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CONVERGENCE OF STOCHASTIC PDMM

Sebastian O. Jordan1, Thomas W. Sherson1 and Richard Heusdens1,2

1 Delft University of Technology, The Netherlands
2 Netherlands Defence Academy, The Netherlands

ABSTRACT

In recent years, the large increase in connected devices and the data
that are collected by these devices have caused a heightened interest
in distributed processing. Many practical distributed networks are of
heterogeneous nature, because different devices in the network can
have different specifications. Because of this, it is highly desirable
that algorithms operating within these networks can operate asyn-
chronously, since in that case there is no need for clock synchroni-
sation between the nodes, and the algorithm is not slowed down by
the slowest device in the network. In this paper, we focus on the
primal-dual method of multipliers (PDMM), which is a promising
distributed optimisation algorithm that is suitable for distributed op-
timisation in heterogeneous networks. Most theoretical work that
can be found in existing literature focuses on synchronous versions
of PDMM. In this work, we prove the convergence of stochastic
PDMM, which is a general framework that can model variations
such as asynchronous PDMM and PDMM with transmission losses.

Index Terms— distributed optimisation, convex optimisation,
PDMM, asynchronous algorithms, transmission loss

1. INTRODUCTION

The world around us is becoming increasingly connected. More
and more electronic devices are being used and these devices are
producing more and more data. Many devices have the ability to
(wirelessly) connect to other devices and thus form large distributed
networks. Distributed processing could leverage the full potential
of such large scale distributed networks. An important aspect of
these types of networks is that they are often of heterogeneous na-
ture, with connected devices having different computation, commu-
nication, power and clock specifications. Furthermore, in many real
world implementations the wireless links between nodes will not be
ideal, so that the distributed processing needs to be robust against
transmission losses.

A lot of research has been done in the context of distributed
average consensus, where the average of noisy measurements is cal-
culated over the entire network. As presented in [1], gossip based
algorithms can be used to solve these types of problems. These algo-
rithms are relatively simple but can be performed asynchronously. A
more general type of distributed algorithms is the class of convex op-
timisation based algorithms. One of these algorithms is the primal-
dual method of multipliers (PDMM), first introduced in [2]. In [3]
it was shown that PDMM is closely related to the more commonly
used ADMM algorithm, in the sense that ADMM is a 1/2-averaged
version of PDMM. Therefore, PDMM can achieve faster conver-
gence rates, provided it converges. Convergence has been proved
for synchronous implementations in [3] and simulations show it also
converges when implemented asynchronously. Asynchronous algo-
rithms have the advantage over synchronous ones that there is no

need for clock synchronisation between the nodes, and that the algo-
rithm is not slowed down by the slowest device in the network.

In this paper we give convergence conditions for stochastic
PDMM using monotone operator theory, fixed point theory of non-
expansive operators [4] and probability theory [5]. This framework
is general in the sense that it includes asynchronous PDMM and
PDMM with transmission losses. To the best of our knowledge,
there only exist convergence results for averaged operators in lit-
erature, see [4, Def. 4.33] for Definition. In [6], convergence of
asynchronous ADMM (1/2-averaged operator) is shown, a result
generalised to arbitrary θ-averaged ADMM algorithms in [7]. An
alternative approach to the convergence proof of this class of math-
ematical problems is given in [8]. In [9] robustness against trans-
mission loss is explicitly mentioned in the context of asynchronous
θ-averaged ADMM.

2. BACKGROUND

In this section, we formulate the mathematical problem statement
of distributed optimisation and introduce the PDMM updating equa-
tions that will be used in the proof in our work. For more details
regarding PDMM we refer to [3].

2.1. Problem Statement

Consider a graphical model G = (V, E), where V = {1, ..., n} de-
notes the set of vertices, or nodes, and E ⊆ V ×V denotes the set of
m undirected edges (unordered paired vertices) representing com-
munication links in the network. Additionally, let Edir ⊆ V × V be
the set of ordered pairs of nodes, denoting the set of directed edges
in G(V, E). Clearly, for every edge in E we have two ordered pairs
in Edir, so that |Edir| = 2m. Furthermore, we use the following
notational conventions: a variable xi is related to node i; a variable
xi|j is related to edge (i, j) but held by node i. Moreover, the neigh-
bourhood of node i is defined asNi =

{
j ∈ V | (i, j) ∈ E

}
.

Each node i is equipped with an arbitrary convex, closed and
proper (CCP) cost function fi : Rni → R ∪ {∞}, where each
function is dependent on a local optimisation variable xi ∈ Rni .
These local variables are stacked as x = [xT

1 , ...,x
T
n ]

T .
We would like to solve the following optimisation problem:

min
x

f(x) = min
xi,∀i∈V

∑
i∈V

fi(xi)

s.t. Ai|jxi +Aj|ixj = bi,j ∀(i, j) ∈ E ,
(1)

with constraints along edges defined by Ai|j ∈ Rmi,j×ni and
bi,j ∈ Rmi,j , where mi,j is the dimension of the constraint along
edge (i, j). Let nV =

∑
i∈V ni and mE =

∑
(i,j)∈E mi,j .

For many practical use cases, consensus is required. That is, af-
ter convergence we have xi = xj for all i, j ∈ V . This means that
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for all (i, j) ∈ E the constraints in (1) are defined using Ai|j = I,
Aj|i = −I and bi,j = 0. Because consensus problems are very
common, throughout this paper we will assume the network con-
straints correspond to these consensus constraints. The results can
be easily generalised to problems where this is not the case.

2.2. PDMM

PDMM is an iterative algorithm that can solve the optimisation prob-
lem stated in (1). An insightful derivation of the algorithm using
monotone operator theory is given in [3]. As derived in [3], PDMM
can be formulated as a monotone inclusion problem that can be itera-
tively solved using Peaceman-Rachford splitting (see [4, Sec. 26.4]).
This leads to the following PDMM update equations:

x(k+1) = argmin
x

(
f(x) +

〈
CT z(k),x

〉
+

ρ

2
||Cx||2

)
, (2)

y(k+1) = z(k) + 2ρCx(k+1), (3)

z(k+1) = Py(k+1), (4)

where k denotes the iteration index, x ∈ RnV is the primal variable,
y ∈ R2mE and z ∈ R2mE are auxiliary variables, C ∈ R2mE×nV

is a constraint matrix constructed with Ai|j for all (i|j) ∈ Edir,
P ∈ R2mE×2mE is a symmetric permutation matrix and ρ > 0
is a constant that controls the convergence rate. Note that (4) de-
scribes the data exchanged amongst neighbouring nodes in the net-
work. Due to the construction of the PDMM algorithm, the update
equations are separable across the nodes of the network and thus can
be performed in a distributed/parallel manner, see Algorithm 1 for an
example of a distributed implementation of PDMM. Furthermore, a
complete PDMM iteration can be seen as an operator on the auxil-
iary variable z, which we denote as TP,ρ. If we define the fixed point
set of operator T as fix (T) = {z |Tz = z}, each z∗ ∈ fix (TP,ρ)
corresponds to a solution of (1). As proved in [3], standard PDMM
converges for strongly convex and differentiable cost functions. To
guarantee convergence for arbitrary CCP cost functions, we can ap-
ply operator averaging. This results in the θ-averaged PDMM oper-
ator, which is defined as

TθP,ρ = (1− θ)I+ θTP,ρ, (5)

with θ ∈ (0, 1).

3. STOCHASTIC PDMM

In this section, we define a general stochastic version of PDMM. We
formulate a convergence proof inspired by the proof presented in [7]
for θ-averaged ADMM, and we show that asynchronous PDMM and
PDMM with transmission loss are both specific versions of stochas-
tic PDMM. We will first introduce a stochastic Banach-Picard itera-
tion, which forms the update equation for stochastic PDMM. Once
this is defined, we state two assumptions, which are then used to
prove the main result of this paper in Theorem 3.1.

3.1. Definitions

Stochastic updates can be defined by assuming that each auxiliary
variable zi|j can be updated based on a Bernoulli random variable
Ui|j ∈ {0, 1}, with mean µi|j = E[Ui|j ] = P{Ui|j = 1} ∈ (0, 1),
where E[·] denotes statistical expectation and P{ω} the probability
that event ω occurs. We define the random matrix U ∈ R2mE×2mE

as a block diagonal matrix with diagonal entries Ui|jImi,j , following
the same ordering as the entries of z.

Algorithm 1 Asynchronous PDMM.

1: Initialise: z(0) ∈ R2mE ▷ Initialisation
2: for k = 0, ..., do
3: Select a random subset of active nodes: ξ(k) ∈ 2V

4: Select a random subset of active directed edges: η(k) ∈ 2Edir

5: for i ∈ ξ(k) do ▷ Active node updates

6: x
(k+1)
i = argminxi

[
fi(xi)+∑

j∈Ni

(
(z

(k)

i|j )
TAi|jxi +

ρ
2
||xi||22

)]
7: for all j ∈ Ni do
8: y

(k+1)

i|j = z
(k)

i|j + 2ρAi|jx
(k+1)
i

9: end for
10: end for

11: for i ∈ ξ(k), j ∈ Ni do ▷ Transmit updated variables
12: Nodej ← Nodei(y(k+1)

i|j )

13: end for

14: for i ∈ ξ(k), j ∈ Ni : (i, j) ∈ η(k) do ▷ Secondary node
updates

15: z
(k+1)

j|i = y
(k+1)

i|j
16: end for
17: end for

Definition 3.1. For an operator T and a sequence of realisations
of random updating matrices

(
U(k)

)
k∈N

, we define the stochastic
Banach-Picard iteration as:

z(k+1) =
(
I−U(k+1)

)
z(k) +U(k+1)Tz(k). (6)

In the following, we will make the following assumptions.

Assumption 3.1.
(
U(k)

)
k∈N

is a random i.i.d. sequence1

Assumption 3.2. Ū = E[U] ≻ 0.

Let F (k) = σ(z(0), ..., z(k)) denote the sigma-algebra generated by
the sequence of random variables z(0), ..., z(k) (see [5, Def. 23.3]).
Moreover, let ∥x∥2Q = ⟨Qx,x⟩. Assume that z∗ ∈ fix (T) is de-
terministic, and that the initialisation z(0) is known. As shown in
Appendix A, we can use the conditional expectation with respect to
F (k) to express

E
[
||z(k+1) − z∗||2Ū−1 |F (k)

]
= ||z(k) − z∗||2Ū−1 − ||z(k) − z∗||2 + ||Tz(k) − z∗||2. (7)

Note that E
[
· |F (k)

]
is a random variable and thus the related ex-

pressions include an implicit “almost surely” qualifier.

3.2. Convergence proof

For the remaining part of this proof we will take z∗ ∈ fix (TP,ρ) and
use (2) to define

x∗ = argmin
x

(
f(x) +

〈
CT z∗,x

〉
+

ρ

2
||Cx||2

)
. (8)

1Note that no assumption is made on the dependence between the entries
Ui|j of U(k).
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Note that z∗, z(0), and x∗ are deterministic and all other z(k)’s and
x(k)’s are random vectors.

Lemma 3.1. Consider the PDMM operator TP,ρ, then

||TP,ρ(z
(k))− z∗||2

= ||z(k) − z∗||2 − 4ρ
〈
∂f(x(k+1))− ∂f(x∗),x(k+1) − x∗

〉
.

Proof. See [3, Appendix C].

Using Lemma 3.1, (7) becomes

E
[
||z(k+1) − z∗||2Ū−1 |F (k)

]
(9)

= ||z(k) − z∗||2Ū−1 − 4ρ
〈
∂f(x(k+1))− ∂f(x∗),x(k+1) − x∗

〉
.

Note that since the subdifferential of a CCP function is monotone,
the sequence

(
||z(k) − z∗||2Ū−1

)
k∈N

is a nonnegative supermartin-

gale and therefore converges almost surely. However, in general
z(k) − TP,ρ(z

(k)) ̸→ 0 since PDMM is at best nonexpansive for
arbitrary CCP functions. To guarantee almost sure convergence of
the primal variable x(k), we need additional assumptions on f , like
f being differentiable and β-strongly convex.

Theorem 3.1. For differentiable and β-strongly convex cost func-
tions, stochastic standard PDMM converges almost surely to a pri-
mal optimal point x∗.

Proof. Assume that f is differentiable and β-strongly convex. In
that case, the gradient∇f is β-strongly monotone so that〈

∇f(x(k))−∇f(x∗),x(k) − x∗〉 ≥ β||x(k) − x∗||2.

With this, (9) can be reformulated as

E
[
||z(k+1) − z∗||2Ū−1 |F (k)

]
≤ ||z(k) − z∗||2Ū−1 − 4ρβ||x(k+1) − x∗||2. (10)

Taking expectations on both sides of (10) and iterating over k we
obtain

E
[
||z(k+1) − z∗||2Ū−1

]
≤ ||z(0) − z∗||2Ū−1 − 4ρβ

k+1∑
t=1

E
[
||x(t) − x∗||2

]
. (11)

Since E
[
||z(k+1) − z∗||2Ū−1

]
≥ 0, we have that

∞∑
t=1

E
[
||x(t) − x∗||2

]
≤ 1

4ρβ
||z(0) − z∗||2Ū−1 <∞,

which shows that the sum of the expected values of the primal error
is bounded. Hence, using Markov’s inequality, we conclude that

∞∑
t=1

P
{
||x(t) − x∗||2 ≥ ϵ

}
≤ 1

ϵ

∞∑
t=1

E
[
||x(t) − x∗||2

]
<∞,

for all ϵ > 0, so that by Borel Cantelli’s lemma [5, Theorem 10.5]

P
{
lim sup
t→∞

(
||x(t) − x∗||2 ≥ ϵ

)}
= 0.

Hence, there is a set of events with probability 1 where ∀ϵ > 0 ∃t0
such that ||x(t) − x∗||2 < ϵ, ∀t ≥ t0. Hence ||x(t) − x∗||2 →
0 almost surely. Because z∗ ∈ fix (TP,ρ), x∗ is a primal optimal
solution by construction, see (8).

3.3. Averaged PDMM

Stochastic θ-averaged PDMM can be seen as a stochastic version of
a θ-averaged operator on the auxiliary variable z. Thus, we can di-
rectly apply Theorem 3 from [7], to prove the auxiliary convergence
of z(k) and in turn the convergence of stochastic θ-averaged PDMM.
This convergence holds for arbitrary CCP cost functions.

3.4. Asynchronous Schemes with Transmission Losses

In practice, synchronous algorithm operation implies the presence
of a global clocking system between nodes. In many practical situa-
tions this requirement represents an additional and undesirable over-
head. Asynchronous algorithm operation, on the other hand, alle-
viates this problem as individual nodes can update their variables
according to a local clock. That is, at each iteration, a single node,
or possibly a subset of nodes chosen at random, are activated. More
formally, let (ξ(k))k∈N denote an i.i.d. random process defined on
a common probability space such that ξ(k) ∈ 2V denotes a set of
indices indicating which node will be updated at iteration k. Hence,
ξ(k) denotes the set of active nodes at iteration k. Asynchronous
PDMM can be seen as a specific case of stochastic PDMM where
the entries of U(k) are defined as

U
(k)

i|j =

{
1, if i ∈ ξ(k),

0, otherwise.

Note that by Assumption 3.2, we have ∀i ∈ V, ∀k ∈ N, P{i ∈
ξ(k)} > 0. Since (ξ(k))k∈N is i.i.d., this guarantees that at every
iteration, node i ∈ V has nonzero probability to be updated.

PDMM with transmission losses can also be seen as a special
case of stochastic PDMM. Let (η(k))k∈N denote an i.i.d. random
process defined on a common probability space such that η(k) ∈
2Edir denotes a set of ordered pairs of nodes indicating which entries
of z(k+1) will be updated at iteration k. Hence, η(k) denotes the
set of active directed edges at iteration k; updating z

(k)

j|i implies that

z
(k+1)

j|i = y
(k+1)

i|j so that there has been a successful transmission
from node i to node j, but we could have a transmission failure from
node j to i. PDMM with transmission losses can thus be seen as
a specific case of stochastic PDMM where the entries of U(k) are
defined as

U
(k)

i|j =

{
1, if (i, j) ∈ η(k),

0, otherwise.

Obviously, a combination of asynchronous updating and transmis-
sion loss can be modelled by defining

U
(k)

i|j =

{
1, if i ∈ ξ(k) and (i, j) ∈ η(k),

0, otherwise.

The pseudocode for lossy asynchronous PDMM is given in Algo-
rithm 1.
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Fig. 1. Random geometric graph. Blue dots represent nodes whilst
red lines are the edges connecting them.

4. SIMULATIONS AND RESULTS

In this section we present simulation results that illustrate the
convergence of asynchronous PDMM and its robustness against
transmission loss. We consider the straightforward problem of
distributed averaging, where each node i ∈ V collects a scalar
measurement wi and the nodes in the network aim to calculate the
average of all of these measurements. The related cost function is
f(x) =

∑
i∈V

(
1
2
||xi − wi||2

)
. Due to its resemblance to wireless

networks, we perform distributed averaging using PDMM over a
connected random geometric graph [10] with n = 50 nodes and a

communication radius given by r =
√

logn
n

, as shown in Figure 1.
The measurement values wi are drawn from a unit variance, zero
mean, Gaussian distribution. For the asynchronous simulations,
at each iteration a single random node is activated according to a
uniform distribution and the transmission losses are modelled using
a Bernoulli random variable for each directed edge. In Figure 2,
the convergence of the primal error of synchronous PDMM and
asynchronous PDMM are shown with respect to the number of
transmissions. A number of different transmission error probabili-
ties were simulated using asynchronous PDMM and asynchronous
ADMM (1/2-averaged PDMM [3]) is added as a comparison. We
can see that transmission loss does not prevent the convergence
of PDMM; the convergence rate decreases proportional to the loss
rate. Furthermore, we can see that asynchronous PDMM shows
similar convergence properties to synchronous PDMM and faster
convergence than ADMM.

5. CONCLUSIONS

In this paper a formal convergence proof is derived for the conver-
gence of stochastic PDMM. Stochastic PDMM is a general frame-
work that can be used to model PDMM variations like asynchronous
updating and PDMM with transmission losses. As proved in Sec-
tion 3, stochastic PDMM converges almost surely to a primal op-
timal solution. The only assumption required is that the updating
probability of each entry of the auxiliary variable z is nonzero. The
convergence proof for stochastic standard PDMM holds for differen-
tiable and strongly convex cost functions and the convergence proof
of stochastic θ-averaged PDMM holds for arbitrary CCP cost func-
tions.
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Distributed averaging convergence
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Fig. 2. Convergence of distributed averaging with different levels of
transmission loss.

Appendix A: Derivation of (7)
Using the assumptions listed in Section 3.1 and the conditional ex-
pectation with respect to the sigma-algebraF (k) = σ

(
z(0), ..., z(k)

)
,

we can derive

E
[
||z(k+1) − z∗||2Ū−1 |F (k)

]
=
∑
i∈V

∑
j∈Ni

1

µi|j
E

[∥∥∥∥z(k)i|j − U
(k+1)

i|j z
(k)

i|j

+U
(k+1)

i|j

[
Tz(k)

]
i|j
− z∗i|j

∥∥∥∥2|F (k)

]

=
∑
i∈V

∑
j∈Ni

1

µi|j
E

[
||z(k)i|j − z∗i|j ||2

+
(
U

(k+1)

i|j

)2 ∥∥∥∥[Tz(k)
]
i|j
− z

(k)

i|j

∥∥∥∥2
+ 2U

(k+1)

i|j

〈
z
(k)

i|j − z∗i|j ,
[
Tz(k)

]
i|j
− z

(k)

i|j

〉
|F (k)

]
(a)
=
∑
i∈V

∑
j∈Ni

1

µi|j

(
||z(k)i|j − z∗i|j ||2 + µi|j

[[
Tz(k)

]2
i|j −

(
z
(k)

i|j

)2
− 2z∗i|j

[
Tz(k)

]
i|j

+ 2z∗i|jz
(k)

i|j

])
=
∑
i∈V

∑
j∈Ni

1

µi|j

(
||z(k)i|j − z∗i|j ||2 + µi|j

[∥∥∥∥ [Tz(k)
]
i|j
− z∗i|j

∥∥∥∥2

− ||z(k)i|j − z∗i|j ||2
])

=
∑
i∈V

∑
j∈Ni

1− µi|j

µi|j
||z(k)i|j − z∗i|j ||2 +

∥∥∥∥[Tz(k)
]
i|j
− z∗i|j

∥∥∥∥2
= ||z(k) − z∗||2Ū−1 − ||z(k) − z∗||2 + ||Tz(k) − z∗||2,

(12)

where (a) results from the conditioning on F (k) and the fact that
U2

i|j = Ui|j , ∀i ∈ V , j ∈ Ni. □
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