
Practical Verification of the Haskell Ranged-sets Library

Ioana Savu1 , Jesper Cockx1 , Lucas Escot1
1TU Delft

Abstract
agda2hs is a project that aims to combine the best
parts of Haskell and Agda by providing a common
subset between them. It allows programmers to im-
plement libraries in Agda, verify their correctness
and then translate the result to Haskell so they can
be used by Haskell programmers. In this paper, a
verified Agda implementation of the Ranged-sets
Haskell library is provided, using agda2hs. In or-
der to produce a verified implementation of this li-
brary, we proved its preconditions, invariants and
properties.

1 Introduction
Haskell [1] is a purely functional and strongly typed program-
ming language. One of the big advantages of purity is that
it makes it very easy to reason about the correctness of algo-
rithms and data structures. An example of this can be found in
Chapter 16 of the book Programming in Haskell (2nd edition)
by Graham Hutton [2], where he uses equational reasoning,
case analysis, and induction to prove properties of Haskell
functions. However, since these proofs are done ’on paper’,
there is always a risk that the proof contains a mistake, or
that the code changes to a new version but the proof is not
updated.

Agda [3] is a total language that has a more expressive typ-
ing system: it fully supports dependent types. These prop-
erties come with a great advantage: one can write a formal
proof of correctness in the language itself. Types can be
used to express properties and therefore proofs of these prop-
erties, this isomorphism being known as the Curry-Howard
correspondence [4]. These proofs are checked automatically
by the type-checker, and re-checked every time the code is
changed. Therefore, it provides an unusually high degree of
confidence in the correctness of the algorithm. Unfortunately,
despite several big successes in dependently typed program-
ming such as the CompCert verified C compiler [5], these
languages remain hard to use. Therefore, these guarantees
are currently only available to expert users. 1

Software testing can ensure reliability, high performance
and even security of a product. However, it has been often

1Project Description according to Project Forum

disregarded by programmers with experience in formal veri-
fication since it can only show the presence of errors, not the
absence of them, as Dijkstra pointed out [6]. Formal verifica-
tion comes with two great advantages. Firstly, we no longer
rely on generating test cases for the test suites, also known
as exhaustive testing, where a property can falsely hold be-
cause there was no generated input that would make it fail.
In Agda, one can actually prove mathematically the property,
ensuring that it always holds. The second advantage is that
type-checking Agda proofs is much faster than running mul-
tiple test suites. As an example, when running a QuickCheck
[7] property, not only that it needs to generate the input, but it
runs the functions that need to be tested against all generated
values.

The agda2hs project [8] is a recent effort to combine the
best parts of Haskell and Agda. In particular, it identifies a
common subset of the two languages, and provides a faithful
translation of this subset from Agda to Haskell. This allows
library developers to implement libraries in Agda and ver-
ify their correctness using formal verification, and then trans-
late the result to Haskell so it can be used and understood by
Haskell programmers.

This project investigates whether a verified implementation
of the Ranged-sets Haskell library [9] can be reproduced in
Agda, using agda2hs:

• We explain how we can port Haskell functions, known
to be a partial programming language, to Agda, which is
a total language (Section 2).

• We identify the library’s preconditions, invariants and
properties and explain how to formally prove them (Sec-
tion 3).

• We explain the limitations of proving the properties of
the Ranged-sets library and the techniques used to do so
(Section 4).

• We compare the original Haskell Ranged-sets library to
the agda2hs translation of the Agda implementation of
the library (Section 5).

2 Preliminaries
This section contains the background information required in
order to better understand the method used for porting the

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



library to Agda. It starts with introducing the Ranged-sets li-
brary in 2.1. Next, in 2.2 we explain how we deal and convert
Haskell partial functions in Agda, where they do not exist.

2.1 About Ranged-sets
The Ranged-sets library allows programming with sets of val-
ues that are described by lists of ranges. A value is a member
of the set if it lies within one of the ranges. The ranges in a
set are ordered and non-overlapping, so the standard set oper-
ations can be implemented by merge algorithms in O(n) time
[9], where n is the number of ranges in that set.

The Ranged-sets library is composed of three main mod-
ules: Boundaries, Ranges and RangedSet. The first module
describes the Boundary type, which divides an ordered type
into values above and below the boundary. The Ranges mod-
ule defines the Range type which is described by a lower and
an upper boundary. Finally, the RangedSet module contains
the RSet type, which is the actual ranged set, defined by an
ordered list of non-overlapping ranges.

2.2 From partial to total functions
Everything that we call computation, can be reproduced using
a Turing machine [10]. A Turing machine has three possible
outcomes: it can accept a given input, it can reject it, or it
can loop. Furthermore, we call a system Turing-complete,
if it can simulate any Turing machine. In terms of program-
ming languages, most of them are Turing-complete, although
a truly Turing-complete machine requires infinite memory,
property which is physically impossible when talking about
computers. Haskell is a Turing-complete programming lan-
guage, also known as a partial language, while Agda is total
language: it accepts only programs that are provably termi-
nating.

You may wonder how we can reproduce a Haskell partial
function that can loop forever or throw run-time errors due to
incomplete pattern matching or direct calls to the error func-
tion, in Agda, a total language that cannot simulate these out-
comes, since it does not allow incomplete patterns nor has an
error function. The answer is pretty simple: we just limit the
input space by adding preconditions. By doing so, we make
sure that the input values are accepted by the total program
and their corresponding output consists of another value. An
example of limiting the input space can be seen in Fig. 1.

Figure 1: Limiting the input space of a function in order to make it
total.

2.3 Proving properties with dependent types
Agda is a dependently typed programming language. When a
type’s definition depends on a value, it is known as a depen-
dent type. In other words, “we can encode the properties of
values as types whose elements are proofs that the property
is true” [11]. For this research, we mostly used two depen-
dent types in order to prove decidable properties. They can
be seen in Fig. 2. For any value a, IsTrue a is the type of

proofs that a = true. Similarly, IsFalse a is the type of
proofs that a = false.

Figure 2: IsTrue and IsFalse dependent types

3 Porting to Agda
This section describes the techniques used in order to port
the Ranged-sets library to Agda. Firstly, we introduce the
dependencies required in order to implement the library in
Agda. Secondly, we show how to implement the library
types and their corresponding functions in Agda. More-
over, we explain the techniques used to prove the precon-
ditions, invariants and finally, properties of the Ranged-sets
library. The entire implementation is available at: https:
//github.com/ioanasv/research-project.

Note that for some of the proofs that are described in this
section, we made used of unproven postulates. Most of them
were related to boolean logic and properties of the Ord type.
They must hold for every instance of this type, otherwise its
implementation would not be correct. However, there are also
some postulates about the Ranged-sets types that were used
for easing proving preconditions, invariants or properties and
remain subject of future work. More on the usage of postu-
lates can be found in 4.

3.1 Dependencies
In order to implement the Ranged-sets library to Agda, we
need firstly to implement its dependencies in agda2hs. The
Haskell modules that are required by the library but not
present in agda2hs are the following: Char, Real (only the
Ratio and Integral types), and the sort method from the
List module. Converting them to Agda is straight-forward,
since there are no partial functions needed from these mod-
ules.

3.2 The data types
In 2.1 we described the main modules of the Ranged-sets li-
brary: Boundaries, Ranges and RangedSet. Now, we shall
explain their actual Agda translation.

Boundaries
Boundaries work with ordered types, i.e. instances
of the Ord type class. There are four types of
boundaries: BoundaryBelow x, BoundaryAbove x,
BoundaryBelowAll and BoundaryAboveAll, where x is
an ordered value. However, when taking about equality
between BoundaryBelow and BoundaryAbove, we want
BoundaryBelow x = BoundaryAbove y when there is no
value z between x and y [9]. As you might imagine, this is
not trivial for continuous types, such as the Double type. If
x = y does not hold, then there are an infinite number of
values between these two. To solve this problem, there is the

https://github.com/ioanasv/research-project
https://github.com/ioanasv/research-project


DiscreteOrdered type that defines the adjacent method,
which returns true for x and y if there is no value between
them. This method returns false for all x and y continuous.

The DiscreteOrdered type class is implemented as
an record type, that has two fields: adjacent and
adjacentBelow. In general, Haskell type classes are mod-
elled in Agda as record types, this representation being
known as “dictionary translation” [12]. Furthermore, since
the DiscreteOrdered type class works with ordered types,
we provide an instance argument, denoted by {{ }}, to the
record type. This can be seen in Fig. 3. An instance argument
in Agda is equivalent to a type class constraint in Haskell.

Figure 3: The DiscreteOrdered record type.

The Boundary type is implemented as a data type with
four different constructors, each for one of the previously de-
scribed types. This can be seen in Fig. 4. It has two im-
plemented instances, Eq and Ord for equality and ordered
boundaries, respectively. The only function defined for this
data type is above, which takes as arguments a Boundary
and a value of the same type, and returns true if the value is
above the boundary.

Figure 4: The Boundary data type.

Ranges
The Range type is implemented as a data type, its constructor
begin a function that expects two values of type Boundary.
This can be seen in Fig. 5. The Range data type has three in-
stances: Eq, Ord and Show, for equality, ordering and pretty-
printing, respectively.
The implementation of all the functions defined for Ranges is
straight-forward, since the corresponding Haskell functions
are already total. Their description can be found below.

• rangeUpper returns the upper boundary of a range.

• rangeLower returns the upper boundary of a range.

• rangeIsEmpty returns true if the range is empty (the
upper boundary is greater or equal to the lower bound-
ary).

• emptyRange returns the range defined by
BoundaryAboveAll and BoundaryBelowAll.

• rangeHas returns true if the given value is in the range.

• rangeListHas returns true if any range in the list con-
tains the given value.

• fullRange returns the range defined by
BoundaryBelowAll and BoundaryAboveAll.

• singletonRange takes as argument a value v and
returns the range formed by BoundaryBelow v and
BoundaryAbove v.

• rangeIsFull returns true if the range is full.

• rangeOverlap returns true if two ranges overlap.

• rangeEncloses returns true if the second range is
empty or included in the first range.

• rangeUnion returns the union of two ranges as a range
list.

• rangeIntersection returns the intersection of two
ranges.

• rangeDifference returns the difference between two
ranges as a range list.

• rangeSingletonValue returns the value contained in
the singleton range if the given range is indeed singleton.

Figure 5: The Range data type.

RangedSet
The RangedSet modules defines the RSet type, implemented
as a data type with a constructor that takes a list of ranges and
a proof that they are sorted and non-overlapping, as can be
seen in Fig. 6. The latter argument is constructed using the
IsTrue dependent data type, as described in 2.3 and shall be
discussed in detail in 3.4.

Figure 6: The RSet data type.

There are several functions defined for the RSet data type:

• rSetRanges returns the range list from which the RSet
is constructed.

• makeRangedSet creates a RSet out of a range list.

• unsafeRangedSet creates a RSet out of a range list,
without verifying that the list is valid.

• validRangeList determines if the ranges in the list are
both in order and non-overlapping.

• normaliseRangeList rearranges and merges the
ranges in the list so that they are in order and non-
overlapping.

• normalise normalises a range list that is known to be
already sorted (this is a private routine).

• rSingleton creates a RSet from a single element.

• rSetUnfold creates a RSet from an initial boundary
and two functions.

• rSetIsEmpty returns true if the RSet has no members.

• rSetIsFull returns true if the RSet is full.



• rSetHas returns true if the given value is within the
RSet.

• rSetIsSubset returns true if the first argument is a
subset of the second argument, or it is equal.

• rSetIsSubsetStrict returns true if the first argu-
ment is a subset of the second argument.

• rSetUnion returns the union of two RSets.

• rSetIntersection returns the intersection of two
RSets.

• rSetDifference returns the difference of two RSets.

• rSetNegation returns the negation of the RSet.

• rSetEmpty returns the RSet created from the empty
range list.

• rSetFull returns the RSet created from the full Range.

3.3 Preconditions
A precondition asserts that a condition is fulfilled for a given
value before it is actually used as input. The Boundaries and
Ranges module do not have any preconditions that need to
be met in order to define the functions from these modules.
However, there are a few preconditions to consider before
porting the functions from the RangedSet module to Agda.

The normalise function
The normalise function takes as input a range list and out-
puts the corresponding normalised range list by checking if
two consecutive ranges are touching (the upper boundary of
the first range is larger or equal to the lower boundary of the
second range). In that case, they will be merged into a single
range. However, in order to produce the normalised form of a
range list, the input must fulfill the following preconditions:

• The input range list must be sorted.

• The input range list must contain only valid ranges.
This means that for all ranges, their upper boundary is
greater or equal to the lower boundary.

We assert that the preconditions are met by using two in-
stance arguments of the type IsTrue, as can be seen in Fig.
7.

Figure 7: The instance arguments are used as preconditions for the
normalise function.

The unsafeRangedSet function
unsafeRangedSet is a function that takes as argument a list
of ranges and returns a RSet created from that list. However,
a RSet is defined as a list of ordered and non-overlapping
ranges, and this condition needs to be checked for the pro-
vided list of ranges before creating a RSet out of them. We
assert that the range list is valid by using an instance argu-
ment of the type IsTrue, as can be seen in Fig. 8. It is further
used as an invariant when it is passed as an implicit argument
to the constructor of the RSet data type.

Figure 8: The instance argument is used as a precondition for creat-
ing a RSet using the provided range list.

The rSetUnfold function
rSetUnfold is a function used to create a ranged set by pro-
viding an initial lower bound, an upper function from a lower
boundary to an upper boundary used to define ranges, and a
successor function from a lower boundary to another lower
boundary. The precondition that needs to be checked are the
following:

• The upper function must return a greater boundary
than the input one.

• The successor function must return a greater bound-
ary than the input one.

If the preconditions would not be checked, the function
could loop forever, and this behaviour is not defined for Agda
functions, as previously discussed. Therefore, we assert this
precondition by adding two instance arguments consisting of
proofs that the functions are valid. This can be seen in Fig. 9.

Figure 9: The instance arguments assert that the two provided func-
tions return a value greater than the argument.

3.4 Invariants
An invariant is a predicate that satisfied the following condi-
tion: if it is true before executing a sequence of operations,
it must also remain true afterwards [13]. We identified one
invariant for the Ranged-sets library, more specifically for
the RSet data type: any RSet must be constructed from
a valid range list, where valid means that the ranges are
ordered and non-overlapping.
We encode this invariant as an implicit argument to the RSet
constructor. This can be seen in Fig. 6. It consists of a proof
that the provided range list is valid. Therefore, we made sure
that for every function that takes as argument a RSet, it is a
valid one.
Furthermore, whenever a new RSet is returned by a function,
we provide a proof that its range list is valid. There are five
functions that create and output a new RSet that we shall
discuss: unsafeRangedSet, makeRangedSet, rSetUnion,
rSetIntersection and rSetNegation. The first one was
described in 3.3, where we required the proof of the range
list begin valid as a precondition as well, thus we can use
it as an invariant and pass it as argument when constructing
the RSet. This can be seen in Fig. 8. The other functions
and how to prove that the invariant holds shall be explained
further.



The rSetUnion function
The rSetUnion function takes two valid RSets and com-
putes their union. The implementation of this function can
be seen in Fig. 10. The normalise function was previously
described in 3.3. merge1 is a function that merges the two
range lists.
This function requires a proof that the invariant holds. In
other words, we need to prove that by merging and normalis-
ing two valid range lists, we obtain a valid range list.

Figure 10: The rSetUnion function that computes the union of two
RSets.

The technique used in order to proof that the rSetUnion
function returns a valid RSet is splitting it into smaller parts:

1. Prove that if the two range lists are valid, then the result
of the function merge1 for these two lists is a sorted list.
This proof is also passed as an instance argument to the
normalise function, since it requires this precondition, as
discussed in 3.3. This can be seen in Fig. 11.

2. Prove that if the two range lists are valid, then the result
of the function merge1 for these two lists is a list that
contains only ’valid’ ranges (for all ranges in the list, the
upper boundary is greater or equal than its lower bound-
ary). This proof is also passed as an instance argument
to the normalise function, since it requires this precon-
dition, as discussed in 3.3. This can be seen in Fig. 12.

3. Prove that if a range list is sorted and all ranges are valid,
the normalised list is valid, see Fig. 13.

Finally, we can conclude that the union of two valid RSets
is a valid RSet, by combining these three proofs, as can be
seen in Fig. 14.

Figure 11: Function signature for proving that merge1 outputs a
sorted range list.

Figure 12: Function signature for proving that merge1 outputs valid
ranges.

The rSetNegation function
The rSetNegation function takes as argument a valid RSet
and must output another valid RSet, which contains all ele-
ments (here ranges) from the domain which are not in the first
RSet. The negation functions works as follows.

• Transform the range list from which the RSet is created
in a list of boundaries, by splitting every range in a list
in its lower and upper boundary (see Fig. 16).

Figure 13: The output of normalise is a valid range list.

Figure 14: Proof that union of two RSets outputs a valid RSet.

• Check whether the boundary list starts with the
BoundaryBelowAll value, and if so, remove it
and return the rest. If this is not the case, the
BoundaryBelowAll value is prepended to the list (see
Fig. 17). At this point, the boundary list has an odd
number of elements.

• Group the boundaries in pairs in order to create Range
objects out of them. However, since the boundary list
has an odd number of elements, there will remain one
boundary that is not paired with anything. In that case,
if the boundary is BoundaryAboveAll, no Range is cre-
ated. Otherwise, create a Range from the given bound-
ary and BoundaryAboveAll (see Fig. 18).

The implementation of the rSetNegation function can be
seen in Fig. 15.

Figure 15: Negation of a RSet.

In order to prove that the invariant holds, the splitting tech-
nique was used and the following steps were followed:

1. Prove that if the range list was valid in the first place,
then the boundary list obtained from this list is also
valid.

2. Prove that if a boundary list is valid, setBounds1 ap-
plied to the same list outputs a valid list. There are
two cases that need to be covered for this step: ei-
ther the first boundary in the list was removed, or
BoundaryBelowAll was prepended. It is not hard
to prove that for any valid list of boundaries, its tail
is also valid. Furthermore, we can also prove that
BoundaryBelowAll is less or equal to any other bound-
ary, so the order is preserved if this value is prepended
to the list. We proved this using equivalence, as can be
seen in Fig. 19.

3. Prove that if a list of boundaries is valid and we apply
the ranges1 function to this list, the returned range list
is also valid. This can be proved using induction.

Finally, we combine the previously three proofs in or-
der to prove that the invariant holds. Firstly, we prove
that if a range list is valid, then the boundary list ob-
tained using setBounds1 on its boundaries is also valid.



This is proven using transitivity between the previously
described first two proofs. Using this property, we
can finally prove that if a range list rs is valid, then
ranges1 (setBounds1 (bounds1 rs)) is also valid. The
signature of the invariant proof can be seen in Fig. 20.

Figure 16: Helper function used for RSet negation, creates a list of
boundaries from a list of ranges.

Figure 17: Helper function used for RSet negation, creates a list the
boundaries for the negated set.

Figure 18: Helper function used for RSet negation, creates a list of
ranges from a list of boundaries.

Figure 19: The setBounds1 function does not change the output of
the validRangeList function.

Figure 20: Function signature for proving that the invariant holds for
the RSet negation.

The rSetUnfold function
As we previously discussed in 3.3, the rSetUnfold function
is used to create a RSet using an initial lower boundary, an
upper function that increments the boundary, and a successor
function that increments the previous lower boundary in or-
der to create another range. Its implementation can be seen
in Fig. 21, where ranges2 is a function that creates a list
of ranges using the initial boundary, the upper and successor
functions. However, this list needs to be normalised, since the
result of the successor function applied to a boundary is not
necessarily larger than the result of the upper function applied
to the same boundary.
In 3.3, we introduced the normalise function and its precon-
ditions: that the input range list is sorted and that it contains
only valid ranges. By providing these proofs for ranges2,

we can also easily prove the invariant. Therefore, we need
to prove three properties: firstly, that ranges2 produces a
sorted range list, secondly, that it produces a range list con-
sisting only of valid ranges and finally, that normalising a
sorted range list results in a valid range list. The first two
proofs follow easily from the functions being valid (their out-
put value is larger than the input value). The latter proof is
also used for proving the invariant of the rSetUnion func-
tion and its signature can be seen in Fig. 13. Finally, they are
used together to prove the invariant for rSetUnfold, see Fig.
21.

Figure 21: Implementation of rSetUnfold.

The rSetIntersection function
The rSetIntersection function takes two valid RSets and
computes their intersection. Its implementation can be seen
in Fig. 22, where merge2 is a function that outputs the in-
tersection of two ranges, one from each RSet, in order. We
want to provide a proof that their intersection consists of a
valid range set, see Fig. 23. The property that the invariant
holds for rSetIntersection was proved using induction.

Figure 22: Intersection of two RSets.

Figure 23: Function signature for proving that the invariant holds
RSet intersection.

The makeRangedSet function
The makeRangedSet function creates a new RSet out of a
range list, without imposing any constraints on that list. It
calls the normaliseRangeList method, that filters out any
empty range, sorts the list and finally, calls the normalise
method on the filtered and sorted list. Its implementation can
be found in Fig. 24.

Since it calls normalise, we also need to provide proofs
for its preconditions, as described in 3.3. Firstly, we need to
prove that the sorted and filtered list is indeed sorted, and that
its ranges are valid. Finally, we can make use of the proof that
normalising a list which is sorted and has all ranges valid, re-
sults in a valid range list. This proof was also used for proving
that the invariant holds for rSetUnion and rSetUnfold and



Figure 24: Function used for creating a new RSet out of an arbitrary
list.

can be found in Fig. 13.
We postulated the proofs of the sorted and filtered list be-
gin indeed sorted (Fig. 25) and not containing invalid ranges
(Fig. 26). An example of how to prove that calling the
function sort on a list returns a sorted list can be found
here: https://twanvl.nl/blog/agda/sorting. Moreover, by filter-
ing out the empty ranges (a range is empty if its upper bound-
ary≥ lower boundary) from a list, we ensure that the list con-
tains only valid ranges (a range is valid if its upper boundary
≤ lower boundary). If this postulate does not hold, then the
filter function from the List module is not correct.

Figure 25: If we apply sort to a range list, the resulting list is indeed
sorted.

Figure 26: If we filter out the empty ranges from a range list, the
result list has all ranges valid.

3.5 Properties
When talking about data types, a property is a characteristic
that should hold for every value of that type. We can state
properties for each type defined in the Ranged-sets library:
Boundary, Range and RSet. The library defines several
QuickCheck properties for the Range and RSet data types
that shall be described next. We focused on translating these
QuickCheck properties into Agda proofs. Moreover, we also
state other properties that are worth to verify, but were not
covered by QuickCheck.

Boundary
There were no QuickCheck properties defined for the
Boundary data type, however we can defined a few prop-
erties that can help when further verifying the other modules.

• BoundaryBelowAll is less or equal to any other bound-
ary.

• BoundaryAboveAll is greater or equal to any other
boundary.

Range
The Ranges module comes with several QuickCheck prop-
erties defined in Haskell. We reproduced the following, as
proofs in Agda:

• The union of two ranges has a value if and only if either
range has it.

• The length of the union of two ranges is either 1 or 2.
• The intersection of two ranges has a value if and only if

both ranges have it.
• The intersection of two ranges is non-empty if and only

if they overlap.
• The singleton range contains its member.
• The singleton range contains only its member.
• A singleton range can have its value extracted.
• The empty range is not a singleton.
• The full range is not a singleton.

There were also some properties that were not covered
by QuickCheck that we considered important, therefore we
proved them:

• The union of two ranges commutes.
• The intersection of two ranges commutes.
• If a range is non-empty, the lower boundary is less than

the upper boundary.

RSet
The RangedSet module comes with various QuickCheck
properties that test the implementation of the RSet data type.
We proved in Agda the following ones:

• A normalised range list is valid for unsafeRangedSet.
• The empty set has no members.
• The full set has every member.
• The intersection of a set with its negation is empty.
• A set is the non-strict subset of itself.
• A set is not the strict subset of itself.
• Intersection commutes.
• Union commutes.
• For any value v and ranged sets A and B, if v ∈ (A∪B)

then v ∈ A or v ∈ B.
• For any value v and ranged sets A and B, if v ∈ (A∩B)

then v ∈ A and v ∈ B.
• For any value v and ranged set A, if v ∈ A then v is not

in the negation of A.
• For any value v and ranged sets A and B, if v ∈ A and
v /∈ B then v ∈ (A−B).

There are some other properties not covered by
QuickCheck that are worth proving. Since a RSet is math-
ematically a set, in other words a collection of things which
we call members, any property that holds in set theory should
also hold for a RSet. The “A Set Theory Formalization” re-
port [14] aims to prove the set theory axioms in Agda. Al-
though the implementation of a RSet is different from the
one of a usual set, we proved that some of its usual properties
also hold for RSets:

• For any two ranged sets A and B, if A ⊂ B then A ⊆ B.
• For any two ranged sets A and B, if A ⊂ B then B 6⊆ A

holds.

https://twanvl.nl/blog/agda/sorting


• For any value v and ranged sets A and B, if v ∈ (A∪B)
then v ∈ (B ∪A).

• For any value v and ranged set A, v ∈ (A∪A) is equiv-
alent to v ∈ A.

4 Limitations of proving in Agda
Porting the Ranged-sets library to Agda comes also with a no-
table disadvantage. Proving properties can quickly become
unfeasible, since a mathematical proof needs to check all
paths that the program can take. When a function has mul-
tiple possible patterns for the input, when it is composed of
nested if then else statements, or when there are multiple
nested functions used, proving quickly becomes tedious.
There are some QuickCheck properties that were not con-
verted to Agda proofs during this project and therefore re-
main subject of future work. The most notable ones are the
following:

• De Morgan’s Law for Intersection: negating the inter-
section of two sets is equivalent to the union of the two
sets’ negations.

• De Morgan’s Law for Union: negating the union of two
sets is equivalent to the intersection of the two sets’
negations.

However, there are some techniques that could be useful
when proving properties about the Ranged-sets library. The
approaches used in this paper for simplifying proofs are the
following:

• reduce them to smaller proofs, technique which we pre-
viously called splitting;

• define the preconditions and prove them for every func-
tion that requires this;

• define the invariants and prove them by either splitting
or by using the preconditions proofs;

• define the post-conditions (properties) and prove them
by either splitting or by using the invariants proofs;

• define helper proofs as postulates.

We must note that using postulates comes with a draw-
back: they do not ensure that if the code modifies, the
property still holds. That is because postulates are used
for defining values as types without providing their actual
implementation [15]. As mentioned in 3, our implementation
uses some unproven postulates, mostly about boolean logic
and properties of the Ord type. These can be found here:
https://github.com/ioanasv/research-project/blob/master/src/
RangedSetsProp/library.agda. However, there are also a few
postulates about the Ranged-sets library types, that were used
as helper proofs throughout the process of verification. Some
of them can be considered out of the scope of the project,
such as proving that the sort method actually produces a
sorted list or that the filter method actually filters a list.
Nevertheless, proving the used postulates is possible and
remains a subject of future work.

5 Experimental Setup and Results
The Agda version of the Ranged-Sets library was imple-
mented in Visual Studio Code [16]. The agda and agda-mode
programs were installed using Cabal [17] [18]. agda2hs can
be found here: https://github.com/agda/agda2hs. It can be
installed and built using either the existing make file, or by
using Stack [19].

The Ranged-sets library can be reproduced and verified in
Agda. There are no practical limitations of total functions for
the implementation of this library. Moreover, proving precon-
ditions comes with a great improvement to the library. Even
though the preconditions are mentioned in the documentation
of the library, they are not checked, thus some functions may
not behave as expected when these constraints are not met.
Another important advantage of porting the Ranged-sets li-
brary to Agda is the possibility of guaranteeing that the in-
variants hold. By proving them, the output of the functions
is ensured to be valid, as was explained in 3.4. Furthermore,
we converted most of the QuickCheck properties from the
Haskell Ranged-sets library to Agda proofs. Some of the
QuickCheck properties provided by this library turned out to
be unfeasible for this project and future research is needed in
order to complete them, as explained in 4.

An quantitative overview of the Ranged-sets Haskell li-
brary, its Agda implementation and our proofs can be seen
in Fig. 27. Note that for a fair comparison, we only counted
the lines of code of the QuickCheck properties we proved in
Agda. The biggest increase can be observed when translat-
ing the QuickCheck properties to Agda proofs, this being the
most challenging part of our project.

Figure 27: Distribution of lines of code over the Haskell library, its
Agda implementation and proofs.

The Agda implementation of the Ranged-sets library can
be ported back to Haskell, using agda2hs. The implicit argu-
ments are removed from Agda functions when translating to
Haskell, thus the proofs for the preconditions and invariants
are no longer present nor required, therefore it has the same
functionality as the original Haskell library. An example can
be seen in Fig. 28, where the Agda implementation of the
RSet requires an implicit argument that the provided range
list is valid, as discussed in 3.4.

https://github.com/ioanasv/research-project/blob/master/src/RangedSetsProp/library.agda
https://github.com/ioanasv/research-project/blob/master/src/RangedSetsProp/library.agda


Figure 28: Translation from Haskell to Agda and back to Haskell
using agda2hs.

6 Responsible Research
The integrity and reproducibility of experimental results is
vital for research projects since it creates trust, ensures trans-
parency and therefore, confidence. The aim of this research
is to produce a verified translation of the Haskell Ranged-sets
functional library to Agda.

To ensure reproducibility, in Section 3, we explain the
general guidelines of the implementation and verification of
the library. If the reader has further questions or uncertain-
ties, the entire code is available at https://github.com/ioanasv/
research-project. By making our code public, we ensure that
it can be easily checked that the techniques we presented are
adequate for translating and verifying this specific library.
Moreover, in 28, we introduce the experimental setup: the
IDE that was used, as well as the needed dependencies. This
guarantees that the code can be run on any machine that sup-
ports Visual Studio Code, Agda and agda2hs.

Furthermore, in order to ensure integrity, we state in Sec-
tion 4 the limitation of our research, as well as the fact that
our implementation relies on some unproven postulates used
to ease the verification process. We aimed for scientific hon-
esty, thus the reader can trust and understand our work.

7 Related Work
7.1 hs-to-coq
Similar to agda2hs, hs-to-coq is a tool that translates total
Haskell code to Coq in order to verify the correctness of
Haskell programs [20]. Comparable to Agda, Coq is a proof
assistant [21] and therefore, a great tool for writing proofs.
The “Ready, Set, Verify! Applying hs-to-coq to real-world
Haskell code” project used hs-to-coq to translate a part of the
Haskell containers library to Gallina, the specification lan-
guage of Coq, and verified its properties using the Coq proof
assistant [22]. In order to state the specifications of the li-
brary, they used several techniques, such as: retrieve the in-
variants from the validity of a type, use the already defined
QuickCheck properties, formalize the specifications given in
the comments of the library, or prove the type class laws, if
any. These approaches are very similar to our work, as is
explained in 3. However, our work focuses only on proving
preconditions, invariants, and properties (post-conditions).

7.2 Balancing weight-balanced trees
Hirai and Yamamoto [23] aimed to provide a purely func-
tional and reliable version of the weight-balanced tree data
structure. The reasoning behind their research is the fact
that in many functional implementations of this data struc-
ture, after insertion and deletion, the balancing property does
not hold anymore. They identified the valid rotation param-
eters under which the balancing property holds for insertion
and deletion, using Coq. However, our work is different and
broader than this: we also provide proofs about preconditions
and properties, not only about invariants.

7.3 Liquid Haskell
Liquid Haskell [24] is a program that verifies Haskell pro-
grams against logical specifications using refinements types
(types embedded with predicates that need to be satisfied by
all values of those types). It uses a satisfiability modulo theo-
ries (SMT) solver that determines the satisfiability of first-
logic formulas. In the case of Liquid Haskell, a formula
is a predicate defined in a refinement type. “A tale of two
provers: verifying monoidal string matching in liquid Haskell
and Coq” [25] compares Liquid Haskell and Coq as theorem
provers and concludes that both have advantages: while Liq-
uid Haskell is SMT-automated, Coq has a large variety of tac-
tics for proving.

8 Conclusions and Future Work
This paper presents a verified implementation of the Haskell
Ranged-sets library in Agda, using agda2hs, a program that
provides a common subset between these two programming
languages. After adding the missing dependencies that the
library requires, the Agda implementation was possible and
successful. In order to verify it, we proved its preconditions,
invariants and properties. Moreover, by adding and verifying
preconditions and invariants, we produced a better and safer
version of this library: even though they were mentioned in
the documentation of the Haskell library, the preconditions
and invariants were never checked.

Moreover, we converted most of the QuickCheck proper-
ties to Agda proofs, the main advantage being that we no
longer rely on the input generated by QuickCheck to verify
them. However, proofs in Agda can quickly become unfeasi-
ble even when proving properties about moderate size func-
tions. Future research is needed for easing the process of
proving, such as improvement in the Agda’s reflection mech-
anism used for equivalence relations, or even identifying sim-
ilar properties and the corresponding approaches to actually
prove them.

References
[1] Haskell language, https://www.haskell.org/.
[2] G. Hutton, Programming in Haskell. Cambridge Uni-

versity Press, 2016.
[3] Agda, https://github.com/agda/agda.
[4] Curry-howard correspondence, https : / / www . cs .

cornell . edu / courses / cs3110 / 2021sp / textbook / adv /
curry-howard.html.

https://github.com/ioanasv/research-project
https://github.com/ioanasv/research-project
https://www.haskell.org/
https://github.com/agda/agda
https://www.cs.cornell.edu/courses/cs3110/2021sp/textbook/adv/curry-howard.html
https://www.cs.cornell.edu/courses/cs3110/2021sp/textbook/adv/curry-howard.html
https://www.cs.cornell.edu/courses/cs3110/2021sp/textbook/adv/curry-howard.html


[5] F. Besson, S. Blazy, and P. Wilke, “Compcerts: A
memory-aware verified c compiler using pointer as in-
teger semantics,” Interactive Theorem Proving Lecture
Notes in Computer Science, pp. 81–97, 2017. DOI: 10.
1007/978-3-319-66107-0 6.

[6] P. Dybjer, Q. Haiyan, and M. Takeyama, “Combining
testing and proving in dependent type theory,” in The-
orem Proving in Higher Order Logics, D. Basin and B.
Wolff, Eds., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, pp. 188–203.

[7] Quickcheck: Automatic testing of haskell programs.
[Online]. Available: https : / / hackage . haskell . org /
package/QuickCheck.

[8] Agda2hs, https://github.com/agda/agda2hs.
[9] PaulJohnson, Pauljohnson/ranged-sets. [Online].

Available: https: / /github.com/PaulJohnson/Ranged-
sets.

[10] B. J. Copeland, “The Church-Turing Thesis,” in The
Stanford Encyclopedia of Philosophy, E. N. Zalta, Ed.,
Summer 2020, Metaphysics Research Lab, Stanford
University, 2020.

[11] U. Norell, “Dependently typed programming in agda,”
in Proceedings of the 6th International Conference on
Advanced Functional Programming, ser. AFP’08, Hei-
jen, The Netherlands: Springer-Verlag, 2008, pp. 230–
266, ISBN: 3642046517.

[12] D. Devriese and F. Piessens, “On the bright side of
type classes: Instance arguments in agda,” vol. 46, Sep.
2011, pp. 143–155. DOI: 10.1145/2034574.2034796.

[13] Invariant (mathematics), May 2021. [Online]. Avail-
able: https : / / en . wikipedia . org / wiki / Invariant
(mathematics).

[14] A. Calle-Saldarriaga, “A Set Theory Formalization,”
Mathematical Engineering, Universidad EAFIT, Tech.
Rep., Jun. 2017.

[15] Postulates. [Online]. Available: https : / / agda .
readthedocs.io/en/v2.6.1.3/language/postulates.html.

[16] Visual studio code - code editing. redefined, Apr. 2016.
[Online]. Available: https://code.visualstudio.com/.

[17] Installation - agda 2.6.2 documentation. [Online].
Available: https : / / agda . readthedocs . io / en / latest /
getting-started/installation.html.

[18] Cabal user guide. [Online]. Available: https : / /cabal .
readthedocs.io/en/3.4/.

[19] S. contributors, The haskell tool stack. [Online]. Avail-
able: https : / / docs . haskellstack . org / en / stable /
README/.

[20] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and S.
Weirich, “Total haskell is reasonable coq,” in Proceed-
ings of the 7th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, ser. CPP 2018,
Los Angeles, CA, USA: Association for Computing
Machinery, 2018, pp. 14–27, ISBN: 9781450355865.
DOI: 10 .1145/3167092. [Online]. Available: https : / /
doi.org/10.1145/3167092.

[21] T. C. development team, The coq proof assistant ref-
erence manual, 2016. [Online]. Available: http://coq.
inria.fr.

[22] J. Breitner, A. Spector-Zabusky, Y. Li, C. Rizkallah,
J. Wiegley, and S. Weirich, “Ready, set, verify! apply-
ing hs-to-coq to real-world haskell code (experience
report),” Proc. ACM Program. Lang., vol. 2, no. ICFP,
Jul. 2018. DOI: 10.1145/3236784. [Online]. Available:
https://doi.org/10.1145/3236784.

[23] Y. HIRAI and K. YAMAMOTO, “Balancing weight-
balanced trees,” Journal of Functional Programming,
vol. 21, no. 3, pp. 287–307, 2011. DOI: 10 . 1017 /
S0956796811000104.

[24] N. Vazou, “Liquid haskell: Haskell as a theorem
prover,” Ph.D. dissertation, University of California,
San Diego, 2016.

[25] N. Vazou, L. Lampropoulos, and J. Polakow, “A tale
of two provers: Verifying monoidal string match-
ing in liquid haskell and coq,” in Proceedings of
the 10th ACM SIGPLAN International Symposium on
Haskell, ser. Haskell 2017, Oxford, UK: Association
for Computing Machinery, 2017, pp. 63–74, ISBN:
9781450351829. DOI: 10 . 1145 / 3122955 . 3122963.
[Online]. Available: https://doi.org/10.1145/3122955.
3122963.

https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-319-66107-0_6
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://github.com/agda/agda2hs
https://github.com/PaulJohnson/Ranged-sets
https://github.com/PaulJohnson/Ranged-sets
https://doi.org/10.1145/2034574.2034796
https://en.wikipedia.org/wiki/Invariant_(mathematics)
https://en.wikipedia.org/wiki/Invariant_(mathematics)
https://agda.readthedocs.io/en/v2.6.1.3/language/postulates.html
https://agda.readthedocs.io/en/v2.6.1.3/language/postulates.html
https://code.visualstudio.com/
https://agda.readthedocs.io/en/latest/getting-started/installation.html
https://agda.readthedocs.io/en/latest/getting-started/installation.html
https://cabal.readthedocs.io/en/3.4/
https://cabal.readthedocs.io/en/3.4/
https://docs.haskellstack.org/en/stable/README/
https://docs.haskellstack.org/en/stable/README/
https://doi.org/10.1145/3167092
https://doi.org/10.1145/3167092
https://doi.org/10.1145/3167092
http://coq.inria.fr
http://coq.inria.fr
https://doi.org/10.1145/3236784
https://doi.org/10.1145/3236784
https://doi.org/10.1017/S0956796811000104
https://doi.org/10.1017/S0956796811000104
https://doi.org/10.1145/3122955.3122963
https://doi.org/10.1145/3122955.3122963
https://doi.org/10.1145/3122955.3122963

	Introduction
	Preliminaries
	About Ranged-sets
	From partial to total functions
	Proving properties with dependent types

	Porting to Agda
	Dependencies
	The data types
	Boundaries
	Ranges
	RangedSet

	Preconditions
	output-6.cpt
	output-8.cpt
	output-10.cpt

	Invariants
	output-11.cpt
	output-17.cpt
	output-24.cpt
	output-26.cpt
	output-29.cpt

	Properties
	Boundary
	Range
	RSet


	Limitations of proving in Agda
	Experimental Setup and Results
	Responsible Research
	Related Work
	hs-to-coq
	Balancing weight-balanced trees
	Liquid Haskell

	Conclusions and Future Work

