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"Mathematics. Rightly viewed.
Possesses not only truth, but supreme beauty
– a beauty cold and austere.
Without the gorgeous trappings of paintings or music."

- Bertrand Russell -
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Executive Summary

These are exciting times to work in the field of acoustic imaging: researchers have a more granular under-
standing of sound than ever before due to the ability to acquire, store, and analyze unprecedented amounts
of acoustical data. Therefore the field stands at the advent of new advanced acoustic imaging techniques.
This research compared two new acoustic imaging techniques - global optimization and source power inte-
gration - and contributes actionable findings for both practitioners and researchers.

First, this research concludes that global optimization is superior compared to other acoustic imaging
techniques in locating and quantifying acoustic sources below the Rayleigh limit. This is both true from a
spacing as frequency perspective. Second, this research concludes that source power integration identifies
source auto-powers for distributed sources more accurately and computationally more efficient than other
acoustic imaging techniques.

Acoustic imaging locates and quantifies noise. If noise can be measured it can be reduced.

Field practitioners want to reduce noise. Quantification and localization of noise sources is a prerequisite
for noise reduction. To this end, practitioners are well advised to prefer global optimization when trying to
identify low frequency sound and/or closely spaced sound sources. Further, practitioners with identified
source locations should opt to use source power integration for both its accuracy and efficiency.

Researchers want to further optimize acoustic imaging techniques. Given the promising results of these
new techniques thus far, this report recommends researchers in the field of acoustic imaging to test these
two techniques under additional circumstances. For example, it would be interesting to investigate the per-
formance of source power integration with experimental data of distributed sources. Further, thus far global
optimization was only tested on source data with source conditions which also could be located and quan-
tified by acoustic imaging techniques that need a predefined scan grid. Testing global optimization under
circumstances that align with its unique strength - namely the presence of multiple sound sources across
three dimensions - would add value. If global optimization passes this test, this would negate the need to
predefine, and consecutively scan, multiple two-dimensional scan grids. This would bring the field of acous-
tic imaging one step closer to the ultimate goal of real-time acoustic imaging across three dimensions.
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�
Introduction

Sound sources are everywhere around us. Although sound in the form of music can be very pleasant to hear,
one would rather suppress the sound of aircraft fly-overs [7, 30, 44] or wind turbines [31]. Unwanted sound
sources are referred to as noise and the first step in diminishing noise sources is knowing the source locations
and strengths. In case of multiple sources, source mapping is an essential element.

1.1. Acoustic imaging techniques
This project is about acoustic imaging techniques, i.e. making source locations and strengths visible. Several
acoustic imaging techniques exist, each technique with its own strengths and shortcomings. Conventional
Beamforming (CB) [34] is seen as the most robust acoustic imaging technique. With CB multiple micro-
phones record the sound of the source to be mapped and via scanning a region of interest, the source map
is computed. However robust, the shortcomings of CB are limited resolution, the presence of side lobes (i.e.
high beamforming output levels compared to the main lobe level, without the presence of a source) and the
incorrect Sound Pressure Level (SPL) computation for distributed sources. To overcome the limitations of
CB, more state-of-the-art acoustic imaging techniques have been developed, for example Functional Beam-
forming (FB) [16, 17] and the CLEAN-methods [2, 24]. Some of the new acoustic imaging techniques improve
on the shortcomings of CB by first computing the CB source map and then altering the obtained map, while
other techniques skip the formation of the CB source map in the first place and compute the source map in
another manner.

1.2. Research objective and goals
The objective of this research is to assess the performance of two new acoustic imaging techniques, Global
Optimization (GO) and Source Power Integration (SPI), by developing algorithms for both techniques, apply-
ing them to simulations and experimental data and comparing their performance against two more estab-
lished acoustic imaging techniques, i.e. CB and the Deconvolution Approach for the Mapping of Acoustic
Sources (DAMAS) [40]. These four acoustic imaging techniques will be applied to simulations and six experi-
mental data sets, which defines the scope of this project.

1.3. Research structure
The basic principles of sound and acoustic imaging techniques will be explained in Chapter 2, elaborating
on the mathematical representation of CB, DAMAS, GO and SPI. Chapter 3 gives an overview of the data sets
on which the algorithms have been applied. As the data sets are subdivided into simulations considering a
number of separate sources, simulations considering distributed sources and experimental data, so are the
results. The results of the simulations considering a number of separate sources are discussed in Chapter 4,
of the simulations considering distributed sources in Chapter 5 and of the experimental data in Chapter 7.
Since for GO the model of the received signals can fully reflect the actual situation, it is expected that GO is
able to accurately identify closely spaced sound sources. The study of the performance of GO on this issue is
described in Chapter 6. Lastly, the conclusions and recommendations are discussed in Chapter 8.
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�
Background of acoustic imaging

Sound is a pressure disturbance propagating through a medium (i.e. air or water) as a wave [3]. Although
sound can be experienced as pleasant, think of classical music concerts or singing birds, unwanted sound
(wind turbine, aircraft flyover) is gathered under the term noise.

In the early days of acoustic imaging, use was made of acoustical mirrors [28, 29]. Elliptical shaped mirrors
direct the acoustical rays from a focal point of interest to a microphone. Moving the mirror in small steps
enabled the scanning of several focal points, yielding an image of the object of interest. With the increase
of computing power and storage space, computational acoustic imaging methods originated [4–12] applying
electronic steering. The four acoustic imaging techniques that are part of the scope of this research will be
discussed in detail; Conventional Beamforming in Section 2.6, the DAMAS in Section 2.8, Global Optimization
in Section 2.9 and Source Power Integration in Section 2.10. A brief overview of six other well-known acoustic
imaging techniques is found in Appendix A.

2.1. Wavelength, frequency, phase
Every acoustic signal can be modeled as a sum of sinusoidal waves. To gain understanding of acoustic signals
these sinusoidal waves are considered, constituting a signal at a certain frequency. The wavelength is the
length of one wave, measured in [m], i.e. the distance travelled in one cycle before the wave repeats itself.
The frequency of the wave expresses the number of wave cycles per second. Wavelength, frequency and
speed of sound are linked via Equation 2.1.

∏= c
f

(2.1)

In Equation 2.1, ∏ is the wavelength in [m], c is the speed of sound in [m/s] and f is the frequency in [Hz].
Mathematically one wavelength corresponds to 360 degrees or 2º radians. The time delay between two sinu-
soidal waves can thus be expressed as a phase delay between 0 and 360 degrees. The two sinusoidal waves
in Figure 2.1 have a 90-degree phase difference, or 0.5º radians. Both waves have a frequency of 2 Hz, i.e. 2
wave cycles per second.

2.2. Discrete Fourier transform
Acoustic imaging is generally performed in the frequency domain. To go from the time - to the frequency
domain, the discrete Fourier transform is applied [34]. According to what is mentioned above, the time signal
is considered to be build up from a series of signals at a specific frequency. Let p̃n(t ) be the pressure measured
by the n-th microphone in the time domain, which is discretised to p̃n,m , where m denotes the sample index.
The complex pressure amplitudes in the frequency domain at the n-th microphone pn( fØ) are calculated for
a block of M samples with the discrete Fourier transform as:

pn( fØ) = 2
M

MX

m=1
p̃n,me°2ºi fØm¢t (2.2)

3
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Figure 2.1: Wavelength, frequency and phase visualization.

In Equation 2.2 pn( f ) is the complex pressure amplitude at the n-th microphone in [Pa], n is the microphone
index, Ø is the frequency index, M is the number of samples acquired (block size), p̃n,m is the sampled acous-
tic pressure measured by the n-th microphone in [Pa], i =

p
°1 and ¢t is the sample interval in [s].

Generally M is a large number of samples. The larger the number of samples in the time domain, the
smaller the spacing in the frequency domain:

fØ =
Ø

M¢t
Ø= 1...

M
2

°1 (2.3)

2.3. Coherence
Two sound waves are coherent if having equal waveforms (i.e. a sine waveform) and if there exist a constant
phase difference between the waves [3]. Loss of coherence [34] happens when sound waves are distorted by
turbulent media, i.e. air streams. Sound waves are deformed by the medium they travel through, whereby
their phase is different from that in an undisturbed medium.

2.4. Sound Pressure Level and Overall Sound Pressure Level
The Sound Pressure Level (SPL) is a logarithmic measure of the ratio between the effective pressure of a signal
and the reference pressure:

SPL = 20 10log
µ

peff

p0

∂
(2.4)

In Equation 2.4, SPL is the Sound Pressure Level in [dB], peff is the effective pressure of the signal in [Pa],
defined as the maximum pressure pmax divided by

p
2, and p0 is the reference pressure of 2 10°5 [Pa]. In

general, SPL is measured at a certain distance from the sound source. When this report refers to ’a source of
60 dB’, it is meant that the source has a SPL of 60 dB at a distance of 1 m from the source.

When multiple sources are present, the SPL can be calculated for each individual source. If one wants
to know the Sound Power Level that is caused by all incoherent sound sources together, one calculates the
Overall Sound Pressure Level (OSPL):

OSPL = 10 10log
HX

h=1
10

SPL(h)
10 (2.5)

In Equation 2.5, OSPL is the Overall Sound Pressure Level in [dB], SPL(h) is the SPL of the h-th source in [dB],
the source index is denoted by h and H is the number of sources.

2.5. Signal to Noise Ratio
The Signal to Noise Ratio (SNR) can be defined as:
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SN R = 20 10log
µ

peff

peff,noise

∂
(2.6)

In Equation 2.6, SNR is the Signal to Noise Ratio in [dB] and peff,noise is the effective pressure of the noise in
[Pa].

2.6. Conventional beamforming
Conventional beamforming (CB)[34] is the simplest and most widely applied beamforming algorithm. A
microphone array records sound pressures from one or multiple sources in the time domain, yielding a N -
dimensional pressure vector p̃(t ). The main idea behind CB is to determine for each potential source location
the travel time to the various microphones. By delaying the pressures on the microphones to account for the
travel times and subsequently summing the delayed signals, the signal originating from the location under
consideration is obtained. Therefore CB is often denoted as "delay and sum" beamforming. By using CB in
the frequency domain, the delay can be applied by means of a phase multiplication. This results in lower
computational times compared to applying CB in the time domain and it yields the possibility to perform
frequency analysis. Via Fourier transformation, see Section 2.2, the time domain pressures are converted to
complex pressure amplitudes in the frequency domain:

p( f ) =

0

BBBB@

p1( f )
p2( f )

...
pN ( f )

1

CCCCA
(2.7)

C is the N xN -dimensional Cross Spectral Matrix (CSM) and can be calculated by multiplying the pressure
vector p( f ) by its complex conjugate. Since experimental data is subject to measurement errors, it is impos-
sible to record p̃(t ) perfectly. Therefore p̃(t ) is cut into blocks, with M samples per time block. Suppose p̃(t )
is cut into L blocks, then 2L °1 CSMs are computed for 50% overlapping blocks. The time-averaged CSM is
obtained by taking the mean of the CSMs, as expressed in Equation 2.8:

C = 1
2(2L°1)

2L°1X

l=1
pl p§

l (2.8)

In Equation 2.8, C is the CSM, l is the block index and * denotes the complex conjugate transposition.

The microphones are configured on a two-dimensional plane, where the position of microphone n is de-
fined by the vector xn . The center of the microphone array is designated as reference point and xn points
from this reference point towards microphone n. The sound sources to be studied are located on a two-
dimensional plane, called the scan plane. The scan plane is generally selected to be parallel to the micro-
phone array plane and the distance between the scan plane and microphone array plane is Z in [m]. The
scan plane is discretised in two dimensions, yielding a total number of K grid points. Similar to the micro-
phone locations, the grid points are defined by a vector ª j , pointing from the reference point, i.e. the center
of the microphone array, towards grid point j .

To investigate at which grid points the sound sources are located, one electronically steers from each
microphone towards each grid point. The source locations are assumed to be stationary. The steering vector
element g j ,n is defined between grid point j and microphone n and is expressed in Equation 2.9.

g j ,n = 1
||xn °ª j ||

e°2ºi f ¢t j ,n (2.9)

In Equation 2.9, ||xn °ª j || is the distance between grid point j and microphone n in [m] and ¢t j ,n is the time
needed for the sound pressure to travel from grid point j towards microphone n in [s]. Note, the time delay
can be calculated by ¢t j ,n = ||xn °ª j ||/c where c is the speed of sound in [m/s]. The first part of Equation 2.9
is called the ’decay’ part, which describes the sound attenuation, i.e. the degree of energy loss of sound prop-
agation in the medium [3]. The second part of Equation 2.9 is called the ’delay’ part, which determines the
phase relation between the sound sources and microphones. When the level variations between the micro-
phones are small and one wants to only measure the phase variations over the microphone array, the ’decay’
part is omitted and the steering vector element g̃ j ,n is used:
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Figure 2.2: CB plot of two point sources of f = 3000 Hz. The point source at (x,y,z) = (-0.5,0,3) has a SPL of 60 dB and the point source at
(x,y,z) = (0.5,0,3) has a SPL of 65 dB. The white stars represent the point source locations. The used microphone array can be seen in the

left plot of Figure 3.1.

g̃ j ,n = e°2ºi f ¢t j ,n (2.10)

g j ,n from Equation 2.9 yields a complex number for each combination of grid point j and microphone n.
The N -dimensional steering vector g j ( f ) contains the g j ,n values for microphones n = 1...N . With the knowl-
edge of the measured pressure amplitudes and phases at the microphone locations via the complex pressure
vector p( f ), the complex pressure amplitudes a j of sound sources located in ª j are estimated through mini-
mization of:

J j = ||p °a j g j ||2 (2.11)

In Equation 2.11, J j is the cost function [-] and a j is the complex pressure amplitude in grid point j in [Pa].
a j g j represents the model and the vector p is constructed from measurements. The objective of CB is to find
the complex pressure amplitudes a j that minimize the difference between the model a j g j and the measure-
ments p . The solution for a j is [34]:

a j =
g§

j p

||g j ||2
(2.12)

One generally considers source auto-powers:

B j =
1
2
|a j |

2 = 1
2

a j a§
j =

1
2

g§
j p

||g j ||2

"
g§

j p

||g j ||2

#§

= 1
2

g§
j pp§g j

||g j ||4
=

g§
j C g j

||g j ||4
(2.13)

Equation 2.13 yields the source auto-power in [Pa2] for each grid point j . The source auto-powers can be
converted from [Pa2] to a SPL in [dB] with Equation 2.4. Doing so for all grid points j = 1...K of the scan plane,
one obtains a two-dimensional source map. The source map displays for each grid point the estimate for
the source auto-power. The resulting source map is called a beamform plot. Since each beamform plot is
constructed for a specific frequency, CB can be repeated to obtain beamform plots for multiple frequencies.
To get an idea of what a CB plot looks like, see Figure 2.2.

The advantages of CB are simplicity and robustness, i.e. the method requires little computational power in
comparison to other acoustic imaging methods and can operate under a variety of conditions. The limitations
of this method are low dynamic range (the difference in decibels between the main lobe and the highest side
lobe [14]) and array spatial resolution (see Section 2.7), as well as the high number of side lobes, especially at
high frequencies [3].
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2.7. Rayleigh limit
There is a distance limit at which sound sources can be located from each other and still be recognized as
separate sound sources. This limit is called the Rayleigh limit [3] and it is expressed as:

R = 1.22
c Z
D f

(2.14)

In Equation 2.14, R is the Rayleigh limit in [m], Z is the distance between the microphone array plane and the
source plane in [m] and D is the array aperture in [m].

To visually explain what the Rayleigh limit involves, two point sources are placed at three different dis-
tances from each other: above, on and below the Rayleigh limit. With Z = 3 m, D = 2 m and f = 3000 Hz,
the Rayleigh limit is 0.63 m, see Equation 2.14. As one can see in Figure 2.3, the two point sources are clearly
visible in the left plot and can no longer be distinguished from each other in the right plot. In the center plot
the two point sources are placed at a distance equal to the Rayleigh limit from each other, and one can no
longer say with certainty whether there are one source or two sources present.

Figure 2.3: Rayleigh limit visualization. Two point sources are placed at three different distances from each other: above, on and below
the Rayleigh limit. Left: Above the Rayleigh limit, as ¢x = 100 cm. Center: On the Rayleigh limit, as ¢x = 63 cm. Right: Below the Rayleigh

limit, as ¢x = 30 cm.

2.8. DAMAS
DAMAS [40] is developed by NASA in 2004. DAMAS assumes, in contrast to CB, that several sound sources
are present. CB uses a model for one source and scans each grid point to quantify the source auto-power.
DAMAS uses a model that accounts for the presence of multiple sources and assumes a source to be present
at each grid point. The source auto-powers are determined by solving an inverse problem.

From CB one calculates the source auto-powers B j for grid points j = 1...K via Equation 2.13. DAMAS
assumes for each grid point k = 1...K a source to be present with source auto-power Ak in [Pa2]. Since the CSM
is calculated from averaged complex pressure vectors, see Equation 2.8, the modeled CSM can be expressed
as:

C̃ =
KX

k=1
Ak gk g§

k (2.15)

The reason why the CSM expression for DAMAS is different than for CB in Equation 2.8 is explained in Ap-
pendix B. In Equation 2.15, Ak is the source auto-power in [Pa2] at grid point k and gk is the N -dimensional
steering vector [-] towards grid point k. Combining Equations 2.13 and 2.15 yields:

B j =
g§

j C̃ g j

||g j ||4
=

g§
j
PK

k=1 Ak gk g§
k g j

||g j ||4
=

KX

k=1

g§
j gk g§

k g j

||g j ||4
Ak =

KX

k=1
™ j ,k Ak (2.16)

Equation 2.16 describes the CB output (B j ) as the result of the presence of K sources. ™ [-] is the Point Spread
Function (PSF) [15]. The objective of DAMAS is to find the source auto-powers Ak for grid points k = 1...K .
Since source auto-powers in [Pa2] must be positive values, the constraint is included that Ak ∏ 0.

Equation 2.16 is solved for Ak using the Gauss Seidel procedure. The first step is to rewrite Equation 2.16:



8 2. Background of acoustic imaging

-1 -0.5 0 0.5 1

x [m]

-1

-0.5

0

0.5

1

y 
[m

]
50

55

60

65

S
P

L
 [
d
B

]

Figure 2.4: DAMAS plot of two point sources of f = 3000 Hz. The point source at (x,y,z) = (-0.5,0,3) has a SPL of 60 dB and the point
source at (x,y,z) = (0.5,0,3) has a SPL of 65 dB. The used microphone array can be seen in the left plot of Figure 3.1.

B j =
j°1X

k=1
™ j ,k A(Æ)

k +™ j , j A(Æ)
j +

KX

k= j+1
™ j ,k A(Æ°1)

k (2.17)

In Equation 2.17, Æ indicates the iteration number and ™ j , j = 1. The second step is to rearrange Equation
2.17 to obtain an expression for A(Æ)

j :

A(Æ)
j = B j °

j°1X

k=1
™ j ,k A(Æ)

k °
KX

k= j+1
™ j ,k A(Æ°1)

k (2.18)

The third and last step of the Gauss-Seidel procedure is to iteratively solve Equation 2.18. A suitable start-
ing point for the iteration is A(Æ)

j = 0 and one calculates A(Æ)
j for grid points back and forth, thus j = 1...K and j

= K ...1. As stated earlier, since source auto-powers in [Pa2] must be positive values, the constraint is included
that A(Æ)

j ∏ 0.

After applying the Gauss-Seidel procedure, one obtains the source auto-powers A j in [Pa2] for grid points
j = 1...K . With Equation 2.4, SPLs in [dB] are calculated and a DAMAS source map is obtained. To get an idea
of what a DAMAS plot looks like, see Figure 2.4.

DAMAS is seen as a robust method, since it finds back the actual source auto-powers hidden behind the
so-called dirty source map of CB. However, for a total number of K grid points, the PSF has dimensions K xK .
This makes DAMAS computationally much more demanding than CB. To speed up each individual iteration
and to add regularization by applying a low pass filter, DAMAS2 [41] was developed. In addition, DAMAS3 [41]
also has fast iterations and reduces the required number of iterations by applying a Wiener filter. For NASA,
the next step was to develop 3D DAMAS [43] in 2005, in order to find source locations and auto-powers in
three dimensional space. However, the underlying premises of the DAMAS and 3D DAMAS still are that the
noise regions under study are distributions of statistically independent sources. Therefore, DAMAS-C [42]
was developed, to permit the identification and quantification of coherent sound sources.

2.9. Global optimization
CB and DAMAS are based upon a scan grid of source locations in two-dimensional space. The global opti-
mization method leaves the concept of calculating the source auto-powers for predefined grid points behind
and focuses on finding the actual source locations and auto-powers in a grid-free manner through global op-
timization. Side lobes obstruct the optimization process, because side lobes are local optima in the energy
landscape where the global optimum must be found. Global optimization methods are capable of escaping
local optima and famous examples are simulated annealing [26, 27], genetic algorithms (GA) [22, 23, 25] and
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ant colony algorithms [18, 19]. The Differential Evolution (DE) method [20, 21] is an algorithm from the ge-
netic algorithms category. The main principle of DE is the mimicking of natural evolution of species accord-
ing to Charles Darwin [21]. From now on, Differential Evolution as global optimization method is referred to
as Global Optimization, GO.

For simulations, the number of sound sources the algorithm should search for is determined with the rank
of the CSM, since the number of linearly independent rows or columns of the CSM indicates the number of
sound sources present. For experimental data, the number of significantly distinct eigenvalues indicates the
number of sound sources the algorithm should search for. Per sound source four parameters have to be
found, i.e. the (x,y,z)-coordinates and the source auto-power in [Pa2].

The choice for the energy function is the determining factor whether GO converges to the correct solution
or not. GO generates so-called candidate solutions, which are vectors containing trial values for the unknown
parameters. The energy function calculates the ’fitness’ per candidate solution, i.e. the smaller the difference
between the candidate solution and the correct parameter values, the "fitter" is the candidate solution. In
this research, two energy functions are considered:

1. Bartlett processor

2. CSM energy function

The Bartlett processor only considers the phase variation of the pressures over the microphones of the
array, see Equation 2.8, by taking the inner product between p en g̃ . The energy value of the Bartlett processor
is maximum when the phase variation in p completely corresponds to the phase variation in g̃ . The CSM
energy function is based on the same equation used in deriving the CB expression, Equation 2.11. The CSM
energy function thus includes both the phase variation and the amplitude of the source.

The Bartlett processor searches for the (x,y,z)-coordinates of the sound sources, thus there are three un-
known parameters per sound source. The trial values for the unknown parameters are merged into a vector
m. In case of two sound sources, m = [x1,y1,z1,x2,y2,z2]. The Bartlett processor exploits the steering vector
without the ’decay’ part, see Equation 2.10, and is given by:

EBartlett(m, f ) =°
HX

h=1

£
g̃§

h (m, f )Cmeas( f )g̃h(m, f )
§

(2.19)

In Equation 2.19, m is the candidate solution vector and Cmeas is the measured CSM. The closer the source
location of the candidate solution lies to the true location of the sound source, the greater the match between
the steering vector and the measured CSM and the larger the scalar between square brackets in Equation 2.19.
The scalars are summed for the number of sound sources H . The minus before the summation sign ensures
that candidate solutions closer to the global optimum get assigned a lower energy value EBartlett, since GO as
implementation is such that it is aiming to find the minimum energy.

Exploiting the Bartlett processor as energy function of GO, one obtains the sound source locations, but
not the source auto-powers. The auto-power in [Pa2] of source h of solution m is calculated by using the
expression of the CB algorithm. Once one knows the source location, the source auto-power at that location
can be calculated with Equation 2.13, where ’grid point j ’ is set as the obtained source location.

The second energy function considered is the CSM energy function. The CSM energy function searches
for four parameters per sound source, i.e. the (x,y,z)-coordinates and the source auto-power in [Pa2]. For two
sound sources, this incorporates m̃ = [x1,y1,z1,ap1,x2,y2,z2,ap2]. The main principle of the CSM energy
function is to minimize the difference between the modeled and measured CSM.

The steering vector towards source h of candidate solution m̃ is calculated with Equation 2.9. Note, the
calculation of the steering vector uses the first three elements per sound source h of the candidate solution
m̃, i.e. the (x,y,z)-coordinates. The modeled CSM is calculated with the steering vector and the fourth ele-
ment per sound source h of the candidate solution. Subsequently the CSM energy function minimizes the
difference between the modeled and measured CSM:
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ECSM(m̃, f ) =
XXØØCmodel(m̃, f )°Cmeas( f )

ØØ2 (2.20)

As one can see, the CSM energy function applies least squares minimization between the modeled and mea-
sured pressures, and thus takes the same approach as the CB algorithm. In order to obtain a scalar as en-
ergy value for the CSM energy function, the double summation in Equation 2.20 sums the N xN elements.
The closer the source of the candidate solution lies to the true sound source (i.e. location and source auto-
power), the more the modeled CSM resembles the measured CSM. Therefore, candidate solutions closer to
true source locations have a smaller difference between the modeled and measured CSM and thus ECSM(m̃, f )
yields a smaller energy value.

Now that one has a way to distinguish between good and less good candidate solutions via the energy
functions, the GO algorithm starts. The initial population consists of q randomly chosen parameter value
combinations, containing trial values for the unknown parameters. The generation index is ∞ and the popu-
lation member index is r , thus m∞,r = m3,6 indicates the sixth candidate solution from the third generation.
At each generation, a partner population is calculated from the current population:

s∞,r1 = m∞,r2 +F (m∞,r3 °m∞,r4 ) (2.21)

In Equation 2.21, s∞,r1 is the r1-th partner population member of generation ∞, F is a positive scalar multi-
plication factor and r1,r2,r3,r4 are integers between 1 and q , mutually exclusive. Mutually exclusive has the
effect that s∞,r is calculated from different members m∞,r . The higher the value of F is chosen, the greater the
difference between the current population and the partner population. Research has shown that F must be
set between 0 and 1 for optimal functioning of the algorithm [28].

The next step is to calculate the descendant population from the current population and the partner
population. Crossover is applied between m∞,r and s∞,r with probability pC . The parameters values u of d∞,r
are chosen according to:

d∞,r,u =
Ωm∞,r,u if b ∏ pC

s∞,r,u if b < pC
(2.22)

In Equation 2.22, u is the parameter index, b is a realization from the uniform distribution, ranging from
0 to 1, and pC is the crossover probability, a scalar between 0 and 1. Equation 2.22 generates q potential
descendant population members. Members of the next generation are based upon comparing the members
of the descendant population with these of the current population as:

m∞+1,r =
Ω d∞,r if E(d∞,r ) < E(m∞,r )

m∞,r if E(d∞,r ) ∏ E(m∞,r )
(2.23)

Executing Equation 2.23 for all members r in generation∞, one obtains the next generation∞ + 1. This pro-
cess is repeated NG times, where NG denotes the number of generations. A member converges to the global
optimum, i.e. the correct parameter values, for decreasing energy values EBartlett or ECSM. The following five
parameters can be set for the DE algorithm [28]:

• q population size
• F multiplication factor
• pC crossover probability
• NG number of generations
• Nruns number of runs

To get an idea of GO results, see Figure 2.5. Two point sources of f = 3000 Hz are placed at (x,y,z) = (-
0.5,0,3) with a SPL of 60 dB and at (x,y,z) = (0.5,0,3) with a SPL of 65 dB. GO is applied with q = 128, F =
0.4, pC = 0.75, NG = 500 and Nruns = 10. As one can see, the CSM energy function value decreases over the
generations. This is because the measured and modeled CSM increasingly resemble each other. Because the
SPLs of the point sources are 60 and 65 dB and the maximum sound pressure pmax is adopted in generating
the CSM rather than the effective pressure peff, it is expected that GO finds source auto-powers of 8 10°4 Pa2

and 2.5 10°3 Pa2, see Equation 2.4. And indeed, GO with the CSM energy function finds the point sources at
(x,y,z) = (-0.5,0,3) and (0.5,0,3) with source auto-powers of 8 10°4 Pa2 and 2.5 10°3 Pa2.
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Figure 2.5: GO with the CSM energy function applied to two point sources of f = 3000 Hz. The point source at (x,y,z) = (-0.5,0,3) has a
SPL of 60 dB and the point source at (x,y,z) = (0.5,0,3) has a SPL of 65 dB. The arrows indicate the results, i.e. within 500 generations the

(x,y,z)-coordinates and source-autopowers of the two point sources are accurately determined by GO.

2.10. Source Power Integration
Source Power Integration (SPI) [34] is the newest acoustic imaging technique. The general idea behind SPI is
to integrate source auto-powers over an area of interest, to obtain the OSPL for that area, see Equation 2.5.

The hypothesis is that the added value of SPI in comparison to other acoustic imaging techniques lies in
the quantification of distributed sources. Correctly quantifying distributed sources ensures that the study of
noise reduction is deployed where it is most needed. SPI includes three types:

1. SPI point
2. SPI grid
3. Inverse SPI

The assumption of SPI is that the sound of a certain area is caused by a reference source or by a grid of
reference sources. The objective of SPI is to quantify the source auto-power(s) of the reference source(s), such
that the match between the sound caused by the reference source(s) most closely resembles the sound that
is caused by the real source(s). Depending on the type of noise being studied, one chooses which type of SPI
to apply. It is assumed that SPI yields the best results when the reference sources mimic the real sources as
accurately as possible.

SPI point is applied when the noise under study is one point source or multiple point sources. SPI grid
is applied to distributed sources, thus to multiple closely spaced point sources. For distributed sources with
varying source auto-powers, inverse SPI is the best choice. Inverse SPI is able to accurately quantify the source
auto-powers of multiple parts of the distributed source. SPI point and SPI grid are generally applied with a
threshold to avoid integration over side lobes, and to avoid integration over negative results, in the case of
diagonal removal. The three SPI types will be discussed in detail in this section.

2.10.1. SPI point
The fastest and simplest way to apply SPI is by summing the CB results on an integration grid and scaling the
summation to one reference point source:



12 2. Background of acoustic imaging

Figure 2.6: SPI point applied to one point source at (x,y,z) = (0.5,0,3) with a SPL of 65 dB. The dotted lines represent the integration grid.
The SPI point result is 65.25 dB.

SPI =
PK

j=1 w§
j C w j

PK
j=1 w§

j g0g§
0 w j

(2.24)

In Equation 2.24, w j is the weight vector [-] of grid point j , defined by w j = g j /||g j ||
2, K is the number

of points of the integration grid, C is the CSM and g0 is the steering vector [-] towards the location of the
reference point source. Generally, the reference point source is placed in the middle of the integration grid,
yet this is not a requirement. In principle one is free in the definition of the integration grid, but SPI loses
accuracy in the case of large integration grids. Neighboring grids may affect each other.

To get an idea of SPI, SPI point is applied to a point source at (x,y,z) = (0.5,0,3). The integration grid is
plotted in Figure 2.6. The point source has a SPL of 65 dB and the SPI point result is 65.25 dB.

2.10.2. SPI grid
SPI point scales the summed CB results to one reference point source. Instead of scaling by one reference
point source, SPI grid scales by a group of incoherent sound sources:

SPI =
PK

j=1 w§
j C w j

PK
j=1 w§

j

°PK
k=1 gk g§

k

¢
w j

Ãref (2.25)

Equation 2.25 is basically equal to Equation 2.24, instead that the summed beamforming results are scaled
with respect to a group of incoherent point sources located at grid points k = 1...K . Because the denominator
increases with the number of reference point sources K , the dimensionless correction factor Ãref is adopted
in Equation 2.25. The correction factor Ãref is expressed as:

Ãref =
Rref

||xref °ªk ||
KX

k=1

ØØØg̃xref,ªk

ØØØ
2

(2.26)

From now on, it is important not to be confused about reference point sources and the reference point. A
specific reference point is defined, generally 1 m from the center of the integration grid. In Equation 2.26, Rref
is the distance between the center of the integration grid and the reference point (thus when the reference
point is defined 1 m from the center of the integration grid, Rref = 1 m), ||xref °ªk || is the distance between
the reference point and the reference point source at grid point k and g̃xref,ªk represent the steering vector
element from the reference point to the reference point source at grid point k. Because of Ãref, the numerator
of Equation 2.25 increases with the same rate as the denominator. In other words, the choice for the number
of reference point sources does not affect the SPI result.

Equation 2.25 assumes an equal number of grid points and reference point sources. However, it is also
possible to adopt Kg grid points and Kr reference point sources:
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SPI =
PKg

j=1 w§
j C w j

PKg

j=1 w§
j

hPKr
k=1 gk g§

k

i
w j

Ãref (2.27)

2.10.3. Inverse SPI
When the sound source is built from multiple point sources with varying source auto-powers, the stronger
sources overshadow the weaker sources. Inverse SPI is able to accurately determine source auto-powers of
different parts of the sound source. Inverse SPI extends the principle of Equation 2.25 to multiple subgrids.
Where Equation 2.25 assumes that the sound comes from one subgrid, the same principle is extended to
multiple subgrids µ = 1...M̃ to obtain:

J =
ØØØØ

ØØØØC °
M̃X

µ=1
Aµ

KµX

k=1
gµ,k g§

µ,k

ØØØØ

ØØØØ
2

(2.28)

In Equation 2.28, Aµ is the auto-power in [Pa2] per reference point source placed at grid point k of integration
grid µ. µ is the integration grid index and M̃ is the number of integration grids. Kµ does not have to be
equal for all µ, i.e. the subgrids can have different sizes. Solving Equation 2.28 for Aµ yields a set of M̃ linear
equations:

M̃X

µ=1

KµX

k=1

≥
g§

j gµ,k g§
µ,k g j

¥
Aµ = g§

j C g j (2.29)

Equation 2.29 can be solved with the constraint Aµ ∏ 0 similar to DAMAS, with the Gauss-Seidel procedure,
see Section 2.8. After solving for Aµ, one calculates the correction factors Ãref with Equation 2.26 and obtains
integrated results through:

SPI = Aµ Ãref (2.30)

In Equation 2.30, Aµ is the auto-power in [Pa2] per subgrid µ and Ãref is the dimensionless correction factor
expressed in Equation 2.26.





�
Data sets considered

The data sets used in this research are subdivided into simulations considering a number of separate sources,
simulations considering distributed sources and experimental data. Simulations are imitations of reality. The
purpose of using simulations is to see whether the algorithm works, because the expected result is equal to
the input. To investigate the effect of having imperfect measurements, noise can be added to simulations.
This is done to test the algorithm under suboptimal, but known, conditions.

For the point source - and distributed source simulations, a circular array of 48 microphones is employed,
see the left plot in Figure 3.1. The experimental data sets are recorded with an array of 64 microphones with
a random distribution, see the right plot in Figure 3.1. When studying the experimental sound pressure data,
it became clear that six microphones in the array were defect. The defect microphones are plotted in red.
The experimental data sets are thus recorded with 58 microphones. The data sets used in this research are
discussed in detail in Sections 3.1 - 3.3.
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Figure 3.1: Two examples of microphone arrays. Left: Circular array of analytical benchmark case [28], used for the point source - and
distributed source simulations. Right: Array with a random distribution of 64 microphones [28], used to record the experimental data

sets. The 58 functioning microphones are plotted in blue and the six defect microphones are plotted in red.

3.1. Point source simulations
It is interesting to inspect how the algorithms work for a number of separated sources. The simplest case
possible is an individual point source and the degree of difficulty increases with an increased number of
point sources. The first point source simulation is one point source placed at (x,y,z) = (0,0,3) with a SPL of 100
dB and f = 3000 Hz, see the left plot of Figure 3.2. The second point source simulation consists of two point

15
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sources of the same frequency and different SPLs. The point source of 80 dB is placed at (x,y,z) = (-0.5,0,3) and
the point source of 60 dB is placed at (x,y,z) = (0.5,0,3), both f = 5000 Hz, see the right plot of Figure 3.2. All
algorithms (CB, DAMAS, GO, SPI) are applied to the point source simulations.
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Figure 3.2: Visualization of the point source simulations. Left: One point source at (x,y,z) = (0,0,3) with SPL 100 dB and f = 3000 Hz.
Right: Two point sources at (x,y,z) = (-0.5,0,3) and (0.5,0,3), SPLs 80 dB and 60 dB, both f = 5000 Hz.

3.2. Distributed source simulations
Distributed sources encompass leading/trailing edge noise, i.e. no longer individual points are vibrating. One
can think of flow noise or a string in the wind. Distributed sources are simulated by placing large amounts of
point sources close together. How close together is close enough? To determine the source spacing to obtain
a distributed source, the ratio of two variables must be taken into account, namely the spacing between the
point sources and the wavelength of the sources:

∏¿ d (3.1)

In Equation 3.1, d is the spacing between the sources in [m] and∏ is the wavelength of the sources in [m]. Two
distributed sources are used in this research and both are line sources. Distributed source 1 is a line source
built from 100 point sources of 60 dB and f = 2000 Hz, with a spacing of 1 cm between the sources, see the
left plot of Figure 3.3. With the speed of sound of 343 m/s, one knows from Equation 2.1 that ∏ = 0.17 m, thus
the requirement posed by Equation 3.1 is fulfilled. To test the performance of inverse SPI, distributed source
2 is a line source built from 99 point sources of f = 2000 Hz, divided in three parts of 33 sources, see the right
plot of Figure 3.3. In the first part the point sources have a SPL of 60 dB, in the second part 55 dB and in the
third part 65 dB. Noise with five different SNRs is added, see Section 2.5, resulting in a total of 12 data sets of
distributed sources. CB, DAMAS and SPI are applied to these data sets.
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Figure 3.3: Visualization of the distributed source simulations. Left: Line source 1, 100 point sources of 60 dB, f = 2000 Hz, spacing 1 cm
and array distance of 3 m. Right: Line source 2, 99 point sources, f = 2000 Hz, spacing 1 cm and array distance of 3 m. Line source 2 is

subdivided in three parts, with SPls 60 dB, 55 dB and 65 dB.
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3.3. Experimental data sets
There are six experimental data sets available for this project, all recorded in the anechoic chamber of the
Faculty of Applied Sciences in Delft by Anwar Malgoezar [28]. The acoustic sources for the first experimental
data set are two small speakers placed 80 cm apart, broadcasting white noise. The distance from the array
plane is 1.87 m and the point in the middle of the speakers is aligned with the array center. The array plane
made an angle of 4° with the vertical, which was corrected for in the microphone coordinates. The data are
recorded with a sampling frequency of 50 kHz and the sampling time is 60 s. The time-averaged CSMs are
obtained by dividing the data set into 6000 blocks of 0.01 s, with 50% overlap between the blocks. In this
manner the frequency steps between the consecutive CSMs is ¢ f = 100 Hz. The second experimental data
set is recorded in the exact same settings as the first, but now only the left speaker broadcasts white noise,
i.e. the speaker located at (x,y,z) = (-0.40,0,1.87). And for the third set, only the right speaker broadcasts white
noise, i.e. the speaker located at (x,y,z) = (0.40,0,1.87), see Figure 3.4.
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Figure 3.4: Visualization of the experimental data sets. Left: Two speakers placed ¢ 80 cm apart, both broadcasting white noise. Center:
One speaker at (x,y,z) = (-0.40,0,1.87) broadcasting white noise. Right: One speaker at (x,y,z) = (0.40,0,1.87) broadcasting white noise.

The fourth, fifth and sixth experimental data sets are the same in all aspects as the first three data sets,
except that the two speakers are now placed 25 cm apart, see Figure 3.5. All algorithms (CB, DAMAS, GO, SPI)
are applied to the experimental data sets.
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Figure 3.5: Visualization of the experimental data sets. Left: Two speakers placed ¢ 25 cm apart, both broadcasting white noise. Center:
One speaker at (x,y,z) = (-0.125,0,1.87) broadcasting white noise. Right: One speaker at (x,y,z) = (0.125,0,1.87) broadcasting white noise.





�
Results: point source simulations

As the data sets are subdivided into simulations considering a number of separate sources, simulations con-
sidering distributed sources and experimental data, so are the results. The results of the point source sim-
ulations are presented in this chapter and the results of the distributed source simulations are presented in
Chapter 5. The experimental data results are discussed in Chapter 7. The order of the presentation of the
results will be: CB - DAMAS - GO - SPI.

The first point source simulation is one point source of 100 dB and f = 3000 Hz, see Section 3.1 and the
left plot in Figure 3.2. Applying CB and setting the dynamic range to 24 dB yields the left plot in Figure 4.1.
The point source is clearly visible, surrounded by side lobes. Applying DAMAS and setting the dynamic range
to 100 dB yields the right plot in Figure 4.1. The point source is clearly visible no side lobes are present.

When GO is applied, one has the choice to use the Bartlett processor or the CSM energy function. With the
Bartlett processor, one finds the source location, thus the (x,y,z)-coordinates of the source. The source auto-
power is calculated back by using the CB algorithm, see Section 2.9. With the CSM energy function, one finds
the source location and auto-power. Both the Bartlett processor and CSM energy function are employed. The
algorithm settings for GO are pC = 0.75, F = 0.40, Nruns = 10, q = 128 and NG = 100. The lower and upper
bounds are set from -1 to +1 for the x-coordinate and y-coordinate, from 2 to 4 for the z-coordinate and from
0 to 10 for the source auto-power. The latter only applies to the CSM energy function.

Applying GO with the Bartlett processor results in the energy landscape - and convergence plots of Figure
4.2. In order to keep the plots clear, it has been decided to plot only the values belonging to the fittest member
per generation, i.e. the member with the lowest energy function value. Energy landscape plots show the
energy values of the fittest members per generation on the y-axis and the estimated parameters on the x-
axis. Convergence plots show the course of the estimates for the parameters over the generations. Thus the
(x,y,z)-coordinates of the fittest members are plotted on the y-axes against generation on the x-axes. Figure
4.2 shows that the point source is found at (x,y,z) = (0,0,3), easily within 100 generations. With the estimated
source location, the source auto-power is calculated by applying CB. From the microphone array one steers
towards the source location. Applying CB through Equation 2.13 yields a SPL of 100 dB for the point source
at (x,y,z) = (0,0,3).

Applying GO with the CSM energy function yields the estimates for four parameters: the (x,y,z)-coordinates
and the source auto-power. Where the results of GO with the Bartlett processor consisted of energy landscape
- and convergence plots for the (x,y,z)-coordinates, the results of GO with the CSM energy function also in-
clude plots for the source auto-power. The results are shown in Figure 4.4. Because the SPL of the point source
is 100 dB and the maximum sound pressure pmax is adopted in generating the CSM rather than the effective
pressure peff, it is expected that GO finds a source auto-power of 8 Pa2, see Equation 2.4. And indeed, GO with
the CSM energy function finds the point source at (x,y,z) = (0,0,3) with a source auto-power of 8 Pa2.

For SPI, the expected result is the OSPL of the sound source(s). Since the algorithm is applied to one
point source, the expectation is to get a result equal to the SPL of this source, 100 dB. Applying SPI point with
three different integration grids gives indeed a result of 100 dB. See Figure 4.3 for a visualization of the three
employed integration grids.

19
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Figure 4.1: One point source of 100 dB and f = 3000 Hz. Left: CB. The point source is clearly visible, surrounded by side lobes. Right:
DAMAS. The point source is clearly visible and the plot exhibits no side lobes.

-1 -0.5 0 0.5 1

x [m]

-6

-5

-4

-3

-2

E
B

a
rt

le
tt
 [

-]

-1 -0.5 0 0.5 1

y [m]

-6

-5

-4

-3

-2

E
B

a
rt

le
tt
 [

-]

2 2.5 3 3.5 4

z [m]

-6

-5

-4

-3

-2

E
B

a
rt

le
tt
 [

-]

0 20 40 60 80 100

generation

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x 
[m

]

0 20 40 60 80 100

generation

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

y 
[m

]

0 20 40 60 80 100

generation

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

z 
[m

]

Figure 4.2: GO with the Bartlett processor applied to one point source of 100 dB and f = 3000 Hz, placed at (x,y,z) = (0,0,3). The source is
easily found within 100 generations.
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Figure 4.3: Three integration grids for the first point source simulation: one point source placed at (x,y,z) = (0,0,3) with a SPL of 100 dB
and f = 3000 Hz.
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Figure 4.4: Energy landscape and convergence plots of GO with the CSM energy function, applied to one point source of 100 dB and f =
3000 Hz, placed at (x,y,z) = (0,0,3).
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The second simulation consists of one point source placed at (x,y,z) = (-0.5,0,3) with a SPL of 80 dB and one
point source placed at (x,y,z) = (0.5,0,3) with a SPL of 60 dB, both f = 5000 Hz, see the right plot of Figure 3.2.
Applying CB and setting the dynamic range to 24 dB yields the left plot in Figure 4.5. The 80 dB point source
is clearly visible, yet the 60 dB point source is hidden between side lobes. Applying DAMAS and setting the
dynamic range to 80 dB yields the right plot in Figure 4.5. Both sources are clearly visible, the plot exhibits no
side lobes. DAMAS yields the exact SPLs for both sources: 80 dB and 60 dB.

For GO, both the Bartlett processor and CSM energy function are applied. The algorithm settings for GO
are pC = 0.75, F = 0.40, Nruns = 10, q = 128 and NG = 500. Applying GO with the Bartlett processor results in
the energy landscape - and convergence plots of Figure 4.6. One source is found at (x,y,z) = (-0.5,0,3), yet the
other source at (x,y,z) = (0.5,0,3) is not found. Since only one source location is found, the auto-power of that
source can be calculated by applying CB. From the microphone array one steers to the source location and
CB yields a SPL of 80.04 dB for the point source at (x,y,z) = (-0.5,0,3).

Applying GO with the CSM energy function results in the energy landscape - and convergence plots of
Figure 4.8. Because the SPLs of the point sources are 80 dB and 60 dB, it is expected that GO finds a source
auto-power of 8 10°2 Pa2 and a source auto-power of 8 10°4 Pa2, see Equation 2.4. And indeed, GO with the
CSM energy function finds the point sources at (x,y,z) = (-0.5,0,3) and (0.5,0,3) with source auto-powers of
8 10°2 Pa2 and 8 10°4 Pa2.

For SPI, the expected result is the OSPL value of the point sources. For two point sources of 60 dB and 80
dB, respectively, the expected outcome is thus 80.04 dB. Applying SPI point gives a result of 79.93 dB, i.e. 0.11
dB lower than expected. For a visualization of the integration grid, see the left plot of Figure 4.7. Concerning
the integration grid, the size does not have a big effect on the result. Though, one must make sure both
sources are included in the integration grid.

Instead of applying SPI point with an integration grid that includes both sources, it can also be applied to
one point source at the time. SPI point is applied with integration grids of 10x10 cm around the sources, with
a resolution of 1 cm. For a visualization of the integration grids, see the center and right plots in Figure 4.7.
This means that two square grid are defined, of which the 80 dB source and 60 dB source, respectively, are the
center grid points. The reference points are placed in the middle of the integration grids, i.e. on the 80 dB and
60 dB sources. SPI point yields 80.02 dB for the 80 dB source and 76.97 dB for the 60 dB source. The result for
the 80 dB source corresponds well to the actual SPL, yet the result for the 60 dB source is much higher than
expected. An explanation could be that the stronger source of 80 dB ’overshadows’ the weaker source of 60
dB. The unwanted consequence is that a part of the sound power that is integrated in the grid of the 60 dB
source, is caused by the 80 dB source.

Inverse SPI is applied with the same integration grids as SPI point, i.e. grids of 10x10 cm around the
sources, with a resolution of 1 cm. Inverse SPI yields 80.57 dB for the 80 dB source and 60.46 dB for the 60
dB source. Although the 80 dB source is now a bit overestimated, the result for the 60 dB source improved a
lot compared to the SPI point result. The explanation is that inverse SPI minimizes the difference between
the CSM and the two grids simultaneously, whereas SPI point only looks at one grid at the time. The conse-
quence is that the stronger source of 80 dB overshadows the weaker source of 60 dB when SPI point is applied,
whereas inverse SPI is able to accurately determine the SPLs of both sound sources.
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Figure 4.5: Two point sources, placed at (x,y,z) = (-0.5,0,3) with a SPL of 80 dB and placed at (x,y,z) = (0.5,0,3) with a SPL of 60 dB, both f
= 5000 Hz. Left: CB. The 80 dB point source is clearly visible, yet the 60 dB point source is hidden between side lobes. The white stars
indicate the source locations. Right: DAMAS. Both sources are clearly visible, the plot exhibits no side lobes. DAMAS yields the exact

SPLs for both sources: 80 dB and 60 dB.
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Figure 4.6: GO with the Bartlett processor applied to two point sources, placed at (x,y,z) = (-0.5,0,3) with a SPL of 80 dB and placed at
(x,y,z) = (0.5,0,3) with a SPL of 60 dB, both f = 5000 Hz. One source is found at (-0.5,0,3), yet the other source is not found.
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Figure 4.8: Energy landscape and convergence plots of GO with the CSM energy function, applied to two point sources placed at (x,y,z)
= (-0.5,0,3) with a SPL of 80 dB, and placed at (x,y,z) = (0.5,0,3) with a SPL of 60 dB, both f = 5000 Hz. GO with the CSM energy is able to

locate and quantify both sound sources correctly.



�
Results: distributed source simulations

This chapter presents the results of the distributed source simulations. Line source 1 is built from 100 point
sources of 60 dB and f = 2000 Hz, with a spacing of 1 cm between the sources, see the left plot of Figure 3.3.
Noise with five different SNRs is added, resulting in six data sets for line source 1: no noise, SNR = 5 dB, SNR = -
2.5 dB, SNR = -10 dB, SNR = -15 dB and SNR = -20 dB. By making a time-averaged CSM, see Equation 2.8, noise
has more effect on the auto-powers than on the cross-powers. Therefore, applying Diagonal Removal (DR),
i.e. removing the diagonal of the CSM, may yield improved results. To test this, the results of the distributed
source simulations are made for both with and without DR. The order of the presentation of the results will
be: CB - DAMAS - SPI.

Applying CB without DR results in the six plots of Figure 5.2. For the data set without noise and the data
set with SNR = 5 dB, the line source is clearly visible. From the data set with SNR = -2.5 dB and beyond,
the effect of the noise is becoming more and more dominant. The result is that line source 1 becomes less
visible with decreasing SNR. For point sources, CB is well able to determine the source locations as well as the
auto-powers. For distributed sources, however, CB is well able to determine the source location, yet not the
auto-power.

Applying CB with DR results in the five plots of Figure 5.3. CB with DR is not applied to the ’no noise’ data
set, since removing the diagonal from the CSM only has a positive effect when noise is present. In general,
Figure 5.3 shows that DR resulted in a much smaller effect of the noise, compared to the CB plots without DR,
see Figure 5.2. The CB plots with SNR = 5 dB - SNR = -10 dB are very similar to the CB plot without noise. For
the plot with SNR = -15 dB the noise is more visible and for the plot with SNR = -20 dB one sees that the noise
has really disturbed the signal.

Applying DAMAS without DR results in the six plots of Figure 5.4. Line source 1 is clearly visible in the
DAMAS plots without noise and SNR = 5 dB. With decreasing SNR, the effect of the noise becomes more
dominant in the plots. To check whether DAMAS gives the correct OSPL for line source 1, the source auto-
powers in [Pa2] at grid points x = -0.5 to x = +0.5 and y = 0 are summed and converted to a SPL in [dB] via
Equation 2.4. The expected OSPL for line source 1 is 80 dB, see Equation 2.5. For the six data sets of line
source 1, the summed DAMAS results are given in Table 5.1. For the data set without noise, the summed
DAMAS result is exactly equal to the expected value of 80 dB. For the data sets with SNR = 5 dB and SNR =
-2.5 dB, the summed DAMAS results are close to the expected value. In general, the summed DAMAS results
increase with decreasing SNR, because in addition to the signal, auto-powers due to the noise are summed.

Table 5.1: The summed DAMAS results for line source 1 without DR. These results are calculated by summing the source auto-powers of
grid points x = -0.5 to x = +0.5 and y = 0 for the six data sets of Figure 5.4.

DAMAS without DR
data set no noise SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL 80.00 dB 80.03 dB 80.35 dB 81.60 dB 84.10 dB 87.98 dB

Applying DAMAS with DR results in the five plots of Figure 5.5. Similar to CB, for all plots the effect of
the noise is less dominant compared to the DAMAS plots without DR. Again, to check whether DAMAS gives
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the correct OSPL for line source 1, the source auto-powers in [Pa2] at grid points x = -0.5 to x = +0.5 and y = 0
are summed and converted to a SPL in [dB] via Equation 2.4. The summed DAMAS results with DR are given
in Table 5.2. As one can see, the summed DAMAS results for line source 1 with DR are close to the expected
result of 80 dB. For all data sets, the calculated OSPL is approximately 0.6 dB below the expected value.

Table 5.2: The summed DAMAS results for line source 1 with DR. These results are calculated by summing the source auto-powers of
grid points x = -0.5 to x = +0.5 and y = 0 for the six data sets of Figure 5.5.

DAMAS with DR
data set SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL 79.42 dB 79.43 dB 79.41 dB 79.48 dB 79.33 dB

SPI point without DR is applied to line source 1 with three different integration grids. Grid 5.1 is defined
on top of the point sources of line source 1, thus -0.5 to +0.5 with steps of 1 cm for the x-coordinates and
y = 0. Grid 5.2 is larger in the y-direction compared to grid 1, thus -0.5 to +0.5 with steps of 1 cm for the x-
coordinates and -0.25 to +0.25 with steps of 1 cm for the y-coordinates. Grid 5.3 is larger in both the x- and
y-direction compared to grid 1, thus -0.75 to +0.75 with steps of 1 cm for the x-coordinates and -0.25 to +0.25
with steps of 1 cm for the y-coordinates. For a visualization of the integration grids, see Figure 5.1. When
applying SPI point, the expected result is the OSPL of line source 1, i.e. 80 dB. The results of SPI point without
DR for grids 5.1, 5.2 and 5.3 are given in Table 5.3.

Table 5.3: SPI point without DR applied to line source 1 for three different integration grids. For a visualization of the integration grids,
see Figure 5.1.

SPI point without DR
data set no noise SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL, grid 5.1 79.66 dB 79.76 dB 80.18 dB 81.98 dB 84.78 dB 88.75 dB
OSPL, grid 5.2 79.69 dB 79.87 dB 80.61 dB 83.32 dB 86.82 dB 91.19 dB
OSPL, grid 5.3 80.04 dB 80.27 dB 81.24 dB 84.50 dB 88.29 dB 92.82 dB

Applying SPI point with DR yields the results of Table 5.4. Integration grids 5.1, 5.2 and 5.3 are the same
as for SPI point without DR, see Figure 5.1. Again, the expected result when applying SPI point is the OSPL of
line source 1, i.e. 80 dB.

Table 5.4: SPI point with DR applied to line source 1 for three different integration grids. For a visualization of the integration grids, see
Figure 5.1.

SPI point with DR
data set SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL, grid 5.1 79.30 dB 79.30 dB 79.29 dB 79.35 dB 79.32 dB
OSPL, grid 5.2 79.01 dB 79.01 dB 78.99 dB 79.10 dB 78.98 dB
OSPL, grid 5.3 79.30 dB 79.31 dB 79.29 dB 79.39 dB 79.37 dB
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Figure 5.1: Three integration grids for line source 1: 100 point sources of 60 dB and f = 2000 Hz, with a spacing of 1 cm between the
sources. Left: grid 5.1. Center: grid 5.2. Right: grid 5.3.
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Figure 5.2: CB without DR applied to line source 1, i.e. 100 point sources of 60 dB and f = 2000 Hz, with a spacing of 1 cm between the
sources. Noise with five different SNRs is added, resulting in six CB plots. For the data set without noise and the data set with SNR = 5

dB, the line source is clearly visible. From the data set with SNR = -2.5 dB and beyond, the noise is becoming more and more dominant.
The result is that line source 1 becomes less visible with decreasing SNR.

Figure 5.3: CB with DR applied to line source 1, i.e. 100 point sources of 60 dB and f = 2000 Hz, with a spacing of 1 cm between the
sources. Noise with five different SNRs is added and diagonal removal is applied. The plots with SNR = 5 dB - SNR = -10 dB are very

similar to the plot without noise. For the plot with SNR = -15 dB the noise is more visible and for the plot with SNR = -20 dB one sees
that the noise has really disturbed the signal.
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Figure 5.4: DAMAS without DR applied to line source 1, i.e. 100 point sources of 60 dB and f = 2000 Hz, with a spacing of 1 cm between
the sources. Noise with five different SNRs is added, resulting in six DAMAS plots. Line source 1 is clearly visible in the DAMAS plots

without noise and SNR = 5 dB. With decreasing SNR, the effect of the noise becomes more dominant in the plots.
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Figure 5.5: DAMAS with DR applied to line source 1, i.e. 100 point sources of 60 dB and f = 2000 Hz, with a spacing of 1 cm between the
sources. Noise with five different SNRs is added and diagonal removal is applied. For all plots, the effect of the noise is less visible

compared to the DAMAS plots without diagonal removal.
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Line source 2 is a line source built from 99 point sources of f = 2000 Hz, divided in three parts of 33
sources, see the right plot of Figure 3.3. In the first part the point sources have a SPL of 60 dB, in the second
part 55 dB and in the third part 65 dB. Noise with five different SNRs is added, resulting in six data sets for line
source 2: no noise, SNR = 5 dB, SNR = -2.5 dB, SNR = -10 dB, SNR = -15 dB and SNR = -20 dB.

Applying CB without DR results in the six plots of Figure 5.7. Because one already saw the results of CB
without DR for line source 1, the results for line source 2 are in line with expectations. For the data set without
noise and the data set with SNR = 5 dB, line source 2 is clearly visible. From the data set with SNR = -2.5 dB
and beyond, the noise is becoming more and more dominant. The result is that line source 2 becomes less
visible with decreasing SNR.

Applying CB with DR results in the five plots of Figure 5.8. Removing the diagonal from the CSM has
removed a large effect of the noise. The CB plots with SNR = 5 dB - SNR = -10 dB are very similar to the CB
plot without noise. For the plot with SNR = -15 dB the noise is more visible and for the plot with SNR = -20 dB
one sees that the noise has really disturbed the signal.

Applying DAMAS without DR results in the six plots of Figure 5.9. Line source 2 is clearly visible in the
DAMAS plots without noise, with SNR = 5 dB and with SNR = -2.5 dB. With decreasing SNR, the effect of the
noise becomes more dominant in the plots. To check whether DAMAS gives the correct OSPL for line source
2, the source auto-powers in [Pa2] at grid points x = -0.5 to x = +0.5 and y = 0 zero are summed and converted
to a SPL in [dB] via Equation 2.4. The expected OSPL for line source 2 is 81.70 dB, see Equation 2.5. For the six
data sets of line source 2, the summed DAMAS results are given in Table 5.5. For the data set without noise,
with SNR = 5 dB and SNR = -2.5 dB, the summed DAMAS results correspond well with the expected outcome
of 81.70 dB. In general, the summed DAMAS results degrade with decreasing SNR.

Table 5.5: The summed DAMAS results for line source 2 without DR. These results are calculated by summing the source auto-powers of
grid points x = -0.5 to x = +0.5 and y = 0 for the six data sets of Figure 5.9.

DAMAS without DR
data set no noise SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL 81.70 dB 81.75 dB 82.06 dB 83.44 dB 85.91 dB 89.57 dB

Applying DAMAS with DR results in the five plots of Figure 5.10. For all plots, the effect of the noise is less
visible compared to the DAMAS plots without DR. Again, to check whether DAMAS gives the correct OSPL for
line source 2, the summed DAMAS results with DR are given in Table 5.6. As one can see, the summed DAMAS
results for line source 2 with DR are close to the expected result of 81.70 dB. For all data sets, the calculated
OSPL is approximately 0.6 dB below the expected value.

Table 5.6: The summed DAMAS results for line source 2 with DR. These results are calculated by summing the source auto-powers of
grid points x = -0.5 to x = +0.5 and y = 0 for the six data sets of Figure 5.10.

DAMAS with DR
data set SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL 81.12 dB 81.12 dB 81.11 dB 81.14 dB 81.03 dB

SPI point without DR is applied to line source 2 with the same integration grids used for line source 1, see
Figure 5.1. When applying SPI point, the expected result is the OSPL of line source 2, i.e. 81.70 dB. The results
of SPI point for grids 5.1, 5.2 and 5.3 are given in Table 5.10.

Table 5.7: SPI point without DR applied to line source 2 for three different integration grids. For a visualization of the integration grids,
see Figure 5.1.

SPI point without DR
data set no noise SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL, grid 5.1 81.24 dB 81.34 dB 81.77 dB 83.60 dB 86.44 dB 90.42 dB
OSPL, grid 5.2 81.28 dB 81.46 dB 82.22 dB 84.96 dB 88.49 dB 92.88 dB
OSPL, grid 5.3 81.71 dB 81.99 dB 82.95 dB 86.19 dB 89.99 dB 94.50 dB
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Applying SPI point with DR yields the results of Table 5.8. Again, the expected result when applying SPI
point is the OSPL of line source 2, i.e. 81.70 dB.

Table 5.8: SPI point with DR applied to line source 2 for three different integration grids. For a visualization of the integration grids, see
Figure 5.1.

SPI point with DR
data set SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL, grid 5.1 80.87 dB 80.87 dB 80.85 dB 80.88 dB 80.99 dB
OSPL, grid 5.2 80.62 dB 80.62 dB 80.59 dB 80.62 dB 81.96 dB
OSPL, grid 5.3 81.06 dB 81.07 dB 81.04 dB 81.07 dB 81.46 dB

Inverse SPI without DR is applied to line source 2. Integration grid 5.4 has points x = -0.49 to x = -0.17
and y = -0.25 to y = +0.25, integration grid 5.5 has points x = -0.16 to x = +0.16 and y = -0.25 to y = +0.25, and
integration grid 5.6 has points x = +0.17 to x = +0.49 and y = -0.25 to y = +0.25. For integration grids 5.4, 5.5
and 5.6, inverse SPI is applied simultaneously. For a visualization of integration grids 5.4, 5.5 and 5.6, see the
left plot of Figure 5.6. For the six data sets of line source 2, the results are found in Table 5.9.

Table 5.9: Inverse SPI without DR applied with integration grids 5.4, 5.5 and 5.6 of line source 2. For a visualization of the integration
grids, see the left plot of Figure 5.6.

inverse SPI without DR
data set expec. no noise SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL, grid 5.4 75.19 dB 75.15 dB 75.29 dB 75.95 dB 78.40 dB 81.77 dB 86.09 dB
OSPL, grid 5.5 70.19 dB 70.15 dB 70.52 dB 71.94 dB 75.93 dB 80.04 dB 84.72 dB
OSPL, grid 5.6 80.19 dB 80.15 dB 80.20 dB 80.41 dB 81.47 dB 83.47 dB 86.77 dB

SPI point without DR is applied to line source 2 with integration grids 5.4, 5.5 and 5.6 in order to compare
the performances of inverse SPI and SPI point. The SPI point results are found in Table 5.10. Comparing
Tables 5.9 and 5.10 shows that inverse SPI is perfectly able to determine the source auto-powers of the three
parts of line source 2, where SPI point overestimates the source auto-powers of the middle part, i.e. the 55 dB
part. When one has a distributed source built from point sources with varying source auto-powers, inverse
SPI is the preferred algorithm.

Table 5.10: SPI point without DR applied with integration grids 5.4, 5.5 and 5.6 of line source 2.

SPI point without DR
data set expec. no noise SNR 5 dB SNR -2.5 dB SNR -10 dB SNR -15 dB SNR -20 dB

OSPL, grid 5.4 75.19 dB 74.78 dB 74.94 dB 75.64 dB 78.20 dB 81.63 dB 85.99 dB
OSPL, grid 5.5 70.19 dB 74.79 dB 74.95 dB 75.64 dB 78.21 dB 81.59 dB 85.92 dB
OSPL, grid 5.6 80.19 dB 79.55 dB 79.61 dB 79.85 dB 81.02 dB 83.16 dB 86.58 dB

To test the effect of employing more integration grids for inverse SPI, nine instead of three integration
grids are defined. The nine integration grids are labelled grid 5.7 - 5.15, see the center plot of Figure 5.6. To
keep a clear overview of the results, only the ’no noise’ data set results are presented in Table 5.11.
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Table 5.11: Inverse SPI without DR applied with nine integration grids to line source 2. For a visualization of the integration grids, see
the center plot of Figure 5.6.

inverse SPI nine integration grids
data set expec. no noise

OSPL, grid 5.7 70.41 dB 70.41 dB
OSPL, grid 5.8 70.41 dB 70.41 dB
OSPL, grid 5.9 70.41 dB 70.41 dB

OSPL, grid 5.10 65.41 dB 65.41 dB
OSPL, grid 5.11 65.41 dB 65.41 dB
OSPL, grid 5.12 65.41 dB 65.41 dB
OSPL, grid 5.13 75.41 dB 75.41 dB
OSPL, grid 5.14 75.41 dB 75.41 dB
OSPL, grid 5.15 75.41 dB 75.41 dB

For simulations, the source locations are known to the researcher. Placing the integration grids for SPI
is therefore easy, i.e. the integration grids for line source 2 enclose the three parts of line source 2 perfectly.
For experimental data, however, the source locations are not known in advance. This makes it difficult to
define the integration grids. Therefore, it has been tested what the effect is on the inverse SPI results if the
integration grids are not perfectly placed. Inverse SPI without diagonal removal is applied to line source 2,
with integration grids 5.16, 5.17 and 5.18. These three integration grids have been shifted 10 cm to the left with
respect to grids 5.4, 5.5 and 5.6, see the right plot of Figure 5.6. Grid 5.16 encloses 23 sources of 60 dB, thus
the expected SPI result is 73.62 dB, see Equation 2.5. Grid 5.17 encloses 23 sources of 55 dB and 10 sources
of 60 dB, thus the expected SPI result is 72.37 dB and grid 5.18 encloses 23 sources of 65 dB and 10 sources of
55 dB, thus the expected SPI result is 78.80 dB. The inverse SPI results are shown in Table 5.12. For grids 5.16
and 5.18, the results correspond to the expected outcomes with a margin of 0.8 dB. However, for grid 5.17 the
result deviates more than 4 dB from the expected result.

This test shows that there is a big advantage in accurately placing the integration grids. When it is unclear
where the sources are located, it is better to adopt smaller integration grids, as in the case of nine integration
grids in Table 5.11. Inaccuracies result from using less and larger integration grids.

Table 5.12: Inverse SPI without DR applied with three shifted integration grids to line source 2. For a visualization of the integration
grids, see the right plot of Figure 5.6.

inverse SPI shifted integration grids
data set expec. no noise

OSPL, grid 5.16 73.62 dB 74.41 dB
OSPL, grid 5.17 72.37 dB 68.15 dB
OSPL, grid 5.18 78.80 dB 79.68 dB
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Figure 5.6: Integration grids for line source 2: 99 point sources of f = 2000 Hz, divided in three parts of 33 sources. In the first part the
point sources have a SPL of 60 dB, in the second part 55 dB and in the third part 65 dB. Left: from left to right, grid 5.4, grid 5.5 and grid

5.6. Center: from left to right, grid 5.7, grid 5.8, grid 5.9, grid 5.10, grid 5.11, grid 5.12, grid 5.13, grid 5.14, grid 5.15. Right: from left to
right, grid 5.16, grid 5.17, grid 5.18.
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Figure 5.7: CB without DR applied to line source 2, i.e. 99 point sources of f = 2000 Hz, divided in three parts with different SPLs. Noise
with five different SNRs is added, resulting in six CB plots. For the data set without noise and the data set with SNR = 5 dB, the line

source is clearly visible. From the data set with SNR = -2.5 dB and beyond, the noise is becoming more and more dominant. The result
is that line source 1 becomes less visible with decreasing SNR.

Figure 5.8: CB with DR applied to line source 2, i.e. 99 point sources of f = 2000 Hz, divided in three parts with different SPLs. Noise
with five different SNRs is added, resulting in six CB plots. The plots with SNR = 5 dB - SNR = -10 dB are very similar to the plot without

noise. For the plot with SNR = -15 dB the noise is more visible and for the plot with SNR = -20 dB one sees that the noise has really
disturbed the signal.
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Figure 5.9: DAMAS without DR applied to line source 2, i.e. 99 point sources of f = 2000 Hz, divided in three parts with different SPLs.
Noise with five different SNRs is added, resulting in six DAMAS plots. Line source 2 is clearly visible in the DAMAS plots without noise,

SNR = 5 dB and SNR = -2.5 dB. With decreasing SNR, the effect of the noise becomes more dominant in the plots.
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6
Investigating the performance of GO in

identifying closely spaced sound sources

In this chapter it is investigated whether GO with the CSM energy function is able to accurately identify two
point sources placed at a distance below the Rayleigh limit from each other. This research encompasses plac-
ing two point sources closer and closer together, to inspect up to what distance GO can identify the sources
as two separate sources. First, the research is carried out for simulations, to see what GO with the CSM en-
ergy function is theoretically capable of. Then the research is carried out for experimental data, to have the
performance of GO tested in practice.

For simulations, two cases are studied. In case 1 the two point sources have the same SPL, 80 dB, and
the same frequency, f = 1000 Hz. The distance between the source plane and microphone array is 3 m. The
aperture of the microphone array is 2 m. With the speed of sound of 343 m/s, the Rayleigh limit is 0.63 m, see
Equation 2.14. The two point sources are first placed 90 cm apart and are placed closer together in steps of
5 cm. Three data sets are used in case 1, the first without noise, the second with SNR = -2.5 dB and the third
with SNR = -20 dB. To inspect whether removing the diagonal from the CSM affects the correct identification
of the two sources, the data sets with noise are employed two times: with and without diagonal removal. Case
2 is identical to case 1 in all aspects, except that the two sources now have SPLs 80 dB and 70 dB, respectively.

To compare the performance of GO to CB, CB is applied to case 1 (two point sources of 80 dB). The results
are shown in Figure 6.2. When the distance between the two sources is 90 cm, CB clearly shows two separate
sources. In steps of 5 cm, the sources become more difficult to distinguish. At and below the Rayleigh limit,
one can no longer say with certainty whether one or two sources are present.

Now it is time to look at the performance of GO. GO with the CSM energy function is applied to cases 1
and 2. The algorithm searches for eight parameters: the (x,y,z)-coordinates and source auto-power of the left
source and the (x,y,z)-coordinates and source auto-power of the right source. In order to keep the results of
this research clear, only the x-coordinates are shown in the results. The algorithm settings are: pC = 0.75, F =
0.40, Nruns = 3, q = 128 and NG = 600. Out of the three runs, the solution set with the lowest energy function
value is plotted. Figure 6.3 shows eight plots. The four plots on the left belong to case 1, i.e. two sources of
80 dB and the four plots on the right belong to case 2, i.e. two sources of 80 dB and 70 dB, respectively. In
the top six plots, the x-coordinates of the two sources are plotted against the distance between the sources.
In the bottom two plots, the CSM energy function values of the solution sets are plotted against the distance
between the sources.

With simulations, five things are learned from the investigation of the performance of GO in identifying
closely spaced sound sources:

1. For the cases without noise the two sources are found with ease, spaced up to 5 cm apart. In this
aspect, GO offers a considerable improvement compared to CB. At 5 cm distance there is no ’perfect
match’ between the measured and modeled CSM, but a good enough match to find the sources with a
margin of error of 2 cm. With an increasing number of generations NG , this margin of error decreases.
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2. With increasing noise, GO is less able to accurately identify the sound sources.

3. Removing the diagonal of the CSM ensures a better match between the measured and modeled CSM
compared to not removing the diagonal of the CSM.

4. Adding noise has a greater effect on the weaker source (70 dB) compared to the effect on the stronger
source (80 dB). In other words, the stronger source is relatively better identified than the weaker source,
when noise is present. This is logical to understand because the OSPL of the signal is used in the ex-
pressions of the SNR.

5. In the absence of noise, the CSM energy function values decrease as the distance between the two
sources increases. With noise, by contrast, the CSM energy function values remain approximately con-
stant with varying distance between the sources. An explanation for this is that in the absence of noise,
a perfect match between the measured and modeled CSM is possible and that the perfect match is more
easily found with a greater distance between the sources. Adding noise distorts the matching between
modeled and measured CSM in such a way, that the distance between the sources no longer affects the
CSM energy function values.

At the beginning of this chapter it was already stated that this research is carried out with experimental
data as well, to have the performance of GO tested in practice. The two experimental data sets employed
in this research are the sets with two small speakers broadcasting white noise, placed 80 and 25 cm apart,
respectively, see the left plots of Figures 3.4 and 3.5. The two sources are now at a fixed distance from each
other, which is why this research is conducted with varying frequencies. For frequencies of f = 100 - 5000 Hz
in steps of 100 Hz, GO is applied to the two experimental data sets. The algorithm settings are the same as for
the simulations: pC = 0.75, F = 0.40, Nruns = 3, q = 128 and NG = 600. The sound speed is again c = 343 m/s,
the array aperture is 1 m and the distance between the source plane and the array plane is 1.87 m. For the
data set where the sources are placed 80 cm apart the frequency corresponding to the Rayleigh limit is 978
Hz. For the data set where the sources are 25 cm apart the frequency corresponding to the Rayleigh limit is
3130 Hz. The results can be seen in Figure 6.1.

From the investigation of the performance of GO in identifying closely spaced sound sources with exper-
imental data, one learns that for frequencies of 600 Hz and onwards, the two sources are correctly identified
by GO with a margin of error of 2 cm for both experimental data sets (two sources placed 25 and 80 cm apart).
DR does not significantly improve the experimental results. Because the experimental data sets are recorded
in an anechoic room and subsequently a time-averaged CSM is constructed, there are hardly any distortions
in the signal and DR does not provide a large improvement.
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Figure 6.1: GO applied to the experimental data sets with two small speakers broadcasting white noise, placed 80 and 25 cm apart,
respectively. Left: For the two sources 80 cm apart the frequency corresponding to the Rayleigh limit is f = 978 Hz. Right: For the two

sources 25 cm apart the frequency corresponding to the Rayleigh limit is f = 3130 Hz.
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Figure 6.2: CB applied to case 1 of the Rayleigh research: two sources of 80 dB placed closer together in steps of 5 cm. The Rayleigh limit
is 0.63 m.
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Figure 6.3: GO applied to cases 1 and 2 of the Rayleigh research. The four plots on the left belong to case 1, i.e. two sources of 80 dB and
the four plots on the right belong to case 2, i.e. two sources of 80 dB and 70 dB, respectively.
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The two new acoustic imaging techniques

applied to experimental data

The six experimental data sets considered in this research consist of two speakers broadcasting white noise,
placed 80 cm apart (both, left source, right source) and 25 cm apart (both, left source, right source). All four
algorithms, i.e. CB, DAMAS, GO and SPI, are applied to these six experimental data sets.

To reduce the effect of side lobes for CB and DAMAS, the results are summed over 1/3 octave bands. For
the frequency bands with center frequencies 315 Hz - 16000 Hz, the results are given in Figures 7.1 and 7.2 for
CB and in Figures 7.3 and 7.4 for DAMAS.

For GO summing the results over 1/3 octave bands has no use. Because it is an optimization technique, it
has no sidelobes. Therefore the results of the estimated parameters are plotted against frequency. Doing so,
eight plots per dataset are acquired, i.e. two plots for the x-coordinates (left and right source), two plots for
the y-coordinates (left and right source), two plots for the z-coordinates (left and right source) and two plots
for the SPLs (left and right source). The GO results for the two speaker sources placed 80 cm apart are found
in Figure 7.5 and placed 25 cm apart are found in Figure 7.6. In accordance with the results of Chapter 6,
the source locations and auto-powers are accurately found for frequencies upward of approximately 1000 Hz.
Chapter 4 showed that the CSM energy function outperforms the Bartlett processor in correctly identifying
multiple sound sources. This is confirmed by Figures 7.5 and 7.6, especially at low frequencies the effect
is clearly visible. Out of the (x,y,z)-coordinates, GO has the most difficulty in identifying the z-coordinate
correctly. An explanation is that the z-coordinate has a smaller effect on the energy function value compared
to the x- and y-coordinates, because the microphone array and source plane are aligned in the z-direction.
An idea to correctly identify the (x,y,z)-coordinates with GO is to record the sound sources twice with the
microphone array, rotating the array 90 degrees with respect to the sound sources at the second recording.

To compare the performance of CB, DAMAS, GO and SPI in correctly determining source auto-powers,
the SPLs in [dB] of the left and right source of the 80 cm and 25 cm data sets are plotted against frequency
in [Hz]. For all algorithms grids of 10x10 cm are used, centered around the left and right source and with a
spacing of 1 cm between the grid points. For CB, the maximum auto-power in [Pa2] is selected and converted
to a SPL in [dB]. For DAMAS, the auto-powers in [Pa2] are summed and subsequently converted to a SPL in
[dB]. In order to know which algorithm performs best, the baseline is extracted from the one-source data sets,
i.e. the left or right source switched on only as shown in the center and right plots of Figures 3.4 and 3.5.

The results for the two sources placed 80 cm apart are found in Figure 7.7. The results of the left source
are plotted in red and for the right source in green. The large plot of Figure 7.7 gives an overview of the results
for frequencies 100 - 10000 Hz. To have a closer look at the low frequency results, zoomed versions of the
large plot are given in the two smaller plots. In the zoomed versions, only GO CSM and inverse SPI are plotted
against the baseline. The results for the two sources placed 25 cm apart are found in Figure 7.8.

Figures 7.7 and 7.8 show that GO with the CSM energy function and inverse SPI give the best results for the
experimental data. As one can see, for the two sources placed 25 cm apart, GO with the CSM energy function
and inverse SPI give good agreement with the baseline from 600 Hz. For the two sources placed 80 cm apart
there is already good agreement from 400 Hz. An explanation for this discrepancy is that the GO algorithm
has more difficulty with the accurate identification of two closely spaced sources in comparison to two sound
sources located further apart, as shown by the two bottom plots of Figure 6.3.
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Figure 7.1: CB results summed over 1/3 octave bands for the experimental data set with two speakers broadcasting white noise, placed
¢x = 80 cm apart.
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Figure 7.2: CB results summed over 1/3 octave bands for the experimental data set with two speakers broadcasting white noise, placed
¢x = 25 cm apart.
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Figure 7.3: DAMAS results summed over 1/3 octave bands for the experimental data set with two speakers broadcasting white noise,
placed ¢x = 80 cm apart.
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Figure 7.4: DAMAS results summed over 1/3 octave bands for the experimental data set with two speakers broadcasting white noise,
placed ¢x = 25 cm apart.
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Figure 7.5: GO results for the experimental data set with two speakers broadcasting white noise, placed ¢x = 80 cm apart. The green
lines represent the exact source locations and SPLs.
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Figure 7.6: GO results for the experimental data set with two speakers broadcasting white noise, placed ¢x = 25 cm apart. The green
lines represent the exact source locations and SPLs.
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Figure 7.7: CB, DAMAS, GO and SPI results of two sound sources in the anechoic chamber, at 80 cm distance, compared against “exact”
single speaker measurements, i.e. the baseline.
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Figure 7.8: CB, DAMAS, GO and SPI results of two sound sources in the anechoic chamber, at 25 cm distance, compared against “exact”
single speaker measurements, i.e. the baseline.





8
Conclusions and recommendations

Several conclusions are drawn from this research. The conclusions are discussed in Section 8.1 and the order
in which the conclusions are given is: DAMAS - GO - SPI. Based on the conclusions, recommendations are
made for future research in Section 8.2.

8.1. Conclusions
DAMAS, unlike CB, uses a model for multiple sources. DAMAS therefore adds value with regard to CB when
applied to situations with multiple point sources present, potentially with varying source auto-powers. For
CB, the stronger sources overshadow the weaker sources. The consequence is that the weaker sources are
hidden behind side lobes. DAMAS is able to identify the sources in the correct source locations with the
correct source auto-powers. This has been demonstrated with simulations and experimental data and applies
to both separated point sources and distributed sources. The biggest disadvantage of DAMAS is its high
computational demand.

GO with the Bartlett processor works perfectly for a single sound source. GO with the CSM energy func-
tion uses a model for multiple sources. Where GO with the Bartlett processor has difficulty with the accurate
identification of two sound sources, especially at low frequencies, this is not a problem for GO CSM. The
conclusions of the investigation of the performance of GO in identifying closely spaced sound sources from
Chapter 6 are that GO CSM is perfectly capable of correctly locating sources far below the Rayleigh limit.
Because GO CSM minimizes the difference between the measured and modeled CSM, noise distorts the op-
eration of GO. In the presence of noise, removing the diagonal from the CSM improves the performance of
GO. With sources of varying auto-powers and the presence of noise, GO is better able to localize the stronger
source with respect to the weaker source. The closer the sound sources are spaced, the greater the improve-
ment is that GO offers in the source localization compared to CB. GO finds the sources in three-dimensional
space, i.e. it eliminates the need for defining a scan plane.

SPI is an algorithm that is able to quantify sound sources, but not to localize them. For the source local-
ization another algorithm must be used, for example CB. SPI identifies source auto-powers for distributed
sources more accurately and computationally more efficient than other acoustic imaging techniques. SPI
point is a fast and effective algorithm for determining the OSPL of an integration area. It gives correct results
for point sources and distributed sources built from point sources with equal source auto-powers. Inverse SPI
performs simultaneous optimization, minimizing the difference between the CSM and the integration grids.
This algorithm works well for distributed sources. For a distributed source built from point sources with vary-
ing source auto-powers, all other algorithms overestimate the source auto-power of the part with the weakest
sources. Inverse SPI, on the other hand, yields very precisely the source auto-powers of the different parts,
irrespective of the absolute value of the source auto-power.

This research concludes that GO is superior compared to other acoustic imaging techniques in locating
and quantifying acoustic sources below the Rayleigh limit. This is both true from a spacing as frequency
perspective. Lastly, this research concludes that SPI identifies source auto-powers for distributed sources
more accurately and computationally more efficient than other acoustic imaging techniques.
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8.2. Recommendations
Given the promising results of GO CSM and inverse SPI, this research recommends researchers in the field of
acoustic imaging to test the algorithms under additional circumstances. For example, it would be interesting
to investigate the performance of inverse SPI with experimental data of distributed sources. Further, thus
far GO was only tested on source data with source conditions which also could be located and quantified by
acoustic imaging techniques that need a predefined scan grid. Testing GO under circumstances that align
with its unique strength - namely the presence of multiple sound sources across three dimensions - would
add value. If GO passes this test, this would negate the need to predefine, and consecutively scan, multiple
two-dimensional scan grids. This would bring the field of acoustic imaging one step closer to the ultimate
goal of real-time acoustic imaging across three dimensions.
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A
Other beamforming methods

Functional Beamforming (FB) Side lobes (i.e. high beamforming output levels compared to the main lobe
level, without the presence of a source) can be mistakenly interpreted as real sources. In order to suppress
sidelobes, but to maintain correct source auto-powers, Dougherty developed the functional beamforming
algorithm (FB) in 2014 [16, 17]. FB improves upon CB concerning the dynamic range and array spatial reso-
lution.

CLEAN-PSF The CLEAN-PSF method [2, 24] starts with the dirty source map obtained by CB and cleans the
source map in an iterative manner. Per iteration a scaled PSF is subtracted from the source map and replaced
by a clean beam, i.e. a beam without side lobes. The iteration process goes on until a stop criterion is met.

CLEAN-SC The CLEAN-SC method [13, 24] performs the same steps as the CLEAN-PSF technique. The dif-
ference lies in the subtraction of the PSF belonging to the peak source location. The CLEAN-SC algorithm
employs the fact that side lobes are coherent, see Section 2.3, with their main lobe in a source map. The
iteration process goes on until a stop criterion is met.

Covariance Matrix Fitting (CMF) CMF [32] wants to approximate the measured CSM by minimizing the dif-
ference between a group of incoherent sources of equal source auto-power and the measured CSM with a
least squares estimator. Variants of CMF exist, depending on the solution procedure. CMF works indepen-
dently from beamforming methods, since it only solves a minimization problem. CMF is applied by various
research groups, see [13, 33, 35].

Orthogonal Beamforming (OB) Orthogonal Beamforming [36] assumes that one eigenvalue of the CSM can
be attributed to a sound source, incoherent with the other sources. The CSM is decomposed of its eigenvec-
tors, which are orthogonal. With CB the source locations and auto-powers are calculated. One parameter has
to be given in for OB, which is the number of eigenvalues assumed.

Robus Adative Beamforming (RAB) Robus Adative Beamforming [37] is also known as Capon beamforming.
The objective of this method is to find the weight vector which maximizes the Signal Of Interest (SOI). To
improve the robustness of RAB, Diagonal Loading (DL) [39] is applied. RAB is investigated by various research
groups, see [15, 38].
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B
DAMAS assumptions

DAMAS uses a model for multiple sources and assumes that the pressure vector p is caused by K incoherent
sources:

p =
KX

k=1
ak gk (B.1)

In Equation B.1, p is the pressure vector in [Pa], ak is the complex pressure amplitude at grid point k and gk
is the steering vector [-] towards grid point k.

The CSM is calculated by multiplying the pressure vector p by its complex conjugate:

C̃ = pp§ =
"

KX

j
a j g j

#"
KX

k
a§

k g§
k

#

=
KX

j ,k
a j a§

k g j g§
k (B.2)

Applying averaging to obtain a time-averaged CSM, yields the following expression for the CSM C̃ :

C̃ =
KX

k
|ak |2gk g§

k =
KX

k
Ak gk g§

k (B.3)

In Equation B.3, Ak is the source auto-power in [Pa2] at grid point k.
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