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Inclusion of the lesion of chronic stroke patients
into a volume conduction model

Simulating the influence of the lesion on the electric field distribution generated by tDCS

F.E.M. Jeukens1,2∗, A. Schouten1, M. Manoochehri1, R. W. Selles2, J. van der Cruijsen2, T. Oostendorp3, M. C. Piastra3

Abstract—Stroke is a cerebrovascular disorder with 15
million cases every year worldwide. The most common
symptom is motor deficits. In order to overcome such
symptoms, the motor brain either repairs the damaged tissue
or reorganises to compensate for the injured brain region.
To stimulate this reorganisation transcranial Direct Current
Stimulation (tDCS) is considered to be a promising thera-
peutic intervention. Simulations of electric field distributions
generated by tDCS currently entail individualised volume
conduction models to improve tDCS. A volume conduction
model includes geometry and conductivity properties of tissue
types in healthy subjects. When applying existing models to
chronic stroke subjects, electric field distribution patterns
differ substantially compared to healthy subject distribution
patterns. In current models, the lesion is not identified and
acknowledged as a distinctive tissue type, as it is yet unclear
what the lesion influence is. However, the lesion is a potential
source of variability in desired electric field distribution
which could result in different motor recovery. A volume
conduction model is designed by combining the software
SimNIBS, which can segment the head of healthy subjects
and LINDA, able to distinguish lesion tissue of chronic stroke
subjects. The location and the conductivity value of the lesion
seem to influence the electric field distribution of tDCS where
this individualised model is preferred. Including the lesion is
an important advance towards the use of volume conduction
models for chronic stroke subjects to prospectively find
optimal electrode configurations, keep the safety margins and
to prospectively analyse the results of tDCS.
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I. INTRODUCTION

STROKE is the leading cause of adult long-term dis-
ability worldwide. One out of six people suffers from

a stroke, according to the World Health Organization [1].
Stroke is a cerebrovascular disorder where the blood flow
in the brain is interrupted, either by occlusion or rupture of
a blood vessel. A deficit of oxygen is caused in a certain
brain area, the tissue will be damaged, and this area is
called the lesion. A lesion leads to dysfunction through
the interruption of structural and functional pathways, and
deregulation of cortical excitability and the motor cortex
can be damaged or replaced by lesion tissue[2]. 80% of
stroke survivors encounter motor impairments resulting

from brain damage, which makes it one of the main
challenges[3]. The quality of life of patients is affected
by difficulties in performing daily activities and social
participation [4].

In the first months post stroke, patients often regain
between 40% and 70% of the initial clinical deficit.
Clinical progress is caused by brain-recovery mechanisms
occurring spontaneously already in the first days to weeks
post stroke [5][6] [7]. Neuroplasticity is the basis of this
mechanism [8] which is defined as the ability of the
brain to change continuously throughout an individual’s
life, e.g., brain activity associated with a given function
can be transferred to a different location, the proportion
of grey matter can change, and synapses may strengthen
or weaken over time. Through neuroplasticity, the neural
networks will be optimised after a brain injury[9]. The
clinical recovery where body functions are restored can
be caused by restitution and substitution, where resti-
tution is the repair of damaged tissue and substitution
the reorganisation of neural pathways when other brain
areas compensate for the damaged tissue to regain motor
function [10].

Substitution is enabled by the diffuse and redundant
connectivity existing in the brain [11]. Functional changes
and circuits in non-injured regions can intervene in sup-
porting compensatory mechanisms and in this way, re-
organisation is related to the recovery of motor function
[7][6]. Stroke lesions lead to different reorganisations; effi-
cient information processing critically deviates, reduction
of within-hemisphere segregation between different brain
systems and the connectivity is changed between both
hemispheres, resulting in contralesional activity by motor
outcome produced by the ipsilesional hemisphere[5] [12].

Transcranial Direct Current Stimulation (tDCS) is one
of the therapeutic interventions to stimulate reorganisation
of the motor brain, to overcome motor impairments and
stimulate recovery. TDCS is a promising non-invasive
brain stimulation technique in research state and a viable
tool due to its limited side-effects, safety, availability,
costs, portability and relatively simple use[2]. Target and
reference electrode are placed on the scalp. A low-intensity
direct current, between 0.5 and 2 mA, is delivered and con-
ducted by the brain tissues to complete the circuit. Cortical
regions exposed to higher electric field strength are more
likely to modulate, which enhance motor recovery [13].
To stimulate motor recovery, the target area is the motor
cortex, and the electric field strength should be as high as
possible in that area.

The electric field distribution of tDCS depends on
various factors: the size, polarity, amount and position
of the electrodes, the applied current intensity and the
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properties, as conductivity, of the tissue in the stimulated
area[2][14][15]. To investigate the effect of different set-
tings of these parameters and to predict if the current will
reach the target area, it is possible to simulate the electric
field distribution through a so-called volume conduction
model.

Requirements of a volume conduction model are the ge-
ometry of the structures in the head and their conductivity
values. Such software is Simulation of Non-invasive Brain
Stimulation (SimNIBS) where firstly a magnetic resonance
image (MRI) of the head is converted into high-quality
tetrahedral volume meshes. Then the volume meshes are
used in the electric field with calculations based on finite
elements. The result is a visualisation of the electric field
distribution of the simulated tDCS stimulation and based
on the outcome of the electric field distribution. The
electrode configuration can be determined to reach the
motor cortex.

Nowadays, for the simulation of the electric field distri-
bution generated by tDCS, volume conduction models of
healthy subjects are used. A volume conduction model of
the head is created which includes the geometry and con-
ductivity of scalp, skull (compact bone and spongy bone),
grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF).

Various clinical tDSC studies where motor excitability
have been modulated in stroke patients show different
results wherein some studies 50% of stroke patients fail to
show a response to stimulation [2]. The different outcomes
of studies could be caused by the use of inaccurate volume
conduction models not representing the brain of chronic
stroke subjects. The volume conduction models used for
healthy subject gives different results for stroke subjects
which could be caused by the lesion[16]. Because lesions
can present conductivity values dramatically different then
is assigned by existing tools. Incorrect conductive prop-
erties can be introduced in the volume conduction head
model[17] and will finally lead to inaccurate electric field
distribution while simulating tDCS[13]. They are resulting
in either undesired electric field strength values in the
target area or unsafe high values. The influence of the
lesion is not clear though a potential source of variability
in desired electric field distribution which could result in
different motor recovery.

This study aims to develop an automatic pipeline to
investigate the influence of a lesion on the simulated elec-
tric field distribution in volume conduction head models of
chronic stroke subjects. This simulation study will quantify
the relation between lesion conductivity and the electric
field distribution for chronic stroke subjects compared to
simulation models where the lesion is not included.

In this study, a volume conduction head model is created
by segmenting the head into the scalp, skull (compact
bone and spongy bone), GM, WM and CSF. The lesion
will be included in the volume conduction head model by
relabeling the tissues on the location of the lesion. After
that, tDCS is simulated with the model where the lesion
is not included and with the model where the lesion is
included and assigned different values for conductivity.
Finally, the method will be evaluated for one chronic
stroke subject by comparing the electric field distribution

in the two models.

II. METHODS

First, the automatic generation of the volume conduction
model is described. The tDCS simulation settings are
presented, and finally, the two different head models and
the measures for the quantification of the differences for
the whole grey matter volume and within the target area
are introduced to analyse the results of ipsilesional and
contralesional stimulation of 1 chronic stroke subject.

Fig. 1. Automatic pipeline to create volume conduction model of a
chronic stroke subject where the lesion is included in the model. The
input is a T1w, SimNIBS segments the head into the scalp, skull (both
compact and spongy bone), GM, WM and CSF. LINDA identifies the
lesion and the corresponding SimNIBS elements are relabelled into
lesion.

A. Volume conduction model

The first step to create a volume conduction model is
to assign each voxel of the T1 weighted MRI (T1w) to a
specific tissue class. On the one hand, the segmentation
of the T1w into the scalp, spongy bone and compact
bone of the skull (compact bone and spongy bone),
GM, WM and CSF was performed with the SimNIBS
software version 2.1.2 (2019)[18]. Only SimNIBS is not
able to recognise lesion tissue. So, on the other hand, the
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software named Lesion Identification with Neighborhood
Data Analysis (LINDA) version 0.5.0 is needed to identify
the stroke lesion[19]. Finally, the two segmentation tools
were combined in order to create a volume conduction
model representing the brain of a chronic stroke subject.
The Matlab-based automatic pipeline of the process to
create the desired model is visualised in Figure 1 and
described in the following.

1) MRI settings: The input of the automatic pipeline
is a T1w of a chronic stroke subject, where chronic is
defined as more than six months post stroke onset. Here
the T1w was acquired with the following settings: TR =
8100 ms, TE = 100 ms, flip angle = 90 degrees, FOV =
240 x 240 x 130 mm, voxel size = 2.5 x 2.5 x 2.5mm and
with fat suppression.

The T1w should be acquired with a fat suppression
method, so not using a low readout bandwidth. Because
then the positions of the (fatty) spongy bone and sub-
cutaneous fat will not be displaced in the T1w due to
the chemical shift artefact and the segmentation of the
GM pial surface and the boundary between CSF will be
more accurate, because the spongy bone will not touch the
GM[20].

2) Segmentation whole head: The T1w accounted as
the input of SimNIBS to reconstruct the realistic ge-
ometries of Scalp, Compact bone, Spongy bone, GM,
WM and CSF. SimNIBS is a fast and free software on
www.SimNIBS.org. The toolbox of SPM12 is used to
segment the T1w and performs more accurate compared to
other segmentation tools, especially on the segmentation
of the skull[20]. The accuracy of the segmentation of
the head models has a strong influence on the accuracy
of the calculated electric field distributions of the tDCS
simulation[21]. In particular, the segment of the skull
exerts a strong influence on the electric field distribution
due to the much lower conductivity compared to the other
tissues. SimNIBS offers headreco as an option for the
segmentation. The SPM12 toolbox is used and provides
the computational anatomy toolbox CAT12, which creates
surface reconstructions of the GM[22]. SimNIBS is not
able to recognise the lesion as a separated segment and will
assign the lesion part of the brain in one of the geometries.

3) Segmentation lesion: Currently, the gold standard to
segment a lesion is the manual procedure where the voxels
belonging to the lesion are assigned manually per slice.
An expert is necessary with expertise in neuroanatomy
and manually segmenting is time-consuming and labour-
intensive. The results could be inconsistent from rater to
rater. For large-scale stroke rehabilitation neuroimaging
analyses the manual procedure is not feasible. In this study,
the fully automated software of LINDA was used. It is
a supervised (based on machine learning), mono channel
algorithm trained on over 100 patients cross-institutional
to segment left-hemispheric chronic stroke lesions from
T1w[19]. T1w of right-sided lesions were first flipped
before using LINDA. The output was the mask of the
lesion tissue as a nifti file.

4) Creating a mesh: The software SimNIBS creates a
tetrahedral volume mesh based on the segmented T1w,
i.e., the output of step 2. The mesh, therefore, does
not contain the lesion. To create a mesh which is more

representative for the chronic stroke subject, the lesion
segmented by LINDA was included. In order to do so, first,
the coordinates of the lesion mask voxels were identified.
Then the centres of the mesh elements within the lesion
mask voxels were therefore labelled as ”lesion”.

B. tDCS simulation

In order to investigate the influence of the lesion con-
ductivity on the volume conduction model, different values
were applied during different tDCS simulations. They
were applied with the same software as the segmentation:
SimNIBS. First, the electrodes were built into the model
and calculations were performed to determine the effects.

1) Electrode configuration: Two tDCS electrodes were
modelled as elliptical patches with a size of 1 cm x 1 cm
and thickness of 3 mm. To simulate stimulation of the left
and right motor cortex, the electrodes were placed at the
C3 and the Fp2 and the C4 and the Fp1, respectively, as
shown in Figure II-B1 [23]. The electrodes are modelled
as additional volumes on top of the skin. The nodes of the
mesh closest to the anode were assigned with a potential
of +Φ and to the cathode with -Φ, where a total current
of 2.00 mA was simulated.

Fig. 2. The electrode positions to stimulate the left motor cortex are
C3 and Fp2, depicted in red and to stimulate the right motor cortex the
positions are C4 and Fp1, depicted in blue using a 10/20 EEG system[23]

2) Conductivity values: The conductivity values for the
healthy tissues were obtained from the SimNIBS software
and the model was simulated for 11 lesion conductivity
values ranging from 0.50 till 2.00 S/m[17][24]. All con-
ductivity values are presented in Table I.

3) Calculations: The potential Φ[V] was computed
at each node of the mesh with the software SimNIBS.
By solving numerically with the finite element method
(FEM) it allows one to break down structures into smaller
triangle and tetrahedral elements, which the FEM mesh
is made of. By assigning distinct electrical properties to
the individual elements, the following Laplace equation
can be fully solved:

5 · (σ5 Φ) = 0 in Ω,

where σ is the conductivity value [S/m] and Ω the head
model. As a further computation, the electric field E =
−5 Φ was computed in each element of the mesh.
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TABLE I
CONDUCTIVITY VALUES TDCS SIMULATION

Tissue Conductivity [S/m]

Scalp 0.465
Skull:
Compact bone 0.008
Spongy bone 0.025
GM 0.275
WM 0.126
CSF 1.654
Lesion 0.50, 0.65, 0.80, 0.95, 1.10

1.25, 1.40, 1.55, 1.70, 1.85, 2.00
Presented are the conductivity values assigned to 7 tissues types in
the volume conduction model. With the conductivity values tDCS
was simulated. For the lesion the model was evaluated with 11
different conductivity values.

C. Analysis

In order to investigate the influence of the conductive
properties of the lesion on tDCS simulation of the motor
cortex, two volume conduction models were created.

• Model 1 where the lesion is not included, and the
lesion voxels of the T1w were assigned to, scalp,
skull (compact bone and spongy bone), GM, WM
or CSF according to SimNIBS.

• Model 2 was created according to the method de-
scribed above where the geometry of the lesion is
included as well as the conductive properties.

The distribution of the electric field was investigated for
the two volume conduction models and repeated with 11
different conductivity values assigned to the lesion (see
Table I). They were compared: 1) in the whole GM volume
and 2) within a target area, the motor cortex and for Model
2 within the lesion.

1) Whole grey matter volume : The electric field
strength trough the whole GM volume is analysed for
Model 1 and 2. The maximum values for the electric field
strength are compared between the two models.

2) Target area: To investigate the difference of the
tDCS simulation exactly in the target region within the
GM, a small volume was constructed. A medical doctor
visually identified the motor hotspot, and a sphere with
a radius of 1 cm around the hotspot was selected as the
region of interest which contained all elements within this
volume of GM. To estimate the effect of the different
conductivity values, the mean and maximum of the electric
field strength within the sphere were used. The values were
compared between Model 1 and Model 2. Also, the mean
and maximum electric field strength were calculated of the
lesion segment for every conductivity value in Model 2.

III. RESULTS

First, the general results are presented concerning the
automatic pipeline. The volume conduction model created
by SimNIBS contained 3,536,411 tetrahedral elements in
total. 176,734 were relabelled into lesion because their
centres were located within the 208,312 voxels, which
were segmented as lesion according to LINDA as pre-
sented in Table II. The lesion volume was 183,09 ml.
Furthermore, the outcomes of the automatic pipeline are

shown on two different levels: Firstly, the results for
the electric field for the whole grey matter volume and
secondly, for the target regions one representing the motor
area for the hand and the other the lesion.

TABLE II
AMOUNT OF ELEMENTS OF THE VOLUME CONDUCTION MODEL

Total Lesion MC (i) MC (c)

Tetrahedra 3,536,411 176,734 108 2293
Triangles 827,832 36,364 50 663
MC (i) is the ipsilesional motor cortex, MC (c) the contralesional.

The electric field strength magnitude injected in the grey
matter by 2 mA tDCS simulated with Model 2 ranged from
0.017 till 1.13 V/m for ipsilesional stimulation and from
0.004 till 0.90 V/m for contralesional stimulation.

A. Whole grey matter volume

In Figure 3 is the electric field distribution presented
through the whole GM volume. For ipsilesional stim-
ulation, the maximum electric field strength in Model
1 (without lesion) was 2.06 V/m. For Model 2 (where
the lesion was included) this value increased from 1.04
till 1.13 V/m respectively for lesion conductivity values
between 0.50 and 2.00. A decrease in electric field strength
through the whole GM volume between the two models
was observed between 49.42% and 45.25%.
For contralesional stimulation, the maximum electric field
strength was 1.31V/m in Model 1 and decreases were
observed of 38.43% till 34.65% for this value in Model 2
with lesion conductivity of 0.50 till 2.00 S/m respectively
as presented in Table III. The maximum values differed in
location between Model 1 and 2 but stayed the same for
all lesion conductivity values.

TABLE III
MAXIMUM ELECTRIC FIELD STRENGTH IN GM WHEN SIMULATING

2MA TDCS

σl EI
mx EC

mx

[S/m] [V/m] [V/m]

Model 1 - 2.06 1.31
Model 2 0.50 1.04 0.81

0.65 1.06 0.85
0.80 1.08 0.88
0.95 1.10 0.89
1.10 1.10 0.90
1.25 1.11 0.90
1.40 1.11 0.89
1.55 1.12 0.89
1.70 1.12 0.88
1.85 1.13 0.87
2.00 1.13 0.86

From left to right: Conductivity value assigned to lesion (σl), Max-
imum electric field strength in GM by stimulating the ipsilesional
motor cortex (EI

mx), Maximum electric field strength in GM by
stimulating the contralesional motor cortex(EC

mx).

B. Target area

The target area for the stimulation of the ipsilesional and
contralesional motor area for the hand is shown in Figure
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Fig. 3. The Electric field distribution in V/m in the whole grey
matter volume. Generated by 2mA tDCS simulation for ipsilesional and
contralesional stimulation. In model 1 no lesion was included in the
volume conduction model and for model 2 the lesion was included with
a conductivity of 0.50 and 2.00 S/m.

4. The left motor area for the hand (ipsilesional side)
consisted of 108 tetrahedral and 663 triangle elements and
was stimulated by electrodes positioned at C3 and the Fp2.
Simulated with Model 2 the mean electric field strength
in this area was 0.43 V/m where the lesion conductivity
was 0.5 S/m and the higher the lesion conductivity, the
lower the mean electric field strength became till 0.27
V/m for a lesion conductivity of 2.00 S/m. The values
simulated with Model 2 were compared to Model 1 and
were always higher, for a lesion conductivity of 0.50 S/m
the electric field strength was 63.1% more in Model 2.
The higher the lesion conductivity, the lower the mean
electric field strength was in Model 2, as presented in
Figure 5 till 1.7% for a lesion conductivity of 2.0 S/m.
With the electrodes positioned at C4 and the Fp1, the
right (contralesional) motor cortex was stimulated. This
target area contained 2293 tetrahedral and 36364 triangle
elements and the mean electric field strength was for every
lesion conductivity similar. For contralesional stimulation,
the mean electric field strength in the contralesional motor
cortex was 0.30V/m and the differences between Model
1 and Model 2 were also minimal with a maximum

Fig. 4. Visualization of the GM and the target areas, in red the left and
right motor area for the hand and in blue the lesion. With white and black
are the positions of the electrodes shown for respectively ipsilesional and
contralesional stimulation.

difference of 1.38% as shown in Figure 5.

IV. DISCUSSION

In this study, a volume conduction model is introduced
containing the geometry of the structures and the con-
ductivity values of the scalp, skull (compact bone and
spongy bone), GM, WM, CSF and the lesion for a chronic
stroke subject. An automatic pipeline is presented to create
individualised head models to simulate tDCS, which is
a desired step in the research field of improving motor
recovery by tDCS.

In the first place, the developed volume conduction
model could provide an individualised electrode configu-
ration for chronic stroke subjects. In other words, it means
that the volume conduction model is useful in the simula-
tion of tDCS, which consists of modelling the pathway of
the current through the head between the anode and the
cathode for a specific electrode configuration especially for
chronic stroke subjects. The electric field distribution and
the location of the highest electric field strength, where the
electric field strength is the highest, where reorganisation
of the grey matter is most likely[13], is dependent on
the electrode configuration and. Recent studies did not
make use of individualised volume conduction models for
chronic stroke subjects to find the optimal configuration
of the electrodes. The outcomes of recent studies are no
effects of motor recovery after tDCS compared to sham
tDCS for chronic stroke subjects[25]. Also, a systematic
review of Elsner et al. (2017)[26] presented, based on
sixteen clinical trials including 302 participants in total,
no evidence for the effect of different tDCS types on
the upper limb motor function of chronic stroke subjects.
However, for 12 randomised controlled trials with 284
participants, the effect of tDCS on activities of daily
living capacity gave moderate effects[26]. When tDCS was
combined with training of a specific task, the stimulation
had a positive effect on the specific task. However, no
evidence was found of a generalised effect on the motor
recovery[27]. From this can be concluded that tDCS could
have a positive effect on the motor recovery of chronic
stroke subjects and could be a promising therapeutic
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intervention, but improvements are necessary. Because the
literature does not provide clear guidelines regarding the
applied current intensity, tDCS type or electrode configu-
ration [28], a reliable model of the head of chronic stroke
subjects could help decide which individualised electrode
configuration should be applied. Secondly, the presented
volume conduction model could provide inside why clini-
cal tDSC studies show different results for chronic stroke
subjects. For complex phenomena such as motor recovery
knowledge, not only the electric field strength in the target
area and thus the corresponding electrode configuration is
critical, but also the resulting electric field distribution.
Because brain regions do not operate in isolation but
interact with other regions through networks. As such,
stimulation of one region may impact and be impacted
by other regions in its network[29]. With the volume
conduction model, presented in this study, tDCS can be
simulated with the applied electrode configuration, and
more inside can be given about the reason for the effective-
ness. Because fundamental unknowns remain about both
the motor recovery after stroke and the neurophysiology
of tDCS.

Thirdly, an automatic pipeline to create individualised
head models to simulate tDCS is a desired step in the
research field of improving motor recovery because re-
search is accelerated and could easily be extended. In
previous studies, the geometry of the lesion was assigned
manually, a subjective procedure which could differ from
rater to rater. In contrast with existing volume conduction
models, the pipeline presented in this study presents a fully
automatic inclusion of the lesion, which is objective and
less time-consuming. The automatic pipeline provides to
include many chronic stroke subjects in a more accurate
tDCS study. The input of the pipeline is only a single T1w,
which decreases the burden on stroke patients, because of
little acquisition time. Next to this, the acquisition costs
are lower, and the chances of motion-related artefacts are
decreased.

Finally, the volume conduction model in this study
contains the geometry and the corresponding conductivity
values for the scalp, skull (compact bone and spongy
bone), GM, WM, CSF and lesion, the methodology
also lends itself to be useful for other purposes beside
tDCS simulation, such as transcranial magnetic stimulation
(TMS) simulations and EEG source localisation.

In short, the developed automatic pipeline in this study
is suited to model the effect of the lesion automatically
on the electric field distribution in a chronic stroke subject
for a range of conductivity values between 0.50 and 2.00
S/m. The next two sections provide a discussion about the
achieved results on the level of the whole GM volume and
on the target area, which is the motor cortex.

A. Whole grey matter volume
Not only the electric field distribution in the target area

is of importance, but also the electric field distribution
in the remaining GM is essential to study. Firstly, to be
able to understand the motor recovery after stroke and the
neurophysiology of tDCS and secondly the range of the
electric field strength can be investigated to see if safety
margins have remained.

The safety of tDCS is dependent on levels of current
density and intensity, electrode size and electrode loca-
tions. If the established safety guidelines are followed
compiled by Fertonani et al. (2015 )[30] the electric field
strength will not exceed the safety limits in the GM for
healthy subjects. In a previous study of Minjoli et al.
(2017) [16] the safety was examined for stroke subjects
when tDCS was simulated on the volume conduction
model created by SimNIBS, where the lesion was not
included. The model used by Minjoli et al. [16] is compa-
rable to Model 1 presented in this study and gave in most
of the GM decreased electric field strength compared to
the healthy control. The maximum electric field strength
was not substantially different between the head models
with the lesions and healthy control. In this study, the
maximum electric field strength simulated with Model 2
was even lower compared to Model 1 taking the same
safety guidelines into account of Fertonani et al.[30]. So
it seems that a lesion with a conductivity value between
0.50 and 2.00 S/m does not have a negative influence on
the safety of tDCS for both stimulation configurations and
the maximum electric field strength falls within the safety
limits.

For both stimulation configurations and all lesion con-
ductivity values, the maximum electric field strength is
lower simulated with Model 2 compared to Model 1.
The overall electric field strength is also lower in Model
2 compared to Model 1 for ipsilesional stimulation, as
presented in 3. The values of the electric field strength can
be compared with the study of Minjoli et al. (2017) [16]
where for healthy subjects and stroke subjects tDCS was
simulated with a volume conduction model created with
the same procedure as Model 1. A substantial reduction (¿
30%) of the average field strength for the stroke subjects
simulated with the same procedure as Model 1 at almost
all distances to the electrode were observed[16]. In another
study healthy subjects were compared with stroke subjects
were the lesion was manually included with a conductivity
value of 1.675 S/m, so for stroke subjects, a model was
created comparable to Model 2 [31]. An increase of the
electric field strength is observed for Model 2 compared to
healthy subjects [31]. When the healthy subjects are taken
as the baseline, Minjoli et al. found a decrease compared
to their Model 1 and Wagner et al. an increase compared
to their Model 2. The increase in the Model 2 of Wagner
et al. compared to the decrease in electric field strength of
Minjoli et al. is not in line with the overall decrease found
in Model 2 compared to Model 1 presented in this study.
However, comparing the electric field strength with other
studies is complicated because the value is dependent on
the specific geometry of the subject, the lesion location
and the electrode configuration.

For both stimulation protocols, the maximum electric
field strength is lower in Model 2 compared to Model
1, which could confirm the observations of Datta et al.
(2011)[13], that the lesion has a preferred pathway for the
current, resulting in an altered electric field distribution
and lower strength in the grey matter. For contralesional
stimulation, the difference between the two models is
smaller. When the lesion is located far away from the
electrodes, the influence on the electric field distribution
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Fig. 5. In blue, the mean electric field strength through the motor cortex for ipsilesional stimulation is presented and in red for contralesional
stimulation. The difference between Model 1 and Model 2 of the mean electric field strength in the motor cortex are presented in percentages.

is limited, from which can be deduced that the influence
of the lesion is dependent on the location.

B. Target area

The investigation of the electric field strength in the
target area is important because tDCS is the most effective
for motor recovery when the higher electric field strength
is present in the target area[13]. To investigate the effect of
tDCS simulation in a specific target region within the GM,
a small volume was constructed representing the motor
cortex. A medical doctor assigned the centre of the target
area. For the contralesional hemisphere, this process gave
a reliable set of elements. However, for the ipsilesional
hemisphere, only a few elements in the area of the motor
cortex were available for analysis due to the geometry of
the lesion. By the observation can be deducted that the
location of the lesion in the volume conduction model
might provide a good indication for the remaining target
area available for stimulation. An example would be to
preferably stimulate the contralesional motor cortex to
promote reorganisation of the motor brain.

Though the ipsilesional target area is a small region
consisting only of a few elements which could influence
the outcomes, a striking result is found for ipsilesional
stimulation. For every lesion conductivity value, the mean
electric field strength simulated with Model 2 where the
lesion is included is always higher and never crossing the
value simulated with Model 1. In principle is expected that
the outcomes of the mean electric field strength simulated
by Model 2 would be the same at a certain point as
Model 1 when the conductivity value of the lesion area
simulated in Model 2 is comparable to Model 1. However,
it is not straight forward to compare Model 1 to Model
2 because the lesion tissue in both models varies; in

Model 1 the lesion tissue consists of a heterogeneous
mix of GM, WM and CSF, whereas in Model 2 the
lesion tissue is homogeneously characterised by a single
conductivity value. Also, for ipsilesional stimulation is the
mean electric field strength decreasing by an increasing
lesion conductivity simulated by Model 2, as shown in
Figure 5. In general, a high conductivity value for the
lesion provides a path of low resistance, which results in
an accumulation of current in the lesion. If in addition to
this, the lesion has a comfortable geometry concerning the
target area, the current will be accumulated in the target
area. However, if the conductivity value for the lesion is
significantly increased, the accumulation deviates from the
target area.

For contralesional, the lesion does not have a significant
influence on the mean electric field strength in the motor
cortex, indicating the influence of the lesion to be location
dependent.

For both the ipsilesional and contralesional stimulation
for this specific stroke subject, the maximum electric field
strength is outside the target area, which confirms the
need to develop a volume conduction model that includes
the lesion to be able to find an electrode configuration
which generates a maximum in the desired area. Moreover,
general guidelines of the electrode configuration to reach
the motor cortex could be revised based on this model[28]
and are necessary because as mentioned previously, the
goal of tDCS is to generate the maximum electric field
strength within the target area to be the most effective.

C. Limitations and recommendations

Some limitations of the current study can account for
future research. First, to conclude what the exact influence
is of the lesion on the electric field distribution, the
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lesion conductivity should be determined. In current tDCS
simulation studies, lesion tissue regions are manually
appointed in order to simulate the electric field density
distributions in the brain. Generally, a lesion conductivity
of 1.675 S/m, which corresponds to the conductivity value
of CSF, is appointed to the lesion tissue regions[13][31].
Regarding 1.675 S/m as a realistic value and adequate
lesion conductivity level, previous research resulted in a
maximum difference of 21% for the electric field distri-
butions, compared to healthy subjects[16]. Based on this
result, it can be concluded that the lesion conductivity is an
important factor to take into account during modelling and
should be determined. Secondly, in this study, the lesion is
considered as a homogeneous tissue with one conductivity
value for the whole lesion. However, lesion tissue could be
heterogeneous and could exist for a significant part of CSF.
Assigning the CSF part of the lesion could give a more
realistic model. So, realistic lesion conductivity levels
might neither be in the vicinity of the conductivity level of
CSF nor uniform[17]. Another limitation is that the mesh
of the head was constructed before including the lesion.
The area could be described by a rough mesh, which could
lead to an inaccurate description of the lesion because with
big or small elements. Furthermore recommended is to test
the automatic pipeline on more than one subject.

V. CONCLUSION

With the inclusion of the lesion in the volume conduc-
tion head model, an automatic pipeline is developed to
investigate the influence of the lesion on the electric field
distribution of tDCS simulation. From the results of this
simulation study, the following can be concluded:

• With the inclusion of the lesion in the volume conduc-
tion head model, an automatic pipeline is developed
which shows an influence of the lesion on the electric
field distribution of tDCS simulation.

• The influence of the lesion on the electric field distri-
bution is dependent on the location of the lesion. With
tDCS simulation of the ipsilesional motor cortex, the
lesion has more influence compared to contralesional
stimulation.

• The influence of the lesion is dependent on its
conductivity properties. In this particular subject, the
more conductive the lesion tissue, the less influence
on the electric field distribution in the motor cortex
compared to the volume conduction model where the
lesion is not included.

The results give new insights on how to develop a volume
conduction model of chronic stroke subjects used for
tDCS simulation and suggest room for improvement in the
outcomes and applications of the therapeutic intervention.
Important advancement could be made toward the use of
volume conduction models for chronic stroke subjects to
prospectively find optimal electrode configurations and to
prospectively analyse the results of tDCS.
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VI. APPENDIX

A. SEGMENTATION BY LINDA

All information of Appendix A. is retrieved from the paper of Pustina et al. (2016)[19] and the review of Ito et al.
(2018) [32]

A mono channel algorithm makes use of a single volume, LINDA uses a T1w. Phenomena belonging to chronic
stroke lesions, such as cortical necrosis, are visible on T1w, which makes the volume suitable as an input. By identifying
the lesion, not only the signal in the voxel itself is taken into account by LINDA but also 26 neighbouring voxels.
This is required because the segmentation is dependent on the surrounding context. An example is that white matter
hyperintensities should be labelled as lesion only if they extend from the core ischemic zone.

1 2

3

4

5

6

7

Fig. 6. Workflow of LINDA[19]

The workflow of the LINDA algorithm will be explained step wise.
1) Firstly, the data will be preprocessed with two iterations of bias correction and brain extraction and spatial

normalisation was performed.
2) Then the T1w is registered from native to template space to require the elimination of the lesion from computations

to avoid unrealistic deformations. It is also necessary that some features are computed as deviations from the
template. The template is built from 208 elderly subjects, where 115 healthy controls and 93 patients with various
diseases were included.

3) The first registration of the lesion mask is exposed by flipping the T1w in the y-axis and subtract it from each
other.

4) Six features were computed from the T1w; 1) deviation of k-mean segmentation from controls, 2) gradient
magnitude, 3) T1w deviation from controls, 4) k-mean segmentation, 5) deviation of T1w asymmetry from
controls, and 6) raw T1w volume.

5) These features were fed to the Random Forest (RF) classifier. A set of 60 T1w trained this classifier. A matrix
containing data from all subjects is used to train the RF model. Each row of the matrix contains information
about a single voxel of a single subject and includes values from neighbouring voxels on all features as columns.
Thus the model is trained to classify voxels based not only on the value of the voxel itself but also on its
neighbours. The status of the voxel (e.g., 1=healthy, 2=lesion) is used as ground truth outcome to train the RFs
which were manually classified in advanced. With this classifier, a posterior probability of healthy tissue or
posterior probability of lesion is assigned to a voxel. In the first round, this is done on a resolution of 6mm. By
the next round, the posterior probabilities of healthy or lesion tissue are used as an additional feature.

6) The predicted lesion mask is registered from template space back to native space to improve detection accuracy.
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7) Three hierarchical cycles were fulfilled with downsampling resolution of 6mm, 4mm, and 2mm. For the three
different resolutions, the neighbourhood radius was 26 voxels, so for the lowest resolution, the voxels are larger;
consequently, the neighbourhood information is wider.

8) At the highest resolution, posterior probabilities are converted into a discrete segmentation map. The voxel is
classified according to the highest posterior probability. For example, a voxel with 60% healthy and 40% lesioned
is classified as healthy.

9) For right hemisphere lesions, the T1w is flipped back.

A. Model assumptions of LINDA

Before working with LINDA, a few model assumptions should be taken into account. The algorithm is trained for
chronic left-sided stroke lesions. So before starting, the T1w should be visualised to see if the stroke patient has a
left-hemispheric lesion. If not, the T1w should be mirrored. Chronic is assumed to be between 3 to 154 months post
stroke. Moreover, the automatic algorithm is created and tested to predict a specific lesion type, the stroke lesion.
Therefore the accuracy of the method outside of the domain it was created for is typically scarce. Another assumption
is that the manually segmented lesions are considered correct. Based on a single expert who either drew the lesions
(approximately two-thirds) or reviewed the tracings completed by individuals he had trained. In addition to these model
assumptions, the lesion size and location should be taken into account. LINDA was biased to recognise larger lesions
and cortical ones. Due to the subcortical, brainstem and cerebellar strokes occur less frequently and are often smaller
than cortical lesions.
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B. RESULTS ELECTRIC FIELD STRENGTH TARGET AREA

TABLE IV
QUANTITATIVE RESULTS OF SIMULATING 2MA TDCS IN TARGET AREA

Stimulation of the ipsilesional Motor Cortex Stimulation of the contralesional Motor Cortex

σl EMC
mx EMC

mn ∆EMC
mn EL

mn EL
mx EMC

mx EMC
mn ∆EMC

mn EL
mn EL

mx
[S/m] [V/m] [V/m] Model 1 [V/m] [V/m] [V/m] [V/m] Model 1 [V/m] [V/m]

0.50 0.51814 0.42680 63.07% 0.29016 16.318 0.52913 0.30571 -1.356% 0.13819 1.0042
0.65 0.49201 0.39696 51.66% 0.25159 16.159 0.52968 0.30714 -0.8935% 0.12520 0.98071
0.80 0.46429 0.37261 42.36% 0.22314 15.968 0.53016 0.30835 -0.5010% 0.11488 0.95131
0.95 0.44663 0.35221 34.57% 0.20108 15.770 0.53060 0.30941 -0.1617% 0.10640 0.92014
1.10 0.43672 0.33477 27.90% 0.18339 15.574 0.53099 0.31033 0.1357% 0.099250 0.88904
1.25 0.42710 0.31964 22.12% 0.16882 15.385 0.53135 0.31114 0.3994% 0.093117 0.85886
1.40 0.41770 0.30637 17.05% 0.15658 15.204 0.53168 0.31188 0.6351% 0.087778 0.82997
1.55 0.40863 0.29460 12.56% 0.14612 15.031 0.53198 0.31253 0.8576% 0.083076 0.80252
1.70 0.39994 0.28409 8.54% 0.13707 14.867 0.53226 0.31313 1.040% 0.078896 0.77653
1.85 0.39166 0.27463 4.91% 0.12914 14.710 0.53251 0.31368 1.216% 0.075150 0.75197
2.00 0.38377 0.26607 1.66% 0.12214 14.562 0.53276 0.31417 1.377% 0.071770 0.72877

From left to right: Conductivity value assigned to lesion (σl), Maximum electric field strength in motor cortex (EMC
mx ), Mean electric field strength

in motor cortex (EMC
mn ), Difference of mean electric field strength in Model 2 compared to Model 1 (∆EMC

mn ) , Mean electric field strength in
lesion (EL

mn), Maximum electric field strength in lesion (EL
mx).
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C. ELECTRIC FIELD STRENGTH DISTRIBUTION IN TARGET AREA

Fig. 7. Electric field strength in the motor cortex and the lesion with tDCS simulation of the ipsilesional motor cortex
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D. MATLAB CODE

1 %% TOTAL s c r i p t
2 % C r e a t e s a Volume Conduc t ion Model f o r c h r o n i c s t r o k e p a t i e n t s
3 % Compares t h e d e v e l o p e d volume c o n d u c t i o n model w i th outcomes o f SimNIBS
4

5 % R e q u i r e m e n t s p i p e l i n e :
6 % SimNIBS 2 . 1 . 2 ( i n c l u d i n g : SPM12 and CAT12 )
7 % LINDA v e r s i o n 0 . 5 . 0
8 % F i e l d t r i p
9 % R v e r s i o n 3 . 5 . 3 (2019−03−11)

10 % Add SimNIBS and F i e l t r i p t o t h e Mat lab p a t h
11 % Replace t h e \ s i m n i b s 2 . 1 . 2 \ ma t l ab \ f u n c t i o n s \ s t a n d a r d c o n d .m ma t l ab f u n c t i o n o f SimNIBS
12

13 % USAGE:
14 % L e s i o n C o n d u c t i v i t y : L es i on c o n d u c t i v i t y v a l u e s
15 % c o n d l e s i o n : Le s i on c o n d u c t i v i t y v a l u e w i t h o u t d e c i m a l s
16 % To run s e g m e n t a t i o n s uncomment l i n e 31 ( commented due t o t ime
17 % consuming p r o c e s s )
18 % To run s i m u l a t i o n s uncomment l i n e 135 and l i n e 151 ( commented due t o t ime
19 % consuming p r o c e s s )
20

21 c l e a r a l l ;
22 c l o s e a l l ;
23 c l c ;
24 %% S e g m e n t e n t a t i o n whole head
25 % SimNIBS
26 c = s p r i n t f ( ’ cd Data /401 ; h e a d r e c o a l l −−c a t 401 401 T1 L . n i i −d no−conform ’ ) ;
27 % a l l = a l l r e c o n s t r u c t i o n s s t e p s ,
28 % 401 = name o u t p u t f o l d e r ,
29 % 401 T1 L . n i i = MRI d a t a
30 % −d no−conform = t o keep t h e a x i s o f t h e MRI ( S a t u r n i n o e t

a l . , 2018)
31 %sys tem ( c ) ; % C a l l SimNIBS from t h e t e r m i n a l
32

33 % Load Segmented Data
34 % S e g m e n t a t i o n mesh by SimNIBS
35 m1 seg = mesh load gmsh4 ( [ pwd , f i l e s e p , ’ Data / 4 0 1 / 4 0 1 5 . msh ’ ] ) ; % l o a d mesh segmented by SimNIBS

i n t o s c a l p , s k u l l , GM, WM and CSF
36 m2 seg = mesh load gmsh4 ( [ pwd , f i l e s e p , ’ Data / 4 0 1 / 4 0 1 5 . msh ’ ] ) ; % l o a d mesh segmented by SimNIBS

i n t o s c a l p , s k u l l , GM, WM, CSF and l e s i o n
37 %% S e g m e n t a t i o n l e s i o n
38 % LINDA
39 % Load Le s i on mask segmented by LINDA :
40 l e s i o n = f t r e a d m r i ( ’ Data / 4 0 1 / l i n d a / P r e d i c t i o n 3 n a t i v e . n i i . gz ’ ) ; % l o a d l e s i o n mask
41 %% C r e a t i n g a mesh
42

43 % 1 . Find c o o r d i n a t e s o f l e s i o n mask
44 [ r , c , v ] = i n d 2 s u b ( s i z e ( l e s i o n . anatomy ) , f i n d ( l e s i o n . anatomy == 1) ) ; % C o o r d i n a t e s l e s i o n v o x e l s
45 l e s i o n v o x = [ r c v ] ; % v o x e l s o f t h e l e s i o n
46 sc = l e s i o n v o x ∗ l e s i o n . t r a n s f o r m ( 1 : 3 , 1 : 3 ) ;
47 l e s i o n c o o r d i n a t e s = sc + repmat ( l e s i o n . t r a n s f o r m ( 1 : 3 , 4 ) ’ , s i z e ( sc , 1 ) , 1 ) ; % c o o r d i n t e s o f l e s i o n

c e n t e r
48 wx = 1 ; wy = 0 . 9 3 7 5 ; wz = wy ; % v o x e l d i m e n s i o n s
49

50 % 2 . Find c e n t e r s o f e l e m e n t s :
51 c e n t e r s t r i a n g l e s = m e s h g e t t r i a n g l e c e n t e r s ( m2 seg ) ; % C e n t e r s t r i a n g l e s
52 c e n t e r s t e t r a h e d r o n = m e s h g e t t e t r a h e d r o n c e n t e r s ( m2 seg ) ; % C e n t e r s t e t r a h e d r o n s
53

54 % F i l t e r on d i s t a n c e between v o x e l and e l e m e n t
55 % t e t r a h e d r o n s
56 [ i d x v o x t e t ,D] = k n n s e a r c h ( l e s i o n c o o r d i n a t e s , c e n t e r s t e t r a h e d r o n ) ; %i n d e x v o x e l c l o s e s t t o e lement

, D = d i s t a n c e between e l e m e n t and c l o s e s t v o x e l
57 A t e t = [ i d x v o x t e t , D ] ;
58 A t e t ( : , 3 ) = 1 : s i z e ( A te t , 1 ) ; %e l e m e n t i n d e x
59 A t e t ( A t e t ( : , 2 ) >2 , : ) = [ ] ; % Only keep i n d e c e s wi th a d i s t a n c e s h o r t e r t h a n 2mm
60

61 % T r i a n g e l s
62 [ i d x v o x t r i ,D] = k n n s e a r c h ( l e s i o n c o o r d i n a t e s , c e n t e r s t r i a n g l e s ) ; %i n d e x v o x e l c l o s e s t t o e lement ,

D = d i s t a n c e between e l e m e n t and c l o s e s t v o x e l
63 A t r i = [ i d x v o x t r i , D ] ;
64 A t r i ( : , 3 ) = 1 : s i z e ( A t r i , 1 ) ; %e l e m e n t i n d e x
65 A t r i ( A t r i ( : , 2 ) >2 , : ) = [ ] ; % Only keep i n d e c e s wi th a d i s t a n c e s h o r t e r t h a n 2mm
66

67

68

69 % 3 . Find e l e m e n t s w i t h i n l e s i o n v o x e l s
70 % t e t r a h e d r o n s
71 f o r i = 1 : l e n g t h ( A t e t ) ;
72 i f c e n t e r s t e t r a h e d r o n ( ( A t e t ( i , 3 ) ) , 1 ) > l e s i o n c o o r d i n a t e s ( A t e t ( i , 1 ) , 1 ) − wx / 2 &&

c e n t e r s t e t r a h e d r o n ( ( A t e t ( i , 3 ) ) , 1 ) < l e s i o n c o o r d i n a t e s ( A t e t ( i , 1 ) , 1 ) + wx / 2 && . . .
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73 c e n t e r s t e t r a h e d r o n ( ( A t e t ( i , 3 ) ) , 2 ) > l e s i o n c o o r d i n a t e s ( A t e t ( i , 1 ) , 2 ) − wy / 2 &&
c e n t e r s t e t r a h e d r o n ( ( A t e t ( i , 3 ) ) , 2 ) < l e s i o n c o o r d i n a t e s ( A t e t ( i , 1 ) , 2 ) + wy / 2 && . . .

74 c e n t e r s t e t r a h e d r o n ( ( A t e t ( i , 3 ) ) , 3 ) > l e s i o n c o o r d i n a t e s ( A t e t ( i , 1 ) , 3 ) − wz / 2 &&
c e n t e r s t e t r a h e d r o n ( ( A t e t ( i , 3 ) ) , 3 ) < l e s i o n c o o r d i n a t e s ( A t e t ( i , 1 ) , 3 ) + wz / 2

75 K t e t ( i , 1 ) = A t e t ( i , 3 ) ; % g i v e s i n d i c e s o f l e s i o n e l e m e n t s
76 end
77 end
78 K t e t ( K t e t ==0) = [ ] ; % d e l e t e zero ’ s
79

80 % T r i a n g l e s
81 f o r i = 1 : l e n g t h ( A t r i ) ;
82 i f c e n t e r s t r i a n g l e s ( ( A t r i ( i , 3 ) ) , 1 ) > l e s i o n c o o r d i n a t e s ( A t r i ( i , 1 ) , 1 ) − wx / 2 &&

c e n t e r s t r i a n g l e s ( ( A t r i ( i , 3 ) ) , 1 ) < l e s i o n c o o r d i n a t e s ( A t r i ( i , 1 ) , 1 ) + wx / 2 && . . .
83 c e n t e r s t r i a n g l e s ( ( A t r i ( i , 3 ) ) , 2 ) > l e s i o n c o o r d i n a t e s ( A t r i ( i , 1 ) , 2 ) − wy / 2 &&

c e n t e r s t r i a n g l e s ( ( A t r i ( i , 3 ) ) , 2 ) < l e s i o n c o o r d i n a t e s ( A t r i ( i , 1 ) , 2 ) + wy / 2 && . . .
84 c e n t e r s t r i a n g l e s ( ( A t r i ( i , 3 ) ) , 3 ) > l e s i o n c o o r d i n a t e s ( A t r i ( i , 1 ) , 3 ) − wz / 2 &&

c e n t e r s t r i a n g l e s ( ( A t r i ( i , 3 ) ) , 3 ) < l e s i o n c o o r d i n a t e s ( A t r i ( i , 1 ) , 3 ) + wz / 2
85 K t r i ( i , 1 ) = A t r i ( i , 3 ) ; % g i v e s i n d i c e s o f l e s i o n e l e m e n t s
86 end
87 end
88 K t r i ( K t r i ==0) = [ ] ; % d e l e t e zero ’ s
89

90 % 4 . Rep lace c o r r e s p o n d i n g l a b e l s w i th l e s i o n l a b e l ( 1 0 )
91 m2 seg . t r i a n g l e r e g i o n s ( K t r i ) =1010;
92 m2 seg . t e t r a h e d r o n r e g i o n s ( K t e t ) =10;
93

94 % Save m o d i f i e d mesh of Model 2
95 mesh save gmsh4 ( m2 seg , ’ Data / 4 0 1 / 4 0 1 6 ’ ) ;
96

97 %% E l e c t r o d e c o n f i g u r a t i o n
98 % E l e c t r o d e c o n f i g u r a t i o n 1 ( s t i m u l a t e l e f t MC)
99 c o n f i g u r a t i o n ( 1 ) . e1 = ’C3 ’ ; % L o c a t i o n e l e t r o d e 1

100 c o n f i g u r a t i o n ( 1 ) . e2 = ’ Fp2 ’ ;% L o c a t i o n e l e t r o d e 2
101

102 % E l e c t r o d e c o n f i g u r a t i o n 2 ( s t i m u l a t e r i g h t MC)
103 c o n f i g u r a t i o n ( 2 ) . e1= ’C4 ’ ;% L o c a t i o n e l e t r o d e 1
104 c o n f i g u r a t i o n ( 2 ) . e2= ’ Fp1 ’ ;% L o c a t i o n e l e t r o d e 2
105

106 % G e n e r a l s t i m u l a t i o n s e t t i n g s
107 S = s i m s t r u c t ( ’SESSION ’ ) ;
108 S . p o s l i s t {1} = s i m s t r u c t ( ’TDCSLIST ’ ) ;
109 S . p o s l i s t {1} . c u r r e n t s = [ 0 . 0 0 2 , −0.002] ; % C u r r e n t f low t h r o u g h each c h a n n e l (mA)
110

111 % F i r s t E l e c t r o d e
112 S . p o s l i s t {1} . e l e c t r o d e ( 1 ) . c h a n n e l n r = 1 ; % Connect t h e e l e c t r o d e t o t h e f i r s t c h a n n e l
113 S . p o s l i s t {1} . e l e c t r o d e ( 1 ) . shape = ’ e l l i p s e ’ ; % E l l i p t i c a l shape
114 S . p o s l i s t {1} . e l e c t r o d e ( 1 ) . d i m e n s i o n s = [ 1 0 , 1 0 ] ; % Dimension i n mm
115 S . p o s l i s t {1} . e l e c t r o d e ( 1 ) . t h i c k n e s s = 3 ; % 3 mm t h i c k n e s s
116

117 % Second E l e c t r o d e
118 S . p o s l i s t {1} . e l e c t r o d e ( 2 ) . c h a n n e l n r = 2 ; % Connect t h e e l e c t r o d e t o t h e second

c h a n n e l
119 S . p o s l i s t {1} . e l e c t r o d e ( 2 ) . shape = ’ e l l i p s e ’ ; % E l l i p t i c a l shape
120 S . p o s l i s t {1} . e l e c t r o d e ( 2 ) . d i m e n s i o n s = [ 1 0 , 1 0 ] ; % Dimension i n mm
121 S . p o s l i s t {1} . e l e c t r o d e ( 2 ) . t h i c k n e s s = 3 ; % 3 mm t h i c k n e s s
122

123 %% tDCS s i m u l a t i o n s
124 f o r j = 1 : l e n g t h ( c o n f i g u r a t i o n ) % For e v e r y c o n f i g u r a t i o n tDCS s i m u l a t i o n
125 S . p o s l i s t {1} . e l e c t r o d e ( 1 ) . c e n t r e = c o n f i g u r a t i o n ( j ) . e1 ; % L o c a t i o n e l e c t r o d e 1
126 S . p o s l i s t {1} . e l e c t r o d e ( 2 ) . c e n t r e = c o n f i g u r a t i o n ( j ) . e2 ; % L o c a t i o n e l e c t r o d e 2
127 f o l d e r n a m e = [ ’ Data / 4 0 1 / ’ , num2s t r ( c o n f i g u r a t i o n ( j ) . e1 ) , ’ ’ , num2s t r ( c o n f i g u r a t i o n ( j ) . e2 ) , ’

s i m u l a t i o n ’ ] ;
128 mkdir ( f o l d e r n a m e ) ; % Make f o l d e r f o r o u t p u t
129

130 %% C a l c u l a t i o n s
131 % Model 1
132 S . fnamehead = ’ Data / 4 0 1 / 4 0 1 5 . msh ’ ; % Mesh t o s i m u l a t e s t i m u l a t i o n
133 S . pa th fem = [ ’ Data / 4 0 1 / ’ , num2s t r ( c o n f i g u r a t i o n ( j ) . e1 ) , ’ ’ , num2s t r ( c o n f i g u r a t i o n ( j ) . e2 ) , ’

s i m u l a t i o n / s i m u l a t i o n 5 ’ ] ; % S e t p a t h f o r t h e s i m u l a t i o n o u t p u t
134

135 % r u n s i m n i b s ( S ) % Run t h e s i m u l a t i o n
136

137 % Load s i m u l a t i o n d a t a
138 temp = mesh load gmsh4 ( [ ’ Data / 4 0 1 / ’ , num2s t r ( c o n f i g u r a t i o n ( j ) . e1 ) , ’ ’ , num2s t r ( c o n f i g u r a t i o n ( j )

. e2 ) , ’ s i m u l a t i o n / s i m u l a t i o n 5 /401 5 TDCS 1 scalar . msh ’ ] ) ; % l o a d s i m u l a t i o n o f
Model 1

139 temp . max = [ ] ; temp . max index = [ ] ; temp . max perc= [ ] ;
140 m1 . c o n f i g u r a t i o n ( j ) = temp ; c l e a r temp ;
141

142 % Model 2
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143 S . fnamehead = ’ Data / 4 0 1 / 4 0 1 6 . msh ’ ; % Mesh t o s i m u l a t e
s t i m u l a t i o n

144 c o n d l e s i o n = [50 65 80 95 110 125 140 155 170 185 2 0 0 ] ;
145 L e s i o n C o n d u c t i v i t y = [ 0 . 5 0 0 . 6 5 0 . 8 0 0 . 9 5 1 . 1 0 1 . 2 5 1 . 4 0 1 . 5 5 1 . 7 0 1 . 8 5 2 . 0 0 ] ;
146 f o r i = 1 : l e n g t h ( c o n d l e s i o n )
147 S . pa th fem = s p r i n t f ( ’ Data /401/% s %s s i m u l a t i o n / s i m u l a t i o n 6 %d ’ , c o n f i g u r a t i o n ( j ) . e1 ,

c o n f i g u r a t i o n ( j ) . e2 , c o n d l e s i o n ( i ) ) ; % F o l d e r f o r t h e s i m u l a t i o n o u t p u t %.2 f ’ ,
c o n d l e s i o n ( i ) ) ;

148 S . p o s l i s t {1 , 1} . cond ( 1 0 ) . v a l u e = L e s i o n C o n d u c t i v i t y ( i ) ; %
Le s i on c o n d u c t i v i t y

149 S . s u b p a t h = ’ Data / 4 0 1 / m2m 401 5 ’ ;
150

151 % r u n s i m n i b s ( S ) % Run t h e s i m u l a t i o n
152 end
153

154 % Load s i m u l a t i o n d a t a
155 f o r i = 1 : l e n g t h ( c o n d l e s i o n )
156 m2( j ) . c o n f i g u r a t i o n ( i ) . mesh name = s p r i n t f ( ’m2 %d ’ , c o n d l e s i o n ( i ) ) ;
157 f i l e n a m e = s p r i n t f ( ’ Data /401/% s %s s i m u l a t i o n / s i m u l a t i o n 6 %d /401 6 TDCS 1 scalar . msh ’ ,

c o n f i g u r a t i o n ( j ) . e1 , c o n f i g u r a t i o n ( j ) . e2 , c o n d l e s i o n ( i ) ) ;
158 m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t = mesh load gmsh4 ( f i l e n a m e ) ;
159 end
160

161 %% A n a l y s i s − G e n e r a l r e s u l t s
162 % Range E i n GM
163 f o r i = 1 : l e n g t h ( c o n d l e s i o n )
164 max E ( j ) . c o n f i g u r a t i o n ( i ) =max (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} . t e t d a t a (m2( j ) .

c o n f i g u r a t i o n ( i ) . o u t p u t . t e t r a h e d r o n r e g i o n s ==2) ) ;
165 min E ( j ) . c o n f i g u r a t i o n ( i ) =min (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} . t e t d a t a (m2( j )

. c o n f i g u r a t i o n ( i ) . o u t p u t . t e t r a h e d r o n r e g i o n s ==2) ) ;
166 end
167 max E tot ( j ) =max ( max E ( j ) . c o n f i g u r a t i o n )
168 min E to t ( j ) =min ( min E ( j ) . c o n f i g u r a t i o n ) ;
169 %% R e s u l t A n a l y s i s − Whole GM Volume
170 % Max E i n GM of Model 1
171 m1 . c o n f i g u r a t i o n ( j ) . max = max (m1 . c o n f i g u r a t i o n ( j ) . e l e m e n t d a t a {2 , 1} . t e t d a t a (m1 . c o n f i g u r a t i o n ( j ) .

t e t r a h e d r o n r e g i o n s ==2) ) ; % max E
172 m1 . c o n f i g u r a t i o n ( j ) . max index = f i n d (m1 . c o n f i g u r a t i o n ( j ) . e l e m e n t d a t a {2 , 1} . t e t d a t a ==m1 .

c o n f i g u r a t i o n ( j ) . max ) ; % Index of max E
173 % Max E i n GM of Model 2
174 f o r i = 1 : l e n g t h ( L e s i o n C o n d u c t i v i t y )
175 m2( j ) . c o n f i g u r a t i o n ( i ) . max = max (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} . t e t d a t a (m2( j ) .

c o n f i g u r a t i o n ( i ) . o u t p u t . t e t r a h e d r o n r e g i o n s ==2) ) ; % max E
176 m2( j ) . c o n f i g u r a t i o n ( i ) . max index = f i n d (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} . t e t d a t a

==m2( j ) . c o n f i g u r a t i o n ( i ) . max ) ; % Index of max E
177 m2( j ) . c o n f i g u r a t i o n ( i ) . max perc = (m2( j ) . c o n f i g u r a t i o n ( i ) . max − m1 . c o n f i g u r a t i o n ( j ) . max ) . / m1 .

c o n f i g u r a t i o n ( j ) . max∗100;
178 end
179

180 %% A n a l y s i s − T a r g e t a r e a
181 %% Find Motor Co r t ex (MC)
182 % mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( 1 ) . o u t p u t ) ; end % Shows on ly g ray m a t t e r
183 %
184 % % C l i c k on motor c o r t e x
185 % dcm obj ( j ) = d a t a c u r s o r m o d e ( g c f ) ;
186 % k = 0 ;
187 % w h i l e k == 0
188 % s e t ( dcm obj ( j ) , ’ D i s p l a y S t y l e ’ , ’ window ’ , ’ SnapToDataVertex ’ , ’ on ’ , ’ Enable ’ , ’ on ’ ) ;
189 % k = w a i t f o r b u t t o n p r e s s ;
190 % end
191 % c i n f o . c o n f i g u r a t i o n ( j ) = g e t C u r s o r I n f o ( dcm obj ( j ) ) ;
192 % MC center ( j ) . c o n f i g u r a t i o n = c i n f o . c o n f i g u r a t i o n ( j ) . P o s i t i o n ; % c o o r d i n a t e s o f c e n t e r o f

s p h e r e o f MC
193 %% P o i n t e d by Medica l Doc to r
194 MC center ( 1 ) . c o n f i g u r a t i o n = [−19.095 21 .61 3 3 . 0 ] ; % I p s i l e s i o n a l motor c o r t e x
195 MC center ( 2 ) . c o n f i g u r a t i o n = [ 5 0 . 0 2 3 .593 1 9 . 8 5 ] ; % C o n t r a l e s i o n a l motor c o r t e x
196

197 % Make s p h e r e r e p r e s e n t i n g t h e t a r g e t a r e a MC
198 r =10; % r a d i u s i n mm of s p h e r e
199

200 % Find i n d e x t r i a n g l e s o f s p h e r e
201 D MC tri = p d i s t 2 ( c e n t e r s t r i a n g l e s , MC center ( j ) . c o n f i g u r a t i o n , ’ e u c l i d e a n ’ ) ; %D i s t a n c e between

a l l t e t r a h e d r o n c e n t e r s and c e n t e r o f MC
202 D MC tri ( : , 2 ) = 1 : s i z e ( D MC tri , 1 ) ; % Add t e t r a h e d r o n i n d e x
203 D MC tri ( D MC tri ( : , 1 )>r , : ) = [ ] ; % Only keep i n d e c e s o f t e t r a h e d r o n s wi th a d i s t a n c e s h o r t e r

t h a n 10mm, so i t i s i n t h e s p h e r e
204 f o r i i =1 : l e n g t h ( D MC tri )
205 i f m2( j ) . c o n f i g u r a t i o n ( 1 ) . o u t p u t . t r i a n g l e r e g i o n s ( D MC tri ( i i , 2 ) ) ==1002 % Only de GM w i t h i n

t h e s p h e r e
206 MC tr i index ( j ) . c o n f i g u r a t i o n ( i i , 1 ) = D MC tri ( i i , 2 ) ;
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207 end
208 end
209 MC tr i index ( j ) . c o n f i g u r a t i o n ( MC tr i index ( j ) . c o n f i g u r a t i o n ==0) = [ ] ; %d e l e t e zero ’ s
210

211 % Find i n d e x t e t r a h e d r o n s o f s p h e r e
212 D MC tet = p d i s t 2 ( c e n t e r s t e t r a h e d r o n , MC center ( j ) . c o n f i g u r a t i o n , ’ e u c l i d e a n ’ ) ; %D i s t a n c e between

a l l t e t r a h e d r o n c e n t e r s and c e n t e r o f MC
213 D MC tet ( : , 2 ) = 1 : s i z e ( D MC tet , 1 ) ; % Add t e t r a h e d r o n i n d e x
214 D MC tet ( D MC tet ( : , 1 )>r , : ) = [ ] ; % Only keep i n d e c e s o f t e t r a h e d r o n s wi th a d i s t a n c e s h o r t e r

t h a n 10mm, so i t i s i n t h e s p h e r e
215 f o r i i =1 : l e n g t h ( D MC tet )
216 i f m2( j ) . c o n f i g u r a t i o n ( 1 ) . o u t p u t . t e t r a h e d r o n r e g i o n s ( D MC tet ( i i , 2 ) ) ==2 % Only de GM w i t h i n

t h e s p h e r e
217 MC tet index ( j ) . c o n f i g u r a t i o n ( i i , 1 ) = D MC tet ( i i , 2 ) ;
218 end
219 end
220 MC tet index ( j ) . c o n f i g u r a t i o n ( MC te t index ( j ) . c o n f i g u r a t i o n ==0) = [ ] ; %d e l e t e zero ’ s
221

222 % C a l c u l a t e mean and max E of t h e t e t r a h e d r o n s i n MC and i n l e s i o n
223 % Model 1 :
224 MC meanE m1 ( j ) . c o n f i g u r a t i o n = mean (m1 . c o n f i g u r a t i o n ( j ) . e l e m e n t d a t a {2 , 1} . t e t d a t a ( MC te t index (

j ) . c o n f i g u r a t i o n ) ) ;
225 MC maxE m1( j ) . c o n f i g u r a t i o n = max (m1 . c o n f i g u r a t i o n ( j ) . e l e m e n t d a t a {2 , 1} . t e t d a t a ( MC te t index ( j )

. c o n f i g u r a t i o n ) ) ;
226

227 % Model 2 :
228 f o r i =1 : l e n g t h ( c o n d l e s i o n )
229 % Motor Co r t ex
230 MC meanE m2 ( j ) . c o n f i g u r a t i o n ( i ) = mean (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} .

t e t d a t a ( MC te t index ( j ) . c o n f i g u r a t i o n ) ) ;
231 m2( j ) . c o n f i g u r a t i o n ( i ) . MC maxE = max (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} .

t e t d a t a ( MC te t index ( j ) . c o n f i g u r a t i o n ) ) ;
232 % Le s i on
233 l e s i o n t e t i n d e x ( j ) . c o n f i g u r a t i o n = f i n d (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} .

t e t d a t a (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t e t r a h e d r o n r e g i o n s ==10) ) ;
234

235 m2( j ) . c o n f i g u r a t i o n ( i ) . l e s ion meanE = mean (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} .
t e t d a t a ( K t e t ) ) ;

236 m2( j ) . c o n f i g u r a t i o n ( i ) . l e s ion maxE = max (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . e l e m e n t d a t a {2 , 1} .
t e t d a t a ( K t e t ) ) ;

237

238 % P e r c e n t a g e d i f f e r e n c e o f mean E (M2−M1 . / M1∗100)
239 m2( j ) . c o n f i g u r a t i o n ( i ) . MC dif =(MC meanE m2 ( j ) . c o n f i g u r a t i o n ( i ) − MC meanE m1 ( j ) .

c o n f i g u r a t i o n ) . / MC meanE m1 ( j ) . c o n f i g u r a t i o n ∗ 100 ;
240 end
241 end
242 %% FIGURES
243 %% Fig . 3
244 % M1 I p s i l e s i o n a l S t i m u l a t i o n
245 f i g u r e ( 1 ) ;
246 j =1 ;
247 mesh show sur face (m1 . c o n f i g u r a t i o n ( j ) , ’ co lormap ’ , j e t , ’ showElec ’ , f a l s e , ’ s c a l e L i m i t s ’ , [0 max E ( 1 ) .

c o n f i g u r a t i o n ( end ) ] ) ;
248 t i t l e ( ’ Model 1 I p s i l e s i o n a l S t i m u l a t i o n ’ ) ;
249

250 % M1 C o n t r a l e s i o n a l S t i m u l a t i o n
251 f i g u r e ( 2 ) ;
252 j =2 ;
253 mesh show sur face (m1 . c o n f i g u r a t i o n ( j ) , ’ co lormap ’ , j e t , ’ showElec ’ , f a l s e ) ;
254 t i t l e ( ’ Model 1 C o n t r a l e s i o n a l S t i m u l a t i o n ’ ) ;
255

256 % M2 I p s i l e s i o n a l S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f 0 . 5 0 S /m
257 f i g u r e ( 3 ) ;
258 j =1 ;
259 i =1 ;
260 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ co lormap ’ , j e t , ’ showElec ’ , f a l s e ) ;
261 t i t l e ( [ ’ Model 2 I p s i l e s i o n S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i ) )

, ’ [ S /m] ’ ] ) ; %E l e c t r i c f i e l d s t r e n g t h , t h r o u g h GM
262

263 % M2 C o n t r a l e s i o n a l S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f 0 . 5 0 S /m
264 f i g u r e ( 4 ) ;
265 j =2 ;
266 i =1 ;
267 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ co lormap ’ , j e t , ’ showElec ’ , f a l s e ) ;
268 t i t l e ( [ ’ Model 2 C o n t r a l e s i o n S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i

) ) , ’ [ S /m] ’ ] ) ;
269

270 % M2 I p s i l e s i o n a l S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f 2 . 0 0 S /m
271 f i g u r e ( 5 ) ;
272 j =1 ;
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273 i = l e n g t h ( L e s i o n C o n d u c t i v i t y ) ;
274 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ co lormap ’ , j e t , ’ showElec ’ , f a l s e ) ;
275 t i t l e ( [ ’ Model 2 I p s i l e s i o n S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i ) )

, ’ [ S /m] ’ ] ) ;
276

277 % M2 C o n t r a l e s i o n a l S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f 2 . 0 0 S /m
278 f i g u r e ( 6 ) ;
279 j =2 ;
280 i = l e n g t h ( L e s i o n C o n d u c t i v i t y ) ;
281 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ co lormap ’ , j e t , ’ showElec ’ , f a l s e ) ;
282 t i t l e ( [ ’ Model 2 C o n t r a l e s i o n S t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y o f ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i

) ) , ’ [ S /m] ’ ] ) ;
283 %% Fig . 4 V i s u a l i z a t i o n o f t h e GM and t h e t a r g e t a r e a s
284 t e t c e n t e r s l e s i o n = c e n t e r s t e t r a h e d r o n ( K te t , : ) ; % Le s i on
285 t e t c en t e r s MC L = c e n t e r s t e t r a h e d r o n ( MC tet index ( 1 ) . c o n f i g u r a t i o n , : ) ;% I p s i l e s i o n a l motor c o r t e x
286 t e t cen te r s MC R = c e n t e r s t e t r a h e d r o n ( MC tet index ( 2 ) . c o n f i g u r a t i o n , : ) ;% c o n t r a l e s i o n a l motor

c o r t e x
287 c e n t e r s t e t r a h e d r o n m 2 ( 2 ) . c o n f i g u r a t i o n = m e s h g e t t e t r a h e d r o n c e n t e r s (m2 ( 2 ) . c o n f i g u r a t i o n ( 1 ) . o u t p u t

) ;
288 c e n t e r s t e t r a h e d r o n G M ( 2 ) . c o n f i g u r a t i o n = c e n t e r s t e t r a h e d r o n m 2 ( 2 ) . c o n f i g u r a t i o n (m2 ( 2 ) .

c o n f i g u r a t i o n ( 1 ) . o u t p u t . t e t r a h e d r o n r e g i o n s = = 2 , : ) ;
289 t e t c e n t e r s G M = c e n t e r s t e t r a h e d r o n G M ( 2 ) . c o n f i g u r a t i o n ; % GM
290

291 f i g u r e ( 7 ) ;
292 a = p o i n t C l o u d ( t e t c e n t e r s G M ) ;
293 c m a t r i x = ones ( s i z e ( a . L o c a t i o n ) ) . ∗ [ 0 . 9 0 . 9 0 . 9 ] ;
294 a = p o i n t C l o u d ( t e t cen t e r s GM , ’ Co lo r ’ , c m a t r i x ) ;
295 pcshow ( a )
296 t i t l e ( ’ V i s u a l i z a t i o n o f t h e GM and t h e t a r g e t a r e a s ’ ) ;
297 ho ld on
298 s c a t t e r 3 ( t e t c e n t e r s l e s i o n ( : , 1 ) , t e t c e n t e r s l e s i o n ( : , 2 ) , t e t c e n t e r s l e s i o n ( : , 3 ) ) ;% Le s i on
299 ho ld on
300 s c a t t e r 3 ( t e t cen t e r s MC L ( : , 1 ) , t e t cen t e r s MC L ( : , 2 ) , t e t cen t e r s MC L ( : , 3 ) , ’ r ’ ) ;% I p s i l e s i o n a l motor

c o r t e x
301 ho ld on
302 s c a t t e r 3 ( t e t cen te r s MC R ( : , 1 ) , t e t cen te r s MC R ( : , 2 ) , t e t cen te r s MC R ( : , 3 ) , ’ r ’ ) ;% c o n t r a l e s i o n a l

motor c o r t e x
303 ho ld on
304 t r i s u r f (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e s (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s

= = 1 0 0 2 , : ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 1 ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 2 ) ,m2( j
) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) , ones ( s i z e (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) ) ) , ’
F a c e c o l o r ’ , [ 1 9 2 / 2 5 5 192/255 1 9 2 / 2 5 5 ] , ’ FaceAlpha ’ , 0 . 2 5 , ’ EdgeAlpha ’ , 0 . 0 1 ) ;

305 a x i s o f f
306

307 %% Fig . 5 E l e c t r i c f i e l d s t r e n g t h i n motor c o r t e x
308 % I p s i l e s i o n a l S t i m u l a t i o n
309 f i g u r e ( 8 ) ;
310 j =1 ;
311 p l o t ( [ min ( L e s i o n C o n d u c t i v i t y ) , max ( L e s i o n C o n d u c t i v i t y ) ] , [ MC meanE m1 ( j ) . c o n f i g u r a t i o n , MC meanE m1 ( j

) . c o n f i g u r a t i o n ] , ’ c o l o r ’ , [0 0 .4470 0 . 7 4 1 0 ] , ’ l i n e w i d t h ’ , 3 ) ; % s t r a i g h t l i n e f o r t h e mean E i n
mc i n Model 1

312 t i t l e ( ’ E l e c t r i c f i e l d s t r e n g t h i n motor c o r t e x ’ ) ; x l a b e l ( ’ L es i on c o n d u c t i v i t y [ S /m] ’ ) ; y l a b e l ( ’Mean
e l e c t r i c f i e l d s t r e n g t h [V/mm] ’ ) ;

313 ho ld on
314 p l o t ( L e s i o n C o n d u c t i v i t y , MC meanE m2 ( j ) . c o n f i g u r a t i o n , ’ . ’ , ’ Marke rS ize ’ , 40 , ’ c o l o r ’ , [0 0 .4470

0 . 7 4 1 0 ] ) ;
315 s e t ( gca , ’ F o n t s i z e ’ , 3 2 ) ;
316 x t i c k s ( L e s i o n C o n d u c t i v i t y )
317 f o r i = 1 : l e n g t h ( c o n d l e s i o n ) ;
318 x t ( i ) = L e s i o n C o n d u c t i v i t y ( 1 , i ) ;
319 y t ( i ) = MC meanE m2 ( j ) . c o n f i g u r a t i o n ( 1 , i ) ;
320 s t r = [ ’ ’ , num2s t r ( round (m2( j ) . c o n f i g u r a t i o n ( i ) . MC dif , 1 ) ) , ’%’ ] ;
321 t e x t ( x t ( i ) , y t ( i ) , s t r , ’ F o n t S i z e ’ , 24)
322 end
323

324 % C o n t r a l e s i o n a l S t i m u l a t i o n
325 ho ld on
326 j =2 ;
327 p l o t ( [ min ( L e s i o n C o n d u c t i v i t y ) , max ( L e s i o n C o n d u c t i v i t y ) ] , [ MC meanE m1 ( j ) . c o n f i g u r a t i o n , MC meanE m1 ( j

) . c o n f i g u r a t i o n ] , ’ c o l o r ’ , [ 0 . 8 5 0 0 0 .3250 0 . 0 9 8 0 ] , ’ l i n e w i d t h ’ , 3 ) ; % s t r a i g h t l i n e f o r t h e mean
E i n mc i n Model 1

328 t i t l e ( ’ E l e c t r i c f i e l d s t r e n g t h i n motor c o r t e x ’ ) ; x l a b e l ( ’ L es i on c o n d u c t i v i t y [ S /m] ’ ) ; y l a b e l ( ’Mean
e l e c t r i c f i e l d s t r e n g t h [V/m] ’ ) ;

329 ho ld on
330 p l o t ( L e s i o n C o n d u c t i v i t y , MC meanE m2 ( j ) . c o n f i g u r a t i o n , ’ . ’ , ’ Marke rS ize ’ , 40 , ’ c o l o r ’ , [ 0 . 8 5 0 0 0 .3250

0 . 0 9 8 0 ] ) ;
331 s e t ( gca , ’ F o n t s i z e ’ , 3 2 ) ;
332 l e g e n d ({ [ ’ I p s i l e s i o n a l : Model 1 ’ ] , ’ Model 2 ’ , [ ’ C o n t r a l e s i o n a l : Model 1 ’ ] , ’ Model 2 ’ , ’ L o c a t i o n ’ , ’ b e s t

’ } )
333 x t i c k s ( L e s i o n C o n d u c t i v i t y )
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334 f o r i = 1 : l e n g t h ( c o n d l e s i o n )
335 x t ( i ) = L e s i o n C o n d u c t i v i t y ( 1 , i ) ;
336 y t ( i ) = MC meanE m2 ( j ) . c o n f i g u r a t i o n ( 1 , i ) ;
337 s t r = [ ’ ’ , num2s t r ( round (m2( j ) . c o n f i g u r a t i o n ( i ) . MC dif , 1 ) ) , ’%’ ] ;
338 t e x t ( x t ( i ) , y t ( i ) , s t r , ’ F o n t S i z e ’ , 14)
339 end
340

341 %% Fig . 7
342 f o r j =1:2
343 f o r i = 1 : l e n g t h ( c o n d l e s i o n )
344 m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s ( MC tr i index ( j ) . c o n f i g u r a t i o n ) =1011;
345 m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t e t r a h e d r o n r e g i o n s ( MC te t index ( j ) . c o n f i g u r a t i o n ) =11;
346 end
347 end
348 % Model 1 I p s i
349 f i g u r e ( 9 ) ;
350 j =1 ;
351 m1 . c o n f i g u r a t i o n ( j ) . t r i a n g l e r e g i o n s ( MC tr i index ( j ) . c o n f i g u r a t i o n ) =1011;
352 m1 . c o n f i g u r a t i o n ( j ) . t e t r a h e d r o n r e g i o n s ( MC te t index ( j ) . c o n f i g u r a t i o n ) =11;
353 mesh show sur face (m1 . c o n f i g u r a t i o n ( j ) , ’ r e g i o n i d x ’ ,1011 , ’ co lormap ’ , j e t ) ;
354 t r i s u r f (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e s (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s

= = 1 0 0 2 , : ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 1 ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 2 ) ,m2( j
) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) , ones ( s i z e (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) ) ) , ’
F a c e c o l o r ’ , [ 1 9 2 / 2 5 5 192/255 1 9 2 / 2 5 5 ] , ’ FaceAlpha ’ , 0 . 2 5 , ’ EdgeAlpha ’ , 0 . 0 1 ) ;

355 t i t l e ( ’ Model 1 I p s i l e s i o n a l s t i m u l a t i o n ’ ) ;
356

357 % Model 1 Co n t r a
358 f i g u r e ( 1 0 ) ;
359 j =2 ;
360 m1 . c o n f i g u r a t i o n ( j ) . t r i a n g l e r e g i o n s ( MC tr i index ( j ) . c o n f i g u r a t i o n ) =1011;
361 m1 . c o n f i g u r a t i o n ( j ) . t e t r a h e d r o n r e g i o n s ( MC te t index ( j ) . c o n f i g u r a t i o n ) =11;
362 mesh show sur face (m1 . c o n f i g u r a t i o n ( j ) , ’ r e g i o n i d x ’ ,1011 , ’ co lormap ’ , j e t ) ;
363 t r i s u r f (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e s (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s

= = 1 0 0 2 , : ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 1 ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 2 ) ,m2( j
) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) , ones ( s i z e (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) ) ) , ’
F a c e c o l o r ’ , [ 1 9 2 / 2 5 5 192/255 1 9 2 / 2 5 5 ] , ’ FaceAlpha ’ , 0 . 2 5 , ’ EdgeAlpha ’ , 0 . 0 1 ) ;

364 t i t l e ( ’ Model 1 C o n t r a l e s i o n a l s t i m u l a t i o n ’ ) ;
365

366 % Model 2 I p s i w i th l e s i o n c o n d u c t i v i t y o f 0 . 5 0 S /m
367 f i g u r e ( 1 1 ) ;
368 j =1 ;
369 i =1 ;
370 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1010 , ’ co lormap ’ , j e t ) ; %l e s i o n
371 t r i s u r f (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e s (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s

= = 1 0 0 2 , : ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 1 ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 2 ) ,m2( j
) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) , ones ( s i z e (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) ) ) , ’
F a c e c o l o r ’ , [ 1 9 2 / 2 5 5 192/255 1 9 2 / 2 5 5 ] , ’ FaceAlpha ’ , 0 . 2 5 , ’ EdgeAlpha ’ , 0 . 0 1 ) ;% GM

372 ho ld on
373 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1011 , ’ co lormap ’ , j e t ) ;% Motor C or t e x
374 t i t l e ( [ ’ Model 2 I p s i l e s i o n a l s t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i ) )

] ) ;
375

376 % Model 2 Co n t r a wi th l e s i o n c o n d u c t i v i t y o f 0 . 5 0 S /m
377 f i g u r e ( 1 2 ) ;
378 j =2 ;
379 i =1 ;
380 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1010 , ’ co lormap ’ , j e t ) ; %l e s i o n
381 t r i s u r f (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e s (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s

= = 1 0 0 2 , : ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 1 ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 2 ) ,m2( j
) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) , ones ( s i z e (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) ) ) , ’
F a c e c o l o r ’ , [ 1 9 2 / 2 5 5 192/255 1 9 2 / 2 5 5 ] , ’ FaceAlpha ’ , 0 . 2 5 , ’ EdgeAlpha ’ , 0 . 0 1 ) ;% GM

382 ho ld on
383 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1011 , ’ co lormap ’ , j e t ) ;% Motor C or t e x
384 t i t l e ( [ ’ Model 2 C o n t r a l e s i o n a l s t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i )

) ] ) ;
385

386 % Model 2 I p s i w i th l e s i o n c o n d u c t i v i t y o f 2 . 0 0 S /m
387 f i g u r e ( 1 3 ) ;
388 j =1 ;
389 i = L e s i o n C o n d u c t i v i t y ( end ) ;
390 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1010 , ’ co lormap ’ , j e t ) ; %l e s i o n
391 t r i s u r f (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e s (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s

= = 1 0 0 2 , : ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 1 ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 2 ) ,m2( j
) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) , ones ( s i z e (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) ) ) , ’
F a c e c o l o r ’ , [ 1 9 2 / 2 5 5 192/255 1 9 2 / 2 5 5 ] , ’ FaceAlpha ’ , 0 . 2 5 , ’ EdgeAlpha ’ , 0 . 0 1 ) ;% GM

392 ho ld on
393 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1011 , ’ co lormap ’ , j e t ) ;% Motor C or t e x
394 t i t l e ( [ ’ Model 2 I p s i l e s i o n a l s t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i ) )

] ) ;
395
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396 % Model 2 Co n t r a wi th l e s i o n c o n d u c t i v i t y o f 2 . 0 0 S /m
397 f i g u r e ( 1 4 ) ;
398 j =2 ;
399 i = L e s i o n C o n d u c t i v i t y ( end ) ;
400 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1010 , ’ co lormap ’ , j e t ) ; %l e s i o n
401 t r i s u r f (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e s (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . t r i a n g l e r e g i o n s

= = 1 0 0 2 , : ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 1 ) ,m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 2 ) ,m2( j
) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) , ones ( s i z e (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t . nodes ( : , 3 ) ) ) , ’
F a c e c o l o r ’ , [ 1 9 2 / 2 5 5 192/255 1 9 2 / 2 5 5 ] , ’ FaceAlpha ’ , 0 . 2 5 , ’ EdgeAlpha ’ , 0 . 0 1 ) ;% GM

402 ho ld on
403 mesh show sur face (m2( j ) . c o n f i g u r a t i o n ( i ) . o u t p u t , ’ r e g i o n i d x ’ ,1011 , ’ co lormap ’ , j e t ) ;% Motor C or t e x
404 t i t l e ( [ ’ Model 2 C o n t r a l e s i o n a l s t i m u l a t i o n wi th l e s i o n c o n d u c t i v i t y ’ , num2s t r ( L e s i o n C o n d u c t i v i t y ( i )

) ] ) ;
405

406 %% TABLES
407

408 %% Table I I
409 Table2 . T o t a l = [ l e n g t h ( c e n t e r s t e t r a h e d r o n ) ; l e n g t h ( c e n t e r s t r i a n g l e s ) ] ;
410 Table2 . Le s i on =[ l e n g t h ( K t e t ) ; l e n g t h ( K t r i ) ] ;
411 Table2 . MC i =[ l e n g t h ( MC te t index ( 1 ) . c o n f i g u r a t i o n ) ; l e n g t h ( MC tr i index ( 1 ) . c o n f i g u r a t i o n ) ] ;
412 Table2 . MC c = [ l e n g t h ( MC te t index ( 2 ) . c o n f i g u r a t i o n ) ; l e n g t h ( MC tr i index ( 2 ) . c o n f i g u r a t i o n ) ] ;
413 Table2 = s t r u c t 2 t a b l e ( Tab le2 )
414

415 %% Table I I I
416 % Model 1
417 Table3 M1 . Max E Ipsi = m1 . c o n f i g u r a t i o n ( 1 ) . max ;
418 Table3 M1 . Max E Contra = m1 . c o n f i g u r a t i o n ( 2 ) . max ;
419 Table3 Model1= s t r u c t 2 t a b l e ( Table3 M1 )
420

421 % Model 2
422 f o r i = 1 : l e n g t h ( L e s i o n C o n d u c t i v i t y )
423 Table3 M2 ( i ) . L e s i o n C o n d u c t i v i t y = L e s i o n C o n d u c t i v i t y ( i ) ;
424 Table3 M2 ( i ) . Max E Ipsi = m2 ( 1 ) . c o n f i g u r a t i o n ( i ) . max ;
425 Table3 M2 ( i ) . Max E Contra = m2 ( 2 ) . c o n f i g u r a t i o n ( i ) . max ;
426 end
427 Table3 Model2= s t r u c t 2 t a b l e ( Table3 M2 )
428

429 %% Table IV
430 % I p s i l e s i o n a l S t i m u l a t i o n
431 j =1 ;
432 f o r i = 1 : l e n g t h ( L e s i o n C o n d u c t i v i t y )
433 Table4 ( i ) . L e s i o n C o n d u c t i v i t y = L e s i o n C o n d u c t i v i t y ( i ) ;
434 Table4 ( i ) . Max E MotorCotex = m2( j ) . c o n f i g u r a t i o n ( i ) . MC maxE ;
435 Table4 ( i ) . Mean E MotorCortex = MC meanE m2 ( j ) . c o n f i g u r a t i o n ( i ) ;
436 Table4 ( i ) . Pe rcen tage Di f Mean E MotorCor tex = m2( j ) . c o n f i g u r a t i o n ( i ) . MC dif ;
437 Table4 ( i ) . Mean E Lesion = m2( j ) . c o n f i g u r a t i o n ( i ) . l e s ion meanE ;
438 Table4 ( i ) . Max E Lesion =m2( j ) . c o n f i g u r a t i o n ( i ) . l e s ion maxE ;
439 end
440 T a b l e 4 I p s i l e s i o n a l = s t r u c t 2 t a b l e ( T targe tM1 ( j ) . c o n f i g u r a t i o n )
441

442 % C o n t r a l e s i o n a l S t i m u l a t i o n
443 j =2 ;
444 f o r i = 1 : l e n g t h ( L e s i o n C o n d u c t i v i t y )
445 Table4 ( i ) . L e s i o n C o n d u c t i v i t y = L e s i o n C o n d u c t i v i t y ( i ) ;
446 Table4 ( i ) . Max E MotorCotex = m2( j ) . c o n f i g u r a t i o n ( i ) . MC maxE ;
447 Table4 ( i ) . Mean E MotorCortex = MC meanE m2 ( j ) . c o n f i g u r a t i o n ( i ) ;
448 Table4 ( i ) . Pe rcen tage Di f Mean E MotorCor tex = m2( j ) . c o n f i g u r a t i o n ( i ) . MC dif ;
449 Table4 ( i ) . Mean E Lesion = m2( j ) . c o n f i g u r a t i o n ( i ) . l e s ion meanE ;
450 Table4 ( i ) . Max E Lesion =m2( j ) . c o n f i g u r a t i o n ( i ) . l e s ion maxE ;
451 end
452 T a b l e 4 C o n t r a l e s i o n a l = s t r u c t 2 t a b l e ( T targe tM1 ( j ) . c o n f i g u r a t i o n )


