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Abstract

Recent activities in the research on swarm robotics have emerged from the application of concepts
from swarm intelligence into multi-robot systems (MRSs) that model the realistic interaction between
robots in the system and the environment. Fundamentally, the literature on swarm robotics is bio-
logically inspired by systems as insect colonies, flocks of birds, schools of fish and bacteria colonies.
Recently, the flocking formation control behaviour in multi-agent systems (MASs) has encouraged
astounding attention among the researchers. Researchers from various disciplines including physics,
biophysics, computer science and control engineering have been fascinated by the emergence of flock-
ing, swarming and schooling in MASs under local interactions. In this research, we focus on flocking
algorithms for MRSs. The flocking phenomenon is characterized as a form of collective behaviour of
a swarm of robots with a distributed architecture that involves locality of the computation, sensing,
communication and effector capabilities. Flocking algorithms have the potential to introduce self-
healing, self-organizing and self-configuring capabilities in the functioning of distributed MRSs.
However, despite an exhaustive list concerning flocking formation control algorithms is given in the
literature, most of the existing results deal with simple mathematical modelled robots. In practice, mo-
bile robots embrace more complex nonlinear dynamic mathematical models and involve non-holonomic
constraints. Therefore, it is of scientific and practical interest to study the effectiveness of the flocking
algorithms for such complex nonlinear systems involving non-holonomic constraints.
This thesis study, expanding novel features on the existing literature, presents a connectivity-preserving
artificial potential function (APF)-based flocking algorithm for formation control of mobile networked
non-holonomic Euler-Lagrange (EL) dynamical agents under a proximity graph interaction architec-
ture involving a limited sensing radius. In specific, we consider three algorithms: (i) flocking; (ii)
(virtual) leader-following flocking; (iii) flocking with obstacle avoidance. Proximity graphs are viewed
as a useful and decent mathematical tool to incorporate the practical time-varying communication
topology of MRSs in flocking algorithms. The preservation of the network connectivity is of signifi-
cant importance for the flock stability and synchronization (i.e. consensus) since they firmly depend on
it. The use of APF, to encode the local interaction rules for achieving global performance, is inspired
by the observations and models of the biologists. APF-based flocking control algorithms are mainly
interesting as they are not limited to higher-level models and can be exploited for more advanced
nonlinear dynamic models and control strategies for flocking and collision avoidance purposes.
The aforementioned algorithm setting improves the practical relevance of the problems to be addressed
in this study and meanwhile, it poses technical challenges to the design of the flocking control algo-
rithm and theoretical stability proof, respectively. In all proposed algorithms in this study, being the
first author in the literature to study flocking algorithms for non-holonomic EL systems in specific,
novel theoretical results for this class of systems, exploiting nonlinear control theory concepts where a
nonnegative lower bounded ”energy-like” Lyapunov function candidate is defined, are obtained. Ad-
vanced numerical simulation studies and some performance metrics are presented as a complement to
the analytical framework in order to verify the effectiveness of the theoretical results.
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Preface
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and control inputs.
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Delft, University of Technology S. Tatar
MSc Systems & Control
August 30, 2020

Master of Science Thesis S. Tatar
MSc Systems & Control



x Preface

S. Tatar
MSc Systems & Control

Master of Science Thesis



“The key with autonomous is the whole ecosystem. One of the keys to having a truly fully
autonomous is vehicles talking to each other.”
— Mary Barra, General Motors (GM) CEO





Chapter 1

Introduction

The focus of this thesis study is to design a novel flocking algorithm for formation control of networked
non-holonomic multi-robot systems (MRSs) to obtain innovative scientific and practical insights to the
distributed control of such complex systems. As will be evident later on, non-holonomic systems are
exceptionally interesting since they appear in many advanced robotic structures and involve under-
actuated systems, which are of fundamental practical relevance.
Initially, the background and motivation for studying formation control of MRSs is discussed in per-
spective of swarm intelligence in robotics with specific focus on flocking algorithms. Then, the research
gaps are identified by discussing the motivation of this study and the problem is formulated. In addi-
tion, the main contributions and challenges of this study are given. Finally, an outline of this study
is provided to discuss the remainder of the chapters in this study.

1-1 Background & Motivation

Recent technological advances offer more efficient computation and less expensive communication.
The technological revolution that came along in the last century with the arrival of wireless commu-
nication brought a span of innovation [37]. As a consequence, interacting systems require no longer the
constraint to have a physical interconnection. The ability to locally compute and share information
has facilitated the development of multi-agent systems (MASs). The development of MASs, compared
to an individual and complex agent, promises increased performance, efficiency and robustness, uti-
lizing distributed local sensing and actuation [58;57].
In some practical applications, a single complex system can be replaced by interacting MASs with sim-
pler structure. In fact, a group of robots, e.g. Unmanned Ground Vehicles (UGVs), Unmanned Aerial
Vehicles (UAVs), Unmanned Surface Vehicles (USVs) or Autonomous Underwater Vehicles (AUVs),
with simple structure, is able to perform more complex tasks with reduced operational costs compared
to a single complex robot [33]. The reason for this is the adaptability and flexibility of the multi-robot
system. Coordinated mobile robot group motion has its applications in the sea, on land, in the air,
the stratosphere and in space [29].
Formation control of MRSs has been one of the most fundamental problems for decades in coopera-
tive control of a group of robots which aims at forcing robots to converge to, and maintain, a specific
geometric pattern.

Master of Science Thesis S. Tatar
MSc Systems & Control



2 Introduction

(a) (b)

Figure 1-1: The formation deployment of USVs with (a) the sea mapping operation achieved by formation
control of both USVs and manned vehicles and (b) cooperative formation deployment between USVs, AUVs
and UAVs [33].

In fact, the importance and benefits of increasing the use of unmanned vehicles (UVs) formations in
future battlefield has even been addressed by the U.S. Department of Defense (DoD) by investing the
defense budget in the study and development of unmanned vehicle robot systems [33].
An interesting potential future application of formation control might be the cooperation of both
manned and unmanned vehicles in formation where the manned vehicle serves as a guidance for the
USVs in performing the mission. In fact, due to the nature of surface operations of USVs, more
important roles are going to be played in large-scale-cross platform cooperation acting across different
UVs [33]. In addition, another promising potential application might be the formation deployment of
cooperating USVs with other unmanned vehicles to achieve a network of unmanned systems.
By using the ability of the USVs regarding communication with both aerial and vehicles under water,
it can uniquely serve as an interchange station for distribution of the obtained real-time information
among the other vehicles to enhance the efficiency of the communication. This formation control
concept is illustrated in Figure 1-1.
Then, the motivation behind the tremendous attention that attracted the researchers to perform
studies on nature-inspired formation control algorithms has its roots in several fields. Biologists who
study animal aggregations such as swarms, flocks, schools and herds have observed remarkable group-
level characteristics that are exhibited as emergent properties from individual-level behaviors [29]. This
includes the ability of quick and efficient coordinated maneuvers, the ability to quickly process data
and a significantly improved and advanced decision making ability [29].
Swarm robotics (SR) research has recently emerged from the application of swarm intelligence concepts
into MRSs, that focuses on the physical embodiment and realistic interactions among the individuals
themselves and also between the individuals and the environment [2]. It involves a large group of
locally interacting agents where the emergence of global behavior can be observed. The intelligence
of swarms refers to the superior capabilities of a swarm of MRSs, that e.g. perform the flocking
phenomenon, compared to individual robots. Typically, the swarm robotics research area has the
following related characteristics [4]: individual autonomous robots with limited capabilities (e.g. in
terms of local sensing, communication and computation) to ensure distributed algorithms and do not
rely on coordination mechanisms that hinder scalability; large numbers of identical individuals rather
than centrally planned heterogeneous teams with predefined roles. It is important to note that the
locality of the interactions and communication, which may be considered as a limitation, has beneficial
effects on the robustness and scalability of MRSs. Therefore, this interaction and communication
structure is generally preferred above global communication and sensing. Summarizing, the main
inspirational sources that attracted the attention of the researchers can be listed as follows [24]:

• Biological inspiration: remarkable collective group behavior characteristics are observed in bi-
ological systems that emerge from simple individual-level local interactions, including efficient
formation maneuvering, advanced decision making ability and intelligence. It is essential to
understand those characteristics for the implementation of swarm intelligence concepts into for-
mation control of MRSs.
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1-1 Background & Motivation 3

• Challenging control problems: designing decentralized control algorithms for distributed systems
involves control challenges that are not present in single robotic systems or centralized systems.
These challenges include complex interactions, high system dimensionality, incomplete informa-
tion and uncertainties. This motivates studying the swarm robotics concepts in perspective of the
theoretical framework which can have significant effects on the development and understanding
of nature-inspired formation control algorithms.

• Demand for multi-robot systems: a single robot may not be able to physically execute some
task which can be achieved by employing MRSs. Moreover, MRSs can achieve same tasks while
reducing the operational time and increasing the efficiency and performance.

According to [17], an agent is any living or non-living, virtual or physical computational quantity,
which demonstrates autonomous behaviour and the properties reactivity, pro-activity and the social
ability to communicate with other agents. Some examples of agents include living organisms, robots,
autonomous vehicles and sensors. In a formal context, a multi-agent system can be defined as a
collective group of agents that comprise the following elements:

• interaction through communication

• act/react in an environment

• different "spheres of influence"

• linked by organizational relationships

(a) Delta Formation (b) Bird Flocking

(c) Swarm Robotics (d) Fish Schooling

Figure 1-2: Illustration of flocking and schooling behavior in nature (b,d) and formation control in engi-
neering (a,c).

In fact, the flocking problem can be viewed as a nature-inspired swarm robotics (SR) concept of the
formation control methodology, requiring robots to move together along some aggregate path, however,
with minimal requirements for paths taken by particular robots [45]. In general, the formation control
algorithms have more restrictive requirements on formation maintenance as the multi-robot system
maneuvers in the environment, whereas the flocking algorithms support flexibility, self-organizing
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4 Introduction

and self-reconfigurable features in the system. It is important to note that the flocking phenomenon
involves locality of computation, effector, sensing and communication capabilities. The fundamental
objective in flocking algorithms for formation control is to design local control laws to achieve the
desired emergent collective behavior.
Flocking is a form of collective behavior of a large number of local interacting agents with a common
group objective [41]. This emerging collective behavior of MASs is biologically inspired from animal
behaviour in e.g. birds, fishes, ants and bees. Some examples of flocking behavior in both nature
and engineering are demonstrated in Figure 1-2. Flocks are networks of dynamic systems with a
dynamic topology. The topology is a proximity graph with limited sensing range, representing its
limited communication capabilities that depends on the state of all agents which is locally determined
for each individual agent [28].
A first computer animation model of flocking of birds in flight by exploiting a behavioral model based
on some simple rules and local interactions was developed by Reynolds in 1986 [48]. Most fundamental
to flocking algorithms, the three heuristic flocking rules, introduced by [48], can be formulated as

• flock centering (cohesion): attract the agents to stay close to its flock-mates

• collision avoidance (separation): guidance to avoid collisions with nearby flock-mates

• velocity matching (alignment): the velocity vector (i.e. including direction) of the agents will
be aligned with the nearby flock-mates.

Figure 1-3: The fundamental flocking rules of Reynolds.

Figure 1-3 demonstrates the three heuristic flocking rules that lead to the emergent collective flocking
behaviour of MASs. The self-organized feature of flocks can provide a heuristic conception in the
design of mobile sensor networks and robotics systems [38]. The flocking rules of Reynolds manifested
its way to be the fundamental foundation in developing new flocking control algorithms. Further
studies in the development of the flocking techniques is conducted by several other researchers where
a modest list of one of the first researchers involved in this topic is discussed in Chapter 2.
The flocking framework is primarily used in massive sensing using mobile sensor networks, self-
assembly of connected mobile networks and for military missions. The flocking algorithms have the
potential to introduce self-healing, self-organizing and self-configuring capabilities in the functioning of
distributed MASs. Moreover, the flocking algorithms exploit various intelligence techniques, potential
functions and geometric approaches in order to realize the objective of the collective group by locally
controlling the parameters of the flock-members [3]. Flocking involves swarm intelligence behaviour
which refers to the superior capabilities of a swarm of robotic agents compared to individual agents.
The use of the artificial potential function (APF), to encode the local interaction rules for achieving
global performance, is inspired by the observations and models of the biologists. Groups in nature
make use of a distributed control architecture whereby individuals respond to their sensed environ-
ment, but are constrained by the behavior of their neighbors [29].
Recently, the flocking formation control behaviour in MASs has encouraged astounding attention
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among the researchers. Researchers from diverse disciplines including physics, biophysics, computer
science and control engineering have been fascinated by the emergence of flocking, swarming and
schooling in MASs with local interactions [41]. This attention arises from its broad potential applica-
bility for practical purposes where a distributed control framework is desired. To name a few, some
representative applications include universal flight control system design, mapping and exploration,
surveillance, search and rescue missions in dangerous environments, regional coverage and intelligence
in military missions and object transportation [17].
Moreover, flocking algorithms in the framework of formation control have more interesting applica-
tions. Regarding small satellite clustering, it reduces the consumption of the fuel utilized for propulsion
and increases the sensing capabilities. In automated highway systems, the throughput of the trans-
portation network can be greatly increased if vehicles can form platoons at a desired velocity while
maintaining a specified distance in between the vehicles [9]. The prevalent military and civilian deploy-
ment of unmanned vehicles, e.g. ground mobile robots, has been clearly seen in the last decades [17]. It
is important to note that flocks of unmanned vehicles (UVs) can perform better and protect humans
in an efficient manner in dangerous situations that might occur. Additionally, MRSs are also being
employed in highly task-oriented missions as the lunar polar crater exploration missions that were
conducted by exploiting UGVs, legged scout and immobile payload items [33].
Concluding, a distributed MRSs framework of flocking algorithms for formation control purposes has
beneficial contributions to solutions that involve great advantages such as robustness of the system,
efficiency and operational speed, maintainability, re-usability, flexibility, adaptability, fault-tolerance
of the system and reduced operational costs.

1-2 Problem Formulation
Limitations in the State-of-The-Art Research

This section discusses the main motivation for studying APF-based flocking algorithms in perspec-
tive of more advanced modelled nonlinear agents involving non-holonomic constraints. This is done
by discussing the limitations of the state-of-the-art literature in scope of flocking algorithms for for-
mation control of MRSs. This study will consider a connectivity-preserving flocking algorithm for
non-holonomic mobile networked MRSs. Moreover, the problem that will be investigated in this
thesis study is formulated.

1-2-1 Motivation of Thesis Study

Despite a reasonable amount of literature concerning the flocking formation control of MASs is given,
most of the existing results deal with simple double-integrator dynamics [41;55], holonomic mobile
robots or simple dynamic/kinematic non-holonomic systems [72;74;23]. Moreover, some recent adap-
tive and connectivity-preserving flocking algorithms are presented in the literature concerning EL
systems [11;14;64;15] and heterogeneous nonlinear dynamic systems [65;71], however, non-holonomic con-
straints are not considered in the mathematical modelling and control algorithm design of the systems.
In fact, for practical application purposes, mobile robots involve non-holonomic constraints and em-
brace more complex mathematical models. The design of flocking formation control laws for dynamic
EL non-holonomic systems is rather more challenging and involves additional complexity layers to
the theoretical derivation due to the complicated coupling between the states of the non-holonomic
agents. A more detailed discussion about the literature study on flocking formation control algorithms
is provided in the Chapters 4 and 5 of the literature review in [61].
The behavior of non-holonomic systems appears in many advanced robotic systems that are practi-
cally relevant for applications, such as mobile robots, space manipulators, and multi-fingered robot
hands [34]. In fact, non-holonomic dynamic systems are exceptionally interesting since they involve
under-actuated systems, i.e. a system where the order of the control inputs is less than the order of
the generalized coordinates. The analysis, control and planning of non-holonomic mechanical systems
involve more challenging and complex techniques [34].
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Motivated by the literature study in [61], the design of an APF-based flocking algorithm for non-
holonomic Euler-Lagrange (EL) systems is of fundamental importance to obtain innovative and prac-
tical insights into the distributed control of such complex nonlinear systems. To the best knowledge
of the author, this is the first study to initialize a flocking algorithm for formation control of such
advanced nonlinear systems involving much complexity layers such as the non-holonomic constraints
and Brockett’s necessary conditions [5]. This introduces more challenges and difficulties in the design
and analysis of control algorithms.
APF-based flocking control algorithms are not limited to higher-level models and can be exploited for
more advanced nonlinear dynamic models and control strategies to achieve formation flocking control
with collision avoidance. The main advantages of this method are that the algorithm can be applied
in real-time control, requires less computation, has flexibility and adaptability properties and is very
suitable for effective implications in distributed control of MRSs. The fundamental flocking rules can
mathematically be implemented through APF techniques of inter-agent distances in combination with
consensus algorithms for synchronization purposes.
After an extensive literature study by [61], to the best author’s knowledge, a flocking control algorithm
for formation control of non-holonomic EL systems has never been studied and evaluated. The study
of such systems might lead to interesting results and understanding in perspective of a theoretical and
computational framework to get insights into the development of swarm intelligent robotics concepts
from nature-inspired flocking algorithms.

1-2-2 Problem Description

In this thesis study, we primarily focus on the distributed flocking with connectivity preservation
problem for homogeneous networked non-holonomic EL systems under a proximity graph defined ac-
cording to the maximum of the relative distance between a pair of agents. This study is expanding
novel features on results presented in the current existing work in the literature on the flocking and
formation control of non-holonomic agents [31;74;23;32;72]. A distributed control architecture in which
the controller is locally implemented using only local information from the neighboring agents in the
proximity graph, to complete global tasks cooperatively, increases flexibility and robustness to the
control algorithm [15].
The flocking control algorithms to be designed are distributed in the sense that only neighboring agents
in proximity can obtain information from each other, involving only local interactions. In all proposed
control algorithms, only one-hop neighbors’ information is required, i.e. the relative positions and
velocity vector measurements between the proximity neighbors and the absolute position and velocity
vector measurements.
This study will mainly discuss three flocking algorithms for non-holonomic EL agents from the perspec-
tive of (nonlinear) control theory, analysis and mathematical modelling of EL non-holonomic systems
and the understanding of the heuristic flocking behavior in nature. The first algorithm discusses
a connectivity-preserving APF-based flocking control protocol for formation control of
non-holonomic EL multi-robot systems. The preservation of the network connectivity is of sig-
nificant importance for the flock stability and synchronization (i.e. consensus), since these properties
firmly depend on it. It is important to note that in real applications, such as flocking and rendezvous,
the proximity graph of the flock is dynamically changing and state-dependent [11]. Therefore, assuming
that the underlying communication network is connected or jointly connected for all future time is
not a reliable and practical assumption. As a consequence, the problem of connectivity-preserving has
to be explicitly integrated in the design of the flocking algorithm that guarantees and preserves the
connectivity for any initial connected proximity graph at all time instants.
Then, the second algorithm builds further on the first algorithm by including a (virtual) leader,
encapsulated as a reference trajectory, in the flock that is compatible with the non-
holonomic kinematic constraints of the following agents. The purpose of the virtual leader(s)
is to introduce the mission, i.e. to provide guidance to the flock. Moreover, the virtual leader is em-
ployed for robustness against uncertainties in the model and the system parameters which might lead
to convergence to a zero velocity which is of fundamental importance for the intrinsic stability in terms
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of the orientation angle. A virtual leader is used for cohesive flock guidance to prevent fragmentation
and collapse in the flock [41]. We emphasize that there is no (physical) leader among the vehicles.
More specifically, no ordering of vehicles is required a priori, such that any vehicle is interchangeable
with any other, supporting the self-organization trait into the control algorithm. This feature of the
approach adds robustness and fault-tolerance of the group to the failure of an individual vehicle.
In practice, the system moves in constrained flocking environments where interaction with obstacles
can not be neglected in the design of the control algorithm. Therefore, the third algorithm includes
obstacle avoidance capabilities to the flocking algorithm. In fact, it is not an easy task for the
robot to distinguish between fellow robotic agents and obstacles. This is due to the fact that robots
commonly employ laser range finders that do not have the capability of distinguishing between robots
and obstacles [51]. To be more precise, the reason for this is that laser range finders only return range
data. The neighboring robots and the detected obstacles that are detected within the detection range
are both considered as objects and no distinction is made between them in this algorithm.
After establishing theoretical results for the flocking algorithms, exploiting nonlinear control theory
concepts where a lower bounded ”energy-like” Lyapunov function candidate is defined that is non-
negative, a computational analysis will be executed by performing an advanced numerical simulation
study as a complement to the analytical framework in order to visualize the performance for verifica-
tion of the theoretical analysis.

Control Objective

• The primary objective of this study is to design a connectivity-preserving APF-based flocking
algorithm for formation control of networked non-holonomic Euler-Lagrange (EL) multi-robot
systems.

• The second algorithm builds further upon the first algorithm by including a virtual leader in
the proximity network that is compatible with the non-holonomic kinematic constraints of the
following agents for cohesive flock guidance in the environment.

• Then, to obtain a more practical algorithm, the third flocking algorithm includes obstacle avoid-
ance capabilities without distinguishing between mobile robots and obstacles, as a complement to
the second algorithm.

The problem formulation will more extensively be discussed in Chapter 4 through a mathematical
framework.

1-3 Main Contributions & Challenges

This study on the design of an innovative flocking algorithm for formation control of non-holonomic
networked EL multi-robot systems has the following novel and/or expanded features compared with
the current existing literature.

• This study considers each agent as a non-holonomic Euler-Lagrange (EL) system involving non-
holonomic constraints, which is more practical and realistic, while in most of the exisiting lit-
erature, the agents are modelled as single- or double-integrator dynamics (e.g. [41;35;54;38;6;51;60]),
EL (e.g. [11;14;64;15]) and general nonlinear dynamic systems (e.g. [65;71;66]), without considering
non-holonomic constraints. The mobile agents are mathematically modelled by exploiting the
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EL methodology for the derivation of the non-holonomic dynamical model equations of mo-
tion [34;19;39].
In reality, many physical systems are inherently nonlinear and cannot be embraced by simple
(linear) mathematical models. Among the nonlinear systems, non-holonomic EL systems can
be described for a large class of physical mechanical systems of practical interest such as au-
tonomous mobile robots and space manipulators [34]. Therefore, it is of scientific and practical
interest to study flocking algorithms for such complex nonlinear systems involving non-holonomic
constraints, in perspective of a theoretical and computational framework, to obtain valuable and
innovative scientific and/or practical insights.

• To solve the flocking problem for a network of non-holonomic EL mobile robots, a novel dis-
tributed control algorithm has to be designed to achieve the objective. Due to the complexities
that arise with the control and modelling of such advanced nonlinear systems, mainly owing
it to the involved non-holonomic constraints and high nonlinearities of the system, the current
algorithms developed in the literature for the already existing mathematical models of mobile
agents can not straightforwardly be implemented.
Therefore, this study considers a novel nonlinear flocking control protocol, well-known as com-
puted torque nonlinear feedback control in the robotics literature [34;53], that is able to effectively
solve the problem by obtaining a more convenient model for control and analysis purposes. The
control algorithm is conceptually relative simple and can fully compensate the nonlinear forces
in the motion of the robots and achieve high accuracy control for a large range of robot speeds
and workspace [53].
It is important to note that, in addition to alignment of linear velocities, our flocking algorithm
has to consider also the synchronization of the velocity vector, which includes both the velocity
and angular velocity, and the heading angles, for the robots in proximity. This is done by con-
veniently decoupling and designing the translational and rotational control inputs, respectively.
Therefore, the proposed algorithm is more practical and involves more complexities as those in
the existing flocking algorithms.

• This study considers the integration of a flocking algorithm (including connectivity-preservation,
collision and obstacle avoidance, and velocity vector alignment) with a virtual leader encapsu-
lated as a reference trajectory to guide the mission of the flock. The virtual leader is included in
the proximity network of the multi-agent system, i.e. the information of the leader is constrained
to its followers in its proximity [15]. The above and the fact that non-holonomic EL agents are
subject to non-holonomic constraints, introduce further complexities to the algorithm, since the
generated trajectory has to be compatible with the non-holonomic constraints and not all fol-
lowers have explicit access to the leader’s information. Note that, even for agents modelled as
single- or double-integrator dynamics, this is a very challenging problem [7], not to mention the
case of nonlinear Lagrange systems involving non-holonomic constraints.
Note that, although it might have beneficial contributions to the cohesiveness of the flock and
alignment, the assumption that the information of the virtual leader is available to all its fol-
lowers in its proximity [8;29] is against the local interaction rule of the nature phenomena of our
problem and may be difficult to implement in engineering applications [55;15].
The connectivity-preservation, collision avoidance and velocity vector alignment problems are
explicitly included into the flocking control algorithm by conveniently designing the APF and
consensus protocol, which is a mathematically elegant tool to encode the local interaction rules.

• The performance evaluation of the flocking control algorithm is a difficult task. It is difficult
to predict and analytically investigate the cooperative behavior of the system under the flock-
ing protocol. There does not exist a general analytical framework of performance metrics for
evaluation of the algorithm. Similar to e.g. [15;14;72;23], initially the flocking algorithms will be
analyzed through a theoretical framework using nonlinear stability concepts for control systems.
As initialization of the study, theoretical analysis is the least expensive way of studying the
flocking characteristics of the networked mobile robot system.
Then, different to the computational framework in most of the existing flocking algorithms in
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the literature, the performance of the system will be extensively simulated by a more advanced
computational analysis, in both free and constrained environments, where robots are modelled
isomorphic to a corresponding rigid body with a fixed dimension and a sensing radius Rs rep-
resenting the interaction radius of the proximity graph, respectively. Note that simulations,
though very important in nonlinear control, have to be guided by theoretical concepts. The
blind simulation of nonlinear control systems is most likely to produce few and/or misleading
results, especially due to the great richness of behavior that nonlinear systems can exhibit, de-
pending on initial conditions and inputs [53].
By mathematically simulating the behavior of the nonlinear control system, valuable insights
in the emerging global swarm dynamics can intuitively and guided by theory be obtained, and
the effectiveness of the algorithm can be verified. This allows assessing the performance of the
control algorithm, eliminating or mitigating the need for time-consuming experiments with real
robots and facilitating the algorithm optimization within a heuristic framework.
.

• Challenges in the Proposed Flocking Algorithms

− The design of (flocking) control algorithms for non-holonomic systems is quite involved, mainly
due to the non-holonomic constraints, and requires careful consideration in perspective of non-
linear control theory. In particular, it does not satisfy the Brockett’s necessary conditions [5],
where as a consequence the system can not be feedback stabilized by using static continuous
feedback control laws. This motivates the development of other control strategies as will be
discussed more elaborately in Subsection C-1-2 and 3-1-2.
The mathematical modelling and control of non-holonomic mobile robots involves complexity in
the dynamic model, electronics and control theory. The system dynamics consist of highly non-
linear terms, involves under-actuated systems and non-holonomic constraints, which complicate
the mathematical modelling, control and analysis.

− Designing decentralized control algorithms for distributed systems involves control challenges
that are not present in single robotic systems or centralized systems. These challenges include
complex interactions, high system dimensionality, incomplete information and uncertainties.
This motivates studying the swarm robotics concepts in perspective of the theoretical framework
which can have significant effects on the development and understanding of nature-inspired
formation control algorithms.

− In the literature of flocking algorithms, very few results exists on flocking algorithms with obstacle
avoidance capabilities, beside the results in [41;51] for agents simply modelled by double-integrator
dynamics. In practice, the robots move in a constrained environment with obstacles, therefore,
interaction of the robots with obstacles can not be neglected. This is a very challenging feature to
include in the control algorithm. The presence of obstacles imposes even more complexities and
difficulties in the theoretical analysis and control, as it will cause interference to the connectivity
of the network of the flock, where the stability of the system will become questionable.
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10 Introduction

1-4 Outline of MSc Thesis

This section provides an outline of the remainder of this study to provide guidance in the reading of
the thesis. The remainder of this study can be listed as follows.

• Chapter 2, provides an overview of the relevant related background information to understand
the state-of-the-art methods in the literature on formation control and flocking algorithms.

• Chapter 3, provides preliminaries to the theoretical analysis of the flocking algorithms used in
this study by discussing some essential concepts in algebraic graph theory, proximity graphs,
mathematical analysis of non-holonomic mechanical robotic systems, nonlinear control theory
and mathematical definitions. In addition, Appendix C provides supplementary information on
the mathematical modelling and control of non-holonomic mechanical systems.

• Chapter 4, introduces the problem formulation through a mathematical framework and discusses
some preliminary results and definitions regarding the mathematical modelling of dynamic non-
holonomic EL multi-agent systems, proximity network architectures and the general structure
of the flocking control algorithm to be designed in the subsequent chapters.

• Chapter 5, discusses a flocking algorithm for formation control of networked non-holonomic EL
systems, with its application to a networked differential-drive wheeled mobile robots (WMRs)
system. The flocking algorithm is initially analyzed through a theoretical framework. Then, the
theoretical results are verified through a numerical simulation study through a computational
framework.

• Chapter 6, introduces the concept of a virtual leader in the proximity network of the flocking
control algorithm as a complement to the previous flocking algorithm. Similarly, the extended
flocking algorithm is initially analyzed through a theoretical framework. After, the theoretical
results will be used for guidance and insights in performing the numerical simulation study to
verify the obtained theoretical results.

• Chapter 7, introduces obstacle avoidance capabilities to the flocking control algorithm of Chap-
ter 6 without distinguishing between robots and obstacles. The flocking algorithm is analyzed
through both a theoretical framework and a computational framework, as in the previous chap-
ters.

• Chapter 8, provides the reader with some concluding remarks on this study and future recommen-
dations for prospective studies on the discussed flocking algorithms to gradually work towards
a reliable practical control algorithm for the flocking of networked mobile robotic systems.
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Chapter 2

Background

In this chapter, an overview of the relevant related background work is given to understand the state-
of-the-art literature on formation control techniques and flocking algorithms for formation control.

2-1 Overview of Related Work

Initially, it is of significant importance to highlight the relevance of a convenient agent structure and
underlying control architecture in the design of multi-robot control systems. Then, the relevant theory
to understand the current state-of-the art methods used in flocking and formation control algorithms
are concisely and effectively discussed.

2-1-1 Heterogeneous & Homogeneous Agents

Initially, one of the primary issues to deal with when designing formation control algorithms is to
decide which agent structure will be used in the multi-robot system as it is fundamental for the
operation of the underlying control architecture. The group of agents can consist of homogeneous
or heterogeneous teams. Homogeneous teams consist of flock-members that contain completely the
same control software and hardware. In the multi-robot system, the capabilities of the homogeneous
individual robots are identical, although the physical structures can be different. On the other hand,
heterogeneous robots have different hardware and/or control software. In a heterogeneous multi-robot
system, the robot capabilities are particular to a specific robot where the different functionalities and
designs commonly complement each other. Therefore, the robots can be specialized for performing
specific tasks.
Systems of homogeneous robots are robust due to the fact that no critical robot exist by performing
a mission. However, using heterogeneous robots may be desired or necessary in several applications.
These applications involve the case where only a few robots are able to have sensors and serve as leader
for the multi-robot system in order to provide intelligence to the followers. However, heterogeneous
systems generally involve more complexity compared to homogeneous systems regarding the task
planning. In addition, heterogeneity introduces more complexities in the modelling of robots that
might potentially fail in the group. This reduces the robustness in the SR system towards the individual
failure of robots. Therefore, most of the literature on flocking algorithms are based on homogeneity
of systems as it is generally preferred above heterogeneous systems.

2-1-2 Control Structure: Centralized & Decentralized

It is of fundamental importance to conveniently choose a control and communication structure in
the design of SR multi-robot systems. The robustness of systems is strictly related to the control
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and communication structure that is implemented to coordinate the robots into a desired formation.
Formation control of multi-robot systems (MRSs) involves both centralized and decentralized control
structures. In general, the control architectures can be decomposed into centralized, decentralized and
distributed control structures, see Figure 2-1.
The centralized control structure has a single computational unit that processes all the information
that is needed to achieve the desired control objectives. Over time, many studies on formation control
of MRSs implemented through a centralized control structure have been discussed. In the centralized
framework, the central control agent has global information through collection and synthesis of data
of individuals. The strengths and drawbacks of this control structure are summarized in Table 2-1.

Figure 2-1: The centralized, decentralized and distributed control architectures [source: control structure]

The decentralized control structures can further be branched into distributed architectures and hier-
archical architectures, where the distributed control structure is most frequently used in the literature
for controlling MRSs in formations. Exploiting the distributed control framework as control architec-
ture of the system satisfies more desirable practical requirements. The multiple robots in the system
act completely autonomous in the decision-making process based on local control laws and local in-
formation of the robots and environment. Moreover, limited communication among the robots, lack
of sensing to attain global information and scalable capabilities of the robotic agents are involved
characteristics in the distributed control framework. The strengths and drawbacks that come with
the control structures are summarized in Table 2-1.
The hierarchical structure is a hybrid architecture, intermediate between a centralized architecture
and a distributed architecture [69]. A hybrid control architecture can be desirable by conveniently
exploiting a balanced framework between both the centralized and decentralized structure. This can
be achieved by integrating the characteristics of decentralized control structures with some high-level
supervision of the system through incorporating functions that support the use of a central controller
through leader election, command of a leader or command of several leaders [2]. In fact, the use of
hybrid systems can provide guidance to the overall behavior of the cohesive flock by exploiting e.g. a
virtual leader, while simultaneously reducing the computational complexity of the system by its dis-
tributed architecture where the interaction and communication involves locality with their proximity
neighbors.
Concluding, using hybrid control structures can overcome the deficiencies associated with centralized
or decentralized control structures and hybrid-distributed architectures can provide more efficient and
robust algorithms in the formation control of MRSs.

S. Tatar
MSc Systems & Control

Master of Science Thesis

http://www.mediablitzpublicity.com/home/2016/05/26/decentralization-of-media-what-it-means-and-is-it-still-true/


2-1 Overview of Related Work 13

Table 2-1: Summarizing analysis of control architectures in formation control of MRSs [61].

Summary of control architectures

Strengths Drawbacks

Centralized

The collective swarm behavior can be
global optimally be planned a priori
in accordance with the global available knowledge.

Centralized control structures support direct control
of each individual robot that facilitate prediction of
the swarm behavior in the overall system.

Computational complexity of the system increases
with number of individual robots.

Lacks in robustness in relation to communication failures
and dynamic environments.

Poor scaling in control algorithms.

Highly vulnerable to malfunctions of the central agent
that globally controls the system.

Decentralized
Significantly reduce of signals, delays and impracticalities
in relation to the centralized framework,

Less computational effort as a result of the
distribution of the computational complexity

Supports the scaleability, increased flexibility and robustness
through exploiting parallelism in MRSs.

The multiple robots in the systems act completely autonomous
in the decision-making process based on local control laws and
local information of the robots and environment

Can reduce the stability of the system in terms of
oscillatory behavior due to the lack of
global knowledge and supervision.

The complexity in prediction of the behavior
of decentralized systems,
as their behavior emerges from
numerous local interactions rather than specifications

2-1-3 Control Approaches: Flocking & Formation Control

Formation Control Approaches

The most existing formation control strategies can be classified into some basic strategies. The most
common strategies are summarized in Figure 2-2, where each formation control strategy has its own
advantages and disadvantages. This is analyzed in Table 2-2.

Figure 2-2: Overview of formation control structures to control the flocking phenomenon in MRSs [61].

The methods for formation control of MRSs are evaluated in an innovative way to assist with the
assessment of the suitability of the methods for its applicability in practice. The interested reader
might consult the literature review in [61] for a more elaborate discussion on the operation of the
methods.
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Table 2-2: Summarizing analysis of formation control techniques of MRSs [61].

Methods Strenghts Drawbacks

Leader-follower

Reduces to a tracking problem where standard control theory
techniques can be exploited for stability.

Furthermore, the approach is easy to understand and implement
in formation control applications

Poor disturbance rejection property due to
the chain structure.

This centralized method is less suitable for
a large multi-robot system.
(i.e. it does not support scalability)

No explicit feedback from follower to leader and
has no leader fault-tolerance property.

Behavior-based

Distributed approach, all behaviors run in parallel, real-time
and less information is required for communication.

Useful practical features in guiding the MRSs in
unknown and dynamically changing environments with
only local sensory information.

Capability to solve multi-objective problems.

The complexity in the mathematical analysis and design.

Difficulty in the prove and guarantee of the stability of the system.

Virtual structure

Good performance in formation maintenance during
maneuvers.

Easy to prescribe the coordinated behavior between
the individual robots in the formation

The requirement of a rigid formation structure,
as a consequence, the control approach
lacks in flexibility and adaptability.

APF

Can be applied in real-time,
has flexibility and adaptability behaviors incorporated
and very effective in distributed control of MRSs.

The approach is very attractive for its mathematical
elegance, relative simplicity and effectiveness in
creating reactive behaviors.
The use of this technique is not limited to higher-level
models and can be exploited in complex dynamical
models of agents.

This approach involves the local minima. The combination of both attractive
and repulsive potential functions might lead to equilibria that trap the
multi-robot system into undesired positions [41;37].
This will be discussed in more detail in Chapter 7 and Appendix B. In fact,
due to the presence of uncertainties in practical situations,
this might not be a big problem in practice.

Flocking: Formation Control Algorithms

As already mentioned, it is revealed that a lot of collective behaviours discovered in different fields are
based on relatively simple local interaction rules. Being inspired by, Reynolds proposed a bird flocking
animation model based on three basic rules, also known as the rules of Reynold [48], see Figure 1-3.
The flocking rules of Reynolds manifested its way to be the fundamental foundation in developing new
flocking control algorithms. Further studies in the development of the flocking techniques is conducted
by several other researchers where a modest list of one of the first researchers involved in this topic is
discussed next.
Vicsek et al. [63] investigated the emergence of self-ordered motion in particle systems with biologically
motivated interacting particles mainly focusing on alignment in self-driven particle systems. This is a
simplified and special form of the work done by [48] and is based on the self-propelled particle model.
Moreover, the study in [63] presents simulation results where the nearest neighbor rule is investigated,
i.e. the agents only locally interact with their nearest neighbors. Toner et al. [62] presented a quanti-
tative continuum theory of flocking. Then, in [30], Levine et al. developed a novel algorithm where the
particles rotate around a common center to simulate ant mills. Moreover, Helbing et al. performed [20]

a study to simulate the features of the escape panic phenomenon employing an empirical particle-based
flocking model.
Inspired by these studies, the research in the flocking behavior with focus on the consensus problem
and network topology of systems was further developed by well-known researchers in this field like
Olfati-Saber, Murray, Jadbabaie, Fax and Tanner, respectively, on sub-topics of the flocking phe-
nomenon [42;43;22;50;13]. The objective of the networked dynamic systems is distributed computation
through agreement. The alignment problem in the framework of flocking does not involve constraints
on the consensus value. A vast and exhaustive amount of control laws have been proposed in the
literature for collective behaviour purposes [61]. The majority of them involve the implementation of
Reynolds rules. As explicated in Section 1-1, the cohesion and separation rules are frequently imple-
mented through APF of inter-agent distances. The alignment rule can be realized using a consensus
protocol of the multi-agent system [41;70;7]. The fundamental objective in flocking formation control
algorithms is to design local control laws to achieve the desired emergent collective behavior. The
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flocking communication architecture for MRSs is illustrated in Figure 2-3. The existing control struc-
tures provided in the literature to perform and maintain the flocking phenomenon are discussed in the
subsequent section.

Figure 2-3: Flocking formation control of robots in a multi-robot system with locality of communica-
tion (i.e. limited communication sensing radius R) and locality of interaction (i.e. only interaction with
neighbors). The robots locally interact within their proximity neighborhood.

Flocks of Multi-Agent Systems: Control Structures

Basically, the formation control framework is inspired by the natural behaviour of animals involving
birds flocking or fish schooling. In this concept, the agents adopt to certain formations to enhance the
chance of survival of the individual agents in a group strategy. By resembling the formation behaviour
of animals, groups of unmanned vehicles can be employed in formation to achieve an enhanced level of
autonomy and for accomplishment of tasks that involve much complexity. Advances in the development
of the technology offers the possibility to implement the formation control concept to practical real-
word applications involving MRSs.
A crucial application of the flocking formation control of MRSs is the rescue missions carried out by
autonomous Unmanned Ground Vehicles (UGVs) formations in disaster areas to minimize exploration
time and reduce the risk of further casualties [33]. Moreover, efforts have been made to pave the
formation control concept for area mapping and border patrol and surveillance purposes. Additionally,
highly task-oriented missions exploit multiple unmanned vehicles (UVs) in special cases such as the
lunar polar crater exploration missions conducted using wheeled UGVs, a legged scout and several
immobile payload items [33].
The flocking algorithms involve knowledge distribution which can be local and global. The distribution
of the knowledge is of significant importance for the underlying control algorithm in flocking. The
non-uniform distribution of the knowledge and control of the flocking phenomenon externally gave rise
to some control structures that are proposed and studied in the literature [3]. Figure 2-4 provides an
overview of the most existing control structures employed for controlling and performing the flocking
phenomenon.
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Figure 2-4: Overview of formation control structures to control the flocking phenomenon in MRSs [61].

Leader-Follower Structure Similar to the leader-follower structure summarized in Table 2-2, two
kind of agents are involved, leader and followers. The leader has an independent and enhanced
capability compared to the followers. It is required for the followers to follow the leader while a
formation structure is maintained. A system that uses the leader-following flocking control structure
can have one or more agents that function as flock leaders with global information about e.g. a desired
path. On the other hand, robots only locally communicate with their neighbors.

Virtual Leader Structure The concept of virtual leaders was first developed by [41] to study the flock-
ing behaviour in constrained environments with obstacles and a collective objective. It is important
to note that the virtual leader is not a physical agent. In fact, it denotes a moving reference point
for guidance of the flock of the multi-robot system. [55] proposes a stable flocking algorithm to study
the cases where a minority of agents are informed and a virtual leader with varying velocity. Further-
more, [35;56] propose multi-target tracking flocking algorithms for multi-agent systems with multiple
virtual leaders. This might be useful in multi-objective flocking scenarios.

Pinning Structure The direct control of an individual agent in a dynamic topology of MRSs does not
necessarily require stable flocking behaviour. Hence, only a fraction of agents may have the information
about the leader and are denoted as informed agents in the literature (e.g. [54;15]). If the entire flock
has information about the target, local inter-robot interactions mainly serve the purpose of cohesive
formation maintenance while simultaneously avoiding collisions. However, in case only a fraction of
agents are informed about the target (i.e. informed agents), the local interactions in addition serve the
purpose of spreading the knowledge to all individuals in the flock. Only the informed agents contain
a navigational feedback term and it is shown that the flocking phenomenon still can be achieved.

Soft Control Structure Usually, soft control structures involve an externally controlled special
agent [18]. Local control structures of the existing agents in the system remain unchanged. This
structure can be implemented in complex MRSs to intervene in the collective behavior (headings) of
the group by soft control. A specified method is to add a special agent, called a ’shill’, which can
externally be controlled and is treated as an ordinary agent [18]. It is important to note that this ap-
proach is different than a distributed architecture. It may be used as a natural and efficient intervene
method in the challenging control of complex MRSs from the approach of distributed control [3].
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Chapter 3

Theory
Mathematical Background

Throughout this thesis numerous mathematical definitions and theoretical results will be used. This
is briefly reviewed in this chapter and Appendix C. The analysis and theoretical framework of the
flocking algorithm for advanced non-holonomic systems rely on some essential concepts exploited from
(algebraic) graph theory [16], spatially induced graphs/proximity nets [41], mathematical modelling of
non-holonomic mechanical robotic systems [34], Lyapunov-like stability theory [25] and controllability
for nonlinear non-holonomic systems [5;34;52].

3-1 Mathematical Modelling & Control of Non-Holonomic Mechanical
Systems

The aim of this section and Appendix C is to provide a theoretical framework using tools from non-
linear control theory for analysis of non-holonomic mechanical systems. This is an interesting topic
since non-holonomic constraints are present in many advanced robotic architectures [34]. In this study,
we discuss a unified framework for mathematical modelling of non-holonomic mechanical systems ex-
ploiting the Euler-Lagrange (EL) methodology.
The behavior of non-holonomic systems in advanced robotic structures is exceptionally interesting
since it involves under-actuated systems. Under-actuated systems have very important applications
such as free-flying space robots, underwater robots, surface vessels, manipulators with structural flex-
ibility, etc [68]. They are used for reducing weight, cost or energy consumption, while still maintaining
an adequate degree of dexterity without reducing the reachable configuration space. Some other ad-
vantages of under-actuated systems include less damage while hitting an object, and tolerance for
failure of actuators [68]. The kinematic, dynamic modelling and control of non-holonomic mechanical
systems are discussed. Some examples of the kinematic and dynamic modelling of non-holonomic
systems can be consulted from [34;1].

3-1-1 Methodology for Dynamic Modelling of Non-Holonomic Mechanical Systems

In the literature, the most used mathematical modelling methods involve the Euler-Lagrange (EL) and
Newton-Euler methodology, respectively [19]. Also, various other formalisms exist for the modelling of
systems such as the Kane’s method. The Newton-Euler method involves two kind of forces; the exter-
nally impressed forces by the actuators and the constraint forces due to the interaction of the robot
platform with the ground through the wheels [19]. Moreover, a system that consists of interconnected
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elements may have interaction forces between the elements through elements like gears, springs and
frictional elements.
Normally, these forces are not easy to be quantified which leads to practical difficulties of the Newton-
Euler approach. On the other hand, the EL methodology exploits the energies of the system, i.e. the
kinetic and potential energy, respectively. The expression of the forces into energies involves scalar
quantities which can easily be expressed in terms of the coordinates of the system [19]. Moreover,
the Lagrangian approach requires the generalized coordinates of the system to be independent. The
Lagrangian formulation provides a powerful and versatile method to model the equations of motion
for holonomic systems.
However, when dealing with non-holonomic systems, the kinematic constraint equations are incorpo-
rated in the dynamic equations employing additional Lagrange multipliers [34]. The unknown Lagrange
multipliers are usually functions of the generalized coordinates and time, and are obtained as an ele-
ment of the solution. Then, as in [34;19], a method is proposed to eliminate the Lagrange multipliers by
exploiting the properties of the nullspace of the constraint matrix and obtaining a reduced dynamic
model to facilitate the theoretical analysis of the system and control algorithm.
It is important to note that due to the mapping to a lower dimension, relevant information on the
system might be lost and hence it is of significant importance taking this into consideration for the
design and implementation of flocking control algorithms. It is well known that the nonlinear model
of a non-holonomic robot can be transferred into single-integrator kinematics utilizing feedback lin-
earization techniques [34;59]. However, this approach will lead to the loss of orientation information of
the robot which is very vital for high operational precision in engineering applications [10].

Euler-Langrange Methodology

In this subsection, a unified framework for the dynamic modelling of non-holonomic mechanical sys-
tems, exploiting the EL methodology, is provided. Then, the dynamical model of the n-dimensional
mechanical system involving k kinematic constraints is partially linearized through a computed torque
nonlinear feedback approach [34].
The Lagrangian L is defined as the difference between the kinetic and potential energy of the system

L(q, q̇) = T (q, q̇)− U(q) = 1
2 q̇

TM(q)q̇ − U(q) (3-1)

where M(q) and U(q) denote the positive-definite inertia matrix and the potential energy of the
mechanical system, respectively. Then, the EL motion equations are formulated as

d

dt

(
∂L
∂q̇

)T
−
(
∂L
∂q

)T
= A(q)λ+ S(q)τ (3-2)

with S(q) ∈ Rn×m a matrix mapping the external inputs τ ∈ Rm, where m = n − k, to forces and
torques that execute work on the generalized coordinates q. The vector λ ∈ Rm denotes the unknown
Lagrange multipliers. Moreover, the term A(q)λ represents the constraint force vector with A ∈ Rn×m.
By solving the Euler-Lagrange motion equations, we obtain

d

dt

(
∂L
∂q̇

)T
=M(q)q̈ + Ṁ(q)q̇ (3-3)

(
∂L
∂q

)T
= 1

2

(
∂

∂q
(q̇TM(q)q̇)

)T
+
(
∂U(q)
∂q

)T
Then, by combining (3-1) and (3-2) and substituting the results of (3-3), the dynamical model of the
non-holonomic constrained mechanical system can be formulated as

M(q)q̈ + Ṁ(q)q̇ − 1
2

(
∂

∂q
(q̇TM(q)q̇)

)T
+
(
∂U(q)
∂q

)T
︸ ︷︷ ︸

d(q,q̇)

= A(q)λ+ S(q)τ (3-4)
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which can be simplified and rewritten to

M(q)q̈ + d(q, q̇) = A(q)λ+ S(q)τ (3-5)
AT (q)q̇ = 0

Next, we consider a matrix G(q) where its columns span a basis for the nullspace of the transposed
constraint matrix AT (q), as in (C-7), such that we obtain

AT (q)G(q) = 0

This result is exploited to eliminate the Lagrange multipliers by left multiplication of both sides in
the equations of (3-5) by GT (q). Then, the reduced dynamical model is obtained

GT (q)[M(q)q̈ + d(q, q̇)] = ������
GT (q)A(q)λ+GT (q)S(q)τ

as a set that consists of m differential equations. Now, a realistic assumption is

det[GTS(q)] 6= 0

which is valid in most practical scenarios. A convenient way is to merge the kinematic and dynamical
models into a (n+m)-dimensional reduced state-space model [34]

q̇ = G(q)v
v̇ = M̂−1(q)m(q, v) + M̂−1(q)GT (q)S(q)τ

where v ∈ Rm denotes the reduced velocity vector and the new system matrices are

M̂(q) = GT (q)M(q)G(q) > 0
m(q, v) = GT (q)M(q)Ġ(q)v +GT (q)n(q,G(q)v)

Then, a partial linearization can be performed by exploiting a computed torque nonlinear feedback
strategy [34]

τ = [GT (q)S(q)]−1(M̂(q)a+m(q, v))

with a ∈ Rm denoting the reduced vector of accelerations. As a result, the system can be formulated
as

q̇ = G(q)v
v̇ = a

The first n equations are the kinematic model whereas the secondm equations involve the dynamic ex-
tension. The torque nonlinear feedback input requires measurements of v, however, the measurements
may not be directly available. Following the steps in [34], we can write the closed-loop state-space
model compactly in the following form

ẋ = f(x) + g(x)u =
[
G(q)v

0

]
+
[

0
Im

]
u (3-6)

with x = [q, v]T . The model in (3-6) is known as the second-order kinematic model of the constrained
mechanical system.
Summarizing, for non-holonomic systems, it is possible to cancel dynamic parameters via nonlinear
feedback, assuming [34]

• The dynamical model is exactly known.

• The complete state of the system is measurable.
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3-1-2 Control of Non-Holonomic Systems

It is relevant to initially focus on the control of first-order kinematic models of non-holonomic systems
and actually it is not a limitation. If the control problem is solved for the kinematic system in (C-7),
extending the solution to the second-order kinematic model and subsequently at the dynamical level
is straightforward [34].
In fact, note that any configuration q is an equilibrium configuration, qe, of the unforced system [34].
It is evident from the analysis of non-holonomic systems that the kinematic model of a (completely)
non-holonomic system is controllable, i.e. at least one convenient control input exists that drives the
system from its initial configuration q0 to a desired configuration qf [34].
For robustness against perturbations, uncertainties in the model and initial condition errors, a feedback
control strategy is desired by using the the configuration error e = (qf − q) in each step. However,
feedback control of non-holonomic systems is confronted with a major difficulty as a result of Brockett’s
condition [5;52].

Theorem 1 (Brockett’s Necessary Conditions [5]). A beautiful general theorem on necessary conditions
for feedback stabilization of nonlinear systems was given by Brockett.
Consider the nonlinear system ẋ = f(x, u) with f(x0, 0) = 0 and f(.,.) continuously differentiable in a
neighborhood of (x0, 0). Necessary conditions for the existence of a continuously differentiable control
law for asymptotically stabilizing (x0, 0) are:

• The linearized system has no uncontrollable modes associated with eigenvalues with positive real
part.

• There exist a neighborhood N of (x0, 0) such that for each ξ ∈ N , there exist a control uξ(t)
defined for all t > 0 that drives the solution of ẋ = f(x, uξ)) from the point x = ξ at t=0 to
x = x0 at t =∞.

• The mapping γ : N × Rm → Rn, N a neighborhood of the origin, defined by γ : (x, u)→ f(x, u)
should be onto an open set of the origin.

Proof. The interested reader might consult the proof of this theorem in [5].

As a consequence of Brockett’s theorem, asymptotic stabilization of equilibria cannot be achieved
using static continuous state feedback control laws, see proposition 3 in [34]. This limitation motivates
the use of different approaches to solve the control problem, i.e. using open-loop/feedforward control,
where the input does not depend on the state q nor on the error e, or by using a non-smooth feedback
control and/or time-varying law. The design of this type of feedback control algorithms involve more
difficulties, however, they are desired in real-time control under uncertain or perturbed conditions [34].

3-2 Nonlinear Control Theory

This section attempts to provide some relevant lemmas and theorems involving nonlinear stability
theory concepts for time-varying (non-autonomous) systems that will be important in evaluating the
collective stability of the flocking algorithms. Since it involves many stability concepts for different
type of systems, it is chosen to not explicitly discuss them in detail in this preliminary section but to
provide the reader with well-known literature in this field and focus on the specific tools needed for
the problem to be solved.

3-2-1 Lyapunov-Like Analysis - Barbalat’s Lemma

The nonlinear control theory concepts that will be used for stability analysis of the flock can be con-
sulted from [53;25] and comprise two lemmas, Barbalat’s Lemma and Lyapunov-like Lemma, respectively.
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Barbalat’s lemma is a purely mathematical result concerning the asymptotic properties of functions
and their derivatives. When properly used for dynamic systems, particularly non-autonomous systems,
it may lead to the satisfactory solution of many asymptotic stability problems [53].

Lemma 1 (Barbalat’s Lemma [53]). If the differentiable function f(t) has a finite limit as t→∞, and
if ḟ is uniformlly continuous, then ḟ(t)→ 0 as t→∞.

Proof. The interested reader might consult the proof of this theorem in [53].

Then, a function f : R→ R is said to be uniformly continuous if ∀ε > 0, it exists δ(ε) > 0 such that

∀|t2 − t1| ≤ δ → |f(t2)− f(t1)| ≤ ε

Uniform continuity of a function is often awkward to assert directly from the above definition [53].
Hence, a more convenient method is to evaluate the derivative of the function. A sufficient condi-
tion is then that, for a differentiable function, uniform continuity can be implied if the derivative is
bounded.
To apply Barbalat’s lemma to the analysis of dynamic systems, one typically uses the following im-
mediate corollary, which looks very much like an invariant set theorem in Lyapunov analysis:

Lemma 2 (Lyapunov-like Lemma [53]). If a scalar function V(x,t) satisfies the following conditions

• V(x,t) is lower bounded

• V̇ (x, t) is negative semi-definite

• V̇ (x, t) is uniformly continuous in time

then V̇ (x, t)→ 0 as t→∞

An example is illustrated in [53] (see example 4.13), to illustrate the procedure of the asymptotic
stability analysis for non-autonomous systems.

Remark 1. [53] It is important to note that, such an analysis based on Barbalat’s lemma, is called
a Lyapunov-like analysis. However, it presents two subtle, but important differences with Lyapunov
analysis

(i) The function V (t, x) can simply be a lower bounded function of x and t instead of a positive
definite function.

(ii) The derivative V̇ must in addition to being negative or zero, also shown to be uniformly contin-
uous. A sufficient condition is then that, for a differentiable function, uniform continuity can be
implied if the derivative is bounded. Generically, this is done by proving boundedness of V̈ .

3-3 Communication Structure

The communication structure often emerges as a rational behaviour in multi-robot systems (MRSs)
cooperating in an environment and serves as a means for the coordination problem. The communica-
tion can be seen as a mode of the interaction between the robots. This mode of interaction allows the
robots to share information about their position, the environment and sensor data with other robots
in the system or in case of limited communication with their neighboring robots (e.g. in flocking).
In fact, this interaction between robots allows individual robots to get information about the other
robots in the system in the perspective of their intentions, goals and actions. The structure of the
communication network in networked MRSs can generally be classified in the following way:
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• Communication topology: denotes the "physical" interconnections among the agents in a coop-
erative group. The topology of the system can either be fixed or dynamic. The first indicates
that the topology is static whereas the latter means that the interconnection structure can
change arbitrarily [59]. Moreover, the interconnection structure can be directed or undirected,
i.e. unidirectional or bidirectional, respectively.

• Communication range: the maximum range between two agents where communication is still
possible. This can be divided into three classes of communication. The case when there is no
direct communication between the robots, i.e. the robots are communicating indirect with each
other by observing the behaviour of other robots. Local communication includes that robot can
only communicate with other robots that are in the neighborhood. Then, global communication
is where robots can communicate with any robot in the system.

• Communication bandwidth: the amount of data that a communication link can transmit during
a given time span.

In flocking algorithms, locality of communication and interaction is involved since the robots in the
system only interact with neighboring robots in proximity in a dynamic topology within a limited
sensing field. This is illustrated in Figure 3-1. The studies that require global information may suffer
from lack of scalability, but allow more accurate forming of a wider range of formations. On the other
hand, studies using only local communication and sensor data tend to be more scalable, more robust,
and easier to build, however, they are also limited in variety and precision of formations [24].

3-4 Graph Theory

Graph theory is widely used as a theoretical basis for establishing communication and control struc-
tures in decentralized swarm robotics (SR) systems, as this makes it possible to abstract away the
complex sensing and communication characteristics of individual robots so that research efforts can
focus on the underlying interaction topologies that lead to the desired global behaviors. Consensus
algorithms are often used to enable individual units in SR systems to reach a common perspective of
objectives and state of the world so they can agree on the direction of the movement, where to meet
or the location of the intruders. Consensus algorithms have proved to work well in combination with
graph theory and are of significant importance in flocking algorithms [2].

3-4-1 Formation Control Graphs

The theoretical framework that will be discussed in this section relies on some basic concepts in graph
theory, algebraic graph theory and spatially induced graphs (i.e. proximity nets), see ( [41] and its
references [43], [45-48]).

Topology of Flocks: Proximity Nets

Typically, a graph is used that characterizes the interaction network between the agents in the flock.
A graph G = (V, E) is a pair that consists of a set of nodes/vertices V = {1, . . . , N} representing the
agents and an edge set E ⊆ {(i, j) : i, j ∈ V, j 6= i} denoting the links between the agents to share
information (the graph is generally directed and has no self-loops) [41]. Moreover, |V| and |E| denote
the order and size of the graph, respectively. In networked dynamic systems, the quantity |E| is called
the communication complexity [26].
For a directed graph, an edge (j, i) ∈ E specifies that node i has the capability to obtain informa-
tion from node j, which is not necessarily vice versa. In this interaction setting, the node j is a
neighbor of node i. A directed path in a directed graph is an ordered sequence of edges of the form
(i1, i2),(i2, i3), . . . , where ij ∈ V. A subgraph of G denotes a node and edge set that are subsets of those
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in G. The adjacency matrix of a graph [16], denoted by A = [aij ], is a matrix that has nonzero elements
satisfying the property of aij 6= 0 ⇐⇒ (i, j) ∈ E . Furthermore, the graph is weighted if it has also
other elements than just 0-1 elements. In general, in the flocking phenomenon, undirected weighted
graphs with position-dependent adjacency components are exploited. Note that an undirected graph
results in a symmetric adjacency matrix A, i.e. AT = A. More formally, in an undirected graph, it
holds that (i, j) ∈ E ⇐⇒ (j, i) ∈ E . The neighbor set of node i can be defined as [41]

Ni = {j ∈ V : aij 6= 0} = {j ∈ V : (i, j) ∈ E} (3-7)

Figure 3-1: Proximity communication structure in flocking algorithms. The robots in the MRSs involve
locality of communication and interaction, i.e. robots only communicate with neighboring robots within
the limited sensing radius R.

Then, define qi ∈ Rm to be the position of node i ∀i ∈ V. The configuration of all nodes of the graph
G can be described as a vector q = col(q1, . . . , qn) ∈ Q = Rmn. A framework is a pair (G, q) that
consists of a graph and the configuration of its nodes [41].
The interaction range between agents is denoted by R > 0. The set of spatial neighbors of agent i, see
Figure 3-1, is defined by

Ni = {j ∈ V : ||qj − qi|| < R} (3-8)
with ||.|| the Euclidian norm in Rm. The proximity net G(q) = (V, E(q)) is defined by the set of vertices
V and the set of edges [41]

E(q) = {(i, j) ∈ V × V : ||qj − qi|| < R, i 6= j} (3-9)

which has position-dependency on q. Then, the framework G(q), q is called the proximity structure [41].
In fact, note that an example of a proximity net is the topology of a wireless sensor network with
a radio range denoted by R. The proximity net G(q) will be undirected if the interaction range is
identical for all agents in the networked system.

Consensus on Proximity Nets & Graph Laplacians

The Laplacian of a graph [16] is used for analysis of velocity vector matching of agents in the flock
structure. The degree matrix of the graph G is a diagonal matrix ∆ = ∆(A) with diagonal elements∑n
j=1 aij , i.e. column sums of the adjacency matrix A [41]. Furthermore, the graph Laplacian L = [lij ]

is an n× n matrix that is related to the graph G and described by

L = ∆(A)−A (3-10)

The Laplacian matrix L has the property that the right eigenvector 1n = (1, . . . , 1)T is always asso-
ciated with an eigenvalue λ1 = 0. Some relevant properties of the graph Laplacian L are summarized
in the folowing lemma:
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Lemma 3 (Properties of graph Laplacian). Let G= V, E be an undirected graph of order n with a
nonnegative adjacency matrix A = AT . Then, the following statements hold [16]

• L is a positive semi-definite matrix that satisfies the following sum-of-squares (SOS) property:

zTLz = 1
2
∑

(i,j)∈E
aij(zj − zi)2, z ∈ Rn (3-11)

• The graph G has c ≥ 1 connected components iff rank(L) = n-c. Particularly, G is connected iff
rank(L) = n-1.

• Let G be a connected graph, then

λ2(L) = min
z⊥1n

zTLz

||z||2
> 0 (3-12)

Proof. The statements of the above lemma are well-known results in the domain of algebraic graph
theory and the proofs can be consulted from [16].

The eigenvalue λ2(L) is also known as the algebraic connectivity of a graph [16]. The speed of conver-
gence of a linear consensus protocol is equal to λ2 > 0 [41]. The consensus protocol is relevant for syn-
chronization purposes in flocking algorithms and results in velocity matching. The multi-dimensional
graph Laplacian is denoted by

L̂ = L⊗ Im
and it satisfies the SOS property defined as

zT L̂z = 1
2
∑

(i,j)∈E
aij(zj − zi)2, z ∈ Rmn (3-13)

with z = col(z1, z2, . . . , zn) ajd zi ∈ Rm ∀i. Note that the SOS property also holds for the proximity
net G(q) [41].

3-5 Mathematical Definitions

This section discusses some important mathematical concepts and notations that will be used in the
theoretical analysis of the flocking algorithms.

3-5-1 Euclidean Norm ||.||

The Euclidean norm of a vector x is represented by ||x||2 =
√
x2

1 + x2
2 + . . .+ x2

N , where x = [x1, x2, . . . , xN ]T ,
a column vector. The norm is a scalar value. Note that a derivative of a scalar with respect to the
vector x must result in a vector. To estimate the derivative of a scalar with respect to a vector, we
estimate the partial derivatives of the scalar with respect to each element in the vector and arrange
the partial derivatives to form a vector. As a result, we get

∆x||x||2 = [ ∂

∂x1
||x||2,

∂

∂x2
||x||2, . . . ,

∂

∂xN
||x||2]T (3-14)

The i− th component of the derivative is given by
∂

∂xi
||x|| = ∂

∂xi
(
√
x2

1 + x2
2 + . . . x2

N ) = 1
2

2xi
(x2

1 + x2
2 + . . .+ x2

N )
= xi

(x2
1 + x2

2 + . . .+ x2
N )

(3-15)

By arranging all the partial derivatives together, we obtain that the derivative of the Euclidean norm
is given by [46]

∆x||x||2 = x

||x||2
(3-16)
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3-5-2 Properties/Facts of Norms of Vectors and Matrices

Let ||.|| denote the norm of a vector or matrix without loss of generality, since matrix and vector
norms are equivalent, we consider the 2-norm, i.e.

||x|| = |xTx| =

√√√√ n∑
i=1

x2
i , x ∈ Rn (3-17)

and

||A|| = σmax(A) =
√
λmax(ATA), A ∈ Rn×n (3-18)

where σmax denotes the largest singular value and λmax denotes the largest eigenvalue of the corre-
sponding matrix, respectively. If A is symmetric, then

||A|| = max{|λ1|, |λ2|, . . . , |λn|} (3-19)

Furthermore, the following properties hold for vectors and matrices

• ||AB|| ≤ ||A|| ||B||, for any A and B of appropriate dimension.

• ||x+ y|| ≤ ||x|| + ||y||, for any vectors x and y (triangle inequality)

• The scalar ax+ by= [ab] [xy]T ≤ ||[ab]|| ||[xy]T

• The scalar |xy| ≤ cx2 + 1
4cy

2, for any c > 0

• xTPx ≤ ||xTPx|| ≤ ||P || ||x||2 = λmax(P )||x||2, for any vector x and positive semi-definite
matrix P = P T , where λmax is the largest eigenvalue of P .

• xTPx ≥ λmin(P )||x||2, for any vector x and positive semi-definite matrix P = P T , where λmin
is the smallest eigenvalue of P .

3-5-3 Notations

The sets of the reals and N ×N matrices are denoted by R and RN×N , respectively. Moreover, let 1N
(0N ) denote the N × 1 column vector of all ones (zeros). Throughout this study, we use ||.|| and ⊗ to
denote the Euclidean norm and Kronecker product, respectively. For a real symmetric matrix, λmin(.)
and λmax(.) denote its minimum and maximum eigenvalues, respectively. Furthermore, Im is used to
denote the m×m identity matrix. Then, for a vector function x(t): R 7→ Rn, it is said that x(t) ∈ Lp
if (
∫∞

0 ||x(t)||p dt)
1
p < ∞ and x(t) ∈ L∞ if for each element of x(t), noted as xi(t), sup

t≥0
|xi(t)| < ∞,

i = 1, . . . , n.
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Chapter 4

Flocking Algorithm for Formation Control
Problem Formulation & Preliminary Results

This chapter introduces the problem formulation through a mathematical framework and discusses
some preliminary results and definitions concerning the mathematical modelling of the dynamic non-
holonomic mobile multi-agent system (MAS), proximity network communication architecture and the
general structure of the flocking control algorithm to be designed later.

4-1 Non-Holonomic Networked Euler-Lagrange Multi-Agent System

Consider a group of N homogeneous non-holonomic Euler-Lagrange (EL) agents subject to holonomic
and non-holonomic constraints, respectively. The EL framework is used to derive the motion dynamics
of the constrained mechanical system [34;19]. Generically, the agents are mathematically governed by
the following EL dynamics{

Mi(qi)q̈i + Vi(qi, q̇i)q̇i + Gi(qi) + Bi(qi)τd = Bi(qi)τi −ATi (qi)λi, i = 1, . . . , N
Ai(qi)q̇i = 0

(4-1)

where qi ∈ Rn denotes the generalized coordinates vector, Mi(qi) ∈ Rn×n is a symmetric positive
definite inertia matrix, Vi(qi, q̇i) ∈ Rn×n is the centripetal and coriolis matrix, Gi(qi) ∈ Rn is the
gravitational vector, Bi(qi)τi ∈ Rn is the generalized force vector with Bi(qi) ∈ Rn×p the input matrix
mapping the external inputs τi ∈ Rp, where p = n− k, to forces and torques that execute work on the
generalized coordinates qi.
Then, τi ∈ Rp denotes the input vector of external torques and forces provided by the actuators.
Moreover, τd ∈ Rp denotes the bounded and unknown disturbances including unstructured uncer-
tainties (or unmodelled dynamics), ATi (qi)λi ∈ Rn is the set of generalized constraint forces where
Ai(qi) ∈ Rm×n and λi ∈ Rm denote the constraint matrix and the vector of unknown Lagrange mul-
tipliers, respectively.
It is assumed that we have k holonomic constraints and m−k non-holonomic independent constraints
and they can all be written in the form of Ai(qi)q̇i = 0 with Ai(qi) being a full-rank matrix. As a
consequence, it is always possible to find a full rank matrix Si(qi) = [s1(q) . . . sn−m(q)] ∈ Rn×m, that is
formed by a set of smooth and linearly independent vector fields spanning the null space of Ai(qi), such
that Ai(qi)Si(qi) = 0 [34;39]. The dynamics of the reduced dynamic model of the non-holonomic mobile
EL agents, that will be discussed next in Subsection 4-1-2, satisfies the following properties [53;14;15]:

Property 4-1.1. Mi(qi) is symmetric and positive definite, ∀qi.
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Property 4-1.2. There exist positive constants kM, kM, kV , kG, such that kMIn ≤Mi(qi) ≤ kMIn,
||Vi(qi, q̇i)|| ≤ kV ||q̇i|| and ||Gi(qi)|| ≤ kG, ∀qi.

Property 4-1.3. Ṁi(qi) - 2Vi(q̇i, qi) is skew symmetric.

Remark 2. In nonlinear control design, exploitation of the physical properties can provide relevant
insights into facilitating the control design for complex nonlinear plants to a more simple issue, or
may easily solve an otherwise intractable design problem.

Remark 3. As a complement to Property 4-1.3, an interesting fact is that a quadratic function
associated with a skew-symmetric matrix with zero trace is always zero. This is an essential property.
Note that, in principle, a matrix can be skew-symmetric, yet its associated quadratic form is not
zero due to the aforementioned reason. More formally, skew-symmetry is a property which can be
interpreted as a matrix expression reflecting conservation of energy [53].

4-1-1 Dynamic Reduction Procedure

The non-holonomic EL system equations can be transformed into an equivalent form to obtain a
reduced dynamic model that is more appropriate for control purposes and numerical simulation stud-
ies [34;19]. It is possible to define n−m velocities vp,i = [vp,i (1) . . . vp,i (n−m)] such that the kinematic
model of the system is given by

q̇i = Si(qi)vp,i (t) (4-2)

The main objective is to eliminate the unknown Lagrange multipliers λi ∈ Rm by using the kinematics
matrix Si(qi) in (4-2) of the system as described in Section 4-1 and Subsection 3-1-1. The unknown
Lagrange multipliers are usually functions of the generalized coordinates and time, and are obtained
as an element of the solution [19].
Then, as in [34], a method is proposed to eliminate the Lagrange multipliers by exploiting the properties
of the nullspace of the constraint matrix Ai(qi) and obtaining a reduced dynamic model to facilitate
the theoretical analysis of the system and control design:

• Eliminating the unknown Lagrange multipliers λi by pre-multiplying the dynamic EL model
(4-1) with STi from the left such that STi AT = 0.

• Then, differentiating (4-2) and substituting it into (4-1).

As a result, the dynamical equations of the reduced dynamic model are obtained by

M̃iv̇p,i +Ṽivp,i +G̃i + B̃iτdi = B̃iτi
with (4-3)
M̃i = STi MiSi
Ṽi = STi MiṠi + STi ViSi
G̃i = STi Gi (4-4)
B̃i = STi Bi

where vp,i = [vi, ωi]T ∈ Rn−m is the vector of pseudo-velocities and τi ∈ Rp denotes the flocking control
algorithm for formation control purposes that will be designed later in Chapter 5 and is of the form
of (4-14).

Assumption 1. [34] It is assumed that det[STi Bi] 6= 0, which is a realistic hypothesis in most practical
cases. This assumption is of fundamental importance for the design and implementation of the flocking
control algorithm for non-holonomic networked EL multi-agent systems, which will be evident later.
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Remark 4. It is important to note that, although some information might be lost in the reduced
dynamical model, this simplification of the dynamic model comes with minor losses of accuracy and
facilitates the design of control algorithms [34;19]. Note that more accurate or more advanced models
are not always better in performance, because they may require unnecessarily complex control design
and analysis and more demanding computation [53]. The key here is to keep "essential" effects and
discard insignificant effects in the system dynamics in the operating range of interest.

The kinematic and dynamical model can conveniently be merged into an (n+m)-dimensional reduced
state-space model {

q̇i = Sivp,i
v̇p,i = [M̃i]−1(B̃iτi − Ṽivp,i )

(4-5)

4-1-2 Modelling of a Networked Non-Nolonomic DDWMR System

A detailed and accurate dynamic model is developed to describe the motion of the system that will be
used in the theoretical analysis of the flocking formation control algorithm and numerical simulation
studies. The mathematical dynamic modelling of differential-drive WMRs, taking the non-holonomic
constraints into consideration, is evaluated by exploiting the EL methodology [34;19]. The configuration
of a non-holonomic differential-drive wheeled mobile robot (WMR) is represented in Figure 4-1.
A differential-drive WMR is a mobile robot where the motion consists of two separately driven fixed
wheels by two independent actuators (DC motors) [39]. The center of mass of the mobile robot is
located at C. The local coordinate frame (A, xr, yr) is body-fixed to the robot at the actuation point
A, which is the intersection of the wheel’s axis of rotation and the axis of symmetry of the robot’s
body, respectively. This point is located at a distance d from C. In addition, R and L represent the
radius of each wheel and the half distance between two wheels. The robot can change its orientation
by varying the relative rate of rotation between the left- and right wheel, respectively. The passive
castor wheel has the ability to rotate in any direction and is placed in front of the mobile robot to
preserve its equilibrium. Therefore, an additional steering motion is not required for the system.
In contrast to most of the other flocking algorithms that consider particle agents, as discussed in
Chapter 1, this work considers a multi-robot system of non-holonomic EL modelled mobile agents
that are isomorphic to a rigid body with a fixed circular area denoting the proximity radius Rs in
which the proximity neighbors can communicate, as illustrated in Figure 4-2. Furthermore, compared
with the existing work, that assume the mobile robots are points, we also consider the effect of the
robot actuation (i.e. the actuation point A has a skewing d to te center of mass C, see Figure 4-1).

Figure 4-1: Scheme of a differential-drive WMR [19].

The configuration of the differential-drive WMR can be described by using the following generalized
coordinates

qi = [xi,C , yi,C , θi, φi,R , φi,L ]T
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where (xi,C , yi,C ) denote the coordinates of the center of mass C of mobile robot i in the global
coordinate frame at (O, xI , yI), θi is the orientation angle and φi,R , φi,L denote the angular positions
of the left- and right driving wheels, respectively. The kinematic modelling of the robotic system
requires the consideration of the following assumptions [39;19]

• No lateral slip motion; the definition of this constraint is simply that the robot is not able to
move in a sideward direction. As a result, the WMR can only move in a curved motion. This
can simply mathematically be formulated for point A in the robot frame as

ẏrA,i = 0

i.e., the point A has no sideway velocity, in order to maintain the no skidding condition.

• Pure rolling; the pure rolling constraints represents the fact that each wheel maintains one
contact point with the ground. More formally, there is no slipping of the wheels in the xr axis
and no skidding in the yr axis.

The following constraint equations can mathematically be concluded from the above assumptions
ẏi,C cos θi − ẋi,C sin θi − dθ̇i = 0
ẋi,C cos θi + ẏi,C sin θi + Lθ̇i = Rφ̇i,R

ẋi,C cos θi + ẏi,C sin θi − Lθ̇i = Rφ̇i,L

(4-6)

The first constraint in (4-6) is non-integrable and thus considered as the non-holonomic constraint [39].
Then, note that the constraint equations can be represented as in (4-1) by the following constraint
matrix form

Ai(qi)q̇i =

− sin θi cos θi −d 0 0
− cos θi − sin θi −L R 0
− cos θi − sin θi L 0 R


︸ ︷︷ ︸

Ai(qi)


ẋi,C
ẏi,C
θ̇i
φ̇i,R
φ̇i,L


︸ ︷︷ ︸

q̇i

= 0

Then, by (4-2), and defining the pseudo-velocities vector as vp,i = [vA,i , ωi], where vA,i and ωi are the
linear velocity of the robot actuation point A and the angular velocity of the differential-drive WMR
i, respectively, the following so-called kinematics model of the considered non-holonomic mobile agent
can be formulated [39]

q̇i = Si(qi)vp,i (t) =


cos θi −d sin θi
sin θi d cos θi

0 1
1
R

L
R

1
R −L

R


︸ ︷︷ ︸

Si(qi)

[
vA,i
ωi

]
︸ ︷︷ ︸
vp,i(t)

(4-7)

Modelling of a Differential-Drive WMR The mathematical modelling of a constrained mechanical
system is important to study the motion. Dynamic modelling takes into consideration the forces that
influence the motion whereas kinematic modelling does not account for these forces. The dynamic
model of a differential-drive WMR is essential for simulation analysis and for the design of various
motion control algorithms.
By exploiting the relationship between the robot actuation point A and the mass center C, and
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by neglecting the angular positions of the driving wheels (φi,R and φi,L) the kinematic model can
alternatively be written into the following well-known kinematic modelẋA,iẏA,i

θ̇i

 =

cos θi 0
sin θi 0

0 1

[vA,i
ωi

]

The EL framework is used to derive the dynamics of the wheeled mobile robot. The dynamical model
of a non-holonomic differential-drive WMR can be described by the following equations of motion{

Mi(qi)q̈i + Vi(qi, q̇i)q̇i = Bi(qi)τi −ATi (qi)λi
Ai(qi)q̇i = 0

by assuming no surface friction, no bounded unknown disturbances and unstructured uncertainties,
and no gravitational influences, since we are dealing with wheeled mobile robots (WMRs) moving in a
2D plane, we can cancel out and neglect some terms present in the general mathematical formulation
in (4-1).

Figure 4-2: The non-holonomic EL agents are isomorphic to a rigid body with specific dimensions and a
fixed circular area Rs denoting the sensing radius. The rc can be intuitively interpreted as the avoidance
”comfort zone” of the mobile robot. The artificial potential function (APF) is also illustrated alongside the
agent setup for intuitive and explanatory purposes, see Chapter 5 for more details on the APF.

Dynamic Reduced Model The non-holonomic EL system equations can be transformed into an
equivalent form to obtain a model that is more appropriate for control purposes and simulations, since
we are only interested in the kinetic motion of the system. The main objective is to eliminate the
unknown Lagrange multipliers λi ∈ Rm by using the kinematics matrix Si(qi) in (4-7) of the system. By
following the dynamic reduction procedure described in Subsection 4-1-1, the corresponding reduced
dynamic model is obtained

M̃i(qi)v̇p,i +Ṽi(qi, q̇i)vp,i = B̃i(qi)τi (4-8)
with
M̃i(qi) = Si(qi)TMi(qi)Si(qi)
Ṽi(qi, q̇i) = Si(qi)TMi(qi)Ṡ〉(qi) + Si(qi)TVi(qi, q̇i)Si(qi)

B̃i(qi) = Si(qi)TBi(qi)
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with vp,i = [vA,i , ωi]T known as the pseudo-velocities vector. The system matrices of the non-
holonomic EL reduced dynamic differential-drive WMR model are governed by

M̃i(qi) =
[
m+ 2Iw

R2 0
0 I +md2 + 2IwL2

R2

]
, Ṽi(qi, q̇i) =

[
0 −mdωi

mdωi 0

]
(4-9)

B̃i(qi) = 1
R

[
1 1
L −L

]
, G̃i(qi) = 0

where m denotes the total mass of the mobile robot (i.e. platform and driving wheels), I is the
total moment of inertia of the system about a vertical axis passing through the center of mass C
and Iw is the moment of inertia of both the right and left driving wheel about the axis of rotation
of the wheels, respectively. Then, we can conveniently formulate the (n + m)-dimensional reduced
state-space dynamical model of the differential-drive WMR as

{
q̇i = Si(qi)vp,i
M̃i(qi)v̇p,i +Ṽi(qi, q̇i)vp,i = B̃i(qi)τi

(4-10)

Remark 5. [39] The control of differential-drive WMRs is a challenging research area because of the
fact that these systems typically are under-actuated nonlinear systems subject to non-holonomic con-
straints. From a theoretical perspective, the uncontrollability of the linearized models of such systems
cause the necessary conditions of the Brockett’s theorem (see Theorem 1) to the existence of stabilizing
smooth state feedback laws not satisfied [39;34]. The key feature of many of the problems that arise for
a large class of under-actuated systems is the existence of nonlinear coupling between the actuated and
under-actuated degrees of freedom [68].

4-2 Proximity Network Architecture

Consider a network of N non-holonomic EL mobile agents with dynamical model (4-10). In this study,
it is assumed that the dynamic interaction topology that defines the neighbor relationship among the
agents is dependent on their relative maximum distance. Therefore, the graph of the flocking algorithm
is a proximity graph. In the flocking framework, typically, weighted undirected graphs with position-
dependent adjacency components are exploited. Note that an undirected graph results in a symmetric
adjacency matrix A, i.e. AT = A.
More formally, in an undirected graph, it holds that (i, j) ∈ E ⇐⇒ (j, i) ∈ E . The adjacency matrix
A(t) = [aij(t)] ∈ RN×N of the graph G(t) is defined such that aij(t) = [ ||pij ||σ] > 0 if (j, i) ∈ E(t) and
aij(t) = 0 otherwise. The definition of ||pij ||σ is given in Definition 4-5, to obtain a smooth adjacency
matrix with position-dependent adjacency elements aij(t). It is important to note that this is an
effective and convenient choice to the control of the system. Since the adjacency elements smoothly
depend on the relative position between the agents in the proximity network, agents further away
from each other get more penalized in the flocking control algorithm to obtain the desired result. This
motivation adds some kind of autonomy to the choice of control gains for the control of the flock, which
will be more evident in Chapter 5. For an undirected graph, it holds that aji = aij . The Laplacian
matrix L = [lij ] ∈ RN×N associated with the adjacency matrix A(t) is defined as lii =

∑
j 6=i aij and

lij = −aij , where i 6= j. It is important to note that the graph G(t) is undirected by definition where
the Laplacian matrix L is symmetric positive semi-definite as a consequence.
The interaction range (i.e. sensing radius) between the agents is defined by Rs > 0 and the set of
spatial neighbors is denoted by

Ni(t) = {j ∈ V : ||pj − pi|| < Rs, j 6= i} (4-11)

where ||.|| denotes the Euclidean norm, pi = [xi, yi]T is the position of agent i, Ni the set of spatial
neighbors of agent i and V the set of vertices. To obtain an algorithm with obstacle avoidance
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capabilities that has more practical relevance, no distinction is made between agents (j = 1, . . . , N)
and obstacles (j = N + 1, , . . . , Nobs) in the communication architecture. As a result, the set of spatial
neighbors Ni involves both agents and static/dynamic obstacles, respectively. A distributed flocking
control algorithm with obstacle avoidance capabilities with no distinction between neighboring agents
and obstacles will be designed in Chapter 7. Furthermore, once the distance between the agents in the
flock falls below a threshold rt ∈ (0, Rs), inter-agent and agent-obstacle collision avoidance maneuvers
must be studied. In specific, this is mathematically formulated in Definition 5 and Lemma 10. The
proximity net G(q) = (V, E(q)) is defined by the set of unordered vertices V and the set of unordered
edges

E(q) = {(i, j) ∈ V × V : ||qj − qi|| < Rs, i 6= j} (4-12)

The proximity graph G(t) = (V, E(t)) represents the communication network and is defined to be an
undirected graph with a set of vertices V = {1, 2, . . . , N} that represents the mobile robots in the
flock.

Figure 4-3: Proximity communication structure in the flocking algorithm. The mobile robots in the
multi-agent network involve locality of communication and interaction, i.e. robots only communicate with
neighboring robots within the proximity radius Rs.

Figure 4-4: The virtual-leader follower information flow in constrained flocking. (a) Virtual-leader following
hierarchical architecture. (b) Peer-to-peer architecture [41].
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Assumption 2. It is assumed that the robots are only equipped with limited on-board sensors, i.e.
laser range finders (to detect obstacles and robots) without the ability to distinguish between them and
a gyro sensor (to measure its position [xA,i , yA,i ] and orientation θi), respectively.

Then, let x0(t) = [q0(t), q̇0(t)]T denote the virtual leader (in the set V0), which encapsulates a desired
reference trajectory. The (virtual) leader-following proximity network is denoted as G̃(t) = (Ṽ, Ẽ(t))
with Ṽ = {0, 1, 2, . . . , N} where the node 0 is associated with the virtual leader. The set of edges
that define the interaction network between the virtual leader and the mobile robots in the multi-
robot system is defined as Ẽ ⊆ Ṽ × Ṽ. It is assumed that the virtual leader has no neighboring
agents and its motion is independent of the following robots. There exists a directed path between a
virtual leader and the robot in proximity when there is a path from the leader to the follower. More
formally, (i, j) ∈ Ẽ(t) if and only if agent j can use the information of agent i for control. In specific,
followers i, j are neighbors of each other if ||pi − pj || < Rs and the leader is a neighbor of follower i if
||pi − p0|| < Rs, respectively. As a result, the neighbor set of agent i in the (virtual) leader-following
proximity network G̃(t) at time t can be formulated as

Ñi(t) = {(j, i) ∈ Ẽ(t), j 6= i} (4-13)

In Chapter 6, a distributed (virtual) leader-following flocking control algorithm using this proximity
architecture is designed. Evidently, note that the proximity graph G(t) = (V, E(t)) is a subgraph of
G̃(t) and it can be obtained by removing all the edges between the virtual leader in V0 and the nodes
in Ṽ. Furthermore, the edge weights are defined as ai0 = [ ||pi0||σ] > 0 if the leader is in proximity (i.e.
a neighbor) of follower i, otherwise ai0 = 0. The leader-follower interaction topology matrix is defined
as H = L+ Λ, where Λ = diag{a10, . . . , aN0}. It is evident that H is symmetric positive definite when
there is at least one nonzero ai0.
The visual interpretation of the communication topology is illustrated in Figure 4-3 to give the reader
a more intuitive understanding of the proximity network concept. The communication structure often
emerges as a rational behaviour in MRSs cooperating in an environment and serves as a means for
the coordination problem. The communication can be seen as a mode of the interaction between
the robots. This mode of interaction allows the robots to share information about their position,
the environment and sensor data with other robots in the multi-robot system or in case of limited
communication with their neighboring robots (e.g. in flocking). The interaction topology between
the neighboring robots is dynamically changing with time. In general, proximity graphs might be
the proper tool to mathematically handle the problem of a limited and time-varying communication
topology among the robots. The following lemmas are important to obtain analytical insights into
the flocking control algorithm, which will be used later in the theoretical analysis of the considered
system.

Lemma 4 ( [16]). The eigenvalues of the Laplacian matrix L satisfy 0=λ1(L) ≤ . . . ≤ λN (L), and the
algebraic connectivity λ2(L) > 0, if and only if the proximity graph G is connected.

Lemma 5. [16] The Laplacian matrix L of the proximity graph G has at least one zero eigenvalue
associated with eigenvector 1 = (1, . . . , 1)TRN , and all non-zero eigenvalues are positive. Furthermore,
the Laplacian matrix L has a simple zero eigenvalue if and only if the proximity graph G is connected.

Lemma 6 ( [66;16]). Suppose G to be an undirected graph of order N , and G1 be the undirected graph
by adding some edge(s) into the graph G. Then, λi(L1) ≥ λi(L), ∀i = 1, 2, . . . , N , where L and L1 are
the Laplacian matrices of G and G1, respectively.

Lemma 7 ( [15]). If the leader has directed paths to all the following robots in the flock, the matrix H
is symmetric positive definite.

Lemma 8 ( [15]). Let Ha and Hb be the leader-follower topology matrix associated with the proximity
graphs G̃a and G̃b, respectively. If G̃a is a subgraph of G̃b, then it holds that Ha ≤ Hb.

Proof. The proof can be consulted from [15].
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4-3 Control Objective

The control and communication architecture are of fundamental importance in the design of scalable
and robust flocking algorithms for swarm robotics (SR) systems. The ability to compute locally and
share information has facilitated the development of multi-robot systems. The robustness of multi-
robot systems is strictly related to the control and communication structure that is implemented to
coordinate the robots into a desired formation.
SR systems must be scalable and robust to operate efficiently in dynamic and unpredictable environ-
ments. To be scalable, a SR system should be able to operate under a group size ranging from a
small number to a big number of individuals. A common way of supporting scalability in the system
is by exploiting distributed communication and control schemes. Such type of systems promise in-
creased performance, efficiency and robustness, utilizing local coordinated sensing and actuation. A
distributed dynamic feedback control algorithm of the following form is considered

τi = hi(ui, qi, q̇i), j ∈ Ni(t) i = 1, . . . , N (4-14)

where hi is a sufficiently smooth function to be designed later as control algorithm. To achieve cohesive
flocking as defined below, the distributed control algorithm ui has the following form

ui = αi + βi + γi (4-15)

where αi ∈ Rp, βi ∈ Rp and γi ∈ Rp denote the connectivity-preserving APF-gradient based term
to enforce inter-agent stabilization while avoiding inter-agent and agent-obstacle collisions, a velocity
vector and orientation angle consensus term for alignment and a navigational (nonlinear) feedback
term for flock guidance encapsulated in a virtual leader, respectively. This is graphically illustrated in
Figure 4-5. The flock behavior inside the network is determined by the interplay between attraction
and repulsive forces, respectively. There exists a distance that is called "equilibrium distance" in
biology, in which attraction and repulsive forces between two agents are in balance [23]. Moreover,
individual agents adjust their velocity vector and orientation according to those of their neighbors
in proximity. More formally, a feedback mechanism is to be constructed based on the error between
agents and their proximity neighbors. A consensus mechanism is such a feedback mechanism, that
has been widely applied to a variety of multi-agent cooperative tasks [36;47].
In this work, being the first author, our major effort is to initialize and contribute to the design of a
flocking control algorithm τi, i = 1, . . . , N , to make the non-holonomic networked EL dynamic system
in (4-10) converge to a stable flocking motion while avoiding collisions and preserving the connectivity
of the dynamic proximity network, respectively.

Figure 4-5: Graphical representation of connectivity-preserving flocking for explanatory purposes. The
yellow and green circles represent the virtual leader and following robots, respectively. (a-d) describe the
desired properties [14].
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Definition 1 (Flocking). A group of non-holonomic networked Euler-Lagrange (EL) systems is said
to be (asymptotically) flocking, when all the agents reach a consensus velocity vector and orientation,
inter-agent stabilization is obtained by minimizing the APF and no collisions among the agents occur.

Definition 2 (Graph connectivity). A proximity graph G(t) is connected at time instant t if there
exists a path, i.e. a sequence of distinct vertices such that consecutive vertices are adjacent, between
any two vertices in G(t).

Definition 3 (Spanning tree). In the mathematical field of graph theory, a spanning tree of a graph
is a subgraph that is a tree which includes all of the vertices of G(t), with a minimum possible number
of edges. In general, a graph may have several spanning trees, but a graph that is not connected will
not contain a spanning tree [67]. See also Figure 4-5a for illustration of a spanning tree with node 0
(the virtual leader) as root.

Remark 6. It is important to note that convergence and stability of the flocking algorithms strongly
depend on the connectivity of the underlying communication topology that is time-varying. This will
be more evident in the theoretical analysis exploiting concepts from nonlinear control theory.

Remark 7. Formally, proximity graphs are being exploited to include the local communication and
local mobile robot interaction into the flocking algorithms. This is of significant importance for in-
formation sharing between the neighboring agents to ensure reliable and efficient coordination in the
flocking control algorithm. Proximity graphs are viewed as a useful and decent mathematical tool to
incorporate the time-varying communication topology of multi-robot systems (MRSs) in flocking al-
gorithms. In addition, the convergence and stability of the flocking algorithms firmly depend on the
connectivity of the communication network. Hence, the connectivity is of fundamental importance to
explicitly be included in flocking algorithms as it allows the flock of robots to move as a stable cohesive
unit.

Remark 8. The flocking control algorithms discussed are (fully) distributed in the sense that the
algorithm relies on only local information interactions, i.e. each agent only uses its own position and
velocity and the relative position and relative velocity between itself and its neighbors in proximity,
respectively. In literature, this is commonly called as one-hop information [15;7].

Remark 9. The cohesive flock guidance feature can be obtained by including the virtual leader in
the neighboring set Ñi(t) of the multi-robot system. In addition, the hierarchical structure of the
networked system, see Figure 4-4a, is useful in understanding the reason of a virtual leader (γ-agent)
playing the role of a unifying objective bringing all the non-holonomic agents together to assemble a
connected network of mobile robot agents (α-agents). However, since the computation required for
implementation of virtual agents has to be carried out by embedded computers of a physical agent, for
a more realistic picture of the computational virtual leader-follower architecture, see Figure 4-4b.
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Chapter 5

Flocking Algorithm for Non-Holonomic
Networked Euler-Lagrange Systems

This chapter discusses a distributed connectivity-preserving artificial potential function (APF)-based
flocking algorithm for formation control of a networked non-holonomic Euler-Lagrange (EL) mobile
robot system. The control algorithm is initially analyzed through a theoretical framework by exploiting
nonlinear control theory concepts for time-varying (non-autonomous) systems. Then, a numerical
simulation study is performed that is guided by theoretical findings to verify the obtained results from
the theoretical analysis of the control system.

5-1 State-Space Model of The Closed-Loop System

It is possible to perform a partial linearization of the dynamic reduced state-space model defined below{
q̇i = Si(qi)vp,i
M̃i(qi)v̇p,i +Ṽi(qi, q̇i)vp,i = B̃i(qi)τi

(5-1)

via a computed torque nonlinear feedback to obtain a more convenient system for theoretical analysis
and control design [34]. Consider the following dynamic computed torque nonlinear feedback control
algorithm

τi = [B̃i]−1(M̃iai + Ṽivp,i ) (5-2)

Now by defining the state vector xi = [qi, vp,i ]T ∈ Rn+m, the control input vector ai = ui ∈ Rm and
substituting (5-2) into (5-1), the state-space model of the closed-loop system can compactly be written
as

ẋi = fi(xi) + gi(xi)ui =
[
Si(qi)vp,i

0

]
+
[

0
Im

]
ui (5-3)

Note that the system results in a nonlinear control system with drift where ui ∈ Rm denotes the flocking
protocol. The system in (5-3) is also known as the second-order kinematic model of the constrained
mechanical system [34]. In summary, nonlinear feedback control allows dynamic non-holonomic systems
the possibility to cancel dynamic parameters by assuming [34]:

(i) the dynamical model is exactly known, and

(ii) the complete system state is measurable or computable from measurements
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38 Flocking Algorithm for Non-Holonomic Networked Euler-Lagrange Systems

By assuming the above, the control problem can be directly solved at the velocity level, in a way where
vp,i is synthesized such that the resulting system in (5-3) is regulated as desired. The computed torque
nonlinear feedback requires the pseudo-velocities vector vp,i to be available to obtain the control input
τi as defined in (5-2). The remarks below are of fundamental importance for the design and motivation
of the flocking control algorithm.

Remark 10 ( [34]). The computed torque nonlinear feedback requires the measure of the pseudo-
velocities vector vp,i. When this is not directly accessible, it can be computed by pseudo-inverting
the kinematic model vp,i = (STi Si)−1STi q̇i, provided that qi, q̇i are measurable.

Remark 11 ( [34]). When vp,i is available, the dynamic computed torque nonlinear feedback equation
can be used to obtain the control input τi at the generalized force level, provided that vp,i is sufficiently
smooth (at least differentiable, since an acceleration term ai appears in the torque nonlinear feedback).
This motivates the design of smooth stabilizing flocking control algorithms.

Remark 12 ( [53]). Note that, a conceptually simple nonlinear controller, commonly called computed
torque controller in the robotics literature, can fully compensate the nonlinear forces in the robot motion
and lead to high accuracy control for a very large range of robot speeds and a large workspace.

Remark 13 ( [53]). In nonlinear control, the concept of feedback plays a fundamental role in controller
design, as it does in linear control. However, the importance of feedforward is much more conspicuous
than in linear control. Feedforward is used to cancel the effects of known disturbances and provide
anticipative actions in tracking tasks. Very often it is impossible to control a nonlinear system stably
without incorporating feedforward action in the control law. Note that a model of the plant is always
required for feedforward compensation (although the model need not to be very accurate).

Remark 14 ( [53]). Although the computed torque nonlinear feedback algorithm used for flocking control
has a lot of beneficial contributions, it is also important to carefully highlight its limitations:

• There is no robustness guaranteed in the presence of parameter uncertainty or unmodelled dy-
namics (or unstructured uncertainties) due to the fact that the exact model of the nonlinear
system is not available in performing feedback linearization. The sensitivity to modeling errors
may be particularly severe when the linearizing transformation is poorly conditioned. This might
be solved by exploiting an adaptive or robust control scheme to provide feedback linearizable sys-
tems with robustness to parametric uncertainties.

• The full state measurements are required in the feedback linearization algorithm. This limitation
is due to the difficulty in finding convergent observers for nonlinear systems, and when they might
be found, it is the lack of a general separation principle (analogous to that in linear systems),
that guarantees the stability of the closed-loop system in case of the straightforward combination
of both a stable feedback controller and stable observer.

Lemma 9. The partial linearized dynamic model of the networked differential-drive wheeled mobile
robot (WMR) system that is obtained by simply plugging in the vector fields of the WMRs in (5-3)
satisfies both the accessibility and the small-time local controllability conditions.

Proof. Note that, by letting the computed torque nonlinear feedback control algorithm be

τi = [B̃i]−1(M̃iui + Ṽivp,i )

the general partially linearized dynamical model in (5-3) is obtained. By plugging in the dynamics of
the networked differential-drive WMR system, this can equivalently be written as

ẋi =


vi cos θi
vi sin θi
ωi
0
0


︸ ︷︷ ︸

fi(xi)

+


0
0
0
1
0


︸︷︷︸
g1

u1,i +


0
0
0
0
1


︸︷︷︸
g2

u2,i = fi(xi) + g1u1,i +g2u2,i
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5-2 Flocking Algorithm for Non-Holonomic Networked Euler-Lagrange Systems 39

with state vector xi = [xi, yi, θi, vi, ωi]T ∈ R5, which refers to the generalized coordinates of robot
actuation point A. By computing the Lie brackets as in [34]

[g1, fi] =


cos θi
sin θi

0
0
0

 , [g2, fi] =


0
0
1
0
0

 , [g2, [fi, [g1, fi]]] =


− sin θi
cos θi

0
0
0


it is evident that the partial linearized dynamical model of the networked differential-drive WMR in
(5-3) satisfies both the accessibility and the small-time local controllability conditions in Theorem 6
and Theorem 7, respectively. More formally, in fact, the vector fields

(
g1, g2, [g1, fi], [g2, fi], [g2, [fi, [g1, fi]]]

)
span a dimension of five at each state vector xi and satisfy the conditions in Theorem 7.

5-2 Flocking Algorithm for Non-Holonomic Networked Euler-Lagrange
Systems

In this section, we study the distributed flocking problem based on proximity graphs for networked
non-holonomic EL mobile robot systems.

Problem 1 (Flocking based on proximity graphs). Given a group of networked non-holonomic Euler-
Lagrange mobile robots governed by (5-1), and consider the sensing radius Rs > 0 with rt ∈ (0, Rs).
Assume that for any initial conditions [qi(0), vp,i (0), v̇p,i (0)]T , i = 1, . . . , N , that makes G(0) an
undirected connected graph, and in addition, suppose that at the initial time t = 0, no collisions
occur among agents. Then, find a fully distributed APF-based connectivity-preserving flocking control
algorithm τi of the form

τi = hi(ui, qi, q̇i), j ∈ Ni(t) i = 1, . . . , N (5-4)

where hi is a sufficiently smooth function to be designed as control algorithm with ui as the flocking
protocol, respectively, such that the closed-loop system has the following properties:

(i) connectivity preservation of the proximity interaction topology: G(t) is connected for all t ≥ 0;

(ii) collision avoidance between agents;

(iii) velocity vector and heading angle alignment, i.e. the robots in the flock asymptotically move with
the same velocity vector and heading angle;

• limt→∞(vi − vj) = 0, i = 1, . . . , N , j = 1, . . . , N .

• limx→∞(ωi − ωj) = 0, i = 1, . . . , N , j = 1, . . . , N .

• limx→∞(θi − θj) = 0, i = 1, . . . , N , j = 1, . . . , N .

The objective is to design τi and ui for each mobile agent to achieve flocking under a proximity network.
This includes connectivity preservation, collision avoidance for all time, (asymptotically) velocity
vector and orientation matching of the agents in the flock, respectively. The following distributed
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control algorithm is proposed



u1i = −γφ
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

T−→
t i

︸ ︷︷ ︸
APF gradient term

− γv
∑

j∈Ni(t)
aij(t)(vi − vj)

︸ ︷︷ ︸
Consensus term

u2i = −γφ
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

T
−→n i

︸ ︷︷ ︸
APF gradient term

− γω
∑

j∈Ni(t)
aij(t)(ωi − ωj)− γθ

∑
j∈Ni(t)

aij(t)(θi − θj)

︸ ︷︷ ︸
Consensus term

(5-5)

This can equivalently be rewritten into

ui = − γφHi

∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi︸ ︷︷ ︸

APF gradient term

− γvp
∑

j∈Ni(t)
aij(t)(vp,i−vp,j )− γθ

∑
j∈Ni(t)

aij(t)(θp,i−θp,j )

︸ ︷︷ ︸
Consensus term

(5-6)

with

Hi =
[−→
t i
−→n i

]T
=
[

cos θi sin θi
− sin θi cos θi

]

where θp,i = [0, θi]T , γα > 0 are control tuning parameters for α = φ, v, ω and θ, pij = pi − pj ,
with pi = [xi, yi]T denoting the position of agent i. Moreover, −→t i = [cos θi, sin θi]T and −→n i =
[− sin θi, cos θi]T are unit vectors orthogonal to each other in the tangential and normal direction,
respectively. φ(||pij ||σ) denotes the APF between agents i and j, that is defined in Definition 5 and
Lemma 10 with its derivative ∂φ(||pij ||σ)

∂pi
in Lemma 11. Furthermore, Ni(t) denotes the neighboring

set of the agents in proximity and aij(t) denote the adjacency elements defining the edge weights
associated with the proximity graph G(t), both defined in Subsection 4-2.

Remark 15. In fact, note that the matrix Hi is just the inverse of the orthogonal rotation matrix (i.e.
its transpose due to properties of orthogonal matrices) that maps the global coordinate frame (O, xI , yI)
to the local coordinate frame (A, xr, yr), respectively.

Definition 4 (σ-norm). [14;41] ||Z||σ = 1
ε (
√

1 + ε||Z||2 − 1)
The σ-norm of a vector is a map Rm → R≥0 with parameter ε > 0 that remains fixed. Throughout
this study, ε = 0.2 will be used. The gradient σε(Z) = ∆||Z||σ of the σ-norm is given by σε(Z) =

Z√
1+ε||Z||2

= Z
1+ε||Z||σ . Note that the mapping ||Z||σ is differentiable everywhere, where ||Z|| is not

differentiable at Z = 0. Later on, this property of the σ-norm is exploited to construct smooth artificial
potential functions and spatial adjacency matrices of a proximity graph, for a vector Z and a scalar
ε > 0. The relevance of a smooth stabilizing flocking control algorithm is already mentioned in Remark
11.
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5-2 Flocking Algorithm for Non-Holonomic Networked Euler-Lagrange Systems 41

(a) The artificial potential function φ(s) with s = ||pij ||σ,
for rt = 0.05, Rs = 3 and Q = 20000.

(b) The gradient of the artificial potential function φ(s)
with s = ||pij ||σ, for rt = 0.05, Rs = 3 and Q = 20000.

Figure 5-1: Visualization of the artificial potential function φ(s) (a) with its derivative ∂φ(s)
∂s (b) for

intuitive and explanatory purposes.

Definition 5 ( [14]). [Artificial Potential Function (APF)] Motivated by the importance of connectivity
preservation of the proximity interaction network and collision avoidance features to the flocking control
algorithm, the following bounded APF is defined

φ(s) = s2 − r2
t

R2
s − s2 + R2

s
Q

+ R2
s − s2

s2 − r2
t + R2

s
Q

, rt ≤ s ≤ Rs

where Q > 0, s = ||pij ||σ, pij = pi−pj and the σ-norm is exploited to have a smooth potential function
for its implementation in the flocking control algorithm. This APF φ(s) illustrated in Figure 5-1a.

Lemma 10 ( [14]). The APF φ(s) is a nonnegative function of s=||pij ||σ, and it is differentiable with
respect to ||pij ||σ ∈ (rt, Rs) so that

(i) dφ(s)
ds has a unique zero at r0 =

√
(R2

s + r2
t )/2;

(ii) φ(s) −→ (1− r2
t /R

2
s)Q = Q ∈ [Qmax,+∞) as s −→ Rs or s −→ rt.

Proof. The proof can be done by simple calculations and is thus omitted.

Lemma 11 (Derivative of APF). The derivative of the APF, denoted as ∂φ(||pij ||σ)
∂pi

, is used in the
flocking control algorithm for connectivity-preserving and collision avoidance purposes by introducing
(virtual) attractive and repulsive forces, respectively. The derivative of the APF is defined as

∆pijφ(||pij ||σ) = ∂φ(||pij ||σ)
∂pi

=
(2||pij ||σ(R2

s − ||pij ||σ + R2
s
Q ) + 2||pij ||σ(||pij ||2σ − r2

t )

(R2
s − ||pij ||2σ + R2

s
Q )2

−

2||pij ||σ(||pij ||2σ − r2
t + R2

s
Q ) + 2||pij ||σ(R2

s − ||pij ||2σ)

(||pij ||2σ − r2
t + R2

s
Q )2

)[
∆pij{1}||pij ||σ ∆pij{2}||pij ||σ

]
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where

∆pij{1}||pij ||σ = pij{1}
1 + ε||pij ||σ

∆pij{2}||pij ||σ = pij{2}
1 + ε||pij ||σ

and the relative position vector pij is defined as pij = [xi − xj , yi − yj ]T . In addition, the curly
brackets {.} indicate the selection of the corresponding element in that vector. The gradient-based
APF ∂φ(||pij ||σ)

∂pi
is illustrated in Figure 5-1b.

Proof. The proof of this Lemma can easily be proven by using mathematical insights into the deriva-
tive of the Euclidian norm ||.|| discussed in Section 3-5-1 and properties of the σ-norm discussed in
Definition 4.

Theorem 2. [Flocking of non-holonomic networked Euler-Lagrange mobile agents] Consider a net-
worked non-holonomic Euler-Lagrange dynamic mobile robot system (5-1) under the proximity inter-
action network G(t) and the assumption in Remark 16. Suppose that at the initial time t = 0, for
any finite initial conditions [qi(0), vp,i (0), v̇p,i (0)]T , i = 1, . . . , N , such that V (. , 0) ≤ Qmax < Q̄,
the proximity graph G(0) is a connected graph and no collision occurs among the agents. Each agent
is steered by the fully distributed computed torque nonlinear feedback control algorithm τi (5-2) and
flocking control algorithm ui (5-6), respectively. Consider the non-negative ”energy-like” Lyapunov
function candidate in (5-8). Then, for sufficiently large control parameters γα for α = φ, vp, θ Problem
1 is solvable under the proposed controller, i.e.

(i) the connectivity of the interaction network G(t) is preserved for all t ≥ 0;

(ii) inter-agent collision avoidance is obtained;

(iii) the pseudo-velocities vector errors and orientation angle errors between the agents in the flock
asymptotically converge to zero, i.e.

• limt→∞(vp,i−vp,j ) = 0m, ∀i ∈ V ∀j ∈ Ni(t)
• limt→∞(θi − θj) = 0, ∀i ∈ V ∀j ∈ Ni(t)

(iv) the system approaches a cohesive configuration and the agents attain a relative invariable distance
by stabilizing the system and minimizing the global potential.

where for the non-negative Lyapunov function candidate in (5-8), it satisfies for all t ∈ [0, t∗),

V (p̃, vp, θp, t) ≤ V (p̃, vp, θp, 0)−
∫ t

0
γvpx̃

T
s (τ)L̃(t)x̃s(τ)dτ ≤ V (p̃, vp, θp, 0)− V∞ (5-7)

with t∗ =∞ and limt→∞ V (p̃, vp, θp, t) = V∞ <∞.

Proof. Using the computed torque nonlinear feedback control algorithm (5-2) into (5-1), a partially
linearized state-space model of the closed-loop system is obtained and can compactly be written as in
(5-3). Now, consider the following lower bounded non-negative "energy-like" function as a Lyapunov
function candidate V (t) = V1(t) + V2(t) + V3(t), where

V (p̃, vp, θp, t) = 1
2

N∑
i=1

∑
j∈Ni(t)

φ(||pij ||σ)

︸ ︷︷ ︸
V1(t)

+ 1
2

N∑
i=1

vTp ,i vp,i︸ ︷︷ ︸
V2(t)

+ 1
2γθθ

T
p [L(t)⊗ Im]θp︸ ︷︷ ︸

V3(t)

(5-8)

S. Tatar
MSc Systems & Control

Master of Science Thesis
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with p̃ = pij = pi−pj , θp is a column stack vector of θp,i = [0, θi]T for i = 1, . . . , N and vp,i = [vi, dωi]T ,
respectively. For the importance of maintaining the connectivity of the proximity graph G(t) and to
avoid collision between neighboring agents, the non-negative potential function V1(t) is defined by the
combination of the potential functions. The derivative of V1(t) is given by

V̇1 = 1
2

N∑
i=1

∑
j∈Ni(t)

(
ṗTi
∂φ(||pij ||σ)

∂pi
− ṗTj

∂φ(||pij ||σ)
∂pi

)

= 1
2

N∑
i=1

∑
j∈Ni(t)

(
ṗTi
∂φ(||pij ||σ)

∂pi
+ ṗTj

∂φ(||pij ||σ)
∂pj

)

= 1
2

N∑
i=1

∑
j∈Ni(t)

ṗTi
∂φ(||pij ||σ)

∂pi
+ 1

2
∑

j∈Ni(t)

N∑
i=1

ṗTi
∂φ(||pij ||σ)

∂pi

=
N∑
i=1

ṗTi
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

(5-9)

by using Lemma 3.1 in [7] and the fact that ∂φ(||pij ||σ)
∂pi

= −∂φ(||pij ||σ)
∂pj

. Then, the time derivative of the
non-negative potential function V2(t) can be formulated as

V̇2 =
N∑
i=1

vp,
T
i v̇p,i

=
N∑
i=1

vp,
T
i ui (5-10)

by using the fact that v̇p,i = ai = ui ∈ Rm. Moreover, the derivative of V3(t) can be written by

V̇3 = γθθ̇
T
p [L(t)⊗ Im]θp + 1

2γθθ
T
p [L̇(t)⊗ Im]θp (5-11)

Now, the derivative of the Lyapunov function candidate V (t) is given as

V̇ =
N∑
i=1

ṗTi
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi︸ ︷︷ ︸

V̇1

+
N∑
i=1

vp,
T
i ui︸ ︷︷ ︸

V̇2

+ γθθ̇
T
p [L(t)⊗ Im]θp + 1

2γθθ
T
p [L̇(t)⊗ Im]θp︸ ︷︷ ︸

V̇3

=
N∑
i=1

ṗTi
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

+
N∑
i=1

vp,
T
i

(
− γφHi

∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

− γvp
∑

j∈Ni(t)
aij(t)(vp,i−vp,j )−

γθ
∑

j∈Ni(t)
aij(t)(θp,i−θp,j )

)
+ γθθ̇

T
p [L(t)⊗ Im]θp + 1

2γθθ
T
p [L̇(t)⊗ Im]θp

=
N∑
i=1

(
ṗTi − γφvTp ,iHi

) ∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

− γvp
N∑
i=1

vTp ,i
∑

j∈Ni(t)
aij(t)(vp,i−vp,j )−

γθ

N∑
i=1

vTp ,i
∑

j∈Ni(t)
aij(t)(θp,i−θp,j ) + γθθ̇

T
p [L(t)⊗ Im]θp + 1

2γθθ
T
p [L̇(t)⊗ Im]θp

=
N∑
i=1

(
ṗTi − γφvTp ,iHi

) ∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

− γvp
N∑
i=1

vTp ,i
∑

j∈Ni(t)
aij(t)(vp,i−vp,j )−

γθ

N∑
i=1

[vi, ωi]
∑

j∈Ni(t)
aij(t)([0, θi]T − [0, θj ]T ) + γθθ̇

T
p [L(t)⊗ Im]θp + 1

2γθθ
T
p [L̇(t)⊗ Im]θp (5-12)
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L̇(t) denotes the time derivative of L(t). Using the fact that ṗi = HT
i vp,i by denoting pi = [xi, yi]T

as the position of the center of mass (COM), and by choosing γφ = 1, the derivative of the Lyapunov
function candidate is given as

V̇ = −γvp
N∑
i=1

vTp ,i
∑

j∈Ni(t)
aij(t)(vp,i−vp,j )− γθ

N∑
i=1

vTp ,i
∑

j∈Ni(t)
aij(t)(θp,i−θp,j )

+ γθθ̇
T
p [L(t)⊗ Im]θp + 1

2γθθ
T
p [L̇(t)⊗ Im]θp

= −γvpvTp [L(t)⊗ Im]vp − γθvTp [L(t)⊗ Im]θp + γθθ̇
T
p [L(t)⊗ Im]θp + 1

2γθθ
T
p [L̇(t)⊗ Im]θp (5-13)

Now, define an auxiliary variable x̃s = [vp, θp]T . Also, note that the second and third last terms of
(5-13) are equivalent and cancel out. By exploiting the structure of the derivative of the Lyapunov
function candidate, we can mathematically equivalent formulate it as

V̇ = −γvp
[
vp θp

]
︸ ︷︷ ︸

x̃Ts

[
[L(t)⊗ Im] 0

0 0

]
︸ ︷︷ ︸

L̃(t)

[
vp
θp

]
︸ ︷︷ ︸
x̃s

−γθ
[
vp θp

]
︸ ︷︷ ︸

x̃Ts

[
0 0
0 −1

2 [L̇(t)⊗ Im]

]
︸ ︷︷ ︸

L̂(t)

[
vp
θp

]
︸ ︷︷ ︸
x̃s

= −γvpx̃Ts L̃(t)x̃s − γθx̃Ts L̂(t)x̃s (5-14)

By using properties for norms and matrices (see Subsection 3-5-2), we can write the expression as

V̇ = −γvpx̃Ts L̃(t)x̃s (5-15)
≤ −γvpλmin

[
L̃(t)

]
||x̃s||2

where we have used the fact that the topology matrix L̃(t) is a symmetric and positive semi-definite
matrix, the discussion in Remark 16 on L̂(t), Lemma 4-5, and vp, θp are column stack vectors of
vp,i , θp,i , i = 1, . . . , N . Then, evidently it follows that V̇ is negative semi-definite, i.e. V̇ ≤ 0. By
integrating the above arguments and from V ≥ 0 and V̇ ≤ 0, it can be concluded that V is a bounded
function with (finite) limit, i.e. limt→∞ V (p̃, vp, θp, t) = V∞ < ∞ and V (p̃, vp, θp, t) ≤ V (p̃, vp, θp, 0).
From this, we can subsequently conclude that φ(||pij ||σ), θi, vp,i ∈ L∞.

Remark 16. Note that the Laplacian matrix, denoted by L(t), is a piecewise continuous function,
that is continuous except for some discontinuities at a (finite) number of switching intervals. However,
the time derivative of V (., t) exists everywhere since the Lyapunov function candidate in the proof of
Theorem 2 is (a.e.) continuously differentiable. In addition, note that for L̂(t), when L(t) is a
fixed interaction network in each nonempty, bounded and contiguous time-interval [ti−1, ti), where
i = 1, 2, . . . is the switching time and L̇(t) = 0 as a result, it will be equal to x̃Ts L̂(t)x̃s = 0 since its
associated quadratic form is zero.
Now, assume there are mi ∈ N new links being added to the proximity interaction network G(t) at the
corresponding switching time ti, i = 1, 2, . . . .. For the reason that the initial interaction network G(0) is
a connected proximity graph, the proposed connectivity-preserving control algorithm can guarantee that
the sequence of switching topologies G(ti) within [ti, ti+1) consists of connected graphs, i.e. G(ti) ∈ Gc,
with Gc the set of all connected proximity graphs on the vertices. Note that the number of vertices
(representing the agents) is finite and therefore Gc is a finite set. Then, assume that we have M ∈ N
new links that can be added to the initial interaction network G(0). Evidently, it holds that 0 < mi ≤M
and i ≤M . As a result, the number of switching times is finite, and the proximity interaction network
G(t) of the system eventually becomes a fixed graph. Therefore, by collecting the arguments, it is a
reasonable and realistic assumption to neglect L̇(t) in the theoretical proof of Theorem 2. Therefore,
the proof of Theorem 2 is still considered to be valid under this assumption.

Part 1: Proof Theorem 6 (i-ii) - (Connectivity preservation and collision avoidance)
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5-2 Flocking Algorithm for Non-Holonomic Networked Euler-Lagrange Systems 45

Now, it will be shown that the connectivity of the proximity interaction network G(t) is preserved. It
will be proven that agents that are close at t = 0 will stay close to each other for all future time, i.e.
G(0) ⊆ G(t), and collisions among agents are avoided for all t ≥ 0 by exploiting a contradiction argu-
mentation scheme. Based on the continuity of the solution of the closed-loop non-holonomic dynamic
Euler-Lagrange system (5-3), there exists 0 < t1 ≤ ∞, such that for t ∈ [0, t1), G(t) = G(0). Then,
note that if t1 = ∞, it implies that G(t) is connected for all t ≥ 0. Otherwise, there must exist some
t1 ≥ 0 such that G(t) = G(0), t ∈ [0, t1) and G(t1) 6= G(0). Now, claim that G(0) ⊆ G(t1). Assume
that G(t) switches at time ti, i = 1, 2, . . . and is fixed on [ti, ti+1). Note that since the proximity graph
G(t) is connected for t ∈ [0, t1) , by Lemma 10, and by collecting the boundedness arguments before,
the choice of gains guarantees V (p̃, vp, t) ≤ V (p̃, vp, 0) ≤ Qmax < Q for all t ∈ [0, t1).
Then, assume for some edge that (i, j) ∈ E(0), (i, j) /∈ E(t1). This indicates limt→t−1

||pij ||σ = Rs and
thus implies limt→t1 V (p̃, vp, θp, t) ≥ Q̄, which contradicts V (p̃, vp, θp, t) ≤ V (p̃, vp, θp, 0) ≤ Qmax < Q̄.
Therefore, no existing edge will be lost at time t1. As a result, G(0) ⊆ G(t1). By using simi-
lar argumentation, it can also be shown that limt→t−1

||pij ||σ 6→ rt, otherwise we would get that
limt→t−1

V (p̃, vp, θp, t) ≥ Q̄, which also is in contradiction with V (p̃, vp, θp, t) ≤ V (p̃, vp, θp, 0) ≤ Qmax <
Q̄. This implies that no collisions can occur between t ∈ [0, t1).
The Lyapunov function candidate V (p̃, vp, θp, t) is bounded for all t ∈ [0, t?) as long as the proximity
graph G(t) is connected in t ∈ [0, t?). For the reason that G(t) can only have a finite amount of edges
(bounded by N(N−1)

2 from above, which is the number of the links of a complete graph [40]), the above
synthesis can be repeated, and we can conclude that t? = +∞, and there exist a k > 0 such that
G(t) = G(0), t ∈ [0, t1), G(t) = G(ti) ⊇ G(ti−1), t ∈ [ti, ti+1), i = 1, . . . , k − 1, G(t) = G(tk) ⊇ G(tk−1),
t ∈ [tk,∞). Equivalently, V (p̃, vp, θp, t) ≤ V (p̃, vp, θp, 0) ≤ Qmax < Q̄, for all t ≥ 0 (i.e. no existing
edges are lost).
Therefore, by collection of the arguments, we can conclude that the connectivity of the interaction
network G(t) is preserved where no (existing) edges are lost. This shows that agents close to each
other stay close to each other. Moreover, no inter-agent collisions will occur, for all t ≥ 0 and i, j ∈ V,
respectively. This concludes (i-ii) from Theorem 2.

Part 2: Proof Theorem 6 (iii) - (Velocity vector and orientation matching)

Then, by integrating both sides of the expression in (5-15)

V (p̃, vp, θp, t) ≤ V (p̃, vp, θp, 0)−
∫ ∞

0
γvpx̃

T
s (τ)L̃(t)x̃s(τ)dτ ≤ V (p̃, vp, θp, 0)− V∞ (5-16)

Since this integral is finite, we get that x̃s ∈ L2 which implies that vp,i ∈ L2 and θi ∈ L2, respectively.
Then, from Definition 5 and Lemma 10-11, and the fact φ(||pij ||σ) is continuously differentiable with
respect to ||pij ||σ ∈ (rt, Rs), we get that ∂φ(||pij ||σ)

∂pi
∈ L∞. From the fact that vp,i ∈ L∞ is bounded,

it is evident that ṗi ∈ L∞. Moreover, from Property (4-1.1-4-1.2), the closed-loop dynamics of the
system (5-3), collecting the above boundedness results and the flocking algorithm (5-5), it can be
concluded that v̇p,i = ui ∈ L∞ and τi ∈ L∞. Integrating the boundedness arguments, overall we have
that x̃s ∈ L2 ∩ L∞ and ˙̃xs ∈ L∞, from which we can conclude that V̇ is uniformly continuous. Then,
from Barbalat’s Lemma, (Lemma 1-2), we can conclude that velocity vector matching and orientation
angle consensus is asymptotically achieved, i.e. limt→∞(vp,i−vp,j ) = 0m and limt→∞(θi − θj) = 0,
respectively. This concludes (iii) of Theorem 2.

Part 3: Proof Theorem 6 (iv) - (Minimization of global potential)

Now, consider the agents having reached a flocking stability configuration by having proven (i-iii) of
Theorem 2. This implies that θi(t) = θj(t), vp,i (t) = vp,j (t) = vp,s, and as a result Hi(t) = Hj(t), in
steady state. Furthermore, since the gradient of the APF ∂φ(||pij ||σ)

∂pi
is a symmetric pairwise potential

function, it holds that
∑N
i=1

∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

= 0. Thus, in steady state, from the flocking control
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algorithm (5-6), we obtain

˙̄vp = 1
N

N∑
i=1

v̇p,i︸︷︷︸
ui

= 1
N

(
− γφ

N∑
i=1

Hi

∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

− γvp
N∑
i=1

∑
j∈Ni(t)

aij(t)(vp,i−vp,j )− γθ
N∑
i=1

∑
j∈Ni(t)

aij(t)(θp,i−θp,j )
)

= 0 (5-17)

which implies that the velocity vector, vp,i = [vi, ωi]T of the center of mass of the non-holonomic agents
are invariant, by noticing that the rotation matrix Hi(t) will be the same for each robot at steady
state for every future time instant.
In other words, at steady state, the terms for each robot are weighted by the same for each Hi(t),
which results in cancellation of the terms. From above, we can conclude that v̇p,i = 0, which implies
that vi(t) = vj(t) = vs and ωi(t) = ωj(t) = ωs will remain constant, and θi(t) = θj(t). As a result,
from algorithm (5-5), we obtain

−
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

T−→
t i = 0

−
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

T
−→n i = 0 (5-18)

Due to the fact that −→t i and −→n i are unit vectors that are orthogonal to each other, the above is
equivalent to

∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

= 0. From this, it can be said that the global potential is minimized
due to

V̇1 =
N∑
i=1

ṗTi
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

= 0 (5-19)

This proves conclusion (iv) from Theorem 2.

Remark 17. Clearly, as proven above, by using the computed torque nonlinear feedback control law
(5-2) with ui as the flocking control algorithm in (5-6), the non-holonomic Euler-Lagrange mobile
agents preserve the connectivity of the proximity interaction network G(t), avoid inter-agent collisions,
and achieve velocity vector and orientation angle consensus for all t ≥ 0, as long as the assumption
in Theorem 2 holds for the initial time t = 0 and by the discussion Remark 16. The designed flocking
control law is a continuous time-varying and smooth algorithm.

5-3 Numerical Simulation Study

In this section, numerical simulation results are given to illustrate the effectiveness of the theoretical
results obtained in Section 5-2. We consider the connectivity-preserving flocking of 10 homogeneous
mobile robots under a proximity interaction network. The relative non-holonomic EL dynamics of
the differential-drive wheeled mobile robots (WMRs) with its system matrices are given in (4-9-4-10)
where the proximity architecture is described in Section 4-2.
In the simulation, we consider the same system parameters as in [39], i.e. m = 6.64 [kg], I =
0.06363 [kg.m2], Iw = 0.001 [kg.m2], L = 0.2 [m], R = 0.08 [m] and d = 0.2 [m]. The initial
positions of the 10 mobile robots are, respectively, p1(0) = [1, 0]T [m], p2(0) = [3, 0.5]T [m], p3(0) =
[4, 1]T [m], p4(0) = [4.5, 1.5]T [m], p5(0) = [2, 2.5]T [m], p6(0) = [3.5, 3.5]T [m], p7(0) = [3.9, 3.9]T [m],
p8(0) = [4.5, 2.2]T [m], p9(0) = [5.0, 2.5]T [m], and p10(0) = [2.5, 1]T [m]. The orientation of each
mobile robot is randomly generated while the initial velocities of the robots are assumed to be zero.
The sensing radius of the proximity interaction network that represents the communication view of the
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5-3 Numerical Simulation Study 47

mobile robots is given to be Rs = 3 [m]. Moreover, the other design parameters used are rt = 0.05 [m],
Q = 20000 and ε = 0.2.
The numerical integration scheme fourth order Runge-Kutta (RK4) is used in this simulation. The
step-size used is Ts = 0.01 [s]. The RK4 is an effective and widely used method for solving initial-
value problems of differential equations and can be used to construct high order accurate numerical
methods [73]. The step-size is conveniently chosen such that the RK4 algorithm preserves the stability.
This is, it preserves stability provided that the step-size does not become too large. Thus, in practice,
the use of high order Runge-Kutta methods allows us to increase the step-size while still obtaining
good accuracy but the stability of the algorithms establishes limits to the value of the step-size [73].

Figure 5-2: Simulation of the velocity vector [vi, ωi]T and orientation angle θi consensus graphs for all the
differential-drive WMRs in the networked system.

The control parameters are conveniently chosen as γφ = 1, γv = 2, γω = 2 and γθ = 2 guided by
the theoretical analysis such that the best performance and a stable flocking system is obtained. An
important remark on this concerning the stability is that the control parameters have to be carefully
chosen such that the control bandwith of the system does not operate in the frequency region of the
uncertainties and high frequency unmodelled dynamics which might lead to an unstable system.
From Figure 5-2, which shows the consensus graphs of the robots in the network, it is evident that
the agents (asymptotically) move with the same velocity vector and orientation, respectively. From
the simulation performed in Figure 5-3 and numerically, it is verified that no inter-agent collision
occurs. Figure 5-4 shows the trajectories of the differential-drive WMRs. Evidently, from Figure 5-3
and Figure 5-4, it can be concluded that the agents move cohesively in a flock.
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(a)

(b)

(c)

Figure 5-3: Simulation of the 10 differential-drive WMRs under the connectivity-preserving flocking algo-
rithm (5-6) at (a) t = 0.01 [s], (b) t = 1.51 [s] and t = 5.01 [s].
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5-3 Numerical Simulation Study 49

Figure 5-4: The trajectories of the mobile robots where the stars indicate the position of the robots at the
end of the simulation.

Verification of Flocking To verify whether a group of particles performs flocking, we can calculate
some performance quantities along the trajectory of the particles [41]. These quantities are defined in
the following and can be used as performance metrics for flocking.

• Relative Connectivity: C(t) = (1/N − 1)rank(A(q(t))) ∈ [0, 1]

• Cohesive Radius: R(t) = max
i∈V
||pi(t) − pc(t)||, with pc(t) =

∑N

i=1 pi
N denoting the geometrical

center of mass of all agents in the flock.

In short, since the rank of a connected Laplacian and adjacency matrix of order N is at most N −1, a
relative connectivity C(t) of 1 implies that the interaction graph G(t) is a connected graph. Moreover,
a flock is cohesive when it has a finite cohesion radius. A more detailed discussion is given in [41].

(a) Relative connectivity (b) Cohesion radius

Figure 5-5: Visualization of relative connectivity and cohesive radius for numerical verification of flocking
with connectivity-preserving and cohesive flock movement for intuitive and explanatory purposes.
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The initial proximity interaction graph G(0) forms a connected graph. Figure 5-5a shows that the
connectivity of the interaction network G(t) is preserved for all times t ≥ 0. Furthermore, Figure
5-5b shows that the flock is a cohesive group by having a finite cohesive radius. Thus, by integrating
all the arguments above, we can conclude that the flocking with connectivity-preservation of 10 non-
holonomic EL networked mobile robots under a proximity graph is achieved.
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Chapter 6

Virtual Leader-Following Flocking
Algorithm for Non-Holonomic Networked

Euler-Lagrange Systems

This chapter discusses a distributed (virtual) leader-following flocking algorithm for formation control
of a networked non-holonomic Euler-Lagrange (EL) mobile robot system by including the virtual
leader in the proximity network as a complement to the algorithm discussed in the Chapter 5. The
control algorithm is initially analyzed through a theoretical framework by exploiting nonlinear control
theory concepts for time-varying (non-autonomous) systems. Then, a numerical simulation study is
performed that is guided by theoretical findings to support the obtained results from the theoretical
analysis of the control system.

6-1 Virtual Leader-Following Flocking Algorithm for Non-Holonomic Net-
worked Euler-Lagrange Systems

In this section, we study the distributed (virtual) leader-following flocking problem for networked
non-holonomic EL mobile robot systems. In addition to the flocking algorithm discussed in Chapter
5, a virtual leader is included in the proximity interaction network to introduce the mission to the
flock in practical situations.

Problem 2 (Flocking with a constant virtual leader based on proximity graphs). Given a group of
networked non-holonomic Euler-Lagrange mobile robots governed by{

q̇i = Si(qi)vp,i
M̃i(qi)v̇p,i +Ṽi(qi, q̇i)vp,i = B̃i(qi)τi

(6-1)

and sensing radius Rs > 0 with rt ∈ (0, Rs). Assume that for any initial conditions [qi(0), vp,i (0), v̇p,i (0)]T ,
i = 0, . . . , N , that makes G̃(0) contain a spanning tree with node 0, i.e. the virtual leader, as the root.
Assume that the virtual leader is a neighbor of at least one follower (i.e. node 0 ∈ Ñi(t) for at least one
i) at each time instant t. In addition, suppose that at the initial time t = 0, no collisions occur among
agents. Then, find a fully distributed artificial potential function (APF)-based connectivity-preserving
flocking control algorithm τi of the form

τi = hi(ui, qi, q̇i), j ∈ Ñi(t) i = 1, . . . , N (6-2)

where hi is a sufficiently smooth function to be designed as control algorithm with ui as the flocking
protocol, respectively, such that the closed-loop system is dissipative and has the following properties:
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(i) connectivity preservation of the interaction topology: G̃(t) is a spanning tree for all t ≥ 0;

(ii) collision avoidance and cohesive flock guidance: the networked multi-agent system moves cohe-
sively with the virtual leader while collisions are avoided, i.e. formally written in mathematical
terms as ||pi − pj || > (rt + 2L), i = 1, . . . , N, j = 0, 1, . . . , N ;

(iii) velocity vector and heading angle alignment, i.e. the robots in the flock asymptotically move with
the same velocity vector and heading angle as the virtual leader;

• limt→∞(vi − vj) = 0, i = 1, . . . , N and j = 0, . . . , N .
• limx→∞(ωi − ωj) = 0, i = 1, . . . , N and j = 0, . . . , N .
• limx→∞(θi − θj) = 0, i = 1, . . . , N and j = 0, . . . , N .

A natural question is whether the networked control system obtained is dissipative. It might not be
as predictable as the previous control system discussed in Chapter 5 in case of no virtual leader where
only physical robots in proximity interact with each other. An intuitive reason for this is that in
flocking without a virtual leader, each agent reciprocates the action of its neighboring agents under an
undirected interaction network, whereas including a virtual leader in the proximity network induces
a unidirectional graph (or digraph).
The (constant) virtual leader is a kinematic non-holonomic agent such that the generated reference
trajectory is compatible with the permissible trajectories for the differential-drive wheeled mobile
robots (WMRs) subject to non-holonomic constraints. A virtual leader has the role of a commander
in charge of navigation and control of the behavior of the flock as a whole. The virtual leader is
mathematically governed by

ẋ0 = f0(x0) + g0(x0)u0 =
[
S0(q0)vp,0

0

]
+
[

0
Im

]
u0 (6-3)

where x0 = [q0, vp,0 ]T , S0(q0) is the kinematics matrix of the virtual leader and u0 = v̇p,0 = 0, since
we consider a constant virtual leader in this case. In fact, smoothness of the reference trajectory is a
reasonable assumption in the case of mobile robots subject to non-holonomic constraints [37].
The objective is to design τi and ui for each mobile agent to achieve leader-follower flocking under a
proximity network. This includes cohesive flock guidance with connectivity preservation (i.e. followers
move cohesively with the leader), collision avoidance for all time, (asymptotically) velocity vector
and orientation matching of the agents in the flock, respectively. The following distributed control
algorithm is proposed

u1i = −γφ
∑

j∈Ñi(t)

∂φ(||pij ||σ)
∂pi

T−→
t i

︸ ︷︷ ︸
APF gradient term

− γv
∑

j∈Ñi(t)

aij(t)(vi − vj)

︸ ︷︷ ︸
Consensus term

u2i = −γφ
∑

j∈Ñi(t)

∂φ(||pij ||σ)
∂pi

T
−→n i

︸ ︷︷ ︸
APF gradient term

− γω
∑

j∈Ñi(t)

aij(t)(ωi − ωj)− γθ
∑

j∈Ñi(t)

aij(t)(θi − θj)

︸ ︷︷ ︸
Consensus term

(6-4)

This can be rewritten into

ui = −γφHi

∑
j∈Ñi(t)

∂φ(||pij ||σ)
∂pi︸ ︷︷ ︸

APF gradient term

− γvp
∑

j∈Ñi(t)

aij(t)(vp,i−vp,j )− γθ
∑

j∈Ñi(t)

aij(t)(θp,i−θp,j )

︸ ︷︷ ︸
Consensus term

(6-5)

with

Hi =
[−→
t i
−→n i

]T
=
[

cos θi sin θi
− sin θi cos θi

]
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where θp,i = [0, θi] , γα > 0 are control tuning parameters for α = φ, v, ω and θ , pij = pi − pj ,
with pi = [xi, yi]T denoting the position of agent i. In addition, −→t i = [cos θi, sin θi]T and −→n i =
[− sin θi, cos θi]T are unit vectors orthogonal to each other in the tangential and normal direction,
respectively. φ(||pij ||σ) is the APF between agents i and j, that is defined in Definition 5 and Lemma
10 with its derivative ∂φ(||pij ||σ)

∂pi
in Lemma 11. The neighboring set Ñi(t) includes the virtual leader

in the proximity network. Furthermore, p0 = [x0, y0]T and θ0 denote the position and orientation
angle of the virtual leader, respectively. The virtual leader is encapsulated as a reference trajectory
formulated in the form of a consensus term in the control algorithm.
As discussed in Section 4-2, the virtual leader is only a neighbor of the following agents, i.e. there is
a directed path from the virtual leader to the robots in proximity, and has itself no neighbors where
its motion is not necessarily dependent on the follower robots in proximity. Moreover, aij(t) denote
the adjacency elements defining the edge weights associated with the proximity graph G̃(t) defined in
Section 4-2. It is important to note that the flocking control law is similar to that of the previous
chapter, except for the proximity neighbor set, which now also includes the virtual leader as virtual
agent.

Assumption 3. The states of the virtual leader, q0(t) = [x0(t), y0(t), θ0(t)]T and the velocity vector
vp,0 (t) = [v0(t), ω0(t)]T exist and are smooth, and are upper bounded by some unknown constants [15;14].

Theorem 3 (Flocking of non-holonomic networked Euler-Lagrange mobile agents with a virtual
leader). Consider a networked non-holonomic Euler-Lagrange dynamic system (6-1) and a constant
virtual leader moving with equivalent non-holonomic kinematics (6-3) under the proximity graph G̃(t),
Assumption 3 and considering the assumption made in Remark 16. The virtual leader is a neighbor
of at least one follower (i.e. node 0 ∈ Ñi(t) for at least one i) at each time instant t and no collision
occurs among the agents at the initial time.
Consider the non-negative ”energy-like” Lyapunov function candidate V (. , t) given by (6-9). Each
agent is steered by the fully distributed computed torque nonlinear feedback control algorithm in (6-6)
and flocking control algorithm (6-5), respectively.

τi = [B̃i]−1(M̃i ai︸︷︷︸
=ui

+Ṽivp,i ) (6-6)

Then, for sufficiently large control parameters γα for α = φ, vp, θ, V̇ ≤ 0, if

−γvpλmin[H̃(t)] ||x̃s||2 + le||x̃s|| ≤ 0 (6-7)

where

H̃(t) =

[H(t)⊗ Im] 0 0
0 0 0
0 0 0


More formally, if (6-7) holds, we have that the energy of the system is non-increasing along the
trajectory of the collective dynamics of the networked mobile robot control system.

Proof. Using the computed torque nonlinear feedback control algorithm (6-6) into (6-1), a state-space
model of the closed-loop system can compactly be written in companion form as

ẋi = fi(xi) + gi(xi)ui =
[
Si(qi)vp,i

0

]
+
[

0
Im

]
ui (6-8)

Now, consider the following lower bounded "energy-like" function as a Lyapunov function candidate
V (t) = V1(t) + V2(t) + V3(t), where

V (p̃, θ̃p, ṽp, t) = 1
2

N∑
i=1

∑
j∈Ni(t)

φ(||pij ||σ) +
N∑
i=1

φ(||pi0||σ)

︸ ︷︷ ︸
V1(t)

+ 1
2

N∑
i=1

ṽTp ,i ṽp,i︸ ︷︷ ︸
V2(t)

+ 1
2γθθ̃

T
p [H(t)⊗ Im]θ̃p︸ ︷︷ ︸

V3(t)

(6-9)
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with pij = pi − pj , θ̃p is a column stack vector of θ̃p,i = [0, θ̃i]T with θ̃i = θi − θ0 for i = 1, . . . , N and
ṽp,i = vp,i−vp,0, where we have defined p̃i = pi − p0.
For the importance of maintaining the connectivity of the directed proximity graph G̃(t) (i.e. G̃(t)
is a spanning tree for all t ≥ 0) and to avoid collision between neighboring agents, the non-negative
potential function V1(t) is defined. The derivative of V1(t) is given by

V̇1 = 1
2

N∑
i=1

∑
j∈Ni(t)

(
ṗTi
∂φ(||pij ||σ)

∂pi
− ṗTj

∂φ(||pij ||σ)
∂pi

)
+

N∑
i=1

(
ṗTi
∂φ(||pi0||σ)

∂pi
− ṗT0

∂φ(||pi0||σ)
∂pi

)

=
N∑
i=1

ṗTi
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

+
N∑
i=1

(
ṗTi
∂φ(||pi0||σ)

∂pi
− ṗT0

∂φ(||pi0||σ)
∂pi

)

=
N∑
i=1

∑
j∈Ni(t)

(ṗi − ṗ0)T ∂φ(||pij ||σ)
∂pi

+
N∑
i=1

˙̃pTi
∂φ(||pi0||σ)

∂pi

=
N∑
i=1

˙̃pTi
∑

j∈Ñi(t)

∂φ(||pij ||σ)
∂pi

(6-10)

by using Lemma 3.1 in [7] and the fact that ∂φ(||pij ||σ)
∂pi

= −∂φ(||pij ||σ)
∂pj

to obtain the second equality

term, and using the fact that
∑N
i=1

∑
j∈Ni(t) ṗ

T
0
∂φ(||pij ||σ)

∂pi
= ṗT0

∑N
i=1

∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

= 0 to obtain
the third equality term. Then, the time derivative of V2(t) can be formulated as

V̇2 =
N∑
i=1

ṽp,
T
i

˙̃vp,i

=
N∑
i=1

ṽp,
T
i ui (6-11)

by using the fact that ˙̃vp,i = v̇p,i− v̇p,0︸︷︷︸
=0

= ui ∈ Rm, since the virtual leader has a constant velocity.

Note that the flocking protocol in (6-5) can mathematically equivalent be written as

ui = −γφHi

∑
j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi︸ ︷︷ ︸

APF gradient term

− γvp
∑

j∈Ñi(t)

aij(t)(ṽp,i−ṽp,j )− γθ
∑

j∈Ñi(t)

aij(t)(θ̃p,i−θ̃p,j )

︸ ︷︷ ︸
Consensus term

(6-12)

where p̃ij = p̃i − p̃j = pi − pj with p̃i = pi − p0, ṽp,i = vp,i−vp,0 and θ̃p,i = θp,i−θp,0. The time
derivative of V3(t) can be written as

V̇3 = γθ
˙̃
θ
T

p [H(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p (6-13)
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Now, the derivative of the Lyapunov function candidate V (t) is given as

V̇ =
N∑
i=1

˙̃pTi
∑

j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi︸ ︷︷ ︸

V̇1

+
N∑
i=1

ṽp,
T
i ui︸ ︷︷ ︸

V̇2

+ γθ
˙̃
θ
T

p [H(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p︸ ︷︷ ︸

V̇3

=
N∑
i=1

˙̃pTi
∑

j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi

+
N∑
i=1

ṽp,
T
i

(
− γφHi

∑
j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi

− γvp
∑

j∈Ñi(t)

aij(t)(ṽp,i−ṽp,j )−

γθ
∑

j∈Ñi(t)

aij(t)(θ̃p,i−θ̃p,j )
)

+ γθ
˙̃
θ
T

p [H(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p

=
N∑
i=1

(
˙̃pTi − γφṽTp ,iHi

) ∑
j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi

− γvp
N∑
i=1

ṽTp ,i
∑

j∈Ñi(t)

aij(t)(ṽp,i−ṽp,j )−

γθ

N∑
i=1

ṽTp ,i
∑

j∈Ñi(t)

aij(t)(θ̃p,i−θ̃p,j ) + γθ
˙̃
θ
T

p [H(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p

=
N∑
i=1

(
˙̃pTi − γφṽTp ,iHi

) ∑
j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi

− γvp
N∑
i=1

ṽTp ,i
∑

j∈Ñi(t)

aij(t)(ṽp,i−ṽp,j )−

γθ

N∑
i=1

[ṽi, ω̃i]
∑

j∈Ñi(t)

aij(t)([0, θ̃i]T − [0, θ̃j ]T ) + γθ
˙̃
θ
T

p [H(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p (6-14)

Ḣ(t) denotes the time derivative of H(t). Using the fact that ˙̃pTi = ṗTi − ṗT0 = vTp ,iHi − vTp ,0H0 and
ṽTp ,iHi = vTp ,iHi− vTp ,0Hi, where pi = [xi, yi]T denotes the position of the center of mass (COM), we
can formulate the derivative of the Lyapunov function candidate as

V̇ =
N∑
i=1

(
˙̃pTi − γφṽTp ,iHi

) ∑
j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi

− γvp
N∑
i=1

ṽTp ,i
∑

j∈Ñi(t)

aij(t)(ṽp,i−ṽp,j )

− γθ
N∑
i=1

ṽTp ,i
∑

j∈Ñi(t)

aij(t)(θ̃p,i−θ̃p,j ) + γθ
˙̃
θ
T

p [H(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p

=
N∑
i=1

(
vTp ,iHi − vTp ,0H0 − γφ(vTp ,iHi − vTp ,0Hi)

) ∑
j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi

− γvpṽTp
[
H(t)⊗ Im

]
ṽp

− γθṽTp [H(t)⊗ Im]θ̃p + γθ
˙̃
θ
T

p [H(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p (6-15)

where ṽp is a column stack vector of ṽp,i , i = 1, . . . , N , H(t) denotes the interaction network of
the virtual leader-following architecture and Im is the m × m identity matrix. The leader-follower
interaction topology matrix is defined as H = L + Λ, where L is the Laplacian matrix and Λ =
diag{a10, . . . , aN0}. It is evident that H is symmetric positive definite. A more detailed discussion
is given in Section 4-2. Also, notice that the second last two terms in (6-15) are equivalent to each
other and cancel out as a result. Now, by choosing γφ = 1, the derivative of the Lyapunov function
candidate is given as

V̇ =
N∑
i=1

(
vTp ,0 (Hi −H0)

) ∑
j∈Ñi(t)

∂φ(||p̃ij ||σ)
∂pi︸ ︷︷ ︸

(1)

− γvpṽTp
[
H(t)⊗ Im

]
ṽp︸ ︷︷ ︸

(2)

+1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p (6-16)

Note that (1) is upper bounded by Assumption 3, the definition of the APF in Definition 5, Lemma
10-11, and from the fact that the orthogonal rotation matrix ||Hi|| = 1 is always bounded.
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Moreover, by the positive (semi)-definiteness of the interaction graph of the virtual leader-follower
network H(t), it can be concluded that (2) is already negative (semi)-definite, i.e. −γvpṽTp

[
H(t) ⊗

Im
]
ṽp ≤ 0. In fact, note that this interaction network is actually positive definite in our case since we

assume that there is at least one following robot in the proximity of the virtual leader at each time
instant. Now, by algebraic manipulation, we can write the expression in (6-16) equivalently as

V̇ =
[
vTp ,0 (H1 −H0) vTp ,0 (H2 −H0) . . . vTp ,0 (HN −H0)

]
︸ ︷︷ ︸

ṽTe



∑
j∈Ñ1(t)

∂φ(||p̃1j ||σ)
∂p1∑

j∈Ñ2(t)
∂φ(||p̃2j ||σ)

∂p2
...∑

j∈ÑN (t)
∂φ(||p̃Nj ||σ)

∂pN


︸ ︷︷ ︸

∆piφs

−γvpṽTp
[
H(t)⊗ Im

]
ṽp

+ 1
2γθθ̃

T
p [Ḣ(t)⊗ Im]θ̃p (6-17)

Then, by conveniently introducing a new variable x̃s = [ṽp,∆piφs, θ̃p]T , we can formulate the expression
(6-17) as

V̇ = −γvp
[
ṽp ∆piφs θ̃p

]
︸ ︷︷ ︸

x̃Ts

[H(t)⊗ Im] 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

H̃(t)

 ṽp
∆piφs
θ̃p


︸ ︷︷ ︸

x̃s

− γθ
[
ṽp ∆piφs θ̃p

]
︸ ︷︷ ︸

x̃Ts

0 0 0
0 0 0
0 0 −1

2 [Ḣ(t)⊗ Im]


︸ ︷︷ ︸

Ĥ(t)

 ṽp
∆piφs
θ̃p


︸ ︷︷ ︸

x̃s

+
[
ṽp ∆piφs θ̃p

]
︸ ︷︷ ︸

x̃Ts

0
I
0


︸︷︷︸
E

ṽe

= −γvpx̃Ts H̃(t)x̃s︸ ︷︷ ︸
≤0

−γθx̃Ts Ĥ(t)x̃s + x̃Ts Eṽe (6-18)

Clearly, the first part of this expression is negative semi-definite, due to the quadratic expression
and the positive semi-definiteness of H̃. In fact, H̃ is a symmetric and positive semi-definite matrix,
therefore, by using some properties of norms for vectors and matrices (see Subsection 3-5-2), and
considering a similar discussion on the assumption made in Remark 16 on Ĥ(t), we can write the
expression (6-18) as

V̇ = −γvpx̃Ts H̃(t)x̃s + x̃Ts Eṽe

≤ −γvpλmin[H̃(t)] ||x̃s||2 + ||Eṽe||︸ ︷︷ ︸
≤||E|| ||ṽe||

||x̃s||

≤ −γvpλmin[H̃(t)] ||x̃s||2 + le||x̃s|| (6-19)

where we have assumed that ||ṽe|| < le and the fact that ||E|| = 1. Therefore, with the introduction
of a new auxiliary variable x̃s, defined as x̃s = [ṽp,∆piφs, θ̃p], we have that V̇ ≤ 0, if

−γvpλmin[H̃(t)] ||x̃s||2 + le||x̃s|| ≤ 0 (6-20)

More formally, when this holds, the energy of the system is non-increasing (i.e. V̇ (. , t) ≤ 0) along
the trajectory of the collective dynamics of the networked mobile multi-robot system.

The positive linear-in-||x̃s|| term makes the flocking stability more questionable since in the (virtual)
leader-following case it is more difficult for V̇ (. , t) ≤ 0 to hold. Therefore, convenient tuning of the
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control parameters (γvp, γφ, γθ) is required such that the negative part of V̇ dominates the positive
term in the expression. However, for small values of ||x̃s|| that are close to zero, the result in (6-7)
is hard to satisfy, as in this case the linear terms dominate over the quadratic terms. Concluding,
we can not say anything on the desired properties of Problem 2 and a numerical simulation study is
performed in the next section as a complement to the theoretical results for verification.

Remark 18. To design a more practical flocking algorithm, the virtual leader has to be included in
the proximity network of the multi-robot system, which is done in this chapter. The virtual leader
is not affected by the followers, since the virtual leader is only a neighbor of the following agents,
which results in a directed graph (digraph). To clarify and interpret the idea of putting the virtual
leader in the proximity network, note that we have a kind of tracking problem of the leader-following
architecture, therefore, the virtual leader has to stay cohesive to the flock which is done by including
the virtual leader in the proximity interaction network.

Remark 19. Note that Barbalat’s Lemma (see Lemma 1-2) is not applicable in this case, since it
implies an asymptotic stability result for non-autonomous systems. It is not possible to guarantee the
negative semi-definiteness of V̇ for all time instants, i.e. V̇ ≤ 0 ∀t due to the positive linear-in-||x̃s||
term le ||x̃s||.

Remark 20. Note that the positive linear-in-||x̃s|| term makes it more difficult for V̇ ≤ 0 to hold
and makes the flocking stability questionable. Furthermore, note that, even if V converges, it does not
necessarily imply that velocity matching and other desired characteristics are achieved. Thus, we can
not conclude anything more and a numerical simulation study is performed as a complement to the
theoretical analysis guided by the obtained theoretical results for verification on the desired properties
of Problem 2; connectivity preservation, collision avoidance, velocity vector and orientation matching
for all time, respectively.

Remark 21. In addition to Remark 20, an interesting observation is that by simply including a virtual
leader in the proximity network of the interacting system further complicates the theoretical proof of
Theorem 3, as compared to the theoretical proof of Theorem 2 in Chapter 5. An intuitive explanation
for this is that in leaderless flocking, each agent recompenses the behavior of the neighboring robots in
the proximity network under an (undirected) interaction network.
However, by including a virtual leader to the proximity network, the interaction network results in
a digraph with the virtual leader node as root. As a consequence, the behavior of the virtual leader
can not be affected by the follower robots and moves fully independently. In addition, different to the
existing literature, which consider point masses, the virtual leader is a more complex agent, modelled
as a non-holonomic kinematic agent, such that the reference trajectory is compatible with the non-
holonomic constraints of the robots. This interaction between virtual leader and following robots leads
to a more complex relation and eventually results in a positive linear-in-||x̃s|| term, which complicates
the theoretical proof.

6-2 Numerical Simulation Study

In this section, numerical simulation results are given to illustrate the effectiveness of the theoretical
results obtained in Section 6-1. We consider the distributed virtual leader-follower flocking of 10 ho-
mogeneous mobile robots and a constant virtual leader under a proximity interaction network. The
relative non-holonomic EL dynamics of the differential-drive WMRs with its system matrices are given
in (4-9-4-10) where the virtual-leader follower proximity architecture is defined in Section 4-2.
In the simulation, we consider the same system parameters as in [39], i.e. m = 6.64 [kg], I =
0.06363 [kg.m2], Iw = 0.001 [kg.m2], L = 0.2 [m], R = 0.08 [m] and d = 0.2 [m]. The initial
positions of the 10 mobile robots and virtual leader are, respectively, p0(0) = [3.5, 2.5]T [m], p1(0) =
[1, 0]T [m], p2(0) = [3, 0.5]T [m], p3(0) = [4, 1]T [m], p4(0) = [4.5, 1.5]T [m], p5(0) = [2, 2.5]T [m],
p6(0) = [3.5, 3.5]T [m], p7(0) = [3.9, 3.9]T [m], p8(0) = [4.5, 2.2]T [m], p9(0) = [5, 2.5]T [m], and
p10(0) = [2.5, 1]T [m]. The orientation of each mobile robot is randomly generated while the initial
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velocities of the robots are assumed to be zero. The leader starts under an orientation of θ0 = 40 [deg].
The constant velocity vector of the leader is assumed to be vp,0 = [3.0,−0.3]T . The sensing radius
of the proximity interaction network that represents the communication view of the mobile robots is
given to be Rs = 3 [m]. Moreover, the other design parameters used are rt = 0.05 [m], Q = 20000
and ε = 0.2.
The numerical integration scheme fourth order Runge-Kutta (RK4) is used in this simulation. More-
over, the step-size used is Ts = 0.01 [s]. The RK4 is an effective and widely used method for solving
initial-value problems of differential equations and can be used to construct high order accurate nu-
merical methods [73]. The step-size is conveniently chosen such that the RK4 algorithm preserves the
stability. This is, it preserves stability provided that the step-size does not become too large. Thus,
in practice, the use of high order Runge-Kutta methods allows us to increase the step-size while still
obtaining good accuracy but the stability of the algorithms establishes limits to the value of the
step-size [73].

Figure 6-1: Simulation of the velocity vector [vi, ωi]T and orientation angle θi consensus graphs for all the
differential-drive WMRs and virtual leader in the networked system.
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(a)

(b)

(c)

Figure 6-2: Simulation of the 10 differential-drive WMRs and virtual leader (black) under the distributed
leader-following flocking algorithm (6-5) at (a) t = 0.02 [s], (b) t = 1.0 [s] and t = 5.0 [s].
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Figure 6-3: The trajectories of the mobile robots and the virtual leader, where the stars indicate the
position of the robots at the end of the simulation.

The control parameters are appropriately chosen to be γφ = 1, γv = 5, γω = 5 and γθ = 10 guided by
the theoretical results such that the best performance and a stable flocking system is obtained. An
important remark on this concerning the stability is that the control parameters have to be carefully
chosen such that the control bandwith of the system does not operate in the frequency region of
the uncertainties and high frequency unmodelled dynamics which might lead to an unstable or more
oscillating system.
From Figure 6-1, which shows the consensus graphs of the robots in the network, it is evident that
the agents (asymptotically) move with the same velocity vector and orientation as the virtual leader
(node 0), respectively. It is verified that no inter-agent collisions occur by the simulation performed
in Figure 6-2 and from a numerical analysis. Figure 6-3 shows the trajectories of the differential-drive
WMRs and the virtual leader, respectively. Evidently, from Figure 6-2 and Figure 6-3, respectively,
it can be concluded that the agents move cohesively in a flock.

Verification of Flocking To verify whether a group of particles performs leader-follower flocking,
similar to Section 5-3, we can calculate some performance quantities along the trajectory of the
particles [41]. These quantities are defined in the following and can be used as performance metrics for
flocking.

• Relative Connectivity: C(t) = (1/N − 1)rank(A(q(t))) ∈ [0, 1]

• Cohesive Radius: R(t) = max
i∈V
||pi(t) − pc(t)||, with pc(t) =

∑N

i=1 pi
N denoting the geometrical

center of mass of all agents in the flock.

In short, since the rank of a connected Laplacian and adjacency matrix of order N is at most N − 1,
a relative connectivity C(t) of 1 implies that the interaction graph G̃(t) is a spanning tree. Moreover,
a flock is cohesive when it has a finite cohesion radius. A more detailed discussion is given in [41].
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(a) (b)

Figure 6-4: Visualization of relative connectivity and cohesive radius for numerical verification of flock-
ing with connectivity-preserving and leader-follower cohesive flock guidance for intuitive and explanatory
purposes.

The initial proximity interaction graph G̃(0) forms a spanning tree. Figure 6-4a shows that the
interaction network G̃(t) is a spanning tree for all time t ≥ 0. Furthermore, Figure 6-4b shows that
the leader-follower flock is a cohesive group by having a finite cohesive radius. By integrating all
the arguments above, we can conclude that the distributed leader-follower flocking with connectivity-
preservation of 10 non-holonomic EL networked mobile robots under a proximity graph is achieved,
which could not directly be concluded from the theoretical analysis of Theorem 3.
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Chapter 7

Flocking Algorithm for Non-Holonomic
Networked Euler-Lagrange Systems With

Obstacle Avoidance

This chapter discusses a distributed (virtual) leader-following flocking algorithm for formation control
of a networked non-holonomic Euler-Lagrange (EL) mobile robot system by including obstacle avoid-
ance capabilities as a complement to the algorithm discussed in Chapter 6. The control algorithm
is initially attempted to be analyzed through a theoretical framework by exploiting nonlinear control
theory concepts for time-varying (non-autonomous) systems.
However, this is a very challenging task and extensive theoretical results on flocking with obstacle
avoidance is not yet achieved in the flocking literature [41;51]. Therefore, the performance of the con-
trol algorithm discussed in this chapter will mainly be evaluated and verified through a numerical
simulation study guided by the obtained theoretical results.

7-1 Flocking Algorithm for Non-Nolonomic Networked Euler-Lagrange
Systems With Obstacle Avoidance

In this section, we complement to the study on the distributed (virtual) leader-following flocking
problem in the previous chapter by including obstacle avoidance capabilities that do not distinguish
between mobile robots and obstacles in proximity, respectively. More formally, all detected objects
are regarded as obstacles in the proposed algorithm, inspired by [51].
The ability to distinguish between a robot neighbor and an obstacle is not as easy for mobile robots as
it is for animals, such as birds in their flocking behavior. A reason for this is that robots are commonly
equipped with laser range finders, that cannot distinguish between obstacles and other robots. This
is due to the fact that they only return range data [51].

Problem 3 (Flocking with obstacle avoidance based on proximity graphs). Given a group of networked
non-holonomic Euler-Lagrange mobile robots governed by{

q̇i = Si(qi)vp,i
M̃i(qi)v̇p,i +Ṽi(qi, q̇i)vp,i = B̃i(qi)τi

(7-1)

and sensing radius Rs > 0 with rt ∈ (0, Rs). Assume that for any initial conditions [qi(0), vp,i (0), v̇p,i (0)]T ,
i = 0, . . . , N , that makes G̃t(0) contain a spanning tree with node 0, i.e. the virtual leader, as the root.
Assume that the virtual leader is a neighbor of at least one follower (i.e. node 0 ∈ Ñ o

i (t) for at least

Master of Science Thesis S. Tatar
MSc Systems & Control



64 Flocking Algorithm for Non-Holonomic Networked Euler-Lagrange Systems With Obstacle Avoidance

one i) at each time instant t. In addition, suppose that at the initial time t = 0, no inter-agent and
agent-obstacle collisions occur. Then, find a fully distributed artificial potential function (APF)-based
flocking control algorithm τi of the form

τi = hi(ui, qi, q̇i), j ∈ Ñ o
i (t) i = 1, . . . , N (7-2)

where hi is a sufficiently smooth function to be designed as control algorithm with ui as the flocking
protocol, respectively, such that the closed-loop system is dissipative and has the following properties:

(i) collision avoidance and cohesive flock guidance: the networked multi-agent system moves cohe-
sively with the virtual leader while both inter-agent and agent-obstacle collisions are avoided;

(ii) velocity vector and heading angle alignment, i.e. the robots in the flock asymptotically move with
the same velocity vector and heading angle as the virtual leader;

• limt→∞(vi − vj) = 0, i = 1, . . . , N and j ∈ Ñ o
i (t).

• limx→∞(ωi − ωj) = 0, i = 1, . . . , N and j ∈ Ñ o
i (t).

• limx→∞(θi − θj) = 0, i = 1, . . . , N and j ∈ Ñ o
i (t).

The objective is to design τi and ui for each mobile agent to achieve leader-follower flocking under a
proximity network with obstacle avoidance, where no distinction is made between neighboring robots
and obstacles, respectively. This includes cohesive flock guidance (i.e. followers move cohesively with
the leader) when all obstacles are avoided, collision avoidance with both agents and obstacles for all
time, (asymptotically) velocity vector and orientation matching of the agents in the flock, respectively.
The following distributed control algorithm is proposed

u1i = −γφ
∑

j∈Ñ oi (t)

∂φ(||pij ||σ)
∂pi

T−→
t i

︸ ︷︷ ︸
APF gradient term

− γv
∑

j∈Ñ oi (t)

aij(t)(vi − vj)− γrt
∑

j∈Ñ oi (t)

aij(t)(pi − p0)T−→t i

︸ ︷︷ ︸
Consensus term

u2i = −γφ
∑

j∈Ñ oi (t)

∂φ(||pij ||σ)
∂pi

T
−→n i

︸ ︷︷ ︸
APF gradient term

− γω
∑

j∈Ñ oi (t)

aij(t)(ωi − ωj)− γθ
∑

j∈Ñ oi (t)

aij(t)(θi − θj)− γrn
∑

j∈Ñ oi (t)

aij(t)(pi − p0)T−→n i

︸ ︷︷ ︸
Consensus term

(7-3)

This can be rewritten into

ui = −−γφHi

∑
j∈Ñ oi (t)

∂φ(||pij ||σ)
∂pi︸ ︷︷ ︸

APF gradient term

− γvp
∑

j∈Ñ oi (t)

aij(t)(vp,i−vp,j )− γθ
∑

j∈Ñ oi (t)

aij(t)(θp,i−θp,j )

︸ ︷︷ ︸
Consensus term

(7-4)

− γrHi

∑
j∈Ñ oi (t)

aij(t)(pi − p0)

︸ ︷︷ ︸
Consensus term

with

Hi =
[−→
t i
−→n i

]T
=
[

cos θi sin θi
− sin θi cos θi

]

p̂ij = Robs

[
cos θ̂ij
sin θ̂ij

]
+Ok(xk, yk)

θ̂ij = atan2(yi − yj , xi − xj) for j ∈ N o
i (t)

where θp,i = [0, θi], γα > 0 are control tuning parameters for α = φ, v, ω, rt, rn and θ, pij = pi − pj ,
with pi = [xi, yi]T denoting the position of agent i. Furthermore, p0 = [x0, y0]T and θ0 denote the
position and orientation angle of the virtual leader, respectively. In addition, −→t i = [cos θi, sin θi]T

S. Tatar
MSc Systems & Control

Master of Science Thesis



7-1 Flocking Algorithm for Non-Nolonomic Networked Euler-Lagrange Systems With Obstacle Avoidance65

and −→n i = [− sin θi, cos θi]T are unit vectors orthogonal to each other in the tangential and normal
direction, respectively. φ(||pij ||σ) is the revised APF (see Remark 22) between agents i and j, that is
defined in Definition 6 with its derivative denoted as ∂φ(||pij ||σ)

∂pi
defined in Lemma 12.

We restrict our study to obstacles that are connected convex surfaces. Specifically, we focus on
obstacles that are spherical. In the following, we formally define the notion of a virtual robot (i.e.
β-agent) and specify the interaction between the different agents. When the mobile robots detect an
obstacle, a ”virtual robot” is induced on the surface of the obstacles. In fact, the kinematic virtual
robot induced on the obstacle surface simply represents the shortest distance from agent i to obstacle
j, respectively.
The geometric and kinematic relationship between the mobile robots and neighboring obstacles is
illustrated in Figure 7-2, where Ok(xk, yk) denotes the position of the obstacle center, q̂ij(x̂ij , ŷij)
represents the projection point coordinates of the mobile robot onto the surface of the obstacle, where
q̂ij is qi ∈ N o

i (t) with N o
i (t) the set of obstacles in proximity. p̂ij (i.e. pi ∈ N o

i (t)) and θ̂ij are
the position of the generated kinematic virtual robot (β−agent ij) and the angle measured from the
orientation of robot i to the straight line which connects the robot to the obstacle, when an obstacle
enters the proximity view of the mobile robots. The total neighboring set of the system Ñ o

i (t) is defined
as the following set of detected objects Ñi(t)∪N o

i (t) with Ñi(t) = {j ∈ {0, 1, . . . , N}\{i} : ||pi−pj ||} <
Rs} that includes the virtual leader and mobile robots and N o

i (t) = {j ∈ {1, . . . , Nobs}\{i} : ||pi −
pj ||} < Rs} includes the obstacles in proximity, respectively. The gradient of the APF is now given
as ∂φ(||pij ||σ)

∂pi
for j ∈ Ñ o

i (t), where the potential between the physical mobile robots and virtual robots
is also synthesized into the argument of the total potential of the real robot. As a result, the mobile
robot should be capable to steer safely from the virtual robot, and therefore also from the detected
obstacles.
It is important to highlight that the difference between the previous flocking algorithms is that we
added obstacles to the proximity set where the potential between the mobile robots and obstacles
is also synthesized into the argument of the APF. In terms of practical sensing requirements, it is
assumed that every mobile robot is equipped with range sensors in order to measure its relative position
between the closest point on the obstacle and itself. For this purpose, both radars and laser radars (or
ladars) can be used as range sensors [41;51]. Moreover, an extra consensus term is introduced to track
the virtual leader in the system such that the flock is attracted to the virtual leader and minimize
the chance that the mobile robots get stuck into local minimas and/or deadlocks, respectively (see
Appendix B).

Definition 6 ( [72]). [Revised Artificial Potential Function (APF)] Motivated by the discussion in
Remark 22, the following revised APF is defined

φ(s) = 1
s2 − ln (R2

s − s2), 0 ≤ s ≤ Rs

where s = ||pij ||σ, pij = pi − pj and the σ-norm is exploited to have a smooth potential function for
its implementation in the flocking control algorithm. This APF φ(s) illustrated in Figure 7-1a.
Lemma 12 (Derivative of revised APF). The derivative of the revised APF in this chapter, denoted
as ∂φ(||pij ||σ)

∂pi
, is used in the flocking control algorithm for obstacle avoidance purposes by introducing

(virtual) attractive and repulsive forces, respectively, on the detected objects. The derivative of the
APF is defined as

∆pijφ(||pij ||σ) = ∂φ(||pij ||σ)
∂pi

=
( −2
||pij ||3σ

+ 2||pij ||σ
R2
s − ||pij ||2σ

)[
∆pij{1}||pij ||σ ∆pij{2}||pij ||σ

]T
where

∆pij{1}||pij ||σ = pij{1}
1 + ε||pij ||σ

∆pij{2}||pij ||σ = pij{2}
1 + ε||pij ||σ
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and the relative position vector pij is defined as pij = [xi−xj , yi−yj ]T . In addition, the curly brackets
{.} indicate the selection of the corresponding element in that vector. The revised APF gradient is
illustrated in Figure 7-1b.

Proof. The proof of this Lemma can easily be proven by using mathematical insights into the deriva-
tive of the Euclidian norm ||.|| discussed in Section 3-5-1 and properties of the σ-norm discussed in
Definition 4.

(a) The artificial potential function φ(s) with s = ||pij ||σ
for Rs = 3.

(b) The gradient of the artificial potential function φ(s)
with s = ||pij ||σ for Rs = 3.

Figure 7-1: Visualization of the revised artificial potential function φ(s) (a) with its derivative ∂φ(s)
∂s (b)

for intuitive and explanatory purposes.

Figure 7-2: The geometric and kinematic relationship between a mobile robot and an obstacle by introduc-
ing a virtual robot (β−agent) as a projection of the robot on the surface of the obstacle when the obstacle
enters the limited interaction view of the mobile robot.
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A natural question is whether the networked control system obtained is dissipative. It might not
be as predictable as the previously discussed control system in case of no virtual leader and without
obstacles where only physical robots in proximity interact with each other. An intuitive reason for this
is that in free flocking without a virtual leader and/or obstacles, each agent reciprocates the action
of its neighboring agents under an undirected interaction network, whereas including a virtual leader
and agent-obstacle interactions in the proximity network induces a unidirectional graph (or digraph)
as illustrated in Figure 4-4.

Remark 22. In this scenario, flocking with connectivity preservation is very difficult to be explicitly
included to the APF since we do not distinguish between obstacles and mobile robots in the neighbor-
hood. A reason for this is that the obstacles will interfere with the connectivity of the system as they
might have to perform split-rejoin maneuvers and this can lead to serious stability problems (especially
for large obstacles) as this is strictly related to the connectivity of the interaction network. Therefore,
we have to reconsider the APF and the one in [72] is used. As a consequence, it is not possible to
guarantee connectivity preservation theoretically due to the revising of the APF. However, since the
virtual leader contributes to an unifying objective of the flock, we assume that the virtual leader will
add robustness in this perspective.

Remark 23. In addition to the previous remark, it is important to note that (large) static and/or
moving obstacles can form an interference for the connectivity preservation of the proximity graph.
When the obstacle is big, in the worst case bigger than the sensing radius, serious conflict of interest
between connectivity preserving and obstacle avoidance can occur. This motivates the design of a
convenient APF-based flocking algorithm with obstacle avoidance capabilities and highlights its practical
limitations.

Theorem 4 (Flocking of non-holonomic networked Euler-Lagrange mobile agents with obstacle avoid-
ance). Consider a networked non-holonomic Euler-Lagrange dynamic system (7-1) and a constant
virtual leader moving with equivalent non-holonomic kinematics (6-3) under the interaction network
G̃t(t), Assumption 3 and considering the assumption made in Remark 16. The virtual leader is a
neighbor of at least one follower (i.e. node 0 ∈ Ñ o

i (t) for at least one i) at each time instant t and no
collision occurs among the agents at the initial time.
Define the ”energy-like” Lyapunov function candidate to be V (. , t) given by (D-2). Each agent
is steered by the fully distributed computed torque nonlinear feedback control algorithm in (7-5) and
flocking control algorithm (7-4), respectively.

τi = [B̃i]−1(M̃i ai︸︷︷︸
=ui

+Ṽivp,i ) (7-5)

Then, for sufficiently large control parameters γα for α = φ, vp, θ, r, V̇ ≤ 0, if

−γvpλmin[H̃t(t)] ||x̃s||2 − γrx̃TsHt(t)x̃s + le||x̃s||+ l0||x̃s|| ≤ 0 (7-6)

where

H̃t(t) =


[Ht(t)⊗ Im] 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 Ht(t)


0 0 0 0 H[Ht(t)⊗ Im]
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and H is the column stack vector of Hi, i = 1, . . . , N . More formally, if (7-6) holds, we have that the
energy of the system is non-increasing along the trajectory of the collective dynamics of the networked
mobile robot control system.

Proof. See Appendix D.
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The positive linear-in-||x̃s|| terms and the indefinite term −γrx̃TsHt(t)x̃s make it more difficult for
V̇ ≤ 0 to hold, where the flocking stability becomes even more questionable. From the theoretical
analysis, it can be seen that convenient tuning of the control parameters (γvp, γr, γφ, γθ) is required such
that the negative part of the expression of V̇ dominates the positive linear-in-||x̃s|| terms. However,
for small values of ||x̃s|| that are close to zero, the result in (7-6) is hard to satisfy, as in this case the
linear terms dominate over the quadratic terms. Furthermore, note that even if V converges, it does
not necessarily imply that velocity matching and other desired characteristics are achieved.
Thus, we can not conclude anything from the theoretical analysis and a numerical simulation study
is performed in the next section as a complement guided by the obtained theoretical results for
verification on the desired properties collision avoidance, velocity vector and orientation matching
respectively, as stated in Problem 3.

7-2 Numerical Simulation Study

In this section, numerical simulation results are given to illustrate the effectiveness of the theoretical
results obtained in Section 7-1. We consider the flocking of 10 homogeneous mobile robots under
a proximity interaction network with obstacle avoidance capabilities without distinguishing between
robots and obstacles. The relative non-holonomic EL dynamics of the differential-drive wheeled mobile
robots (WMRs) with its system matrices are given in (4-9-4-10) where the proximity architecture is
described in Section 4-2.
In the simulation, we consider the same system parameters as in [39], i.e. m = 6.64 [kg], I =
0.06363 [kg.m2], Iw = 0.001 [kg.m2], L = 0.2 [m], R = 0.08 [m] and d = 0.2 [m]. The initial
positions of the 10 mobile robots are, respectively, p1(0) = [1, 0]T [m], p2(0) = [3, 0.5]T [m], p3(0) =
[4, 1]T [m], p4(0) = [4.5, 1.5]T [m], p5(0) = [2, 2.5]T [m], p6(0) = [3.5, 3.5]T [m], p7(0) = [3.9, 3.9]T [m],
p8(0) = [4.5, 2.2]T [m], p9(0) = [5.0, 2.5]T [m], and p10(0) = [2.5, 1]T [m]. The orientation of each
mobile robot is randomly generated by repeating the experiment with different initial conditions until
the obstacle avoidance algorithm succeeds for some orientation θ1(0) = 1.93[rad], θ2(0) = 1.24[rad],
θ3(0) = 0.89[rad], θ4(0) = 0.82[rad], θ5(0) = 1.87[rad], θ6(0) = 1.69[rad], θ7(0) = 1.57[rad],
θ8(0) = 0.68[rad], θ9(0) = 1.85[rad], θ10(0) = 1.24[rad]. The initial velocities of the robots are
assumed to be zero. The leader moves under an orientation of θ0(0) = 0.61[rad]. The constant
velocity vector of the leader is assumed to be vp,0 = [3.0, 0]T . The sensing radius of the proximity
interaction network that represents the communication view of the mobile robots to detect the objects
(both obstacles and mobile robots) is given to be Rs = 3 [m]. The radius of the spherical obstacle is
0.4 [m] and is centered at the coordinates x = 13 [m], y = 10 [m].
Moreover, the other design parameters used are ε = 0.2. The numerical integration scheme fourth
order Runge-Kutta (RK4) is used in this simulation. Moreover, the step-size used is Ts = 0.01 [s]. The
RK4 is an effective and widely used method for solving initial-value problems of differential equations
and can be used to construct high order accurate numerical methods [73]. The step-size is conveniently
chosen such that the RK4 algorithm preserves the stability. This is, it preserves stability provided
that the step-size does not become too large. Thus, in practice, the use of high order Runge-Kutta
methods allows us to increase the step-size while still obtaining good accuracy but the stability of the
algorithms establishes limits to the value of the step-size [73].
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Figure 7-3: Simulation of the velocity vector [vi, ωi]T and orientation angle θi consensus graphs for all the
differential-drive WMRs in the networked system.

The control parameters are conveniently chosen as γφ = 1, γv = 5, γω = 5, γθ = 15, γrt = 15 and
γrn = 10, guided by the theoretical analysis, such that the best performance and a stable flocking
system is obtained. An important remark on this concerning the stability is that the control parameters
have to be carefully chosen such that the control bandwith of the system does not operate in the
frequency region of the uncertainties and high frequency unmodelled dynamics which might lead to
an unstable or more oscillating system.
From Figure 7-3, which shows the consensus graphs of the robots in the network, it is evident that
the agents (asymptotically) move with the same velocity vector and orientation as the virtual leader,
respectively, after avoiding the obstacle. During the interval 3 to 8 seconds, the flocking stability
is perturbed as the mobile robots encounter an obstacle on their path and the control algorithm
maneuvers the robots around the obstacle, after which flocking is achieved.
Clearly, the obstacles in the environment will cause disturbance to the flocking stability in terms of
connectivity, which is of fundamental importance for the stability and consensus properties of the
system. Therefore, no flocking is achieved until the obstacles are avoided due to the perturbations on
the system as a result of encountering obstacles. From the simulation performed in Figure 7-4 and
numerically, it is verified that no inter-agent and agent-obstacle collisions occur. Figure 7-5 shows
the trajectories of the differential-drive WMRs. Evidently, from Figure 7-4 and Figure 7-5, it can be
concluded that the agents move cohesively in a flock with the virtual leader.
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(a)

(b)

(c)

Figure 7-4: Simulation of the 10 differential-drive WMRs and virtual leader (black) under the distributed
leader-following obstacle avoidance flocking algorithm (7-4) at (a) t = 0.02 [s], (b) t = 1.0 [s] and t = 5.0
[s]. S. Tatar
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Figure 7-5: The trajectories of the mobile robots where the stars indicate the position of the robots at the
end of the simulation and the dotted line is the trajectory of the virtual leader.

The challenging aspect of the flocking algorithm with obstacle avoidance is the case in which the value
of the repulsive force from the obstacles might be bigger than the flocking control term. This can
result in possible collision between agents in the flock. Therefore, we highlight that proper tuning of
the control parameters is of fundamental importance.
When a group of agents faces an obstacle in front of it, the stability will be disturbed at this time
instant. The potential function also increases where the gradient of the Lyapunov function candidate
V̇ can become positive. In this critical situation, however, the multi-robot system will avoid the
obstacle in this case and then after the orientation to its goal is free from the obstacle, the group
will show formation reconfiguration and self-organizing flocking behavior. Thus, by integrating all the
arguments above, we can conclude that the flocking with obstacle avoidance of 10 non-holonomic EL
networked mobile robots under a proximity graph is achieved.
It might be interesting to examine whether we can extrapolate the obtained results in this chapter to
the aftermath of the algorithm in case of a larger group of mobile robots and/or multiple (including
dynamic) obstacles, from a theoretical and computational perspective. Note that by increasing the
number of mobile robots and/or obstacles in the flocking algorithm, the positive terms in the theoreti-
cal proof in Appendix D will increase and the stability will be even more questionable and challenging
to achieve. Also, more challenging features include; the communication complexity and the number
of interactions of the proximity network increase, high system dimensionality, more incomplete infor-
mation and uncertainties, where the sampling time has to be revised for the stability of the system.
By including a dense constrained environment with many obstacles, the system is much more likely
to get stuck into local minimas. For example, when the distance between two obstacles is too small,
the mobile robots get trapped by obstacles forming one concave obstacle, see Appendix B.
To overcome this problem, we need to design a more advanced obstacle avoidance algorithm by adding
an emergency algorithm to detect and escape from such a deadlock situation (see e.g. [49]). Moreover,
including dynamic obstacles in the flocking algorithm puts more complexities and challenges in the
algorithm and its theoretical proof as we have to define the (unknown) complex interaction between
the mobile robots and the dynamic obstacles. In addition, a prediction algorithm is required that must
be integrated into the flocking algorithm that makes it possible to estimate the states and predict the
dynamics of the moving obstacles.
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Chapter 8

Conclusion & Future Work

Initially, this chapter gives concluding remarks on the effectiveness of the proposed flocking algorithms.
Then, some future work recommendations are made towards the implementation of a practical swarm
intelligent networked mobile multi-robot systems (MRSs).

8-1 Conclusion

The study of flocking algorithms for formation control of MRSs in perspective of nonlinear control
theory can lead to interesting theoretical results to get insights into the development of swarm intel-
ligent robotics concepts motivated by nature-inspired flocking algorithms. Flocking algorithms have
beneficial contributions to solutions of a wide variety of practical applications and support great ad-
vantages such as robustness, flexibility, adaptability, self-organizing and self-reconfigurable features to
the system with reduced operational costs.
In this study, we primarily focused on the distributed flocking with connectivity preservation of ho-
mogeneous networked non-holonomic Euler-Lagrange (EL) systems under a proximity graph with a
limited sensing radius and local interactions. It is assumed that the mobile robots are only equipped
with limited on-board sensors, i.e. laser range finders (to detect obstacles and robots) and a gyro
sensor to measure its position and orientation, respectively. More specifically, three flocking algo-
rithms were designed and evaluated from the perspective of nonlinear control theory, analysis and
mathematical modelling of non-holonomic EL systems and the understanding of the heuristic flocking
concept in nature.
The first algorithm designed, discussed in Chapter 5 is a connectivity-preserving artificial potential
function (APF)-based flocking control protocol for formation control of a networked non-holonomic
EL mobile multi-robot system. It is both theoretically and numerically verified that the system obeys
the flocking principles: collision avoidance, cohesion and velocity matching, under this algorithm.
Then, a more practical (virtual) leader-follower flocking algorithm is designed and evaluated in Chapter
6. This algorithm builds further on the flocking algorithm in Chapter 5 by including a (virtual) leader
that is encapsulated as a reference trajectory for the flock, such that the trajectory is compatible with
the non-holonomic kinematic constraints of the following robots. The purpose of the virtual leader is
to introduce the mission, i.e. providing guidance to the flock, and it is of fundamental importance for
the robustness and fault-tolerance of the flock. From the theoretical analysis, the flocking principles
could not directly be concluded. An interesting observation made from the theoretical analysis is that
by simply including a virtual leader in the proximity network of the interacting system further compli-
cates the theoretical proof. Intuitively, by interpreting the theoretical results, this can be due to the
reason that in virtual leader-follower flocking, the interaction network results in a directed graph with
the virtual leader node as root. The interaction between the non-holonomic kinematic virtual leader
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and the following robots, as a consequence of including a virtual leader in the proximity network, leads
to a complex relation between these two agents, while in leaderless flocking each agent reciprocates
the behavior of the robots in proximity under an (undirected) interaction network. A numerical sim-
ulation study was performed as a complement to verify that the system meets the flocking principles
by using some performance metrics in addition to the simulation.
In practice, the multi-robot system moves in a constrained flocking environment where the system
also interacts with obstacles in proximity. Therefore, obstacles can not be neglected in the design of
the flocking algorithm. In Chapter 7, obstacle avoidance capabilities are added to the control algo-
rithm. In practice, mobile robots are commonly equipped with laser range finders that do not have
the capacity to distinguish between robots and obstacles in proximity. For this reason, the algorithm
is conveniently designed such that it does not distinguish between robots and obstacles. Note that
the proximity network becomes more complex since the mobile robots now also have a (directed)
interacting term with the obstacles. This further complicates the theoretical proof for this system and
the stability becomes even more questionable. From the theoretical results, the flocking principles can
not directly be concluded due to similar reasons as the virtual leader-follower flocking system. The
numerical simulation study shows that the flocking principles can be achieved for the chosen parame-
ters and initial conditions. From these results, the effectiveness of the proposed algorithms has been
verified except for in the cases where the robots get stuck in local minima where robots are trapped
by e.g. multiple obstacles. To overcome this problem, an emergency algorithm is required to detect
and escape from such a deadlock situation, however, this was outside the scope of this research.
Concluding, three flocking algorithms have been designed that are both analyzed and validated through
a theoretical and computational framework where interesting innovative results have been obtained.
The algorithms have proven to be effective for the flocking control of 10 non-holonomic dynamic EL
mobile robots. As this work is the first to initialize research in perspective of flocking algorithms
for a more realistic and practical modelled multi-agent system (MAS), in specific non-holonomic EL
modelled dynamic agents, there is still plenty of room for improvement of the proposed algorithms in
order to obtain an algorithm that is realistic and robust enough for practical applicability.

8-2 Future Work

This study has shown the effectiveness of the designed flocking algorithms for non-holonomic EL
systems through both a formal theoretical and advanced computational framework where interesting
innovative results have been obtained. However, there is still big room for improvement as the ulti-
mate goal is to obtain a flocking control algorithm that is realistic and robust for its application in
practice.
Regarding the improvement of the theoretical results, one might focus on obtaining a more rigorous
theoretical proof, especially for the virtual leader-following and obstacle avoidance case in Chapter
6 and Chapter 7, as no effective conclusions can be taken from the theoretical proof. A possible
choice for improvement could be by redefining the Lyapunov candidate function such that the positive
terms in the derivative of the Lyapunov candidate function get cancelled in order to have a negative
semi-definite derivative, however, this is a very challenging task. As a result, if the aforementioned
is possible, Barbalat’s Lemma [53] can be applied to make more effective conclusions on the flocking
system. As an additional remark to highlight the importance of a convenient Lyapunov candidate
function, most results on nonlinear dynamics simply assume that the dynamics are smooth enough to
guarantee existence and unicity of the solutions. Note that this is always the case of good physical
system models (at least in classical physics). From a practical point of view, these results essentially
mean that the existence of a Lyapunov function candidate to describe a system will guarantee the
system’s "good behavior" under some mild smoothness assumptions on the dynamics [53].
Also, one might attempt to proof uniform ultimate boundedness (UUB) of the system by using
Lyapunov-like theorems, see [25]. However, in order to apply the UUB theorem, the Lyapunov candi-
date function requires to be a positive definite function [53;25]. This is very challenging as the APF
has to be conveniently shifted to obtain V (0, t) = 0, since the argument of the APF is the Euclidian
distance between the mobile robots in the flock. Also, the results on ultimate boundedness naturally
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lead to the notion of Lyapunov-like theorems for input-to-state stability (ISS) [25].
To optimize the performance of the system, as we are dealing with many control parameters, and to
avoid excessive heuristic optimal tuning, an optimization method is desired such that the control pa-
rameters are chosen in agreement with the best performance. In addition, an optimization procedure,
such as the distributed Model Predictive Control (DMPC) framework, is desired with state- and input
constraints to take the physical limitations of the mobile robots into account for safety purposes. This
is of big importance in applications where safety features are fundamental and must be taken into
consideration. However, note that this method will increase in computational time.
In this work, we only considered the case where the virtual leader has a constant velocity vector.
However, in practice, the mobile robots move in unpredictable and dynamic environments. As a con-
sequence, a flocking algorithm with obstacle avoidance with varying virtual leader velocity [7;15;14] is
required for robustness and adaptability in this case. Also, some applications might require posture
regulation, i.e. point-to-point motion. It is interesting to study the posture regulation integrated with
the flocking algorithm as a future work. The design of posture stabilization for non-holonomic sys-
tems has to face serious structural obstruction [44]. Note that the regulation problem is more difficult
for non-holonomic systems compared to the tracking problem. This can intuitively be explained by
analyzing the number of inputs and outputs. For the posture regulation problem, we have less input
commands than the independent variables that determine its configuration, to be controlled, whereas
the tracking problem demands a square control problem.
Moreover, depending on the application in practice, one might require an algorithm that is imple-
mentable for even bigger groups of networked mobile robots. Note that by adding more robots into
the proximity network, the complexity and dimensionality of the interactions increase. This could lead
to instability where one might have to revise the sampling time in the numerical simulation study.
An experimental implementation study is desired as future work that will help identifying practical
issues, such as e.g. sampling, time-delays, communication dropout, non-identical systems, physical
limitations of the robots and bounded disturbances, that constitute points of possible improvements
for future studies. It might maybe be shown to work in simulations, which are of great importance
as a complement to the theoretical framework for showing its potential operating ability in practice.
However, evidently, in practice it is more complicated where we have uncertainties and disturbances
and the issues of design and analyses are intertwined, since the design of a nonlinear control system
typically involves an iterative process of analysis and design.
The stability of a system does not imply the ability to withstand persistent disturbances of even a
small magnitude. The reason for this is that the stability of nonlinear systems is defined with respect
to its initial conditions and only the temporary disturbances may be translated as initial conditions.
The effects of persistent disturbance on the behavior of nonlinear systems are addressed by the concept
of robustness. Therefore, for this reason, an adaptive and/or robust flocking control algorithm has to
be designed to obtain a more practical reliable algorithm. In conclusion, a good control system can
be obtained only based on effective trade-offs in terms of stability/robustness, stability/performance,
cost/performance, and so on.

Master of Science Thesis S. Tatar
MSc Systems & Control



76 Conclusion & Future Work

S. Tatar
MSc Systems & Control

Master of Science Thesis



Appendix A

Flocking Algorithms- MATLAB R2019B

The appendix is to describe the MATLAB code files that are used to perform the numerical simulation
studies in this thesis. Each folder is in specific devoted to one of the three proposed algorithms. The
codes are written as compact as possible and organized well into one main file.

A-1 Flocking Algorithm (1)

This MATLAB code is to numerically simulate the flocking behavior of non-holonomic Euler-Lagrange
(EL) networked dynamical agents under a proximity graph, as discussed in Chapter 5. The following
MATLAB .m files are used in the folder Flocking_Algorithm_1

• DDWMR_constants.m, used to describe the properties of the differential-drive wheeled mobile
robots (WMRs).

• Flocking_NH_EL_agents.m, denotes the main file.

A-2 Virtual Leader-Follower Flocking Algorithm (2)

This MATLAB code is to numerically simulate the virtual leader-follower flocking behavior of non-
holonomic EL networked dynamical agents under a proximity graph, as discussed in Chapter 6. The
following MATLAB .m files are used in the folder Flocking_Algorithm_2_Virtual Leader

• DDWMR_constants.m, used to describe the properties of the differential-drive wheeled mobile
robots (WMRs).

• Flocking_NH_EL_agents_virtualleader.m, denotes the main file.

A-3 Flocking Algorithm With Obstacle Avoidance (3)

This MATLAB code is to numerically simulate the flocking behavior of non-holonomic EL dynamical
agents under a proximity graph with obstacle avoidance properties, as discussed in Chapter 7. The
following MATLAB .m files are used:

• DDWMR_constants.m, used to describe the properties of the differential-drive wheeled mobile
robots (WMRs).

• Flocking_NH_EL_nodisting.m, denotes the main file.
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Appendix B

Local Minima & Deadlocks

The real-time applications of artificial potential functions involve the issue of possible existence of
local minima in its potential field. By choosing a proper choice of the step size, the gradient descent
algorithm can be proven and guaranteed to converge to a minimum. However, there is no guarantee
that this minimum corresponds to the global minimum. In other words, it is not guaranteed that the
robot will be able to find a path to its target configuration qgoal through this approach.

B-1 Local Minima Problem & Deadlocks

A deadlock is a situation in path planning in which a solution cannot be found, even though one
exists. This is typically caused by robots blocking each other’s paths where the planner is unable to
find a solution in which robots move out of the respected paths of the other robots.

Figure B-1: Local minima problem when the robot approaches a concave shaped obstacle where the
robot eventually converges to a local minima where the attractive potential function cancels the repulsive
potential function.

Figure B-1 illustrates the local minimum problem as the robot approaches the concave shaped obstacle.
The target attracts the robot whereas the lower part of the obstacle steers the robot upward and when
the robot detects the upper part of the obstacle, it influences the robot to deflect downwards. These
oscillatory effect eventually causes the robot to remain halfway between the obstacle arms. This leads
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to a scenario where a conflict of tasks situation occurs between obstacle avoidance and achieving its
group objective. The robot arrives at a point where the repulsive and attractive forces exerted by the
obstacle and target cancel each other, i.e. ∆U(q?) = 0 where q? does not represent the goal position.

Figure B-2: Local minima problem that leads to a feasibility problem in multi-objective scenarios, i.e.
conflict in objective of target reaching or obstacle avoidance.

Another example of a situation that leads to conflicting objectives is illustrated in Figure B-2. In
this scenario, when the multi-robot system attempts to pass through the obstacle to reach its group
objective, they clearly violated the obstacle avoidance objective. On the other hand, when the multi-
robot system avoids the obstacle, the target configuration can not be reached. This raises a feasibility
question to ensure no conflicted task scenario exists during flocking in constrained environments.
It is important to note that local minima present a drawback to the APF approach and the algorithm is
not complete. The local minima problem demands a more sophisticated obstacle avoidance algorithm
that attempts to eliminate the conflicting objective approach through e.g. gyroscopic forces for obstacle
avoidance purposes (e.g. [49]). For a more detailed discussion on local minima and overview of potential
functions, the reader might consult [27;1].
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Appendix C

Supplementary Theory
Mathematical Background

Throughout this thesis numerous mathematical definitions and theoretical results will be used. This is
briefly reviewed in this appendix. The analysis and theoretical framework of advanced non-holonomic
systems rely on some essential concepts exploited from mathematical modelling of non-holonomic
mechanical robotic systems [34] and controllability for nonlinear non-holonomic systems [5;34;52].

C-1 Mathematical Modelling & Control of Non-Holonomic Mechanical
Systems

The aim of this section is to provide a theoretical framework using tools from nonlinear control theory
for analysis of non-holonomic mechanical systems. This is an interesting topic since non-holonomic
constraints are present in many advanced robotic architectures. In this study, we discuss a unified
framework for mathematical modelling of non-holonomic mechanical systems exploiting the Euler-
Lagrange (EL) methodology.
The behavior of non-holonomic systems in advanced robotic structures is exceptionally interesting
since it involves under-actuated system. Under-actuated systems have very important applications
such as free-flying space robots, underwater robots, surface vessels, manipulators with structural flex-
ibility, etc [68]. They are used for reducing weight, cost or energy consumption, while still maintaining
an adequate degree of dexterity without reducing the reachable configuration space. Some other ad-
vantages of under-actuated systems include less damage while hitting an object, and tolerance for
failure of actuators [68].
The kinematic, dynamic modelling and control of non-holonomic mechanical systems are discussed.
Some examples of the kinematic and dynamic modelling of non-holonomic systems can be consulted
from [34;1].

C-1-1 An Introduction to Non-Holonomic Mechanical Systems

Consider a mechanical system where q ∈ Q denotes the vector of generalized coordinates of the sys-
tem. The configuration space Q ∈ RnQ is an n-dimensional smooth manifold, locally diffeomorphic
(i.e. locally "similar") to an open subset of Rn [34]. Consider a trajectory q(t) ∈ Q that is given. The
generalized velocity at a configuration q is the vector q̇ belonging to the tangent space Tq(Q).
In interesting applications, the motion of the system is subject to kinematic constraints that originate
from the mechanical structure or from the way the system is actuated and controlled. Such constraints
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are commonly classified into bilateral or unilateral constraints, i.e. equalities or inequalities, respec-
tively. In addition, the constraints may explicitly or not explicitly depend on time (i.e. rheonomic or
scleronomic) constraints [34]. In this study, we are only interested in constraints that can be expressed
as equalities which do not explicitly depend on time. More formally, we are interested in bilateral
scleronomic constraints.

• Holonomic constraints
The motion restrictions that can be put in the form of

hi(q) = 0, i = 1, . . . , k < n (C-1)

are called holonomic constraints. The effect of (C-1) is to limit the feasible configurations of the
system to an (n− k)-dimensional smooth submanifold of the configuration space Q. Typically,
holonomic constraints are introduced by mechanical interconnections between the bodies of
the system [34]. A proper way to deal with holonomic constraints is to describe the system
configuration by conveniently defining new n− k coordinates on the restricted submanifold that
characterizes the actual degrees of freedom of the system [34]. Then, the motion study of the
reduced system is identical to the initial system.

• Non-holonomic constraints
The kinematic constraints whose expression involves both the generalized coordinates and ve-
locities formulated in the form

ai(q, q̇) = 0, i = 1, . . . , k < n (C-2)

confine the permissible motions of the system by restriction of the set of generalized velocities
that can be attained at a given configuration. In general, mechanical systems use the Pfaffian
form [34]

aTi (q)q̇ = 0, i = 1, . . . , k < n or AT (q)q̇ = 0 (C-3)

to express these constraints linear in the generalized velocities. In addition, it is assumed that
the vectors ai : Q → Rn are both smooth and linearly independent. Note that the holonomic
constraints in (C-1) do imply existence of kinematic constraints, however, the opposite might
not be necessarily true. In this case, the kinematic constraints in (C-3), are not integrable,
i.e. the constraints can not be reformulated into the form (C-1). Those constraints are called
non-holonomic constraints.

It is important to note that the non-holonomic constraints confine the mobility of the system in a
completely different way compared to holonomic constraints, as illustrated in [34]. In case of non-
holonomic constraints, the system is still possible to attain any configuration in the configuration
space Q. This conclusion can generally be stated for mechanical systems: a mechanical system with n
generalized coordinates and k non-holonomic constraints, although the generalized velocities at each
point are limited to an n−k dimensional subspace, the accesibility of the entire configuration space Q
is preserved [34]. The rolling disk is a classical example of a non-holonomic system used for illustration,
see [34].

Integrability of Constraints

Consider a single Pfaffian constraint written as

aT (q)q̇ =
n∑
j=1

aj(q)q̇j = 0 (C-4)

This constraint is integrable if there exist a non-vanishing integrable factor γ(q) such that

γ(q)aj(q) = ∂h

∂qj
(q), j = 1, . . . , n (C-5)
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for some unknown function h(q). The opposite is also valid, i.e. if there exists a γ(q) term such that
γ(q)a(q) is the gradient vector of some function h(q), the constraint (C-4) is integrable [34]. By using
Schwarz’s theorem [34], the integrability condition (C-5) can be replaced by

∂(γak)
∂qj

= ∂γaj
∂qk

, j, k = 1, . . . , n (C-6)

Note that the integrability condition in (C-6) does not involve the unknown function h(q). In case
of multiple kinematic constrains in the form of (C-3), the separate consideration of each constraints
is not sufficient to conclude nonholonomy of the system. Actually, it may be possible that p ≤
k independent linear combinations of the constraints are integrable [34]. In this case, there exist p
independent functions hj(q) such that

span
{∂h1
∂q

, . . . ,
∂hp
∂q

(q)
}
⊂ span

{
aT1 (q), . . . , aTk (q)

}
, ∀q ∈ Q

where the system configuration is restricted to an (n − p)-dimensional manifold that consists of the
level surfaces of the functions hj , i.e.

{q ∈ Q : h1(q) = c1, . . . , hp(q) = cp}

on which motion is started [34]. Note that in case of p = k, the system is equivalent to a holonomic
system. To indicate partial nonholonomy, a subset of the constraint set is integrable, i.e. 1 ≤ p < k.
Some relevant examples are illustrated in [34].
Until now, the integrability of multiple kinematic constraints is not evident. The remainder of this
section will introduce a different framework for analyzing the integrability conditions of the system.
The set of k Pfaffian constraints in (C-3) characterizes the admissible generalized velocities, as con-
tained in the (n− k)-dimensional nullspace of matrix AT (q), at each configuration q [34]. Equivalently,
if {g1(q), . . . , gn−k(q)} denote the basis of this space, the feasible trajectories of the mechanical system
can be obtained as solutions of

q̇ =
m∑
j=1

gj(q)uj = G(q)u, m = n− k (C-7)

for some arbitrary control input u(t). Note that the system in (C-7) can be seen as a driftless nonlinear
control system where q ∈ Rn and u ∈ Rm denote the state vector and control input, respectively.
This system is under-actuated in mechanical point of view since the input dimension is less than the
generalized coordinates, i.e. m < n. The choice of G(q) is not unique and, accordingly, the components
of u will assume different meanings [34].
To conclude about the holonomy or nonholonomy of kinematic constraints, a more convenient way is
to study the controllability properties of the corresponding kinematic model. In fact, the following
two points will be important, since in the next section tools from nonlinear control theory are reviewed
applicable to general nonlinear control systems of the form

ẋ = f(x) +
m∑
j=1

gj(x)uj (C-8)

• The controllability of (C-7), given arbitrary points q1 and q2, implies the existence of a steering
control input u(t) that drives the system from q1 to q2. In other words, a trajectory q(t) consists
from q1 to q2 in correspondence with the kinematic constraints. Consequently, the system is
completely non-holonomic as the configuration space Q is not confined.

• Conversely, if the kinematic system is not controllable, the reasoning in the previous point is
not valid. As a consequence, the kinematic constraints characterize loss of accessibility of the
system configuration space Q. Therefore, dependent on the dimension v (< n) of the accessible
region, the corresponding constraints are partially or completely integrable [34].

By effectively making use of the controllability approach, it is important to have a framework involving
practical conditions to evaluate and verify controllability for the nonlinear control system in (C-8).
This motivates using tools from nonlinear control theory which will be discussed in the next section.
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C-1-2 Tools from Nonlinear Control Theory

The analysis of nonlinear control systems requires many important concepts from differential ge-
ometry [34]. This study concisely reviews relevant introductory definitions and a fundamental result
(Frobenius’ theorem). Moreover, nonlinear controllability conditions are recalled to characterize non-
holonomic constraints. Finally, basic elements for stabilization of nonlinear systems are introduced. It
is important to note that the concepts reviewed from nonlinear control theory are briefly introduced,
though, it attempts to provide an helpful overview of the tools that can be used for analysis and
control purposes of non-holonomic nonlinear control systems used in flocking algorithms. The reader
might consult [5;21] for a more detailed and complete analysis.

Differential Geometry

For convenience and simplicity, we denote the state vector with x ∈ Rn and the tangent space of Rn
at x by Tx(Rn). A smooth vector field g : Rn → Tx(Rn) is a smooth mapping assigning to each point
x ∈ Rn a tangent vector g(x) ∈ Tx(Rn) [34]. Consider two smooth vector fields g1 and g2. Then, the
new vector field [g1, g2] that is coordinate-dependent can be expressed as

[g1, g2](x) = ∂g2
∂x

g1(x)− ∂g1
∂x

g2(x)

and is denoted as the Lie bracket of g1 and g2. To illustrate the relevance of the Lie bracket operation,
we consider the following differential equation

ẋ = g1(x)u1 + g2(x)u2 (C-9)

where g1 and g2 denote vector fields. An example of the Lie bracket motion is illustrated in Figure
C-1 where the two inputs u1 and u2 are not active at the same instant. Therefore, the solution is
obtained by decomposition of the two vector fields g1 and g2.

Figure C-1: Lie bracket motion [34].

At every point in the configuration space Q, infinitesimal motion is possible not only in the directions
contained in the span of the input vector fields, but also in the directions of their Lie brackets. This
is characteristic to the nonlinearity of the input vector fields in the driftless control system (C-9). In
addition, by using more complicated input sequences, it is possible to obtain motion in the direction
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of higher-order Lie brackets, such as [g1, [g1, g2]] [34].
The Lie derivative of α : Rn → R along g is defined as

Lgα(x) = ∂α

∂x
g(x)

The most important important properties of the Lie brackets useful in computations are [34]

• Skew-symmetry: [f,g] = -[g,f]

• Jacobi identity: [f,[g,h]] + [h,[f,g]] + [g,[h,f]] = 0

• Chain rule: [αf,βg] = αβ[f,g] + α(Lfβ)g - β(Lgα)f

with α, β : Rn → R. The vector space V(Rn) of smooth vector fields on Rn, equipped with the Lie
brackets as a product, is called a Lie algebra [34].
The smooth distribution ∆ that is associated with the m smooth vector fields {g1, g2} is the map that
assigns to each point x ∈ Rn a linear subspace of its tangent space [34], i.e.

∆(x) = span{g1(x), . . . , gm(x)} ⊂ Tx(Rn)

In the sequel, we will neglect the coordinate term (x) for simplification. Then, ∆ is said to be
non-singular when dim(∆) = r and constant for all x. Here, r is denoted as the dimension of the
distribution ∆. Furthermore, ∆ is involutive if it is closed under the Lie bracket operation [34]

[gi, gj ] ∈ ∆, ∀gi, gj ∈ ∆

Theorem 5 (Frobenius [34]). A non-singular distribution is completely integrable if and only if it is
involutive.

The proof of this theorem can be consulted from [21].

Controllability of Nonlinear Systems

A nonlinear control system with a smooth drift vector field f in the form of

ẋ = f(x) +
m∑
j=1

gj(x)uj (C-10)

is considered. The system is affine in the class of piecewise-constant functions U of control inputs uj
and the state vector is denoted as x ∈ Rn. Unfortunately, a general framework for the natural form
of controllability does not exist, i.e. the control system (C-10) is controllable if for any choice of x1,
x2 ∈ Rn, there exists a finite time T and an input u : [0, T ] such that x(T, 0, x1, u) = x2

[34]. Next,
we will define other types of structural characterization of the system related to differential geometry
concepts.
Define RV (x0, τ) to be the set of states E , with V a given neighborhood of x0, for which an input
u : [0, τ ]→ U exists such that x(τ, 0, x0, u) = E and x(t, 0, x0, u) ∈ V for t ≤ τ [34]. In fact, RV (x0, τ)
denotes the reachable states at time τ from x0. Then, the concepts of local accessibility and small-time
local controllability can be defined as [34]

• locally accessible from x0, if RVT (x0) has a non-empty open set Ω, for all neighborhoods V of x0
and all T.

• small-time locally controllable from x0, if RVT (x0) has a non-empty neighborhood x0, for all
neighborhoods V of x0 and all T.
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An illustrative example is given in [34] to recognize the differences between these concepts. The interest
in concepts as local accessibility and small-time local controllability comes from the existence of
mathematical tools to characterize the properties in a system. It is important to remark the following

• The concepts introduced involves only locality. However, globalization of the concepts can be
achieved if the statement holds for any x0 ∈ Rn.

• Small-time local controllability =⇒ local accessibility and controllability. In general, the
converse does not hold, i.e. local accessibility 6=⇒ controllability. However, in case of no drift
vector f in (C-10), the converse does hold.

The accessibility algebra C of the control system (C-10) is defined as the smallest sub-algebra of V(Rn)
that contains (f ,g1, . . . , gm

[34]). In accordance with the definition, all the Lie brackets and its repeated
Lie brackets belong to C. The accessibility distribution ∆C is defined as

∆C = span{v|v ∈ C}

The accessibility algebra can be computed as an iterative procedure

∆C = span{v|v ∈ ∆i, ∀i ≥ 1}
with
∆1 = span{f, g1, . . . , gm}
∆i = ∆i−1 + span{[g, v]}|g ∈ ∆1, v ∈ ∆i−1, i ≥ 2

The procedure stops after at most n−m steps, due to the necessity of dim∆C ≤ n. The accessibility
distribution is an important algebraic test involved in verification of local accessibility and small-time
local controllability. The following theorems are important in determining algebraic tests that are able
to characterize such properties.

Theorem 6 (Chow [34]). If the accessibility rank condition

dim∆C(x0) = n

holds, then the control system (C-10) is locally accessible from x0. If the accessibility rank condition
holds ∀x ∈ Rn, the system is locally accessible. Conversely, if system (C-10) is locally accessible, then
dim∆C(x) = n holds in an open and dense subset of Rn.

The theorem of Chow can be applied to driftless control systems, i.e. control systems in the form of
(C-9), as a sufficient condition for controllability. It is important to note that, when the kinematic
system is controllable, its dynamic extension is also controllable [34]. Trivially, the converse is also
valid.

Theorem 7 (Sussmann [34]). Assume that dim∆C(x0) = n and that, for any bracket v ∈ ∆C such that
δ0(v) is odd, and δ1(v), . . . , δm(v) are even, v may be written as a linear combination of brackets of
lower degree. Then, system (C-10) is small-time locally controllable from x0.

For small-time local controllability, the only sufficient condition that exist is the theorem above based
on the following concept [34]: Consider a vector field v ∈ ∆C obtained as a (repeated) Lie bracket
of the system vector fields, and denote by δ0(v), δ1(v), . . . , δm(v) the number of occurrences of g0 =
f, g1, . . . , gm, respectively, in v. The degree of the bracket v is defined as

∑m
i=0 δ

i(v). For concluding
remarks and more detailed information on the discussed concepts, the reader is referred to [34].
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Stabilizability of Nonlinear Systems

The problem of stabilization of the control system (C-10) involves the design of a feedback control law
formulated as

u = α(x) + β(x)v, u, v ∈ Rm (C-11)

with the objective to obtain closed-loop asymptotic stability of an equilibrium point xe or admissible
trajectory xe(t). The design of feedback control laws are particularly relevant in motion control to
counteract disturbances and uncertainties in the system. The tracking case requires the stabilized
trajectories to be in accordance with the admissible motions of the system. In particular, this is
important in non-holonomic systems due to the involved kinematic constraints that preclude following
a generic trajectory.
For linear systems, recall from control theory, that controllability of the system implies asymptotic
stability (in fact, even exponential stability) by a smooth state feedback control law [34]. Note that for
nonlinear systems only local results may be obtained by analysis of the approximate linearization of
the system in a neighborhood of xe

δẋ = ∂f

∂x
(xe)δx+

m∑
j=1

gj(xe)uj = Aeδx+Beδu (C-12)

with δx = x−xe and δu = u−ue. Then, if the approximate linearization is controllable, the nonlinear
system in (C-10) can locally be stabilized. This is a sufficient condition, though, not necessary. In the
critical scenario, i.e. when the approximate linearization has zero real part uncontrollable eigenvalues,
it is not possible to conclude anything on the local controllability of the nonlinear system. In some
cases, however, one may use necessary conditions that imply the existence of a C1 stabilizing feedback
law to gain insight into the critical case [34]. A fundamental result that is in particular useful in this
framework is discussed below.

Theorem 8 (Brockett [34]). If the system

ẋ = φ(x, u)

admits a C1 feedback u=u(x) that makes xe asymptotically stable, then the image of the map

φ : Rn × U → Rn

contains some neighborhood of xe.

Some remarks on the obtained results are given in [34]. Concluding, under-actuated systems (m <
n) cannot be stabilized by continuously differentiable static feedback laws as a consequence of the
Brockett’s necessary conditions [5]. This imposes major difficulties in the design of feedback control
laws for non-holonomic systems. More information is discussed in Section 3-1-2.

C-2 Signal Norms

One way to describe the performance of a control system might be in terms of the size of certain
signals of interest [12]. For example, for the performance of a tracking system, one might measure the
performance by the size of the error signal. Here, we look at different ways of defining the size of a
signal, i.e. at different norms for signals. For a continuous-time vector signal x ∈ Rn its L1, L2 and
L∞ signal norm are defined as

• ||x(.)||1 =
∫∞

0 ||x(t)||1 dt =
∫∞

0 (|x1(t)| + . . . + |xn(t)|) dt

• ||x(.)||2 =
√∫∞

0 ||x(t)||22 dt =
√∫∞

0 (x2
1(t) + . . .+ x2

n(t)) dt
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• ||x(.)||∞ = sup
t≥0
||x(t)||∞ = sup

t≥0
sup

1≤i≤n
|xi(t)|∞

Corresponding to a norm, it is possible to define the space of all the signal which are bounded in that
norm. This will be exploited later on for the theoretical stability analysis of the flocking algorithms.
For the signal norms L1, L2 and L∞, we have [12].

(i) x ∈ L1 ∩ L∞ =⇒ x ∈ Lp for p ∈ [1,∞).

(ii) x ∈ L1 or x ∈ L2 may NOT imply ( 6=⇒ ) x ∈ L∞ or limt→∞ x(t) = 0.

It is important to note that a signal can be bounded with respect to a certain norm, but unbounded
with respect to a different norm [12].
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Theoretical Proof of Theorem 4
Chapter 6

In this appendix, we will proof the theoretical results of Theorem 4 in Chapter 7.

Proof. Using the computed torque nonlinear feedback control algorithm (7-5) into (7-1), a state-space
model of the closed-loop system can compactly be written in companion form as

ẋi = fi(xi) + gi(xi)ui =
[
Si(qi)vp,i

0

]
+
[

0
Im

]
ui (D-1)

Now, consider the following lower bounded "energy-like" function as a Lyapunov function candidate
V (t) = V1(t) + V2(t) + V3(t) + V4(t), where

V (p, θ̃p, ṽp, t) = 1
2

N∑
i=1

∑
j∈Ni(t)

φ(||pij ||σ) +
N∑
i=1

φ(|pi0||σ)

︸ ︷︷ ︸
V1(t)

+
N∑
i=1

∑
j∈N oi (t)

φ(||pij ||σ)

︸ ︷︷ ︸
V2(t)

+ 1
2

N∑
i=1

ṽTp ,i ṽp,i︸ ︷︷ ︸
V3(t)

(D-2)

+ 1
2 θ̃

T
p [Ht(t)⊗ Im]θ̃p︸ ︷︷ ︸

V4(t)

For the importance of maintaining the connectivity of the directed proximity graph G̃t(t) (i.e. G̃t(t)
is a spanning tree for all t ≥ 0) and to avoid collision between neighboring agents, the non-negative
potential function V1(t) is defined. The derivative of V1(t) is given by

V̇1 = 1
2

N∑
i=1

∑
j∈Ni(t)

(
ṗTi
∂φ(||pij ||σ)

∂pi
− ṗTj

∂φ(||pij ||σ)
∂pi

)
+

N∑
i=1

(
ṗTi
∂φ(||pi0||σ)

∂pi
− ṗT0

∂φ(||pi0||σ)
∂pi

)

=
N∑
i=1

ṗTi
∑

j∈Ni(t)

∂φ(||pij ||σ)
∂pi

+
N∑
i=1

(
ṗTi
∂φ(||pi0||σ)

∂pi
− ṗT0

∂φ(||pi0||σ)
∂pi

)

=
N∑
i=1

∑
j∈Ni(t)

(ṗi − ṗ0)T ∂φ(||pij ||σ)
∂pi

+
N∑
i=1

˙̃pTi
∂φ(||pi0||σ)

∂pi

=
N∑
i=1

˙̃pTi
∑

j∈Ñi(t)

∂φ(||pij ||σ)
∂pi

(D-3)
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by using Lemma 3.1 in [7] and the fact that ∂φ(||pij ||σ)
∂pi

= −∂φ(||pij ||σ)
∂pj

to obtain the second equality

term, and using the fact that
∑N
i=1

∑
j∈Ni(t) ṗ

T
0
∂φ(||pij ||σ)

∂pi
= ṗT0

∑N
i=1

∑
j∈Ni(t)

∂φ(||pij ||σ)
∂pi

= 0 to obtain
the third equality term.
The derivative of the second part of the Lyapunov candidate function V2(t) is given by

V̇2 =
N∑
i=1

∑
j∈N oi (t)

(
ṗTi
∂φ(||pij ||σ)

∂pi
− ṗTj

∂φ(||pij ||σ)
∂pi

)
︸ ︷︷ ︸

=0

=
N∑
i=1

˙̃pTi
∑

j∈N oi (t)

∂φ(||pij ||σ)
∂pi

+ ṗT0

N∑
i=1

∑
j∈N oi (t)

∂φ(||pij ||σ)
∂pi

(D-4)

where we have used the fact that ṗTj
∂φ(||pij ||σ)

∂pi
= 0 since ṗTj ⊥

∂φ(||pij ||σ)
∂pi

j ∈ N o
i (t). In other words,

the repulsive potential force that steers the mobile robot away from the obstacle is always orthogonal
to the velocity of the ”virtual robot” on the surface of the obstacle. Therefore, the corresponding dot
product is equal to zero. Then, the time derivative of V3(t) can be formulated as

V̇3 =
N∑
i=1

ṽp,
T
i

˙̃vp,i

=
N∑
i=1

ṽp,
T
i ui (D-5)

by using the fact that ˙̃vp,i = v̇p,i−v̇p,0 = ui ∈ Rm, since the virtual leader has a constant velocity.
Note that the flocking protocol in (7-4) can mathematically equivalent be written as

ui = −−γφHi

∑
j∈Ñ oi (t)

∂φ(||p̃ij ||σ)
∂pi︸ ︷︷ ︸

APF gradient term

− γvp
∑

j∈Ñ oi (t)

aij(t)(ṽp,i−ṽp,j )− γθ
∑

j∈Ñ oi (t)

aij(t)(θ̃p,i−θ̃p,j )

︸ ︷︷ ︸
Consensus term

(D-6)

− γrHi

∑
j∈Ñ oi (t)

aij(t)(pi − p0)

︸ ︷︷ ︸
Consensus term

where p̃ij = p̃i − p̃j with p̃i = pi − p0, ṽp,i = vp,i−vp,0 and θ̃p,i = θp,i−θp,0, respectively. The time
derivative of V4(t) can be written as

V̇4 = γθ
˙̃
θ
T

p [Ht(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣt(t)⊗ Im]θ̃p (D-7)
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Now, the derivative of the Lyapunov function candidate V (t) is given as

V̇ =
N∑
i=1

˙̃pTi
∑

j∈Ñi(t)

∂φ(||pij ||σ)
∂pi︸ ︷︷ ︸

V̇1

+
N∑
i=1

˙̃pTi
∑

j∈N oi (t)

∂φ(||pij ||σ)
∂pi

+ ṗT0

N∑
i=1

∑
j∈N oi (t)

∂φ(||pij ||σ)
∂pi︸ ︷︷ ︸

V̇2

+
N∑
i=1

ṽp,
T
i ui︸ ︷︷ ︸

V̇3

(D-8)

+ γθ
˙̃
θ
T

p [Ht(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣt(t)⊗ Im]θ̃p︸ ︷︷ ︸

V̇4

=
N∑
i=1

˙̃pTi
∑

j∈Ñ oi (t)

∂φ(||p̃ij ||σ)
∂pi

+ ṗT0

N∑
i=1

∑
j∈N oi (t)

∂φ(||p̃ij ||σ)
∂pi

+
N∑
i=1

ṽp,
T
i

(
− γφHi

∑
j∈Ñ oi (t)

∂φ(||p̃ij ||σ)
∂pi

−

γvp
∑

j∈Ñ oi (t)

aij(t)(ṽp,i−ṽp,j )− γθ
∑

j∈Ñ oi (t)

aij(t)(θ̃p,i−θ̃p,j )− γrHi

∑
j∈Ñ oi (t)

aij(t)(pi − p0)
)

+ γθ
˙̃
θ
T

p [Ht(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣt(t)⊗ Im]θ̃p

=
N∑
i=1

(
˙̃pTi − γφṽTp ,iHi

) ∑
j∈Ñ oi (t)

∂φ(||p̃ij ||σ)
∂pi

+ ṗT0

N∑
i=1

∑
j∈N oi (t)

∂φ(||p̃ij ||σ)
∂pi

− γvp
N∑
i=1

ṽTp ,i
∑

j∈Ñ oi (t)

aij(t)(ṽp,i−ṽp,j )

− γθ
N∑
i=1

ṽTp ,i
∑

j∈Ñ oi (t)

aij(t)(θ̃p,i−θ̃p,j )− γr
N∑
i=1

ṽTp ,iHi

∑
j∈Ñ oi (t)

aij(t)(pi − p0)

+ γθ
˙̃
θ
T

p [Ht(t)⊗ Im]θ̃p + 1
2γθθ̃

T
p [Ḣt(t)⊗ Im]θ̃p (D-9)

Using the fact that ˙̃pTi = ṗTi −ṗT0 = vTp ,iHi−vTp ,0H0 and ṽTp ,iHi = vTp ,iHi−vTp ,0Hi, where pi = [xi, yi]T
denotes the position of the center of mass (COM), and by following the realistic assumption made in
Remark 16, we can formulate the derivative of the Lyapunov function candidate as

V̇ =
N∑
i=1

(
˙̃pTi − γφṽTp ,iHi

) ∑
j∈Ñ oi (t)

∂φ(||p̃ij ||σ)
∂pi

+ ṗT0

N∑
i=1

∑
j∈N oi (t)

∂φ(||p̃ij ||σ)
∂pi

− γvp
N∑
i=1

ṽTp ,i
∑

j∈Ñ oi (t)

aij(t)(ṽp,i−ṽp,j )

− γr
N∑
i=1

ṽTp ,iHi

∑
j∈Ñ oi (t)

aij(t)(pi − p0)− γθ
N∑
i=1

ṽTp ,i
∑

j∈Ñ oi (t)

aij(t)(θ̃p,i−θ̃p,j ) + γθ
˙̃
θ
T

p [Ht(t)⊗ Im]θ̃p

=
N∑
i=1

(
vTp ,iHi − vTp ,0H0 − γφ(vTp ,iHi − vTp ,0Hi)

) ∑
j∈Ñ oi (t)

∂φ(||p̃ij ||σ)
∂pi

+ ṗT0

N∑
i=1

∑
j∈N oi

∂φ(||p̃ij ||σ)
∂pi

− γvpṽTp
[
Ht(t)⊗ Im

]
ṽp − γrṽTp H

[
Ht(t)⊗ Im

]
p̃− γθṽTp [Ht(t)⊗ Im]θ̃p + γθ

˙̃
θ
T

p

[
Ht(t)⊗ Im

]
θ̃p (D-10)

where ṽp and p̃ are column stack vectors of ṽp,i and p̃i, i = 1, . . . , N , respectively. Ht = L + Λ + Λo
denotes the interaction network of system where L is the Laplacian matrix, Λ = diag{a10, . . . , aN0}
and Λo = diag{a1j , . . . , aNj}, j ∈ N o

i . Furthermore, H is a column stack vector of Hi, i = 1, . . . , N
and Im is the m×m identity matrix. Now, by choosing γφ = 1 and noticing that the last two terms
are equivalent to each other, the derivative of the Lyapunov function candidate is given as

V̇ =
N∑
i=1

(
vTp ,0 (Hi −H0)

) ∑
j∈Ñ oi (t)

∂φ(||p̃ij ||σ)
∂pi︸ ︷︷ ︸

(1)

+ ṗT0

N∑
i=1

∑
j∈N oi (t)

∂φ(||p̃ij ||σ)
∂pi︸ ︷︷ ︸

(2)

−γvpṽTp
[
Ht(t)⊗ Im

]
ṽp︸ ︷︷ ︸

(3)

−γrṽTp H[Ht(t)⊗ Im]p̃ (D-11)
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Note that (1) and (2) are upper bounded by Assumption 3, the definition of the artificial potential
function (APF) and from the fact that the orthogonal rotation matrix ||Hi|| = 1 is always bounded.
Moreover, by the positive (semi)-definiteness of the interaction graph Ht(t) (see Figure 4-4), it can
be concluded that (3) is already negative (semi)-definite, i.e. −γvpṽTp

[
Ht(t) ⊗ Im

]
ṽp ≤ 0. Now, by

algebraic manipulation, we can write the expression (D-11) equivalently as

V̇ =
[
vTp ,0 (H1 −H0) vTp ,0 (H2 −H0) . . . vTp ,0 (HN −H0)

]
︸ ︷︷ ︸

ṽTe



∑
j∈Ñ o1 (t)

∂φ(||p̃1j ||σ)
∂p1∑

j∈Ñ o2 (t)
∂φ(||p̃2j ||σ)

∂p2
...∑

j∈Ñ oN (t)
∂φ(||̃p̂Nj ||σ)

∂pN


︸ ︷︷ ︸

∆piφs

[
ṗT0 ṗT0 . . . ṗT0

]
︸ ︷︷ ︸

ṖT0



∑
j∈N o1 (t)

∂φ(||p̃1j ||σ)
∂p1∑

j∈N o2 (t)
∂φ(||p̃2j ||σ)

∂p2
...∑

j∈N oN (t)
∂φ(||p̃Nj ||σ)

∂pN


︸ ︷︷ ︸

∆piφs,o

−γvpṽTp
[
Ht(t)⊗ Im

]
ṽp − γrṽTp H[Ht(t)⊗ Im]p̃ (D-12)

Then, by conveniently introducing a new variable x̃s = [ṽp,∆piφs,∆piφs,o , θ̃p, p̃]T , we can formulate
the expression (D-12) as

V̇ = −γvp
[
ṽp ∆piφs ∆piφs,o θ̃p p̃

]
︸ ︷︷ ︸

x̃Ts


[Ht(t)⊗ Im] 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

H̃t(t)


ṽp

∆piφs
∆piφs,o
θ̃p
p̃


︸ ︷︷ ︸

x̃s

− γr
[
ṽp ∆piφs ∆piφs,o θ̃p p̃

]
︸ ︷︷ ︸

x̃Ts


0 0 0 0 H[Ht(t)⊗ Im]
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

Ht(t)


ṽp

∆piφs
∆piφs,o
θ̃p
p̃


︸ ︷︷ ︸

x̃s

+
[
ṽp ∆piφs ∆piφs,o θ̃p p̃

]
︸ ︷︷ ︸

x̃Ts


0
I
0
0
0


︸︷︷︸
E1

ṽe +
[
ṽp ∆piφs ∆piφs,o θ̃p p̃

]
︸ ︷︷ ︸

x̃Ts


0
0
I
0
0


︸︷︷︸
E2

Ṗ0

= −γvpx̃Ts H̃t(t)x̃s︸ ︷︷ ︸
≤0

−γrx̃TsHt(t)x̃s + x̃Ts E1ṽe + x̃Ts E2Ṗ0 (D-13)

Clearly, the first part of this expression is negative semi-definite, due to the quadratic expression and
the positive semi-definiteness of H̃t(t). In fact, H̃t(t) is a symmetric and positive semi-definite matrix,
therefore, by using some properties of norms for vectors and matrices (see Subsection 3-5-2), we can
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write the expression (D-13) as

V̇ ≤ −γvpλmin[H̃t(t)] ||x̃s||2 − γrx̃TsHt(t)x̃s + x̃Ts E1ṽe + x̃Ts E2Ṗ0

≤ −γvpλmin[H̃t(t)] ||x̃s||2 − γrx̃TsHt(t)x̃s + ||E1ṽe||︸ ︷︷ ︸
≤||E1|| ||ṽe||

||x̃s||+ ||E2Ṗ0||︸ ︷︷ ︸
≤||E2|| ||Ṗ0||

||x̃s||

≤ −γvpλmin[H̃t(t)] ||x̃s||2 − γrx̃TsHt(t)x̃s + le||x̃s||+ l0||x̃s|| (D-14)

where we have assumed that ||ṽe|| < le, ||Ṗ0|| < l0 and the fact that ||E1,2|| = 1. Therefore, with
the introduction of a new auxiliary variable x̃s defined as x̃s = [ṽp,∆piφs,∆piφs,o , θ̃p, p̃], we have that
V̇ ≤ 0, if

−γvpλmin[H̃t(t)] ||x̃s||2 − γrx̃TsHt(t)x̃s + le||x̃s||+ l0||x̃s|| ≤ 0 (D-15)

More formally, when this holds, the energy of the system is non-increasing (i.e. V̇ (. , t) ≤ 0) along
the trajectory of the collective dynamics of the networked mobile multi-robot system.
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List of Acronyms

MASs multi-agent systems
MAS multi-agent system
UGVs Unmanned Ground Vehicles
UAVs Unmanned Aerial Vehicles
USVs Unmanned Surface Vehicles
AUVs Autonomous Underwater Vehicles
MRSs multi-robot systems
SR swarm robotics
UVs unmanned vehicles
DoD Department of Defense
EL Euler-Lagrange
WMRs wheeled mobile robots
WMR wheeled mobile robot
UAVs Unmanned Aerial Vehicles
APF artificial potential function
COM center of mass
DMPC distributed Model Predictive Control
2D 2-dimensional
SOS sum-of-squares
RK4 fourth order Runge-Kutta
UUB uniform ultimate boundedness
ISS input-to-state stability
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