
Design of cellular structures for
robotic assembly

Appendices

Chair
Faculty

Author
Faculty

Dr. Jun Wu
Industrial Design Engineering

Andreas Biront
Industrial Design Engineering

Mentor
Faculty

Dr. Kunal Masania
Aerospace Engineering

Mentor
Faculty

Ir. Eric Garner
Mechanical, Maritime and
Materials Engineering

Appendix [A] Project Brief

Appendix [B] Voxel Shape Properties

Appendix [C] Program of Requirements

Appendix [D] Bill of Materials

Appendix [E] Voxel Size Depending Factors

Appendix [F] Voxelized Structures

Page No.

2

9

12

18

20

21

Appendix [G] Arduino Code 23

2 3

4 5

6 7

Independant Properties

Dependant Properties

Appendix [B] Voxel Shape Properties

Number of attachments per voxel — The number of attachments per voxel is considered as a
measure of the complexity of the unit cell.

Stiffness and Strength Scaling — It is shown in the literature that stiffness and strength scaling
are governed by the cell wall bending and can be determined using beam theory and dimensional
analysis

A few geometries are particularly well studied in the field of cellular solid materials. Where pos-
sible, empirical values for the stiffness and strength scaling were identified and cited herein. If
experimental results were not available, computational estimations for the scaling laws were de-
termined using the connectivity of the unit cell. This provided a coarse estimation of the behavior
of the lattice depending on whether the structure is transverse bend or axial stretch dominated,
in terms of microstructural behavior under load.

Number of attachments per adjacency — The number of attachments per adjacency is also
considered as a measure of cell complexity, and is a function of adjacency and attachment types.

Coefficient of Volume — Coefficient of Volume is defined as the ratio of the volume contained
within the convex hull of the voxel geometry to the space filling repeating volume that defines its
assembly to the intended lattice geometry. For example, for a cuboct lattice, this can be either the
volume of an octahedron to the volume of the cube enclosing that octahedron per simple cubic
packing, or the volume of a cuboctahedron to the same.

Average number of attachments per coefficient of volume — The average number of attachments
per coefficient of volume as defined above.

Tiling — The tiling of the unit cell referred to the packing type of the unit cells once they were fas-
tened to each other. Simple cubic packing (SC) occurred when consecutive layers of unit cells lay
directly on top of the cells below them, i.e. simple cubic packing. Body centered cubic (BCC) tiling
was defined as alternating layers of cells sitting offset to one another. Tiling and the spatial rela-
tionship of unit cells became important when characterizing the complexity of locomotion needed
by the robot to move across the structure.

8 9

Packing efficiency — The packing efficiency relates the deployed volume (the volume of a com-
pleted lattice) to the payload volume of unassembled voxels.

Strut Clearance Angle — The strut clearance angle, , was another metric related to end-effector
clearance. It was defined as the angle between the vector orthogonal to the node and the adja-
cent strut. A larger angle provided more clearance for the end-effector to operate near the node.

Volume allowance for robotic end-effector — The robotic endeffector must be able to access all
attachment points in order to join unit cells to each other. It is presumed that a larger
volume allowance offers more range of motion to maneuver to each attachment. This was calcu-
lated by determining the volume ratio of the largest clearance volume for the endeffector to enter
and exit the unit cell to the total volume of the cell.

10 11

Appendix [C] Program of Requirements

List of requirements Type Specification Validation

Voxel inter connection system

Connection Demand The connection system should be integrated in the voxel Prototype voxel
Demand The pin should be connected with only one movement Connection system

Demand The connection system should make the overall system less complicated
Compare movements
by the robot conducted

Demand The connection system should restrict sideways motion between two voxels Test connection
Demand The connection system should restrict vertical motion between two voxels Test connection
Wish The connection should should lock linear motion between two voxels Test connection
Demand The male pin holders should not interfere with the strut clearance of the voxel Test strut clearance
Demand The connection should restrict bending movement Test connection

Lattice structure

Assembly Wish A voxel should be able to be removed without removing surrounding voxels Test connection system
Demand A voxel should be able to be placed without interfering with surrounding voxels Test connection system
Demand The structure should be assembled autonomously Test robot/manipulator
Demand The structure should be disassembled autonomously Test robot/manipulator

Repair Demand
Structure as a whole should be self supporting throughout the life and during assembly/disassembly/
repair/replacement process Prototype structure

Demand A failure of one voxel should not affect the performance of adjacent voxels Prototype structure

Demand
It should be feasible to change one or a few voxels without affecting the integrity of the whole
structure Prototype structure

General Demand The lattice structure should be reconfigurable Test connection system
Demand The lattice structure should have societal relevance Interview people
Demand The lattice structure should be a potential improvement of the conventional solution Interview people
Demand The lattice structure should have (dis)assembly on location Test manipulator

12 13

Voxel

Male Demand The voxel should have a weight of 420 grams Weigh
Demand The voxel should be 200x200x200mm Measure
Demand The voxel should include 5 pin bridges Check submodule

Female Demand The voxel should have a weight of 326 grams Weigh
Demand The voxel should be 200x200x200mm Measure

General Demand The voxel should have two connection points on each side Check submodule
Demand The voxel should be modular Check submodule
Demand The voxel shape should make path planning more simple Verify robot's path planning
Demand The voxel size should be able to change depending on the application Check submodule

Robot

Voxel placement Demand The robot should be able to place the voxel from each direction Verify robot's path planning
Demand The robot should be able to place a voxel while standing horizontally Verify robot's path planning
Demand The robot should be able to place a voxel while standing vertically Verify robot's path planning
Demand The robot should be able to place a voxel that will be surrounded by 4 other voxels Verify robot's path planning

Movements Demand The robot should be able to move horizontally Test robot movements
Demand The robot should be able to move vertically Test robot movements
Demand The robot should be able to move in one straight line without interfering with surrounding voxels Test robot movements
Demand The robot should be able to move on structure while holding a voxel Test robot movements
Demand The robot should be able to rotate to change direction Test robot movements

features Demand The robot should be able to walk around with a voxel with a weight of 420 grams Test manipulator

Feedback system Demand The robot should be able to know when to adjust its feet Tactile sensors
Demand The robot should be able to know when a voxel is (dis)connected Magnetic sensors
Demand The robot should be able to know its place on the structure with reference to the launch pad Feedback testing
Demand The robot should be able to know when a voxel is placed Torque sensors

14 15

End-effector

Accesibility Demand The manipulator should be able to acces the inside of the voxel Test end-effector
Demand The manipulator should be able to acces the connection system Test end-effector

Connection Demand The manipulator should be able to connect a voxel with only 10 movements Test end-effector
Demand The manipulator should be able to align two neighbouring voxels Test end-effector

Movement Demand The manipulator should be able to hold the voxel while the robot moves Test end-effector
Demand The manipulator should be able to rotate the voxel Test end-effector
Demand The manipulator should be able to remove the voxel horizontally Test end-effector
Demand The manipulator should be able to place the voxel horizontally Test end-effector

Electromagnet holder Demand The holder should be able to rotate 90 degree Test end-effector
Demand The electromagnets should be able to be activated seperately Test end-effector
Demand The electromagnets should have an attracting and repelling stand Test end-effector
Demand The electromagnets should repel to connect the voxel Test end-effector
Demand The electromagnets should atrract to disconnect the voxel Test end-effector

Environment

Production Demand The structure should reduce production waste Reusable
Demand The structure should reduce the waste stream Reusable
Demand The structure should reduce disposal costs Reusable

Use case Demand The structure should be able to work as a shelter Test structural integrity

16 17

Appendix [D] Bill of Materials

BOM level Description Qty Units Unit Cost Cost (Euro)
1 Hand palm 1 1 0
1 Arduino cables 10 10 0,09 0,9
1 Tactile sensors 2 2 25,6 51,2
1 Grippers 4 4 0
1 Servo gripper 2 2 4,2 8,4
1 Arduino 1 1 24,6 24,6
1 Translating mechanism 1 1 0
2 Servo 1 1 18,5 18,5
2 Linear gear 1 1 0
2 Circular gear 1 1 0
2 Servo holder 1 1 0
2 Rotation mechanism 1 1 0
3 Servo 1 1 18,5 18,5
3 Circular gear 1 1 0
3 bolt 1 8 0,4 3,2
3 Connection mechanism 1 1 0
4 Electromagnet holder 1 1 0
4 Electromagnets 2 3 4 12
4 H-bridge 2 2 4 8

35 145,3

Robot End Effector

Total costTotal number parts

The parts with zero euro indictate that these parts are 3D printed. Since these parts would be
made out of other materials these prices are not yet known.

18 19

Appendix [E] Voxel Size Depending Factors

Mechanical strength

The scaling up of the concept for large-scale applications needs the modules to be strong enough
to withstand the expected load based on the application. Based on these requirements, the sub-
module strut diameter should be initially determined. And once that is decided, the voxel size can
be determined based on the level of complexity the assembly for the application can handle. As
seen in section 5.4, the smaller the module size, the larger the assembly components.

Weight requirements

Also in applications where the weight of the structure matters, it should be considered that
smaller modules but large in quantity will have more fasteners involved that will increase the
weight of the overall structure.

Manufacturing limitations

Another factor that influences the size of the module to be used in large-scale applications is the
manufacturing limitations. For example, in the case of 3D printed manufacturing, the size of the
bedplate of the printer would determine the maximum possible dimensions for the voxel.

Geographical conditions

After discussing the concept with experts in relevant fields, it was discovered that the geographic
location for the application also influences the decisions for scaling the module size. In the case
of the Netherlands, due to the type of Dutch soil, the foundation for such structures needs to be
specifically planned considering both the soil type and the module size Thus, to sum up, all these
factors need to be collectively considered to determine the size of a module of the lattice struc-
ture for a specific application. And accordingly, the submodules can be manufactured and pack-
aged. The manufacturing process also involves an additional step to be performed before pack-
aging. The submodules if manufactured from metal or similar material then need to be tapped for
interconnection. And if the submodule is made from plastic-type material then adding a metallic
insert(or nut) to the hole is needed before packaging. The lightweight characteristic of the lattice
structures and the modular design make it easier to stack these submodules into compact space
and transport it easily to the desired location. The sub-modules are so designed to be able to pile
up one over the other and form a cluster of submodules. Figure 37 shows how six submodules
that when assembled form a complete module can be stacked together.

20 21

Appendix [F] Voxelized Structures

Step 1

Step 2

Step 3

To make use of the robot-material system, an input has to be given to the system such that it
knows what to build and how. This is where the designers and architects come into play. Together,
they would develop new types of structures that need to be built in these harsh and remote en-
vironments, as can be seen in Step 1. Still, these shapes should be transformed into a structure
made out of voxels such that the system can build them. Therefore, a small Grasshopper pro-
gram is written, depicted in Step 2, that can voxelize these shapes. This program needs the initial
shapes and voxel size as an input to generate the desired output, seen in Step 3. These voxelized
shapes can be used as an input for the robot-material system, where it would decide which voxel
to place and where.

22 23

Appendix [G] Arduino Code

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

// called this way, it uses the default address 0x40
Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(0x7f);
// you can also call it with a different address you want
//Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(0x41);
// you can also call it with a different address and I2C interface
//Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(0x40, Wire);

// Depending on your servo make, the pulse width min and max may vary, you
// want these to be as small/large as possible without hitting the hard stop
// for max range. You’ll have to tweak them as necessary to match the servos you
// have!
#define SERVOMIN1 130 // This is the ‘minimum’ pulse length count (out of 4096)
#define SERVOMAX1 325 // This is the ‘maximum’ pulse length count (out of 4096)
#define SERVOMIN2 150 // This is the ‘minimum’ pulse length count (out of 4096)
#define SERVOMAX2 275 // This is the ‘maximum’ pulse length count (out of 4096)
#define USMIN 600 // This is the rounded ‘minimum’ microsecond length based on the minimum
pulse of 150
#define USMAX 2400 // This is the rounded ‘maximum’ microsecond length based on the maxi-
mum pulse of 600
#define SERVO_FREQ 50 // Analog servos run at ~50 Hz updates

String mov;
const int M1A = 5;//define pin 2 for A1A
const int M1B = 6;//define pin 3 for A1B

const int M2A = 9;//define pin 2 for A1A
const int M2B = 10;//define pin 3 for A1B

void setup() {
 Serial.begin(9600);
 Serial.println(“8 channel Servo test!”);
 Serial.println(“Provide action: down, up, rotate90, rotate-90, attract1, repel1, attract2, repel2 grab,
release”);
 pinMode(M1A, OUTPUT);
 pinMode(M1B, OUTPUT);
 pwm.begin();

 pwm.setOscillatorFrequency(27000000);
 pwm.setPWMFreq(SERVO_FREQ); // Analog servos run at ~50 Hz updates

 delay(10);
}

// You can use this function if you’d like to set the pulse length in seconds
// e.g. setServoPulse(0, 0.001) is a ~1 millisecond pulse width. It’s not precise!

116 117

void setServoPulse(uint8_t n, double pulse) {
 double pulselength;

 pulselength = 1000000; // 1,000,000 us per second
 pulselength /= SERVO_FREQ; // Analog servos run at ~60 Hz updates
 Serial.print(pulselength); Serial.println(“ us per period”);
 pulselength /= 4096; // 12 bits of resolution
 Serial.print(pulselength); Serial.println(“ us per bit”);
 pulse *= 1000000; // convert input seconds to us
 pulse /= pulselength;
 Serial.println(pulse);
 pwm.setPWM(n, 0, pulse);
}

//Function with input sides to lock
template <size_t N> void lock(int (&TheArray)[N]) {
 int prev = 1;
 int len = sizeof(TheArray) / sizeof(TheArray[0]);
 Serial.print(len);

 //move down
 pwm.setPWM(3, 0, 400);
 delay(2270);

 pwm.setPWM(3, 0, 512);
 delay(2000);

 for (int i = 1; i <= len; i++) {

 if (i == 1) {
 digitalWrite(M1A, LOW);
 digitalWrite(M1B, HIGH);
 delay(1500);

 digitalWrite(M1A, LOW);
 digitalWrite(M1B, LOW);
 prev = 1;

 }

 if (i == 2) {
 Serial.println(“2 active”);
 pwm.setPWM(2, 0, 210);
 delay(500);

 pwm.setPWM(2, 0, 512);
 delay(2000);

 digitalWrite(M2A, HIGH);

 digitalWrite(M2B, LOW);
 delay(1500);

 digitalWrite(M2A, LOW);
 digitalWrite(M2B, LOW);
 prev = 2;
 }

 if (i == 3) {

 if (prev % 2 == 1) {
 digitalWrite(M1A, HIGH);
 digitalWrite(M1B, LOW);
 delay(1500);

 digitalWrite(M1A, LOW);
 digitalWrite(M1B, LOW);
 }

 if (prev % 2 == 0) {
 pwm.setPWM(2, 0, 350);
 Serial.write(“rotating to -90”);
 delay(500);

 pwm.setPWM(2, 0, 512);
 delay(2000);

 digitalWrite(M1A, HIGH);
 digitalWrite(M1B, LOW);
 delay(1500);

 digitalWrite(M1A, LOW);
 digitalWrite(M1B, LOW);
 }

 prev = 3;
 }

 if (i == 4) {

 if (prev % 2 == 1) {
 //rotate 90 deg
 pwm.setPWM(2, 0, 215);
 delay(500);

 pwm.setPWM(2, 0, 512);
 delay(2000);

 ;

118 119

 digitalWrite(M1A, HIGH);
 digitalWrite(M1B, LOW);
 delay(1500);

 digitalWrite(M1A, LOW);
 digitalWrite(M1B, LOW);

 }

 if (prev % 2 == 0) {

 digitalWrite(M1A, HIGH);
 digitalWrite(M1B, LOW);
 delay(1500);

 digitalWrite(M1A, LOW);
 digitalWrite(M1B, LOW);

 }

 prev = 4;
 }

 }

 //rotate back to initial orientation
 pwm.setPWM(2, 0, 350);
 Serial.write(“rotating to -90”);
 delay(500);

 pwm.setPWM(2, 0, 512);
 delay(2000);

 //move up
 pwm.setPWM(3, 0, 170);
 delay(2450);

 pwm.setPWM(3, 0, 512);
 delay(2000);

};

void loop() {
 // Drive each servo one at a time using setPWM()
 //Serial.println(servonum);
 pwm.setPWM(3, 0, 512);
 int array1[2] = {1,2}; //Sides to lock

 if (Serial.available()) {
 mov = Serial.readStringUntil(‘\n’);
 //Serial.print(“You typed: “);
 Serial.println(“action: “ + mov);

 //Grabs a voxel if grippers are provided
 if (mov == “grab”) {
 for (uint16_t pulselen = SERVOMIN1; pulselen < SERVOMAX1; pulselen++) {
 pwm.setPWM(4, 0, pulselen);
 }

 for (uint16_t pulselen = 370; pulselen > 150; pulselen--) {

 pwm.setPWM(5, 0, pulselen);
 }

 delay(2000);

 }

 //Releases a voxel if grippers are provided
 if (mov == “release”) {

 for (uint16_t pulselen = SERVOMAX1; pulselen > SERVOMIN1; pulselen--) {
 pwm.setPWM(4, 0, pulselen);
 }
 for (uint16_t pulselen = 100; pulselen < 370; pulselen++) {

 pwm.setPWM(5, 0, pulselen);
 }

 delay(2000);

 }

 //Moves the electromagnet holder down
 if (mov == “down”) {
 pwm.setPWM(3, 0, 400);
 delay(2270);

 pwm.setPWM(3, 0, 512);
 delay(2000);

 }

 //Moves the electromagnet holder up
 if (mov == “up”) {
 pwm.setPWM(3, 0, 170);
 delay(2450);

120 121

 pwm.setPWM(3, 0, 512);
 delay(2000);

 };

 //Rotate the electromagnet 90 degree clockwise
 if (mov == “rotate90”) {
 //for (uint16_t pulselen = SERVOMIN1; pulselen < SERVOMAX1; pulselen++) {
 //pwm.setPWM(3, 0, 325);

 //}
 pwm.setPWM(2, 0, 215);
 delay(500);

 pwm.setPWM(2, 0, 512);
 delay(2000);

 }

 //Rotate the electromagnet 90 degree counter clockwise
 if (mov == “rotate-90”) {
 // for (uint16_t pulselen = SERVOMAX1; pulselen > SERVOMIN1; pulselen--) {
 // pwm.setPWM(3, 0, pulselen);
 // }

 // pwm.setPWM(2, 0, 130);
 pwm.setPWM(2, 0, 350);
 Serial.write(“rotating to -90”);
 delay(500);

 pwm.setPWM(2, 0, 512);
 delay(2000);

 }

 //Set electromagnet 1 in repel mode
 if (mov == “repel1”) {
 digitalWrite(M1A, LOW);
 digitalWrite(M1B, HIGH);
 delay(1500);

 digitalWrite(M1A, LOW);
 digitalWrite(M1B, LOW);

 }

 //Set electromagnet 1 in attract mode
 if (mov == “attract1”) {
 digitalWrite(M1A, HIGH);
 digitalWrite(M1B, LOW);
 delay(1500);

 digitalWrite(M1A, LOW);
 digitalWrite(M1B, LOW);

 }

 //Set electromagnet 2 in attract mode
 if (mov == “attract2”) {
 digitalWrite(M2A, LOW);
 digitalWrite(M2B, HIGH);
 delay(1500);

 digitalWrite(M2A, LOW);
 digitalWrite(M2B, LOW);

 }

 //Set electromagnet 2 in repel mode
 if (mov == “repel2”) {
 digitalWrite(M2A, HIGH);
 digitalWrite(M2B, LOW);
 delay(1500);

 digitalWrite(M2A, LOW);
 digitalWrite(M2B, LOW);

 }

 //Activate lock function and will perform all the right movements to lock the desired sides.
 if (mov == “loc”) {
 lock(array1);

 }

 }
}

