploiting the local nature of the method for its
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parallel implementation: the standard TLS computation only requires the infor-
mation specific to the considered element. However, the costs of the parallel im-
plementation can be significantly increased if a completion technique is adopted.
In fact, certain designs of the strategies based on neighboring or virtual data points
can lead to dense communication patterns.

6.4. CONCLUSIONS
In this chapter, the extension of the TLS function reconstruction technique to rectan-
gular and triangular elements as well as its application within two-dimensional MPM
simulations have been discussed. It has been shown that the technique can provide an
accurate reconstruction with a relatively low number of data points within each element.
However, for its application to two-dimensional MPM problems, further research is re-
quired.
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7
CONCLUSIONS

This chapter describes the key findings of the literature study, provides the main con-
clusions of this thesis, and identifies possible directions for future research. Section 7.1
gives a short summary of the literature study. Section 7.2 presents an overview of the
conclusions drawn from the original research of this thesis. Section 7.3 provides a num-
ber of suggestions for future research.
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7.1. SUMMARY OF THE LITERATURE STUDY
This thesis provides an overview of the development trends within MPM based on the ex-
isting literature. It identifies the following main directions in the development of MPM:
formulations, time-integration schemes, algorithms, and related methods. Each of these
directions is shortly described below.
To apply MPM to different types of material, the research on its formulations is essen-
tial. In the existing literature, the distinction is made between one-, two-, and three-
phase problems. Furthermore, in previous studies, two-phase materials are modeled by
formulations that use either one or two sets of material points. When only one set is
adopted, each particle contains both phases, whereas double-point formulations repre-
sent each phase by a separate set of material points.
At the same time, MPM has been combined with both explicit and implicit time-integra-
tion schemes. Previous research points out that the main advantage of implicit schemes
over the explicit ones is their high numerical accuracy.
Furthermore, four versions of MPM algorithm have been proposed: USL, MUSL, USF,
and USAVG. The MUSL algorithm combined with a lumped mass matrix reduces the
stability issues observed with the USL algorithm. Both the USF and USAVG algorithms
attempt to improve the energy conservation within the MUSL algorithm. However, it
has been shown that the MUSL algorithm damps out unresolved modes more accurately
than the USF and USAVG algorithms.
A number of methods have been published that are based on standard MPM, but ei-
ther reduce or completely eliminate grid-crossing errors. The GIMP and CPDI meth-
ods mitigate grid-crossing inaccuracies by introducing an alternative particle represen-
tation. The GIMP method is a generalization of MPM that represents material points
by particle-characteristic functions. The CPDI method extends GIMP in order to accu-
rately capture shear distortion. On the other hand, the DDMPM preserves the original
point-mass representation of the material points, but adjusts the gradients of the ba-
sis functions to avoid grid-crossing errors. Finally, BSMPM eliminates the oscillations
related to cell crossing by replacing piecewise-linear basis functions by higher-order B-
spline basis functions.
Of course, the classification of the research on the development of MPM that is provided
in this thesis is not comprehensive. Many fundamental studies of the method are not
classified as part of a certain research course due to their unique nature.

7.2. GENERAL CONCLUSIONS
The main conclusions of this dissertation are presented according to the specified re-
search objectives.

• Connection to meshfree methods.
This thesis highlights the close relation between MPM and the broader family of
meshfree methods by establishing a connection between MPM and the optimal
transportation meshfree method.
MPM and the OTM method are derived in a different fashion: MPM is based on
the weak form of the momentum equation, while the OTM method uses concepts
from optimal transportation theory. In addition, MPM solves the governing equa-
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tions on the background grid and typically employs piecewise-linear basis func-
tions, while the OTM method does not require a mesh and adopts maximum en-
tropy basis functions.
This thesis shows that despite these differences, MPM and the OTM method can
be related. In fact, assuming a constant time step, the validity of the backward
Euler scheme for material-point displacement in MPM, as well as the linear com-
pleteness of the MPM basis functions and their ability to translate nodal veloc-
ities into material-point velocities, the only distinction between the algorithms
emerges from the update of the basis functions and their gradients. However,
this is a fundamental difference that results in a combination of Eulerian and La-
grangian descriptions for MPM and a fully Lagrangian description for the OTM
method.
Based on this comparison between MPM and the OTM method, a unified ap-
proach is proposed. Similarly to BSMPM, this hybrid method uses B-spline basis
functions, but updates them following the OTM approach. The unified approach
shows high levels of performance in terms of numerical stability, computational
effort, and simplicity of implementation and use.

• Further development of BSMPM.
In this thesis, BSMPM is combined with a mapping technique that allows for the
projection of material-point data to the background grid using cubic-spline inter-
polation. Furthermore, a version of BSMPM is proposed that extends the method
to unstructured triangular grids which allows for the application of the method to
more realistic and complex problems.
The mapping strategy works as follows. First the field variables of interest are re-
constructed from scattered material-point data by means of cubic-spline interpo-
lation. After that, the reconstructed field variables are evaluated at Gauss-point
positions, which are subsequently used for Gauss quadrature. In this dissertation,
each knot span is divided into two equal parts, and within each part two Gauss
points are placed. Therefore, polynomials up to third order can be integrated ex-
actly within each half of a knot span. The numerical results show that the modified
mapping strategy improves the performance of BSMPM on the boundaries of the
domain, yields higher-order convergence of the method, and reduces the absolute
error.
The extension of BSMPM to triangular grids is achieved by employing quadratic
Powell-Sabin splines. For relatively simple problems, this technique demonstrates
promising results.

• Development of an advanced technique to reconstruct functions from scattered data
points and its application to MPM and related methods.
This thesis introduces Taylor least-squares function reconstruction technique. The
TLS reconstruction is a novel technique that combines the least-squares approx-
imation with local Taylor basis functions. It is designed to accurately reconstruct
functions from scattered data points, while preserving a priori known integral val-
ues. The numerical examples demonstrate that the TLS function reconstruction
reproduces given integrals up to machine precision regardless of the data-point
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distribution.
The technique can be applied within MPM and related methods for the projection
of material-point data to the background grid, essentially forming an alternative
to the function reconstruction with cubic splines. In conjunction with MPM, the
TLS technique reconstructs field variables, such as stress and density fields, locally
within each element. After that, it adopts Gauss quadrature rules to obtain high-
accuracy approximations of the internal force and momentum vectors as well as
the mass matrix. The main advantage of the TLS technique over other alterna-
tive mapping strategies (e.g., the mapping with cubic spline interpolation) is that
it conserves the total mass and linear momentum of the system.
In this dissertation, the TLS mapping has been applied to MPM, DDMPM, and
BSMPM and shown to significantly improve their performance. It is also demon-
strates that the technique conserves the total mass and momentum with precision
similar to that of the original direct mapping. This implies that for the consid-
ered examples, the TLS function reconstruction technique resembles the approx-
imation properties of highly-accurate spline reconstruction, while preserving the
physical properties of the standard algorithm.

7.3. SUGGESTIONS FOR FUTURE RESEARCH
The results provided in this dissertation point to several opportunities for future research
that would further contribute to the goals of this thesis or broaden its research scope.

• As suggested in Chapter 6, further investigation of the TLS function reconstruc-
tion for two-dimensional problems is required. The study should identify data
distributions, from which an accurate approximation can be constructed without
causing stability issues in the least-squares approximation, and find a strategy that
allows for such distributions from available data. The accuracy of the approxima-
tion can be further increased by mesh-refinement techniques. Aside from the ro-
bustness and accuracy of the method, further research should consider its compu-
tational costs. After that, the technique can be applied for the particle-data projec-
tion within MPM and related methods using triangular or quadrilateral elements.

• The combination of MPM with Powell-Sabin splines for unstructured triangular
grids has to be adopted to problems that contain partially filled elements. A pre-
liminary study has indicated that partial lumping of the mass matrix can be used
to provide a stable and relatively accurate solution. However, the robustness and
efficiency of this approach need further testing. In addition, future studies can
investigate if other basis functions suited for unstructured C 1-discretizations can
overcome the issues associated with Powell-Sabin splines within MPM.

• Powell-Sabin splines can be employed within the unified approach that combines
BSMPM and the OTM method. On the one hand, the update of the degrees of
freedom throughout the simulation may offer an alternative to partial lumping of
the mass matrix. On the other hand, the applicability to unstructured grids brings
the unified approach closer to the original OTM method, while avoiding the use of
the local maximum entropy basis functions.
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• The research presented in this thesis offers new mathematical techniques that
can be applied to MPM. However, the considered benchmarks are limited to one-
phase problems. The use of the proposed techniques with multi-phase formula-
tions should lead to more accurate and stable simulations of complex phenomena.

• In addition, computational aspects of the presented techniques should be further
investigated. For example, a study can be performed to identify whether higher-
order accuracy of BSMPM combined with the cubic-spline or TLS reconstruction
technique is sufficient to outperform massively parallel implementations of the
existing variants of MPM (e.g., DDMPM).

• This dissertation gives an overview of existing research on the development of
MPM, but does not provide a numerical comparison of the techniques. Such a
study may be valuable for research groups whose main focus is on the application
of MPM.

• The use of the TLS function reconstruction technique as a general technique to
construct physically correct surrogate methods, outside of MPM, forms another
possible research direction. For example, the reconstruction technique can be
used to approximate anisotropic diffusion fields from discrete measurement data.





REFERENCES

[1] D. Sulsky, Z. Chen, and H. Schreyer, A particle method for history-dependent mate-
rials, Computer Methods in Applied Mechanics and Engineering 118, 179 (1994).

[2] D. Sulsky, S. Zhou, and H. Schreyer, Application of a particle-in-cell method to
solid mechanics, Computer Physics Communications 87, 236 (1995).

[3] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, 3rd
ed. (Springer, New York, 2008).

[4] S. Andersen and L. Andersen, Modelling of landslides with the material-point
method, Computational Geosciences 14, 137 (2010).

[5] D. Sulsky and L. Schreyer, MPM simulation of dynamic material failure with a
decohesion constitutive model, European Journal of Mechanics-A/Solids 23, 423
(2004).

[6] F. Zabala and E. Alonso, Progressive failure of Aznalcóllar dam using the material
point method, Géotechnique 61, 795 (2011).

[7] C. M. Mast, P. Arduino, P. Mackenzie-Helnwein, and G. R. Miller, Simulating gran-
ular column collapse using the material point method, Acta Geotechnica 10, 101
(2015).

[8] S. Bandara, A. Ferrari, and L. Laloui, Modelling landslides in unsaturated slopes
subjected to rainfall infiltration using material point method, International Journal
for Numerical and Analytical Methods in Geomechanics 40, 1358 (2016).

[9] B. Wang, M. Hicks, and P. Vardon, Slope failure analysis using the random material
point method, Géotechnique letters 6, 113 (2016).

[10] N. Phuong, A. Van Tol, A. Elkadi, and A. Rohe, Numerical investigation of pile in-
stallation effects in sand using material point method, Computers and Geotechnics
73, 58 (2016).

[11] J. A. Nairn, Material point method calculations with explicit cracks, Computer
Modeling in Engineering and Sciences 4, 649 (2003).

[12] Y. Guo and J. Nairn, Simulation of dynamic 3D crack propagation within the mate-
rial point method, Computer Modeling in Engineering & Sciences 113, 389 (2017).

[13] A. Gilmanov and S. Acharya, A hybrid immersed boundary and material point
method for simulating 3D fluid–structure interaction problems, International Jour-
nal for Numerical Methods in Fluids 56, 2151 (2008).

115



116 REFERENCES

[14] A. R. York, D. Sulsky, and H. L. Schreyer, Fluid–membrane interaction based on the
material point method, International Journal for Numerical Methods in Engineer-
ing 48, 901 (2000).

[15] Y.-P. Lian, Y. Liu, and X. Zhang, Coupling of membrane element with material
point method for fluid–membrane interaction problems, International Journal of
Mechanics and Materials in Design 10, 199 (2014).
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