
 
 

Delft University of Technology

The Architecture and Components of LIBROS: Strengths, Limitations, and Plans

Huang, Y; Seck, MD; Verbraeck, A

Publication date
2010
Document Version
Accepted author manuscript
Published in
Proceedings of the 24th Annual European Simulation and Modelling Conference (ESM 2010)

Citation (APA)
Huang, Y., Seck, MD., & Verbraeck, A. (2010). The Architecture and Components of LIBROS: Strengths,
Limitations, and Plans. In G. K. Janssen, K. Ramaekers, & A. Caris (Eds.), Proceedings of the 24th Annual
European Simulation and Modelling Conference (ESM 2010) (pp. 80-87). Eurosis-ETI.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



THE ARCHITECTURE AND COMPONENTS OF LIBROS:
STRENGTHS, LIMITATIONS, AND PLANS

Yilin Huang, Mamadou D. Seck and Alexander Verbraeck
Systems Engineering Group

Faculty of Technology, Policy and Management
Delft University of Technology

PO Box 5015, NL-2600GA Delft
The Netherlands

E-mail: {y.huang,m.d.seck,a.verbraeck}@tudelft.nl

KEYWORDS

Railway Simulation, Simulation Library

ABSTRACT

Railway systems have long life spans, during which
changes take place that lead to new issues to study.
These changes can ask for the construction or alter-
ation of simulation models for an analysis of the rail
system. LIBROS is an open source java package that
supports distributed microscopic multi-formalism sim-
ulation of heavy and light rail operations. Since its
development, the library has been applied for simula-
tions that successfully assisted decision making for the
rail infrastructures design in a couple of projects. Each
project focused on one specific part of a rail-based net-
work. During the past year, LIBROS has been updated
and extended as new simulation requirements emerged.
This paper addresses the strengths and limitations of LI-
BROS by discussing its structural design, model compo-
nents, functionality, and applications. Further research
of using the DEVS formalism in LIBROS is proposed to
transform the library for the future challenges of rail-
based network design and simulation.

INTRODUCTION

Rail transport, as one of the major forms of public trans-
port, plays a vital role that affects our daily life (Button
and Hensher, 2001). In order to increase public trans-
port’s share compared to private transport modes and
to maintain and improve its competitiveness, more re-
liable services should be offered (Tahmassseby, 2009).
Modeling and simulation of transport systems have had
important developments since the mid 1970s, and now
received better recognition by transport designers in de-
cision support (Ortzar and Willumsen, 2001). A micro-
scopic rail network model is deemed not only suitable,
but also mandatory, for exact running time calculation,
timetable construction, and conflict detection and reso-
lution (Hansen and Pachl, 2008). For large and com-
plex rail-based networks, the planning and design of

the infrastructure and operation are cumbersome and
time-consuming; so is the modeling of the networks. In-
evitably, working with complex infrastructure networks
(total or partial) increasingly becomes a standard ap-
proach (Hansen and Pachl, 2008). A medium sized ur-
ban light rail operation, for example, may already con-
cern a dozen lines and hundreds of vehicles and stops.
A typical microscopic model contains all tracks of the
routes, which have to be modeled at a high resolution
at stations and junctions where two or more routes con-
verge, diverge or cross-over. Each rail-based network is
unique in terms of its technical specifications and avail-
able services (Ho et al., 2002). Different aspects of a
network, such as the infrastructure, signaling control,
and timetables at various locations and/or time periods,
are full of variety. This further increases the complex-
ity of rail-based network modeling. Moreover, because
of the inherent long life span of rail infrastructure and
services, new issues and questions often come up dur-
ing the lifetime of the infrastructure. Many of these
are about improving or at least maintaining the quality
of service after the changes, e.g. by the adaptation of
timetables, acquiring new equipment, and infrastructure
changes and alterations. As such, model construction
and reconstruction of rail-based networks particularly
require flexible model composition and configuration in
order to enhance reusability and reduce time and human
resource investment in this regard.

LIBROS (Library for Rail Operations Simulation) is an
open source java package that supports distributed mi-
croscopic multi-formalism simulation of heavy and light
rail operations. It is designed for development of rail
simulation models. The library development started at
the request of HTM (The Urban Public Transport, The
Hague, The Netherlands), as the rail simulation tools
in existence could not meet the specific needs of urban
tramway and light rail operation design. Since then LI-
BROS has been applied for simulations that success-
fully assist decision making for the design of rail-based
infrastructures in a number of projects (Kanacilo and
Verbraeck, 2006, 2007; Kanacilo and Oort, 2008; Huang
et al., 2010). Each project focused on one specific part



of an urban tramway and light rail network, e.g. the
modeling and analysis of a crossing where the infrastruc-
ture would be extended and design alternatives should
be evaluated and compared. The results show that LI-
BROS is suitable to help forecast the operations, and
it enables prediction of the quality of service of a cer-
tain urban rail infrastructure configuration (Kanacilo
and Oort, 2008). This paper addresses the strengths and
limitations of LIBROS. Its structure design, model com-
ponents, functionality, and applications are discussed in
relation with the strengths and limitations. LIBROS’
underlying simulation environment DSOL (Distributed
Simulation Object Library) (Jacobs, 2005) is briefly ex-
plained. Recent research (Seck and Verbraeck, 2009)
added the DEVS (Discrete Event System Specification)
formalism to DSOL which could facilitate the build-
ing and simulation of DEVS models for LIBROS. This
would especially benefit LIBROS in terms of modularity
and providing a hierarchical structure of model compo-
nents. Given the challenges and the complexity of net-
work simulation for rail infrastructure, an extension of
LIBROS with the DEVS formalism is one of the main
additions planned.
The remainder of this paper is organized as follows. In
the next section, the motivation of developing the LI-
BROS simulation tool is explained. It is followed by a
description of how rail simulations can be carried out
with LIBROS. Some encountered challenges are stated.
Section 4 describes DSOL and DEVS, and how DEVS-
DSOL would benefit LIBROS. In Section 5, the archi-
tecture and main components of LIBROS are discussed,
as well as some opportunities for enhancements of the
simulation library.

THE NEED FOR LIBROS

In the field of rail transport network planning and design
(or transport in general), a number of simulation tools
have been developed, e.g. simulation models of stations
or terminals (Carey and Lockwood, 1995; Carey and
Carville, 2002, 2003; Rizzoli et al., 2002), and train net-
work simulators, such as Simon/TTS (Wahlborg, 1996),
TOPSim (Sandblad et al., 2000), SIMONE (Middelkoop
and Bouwman, 2001), OpenTrack (Nash and Huerli-
mann, 2004), VirtuOS (Kavicka and Klima, 2000), Rail-
Sys (Bendfeldt et al., 2000), UX-SIMU (Kaas, 2000),
Multi-train simulator (Ho et al., 2002), SimMETRO
(Koutsopoulos and Wang, 2007).
The motivation of developing a new rail-based simula-
tion tool is multi-faceted. First, many railway models
and simulators are designed to assess a limited number
of aspects (e.g. timetabling, signaling control) of rail
operations or to study a particular part (e.g. a station,
a junction) of the rail network (Ho et al., 2002). It is im-
practical to carry out various studies with different simu-
lation tools. Some models have a high abstraction level
(Vromans et al., 2006), which may cause a significant

difference between model outcomes and real operations
on a lower abstraction level (Ferreira, 1997). Although
rail operations can be decomposed into different aspects,
all should be taken into consideration in a self-contained
simulation package for analyzing the rail network on the
micro level (Krueger et al., 2000). Second, very few sim-
ulation tools support tramway or light rail operations.
To the authors’ knowledge, one of the few is RailSys
(Rudolph, 2000). In comparison with heavy rail opera-
tions, many differences occur when simulating light rail
operations. Heavy rail vehicles drive in signalled blocks,
while light rail vehicles also “drive on sight” (Overton,
1989). Given the large number of cities with metro and
tramway systems, there is a growing need for tools that
specifically aim at light rail simulation. Third, tools de-
signed for diverse transport agencies are very specific
to individual agencies’ needs, often making the tools
less suitable for other agencies or transport operators.
This asks for generic tools that can be applied for dif-
ferent situations and allow for analysis from different
viewpoints. Fourth, commercial rail simulators gener-
ally have good performance, but they raise proprietary
issues. Concerning inter-operability, they are difficult
to be modified or linked with other tools or informa-
tion systems such as databases or GIS (Kanacilo and
Verbraeck, 2006). Cost is obviously another concern.
The research team thus decided to develop an open
source rail simulation library. On the one hand, it is
tailored for light rail simulation, considering the com-
bined impact of different aspects of the infrastructure
design in one self-contained simulation package. On the
other hand efforts are taken to make the library also
suitable for heavy rail simulation. The fact that LI-
BROS is developed as an open-source project provides
a unique possibility to improve the package, and adds
flexibility for further research. The package is available
for any party to conduct research.

RAIL SIMULATION WITH LIBROS

The use of LIBROS is straightforward, as shown in Fig.
1. Users need to specify the simulation model and its
parameters in XML format. They can define the rail in-
frastructure, control measures, timetables, and change
options such as if animation and data visualization are
needed. The model generator of LIBROS verifies the
XML input, then creates and initializes the simula-
tion model using the available model components in the
package. If needed, other data sources such as timeta-
bles or GIS maps can be added. Experiments are gener-
ated according to the user configuration. In the model,
the vehicle movement is simulated continuously and the
other components such as the traffic lights and switches
are simulated using event scheduling. The results can be
animated, plotted, and (t-v, t-x, x-v) graphs are gener-
ated. Data files recording the vehicle movements, wait-
ing times, etc., are generated and categorized.



Figure 1: Rail Simulation with LIBROS

As stated earlier, LIBROS has been used in a number
of projects that showed good results. Some challenges
we encountered include the following. For example, the
infrastructure configuration is XML-based, making the
task difficult for non-experts. Here a GUI could help by
providing drag-and-drop model components which has
become quite common in commercial simulation tools.
Modeling by means of drag-and-drop requires the re-
lation between model components to be cut-and-dried.
The DEVS formalism (Zeigler et al., 2000) provides a
modeling theory of such modularity and hierarchical
structure which the LIBROS model lacks. Some trans-
formation of the library is therefore desired. The DEVS
formalism could also benefit the library design in terms
of information exchange between the components and
model state saving. These issues are discussed in rela-
tion with the library design in the following sections.

DSOL AND DEVS

LIBROS is built as an extension of DSOL (Jacobs,
2005), an open source java simulation library that sup-
ports discrete and continuous formalisms, and provides
generic simulation services such as various simulators,
specification of experiments, event scheduling, and prob-
ability distributions. As a recent development (Seck
and Verbraeck, 2009), DSOL ES-DEVS implements
the parallel DEVS formalism on top of the DSOL li-
brary. DEVS (Zeigler et al., 2000) is a modeling and
simulation formalism that allows for formal specifica-
tions of systems. Two levels of specifications are pos-
sible. The atomic DEVS formalism consists of (in-
put/output/state) sets, and functions on the sets allow-
ing complete and unambiguous specification of systems
according to the discrete event abstraction. The coupled
formalism consists of input, output, components (either
atomic or coupled), and coupling relation sets. Along
with the formalism, modularity is guaranteed and the
closure under coupling property (Zeigler et al., 2000) al-
lows for the construction of hierarchical models. The
ES-DEVS simulation protocol is based on the event-
scheduling worldview wherein executions of the internal
transition function are scheduled according to the speci-
fied time advance function and unscheduled at the recep-
tion of external events. The ES-DEVS implementation
strictly follows the DEVS formal specification, and the

Figure 2: The LIBROS Architecture

separation of concerns between models and simulators
is respected. Dynamic structure DEVS is also imple-
mented so that components and coupling relations can
be added and removed dynamically during simulation
runtime. This feature can be especially useful in dy-
namic systems such as transport systems in general and
rail transport in particular, where the relations between
the simulation components (e.g. a vehicle and a traffic
light) are temporary and subject to change.

THE LIBROS SIMULATION LIBRARY

In the development process of LIBROS, an effort is
made to overcome the issues addressed in Sect. and
to design, develop and test a component-based, loosely-
coupled rail simulation package. LIBROS uses part of
the DSOL services, and extends them to define more rail
specific simulation components. Fig. 2 illustrates a sim-
plified component view of its architecture. The library
contains two major groups of components: those that
form the building blocks of the simulation model, which
is the core of LIBROS; and those that offer peripheral
simulation services such as parsing model definition files,
generating statistics, animation, and outputs. The rail
model structure can be divided into two layers. The first
layer is a collection of the physical model components.



Most of them represent the (physical) rail and road in-
frastructure elements, such as tracks, stations, vehicles
and intersections. But there can also be some virtual
elements needed by the simulation, e.g., the locations
where vehicles enter and exit the (simulation) system,
or where data shall be collected for statistics. Instantia-
tion of a model component creates the representation of
a physical or virtual element and its initial state. The
second layer is composed of the model control compo-
nents, which define the control logic (i.e. state tran-
sition) of the physical model components in the first
layer. The control logic can be rule-based or dependent
on the interactions between different model components,
e.g. the rules that define how several traffic lights shall
coordinate their signals, how priorities are given to ve-
hicles at junctions, the acceleration or deceleration of a
vehicle according to the speed limits or based on obsta-
cles. The separation of physical model and model con-
trol components simplifies the setup by which a physical
model component can implement different model control
strategies. A traffic light, for example, may have fixed
time intervals for signal changes, or change signals de-
pending on the traffic conditions. In this way, compo-
nents can be easily extended and updated. The com-
munications between different model components are
also handled by the model control components using
the publish-subscribe interaction scheme, which is dis-
cussed later. LIBROS provides XML schema for model
configurations. The XML definition is parsed and veri-
fied by the input (processing) components, which then
creates models and simulation replications. A physical
model or model control component is associated with
one or more statistics components or animation com-
ponents (if needed). The statistics components collect
important model states, and generate graphs of the key
performance indicators for the rail network operation.
The animation components are able to plot GIS data as
background maps, and display the signalling changes,
vehicle movements, etc. Output components generate
and save the simulation results including graphs. Fig.
3 shows a simplified diagram of the model components.
(Some interfaces and classes are omitted for clarity.) As
mentioned earlier, the model structure has a physical
layer and a control layer.

Infrastructure Modeling

An accurate infrastructure model is important for rail
simulation, as it is the basis for all calculations. In LI-
BROS, a combination of link-oriented and node-oriented
approaches is chosen, as both have advantages and dis-
advantages (Hansen and Pachl, 2008). A rail network
is a directed graph N = (V, T ) following Bang-Jensen
and Gutin (2009). V is a set of vertices (or nodes). T
is a set of directed track segments (or tracks). Each
track is an ordered pair of distinct nodes (i.e. the two
ends of the rail axis). The location (real world coor-

Figure 3: Overview of the LIBROS Components

dinates) of a track is saved in its starting and ending
nodes. A rail switch is located at a node v ∈ V with an
out-degree d−N (v) = 2. A (switch) node contains infor-
mation of which direction (i.e. the next track) a vehicle
shall move to. The position of the other infrastructure
elements (e.g. stops, traffic lights, sensors, speed limits)
are saved in association with tracks. The progression
is defined as the distance between the element and the
starting node of the track.
Strengths: The infrastructure model is microscopic.
This enables precise calculation of running times and
evaluation of control strategies. High quality animation
is possible; an example is shown in Fig. 4.
Limitations: The infrastructure configuration is time-
consuming. Each node is defined by coordinates. Track
lengths are calculated by end nodes and curvatures. De-
tailed geographical data are required for model setup.
Plans: The model should allow for simpler track def-
inition, e.g. with only lengths and speed limits. This
will reduce the complexity of the infrastructure config-
uration. Methods can be added for track information
refinement if more detailed visualization of the infras-
tructure is desired.

Block System Modeling

In railway control, a block system is a signaling sys-
tem that provides safe spacings for vehicles (Hansen and
Pachl, 2008). A block section is a section of track where



Figure 4: An Example of the Animation

a vehicle may only enter when the section is not occupied
by other vehicles (Pachl, 2002); each section is guarded
by a signal at the entrance. In the model, the concept is
extended. Interlocking (at e.g. junctions and for single-
tracks) also uses the concept of block and block control,
because from a modeling perspective, block systems and
interlocking operate in a very similar way, i.e. vehicles
may not enter a locked section, and the signalling logic
of different traffic lights in one area is often interdepen-
dent. The block control components define the diverse
signalling logic. It can be traffic dependent. At major
intersections in a city, trams may not have priority over
the other street traffic; hence users can configure the
vehicles’ waiting time distributions. Alternatively, the
signalling logic can depend on the occupation state of
another block. In this case, users can define the depen-
dencies between different blocks using sub-blocks. A
simple example is shown in Fig. 5. The crossing is
guided by 3 traffic lights (thus 3 blocks); 4 driving di-
rections are possible. Three sub-blocks are defined in the
example. Passing through direction 1 needs sub-block
1; direction 2 needs sub-blocks 2 and 1; directions 3 and
4 need sub-blocks 3 and 2. The logic is very intuitive:
when a sub-block is occupied by a vehicle, it can not
be used by another. Thus the state of the traffic light
depends on the availability of the required sub-blocks.
The release time of a sub-block is identified precisely,
e.g. once a vehicle at direction 2 releases sub-block 2
(i.e. the vehicle’s tail left sub-block 2, but sub-block 1
is still occupied), the access of direction 3 or 4 is granted
if there is any request. A vehicle requests the access of
a block by triggering a request sensor placed in front of
the traffic light. If the access is granted, the required
sub-blocks are set to be locked immediately. The sen-
sors can be of different types. The most common ones
are request sensors and release sensors. The former are

Figure 5: Block Control using Sub-blocks

triggered by a vehicle’s head, and the latter by a vehi-
cle’s tail. If there are conflicts at a crossing and requests
are queued, the access is granted to the vehicle that has
the highest priority.
Strengths: The block (and sub-block) components pro-
vide users the possibility to configure different signalling
logic for e.g. crossings, stations, single tracks, and any
combination of these infrastructures. The signalling
logic for sophisticated infrastructure settings, e.g. where
different light rail lines intersect in city centers and near
train stations, has been modeled by this method.
Limitations: Configuration of block system models is
hard for non-experts. The model components lack mod-
ularity. For example, to model a crossing, each block
(sub-block), switch (direction), and sensor have to be
configured individually.
Plans: Higher level components should be constructed.
The authors are aware of the complexity of rail infras-
tructures. Because each element is unique, construct-
ing components for all situations is impossible and un-
necessary. But for some standard and often occurring
situations, components can be designed to simplify the
configuration. It is important to separate the functional
definition of a component with its geoinformation.

Vehicle Modeling

The vehicle component saves the vehicle’s state and
other information used for simulation and statistics, e.g.
its size, speed, position, and “visible” objects (speed
signs, signals, or a vehicle in front). Vehicles are gener-
ated according to timetables.A probability distribution
can be introduced to simulate the earlier and delayed de-
parture. The vehicle generator also assigns each vehicle
a driver/driving profile that determines how a vehicle
accelerates, cruises, and brakes. The vehicle movement
is calculated by vehicle positioner using the Runge-
Kutta integrator. Given the speed of a vehicle at time
tn, it computes the vehicle’s speed and position (dis-
tance) at time tn+1 based on the vehicle’s acceleration
changes during the integration time-step. The accelera-
tion rates are determined by the vehicle controller. As
stated before, the vehicles can “drive on sight”, mean-
ing that a vehicle “sees” also other objects besides traffic
lights. The objects being considered in the model are



(1) traffic lights, (2) changes of infrastructure, e.g. stops
or stations, curves, (3) speed signs, (4) obstacles, e.g. a
vehicle in front, and (5) other objects, e.g. an inter-
section or a switch, that by regulation a vehicle shall
pass through with reduced speed. In principle, at each
integration time-step, the vehicle “checks” the tracks
in front of it, whether there are any objects associated
with the tracks. The vehicle controller then decides if
the vehicle shall accelerate, cruise or brake.An object
may change state, e.g. a traffic light or a vehicle. If
so, the object notifies the approaching vehicle using the
publish-subscribe interaction scheme.
Strengths: Driving profiles introduce randomness into
the driving behavior. “Drive on sight” is important for
modeling light rail operation. The calculation of vehicle
movement is precise and in detail.
Limitations: Checking acceleration and integration at
each time-step has a high computational cost. Profiling
the simulation program shows that this part of the cal-
culation takes 74% of the execution time. The perfor-
mance decreases when simulating large scale networks
with many vehicles.
Plans: More efficient algorithms can be developed. A
vehicle can check as far as possible until an object of
interest is found, e.g. a traffic light, a sharp curvature,
or another vehicle. Once an object of interest is found,
the vehicle decides if and when it shall accelerate or
brake; and the object “informs” the vehicle if the state
of the object has any change, based on which the vehicle
may react.

Asynchronous Messaging

The object-to-object communication in LIBROS (and
DSOL) is accomplished by the publish-subscribe (or
event notification) interaction scheme. With systems
based on this scheme, subscribers register their interest
in an event, or a pattern of events, and are subsequently
asynchronously notified of events generated by the pub-
lishers (Eugster et al., 2003). The strength of this event-
based interaction style lies in the full decoupling in time
and space between publishers and subscribers (Eugster
et al., 2003). Furthermore, asynchronous communica-
tion prevents disproportionate polling between objects
and enables well tailored communication between poten-
tially distributed objects (Jacobs, 2005). The publish-
subscribe scheme is implemented following the observer
pattern (also known as the publish-subscribe pattern)
which defines a non static one-to-many dependency be-
tween objects so that when one object changes state, all
of its dependents are notified and updated automatically
(Gamma et al., 1994). For example, when simulating
a vehicle approaching a traffic light, the state change
of the traffic light is obviously of interest to the vehi-
cle. Thus the vehicle registers to the traffic light’s sub-
scribers list and becomes a listener of the state changes
of this traffic light in order to be notified. Once the

vehicle passed the traffic light, it deregisters itself from
the list. In LIBROS, not only the communication be-
tween the model components uses such a scheme but also
the simulation services (animation, statistics, file gener-
ation, etc). Concerning implementation of the observer
pattern (or the publish-subscribe scheme in general),
common issues include unexpected updates (Gamma
et al., 1994), thread-safety, and lapsed listeners (Goetz,
2005). When these issues are treated with prudence, the
publish-subscribe interaction scheme is an efficient and
convenient method for asynchronous communication.

Data-Driven Simulation

In a recent paper (Huang and Verbraeck, 2009), the au-
thors proposed a dynamic data-driven approach for rail
transport simulation. The idea is to automatically per-
form model calibration and validation by comparing the
model output with the rail operation data. The model
states at each state transition are saved to compare with
the available data. The model is duplicated so that dif-
ferent model calibrations can be simulated in parallel to
evaluate which parameter configuration is better. In this
regard, efficient model state save and component copy
are of importance. With the current library, the model
states are periodically written to output streams for
state saving. With the DEVS formalism, state changes
are formally defined by the internal and external transi-
tion functions (δint, δext), which make it easier to trace
the state transition and causality. The model can be
saved or copied at each state transition. Therefore,
transformation of LIBROS model components by using
the DEVS formalism would also benefit the development
of automatic model calibration and validation.

CONCLUSIONS

This paper discussed the architecture and model compo-
nents of LIBROS, and the strengths and limitations of
its design. The library supports distributed rail simula-
tion that uses configurable components as model build-
ing blocks. Not only does the library support rail trans-
port design from an engineering perspective, its ad-
vanced animation and visualization capabilities makes it
an efficient means of communication and enforces com-
mon understanding between transit authorities, service
providers, as well as other parties involved. The li-
brary has been used in projects that showed good re-
sults (Kanacilo and Verbraeck, 2006, 2007; Kanacilo and
Oort, 2008; Huang et al., 2010). Microscopic modeling
offers simulation experiments with high detail that is
important for timetable construction and conflict detec-
tion and resolution. The library currently models the
vehicle movement using differential equations solved by
numerical integrators. This solution offers high simu-
lation precision but comes with a high computational
cost, which hinders software performance. Infrastruc-



ture configuration can become very complex for the con-
figuration of large scale rail networks. Both limitations
can be mitigated by using the DEVS system theoret-
ical formalism which offers a formal specification for
modular and hierarchical discrete event systems. The
transformation of LIBROS using the DEVS formalism
is underway. When LIBROS uses DEVS formalism, the
communication between model components would natu-
rally use message transmission through ports. The com-
munication between the simulation services will remain
using the publish-subscribe scheme. Our next step is to
extend the library for data-driven simulation through
which automatic model calibration and validation can
be performed (Huang and Verbraeck, 2009). In this con-
text, the DEVS formalism will also benefit the library
design.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of
HTM Urban Public Transport, the Netherlands.

REFERENCES

Bang-Jensen J. and Gutin G., 2009. Digraphs: Theory,
Algorithms and Applications. Springer Monographs
in Mathematics. Springer Science, 2nd ed.

Bendfeldt J.P.; Mohr U.; and Mller L., 2000. RailSys,
a system to plan future railway needs. Advances in
Transport, 7, 249–255.

Button K.J. and Hensher D.A. (Eds.), 2001. Handbooks
in Transport 3: Handbook of Transport Systems and
Traffic Control. Elsevier Science.

Carey M. and Carville S., 2002. Testing schedule per-
formance and reliability for train stations. Journal of
the Operational Research Society, 51, no. 6, 666–682.

Carey M. and Carville S., 2003. Scheduling and plat-
forming trains at busy complex stations. Transporta-
tion Research Part A: Policy and Practice, 37, no. 3,
195–224.

Carey M. and Lockwood D., 1995. A Model, Algorithms
and Strategy for Train Pathing. The Journal of the
Operational Research Society, 46, no. 8, 988–1005.

Eugster P.T.; Felber P.A.; Guerraoui R.; and Kermar-
rec A.M., 2003. The many faces of publish/subscribe.
ACM Computing Surveys, 35, no. 2, 114–131. ISSN
0360-0300. doi:http://doi.acm.org/10.1145/857076.
857078.

Ferreira L., 1997. Planning Australian freight rail op-
erations: An overview. Transportation Research Part
A: Policy and Practice, 31, no. 4, 335–348.

Gamma E.; Helm R.; Johnson R.; and Vlissides J.,
1994. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Goetz B., 2005. Java theory and practice: Be a good
(event) listener. IBM Java Technology Technical Li-
brary.

Hansen I.A. and Pachl J. (Eds.), 2008. Railway
Timetable & Traffic: Analysis-Modelling-Simulation.
Eurailpress.

Ho T.; Mao B.; Yuan Z.; Liu H.; and Fung Y., 2002.
Computer simulation and modeling in railway applica-
tions. Computer Physics Communications, 143, no. 1,
1–10.

Huang Y. and Verbraeck A., 2009. A Dynamic Data-
Driven Approach For Rail Transport System Simu-
lation. In M.D. Rossetti; R.R. Hill; B. Johansson;
A. Dunkin; and R.G. Ingalls (Eds.), Proceedings of
the 2009 Winter Simulation Conference. IEEE, 2553–
2562.

Huang Y.; Verbraeck A.; van Oort N.; and Veldhoen H.,
2010. Rail Transit Network Design Supported by an
Open Source Simulation Library: Towards Reliability
Improvement. In Transportation Research Board 89th
Annual Meeting Compendium of Papers. 10-0310.

Jacobs P.H.M., 2005. The DSOL simulation suite -
Enabling multi-formalism simulation in a distributed
context. Ph.D. thesis, Delft University of Technology,
the Netherlands.

Kaas A., 2000. Punctuality model for railways. Advances
in Transport, 7, 853–860.

Kanacilo E.M. and Oort N.v., 2008. Using a rail simula-
tion library to assess impacts of transit network plan-
ning on operational quality. In WIT Transactions on
the Built Environment, WIT Press, 103. 35–43.

Kanacilo E.M. and Verbraeck A., 2006. Simulation ser-
vices to support the control design of rail infrastruc-
tures. In Proceedings of the 2006 Winter Simulation
Conference. IEEE, 1372–1379.

Kanacilo E.M. and Verbraeck A., 2007. Assessing tram
schedules using a library of simulation components.
In Proceedings of the 2007 Winter Simulation Con-
ference. IEEE, 1878–1886.

Kavicka A. and Klima V., 2000. Simulation support for
railway infrastructure design and planning processes.
Advances in Transport, 7, 447–456.

Koutsopoulos H. and Wang Z., 2007. Simulation of Ur-
ban Rail Operations: Application Framework. Trans-
portation Research Record, 2006, 84–91.



Krueger H.; Vaillancourt E.; Drummie A.M.; Vucko
S.J.; and Bekavac J., 2000. Simulation within the Rail-
road Environment. In Proceedings of the 2000 Winter
Simulation Conference. 1191–1200.

Middelkoop D. and Bouwman M., 2001. Simone: Large
Scale Train Network Simulations. In Proceedings of
the 2001 Winter Simulation Conference. IEEE, 1042–
1047.

Nash A. and Huerlimann D., 2004. Railroad simulation
using OpenTrack. Advances in Transport, 15, 45–54.

Ortzar J. and Willumsen L., 2001. Modelling Transport.
John Wiley & Sons, 3rd ed.

Overton D., 1989. Traffic signal control of LRVs. In IEE
Colloquium on Light Rapid Transit On-Street. 9/1–
9/3.

Pachl J., 2002. Railway Operation and Control. VTD
Rail Publishing.

Rizzoli A.E.; Fornara N.; and Gambardella L.M., 2002.
A simulation tool for combined rail/road transport in
intermodal terminals. Journal of Mathematics and
Computers in Simulation, 59, no. 1-3, 57–71.

Rudolph R., 2000. Operational simulation of light rail
systems. In Proceedings of the European Transport
Conference. 167-178.

Sandblad B.; Andersson A.; Jonsson K.E.; Hellstrm P.;
Lindstrm P.; Rudolf J.; Storck J.; and Wahl-borg M.,
2000. A train traffic operation and planning Simula-
tor. Advances in Transport, 7, 241–248.

Seck M.D. and Verbraeck A., 2009. DEVS in DSOL:
Adding DEVS operational semantics to a generic
Event-Scheduling Simulation Environment. In Pro-
ceedings of the 2009 Summer Computer Simulation
Conference.

Tahmassseby S., 2009. Reliability in Urban Public
Transport Network Assessment and Design. Ph.D.
thesis, Delft University of Technology, The Nether-
lands.

Vromans M.J.C.M.; Dekker R.; and Kroon L.G., 2006.
Reliability and heterogeneity of railway services. Eu-
ropean Journal of Operational Research, 172, no. 2,
647–665.

Wahlborg M., 1996. Simulation models: Important aids
for Banverket’s planning process. In Computers in
Railways, WIT Press, vol. V. 175–181.

Zeigler B.P.; Praehofer H.; and Kim T.G., 2000. The-
ory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems.
Elsevier/Academic Press, 2nd ed.


