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Chapter 1

Introduction



1. Introduction

1.1 General introduction to thesis

In reinforced concrete structures cracking and crack wisltbontrolled by the
layout and the amount of the reinforcement. Being able toipr#ue crack width
and spacing is important for a number of reasons for insteuitteregard to dura-
bility or structures that need to be impermeable to fluids.sttdng influence to
the cracking behaviour of reinforced concrete structusdébe bond that exist be
tween the steel and the concrete. This bond is however a earpplenomenon
and cannot be readily predicted. With experiments a boipdrslation can be
determined and with testing of long specimens it is alsoiptesto determine the
crack spacing.

This thesis sets out to explore the possibilities of sinodpsteel-concrete bond-
slip behaviour numerically. For numerical simulations \e@mtional non-linear
analysis using the finite element method can be used to pradda calculate
cracking and crack development in reinforced concretetiras. In these simu-
lations the bond between the steel and the concrete can ée itato account in
various ways. Often however the bond is not taken into adcand instead full
bond is assumed.

A recent development at Delft University is the use of setjaéiy linear analysis
or SLA for short. This method is an alternative to non-linaaalysis and has
already showed good results for simulating cracking behavn brittle materials
such as concrete, glass and masonry. This thesis will expher possibilities of
using SLA with the object of simulating bond-slip behavioGf special interest
are the aforementioned experiments on long specimens tiase tests reveal a
fully developed crack pattern. Therefore the possibgite simulate these exper-
iments using conventional non-linear analysis as well a& ®lll be explored.

First the general bond-slip theory will be described in tegtrsection. In section
1.4 the main objectives for this thesis will be stated.
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1.2. STEEL-CONCRETE BOND-SLIP THEORY

1.2 Steel-concrete bond-slip theory

1.2.1 The bond mechanism

There are many sources in literature that describe the bawhamism in detail

[1], [7], [9]. Here only a basic description will be given testribe the most im-
portant aspects of the bond mechanism between concreteiforcement. The

description given here applies to reinforcing bars witls winly.

The bond mechanism consists of three main components: (ca@radhesion,

friction and mechanical interlocking (bearing), see figure The adhesion (a) is

L
i S
s %
(a) Adhesion (b) Friction (c) Bearing

Figure 1.1: Force transfer mechanism

very small and lost almost immediately upon loading. Themaeccal interlock-
ing can also be viewed as friction. The inclined bearingdsrc) can be divided
into two components: the longitudinal part, this is called bond stress, and the
radial part which is called the splitting stress. The inetirforces which radiate
outwards into the surrounding concrete are balanced bytengjle stresses see
figure 1.2. If the ring tensile stresses become too large dinerete will crack

Splitting crack

|~ Barsiugs
Surrounding Concrete

Figure 1.2: Ring tensile stresses

resulting in longitudinal splitting cracks.

There are two distinct bond failure mechanisms:
* Splitting failure.
e Pull-out failure.

Splitting failure will occur when splitting cracks can réaan outer surface
before the bar is pulled out, for instance when there is osiyall concrete cover.
In this case the normal stresses between the concrete amelotieare reduced
drastically causing much lower bond stress transfer.

The other failure mechanism, pull-out failure, will occéithe confinement (i.e.
the concrete cover or transverse reinforcement) arounikthis sufficient to with-
stand (balance) the splitting stresses. In this case bdndsf#s ultimately caused
by shearing off of the concrete between the rebar and theFigare 1.3 explains

11



1. Introduction

the difference in load transfer between pull-out and spgjtfailure (taken from

[8]).

Jorce components on concrete J

force components on bar

pulled rebar resulting forces on conerete

o W . V= —

stiding plane oM intemat cnack

Figure 1.3: Bond pull-out failure (left) and bond splitting failure (right)

The difference in bond-slip behaviour in terms of a bondssi®ip relation is
illustrated in figure 1.4 below.

Bond
F Y
stress

(b)

Slip

Figure 1.4: Difference in bond-slip behaviour, (a) pull-out failure, (p)iting failure

1.2.2 Factors influencing the bond strength

Since bond performance is not only dependent on pure migteoigerties but also
on the structure surrounding the rebar there are many aspéaencing the bond

performance. Some factors are listed here (see also [7], [16]):

» concrete compressive strength, especially for pull-ailaife;
 concrete tensile strength, especially for splittingufieat

* level of confinement (active or passive), i.e. concreteecar transverse
reinforcement;

* size effects;
» concrete type (HSC, NSC, FRC);
* rebar geometry (diameter, relative rib area);

* type of loading, load repetition (load history).

lthis also implies bond performance to be non-unique meaican differ at different loca-
tions along the rebar

12



1.2. STEEL-CONCRETE BOND-SLIP THEORY

1.2.3 Bond-slip experiments

Experiments on reinforced concrete specimens involvingdkslip can be used
among other things to derive bond stress-slip relationss 3éction very shortly
describes several types of experimental setups that areamsnonly used and
is mainly taken from [7].

Short specimens (pull-out failure, see figure 1.5)

In this test a reinforcing bar with a very short bonded lengtpulled out of a
concrete body. Because of the short bonded length there existimost uniform
distribution of the bond stress. Therefore this type of test be done to obtain a
bond-slip curve. The concrete cover is chosen large enosigh@event splitting
failure.

- Displacement transducers

Steel pipe
Load gauge
| _—Hydraulic jack

/ Steel bearings (8205 x 30 mm)
(hole @50 mm)
/4~ Reinforcement bar
/

r- +Strain gauge

a-

< -5'-;?:[1; 260mm

-
.-
e, o
° . °
‘v a o v .
[E [| [h.
\

\

\ \ b Displacement transducers
 300mm (e16
O

mm (220)

\_
(%]
w

Figure 1.5: Example of short specimen pull-out test setup

Long specimens (pull-out and splitting failure)

For obtaining information about the bond-stress distidsu(among other things)
along a bar or splicetests on long specimens have also been adopted. These tests
can also serve as a reference for FEM modeling. Sometimassitype of testing

strain gages are inserted inside the reinforcing bar. Tdnsbe done by splitting

the bar into two, channelling out for strain gage placemeaat then gluing the

two halves back together. By varying the concrete cover fipe bf test can be

used to investigate pull-out failure as well as bond spliffiailure.

2Dutch: lasverbinding
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1. Introduction

1.2.4 Bond-slip relations

There are several ways for obtaining a bond stress-sliigelaFor practical rea-
sons one way is to use simple parametric formulae. This agprts for instance
used in the CEB-FIB MC90 model code [7]. A bond-slip curve calted with
this model code is shown in figure 1.6 for confined concrege fiull-out failure)
and unconfined concrete (i.e. splitting failure), both farcecrete compressive
strength off’ck=35 N/mnf¥.

CEB-FIB MC90 bond-slip relation for fCk = 35 N/mm?

\
,,,,, N — — — confined
141 / \ : unconfined [

bond stress [N/mmz]

slip [mm]

Figure 1.6: Example of a direct bond-slip relation (CEB-FIB MC90)

The parameters determining the CEB-FIB MC90 bond stress-stieare:
 confined/unconfined concrete;
e concrete compressive strengtfak;

* clear rib spacing, (betweer).5d and1.0d; & is the nominal bar diameter,
for confined concrete only).

Some more recent improved versions of the CEB-FIB curve haelzen
derived showing for instance a descending branch in thduabkstage [9]. Many
other formulae and approaches exist in literature; a lishe$se will not be given
here. Several approaches are also discussed in the CEB-FIB mG868l code
itself [7].

Instead of using a parametric formula a more sophisticatsdipility is the cal-
culation of a bond stress-slip curve using a bond model. Alboadel is a way to
calculate a bond stress-slip relation taking into accouatge number of param-
eters depending on the type of model used (see also seci@).1A bond model
can incorporate material as well as structural propertegetive a bond-slip re-
lation. An example of such a bond model is the one developeddyy Uijl and
Bigaj [8]. This model will be discussed in detail in chapter 2.

14



1.3. COMPUTATIONAL MODELING OF BOND-SLIP

1.3 Computational modeling of bond-slip

In general there are several ways to approach a bond-sliggmmonumerically
using the finite elements method and non-linear fracturenan@cs. This depends
on the scale of the approach:

* micro scale
With a micro scale approach a reinforcing bar (sometimekudhicg the
ribs) and the surrounding concrete is modelled. This ambras mainly
directed to theoretical research and is not practical fgelgroblems. With
a micro scale approach itis possible to get a bond-slipioglas a result of
the calculation see figure 1.7 and [2].

L~ B152.4

e
@ 0 -
. 25.4 1“

La:(is of rotation
152.4 — 0.00 0.01 0.02 0.03 0.04 0,05
.

Figure 1.7: Example of micro approach, axi-symmetric finite elementetization (left)
and derived bond-slip curve (right), taken from [2]

» medium scale
With a medium scale approach all bond-slip behaviour is kedhimto an
interface layer thus making use of interface elements. & bsments usu-
ally connect a truss element (i.e. the rebar) to a concretrzaum element
(e.g. an axi-symmetric, plane stress or solid element)s &pproach can
be applied to larger scale models like tension-pull expenits or beams.

* large scale
For even larger structures also using interface elememisnbes too cum-
bersome. At this scale bond-slip can be incorporated intlyrdy using a
tension-stiffening approach.

For the medium scale approach a definition is needed for Bligure 1.8 illus-
trates that slip Au” between the concrete and the reinforcement is measured at a
certain distanced” from the rebar. The slip is caused by a combination of etasti
deformation of the concrete and the cracking and crushintgetoncrete in the
vicinity of the ribs [9].

15



1. Introduction

Au
]
!
__{__ concrete
a] i “bond-slip layer”
X o .
-‘-—_ ‘m-________._lw”_v_l SteEI

Figure 1.8: Definition of slipAw (taken from [2])

1.4 Main objectives thesis

As stated in the general introduction section 1.1 this thests out to explore the
possibilities of simulating steel-concrete bond-slip d&ebur numerically. In the
preceding sections the general bond-slip theory was dbestri

The main objectives for this thesis can now be stated as:

* Research the possibilities of modeling bond-slip usingfihige element
method and sequentially linear analysis (SLA) in comparism conven-
tional nonlinear analysis.

* Research the possibilities for obtaining a bond-slip retethat can be used
in the simulations.

The following restriction is used for this thesis:

* Research is directed to medium scale bond-slip simulatiby(see section
1.3). This implies the bond-slip behaviour to be lumped iatbond-slip
layer and interface elements will be used.

16



Chapter 2

The bond-slip model by Den Uil
and Biga]
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2. The bond-slip model by Den Uijl and Bigaj

2.1 Introduction

In section 1.2.4 several possibilities for obtaining a bshg relation were men-
tioned. One way was the use of simple parametric formulage (@th the CEB-
FIB MC90 model code). The MC90 model code has some drawbacks simly
a few parameters that influence the bond-slip relation &entanto account. An-
other disadvantage is the fact that there is no well defingerican between split-
ting failure and pull-out failure (you have to decide for yseif which failure
mode is governing and then use the appropriate relation)wassalready men-
tioned in section 1.2.4 another possibility is the use of aadled bond model. In
this chapter the bond model that was developed by Den Uijl &apiig 1996 [8]
will, to some extent, be described in detail. Besides a beekgal description the
emphasis will be put on the inner workings of parts of the nhtkt were diffi-
cult to understand from [8]. In most literature that make ofsthis bond model a
description of these parts is also lacking (e.g. [12],[18]}).

Although several programs of the bond model exist (e.g. areEwersion and
a German program called “BATS bond” used in [12]) these pog are either
not fully documented or do not generate a bond-slip relatiomerically. For this
reason and to get a better understanding of the workingseabdind model it is
programmed in Matlab (for code see appendix A). This alsothasdvantage
that it can be expanded with a sawtooth generator, whichoei#xplained in sec-
tion 4.3. After it was programmed the results were verifiediasf results from
[14], see appendix B.

The reason for choosing this bond model is the inclusionlahalor influencing
parameters on the local bond-slip relation. Also this medikbe used as a basis
for the new CEB-FIB MC90 model code that will be released latey yiear. It
should be noted however that because of the nature of theetenmaterial even
with sophisticated bond models in reality there will alwdesa great scatter in
the actual bond strength along a reinforcing bar and undtareint conditions.
Deviations in bond strength by as much as 25% are therefoealgossibility.
For numerical simulations however the model is well suiteddmpare results of
using different configurations (e.g. bar diameter, comcsétength etc.) to simu-
late there effect. For several tension-pull experimenswiil be done in chapter
7.

18



2.2. GENERAL DESCRIPTION

2.2 General description

The starting point for the bond model is the stress statesicdimcrete surrounding
the rebar. For this the concrete is modeled as a thick-walgdder where the
concrete cover in 3 or 4 directions is taken into account toutate an effective
cover. The effective cover is then taken as the radius ofttici&-tvalled cylinder,

see figure 2.1 right. If a bar is pulled relative to the coretie rebar ribs will be

uncracked

cracked

Figure 2.1: Definition of slip layer (left), assumption of conical interface dnction
(middle) and concrete response to radial displacement of interfacétjrig
taken from [14]

pushed against the concrete (figure 2.1 left). In the modeiadging effect is

taken into account by conceiving the interface between dmdary layer and the
surrounding concrete as conical (instead of discrete,rseg figure 2.1 middle.
The radial stress, acting perpendicularly to the interfasehe response of the
surrounding concrete to the radial displacement at thefade. By assuming dry
friction the bond stress is directly proportional to theiahdtress.

The stress state and the radial displacement (both at theaoe) are calculated
by assuming the thick-walled cylinder as having an intepnassure. Three stages
are defined: stage I is the (linear elastic) uncracked stagee the radial displace-
ment at the interface does not yet result in cracking of thiedgr. Stage Il is the
partly cracked stage meaning that the concrete will craakgglly from the cen-
ter of the cylinder through the effective cover (figure 2ght). If the effective
cover (i.e. the radius of the thick-walled cylinder) is largnough shearing off of
the concrete between the rebar and the ribs will occur beéfereracks are able
to grow through the entire cover (see also section 1.2.1difB). In this case the
failure mechanism will be pull-out. If the effective covertoo small, the cracks
can grow all the way through before an ultimate shear streisgeached at the in-
terface. In this case the failure mechanism will be split{isee also section 1.2.1
figure 1.3). Only with splitting failure there is also a stdfewhich represents
the entirely cracked stage in which the crack width in thenclgr will continue
to increase.

19



2. The bond-slip model by Den Uijl and Bigaj

2.3 Parameters used

In the introduction (section 1.2.2) a general list of parserethat influence a
bond-slip relation is given. The bond model by Den Uijl & Bigeges the follow-
ing parameters to calculate a bond-slip relation:

» Concrete compressive strength;

» Concrete tensile strength (calculated from the concretgcessive strength);

» Concrete Young's modulus (calculated from the concretgxressive strength);

» Concrete Poisson’s ratio;

* Bi-linear concrete softening curve parameters;

» Concrete cover (in 3 or 4 directions);

* Rebar diameter;

* Rebar strain;

» Coefficient of friction;

* Number of splitting cracks.

Besides the above-mentioned input parameters there is a&deaof model

parameters that were derived empirically (see [8] table Afong other things
in this table the critical shear stress is for instance ga®n;,; =5f.;.
It should be noted that the bond model description and imeteation for this
thesis is based on the original bond model from 1996 [8]. &ihen a further
development of the model has taken place. The basics of tdelrhave however
not been changed. The later developments primarily focus on

 More precise formulation of the bi-linear softening cuparameters (using
more experimental data);

* Introduction of the effective rib area as an additionabpaeter [13];

» Using different parameters for rebar that is casted \aiyior horizontally
[13];

 Effective concrete cover for closely spaced rebar’s andfoltiple layers
[12].

The field of application for the bond model in this thesis strieted to:

* one bar specimens;

* ribbed bars;

* no transverse reinforcement (the additional confinememiot taken into
account);

e NSC or HSC.

20



2.4. CALCULATION OF STAGES I, Il AND 1l

2.4 Calculation of stages I, Il and IlI

The figure below shows the response of the concrete cylinderms of the radial
stress called, ., and the radial strain, ,, at the interfacer(, is the radius of the

rebar)! The latter is defined as¢,,, = “== (the radial displacement at the
interface is normalized with respect to the ‘bar radius).

Thick-walled-cylinder model, radial stress versus radial strain
T T T T

o E
E : Stage Il
z :

o

Stage Il

0 0.002 0.004 0.006 0.008 0.01

€
nrs

Figure 2.2: Confining capacity thick-walled-cylinded 612 mm, ¢<=20 mm, f..=35
N/mn?)

The maximum radial stress for stage | is equal to the conteetgle strength. In
stage Il a parameter called the crack radiygwhich runs from the bar radius to
the effective cover) is stepwise increased. For each cemilis (i.e. crack depth)
the response of the thick-walled-cylinder is then cal@datvhere a summation
is used of the radial stress (at the interface) caused byrtdeked as well as
the uncracked part of the cylinder. The maximum radial stegghe interface is
reached after a crack radius equal to about 0.7 times thetigffecover.
The calculation of the last stage, stage Ill, is fairly coizggied. From the formulas
stated in [8] it proved difficult to know exactly how the raldiresss!/ and strain
e/l are computed. For this stage a previously developed Exeet sfi the bond
model is consulted and its derivations are transferrededvthtlab model. For a
complete description of this stage see appendix C.

2.5 Calculation of splitting failure

As was mentioned in section 2.2 the bond stress is directipgrtional to the
radial stress:

Ty = opcot(p) (2.1)
wherecot(¢) is the coefficient of friction (constant see [8] table 4.5).
For splitting failure the radial strain at the interface isedtly proportional to the
slip:
E'r,r‘grs
tan(e)

Lin the bond model the variables are designated in the syibgrithe distance to the primary
axis, i.e. the center of the cylinder

€rr,Ts = Otan(p) < § =

(2.2)
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2. The bond-slip model by Den Uijl and Bigaj

where is the cone angle between the cone surface and the bar agifideee
2.1 middle). An example of a bond-slip curve for splittingldee is given in
figure 2.3. Because of the linear relationshipsthiecurve for splitting failure is
similarly shaped as the, , -, .. curve.

Bond stress versus slip (splitting failure)

10

——d =12mm;c_=20 mm
s eff

8r —— f =2.8035 N/mm?% f_= 35 N/mm?||
ct cc

T N/mm?

0 0.2 04 0.6 0.8 1 1.2
S [mm]

Figure 2.3: Example of bond-slip relation for splitting failure calculated with Matlab
bond model

2.6 Calculation of pull-out failure

For pull-out failure the calculation of the bond stress frdme radial stress is
similar to splitting failure (see section 2.5). The calt¢igia of the slip from the
radial strain is more complicated. Instead of a linear refethip now a nonlinear
relationship is derived. The assumption is that with puitfailure the cone angle
() will decrease with increasing slip because of the wear efititerface layer.
Figure 2.4 shows this relationship which also depends omstéed straire,. The

el

Ert0}-- o
Eri,s ~ ,1:
Er2,s
Erimax| ). : ;
sri‘,s - ’:”:

——

Sj'm 8
80,3

Figure 2.4: Radial strain - slip relation for pull-out failure, taken from [8]

curve is described by the points a, b, c and d (for formulag&esnd appendix

D). Between a-b and b-c the function is parabolic and betwegithe function is

exponential. Explicit formulations were not given in [8ktlefore they are given
here (for a complete derivation of these functions see app&).
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2.6. CALCULATION OF PULL-OUT FAILURE

Parabolic function between points a and b:

€(8) = (S 2)5% 4 2(20)5 (2.3)
5170 (51,0

Parabolic function between points b and c:

(Erl - €r2) 2 01 0(67«1 - 67’2)
(8) = — 62+ 2 ’ 5...
e(8) (62 + 02, — 261 02) (03 + 02 — 201,002
+e1 — 01 (e — €r2) (2.4)

(05 + 039 — 201,002)

The derivation of the exponential function between ¢ andodgua to be difficult.
The exact format was not given in [8] therefore an assumectifum description

is used:e(d) = bde~* + ¢ (with a, b, ¢ unknown constants). Ideally the curve
should be calculated with an equal slope at point c. Solvegunknowns with
this condition analytically however was not possible (sggeadix D). Although
the unknowns could be calculated numerically the choiceadarto use a zero
value for the slope at point d instead. This resulted in tH®Wong function
between points ¢ and d:

52

_ T %3max _
67‘<5) _ <€r3ma:p 67"2) - (56_ﬁ ey — 626 dmaw (€T3mam 5§T2)

(63ma$€_1 — 526_ 53maw) (53771@1‘6_1 — 526_ 63maw)

(2.5)

Using these formulations an example of a bond-slip curvetdk-out failure is
given in figure 2.5. The letters designate the areas descbyp¢he various func-
tions (see also figure 2.4). The used assumption of a zere Vaithe slope at

Bond stress versus slip (pull-out failure) € = 0

——d =12mm; c_=40 mm
s eff

[ | —f =2.8035 N/mm* f_= 35 N/mm?||
ct cC

0.5 1 15 2 25 3 35 4
S [mm]

Figure 2.5: Example of bond-slip relation for pull-out failure calculated withthba bond
model

point d worked quite nicely. Unless very high steel strairestaken 10%o) the
slope at point ¢ is almost continuous going from part B to @ait

2it should be noted that the calculations for this thesis galyedo not involve large steel
strains or slip values, therefore the function descriptarpart C is less relevant
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2. The bond-slip model by Den Uijl and Bigaj

2.7 Results for splitting failure

In this section some results of the Matlab bond model will bespnted when
splitting failure is governing. Figure 2.6 shows the infloerf the effective cover
(from zero to about 33 mm) on the bond-slip relation. Withuked parameters an
effective cover larger then about 33 mm will result in pulitdailure. Figure 2.7

Bond stress versus slip for splitting failure, influence of concrete cover

N

NN

WA

22NN

A
i
ZZAamnnu
NN
AN

bond stress [N/mm?]

0.2

effective cover [mm] slip [mm]

Figure 2.6: Bond-slip versus effective covet,£12 mm, f..=35 N/mn¥, f.,=2.80
N/mn¥)

shows the influence of the concrete compressive strengtim @5 to 110 N/mr¥)

on the bond-slip relation. Indirectly changing the coneredmpressive strength
also changes the concrete tensile strength and the cononete’s modulus (see
section 2.3). With an increasing strength the maximum bdoreds increases but
also the behaviour becomes more brittle. Finally figure B@s the influence of

Bond stress versus slip for splitting failure, influence of concrete strength

bond stress [N/mm?]

concrete strength [N/mm?] 0 R —

Figure 2.7: Bond-slip versus concrete strengfh<12 mm,c=20 mm)

increasing the rebar diameter (from 12 to 40 mm). With eqaatoeete cover this
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2.8. RESULTS FOR PULL-OUT FAILURE

has a reverse effect on the bond-slip relation (note that-éinés is reversed in the
plot).

Bond stress versus slip for splitting failure, influence of ds
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bond stress [N/mm2]
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Figure 2.8: Bond-slip versus rebar diameter20 mm, f..=35 N/mn¥, f.,=2.80 N/mnd)

2.8 Results for pull-out failure

In this section some results of the Matlab bond model will bespnted when
pull-out failure is governing. Figure 2.9 shows the influeraf the steel strain
(from 0.1%oto 100%0) on the bond-slip relation. Implementthgs influence was
one of the mayor goals when the bond model was conceivedrd=gjai0 shows

Bond stress versus slip for pull-out failure, influence of £

=
13

=
o

bond stress [N/mmz]
(&)

0.2

£ slip [mm]

Figure 2.9: Bond-slip versus steel straiy (d,=12 mm, ¢=40 mm, f..=35 N/mn?,
f.+=2.80 N/mmi)

the influence of the concrete compressive strength (frono 23® N/mn?) on the
bond-slip relation. Indirectly changing the concrete coespive strength again
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2. The bond-slip model by Den Uijl and Bigaj

also changes the concrete tensile strength and the conoretg’s modulus (see
section 2.3). The small jump at a concrete strength of 62rin¥/is caused
by a difference in the calculation of the concrete tensitergjth between NSC
and HSC. Finally figure 2.11 shows the influence of increasiegé¢bar diameter

Bond stress versus slip for pull-out failure, influence of concrete strength
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=
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7///,///¢
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bond stress [N/mmz]

o

I
(5]
M

150

fcc N/mm? slip [mm]
Figure 2.10: Bond-slip versus concrete strengfh<12 mm,c=40 mm,e,=0)

(from 12 to 40 mm). With a concrete cover equal to 4 times thardiameter (to
prevent splitting failure) this has again a reverse effectte bond-slip relation
(note that the y-axis is reversed in the plot).

Bond stress versus slip for pull-out failure, influence of ds

0

bond stress [N/mmz]

ds [mm] slip [mm]

Figure 2.11: Bond-slip versus, (c=4d, mm,e;=0, f..=35 N/mn?, f.;=2.80 N/mmnd)
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Chapter 3

Extensions to an SLA software
Implementation
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3. Extensions to an SLA software implementation

3.1 Introduction

Since 2001 an extension of the finite element proglatANA for the use of
sequentially linear analysis (SLA) is under developmemedft University. Until
now the models created use plane stress and/or truss ekeornt With these
element types already a great variety of problems can beddk.g. [10], [11],
[15]).

One of the main objectives of this thesis is to extend theipiisies of mod-
eling in SLA by expanding the library with interface elemgand axi-symmetric
elements. These extensions will then be used to analyze-&lgncklated prob-
lems in chapters 6, 7 and 8.

SLA is especially used for brittle materials like concretarasonry. These
materials have a steep softening behaviour which can leadty problems when
using conventional nonlinear analysis (e.g. bifurcatiom@n-convergence). To
circumvent these problems the negative slope of the sofgediagram is replaced
by a sawtooth diagram of positive slopes and the increméetative method
used in nonlinear analysis is replaced by a series of linealyaes (see [10]).
Some specific sawtooth modeling will also be dealt with inptha4.

3.2 Program overview

The SLA programming is incorporated as an extension of thdimenodule of
DIANA (version 9.2). The programming language fANA and the SLA ex-
tension isFortran77 The basic steps performed in a SLA analysis are:

1. Initialization.

2. Perform linear analysis.

3. Identify critical integration point (called CRITIP) anditeral load multi-
plier \.

4. Multiply loads with the critical load multiplier.

5. Apply a strength and stiffness reduction of the criticékgration point.

6. Repeat steps 2 to 5 until the given number of steps is cédcuta until no
more damage (i.e. strength and stiffness reduction) isigess

An exhausted description of the general SLA routines andigs will not be
given here. The whole procedure is described in detail imémuse developer's
manual [17]. Regarding the programming for this thesis irpttegious mentioned
overview steps 3 and 5 are the most relevant.

Ldepending on the nonlinear relation it is also possible fyagn increase in strength together
with a stiffness reduction, see chapter 4
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3.3. AXI-SYMMETRIC ELEMENTS

3.3 Axi-symmetric elements

The programming of the axi-symmetric elements could beigdgrbased on the
existing code for plane stress elements. The differendeeisdldition of a fourth
stress component for the circumferential directien.. Currently in SLA the only
option regarding concrete cracking is to use an orthogoxedi ftcrack total strain
model.

The stress-strain relation in SLA (constitutive matrixpésed upon (reduced)
Young’s modulus in the orthogonal (crack) directions: N,Ad&. In this local
crack axes system the relation between the stresses anttdhes $or an axi-
symmetric element is given by:

Jnn enn
Ot | _ D €tt (3.1)
O_ZZ 622
Ont Int

With D denoted as:

(Vtzl/zt - 1)En _(Vnzl/zt + Vnt)En _(Vntl/tz + I/nz)En O
F _(Vzthz + th>Et (Vznynz - 1>Et _(thynz + Vtz)Et 0 (3 2)
_(thyzt + Vzn>Ez _(Vzant + Vzt>Ez (thynt - 1)Ez 0 )
0 0 0 &
In which:
E
G= —"" 3.3
2(1+v) (3:3)
and: .
F= (3.4)

(Vznyntl/tz + VinVnzVat + VonVnz + VinVnt + Vi Vot — 1)

The D-matrix was derived by first considering a strain-stnedation and then
applying separate uniaxial stress states which can theroimdined using the
principle of superposition. Inverting the final result yielthe wanted stress-strain
relation (for a complete derivation see appendix E). Thegwloscripts used are
related to the stress direction which is being evaluatedt (§ubscript) and the
source stress direction (second subscript). The Poissatiss are determined

with:
E.
Vij = o (ﬁ)) (3.5)

with i,j={N,T,Z}. Using equation 3.5 the six Poisson’s ratios are:

— E _ E
Vin = Mo E:JL Vi, = 1 (EZ)
L E
Unt = Vo | 5t | Ven = Vo (B (3.6)
_ E _ E
Va = Vo E_(t) Vnz = o Ef)
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3. Extensions to an SLA software implementation

As can be seen from equation 3.6 the Poisson’s ratios arematl by the source
stress direction, therefore only three unique values .eRistause of this the con-
stitutive matrix will become fully symmetrical.

The shear modulus G depends on the adopted shear retentitsh. Méthin SLA
three options are available:

1. Full shear retention (no reduction):

Ey
G=—""_ 3.7
2(1 + V()) ( )
2. Constant shear retention:
Ey
G=p— 3.8
With 0 < g < 1.
3. Stepwise reduction of shear modulus:
Epin = mMin{E,,, Ey, E,} (3.9)
Emin
Vred = 1 ( E() ) (310)
E’ .
G=_"-mn 3.11
2(1 —I— Vred) ( )

Besides the D-matrix which is used to update the most crititedjration point the
largest part of the programming surrounded the calculatfdhe admissible load
factor. To calculate an admissible load factor the stres®vat integration point
level is evaluated in three directions (NTZ) and comparethé&current tensile
strength. The current tensile strength may differ per diveadNTZ) and depends
on the damage history up until the moment of evaluation. EpsSEMMetric
elements the necessary steps in the routine used to calchkatdmissible load
factor (\) is visualized in a flowchart see figure 3.1. To check the cadersl
one-element tests with various load conditions have bealyzed, see appendix
F. In all cases the code worked as was intended. The routiagsvere modified
or created are given in appendix G table G.1.

3.4 Interface elements

Because the axis system is fixed the SLA programming involeednterface
elements is much less complicated compared to axi-synunelgments. Also
only the shear direction (i.e. bond-slip) is able to have mlinearity. Therefore
for the calculation of the admissible load factor only onmess component needs
to be evaluated and for the critical integration point ontg tiffness term needs
to be updated.
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3.4. INTERFACE ELEMENTS

All stresses in XY¥-plane zero 7

Yes
Mo
¥ -
Cracked in X¥-plane ? Check stress in Z-direction anly
no Yes
L J -
Calculate principal stresses
and primafy crapck angle el c:rau:l_c fece] .
Check largest principal stress Check stresses in NTZ-axis system

Y

Complete damage M-direction ?

e

Check M-direction yes

Complete damage T-direction ?

no

Check T-direction yes
K\\NN—‘M

Complete damage Z-direction ?

o

Check Z-direction

Y

yes

Y h J

Complete damage in all directions ?

F Y

no Yes

Append & to overall solution set

Skip current [P

¥

ls M- the critical direction and is

Far critical IF onl T
¥ the current IP undarmaged in this direction ?

s WWrite crack angle
for current [P

Figure 3.1: Flow chart to calculate admissible load factor for axi-symmetrioelet

Because bond-slip is not dependent on slip direction the semme stress-slip
diagram is valid for negative as well as for positive slipuesd. Therefore with

calculating an admissible load factor there is always amEgwer bound and an
upper bound value with different signs.

Because the programming was straightforward no one elemststhhave been
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3. Extensions to an SLA software implementation

performed. The routines that were modified or created arengiv appendix G
table G.2.

3.5 Cable (truss) elements

For quadratic truss elements (MANA called cable elements) a minor adaptation
had to be made for use with SLA. In the routine called ISCLTR.H-atatement

is added to write the constitutive matrix to integrationrgdevel in case of a SLA
calculation.

3.6 Post processing

For post processing the calculation of the crack straineerNTZ-axis system is
programmed for the axisymmetric elements. These cracinsteaie then written
to an additional item list already used in SLA. The crackisgare calculated in a
similar fashion as with plane stress elements. For the Betion the crack strain
is defined as:

= €
nn nn nn nn
Ey

(ler) — ((tot) _ (el) _ (tot) _ Tnn (3.12)

This means the crack strain is calculated as the differeated®n the total strain
and the elastic strain if the total strain is less then thignalte crack strain. In
case the total strain is larger then the ultimate crackrstthe elastic strain be-
comes zero and the crack strain equals the total strain €figy@). For the T- and

stress

total strain

@ g
CA et

Figure 3.2: Definition of crack strain in SLA (taken from SLA users manual)

Z-directions the crack strains are calculated analogouBhe crack strains are
calculated in routine EPSCRK.F with!2): ITEMO04, ¢\ ITEMO7 and¢'S”:
ITEMOS8. For post-processing also the damage indicatorsvatten to the item
list. For interface elements this is ITEMO09. For axi-symnue¢lements these are:
ITEM10 (damage indicator N-direction), ITEM11 (damageiaador T-direction)
and ITEM12 (damage indicator Z-direction).
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Chapter 4

Sawtooth approximation and
sawtooth generators
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4. Sawtooth approximation and sawtooth generators

4.1 Introduction

Sawtooth diagrams (or sawtooth approximations) are usgtito replace non-
linear curves of constitutive material behaviour. To appr@te a nonlinear curve
in SLA a sawtooth around the “mother” curve is constructes @lso section 3.1
and [10]). An overview of sawtooth approximations can alsdfidund in [18].
Examples of sawtooth approximations for material behawioat have been used
with SLA are: softening of concrete in tension, crushing afcrete in compres-
sion and steel plasticity. In this chapter some extensioriké current theories
and applications will be presented that will be used in thests.

4.2 Sawtooth modeling of Hordijk tension softening

For concrete different softening curves exits that can lexl s a basis for a
sawtooth approximation. For a linear softening curve tHeutation of such a
sawtooth approximation is straightforward. However withanlinear curve it
becomes more complicated. Currently automatic creation savetooth within
the SLA environment is only implemented for a linear softgncurve. In this
thesis the nonlinear Hordijk softening curve will be usedrtodel concrete in
tension. For this an automatic sawtooth generator is pnogred using Matlab.
This section describes how this model is constructed. Focrebe in tension the
area underneath the softening curve is kept invariant aedusl to the fracture
energyG s divided by the crack band widthto get mesh size independent results
[10].

4.2.1 Nonlinear formulation

The Hordijk tension softening curve is described in IMANA manual section
18.1.1.5. As a reference the formulas are also given belomeS=quations in the
manual were found to be incorrect; the corrected ones avegalen below.

cr
Ec’r‘ 3 (—CQ ;pnn >
1 _|_ Cl CT"" e ‘nn.ult L.
€nn.ult

cTr

AL

A (1 e 0<en <en, (@)
\ 0 E'flrn.ult < Eflrn < o0
I
€t = 5.136ﬁ 4.2
' hfe
Equation (18.48) in manual incorrect, correct equation:
cr o ft
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4.2. SAWTOOTH MODELING OF HORDIJK TENSION SOFTENING

Equation (18.49) in manual incorrect, correct equation:

GLE\*
fr=10.743— (4.4)

For a total strain approach the elastic branch also repief@cture energy. The
area underneath thee,,; curve equals tc?h-—f (fracture energy divided by the crack
band width). Since¢’ ., in equation 4.2 is based on a decomposed strain model,

for a total strain approach the fracture enefgy is first reduced by the elastic
part:

1f2h
1 1 ct
Gfreqg = Gf — 3B (4.5)
Thene, ., is calculated using equation 4.2 with the reduced fractnesgy.

To prevent a snap-back in the constitutive relation a mawinalue for the crack
band widthh can be calculated by equating 4.2 and 4.3:

GLE
Ponaz = 0.743—5 (4.6)
fi

If h exceedsh,,.. the tensile strength will be reduced using equation 4.4. For
a total strain model the assumption is that the ultimatd 8itain equals to the
ultimate crack strain for a decomposed model. For a linettesimg this is cor-
rect and the prove of this is straightforward. With the afoeationed formulas
however the reduction of the fracture energy due to theielpatt, and the conse-
guently reduction of the ultimate crack strain using equradi.2 causes a reduction
of the crack strain of:

Aecr - Efz%ult(ch) - Ezz.ult<G§”,red)

Gl GL  5.136f%h  5.136 f
=5.136— — 5.136—L + T = T2 9 568¢,, (4.7
0 nf, " 2ERf, 2 E ca (47)

This means the total strain is reduced with a constarit%f8c., more then by
the elastic strain only. For a linear softening curve thediam the numerator in
equation 4.7 equals to 2. Therefore it can be easily verifiatih that casé\¢,.. is
indeed equal te.;. The extra reduction of the total strain for a nonlinearesuifig
curve implies that the material will become more brittle.

4.2.2 Automatic sawtooth generator

Figure 4.1 shows an example of a sawtooth approximationh®tordijk soft-
ening curve calculated with Matlab (for code see appendix A can be seen
from the figure for the sawtooth approximation a constant,umequal, vertical
uplifting and downshifting of the original curve is used.rfoe sawtooth approx-
imation two criteria have to be met:

1. The strain of the last vertical tooth should be equal toulienate total
Strainetot,maw (Etat,maas = € + 6cr,ult)-
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4. Sawtooth approximation and sawtooth generators

Sawtooth for Hordijk tension softening
T T T T

: : :
# of teeth = 25

p+ = 0.089777 N/mm?

— p- =0.09875 N/mm?

Gf sawtooth = 0.06

£, = 0.00089286

& =0.008802

cr,ult

15l ot max = 0:0096949 ||

251

f N/mm?

t

051

Figure 4.1: Calculated sawtooth of nonlinear softening curve using Matlab

2. The area underneath the sawtooth approximat%ir) ghould be equal to
the area underneath the mother curve.

For a fixed number of teeth and a fixed uplifting value (capedin N/mm?)
condition one determines the value for downshifting (chfle- in N/mm?). The
second condition can then be considered as a condition ¢ordietep+. In Mat-
lab the following steps are taken:

1. Check ifh does not exceehl,,.. (using equation 4.6);

2. Calculate the reduced fracture energy (equation 4.5)lndItimate crack
strain (equation 4.2);

3. Calculatep+ with the above mentioned criteria;
4. Plot graph of mother curve and sawtooth approximation;

5. Write sawtooth table (Young’s modules and tensile sttefmgtall teeth) to
a text file for direct use IDIANA .

Step 3 is the most complicated step and involves a lot of zachnfy. The
program flow of this part is:

 Choose a start value fert+: pJ;

* Calculatep, using condition one;

Calculate the fracture energy of the sawtooth approximatio

* Repeat the first 3 steps until condition two is met.

To calculatep™ the sawtooth approximation is calculated beginning onetfte |
hand side with the extended elastic branch until the uplifterve is reached. Then
all teeth are determined in succession. For this a zero fyndiithe intersection
points of the uplifted mother curve and the elastic brandfethe sawteeth is
needed. This zero finding proved to be unreliable at timeaumexfor low negative
strain values the Hordijk function shows a steep verticalcdading asymptote
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4.2. SAWTOOTH MODELING OF HORDIJK TENSION SOFTENING

(see figure 4.2 left). This caused intersections with the elastic branches to be
found with corresponding negative strain values (esplgdiait low values of the
Young’s modulus, i.e. with the last few teeth). To circumivdmis problem the
original curve is modified for negative strain values withobastant function value
equal to the sum of the tensile strength and the upliftingievak- (figure 4.2
right).

Hordijk curve for -0.35 < x < 1.5 Modified Hordijk softening curve

| —
95 0 05 1 15

= ] ’ x=¢_ |/
x=e Je Eor! Eorut

Figure 4.2: Original Hordijk softening curve (left) and modified softeningveufright)
with normalized strain axis

For determiningp+ based on criteria one and two, a zero finding is used that
is bounded by a maximum and a minimum value ger (solution interval). To

get results for all possible combinations of parameters gbiution interval has

to be set wide enough. However this causes a downside as itipgutiag time
can become very high. To create a predetermined solutienvadtfor p+ the
following equations are used:

Piin = 0 @8)
Phus = P2 (@.9)

With:

a, 5 constants
fi concrete tensile strength
n number of teeth

With the concrete parameters used in chapters 5 and 6 (siensed) good re-
sults were obtained using=1.5 and3=2. The time to compute is usually about 30
seconds unless a lot of teeth are used(). With the above-mentioned constants
to predetermine the solution interval however also a sathtapproximation with
100 teeth can be calculated within about 50 seconds.

The last tooth calculated should have a stiffness and aleéesisength of zero.
Because of the tolerances this will never be the case, therétie last tooth is
omitted from the diagram. Instead for the last tooth a vew $tiffness and ten-
sile strength is calculated based on the values of the sdashtboth divided by
10000. It was mentioned before that a limitation is usedffaf h becomes too

the function is only valid between zero and one
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4. Sawtooth approximation and sawtooth generators

large to prevent a snap-back in the softening curve. Althdbgg limitation is also
incorporated in the current Matlab model, for SLA this isuatly not a problem
as a previous study shows [11].

4.3 Sawtooth modeling of Den Uijl and Bigaj bond-
slip model

The bond-slip relations from the bond model (see chapterile used with
SLA and therefore the calculated bond-slip relations neetet approximated
with a sawtooth diagram. For this the Matlab bond model iemoéd with an
(optional) sawtooth generator. Because the curve is a noateesult consisting
of a number of points it is first replaced by a continues curv&fiction using
the Matlab “spline” command. The spline runs through albdagints and has an
equal first and second derivative at all intersections. Wagkes it easier to uplift
and downshift the “mother” curve and to calculate the irgetiosns with the elastic
branches. Because the bond-slip curves are already nanforelaw values of
slip only a limited elastic part is assumed. This means thvtaszh approximation
will start already on the ascending part of the curve. Figut& and 4.4 show
examples of sawtooth approximations for splitting and-pull failure. For bond-

Bond stress versus slip (splitting failure)
10 :

7ds =12 mm; ceﬂ: 20 mm
8l — f =2.8035 N/mm?; f_= 35 N/mm?
ct cc
Curve fit (spline)
——+# teeth = 40; p+=0.27 N/mm? 5max= 1.2668 mm||

T N/mm?

0 012 014 016 018 i 112
o [mm]
Figure 4.3: Bond-slip relation calculated with the Matlab bond model togethién &
sawtooth approximation for splitting failure

slip an equal uplifting and downshifting of the mother cursaused. Because
concrete cracking is involved one could argue that the aneameath the bond-
slip curve is somehow related to fracture energy (espgaialtase of splitting

failure). As with concrete in tension this would imply thevtaoth approximation

to have an area equal to the mother curve (see section 4.2xuBeevidence is
lacking (also from the calculation results) and also to eréa highly complicated
calculation of the sawtooth approximation this is not inmpéasted.
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4.4. SAWTOOTH MODELING OF STEEL PLASTICITY

Bond stress versus slip (pull-out failure) £ = 0

14f .
12 A
<€ 10t 1
£
> 8 -
= ——d =12mm;c =40 mm
- 6L s eff
——1 =2.8035 N/mm? f_= 35 N/mm?
a4t ct cc
Curve fit (spline)
2 ——# teeth = 50; p+ = 0.33 N/mm?; 6u|t: 1.1839 mmy]|
0 L T T T T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4

3[mm]

Figure 4.4: Bond-slip relation calculated with the Matlab bond model togethiém &
sawtooth approximation for pull-out failure

4.4 Sawtooth modeling of steel plasticity

In previous studies yielding of steel in SLA is approximateith a sawtooth di-
agram with an equal uplifted and downshifted value, see digub left. How-

ever this causes the possibility of steel stresses becamghgr then the yielding
stress. Although this is also the case with concrete crgdkitension with steel
there is no relation to fracture energy. Therefore to prewgher then yield-
ing stresses the sawtooth approximation is modified to hal@eshifting value
only, see figure 4.5 right. To have an equal range the doweshifluep— should

be approximately twice as large.

Sawtooth for steel Sawtooth for steel
500 : . . .
400
aof  WWAAAAAAT LA
; 300 — |
~_ 300F number of teeth: 20 |4 o number of teeth: 20
g & =0.0019048 g ¢ =0.0019048
£ el E el
4 - 4 L -
Z 00l €, = 0013393 Z 200 £, = 00141
E, = 210000 N/mm® E, = 210000 N/mm®
100t — G __ =400 N/mm? |1 1001 ———0__ =400 N/mm? |]
max max
— p=20 N/mm? —  p-=40 N/mm?
0 . . . ; ; ; 0 . :
0 0002 0004 0006 0008 001 0012 0014 0 0.005 0.01 0.015
€ €

Figure 4.5: Sawtooth for steel used in previous studies (left) and new agraiht)
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Chapter 5

Nonlinear calculations of the
tension-pull experiment by Gijsbers
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5. Nonlinear calculations of the tension-pull experimentijsbers

5.1 Introduction

In the introduction (chapter 1) the possibilities to sinteldne bond-slip behaviour
at different scales and the description of various borngl+®lations have been
presented. In this chapter the aim is focused towards theeimfe of bond-slip
on the general cracking behaviour in a tension-pull expenimFor this purpose
as a start first a “reference” calculation will be made of acd#etension-pull
test which was already calculated by Rots in 1985 [2]. The aito itrace back
the results by Rots using the finite element proglalANA . Some extensions to
the original calculation will be presented: a 3D approadhgisolid element and
some investigation into the influence of using differentoading schemes. The
nonlinear calculations also serve as a basis for compatasive SLA calculations
of the same model in the next chapter.

The tension-pull specimen is tested by Gijsbers [3]. It &irsf a single
reinforcing bar with a square concrete cover (figure 5.1).tke FEM discretiza-
tion the square concrete cover=80 mm) is replaced by an equivalent circu-
lar cover ¢.,=34.4 mm). The material parameters used for the concrete par
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Figure 5.1: Tension-pull experiment by Gijsbers [3]

are: Youngs modulug=28000 N/mm, Poissons ratia’=0.2, tensile strength
f+=2.5 N/mn#, fracture energy+;=0.06 N/mm, crack band width=11.11 mm
and shear retention factge=0.5. For the reinforcing bar the material parameters
are: Youngs modulu®£=192300 N/mm; Poissons ratia’=0.2 and yield stress
0,=400 N/mni. For the interface the parameters used are: tangentifrestif
S,=250 N/mn¥, normal stiffnessS,=20000 N/mm and ultimate tangential bond
stressr,=6.25 N/mni. The load-displacement curve found in the experiment (fig-
ure 5.2) shows three distinct peaks representing threeapyioracks.

5.2 Concrete crack model

For concrete cracking there are many possibilities ancemifft crack models
available in theDIANA FEM package. All calculations will be made using a
smeared crack approach. A general distinction can be madede fixed crack
models and rotating crack models. Furthermore there is ¢issilpility to use a
decomposed crack strain model or a total strain model. Fextmsive descrip-
tion of concrete crack models see for instance [6]. Becalesaith is to recreate
the results by Rots the choice is made to use the same comstitabdel. This
means an orthogonal fixed crack total strain model is usedmwanhlinear Hordijk
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5.3. INTERFACE BOND-SLIP MODEL

SLA Gijsbers tension pull experiment
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Figure 5.2: Load-displacement curve Gijsbers

tension softening (see section 4.2.1) and the tensionftig-kept constant (see
figure 5.3). This choice is furthermore based on the facttthatis currently the
only crack model available when using sequential linealyarsa For all smeared

CRACK 1 =5

Tt Frn

Gk

{a) constant Enm
(=1

Snn.uls

Figure 5.3: Constant concrete tension cut-off (left) and Hordijk tensidtesmg curve
(right) taken fromDIANA manual

crack models inDIANA the unloading is of secant type. The crack band width
parameter: is obtained by the width that belongs to a single Gauss iategr
point.

5.3 Interface bond-slip model

For interface elements several options are availabBI/ANA dependent on the
element type selected with corresponding parameters (@glinear elasticity,

bond-slip and user-supplied). When selecting bond-slip afntree standard
curves can be selected (figure 5.4). The bond-slip curveslarelated to the

tangential direction as the normal direction will alwaysen linear elastic. Also
there is no possibility of coupling between the two diressio For the current
calculation the multi-linear option is selected (figured).dith two branches: an
elastic part and a perfectly plastic part see figure 5.5 (tonerical values see
section 5.1).
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5. Nonlinear calculations of the tension-pull experimentijsbers
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Figure 5.4: StandarddIANA bond-slip curves taken froR/ANA manual
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—

1S

E4

Z /
2

0 0.02 0.04 0.06 0.08 0.1 0.12
5 [mm]

Figure 5.5: Used bond-slip relation{=6.25 N/mm)

5.4 Modeling of imperfections

In the experiment a crack pattern will develop which ultiedatonsists of several
primary cracks. To obtain this crack pattern numericallg @bsolutely necessary
to incorporate material imperfections in the mesh at speltiations along the
length of the model. If no imperfections were to be used aelanga will crack
simultaneously and no primary crack pattern will be ableewetdop.

To initiate cracking, three predetermined cross sectitorggghe length of the
model are given imperfections using a reduction of the cetectensile strength
(table 5.1). However if the fracture energy and the crackdbardth remain
unchanged, only reducing the tensile strength results imenrease of the ulti-
mate crack strain (figure 5.6). Although the method of creptin imperfection

2,5

T T T T T T T T T T T T
a 0,002 0,004 0,006 0,008 0,010 0012
Crm

Figure 5.6: Effect of reducing tensile strength with Hordijk softening

is somewhat arbitrary, increased ultimate crack strainlatation of an imper-
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5.4. MODELING OF IMPERFECTIONS

fection seams illogical. To correct this “error” the ultiteacrack strain will be
reduced by the same coefficient as the tensile strength&flyid). With the crack
band width unchanged this can be achieved by reducing tbifeaenergy with
a quadratic reduction factor.

257

Figure 5.7: Effect of combined reduction of tensile strength and ultimaieketain with
Hordijk softening (reduction factor 0.8)

Table 5.1: Location and magnitude of imperfections

Standard| Imperfection| Imperfection| Imperfection
atr~ L at~ 3L at~ 1L
fet[N/mm?] 2.50 2.00 2.20 2.45
G¢[N/mm] | 0.060000| 0.038400 0.046464 0.057624
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5. Nonlinear calculations of the tension-pull experimentijsbers

5.5 Axi-symmetric calculation

In this section the tension-pull experiment by Gijsberd Wé calculated using
axi-symmetric elements.

5.5.1 Model setup

The meshing is similar to the one done by Rots [2]. The meshrfi§L8) consists
of 36 quadratic axi-symmetric elements for the concrete @ad 18 quadratic
truss elements for the reinforcing bar. The interface betwibe concrete and the

EEEEE

Figure 5.8: Finite element mesh

reinforcing bar is modeled with 18 quadratic interface edata. The concrete
imperfections described in section 5.4 are given to a fulkssrsection of two
elements. There were some issues with this mesh. First tifeafieinforcing bar
and therefore also one side of the interface is located iraxieof rotation (i.e.
x=0). This caused ill-conditioning of the interface stifisanatrix. To circumvent
this problem the truss is shifted slightly out of the axisathtion. Also it is vital
to have a correct stiffness for the interface. The stiffnessetermined by the
circumference of the reinforcing bar. BIANA an interface can be given any
thickness but it is unknown how the area of the interface isutated exactly
especially when using axi-symmetry. Therefore INANA configuration option
“plane stress” is used for the interface since then the gifetence can be inputted
explicitly.

As for boundary conditions in the axis of rotation the trussupported in
the x-direction, the left end point is supported in the yediron and the load
(displacement) is located at the right end point. The impgaseformation is 1
mm (figure 5.9). INDIANA one crack band width (see section 5.1) can be set,

=

TT Tttt ittt it

=

Figure 5.9: Boundary conditions and loading

which is equal for all directions. In this model the crack Gawvidth is set for the
XY-plane, however for the circumferential direction thiswd actually depend on
the distance to the axis of rotation and on the supposed nuwhbplitting cracks.
With three supposed splitting cracks the crack band widtlhie circumferential
direction would vary between 8 and 80 mm as opposed to thel Itirh now
used. For more details about used element types, integistieemes and program

46



5.5. AXI-SYMMETRIC CALCULATION

settings see appendix I. To prevent oscillations of intarfiaangential strains it is
necessary to use a lumped integration scheme for the iogeelaments [4].

55.2 Results

First a preliminary linear elastic calculation is made tedhthe correctness and
general behaviour of the model. Next the nonlinear calmnas performed using
displacement control, full Newton-Raphson and an energgdeasnvergence cri-
terion (for details see appendix I). After changing the inf@&tions several times
to the ones given in table 5.1 eventually a crack pattern thitbe distinct pri-
mary cracks (figures 5.11 to 5.14) and a corresponding legaladtement curve
(figure 5.10) was found which resembles quite closely thereperted by Rots
[2]. Peak values are found at 0.128 mm (9.9 kN), 0.258 mm (&N1)60.403 mm

Load—displacement curve NLE analysis using axi—-symmetry
25.000 \ ‘ ‘ ‘ ‘

20.0001

15.000F

Fy [N]

10.000r

5.0001

0 0.2 0.4 0.6 0.8 1 1.2
uy [mm]

Figure 5.10: Load-displacement curve

(13.1 kN) and 0.903 mm (19.9 kN). The disks in figures 5.12 figl 5epresent
splitting cracks. Although primary cracking occurs at arlyestage (represented
by the three peaks in the load-displacement curve), uléroedck strains (repre-
senting fully open cracks) are reached only after an appligalacement of about
u,,=0.6 mm. The ultimate strength is governed by plasticityhefrteinforcing bar
at midpoint. Just before plasticity starts all three priynetacks have surpassed
the ultimate crack strain (fully open cracks).  The forcecmntration at both

Figure 5.11: Crack patterm(,=0.1 mm,e . =0.41e-3)

max

Figure 5.12: Crack patterm{,=0.2 mm,e . =0.495e-2)

max
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5. Nonlinear calculations of the tension-pull experimentijsbers

Figure 5.13: Crack patterm{,=0.3 mm,c’ . =0.586e-2)

max

Figure 5.14: Crack patternm,=0.6 mm,c;’ . =0.904e-2)

max

ends introduces the first cracking as can be seen in figure H.1b imperfec-
tions were to be used the cracking would continue along thdrbm both sides
until they would coincide in the middle. However with the dseperfections it is
possible to trigger localized primary cracks as can be seégures 5.12 to 5.14.
With the fixed crack model used it is possible to get threeamtimal cracks in one
integration point. Because of the axial loading and consetiyueniform stress
distribution in this model secondary cracking and splitare very limited and
splitting primarily occurs at the location of the load irdtection. The final crack
pattern at a load of,=1.2 mm is shown in figure 5.15. It is of interest to see the

Figure 5.15: Final crack patterm(,=1.2 mm,e;’ . =0.319e-1)
influence of using a nonlinear relation for the bond-slip.(ia limitation on the
maximum bond stress). Figure 5.16 shows the final crackrpattéhe interface
is kept linear. It can be seen that now the concrete craclkasgricreased signifi-

Figure 5.16: Final crack pattern using a linear interface,&£1.2 mm,e;,,=0.258e-1)
cantly. This is a logical consequence of the larger bongsé®being transferred
to the concrete resulting in higher stresses in the conaretéhus in more crack-
ing. The influence on the global strength of the model (e.g.load-displacement
curve) however is found to be relatively low. This can moeelly be explained
by the fact that the global strength and stiffness is goveepnanarily by the three
weakened cross-sections and not so much by the in betweskinga

The steel stresses along the reinforcing bar are in agréemgmwhat one
would expect and show peak values at a location of a primagkdffigure 5.17)
together with a sign change of the bond stress. Figure 5.48sskhe interface
bond stresses along the reinforcing bar at various loadsleva the beginning
the largest slip and consequently the highest bond stress®oear the (loaded
or constrained) ends of the model. After a transition zonabafut 200 mm the
forces from the rebar are completely shared between the aglobthe surround-
ing concrete resulting in equal displacements and zero lstnedses. When a
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Figure 5.17: Steel stresses along the bargt0.1 mm (LC1 3)u,=0.2 mm (LC1 8),
uy=0.3 mm (LC1 12) and.,,=0.42 mm (LC1 17)

primary crack develops the cracked cross section will belasreasingly like a
free surface similar to the end faces. As can be seen fromefyds left the bond
stress distribution will then split up into two pieces thathbhave a bond stress
distribution similar to the initial one. This behaviour ¢omes until the primary
crack pattern is fully developed.

2t
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Figure 5.18: Bond stress profiles.(=0.1 mm, u,=0.2 mm) (left) and ¢,=0.3 mm,
uy=0.4 mm) (right)
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5. Nonlinear calculations of the tension-pull experimentijsbers

5.6 3D calculation

In this section the tension-pull experiment will be cal¢ethin 3D. This is done
to further explore the possibilities to model a tension-guperiment and also
to see if the results are consistent with the ones obtain#gdthe axi-symmetric
calculation.

5.6.1 Model setup

The mesh (figure 5.19) consists of 8x18 quadratic wedge elsmend 8x18
guadratic brick elements for the concrete part. The reawfigr bar is modeled
with 18 quadratic truss elements. The center axis is theigi-akhe interface

Figure 5.19: Finite element mesh, cross section and 3D view

between the concrete and the reinforcing bar is modeled 1itquadratic line-
solid connection interface elements. The imperfectiorscideed in section 5.4
are given to a full cross section of sixteen elements. Inriaslel the interface
has zero thickness and one side is connected to the ceatérhn is shared by
all eight wedge elements. Because of this the cross sectoaalof the concrete
is slightly enlarged towards the centerline by the areaghatld actually be the
steel bar, the difference is however negligible. For a 8oéd interface element
the bar diameter is an obligatory parameter and thereferentbrface stiffness is
calculated automatically bIANA .

The boundary conditions consist of supports in three doastfor both bar
endpoints. To prevent a rigid body rotation around the gegutés a tangential
support is given to a single node on the outer edge of a brexkeht. The load
(displacement) is located at the right end point. The impadeformation is 1
mm.

The bond-slip option is not available MIANA when using a line-solid in-
terface element. Therefore instead the nonlinear optiasésl for the interface
elements. This introduces a difference in unloading behavi The bond-slip
model uses secant unloading whereas with the nonlinedroreldere is no dif-
ference in the loading and unloading curve (i.e. they arsémee). The influence
of this will be explored later.

The crack band width is again set to 11.11 mm representingigtance be-
tween the integration points in y-direction (i.e. the léndirection). For more de-
tails about used element types, mesh generation, integrathemes and program
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5.6. 3D CALCULATION

settings see appendix K. To prevent oscillations of intarf@angential strains it is
necessary to use a lumped integration scheme for the iogeelaments [4].

5.6.2 Results

First a preliminary linear elastic calculation is made tedhthe correctness and
general behaviour of the model. Next the nonlinear calmnas performed using
displacement control, full Newton-Raphson and an energgdeasnvergence cri-
terion (for details see appendix K). The load-displacensante found resembles
quite closely the one obtained using axi-symmetric eleméigure 5.20 right).
However a bifurcation was found (figure 5.20 left) that re¢ato the first primary
crack, i.e. the displacement at which this first primary kraccurs completely
determines the rest of the load-displacement behaviotinoAgh no bifurcations

Load-displacement curve NLE analysis 3D model Load-displacement curve NLE analysis axisymmetric versus 3D model
25.0001 . 25.000 T T T T T

20.0001 20.0001

15.000[ 15.0001

Fy Nl
Fy [N

10.000 . 10.000

5.0001 5.000(

——NLE 3D analysis #1 bifurcation —— NLE axisymmetric analysis
——NLE 3D analysis #2 —— NLE 3D analysis #2
0 i i i ; 0 i i i
0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 12
uy [mm] uy [mm]

Figure 5.20: Bifurcation in load-displacement curve (left) and comparisdnload-
displacement curve between axi-symmetric model and 3D model (right)

were found in the axi-symmetric model, it is clear that ofitag correct results in
a nonlinear analysis using displacement control is notgttiorward. Analysis
#2 was taken as a basis for comparison to the curve obtairted axi-symmetric
model (figure 5.20 right). Peak values are found at 0.139 nOrL(kN), 0.271
mm (11.6 kN), 0.432 mm (13.5 kN) and 0.922 mm (19.9 kN). Figlwr1 to 5.24
show the crack patterns at different loading stages. Tlet stieess profiles and

5555555

Figure 5.21: Crack patterm{,=0.1 mm,c.’ . =0.445e-3)

max

the interface bond stresses also show great similaritygt@xinsymmetric model.
Figure 5.25 shows the splitting cracks that occur on the aoed. Because of the
use of solid elements the crack band width in circumferédir@ction is better
estimated then in the case of axi-symmetric elements anctéo& pattern is more
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5. Nonlinear calculations of the tension-pull experimaentijsbers

Figure 5.22: Crack pattern,=0.2 mm,e;’ . =0.463e-2)

max

max

Figure 5.23: Crack patternm,=0.3 mm,c’ . =0.603e-2)

Figure 5.24: Crack patterm(,=0.6 mm,c;’ . =0.983e-2)

max

realistic. In comparison to the axi-symmetric calculatianv splitting also occurs
closer to the reinforcing bar.

Figure 5.25: Radial view of crack straing=1.2 mm)
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5.7. MODELING AND IMPLEMENTATION OF ALTERNATIVE
BOND-SLIP UNLOADING SCHEMES

5.7 Modeling and implementation of alternative bond-
slip unloading schemes

In the previous sections two calculations were presentédddifferent unloading
behaviour for the interface elements. In the axi-symmeticulation the unload-
ing behaviour was of secant type. In the 3D model there wasifferehce in
the loading or unloading curve. In this section an invesiageinto the influence
of the unloading behaviour of the interface elements in aitenpull experiment
will be conducted. Of first importance is to know how much aalimg actually
takes place in the tension-pull model. For this purpose sointiee results of the
axi-symmetric calculation of section 5.5 will be examinaedanore detail.

5.7.1 Unloading in the axi-symmetric calculation

The interface elements located at the outer edges show mdynshaped load-
relative displacement (load-slip) curve as the outer gdimtmselves see e.qg. fig-
ure 5.28 element 36. Figure 5.26 shows the load-slip curwealf interface el-
ements (mean integration points per element). From figw2é B.can be seen
that between primary cracking all interface elements shomticuously increas-
ing slip values (in absolute sense). So only when primargking occurs does
unloading take place. Figure 5.28 shows only those elemmtiislip values that
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Figure 5.26: Load-slip curve for all interface elements (mean integratiantpger ele-
ment)

exceed the elastic branch of the bond-slip curve since by tloes the unload-
ing behaviour become relevant. The plastic branch staask value of+0.025
mm. For reference figure 5.27 shows the interface elemenbating together
with the final crack pattern. Elements 22, 26 and 33 show ooiicuous load-
ing and no unloading. Elements 19, 28 and 36 show the largestsal of slip
values, although it should be noted that the first unloadeakpf these elements
is very close to the elastic branch. It is interesting to baéthe largest unloading
takes place near the load introduction on the outer edgemélts 19 & 36) or
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5. Nonlinear calculations of the tension-pull experimaentijsbers

close to the largest primary crack (element 28). From figu28 § can be con-

Figure 5.27: Interface element numbering and final crack pattag+{.2 mm)
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Figure 5.28: Load-slip curves of elements with plastic slip (mean integratiomte per

element)

cluded that the amount of unloading on the plastic brancleig iimited in this
model. It is to be expected that changing the unloading behawill not have a

significant effect on the results of the calculation.
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BOND-SLIP UNLOADING SCHEMES

5.7.2 Programming user interface

From the previous section it is clear that reversal of slkg$aplace in a tension-
pull experiment but is very limited. IDIANA it is possible to use a self pro-
grammed relation between the relative displacements, landand stresses (in
DIANA called tractions). This section describes the programrafrayuser sup-
plied subroutine that will be used to explore different @wuimg options even
though the influence is expected to be small. In matrix nataéind usingDI-
ANA notation this relation can be denoted as:

tn d11 d12 Aun
— 51
|:tt:| [ day  dag ] {AUJ (5-1)
With:

tn normal traction in N/mrh

ty shear traction in N/mi

Au,, relative normal displacement between concrete and reiefoent
Au;  relative shear displacement (slip) between concrete anfbreement

When using the standard bond-slip relations provide@ANA only d,; andds.

have non-zero values. Also by default the normal directsookept linear elastic
whereas the shear direction can be described with a nonlietdion (see also
section 5.3). To use a user supplied interface model a filecdAUSRIFC.F” is
programmed irFortran77code. The file must update the tractions and the tangent
stiffness, i.e. the matrix containing,, d,, etc. depending on the type of relation
you want to use. Bond-slip relations with three differentetyf unloading be-
haviour have been programmed (see also figure 5.29):

1. Nonlinear unloading (model namBOND3N);
2. Secant unloading (model nanBOND3Y);

3. Elastic unloading (model namBOND3E).

Figure 5.29: Visual representation of different unloading models, frofh tke right:
BOND3N, BOND3Sand BOND3E

The three models are programmed in a single file using a “kivéctivated
by the model name. The model name is therefore a required imple DIANA
.dat file. The bond-slip relation used is the same for alldlmedels, i.e. a relation
consisting of two branches: an elastic part and a perfedalstip part (similar to
figure 5.5). Because of the shifting of the elastic branchHelBOND3E model
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5. Nonlinear calculations of the tension-pull experimentijsbers

a so called state variable is used to indicate the locatote(ims of slip) of the
origin of the (shifted) elastic branch.

After the programming of th€ortrancode and the necessary modifications to
the DIANA .dat and .com files a calculation with the user supplied sutbre can
be executed. In the calculation t@rtrancode is automatically compiled and
a new executable of “nl41” is created and used instead of tdredardDIANA
version. For details about user supplied subroutines ded~[F the USRIFC.F
code see appendix J. To check the correctness of the code $insall scale one
element test is performed on all three models. For the esiilthese tests see
appendix J.

5.7.3 Experimental results from cyclic tests

Before continuing to the results of the calculations withyhaous bond unload-
ing models some literature that describes unloading behaftor bond-slip [1] is
consulted. In this section a short description of the tylpicdoading behaviour
will be presented to see which bond model would describe ¢heabhbehaviour
the best. Figure 5.30 shows a typical experimental resubhdad-slip for cyclic
loading. Upon slip reversal a steep unloading is observexin(ipoint A to B),
followed by a low bond stress until the original monotonicwuis reached (point
C). Because of the slip the steel-concrete interface betwigewatues that have

Bond?}
stress A

Figure 5.30: Typical bond-slip curve for cyclic loading

already been reached, in the positive as well as the neghteetion is damaged.
Therefore in the next cycle a larger slip value is needed tainlthe same bond
stress. Another example is given in figure 5.31. From the aforemeetibit
can be stated that only changing the unloading behavioar isdm sufficient to
describe bond behaviour in real cyclic loading conditiorwever when only
focusing on the initial unloading behaviour the steep udilog.upon slip reversal
is best described with the elastic unloading model. It cao Ak stated that us-
ing the nonlinear unloading (where the loading and unlaadumrve are the same)
is the worst approach as the stiffness upon slip reversi@ligiequals to zero.
Secant unloading can be considered second best. In anyhmsamaged slip

Inote that the increase in peak values for next cycles in fi§L8@ is not typical and depends
on the testing, see figure 5.31
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Figure 5.31: Example of load-slip from a cyclic loading test

region (for next cycles) and the low bond stress region (betwpoints B and C,
figure 5.30) are not taken into account.

5.7.4 Results of alternative unloading schemes

Although one element tests are performed on the three up@tied interface
models an additional check can be easily made foB®&/D3S model since this
model should give exactly the same results as the starif&A “BONDSL 3”
option. This is verified by comparing both results in a loaspthcement curve.
Figure 5.32 shows this comparison which fortunately shawesxact match. Next

Gijsbers tension pull experiment, BONDSL 3 vs BOND3S
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uy [mm]

Figure 5.32: DIANA “BONDSL 3" versus User supplieBOND3S

the axi-symmetric model of section 5.5 is calculated usiegthree different un-
loading schemes. Figure 5.33 shows the results of thesalatdmns in a load-
displacement curve. At close observation it can be seenritially (up until the
second primary crack) the three models give similar resodtieating that the in-
fluence of unloading is small. This was to be expected sint@ading from the
plastic branch does not happen before an applied displatevharound 0.2 mm
(figure 5.26).
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5. Nonlinear calculations of the tension-pull experimentijsbers

Around the second and third primary crack some differenppear mainly
between theBOND3SBONDS3E and theBOND3N model. Figure 5.34 shows
this is more detail. The differences are extremely small laadily of any real
consequence as was already mentioned to be expected ornsgatil. The same
conclusion holds for other results such as the final cradiepat

Gijsbers tension pull experiment, BOND3S,BOND3N & BOND3E
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Figure 5.33: Load-displacement curves for axi-symmetric model wiififgrent unload-
ing schemes

Gijsbers tension pull experiment, BOND3S,BOND3N & BOND3E
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Figure 5.34: Detail of figure 5.33
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5.8. SUMMARY AND CONCLUSIONS CHAPTER 5

5.8 Summary and conclusions chapter 5

In this chapter a tension-pull experiment was calculateagusterface elements
to model the bond-slip between the reinforcement and theret& A reference
was taken to a previous calculation by Rots [2]. For the cdece orthogonal
fixed crack model was used. The use of axi-symmetric elememds3D ele-
ments was examined. To investigate the influence of the dimigdbehaviour for
the elastic-plastic bond-slip relation, three differenloading schemes have been
investigated using an user defined interface model. Theviollg conclusions re-
garding the tension-pull simulations can be stated:

Axi-symmetric model

1. Theresults by Rots [2] could be recreated with a large emaaguracy. The
load-displacements curves are almost identical and aésardck patterns
are very similar. Using displacement control it was possibl“jump” over
the primary cracks.

2. It has been found that the needed imperfections to triggeasonable pri-
mary crack pattern can be quite large. The tensile strengthiree ultimate
crack strain had to be reduced by as much as 20%.

3. Oscillations of the bond stresses were found in the catliculs if the in-
tegration scheme of the interface elements was not set tpddmFrom
literature also with experiments these oscillations doawaur.

4. Using a linear interface (or even a rigid connection) thmant of crack-
ing in the surrounding concrete will increase significantpwever with a
tension-pull experiment the load-displacement curve ishress effected.

5. Splitting cracks are not well calculated in an axi-synmioemnodel. The
crack band parameter should in fact vary for the circumfiedirection
depending on the distance to the axis of rotation and on thebeuof sup-
posed splitting cracks.DIANA does not allow for different crack band
widths for different directions.

6. Connecting an interface MIANA to an axis of rotation when using an axi-
symmetric model results in ill-conditioning of the inteséastiffness matrix.
The workaround is to shift it slightly out of the axis of ratat. Also with
DIANA it is unknown how the interface stiffness in relation to threwm-
ferential direction in an axi-symmetric model is taken iatcount. To be
sure the circumference is correct it is best to use the “ptress” option
for the interface elements in this case.
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5. Nonlinear calculations of the tension-pull experimentijsbers

3D model

1. The results in terms of the load-displacement curve aadithck patterns
are very comparable to the ones obtained with the axi-syneredements.
Furthermore conclusions 2 and 3 of the axi-symmetric molgel laold for
the 3D model.

2. A bifurcation in the load-displacement was found indrmgthat obtaining
consistent results in a nonlinear calculation using disgi@ent control is
not straightforward. No attempts have been made to usesagtH control
which would perhaps yield better results.

3. In the model a line-solid interface element is used to eohthe truss el-
ements to the surrounding solid elements. In this configarat is not
possible to give the interface a thickness and thereforedherete needs to
be expanded to the center axis resulting is a slightly eathogoss section.
For large diameters of the reinforcing bar this can becommblgm. The
solution would be an interface element that is able to canadme to a
cylinder and to use brick elements only instead of wedge etesn

Bond-slip unloading behaviour

1. Inthe axi-symmetric model unloading (i.e. reversal gf)sbnly takes place
when a primary crack occurs. Between primary cracks the slipono-
tonic.

2. In the axi-symmetric calculation and with the used boljgl+®lation the
amount of unloading of the interface elements is very lichit€he largest
reversal of slip takes place at the end faces or close to apyiorack.

3. Regarding the unloading schemes investigated a compadsexperimen-
tal results of cyclic loading test shows that, albeit lirditelastic unloading
is the best approximation of the actual unloading behavidonlinear un-
loading (i.e. the loading and unloading curves are the sasnike worst
approach. Secant unloading can be considered second best.

4. Because the amount of unloading is so limited in the axiragtnc calcu-
lation changing it's behaviour has very little effect. Tloadl-displacement
curves are all almost identical and the same holds for thekgratterns. In
a larger model with more cracking the type of unloading behavcould
become more relevant.
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Chapter 6

SLA calculations of the tension-pull
experiment by Gijsbers
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6. SLA calculations of the tension-pull experiment by Ggsb

6.1 Introduction

In this chapter the tension pull-experiment with axi-synmeeslements that was
calculated in section 5.5 will be recalculated now with SOherefore the pro-
grammed axi-symmetric elements (see section 3.3) as wélleamterface ele-
ments (see section 3.4) for SLA will be adopted in the modeuéEtto the non-
linear calculation Hordijk tension softening will be usékh create the sawtooth
approximation the Matlab sawtooth generator describecgatian 4.2.2 will be
used.

In a previous study the tension-pull experiment was alrezdigulated with SLA
by Belletti [10]. In this calculation the concrete was modelath plane stress
elements, the reinforcing bar with truss elements and a&pelbiond between the
concrete and the reinforcing bar was assumed. The calonlasults showed that
it was possible to get a cracking behaviour that involvedidineation of several
primary cross-sectional cracks along the length of the mdtalso showed that
shap-backs are captured realistically with SLA. The masadvantage of this
model was the assumption of perfect bond.

6.2 Adopted sawtooth models

In the NLE calculation imperfections were used at predeiteethlocations to get
a reasonable primary crack pattern. To be able to companégéisst also with

the SLA calculation the same imperfections are given in tloeleh (see section
5.4). This means for the concrete four separate sawtootratizs are needed.
One diagram for the unmodified concrete (figure 6.1 left) &neld for the various
imperfections (figure 6.1 right and figure 6.2). For the ifatee the bi-linear re-

Sawtooth for Hordijk tension softening Sawtooth for Hordijk tension softening

# of teeth = 100 # of teeth = 100

—— p+ = 0.044295 N/mm? — p+ = 0.035436 N/mm?| |
— p- = 0.046328 N/mm? — p- = 0.037062 N/mm?
Gf sawtooth =0.06 |4 16 Gf sawtooth = 0.0384 |{
€, = 8.9286e-005 €, = 7.1429e-005
€4y = 0:010866 14 e =0.0086925

15 Eromax = 0020955 |4 12 Eiotmax = 00087639 |4

. N/mm?

t

L L L L —
0 0.002 0.004 0.006 0.008 0.01 0

Eot

Figure 6.1: Sawtooth approximation for concrete using 100 teeth, unmodi&&), im-
perfection at midsection (right)

lation (see also figure 5.5 section 5.3) can be easily castagawtooth diagram.
However it is important to know the maximum slip that occurshie calculation
beforehand because this also approximately determinemaxénum slip value
in the sawtooth diagram. For this the results of the NLE datean are consulted
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6.2. ADOPTED SAWTOOTH MODELS

Sawtooth for Hordijk tension softening Sawtooth for Hordijk tension softening

# of teeth = 100 # of teeth = 100

p+ = 0.03898 N/mm? [ p+ = 0.043409 N/mm?
— p- = 0.040768 N/mm? — p- = 0.045402 N/mm?
Gf sawtooth = 0.046464 2 Gf sawtooth = 0.057624 []
€, = 7.8571e-005 £, = 8.75e-005

e .= 0.0095617 e .= 0.010648
or,ult or,ult

15

€ =0.0096403 15

tot,max

€ =0.010736

tot,max

0.5 0.5

. . . . ——
0 0.002 0.004 0.006 0.008 0.01
ot x10” Erot

Figure 6.2: Sawtooth approximation for concrete using 100 teeth, imperfealliéj—L
(left), imperfection at imperfection éﬂ_ (right)

and a maximum slip value of abo##0.09 mm is found. To create a safe margin
the sawtooth diagram is somewhat extended, see figure 6.3lsb for the steel

Sawtooth for bond-slip Sawtooth for steel
7 T T T T T T T
6f 400 WA AT T
5F 4
<& number of teeth: 50 © 300 number of teeth: 70 |
£ 4f = =
£ E— Bel =0.025 £ €l 0.0020801
S - 2 L =
% 3+ Bult =0.12186 o 200 Eut 0.034783
ol Sty =250 Nimm?® | | E, = 192300 N/mm?
T =6.25 N/mm? 1007 o =400 Nimm? |
1 max ] max
——p=0.1Nmm? — p-=16 Nmm?
o . . . n n n o . . . n n n
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
3 [mm] €

Figure 6.3: Sawtooth approximation for bond-slip (left) and steel (right)

the results of the NLE calculation are consulted and a maxirstrain of about
€,=0.0263 is found. The adopted sawtooth diagram for steelvisngn figure
6.3 right. Contrary to earlier SLA calculations (e.g. [1Ql1]) only a constant
downshifting for the plastic region is used and no upliftisge section 4.4). The
accuracy of the sawtooth diagrams can be calculated asttbdeaween the av-
erage uplifted and downshifted value and the maximum elaatue. The current
sawtooth diagrams have been tailored to have an approxineafeal accuracy as
can be seenin table 6.1.

Table 6.1: Accuracy of used sawtooth diagrams

concrete bond-slip steel
average op+ andp— [N/mm?] | (0.044+0.046)/2| (0.1+0.1)/2| (0+16)/2
maximum elastic value [N/m#j 2.5 6.25 400
ratio 1.8% 1.6% 2%
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6. SLA calculations of the tension-pull experiment by Ggsb

6.3 Results using imperfections

First a comparison is made between the NLE calculation am&LA calculation
with the predetermined imperfections, figure 6.4 shows letults in a load-
displacement curve. For the SLA calculation about 6800 ktegs were used.
The graph shows that the SLA result is in excellent agreemihtthe NLE anal-

Load-displacement curve SLA analysis using axi-symmetry
25.000 T . T

20.000— =

15.000— a

FyIN]

10.000 -

5.000— B 8 a

——NLE with imperfections.
—— SLA with imperfections (Hordijk 100 teeth)

0 0.2 0.4 0.6 0.8 1 12

Figure 6.4: Load-displacement curve NLE versus SLA

ysis. The load-displacement path is near identical excegpt 8LA also snap-
backs are captured after each primary crack, figure 6.5 stiogvér more detail.
The first complete damage of the concrete (i.e. the first ratexn point on the

Load-displacement curve SLA analysis using axi-symmetry
14000 T T T T T T T

13000+

12000

11000

10000

Fy [N]

90001

80001

7000

6000 ——NLE with imperfections
— SLA with imperfections (Hordijk 100 teeth)
5000 T T T T T

i i i
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
uy [mm]

Figure 6.5: Load-displacement curve, detail of figure 6.4 (snagkbgac

last sawtooth) occurs at an applied displacemgr0.64 mm at midpoint in the
element with the strongest imperfection (this is about Sefirnthe displacement
at first primary crack initiation). This is in excellent agreent with the NLE

analysis (see section 5.5.2). Table 6.2 shows a comparetarebn the NLE and
the SLA analysis for load level of plastic slip initiation tife interface elements
at relevant locations. Also these results are in excellgrédeament. Next figure
6.6 shows the interface bond stresses along the reinfolmngt various load
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6.3. RESULTS USING IMPERFECTIONS

Table 6.2: Comparison of plastic slip initiation£d.;=0.025 mm)

NLE analysis | SLA analysis
end faces u,=0.094 mm| u,=0.097 mm
near first primary crack | u,=0.19 mm | w,=0.20 mm
near second primary crack u,=0.28 mm | ,=0.30 mm
near third primary crack | w,=0.41 mm | u,=0.40 mm

levels which shows similar results to the NLE calculatioee($igure 5.18). Fig-
ures 6.7 to 6.11 show the crack strains at various load letredse figures can be
compared to figures 5.11 to 5.15. Compared to the NLE analysisniax-

Bond stress profiles

Bond stress profiles
8 T T T T 8 T T T T
u =0.1 mm u =0.3mm
Y Y
61 - - —u =0.2mm 6 = = =u=04mm| -
y y
4
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‘a / 4 1
< 2f 'I <, !
£ ' £ \
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Figure 6.6: Bond stress profiles{=0.1 mm,u,=0.2 mm) (left) and¢,=0.3 mm,u,=0.4

mm) (right)

Model: GIJSBERS_SLABONDTEST 1

LC1: Load case 1 -439E-3
Step: 320 LOAD: 320 +395E-3
Gauss EL.ITEMS ITEMO4 .351E-3
Max/Min on results set: .307E-3
Max = .483E-3 Min = 0 L263E-3
Results shown: 122E-3
Mapped to nodes 176E-3

.132E-3

! 878E-4
: .439E-4

Figure 6.7: Crack straire" at u,=0.1 mm

Model: GIJSBERS_SLABONDTEST 1

LCl: Load case 1 -447E-2
Step: 1990 LOAD: .199E4 -402E-2
Gauss EL.ITEMS ITEMO4 .358E-2
Max/Min on results set: 313E-2
Max = .492E-2 Min = 0 .268E-2
Results shown: 1 22482
Mapped to nodes '179E-2

L134E-2

I.894E—3
H 447E-3
S e e e e e e e e R
Figure 6.8: Crack straire" at u,=0.2 mm

imum crack strains show a difference of about +15%-fgr0.1 mm and<1%
for u,=0.2 mm,u,=0.3 mm and:,=0.6 mm, although the load level for SLA can
not be exactly determined because of the somewhat irreghtgre of the load-
displacement curves. The difference:g+0.1 mm could be explained by the fact
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6. SLA calculations of the tension-pull experiment by Ggsb

Model: GIJSBERS_SLABONDTEST

LC1: Load case 1 1

Step: 3680 LOAD: .368E4 -533E-2
Gauss EL.ITEMS ITEMO4 .48E-2
Max/Min on results set: L427E-2
Max = .587E-2 .373E-2
Min = -.363E-5 L32E-2
Results shown: 1 566r.2
Mapped to nodes 213E-2

16E-2
I 106E-2
.53E-3

Figure 6.9: Crack straire," at u,=0.3 mm

Model: GIJSBERS_SLABONDTEST

LC1: Load case 1 1

Step: 5700 LOAD: .57E4 -826E-2
Gauss EL.ITEMS ITEMO4 -T44E-2
Max/Min on results set: .661E-2
Max = .909E-2 578E-2
Min = -.142E-4 L495E-2
Results shown: I 4128-2
Mapped to nodes 33E-2

.247E-2
! 16aE-2
:.81452—3

Figure 6.10: Crack strair" at u,=0.6 mm

Model: GIJSBERS_SLABONDTEST

LC1: Load case 1 1
Step: 6770 LOAD: .677E4 -298E-1
Gauss EL.ITEMS ITEMO04 L268E-1
Max/Min on results set: 239E-1
Max = .328E-1 .209E-1
Min = -.182E-4 T179E-1

Results shown: I.149E71
Mapped to nodes J119E-1
.893E-2

I.595E 2

: .297E-2

Figure 6.11: Crack strair" at u,=1.2 mm

that prior to the primary crack development the cracks aeeiend near the load
introduction are more localized with SLA compared to the Ndrtalysis despite
the imperfections (compare figure 6.7 to 5.11). Figure 6H@ns the splitting
crack strains with a concentration at both ends (causeddyjo#d introduction
and the support). Finally figure 6.13 shows the steel yigldicalization which
occurs at midpoint near the largest imperfection.

Model: GIJSBERS_SLABONDTEST

LC1: Load case 1 1

Step: 6770 LOAD: .677E4 -488E-4
Gauss EL.ITEMS ITEMO8 <439E-4
Max/Min on results set: .391E-4
Max = .537E-4 Min = 0 342E-4
Results shown: L293E-4
Mapped to nodes I 54sm-a

.195E-4
.146E-4
I.976E*5
:.4EEE-5

Figure 6.12: Crack strairZ? atu,=1.2 mm
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6.4. RESULTS WITHOUT IMPERFECTIONS

Model: GIJSBERS_SLABONDTEST
LCl: Load case 1

Step: 6770 LOAD: .677E4 .176E-1
Gauss EL.EXX.G EYY .156E-1
Max/Min on results set: L137E-1
Max = .205E-1 Min = .1E-2 L117E-1
Symbol factor = 1 .975E-2
a All values .78E-2

VAN
= (195E-2

Figure 6.13: Steel strain, atu,=1.2 mm

6.4 Results without imperfections

Now a second calculation will be executed in SLA without tise of imperfec-
tions. The sawtooth models for bond-slip and steel are équla¢ ones mentioned
in section 6.2 except now for the concrete only figure 6.1dpfilies. For the SLA
calculation about 6550 load steps were used, somewhathlessised in the cal-
culation with imperfections. As can be seen from the gragfigure 6.14 in SLA

Load-displacement curve SLA analysis using axi-symmetry
25.1 T T T

20.000— =

15.000(— —

FyIN]

100001~ -

5.0001— i b

—— NLE with imperfections
—— SLA without imperfections (Hordijk 100 teeth)

0 0.2 0.4 0.6 0.8 1 12
u, [mm]

Figure 6.14: Load-displacement curve NLE versus SLA analysis {@lb&ut imperfec-
tions)

there is no need to use imperfections because there willyallwa a most criti-
cal integration point found even though several points iriigive a near identical
stress level. As was to be expected without imperfectioasibdel is somewhat
stronger resulting in higher peak values especially forfitse two peaks and a
very slight uplifting in the post cracking region (the thipéak is almost identi-
cal because the third imperfection used in the previousutaion was also very
limited). Because of the large number of teeth used the SL#ecisragain quite
smooth. The first complete damage of the concrete (i.e. tstariblegration point
on the last tooth) occurs at,=0.74 mm at midpoint (this is about 4.5 times the
displacement at first primary crack initiation). Figure$5%to 6.19 show the cal-
culated crack strains at various load levels. The crackimesare shifted only
one or two integration points compared to the previous ¢aticun with the prede-
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6. SLA calculations of the tension-pull experiment by Ggsb

Model: GIJSBERS_SLABONDTEST 1 43583
LC1: Load case 1 .

Step: 320 LOAD: 320 <395E-3
Gauss EL.ITEMS ITEMO4 -351E-3
Max/Min on results set: .307E-3
Max = .483E-3 Min = 0 .263E-3
Results shown: I 208-3
Mapped to nodes 176E-3

.132E-3
| .878E-4
[439E-4

Figure 6.15: Crack strair" at u,=0.1 mm

Model: GIJSBERS_SLABONDTEST

LC1: Load case 1

Step: 2150 LOAD: .215E4 1. 3862-2
Gauss EL.ITEMS ITEMO4 -347E-2
Max/Min on results set: L309E-2
Max = .425E-2 L27B-2
Min = -.101E-5 .232E-2
Results shown: I 1038-2
Mapped to nodes I 15ag-2

116E-2
! 77183
.385E-3

Figure 6.16: Crack strair" at u,=0.2 mm

Model: GIJSBERS_SLABONDTEST

LCl: Load case 1

Step: 3775 LOAD: .378E4 : 541E-2
Gauss EL.ITEMS ITEM04 .487E-2
Max/Min on results set: L432E-2
Max = .595E-2 .378E-2
Min = -.279E-5 L324E-2

Results shown: L27E-2
Mapped to nodes .216E-2

Figure 6.17: Crack straire" at u,=0.3 mm

Model: GIJSBERS_SLABONDTEST

LC1: Load case 1

Step: 5500 LOAD: .55E4 ! 78882
Gauss EL.ITEMS ITEM04 -709E-2
Max/Min on results set: .63E-2
Max = .867E-2 .551E-2
Min = -.146E-4 .472E-2
Results shown: I 30382
Mapped to nodes I 31482

.2358-2
! 1seE-2
.775E-3

Figure 6.18: Crack strair" at u,=0.6 mm

Model: GIJSBERS_SLABONDTEST

LC1: Load case I

Step: 6520 LOAD: .652E4 20081
Gauss EL.ITEMS ITEM04 .269E-1
Max/Min on results set: .239E-1
Max = .328E-1 .209E-1
Min = -.267E-4 L179E-1

Results shown: 149E-1
Mapped to nodes J119E-1
.894E-2

| .595E-2

:.2965—2

Figure 6.19: Crack straire" at u,=1.2 mm

termined imperfections. In all cases the crack distancesansistently between
four and five elements{133 - 167 mm).

To gain some insight into the initiation of the first primamack figure 6.20
shows a plot of the principal stresses along the first rowtefyration points in the
concrete along the rebar for various load levels (up undlftrst damage occurs
at the location of the first primary crack, load step 955). Sehimtegration points
are of interest because cracks always start to originate fih@ rebar. The global
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6.4. RESULTS WITHOUT IMPERFECTIONS

Principal stress in concrete along the rebar

28 T T T
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1.6 \\ —— principal stress load step 955 /”
X_global maximum load step 955 | = /
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Figure 6.20: Principal stress development in the concrete along ther repauntil the
start of the first primary crack localization

maximum in figure 6.20 is equal to the (uplifted) tensile isgt of the first saw-
tooth, this is a natural result from the SLA load scaling gissc From figure 6.20
it can be seen that along the length some stress oscillaticur®. At midsection
figure 6.21 shows this is more detail. It is also interestmgéde the amount of

Principal stress in concrete along the rebar

2
o, INimm?]

—— largest principal stress load step 955
global maximu m
: T

2.

a4 f T T
200 220 240 260 280 300 320 340 360 380 400

Figure 6.21: Principal stress oscillations in the vicinity of the first primargaak local-
ization

damage that has occurred prior to the formation of the fiigtgmy crack, this is
illustrated in figure 6.22. As can be seen the damage praggdissm both loaded
ends along the rebar. Also in this load step near the cente4 pategration points
close to the rebar have already been damaged once. Thetalmreage in figure
6.22 occurs in the centerline (for location see figure 6.21).
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6. SLA calculations of the tension-pull experiment by Ggsb

T30
Model: GIJSBERS_SLABONDTEST I'so
LC1: Load case 1 30
Step: 955 LOAD: 955 20
Gauss EL.ITEMS ITEM10 10
Max/Min on results set: 5
Max = 70 Min = 0 2
Results shown: 13
Mapped to nodes I

1

Figure 6.22: Occurred damage prior to first primary crack localizatidaage indicator
N-direction, 100 equals complete damage)

T100

20

80
Model: GIJSBERS_SLABONDTEST 70
LC1: Load case 1 60
Step: 6520 LOAD: .652E4 20
Gauss EL.ITEMS ITEM10 20
Max/Min on results set: I3
Max = 100 Min = 0 130
Results shown: 179
Mapped to nodes

=/ il

Figure 6.23: Damage at,=1.2 mm (damage indicator N-direction, 100 equals complete
damage)

The final damage at,=1.2 mm (load step 6520) is plotted in figure 6.23.
This reveals that large areas between the primary cracksimecompletely un-
damaged. Figure 6.24 shows the splitting crack strainsedsdigure 6.25 shows
the steel yielding localization. To gain some insight inlip &ccurrence fig-

Model: GIJSBERS_SLABONDTEST

I;(tjl.-Load case 1. [ PP
ep: 6520 LOAD: .652E4

Gauss EL.ITEMS ITEM08 L432E-4
Max/Min on results set: -384E-4
Max = .528E-4 Min = 0 .336E-4
Results shown: .288E-4
Mapped to nodes I 248-4
I 1028-a
(144E-4

| . 96E-5
I 18E-5
1

Figure 6.24: Crack strairZ? at u,=1.2 mm

.258E-1
Model: GIJSBERS_SLABONDTEST .226E-1
LC1: Load case 1 L193E-1
Step: 6520 LOAD: .652E4 .161E-1
Element EL.EXX.G EYY ~ .129E-1
Max/Min on results set: ~ .967E-2
Max = .273E-1 .645E-2
Min = -.491E-2 T .322E-2
Symbol factor = 1 “o
2" A1l values T -.322E-2
A .
X

Figure 6.25: Steel strail, atu,=1.2 mm

ure 6.26 shows the load steps with plastic slipping of eleam#&f (blue) and 36
(cyan) located at both end faces (results from models withvathout imperfec-
tions) whereas figure 6.27 shows the load steps with plagbigisg of elements
27 (green) and 28 (red) located on either side of the firstgmymarack. As can be
seen from figure 6.26 because of the higher strength of theath no imper-
fections, there is more slipping on the end faces prior todineelopment of the
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6.5. REDUCING NUMBER OF TEETH

first primary crack. The same holds for the slipping prioh® development of the
second primary crack (figure 6.27). After a primary crack desurred concrete
cracking is governing until the previous reaction forceeldvas been recovered at
which point plastic slip will continue.

Load-displacement curve SLA analysis using axi—-symmetry Load-displacement curve SLA analysis using axi-symmetry

22.000 22.000
20.0001 : : J 20.0001
18.000f 18.000f :
16.000( R 16.000( R
14.000f : < : : 14.000f
= 12.000¢ = 12,000} .
& 10.000F p ; ~ 2 10.000( -,
8000} gooof oL
6.000( 6.0001
4.0001 -slip on element 19 (left end) 4.0001 -slip on element 19 (left end)
2.000F : slip on element 36 (right end) : 2.000F slip on element 36 (right end) .
— SLA with imperfections (Hordijk 100 teeth) — SLA without imperfections (Hordijk 100 teeth)
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Figure 6.26: Slip occurrence at end faces, with imperfections (left), no rieqens
(right)

Load-displacement curve SLA analysis using axi—symmetry Load-displacement curve SLA analysis using axi—-symmetry

22.000 22.000
20.0001 20.0001
18.0001 18.0001
16.0001 16.000
14.0001 : . 14.0001
z 12.0001 z 12.0001
& 10.000F : & 10.000f
8.000( 8.000-
6.000( 6.0001
4.0001 - slip on element 27 (left side center crack) 4.000 - slip on element 27 (left side center crack)
2.000} . . s|ip on element 28 (right side center crack)|- 2.000F . slip on element 28 (right side center crack)
— SLA with imperfections (Hordijk 100 teeth) — SLA without imperfections (Hordijk 100 teeth)
00 O.‘2 0‘.4 0.‘6 0‘.8 i 1‘.2 cO 0‘.2 014 0.‘6 O‘.S i 1‘.2
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Figure 6.27: Slip occurrence near first primary crack, with imperfeci¢deft), no imper-
fections (right)

6.5 Reducing number of teeth

In the previous sections calculations were presented @sgrgat number of teeth
to approximate the nonlinear relations. Recall that the r@oyuof a sawtooth
diagram could be calculated as the ratio between the avegdded and down-
shifted value and the maximum elastic value (section 6r2hé previous sections
the ratio used was about 1.8%.

In this section the influence of reducing the number of teathb& investi-
gated. Using fewer teeth has the obvious advantage of lespudong time. This
section will investigate the influence this has on the resarit in particular on the
load-displacement curve and the crack locations. For timiggse the previous ac-
curacy will be reduced stepwise by a factor of two, i.e. aaci@s of 3.6%, 7.4%
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6. SLA calculations of the tension-pull experiment by Ggsb

and 15.4% will be used. In all calculations imperfectioni md longer be used.
The number of teeth used for the various accuracies as w#ieasawtooth dia-
grams are given in appendix L. The last tooth of the concratd¢amth diagrams
is kept constant witlb=4e-04 N/mnd and f,=4.4e-06 N/mm.* The results of the
reduced number of teeth are plotted in a load-displacemawedogether with
the plot of the original calculation with 100 teeth which &ed as a reference, see
figure 6.28.

When using less then 50 teeth for the concrete the graphs teeghow more

Load-displacement curve SLA analysis using axi-symmetry Load-displacement curve SLA analysis using axi-symmetry

20,000 —, 20,0001 oy S

15.000 4 15.000F /
, vy 4
Y

FyIN]
Fy Nl

10,000 / + 4 10,0001

—— SLA without mperfections (Hordijk 100 teetr)| [——SCA without imperfections (Hordik 100 teeth)
L= SLA vithout impertecions (Hordik 50 teeth) i LS without imperteciions (Hordik 25 teeth)

Load-displacement curve SLA analysis using axi-symmetry

20,0001

5000 G A
//:

Fy [Nl
N\ \\\
\

10.000( i
L4/

5.000F

——SLA without imperfections (Hordik 100 teeth)
L SLA without impertections (Hordijk 12 teeth)

Figure 6.28: Load-displacement curves showing influence of reduainmber of teeth,
50 (top left), 25 (top right), 12 (bottom) compared to 100 teeth

then three local peaks indicating the primary cracks. Eg@.29 to 6.31 show
the corresponding crack locations. The calculations wiloR212 teeth deviate

Model: GIJSBERS_SLABONDTEST
LC1: Load case 1 1
Step: 2730 LOAD: .273E4 763E-2
Gauss EL.ITEMS ITEMO04 L687E-2
Max/Min on results set: L61E-2
Max = .84E-2 .534E-2
Min = -.646E-5 458E-2
Results shown: 381E-2
Mapped to nodes S0sE-2

.228E-2
.152E-2
:.75713-3

Figure 6.29: Crack straire" at u,=0.6 mm (Hordijk 50 teeth)

guite a lot with respect to the previous primary crack lawadi From the results
the primary crack distances vary betweeh0O0 mm and~167 mm (one element

lthese values are equal to the last tooth of the sawtoothadiagith 100 teeth
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6.5. REDUCING NUMBER OF TEETH

Max = .119E-1

Results shown

Model: GIJSBERS_SLABONDTEST
LC1l: Load case 1

Step: 1952 LOAD: .195E4
Gauss EL.ITEMS ITEMO04
Max/Min on results set:

Min = -.312E-4

Mapped to nodes

L109E-1
.977E-2
.868E-2
.759E-2
.65E-2
.541E-2
L432E-2
324E-2

.215E-2
I 106E-2
1

Figure 6.30: Crack straire." at u,,=0.8 mm (Hordijk 25 teeth)

Max = .11E-1

Results shown

Model: GIJSBERS_SLABONDTEST
LC1: Load case 1

Step: 1000 LOAD: .1E4
Gauss EL.ITEMS ITEMO04
Max/Min on res

Min = -.229E-4

Mapped to nodes

ults set:

[IET-EY
.902E-2
.802E-2
.701E-2
.601E-2
.5E-2

I 4g-2

299E-2

.199E-2
:.932E—3

Figure 6.31: Crack strair," at u,=0.8 mm (Hordijk 12 teeth)

is 33.33 mm wide). The eventual crack pattern is foremostrdehed by the
location and therefore the initiation of the first primaryack. A crack is initi-
ated from the highest stress point in a particular crossasecthe highest stress
points occur near the center of the model and close to the.r8bailar to figure
6.20, figure 6.32 shows again the principal concrete stsessthe first row of
integration points along the rebar. The load steps plotiddyure 6.32 coincide
with the first damage at the location of the first primary cradke crosses in-

o, [N/mm?]
N
N} 3

=
[3)

Principal stress in concrete along the rebar

— Hordijk 250 teeth load step 2673

— Hordijk 50 teeth load step 493

—— Hordijk 25 teeth load step 409
Hordijk 12 teeth load step 207

0 100

200

300 400 500
y [mm]

600

Figure 6.32: Principal concrete stresses along the rebar for variowgtsath accuracies

dicate the global maximum (using 10 digits). The resultsashareat scatter in
location for the various sawtooth accuracies. Also plotteftjure 6.32 is a result
of using an extreme number of sawteeth for the concrete @&Well as for the
interface (250) resulting in a very smooth curve that candexllas a reference.
From figure 6.32 it becomes clear that with reduced accutae\stress oscilla-
tions increase and a larger area shows stresses close tn#ile strength. This
causes the first primary crack locations to become more amd stattered. With
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6. SLA calculations of the tension-pull experiment by Ggsb

higher accuracy the high stress area becomes more and nmirgecbresulting in
a more consistent first primary crack location. For loweruaacies the first pri-
mary crack location is more or less a coincidence. The danmagpe model prior
to the initiation of the first primary crack is plotted in figasr 6.33 to 6.35. From
these figures is appears that with decreasing accuracigs areas of the model
become damaged prior to the first crack localization. Withuked accuracies

1
Model: GIJSBERS_SLABONDTEST l40
LC1: Load case 1 20
Step: 493 LOAD: 493 20
Gauss EL.ITEMS ITEM10 10
Max/Min on results set: 5
Max = 35 Min = 0 4
Results shown: I3
I2
1

Mapped to nodes
.875
1o
To
1

Figure 6.33: Occurred damage prior to first primary crack localizatibéfo¢dijk 50 teeth,
damage indicator N-direction, 50 equals complete damage)

Model: GIJSBERS_SLABONDTEST 1
LC1: Load case 1 20
Step: 409 LOAD: 409 15
Gauss EL.ITEMS ITEM10 o
Max/Min on results set: 5
Max = 18 Min = 0
Results shown:

Mapped to nodes

Figure 6.34: Occurred damage prior to first primary crack localizatibéfo¢dijk 25 teeth,
damage indicator N-direction, 25 equals complete damage)

Model: GIJSBERS_SLABONDTEST
LC1l: Load case 1 f
Step: 207 LOAD: 207

Gauss EL.ITEMS ITEM10

Figure 6.35: Occurred damage prior to first primary crack loacalizati@iiordijk 12
teeth, damage indicator N-direction, 12 equals complete damage)

the computing time is reported in table 6.3. The time depemdhe number of
load steps needed as well as on the number of integratiorispoirne relation
of the number of teeth used to the number of loadsteps or théimme is almost
linear.
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6.6. CHANGING THE SHEAR RETENTION BEHAVIOUR

Table 6.3: Influence of reducing number of teeth on number of nestdpd and comput-
ing time

100 teeth| 50 teeth| 25teeth| 12 teeth
number of loadsteps:((max)=1.2 mm)| 6550 3300 2060 1200
CPU time 326 138 81 42

6.6 Changing the shear retention behaviour

Until now a constant shear reduction factor®{f0.5 has been used (see sections
3.3 and 5.1) which is considered to be quite high. The disatdge of using a
constant factor is the severe shear stiffness reductiorettately upon cracking
and the possibility of shear locking for high crack straiAs. alternative method
IS to use a stepwise reduction (section 3.3). With this netthe shear stiffness
becomes a function of the normal crack strain which has a rpbysical basis
[15], see figure 6.36. In comparison to the previous calmnatusing a stepwise
reduction causes a stiffer initial response and a softenate response. In the

Stepwise shear softening with Hordijk 100 teeth (v =0.2)
12000 T T T T T

100001
8000+

6000

G N/mm?

40001
20001

0 i i i i i
30.000 25.000 20.000 15.000 10.000 5.000 0
En(scr) N/mm?

Figure 6.36: Stepwise shear reduction with Hordijk softening using 100 teeth

previous section the number of teeth was reduced stepwiséhid section the
same sawtooth diagrams will be used (see tables L.1 to Lt3kbalculated with
a stepwise shear reduction. Figure 6.37 shows the resutteeafalculations in
various load-displacement curves. Compared to the pregiectson (figure 6.28)
the results are much more consistent. With all sawtoothracees three primary
cracks develop (see figures 6.38 t0 6.41). Also the primaglksare more curved
and localized near the free edge. Figure 6.42 shows agapriti@pal concrete
stresses in the first row of integration points along the neffae crosses again
indicate the global maximum (using 10 digits)Compared to the results of a
constant shear retention the oscillations of the princgpasses have somewhat
diminished. Also the values of the principal stresses ah leoids have dropped
considerably. For comparison the damage in the model pritetinitiation of the
first primary crack for the various sawtooth accuracies @ted in figures 6.43

2the two crosses indicating the global maximum for 50 teethiadeed equal stress points
using 10 digits, with SLA only one will be given a strength atiffness reduction in this loadstep
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6. SLA calculations of the tension-pull experiment by Ggsb

Load-displacement curve SLA analysis using axi-symmetry Load-displacement curve SLA analysis using axi-symmetry

25
20,000 20,000
15.000 15.000]
Z B
10,000 10,000
5,000 5,000
— SLA without imperfections (Hordijk 100 teeth) B=0.5 timperfections (Hordik 100 teeth) stepw
—— SLA without imperfections (Hordijk 100 teeth) stepwise shear reduction| it imperfections (Hordijk 50 teeth) stepwise
K 06 %
u, fmm)
Load-displacement curve SLA analysis using axi-symmetry Load-displacement curve SLA analysis using axi-symmetry
25 T T T 2 T T T
20,000 20,000
15.000 15,000
Z B
fra fra
10,000 10,000
5,000 5,000
— SLA without imperfections (Hordijk 100 teeth) stepwise shear red: — SLA without imperfections (Hordik 100 teefh) s
—— SLA without imperfections (Hordijk 25 teeth) stepwise shear redu —— SLA without imperfections (Hordijk 12 teeth) stej
0

06
u, fmm)

Figure 6.37: Influence of reducing number of teeth when using a stegiesar reduction,
£5=0.5 versus stepwise reduction 100 teeth (top left), stepwise reduction 100
versus 50 teeth (top right), stepwise reduction 100 versus 25 teeth (bottom
left) and stepwise reduction 100 versus 12 teeth (bottom right)

Model: GIJSBERS_SLABONDTEST _855E-2
LC1l: Load case 1
Step: 6560 LOAD: .656E4 Zgig—g
Gauss EL.ITEMS ITEM04 N
Max/Min on results set: -598E-2
Max = .94E-2 |-512E72
Min = -.155E-4 §-427E-2
Results shown: .341E-2
Mapped to nodes | 2558-2
1
n

Figure 6.38: Crack strair." at u,,=0.6 mm (Hordijk 100 teeth)

Model: GILJSBERS_SLABONDTEST

LC1: Load case 1 .809E-2
: 3500 LOAD: .35E4 .728E-2
ITEMS ITEMO4 647E-2
on results set: .565E-2
9E-2 .484E-2
208E-4 1 .403E-2
e ts shown: 1 .322E-2
apped to node: L241E-2
I 16E-2

I

1

Figure 6.39: Crack strair" at u,=0.6 mm (Hordijk 50 teeth)

to 6.46. Especially with 25 teeth the localization has impbconsiderably
(compare figure 6.45 to 6.34). With 12 teeth the localizatsoagain quite poor
indicating that the accuracy of this sawtooth diagram issodficient to get good
results. With 50 or a 100 teeth the localizations are sintdathe ones using a
constant shear retention factor (compare figures 6.43 a#dt6.6.22 and 6.33)
but the amount of damage at both ends is much higher.
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6.6. CHANGING THE SHEAR RETENTION BEHAVIOUR

Model: GIJSBERS_SLABONDTEST 1 g315-2
LCl: Load case 1 JaBE-2
Step: 1710 LOAD: .171E4

Gauss EL.ITEMS ITEMO4
Max/Min on results set:

L665E-2
.581E-2

Max = .915E-2 L498E-2
L415E-2

1
I l3328-2
1
L
L

Min = -.138E-4
Results shown:
Mapped to nodes

.248E-2
.165E-2

Figure 6.40: Crack strair," at u,=0.6 mm (Hordijk 25 teeth)

Model: GIJSBERS_ SLABONDTEST I g575-2
LC1: Load case 1 C771E-2
Step: 930 LOAD: 930 68552
Gauss EL.ITEMS ITEMO04 .
Max/Min on results set: S599%E-2
Max = .943E-2 y 513E-2
Min = -.254E-4 § 427E-2
Results shown: -341E-2
Mapped to nodes .255E-2
I 1692
q ] i .834E-3 =
i 5 & '

Figure 6.41: Crack strair," at u,=0.6 mm (Hordijk 12 teeth)

Principal stress in concrete along the rebar (stepwise shear reduction)

3 T T T T T
S =
NE 2 [ 4
£
Z
o 1.5 R
— Hordijk 100 teeth load step 1155
1 —— Hordijk 50 teeth load step 599 |
— Hordijk 25 teeth load step 369
Hordijk 12 teeth load step 239
05 1 1 1 1 1
0 100 200 300 400 500 600

y [mm]

Figure 6.42: Principal concrete stresses along the rebar for variowgtsath accuracies

Tso

T70

60

Model: GIJSBERS_SLABONDTEST 50
LC1: Load case 1 40
1155 LOAD: .116E4 30
EL.ITEMS ITEI 20

M10
lts set:

Figure 6.43: Occurred damage prior to first primary crack localizatiddofdijk 100
teeth, damage indicator N-direction, 100 equals complete damage)

Table 6.4 gives the number of needed steps for the calcotatiompared to
the previous section. In comparison the calculations witht af teeth use much
more load steps when using a stepwise shear reduction g8tyahe calculations
with 25 or 12 teeth are hardly effected in terms of needed sbapis.
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6. SLA calculations of the tension-pull experiment by Ggsb

Model: GIJSBERS_SLABONDTEST

LC1: Load case 1

Step: 595 LOAD: 599 30

Gauss EL.ITEMS ITEM10 20

Max/Min on results set: 10
= Min

Mapped to nodes

.875
175
I
1

Figure 6.44: Occurred damage prior to first primary crack localizatibéfo¢dijk 50 teeth,
damage indicator N-direction, 50 equals complete damage)

Model: GIJSBERS_SLABONDTEST
LCl: Load case 1

Step: 369 LOAD: 369

Gauss EL.ITEMS ITEM10

Mapped to nodes

Figure 6.45: Occurred damage prior to first primary crack localizatibfo¢dijk 25 teeth,
damage indicator N-direction, 25 equals complete damage)

Model: GIJSBERS_SLABONDTEST

LCl: Load case 1

Step: 239 LOAD: 239

G MS ITEM10
results set:

Figure 6.46: Occurred damage prior to fist primary crack localizatioro(dijk 12 teeth,
damage indicator N-direction, 12 equals complete damage)

Table 6.4: Influence of stepwise shear retention and reducing nunfibeeth on number
of needed steps compared to constant shear retention

100 teeth| 50 teeth| 25 teeth| 12 teeth
number of loadsteps 8400 4600 2230 1220
(uy(max)=1.2 mm) | (+28%) | (+39%) | (+8%) | (+2%)

6.7 Using mesh refinements

From the previous two sections the best results were olataisag at least 25
teeth for the concrete and when using a stepwise shearicgteir this section
the influence of mesh refinements will be examined. The mesth wstil now can
be considered to be quite coarse. It is possible that a finehmél give better
results especially when using fewer teeth. In this sectiam mesh refinements
will be examined, in each case the number of elements willdudbk:d.

Another aspect is mesh alignment. However this is not ergetd play an
important role in the crack development because of the talistxess distribution.
Also a random mesh would raise some questions regardingdlo& band width
(as it would differ for each element) and without an autordatvtooth generator
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6.7. USING MESH REFINEMENTS

this aspect can currently not be explored in a practicaleseBeme investigation
into mesh alignment with SLA can be found in [15].

6.7.1 Used refinements

With the first mesh refinement the number of elements is dduiblex- and y-
direction to 36 and 4 respectively, see figure 6.47. For thesigation again
Hordijk softening will be used with various accuracies.(hember of teeth), see
appendix M. For the interface and the steel bar fixed sawtdaitrams will be
used (see section 6.2 figure 6.3). This is a mere practicaelamd will not have
a significant effect on the results. With all calculationspstise shear retention
will be used (see section 6.6).

The crack band width is calculated as the spacing betweeimtégration
points: h=600/(36x3)=5.5556 mm (a 3x3 integration scheme is uset).sécond

Figure 6.47: First mesh refinement

mesh refinement is analogous to the first now with 72 and 8 eltsme x- and
y-direction respectively, see figure 6.48. The crack bardttwior this mesh is:
h=600/(72x3)=2.7778 mm.

-

Figure 6.48: Second mesh refinement

6.7.2 Results

Contrary to the expectation the first mesh refinement doesivetgtter results
compared to the previous mesh when fewer teeth are usedef@oticrete saw-
tooth diagram. The problem of increased damage with deagascuracy for

the concrete sawtooth approximation prior to the develogrogthe first primary

crack, which was already witnessed in the previous two @estiis again prevail-
ing. However it is now already playing an important role ewdren a 100 teeth
are used. Figure 6.49 shows the damaged areas (indicated)iprror to the first

primary crack which clearly shows that with all accuracissdithere is now more
damage in the center part of the model in comparison to theque mesh. The
excessive damage especially with 50, 25 and 12 teeth alsbd&dssadvantage of
needing a relatively large number of load steps. To chedkcifegasing the num-
ber of teeth even further then 100 would yield better requitsther calculation is
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6. SLA calculations of the tension-pull experiment by Ggsb

Model: GIJSBERS_SLA MESH2
LC1: Load case

Step: 3110 LOAD: .311E4
Gauss EL.ITEMS ITEM10
Max/Min on results set:
Max = 89 Min = 0

Model: GIJSBERS_SLA_MESH2
LC1l: Load case 1

Step: 2170 LOAD: .217E4
Gauss EL.ITEMS ITEM10

Model: GIJSBERS_SLA MESH2
LC1: d c

ase
79 LOAD: .168E4

s EI
Max/Min on results set:
Max = 22 Min = 0

Model: GIJSBERS_SLA_MESH2
LC1: Load case
Step: 1181 LOAD: .118E4
Gauss EL.ITEMS ITEM10
esults set:
=0

Figure 6.49: Damaged integration points (indicated in red) prior to first @mncrack,
from top to bottom: Hordijk 100, 50, 25 and 12 teeth

performed now using 200 teeth. Figure 6.50 shows the restdtins of damaged
areas prior to the first primary crack localization. Cleaklg tesult has improved
considerably. The obvious downside of using so many teetomunction with

the use of a fine mesh is the needed number of load steps (34Fig@ye 6.50

again demonstrates the previous encountered behaviole afécking sequence
in a tension-pull experiment, meaning that cracking prsges from both ends
along the rebar followed by a swift and clear primary craatal@zation where

ultimately large areas of the model remain completely uratped (see also fig-
ure 6.23). The problem of localization becomes worse in seshdamaged areas
with the second mesh refinement, see figure 8.5IThe results of both mesh

Model: GIJSBERS_SLA_MESH2

LC1: Load case 1

Step: 5800 LOAD: .58E4

Gauss EL.ITEMS ITEM10

Max/Min on results set:
78 Min = 0

Figure 6.50: Damaged integration points (indicated in red) prior to first @mncrack
with Hordijk 200 teeth

refinements are also plotted in load-displacement cungether with the results
of the previous mesh for various sawtooth accuracies, seeef@)52. At this time
it should be noted that despite the aforementioned lodalizgoroblem eventu-
ally with SLA localization does always take place, albeiaatigher load level.
This is especially visible with the second mesh refinemergrmiising only 12

3with the second mesh refinement no calculation with a 100 iegierformed due to needed
computing time
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Figure 6.51: Damaged integration points (indicated in red) prior to first @igncrack,
from top to bottom: Hordijk 50, 25 and 12 teeth

teeth (see figure 6.52 bottom right). Instead of a quick dvegk the graph shows
increasing load on the first and second peak and is very spiké€de principal

Load-displacement curve SLA analysis using axi-symmetry L curve SLA analy

20,0001 2 20,0001

15.000F 4 15.000(

Fy N
Fy N

10.000F . B 4 10.000F

5.000F 4 5.000F

——SLA (Hordijk 50 teeth) Mesh #1]

—— SLA (Hordik 100 teeth) Mesh # ——SLA (Hordijk 50 teeth) Mesh #2|

— SLA (Hordijk 100 teeth) Mesh #:

02 04 06 08 1 12 02 04 06
u, [mm) u, [mm]

|—— SLA (Hordik 50 teeth) Mesh #3)

Load-displacement curve SLA analysis using axi-symmetry

20,0001
20,000

15.0001 15.000F

Fy [N
FyIN]

10.0008 10.000

5.000F

——SLA (Hordik 25 teeth) Mesh #1
—— SLA (Hordik 25 teeth) Mesh #2|

——SLA (Hordijk 12 teeth) Mesh #1]

—— SLA (Hordijk 12 teeth) Mesh #2|
|—— SLA (Hordik 12 teeth) Mesh #3)

08 1 12

—— SLA (Hordijk 25 teeth) Mesh #3

0 02 04 06 06
u, fmm] u, [mm]

Figure 6.52: Influence of number of teeth and mesh refinements, &00(tep left), 50
teeth (top right), 25 teeth (bottom left) and 12 teeth (bottom right)

stress oscillation that was encountered previously (@e@i6) is shown in figure
6.53 for the second mesh refinement with 50 and 12 teeth. Huksieps plotted
again coincide with the first damage at the location of the firisnary crack. The
periods of the stress oscillations compared to the previoesh have decreased
considerably. The graph with 12 teeth shows an increase piitaice compared
to the graph with 50 teeth. Changing tb¢ANA solver to a so called direct so-
lution method (i.e. prohibiting the use of numeral methatdid) not resolve this
problem.

The cause of the observed behaviour of large damaged areas ugieg fewer
teeth and with mesh refinements is believed to be the ratio betthe stiffness
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Principal stress in concrete along the rebar Principal stress in concrete along the rebar

o, INmm?]

15 . . ——largest principal stress step 7701
. 2

X global maximum (26564 Nimm’) —— frgestprinciplsiess siep 7701

X local maximum (2.615 N/mm°) X local maximum (2.615 N/mm?)

50 100 150 200 250 300 350 400 450 500 550 100 150 200 250 300 = 350 400 450 500
mm ¥ [mm]

Principal stress in concrete along the rebar
T T

1 —— principal stress step 5475
X global maximum (2.9248 N/mmz)

0 100 200 300 400 500 600
y [mm]

Figure 6.53: Principal concrete stresses along the rebar with secorshmefinement,
Hordijk 50 teeth (top) versus Hordijk 12 teeth (bottom)

of the interface and the concrete. In all cases the damagedsaprogress from
the ends towards the middle (like a crack “front”). With a lowauracy saw-
tooth diagram the local stiffness reduction upon crackmbigher compared to a
high accuracy sawtooth diagram. This changes the locahss ratio introduc-
ing a stress concentration (i.e. making the interfacerstgt relatively high). This
stress concentration will subsequently initiate the neatkicreating the observed
“chain effect”. An indication of this was also observed wittetbalculations in
the next chapter were different stiffness values for thefexdte were used. With
a high stiffness interface stress concentrations are foweat the loaded ends re-
sulting in the formation of the first primary cracks at thegedtions instead of in
the middle.

Finally the number of loadsteps needed for all meshes usexp@ted in table
6.5. The relation of the number of concrete elements to timeten of loadsteps
needed is almost linear.

Table 6.5: Influence of mesh refinement and number of teeth on nembeeded load-

steps
number of loadsteps 100 teeth| 50 teeth| 25 teeth| 12 teeth
(uy(max)=1.2 mm
original mesh (36 concrete elements) 8400 4600 2230 1220
first mesh refinement (144 concrete elements) 24400 10300 6000 4100
second mesh refinement (576 concrete elements) X 32200 | 23300 | 13000
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6.8 Summary and conclusions chapter 6

In this chapter the tension-pull experiment that was caledl in the previous
chapter using axi-symmetric elements and using a non+liaralysis is recal-
culated with SLA (sequentially linear analysis). For tHig fpreviously derived
extensions for SLA, i.e. the axi-symmetric and interfaaarednts, are used. For
the calculations the non-linear Hordijk softening curvecohcrete in tension is
approximated with a sawtooth calculated with the previpuirived sawtooth
generator. At first a calculation is performed using the sanperfections that
were used in the non-linear analysis to be able to compavétsedext a calcu-
lation is performed without these imperfections to invgestie the possibilities in
SLA. A number of other aspects is also investigated inclgdive use of various
accuracies for the sawtooth approximations, changingitbargetention behavior
and the use of mesh refinements. The following conclusiogarding the SLA
calculations can be stated:

SLA calculation using imperfections

1. Using high accuracy sawtooth approximations all resafésin excellent
agreement with the non-linear analysis. There are hardfyd#ferences
found except in the load-displacement curve with SLA alsapsbacks are
captured after each primary crack. This indicates SLA is@dgaternative
to non-linear analysis when using axi-symmetric and iatfelements.

2. Despite the imperfections used the SLA analysis stilhshsomewhat bet-
ter crack localization, especially at the loaded ends, @wegpto the non-
linear analysis.

3. The bond stress profiles found in the SLA analysis are irdgmyeement
with the non-linear analysis indicating that the adoptedtsath approx-
imation for bond-slip and the SLA code for interface elersenbrk cor-
rectly.

4. The ultimate load is governed almost completely by théding of the re-
bar. The results show an ultimate load in the load-displacgmourve equal
to the one found with the non-linear analysis. This indisates better to
use downshifting only and no uplifting of the “mother” curiar the saw-
tooth approximation of steel plasticity.

SLA calculation without imperfections

1. Despite the uniform stress distribution in case of a tamgiull experiment
and no imperfections in the model the SLA analysis again shexgellent
localization resulting in the formation of three primargacks. This result
would not be possible with a non-linear analysis as crackiogld appear
everywhere simultaneously in case of a uniform stressilbligion. This
justifies the conclusion that SLA is superior to non-lineaalgsis in case
of a tension-pull experiment.
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2. The primary cracks always originate from the integrapomts close to the
rebar. A principal stress plot along the rebar at the momigmtimary crack
initiation shows that some stress oscillation occurs.

3. Large areas between the primary cracks remain complagteacked sim-
ilar to the result of the non-linear analysis where impdifers are used.
This again indicates the excellent localization capabditSLA.

4. It has been found that slip of the interfaces occurs just fo the formation,
and close to, each primary crack and the end faces. The s@s-In
the load-displacement curve are completely governed bgreta cracking
only. After a fully developed primary crack pattern and atighler load
level slip of the interfaces will continue.

Reducing number of teeth

1. The aforementioned principal stress oscillation aldmg rebar amplifies
with decreasing accuracy for the sawtooth approximatiéiso the cracked
area in the model prior to the development of the first primamgck in-
creases. Although primary crack localization does alwake place, with
decreasing accuracy the locations of the primary crackerbeanore and
more scattered.

2. Reducing the accuracy for the steel sawtooth diagram yhaifticts the
ultimate load capacity. Using a lower accuracy only regalegsmore spiked
load-displacement curve.

3. With the used elasto-plastic bond-slip relation the emcyfor the sawtooth
approximation does not have a large effect on the overalltseespecially
the load-displacement curve. Detailed results howevecigpally the bond
stress profiles, are affected and become less smooth witeakeg accu-
racy.

4. It has been found that the relation between the numbeketi tesed for the
sawtooth approximation of the concrete and the CPU time ipstitmear.
Since many more loadsteps involve concrete cracking casadpiar bond-
slip or steel yielding the sawtooth accuracy for the latteo &re of less
importance with respect to computing time.

Changing the shear retention behavior

1. Using a stepwise shear retention instead of a constaat séiention fac-
tor, apart from having a more physical basis, improves tielte With
reduced number of teeth the damaged areas prior to the geveid of the
first primary crack have somewhat diminished. The resultstie vari-
ous accuracies of the sawtooth approximations are now noonparable to
each other (i.e. more consistent).
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2. The aforementioned principal stress oscillations alinegrebar have also
diminished with the use of stepwise shear retention conapara constant
shear retention factor. This also results in more condigigmary crack
locations for the various sawtooth accuracies.

3. The number of loadsteps needed when using a stepwisersieation in-
stead of a constant shear retention factor has increasatbeoably when
using high accuracy sawtooth approximations (+30-40%j.l¢wer accu-
racies the increase in needed load steps is much less.

Using mesh refinements

1. To get comparable results with a finer mesh the number ofesdlwvused
for the concrete sawtooth approximation has to be increimstelad of de-
creased. Both the principal stress oscillations as well@asliimaged areas
prior to the development of the first primary crack reportadier have in-
creased when a finer mesh is used.

2. The cause of the increased cracking in case of a mesh refimeppears
to be related to the stiffness ratio between the interfackthe concrete.
With a low accuracy sawtooth diagram the local stiffnessicéidn upon
cracking is higher compared to a high accuracy diagram. difasge in the
local stiffness ratio appears to introduce a stress coratet which will
subsequently initiate the next crack ultimately creating karge cracked
areas.

3. From the results it becomes clear that using more teetithéoconcrete
sawtooth approximation is much more effective and will dredter results
then using a finer mesh in case of a tension-pull experiment.
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Chapter 7

SLA calculations of the tension-pull
experiments by Mayer
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7. SLA calculations of the tension-pull experiments by Maye

7.1 Introduction

In this chapter several tension-pull experiments that werelucted by U. Mayer
[12] will be calculated with SLA. The experiments all coria$ long specimens
(2.3 to 2.9 m) and have various (square) cross sectiongugconcrete qualities
(B25 and B45) and also different reinforcement ratios as wetkebar diameters
(from 6 to 25 mm). Figure 7.1 shows the test setup and the theepient of

the strain gauges used with the experiments. With all thesations these ex-
periments are perfectly suited for using the bond modelrde=t in chapter 2

to calculate the bond-slip curves and the necessary sawapgroximations (see
section 4.3). The report by Mayer does not contain loadlaigment curves or

GEWINDESTANGEN
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1
| BEWEHRUNGSSTAHL

bin
\
| //WEGAUFNEHMER

|4&——STAHLPROFIL

PRUFZYLINDE

Figure 7.1: Mayer test setup and placements of strain gauges

complete crack patterns. Therefore direct comparisonbeofésults of the cal-
culations in this chapter to the experiments is not possibiem the long strain
gauges of 2 meters placed in the center (“WA 2000” see figurea¥erage strain-
stress curves have been reported. Therefore these wilbalseported with the
SLA calculations. However no variations of parameters beallexplored to fit the
experimental data. Instead the emphasis will be put on thergé(cracking) be-
haviour under the influence of the various configurationsraaling qualitative
comparisons where possible.
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7.2 Discretization options

The square reinforced concrete cross-section with reloaegdd in the corners
and/or near the sides used in the experiments can be disseétito a finite ele-
ment mesh in various ways:

1. Transform into an equivalent circular cross section duah tuse axi sym-
metry with rebars lumped to the axis of rotation:

2. Transform into an equivalent circular cross section dueth tuse axi sym-
metry with rebars lumped to a position with equal concretgeeco

3. Use plane stress for the square concrete cross sectionabirs lumped to
actual positions:

Since this thesis is directed to axi-symmetric elementdi ie second op-
tion is chosen to be most appropriate. This will also sineuthe cracking be-
haviour in the vicinity of the concrete cover. The mesh wiktefore again con-
sist of axi-symmetric elements for the concrete, truss etemfor the rebar and
interface elements for bond-slip. To have a correct stiéfer the interface again
the DIANA configuration option “plane stress” is used (see also seéti.1) but
now the sum of the circumferences of all rebars is taken amtbdace area.

7.3 Overview of calculated experiments

In table 7.1 an overview is given of the different tensiorkpuperiments that will
be calculated in this chapter (see also [12] table 4.1). Atedtpreviously the lo-
cation of the lumped rebar (radius from the axis of symmasrgetermined with
the condition of an equal concrete cover, e.g. for S4D12AB25;,,=169.26-
30-12/2=133.3 mm. The mesh is chosen to be quite coarselésesemtion 6.7).
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code reinforcement| reinforcement| steel | concrete| dimensions | equivalent
and concrete ratio [%] class| type bxdxL [mm] concrete
cover [mm] radius [mm]
S4D12AB25| 4@ 12 (c=30) 0.50 A B25 300x300x2500, 169.26
S8D12AB25| 8@ 12 (c=30) 1.00 A B25 300x300x2500, 169.26
S8D12AB45| 8@ 12 (c=30) 1.00 A B45 300x300x2500, 169.26
S4D16AB25| 4@ 16 (c=35) 0.50 A B25 400x400x2700, 225.68
S6D16AB25| 60 16 (c=35) 0.75 A B25 400x400x2700, 225.68
S2D25AB25| 2@ 25 (c=35) 0.60 S B25 400x400x2900,  225.68
S4D25AB25| 4@ 25 (c=35) 1.20 S B25 400x400x2900, 225.68

Table 7.1: Overview and codes of calculated experiments

Since the actual concrete dimensions are a lot bigger cadgarprevious cal-
culations a somewhat larger number of elements is used. Eisé m also deter-
mined by the condition to have nodes at the edges of the twerraain gauges.
Figures 7.2 to 7.4 show the mesh used for the various dimensoagether with
the crack band width. For the axi-symmetric elements again a 3x3 integration
scheme is used. In thickness direction one element is usegptesent the con-
crete cover whereas 4 elements are used to model the didtant¢he axis of

rotation to the reinforcement.

Model: S4D12AB25

AN

\—|reinforcement and interface elements]

Figure 7.2: Mesh for dimensions 300x300x2500 mm (40 elements in loimgitwlirec-
tion), crack band width#=2500/(40x3)=20.83 mm

Model: S4D16AB25

\—|reinforcement an interface elements ]|

Figure 7.3: Mesh for dimensions 400x400x2700 mm (54 elements in loimgitwtirec-
tion), crack band widthh=2700/(54x3)=16.67 mm

Model: S2D25AB25

N

\—|reinforcement and interface elements]

Figure 7.4: Mesh for dimensions 400x400x2900 mm (58 elements in loimgitwiirec-
tion), crack band widthh=2900/(58x3)=16.67 mm
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7.4 Material properties

The concrete material properties that will be used in theutations are given in
table 7.2. The fracture energy was not reported in [12] efoee it is calculated

Table 7.2: Concrete material properties

concrete| average cube compressiyeaverage tensile average modulus of fracture
type strengthf...,, [N/mm?] strengthf.,,, | elasticity [N/'mn?¥] | energy

[N/mm?] [N/mm]
B25 284 2.1 30000 0.053
B45 64.7 3.3 37400 0.099

with the CEB-FIB MC90 model cod€~ y, is determined with a maximum aggre-
gate size of 16 mm which was reported by Mayer being used imtperiments.

0.7 0.7
em 0.80 - 28.4
B25: Gy = G o (Jio ) — 0.030 <1—0) —0.053 N/mm (7.1

0.7 0.7
cm . * 4.
B45: G, = G (Jlo ) =0.030 (0851—067) = 0.099 N/mm  (7.2)

The material properties for steel are given in the table Tie Poisson’s ratio
used for the concrete as well as the steel is 0.2.

Table 7.3: Steel material properties

diameter [mm]| steel class| Ay [mm?] | f, [N/mm?] | E4 [N/mm?]
12 A 115.9 532 196000
16 A 199.8 519 203000
25 A 478.5 585 204000
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7.5 Bond-slip sawtooth diagrams

The sawtooth diagrams used for the concrete and steel wilbeajiven here,
instead see appendix N. As mentioned in the beginning otctrapter the bond-
slip relations for the various simulations will be calceltwith the Matlab bond
model. In most cases, but not all, pull-out is the governailyife mode. Since the
bond-slip relation for pull-out failure is strongly depemd on the steel strain (see
section 2.8), this influence will be taken into account. lct the best way would
be to update the bond-slip relation continuously duringcileulation as the steel
strains changes. Since this is not possible instead a fixesd strain (i.e. an
average steel strain) is taken into account with a valuelequmalf the maximum
elastic straing, ~0.001. Figure 7.5 shows the various calculated bond-shyesu
as well as the value for the initial elastic stiffnés$he effective concrete cover

Bond stress versus slip (pull-out failure) £ =0.001 Bond stress versus slip (pull-out failure) € =0.001
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Figure 7.5: Bond-slip sawtooth used for simulations: S4D12AB25 and 38B25
(St.1=116.7 N/mmi) (top right), S8D12AB45Y; .,=377.3 N/mmi) (top left),
S4D16AB25 and S6D16AB2S5;(;=87.4 N/mnd) (bottom left), S2D25AB25
and S4D25B25; .;=57.1 N/mni) (bottom right)

is calculated from the cover to the outside and a maximumrdovthe inside of
4xds. As can be seen from these figures the various bond-slipaesaare very
different in terms of strength and stiffness.

Lin the bond model the concrete tensile strength is calalifiten the compressive strength
(see section 2.3), therefore the values for the tensilegtinein figure 7.5 deviate from the ones
given in section 7.4
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7.6 Results tension-pull experiments

In this section the influence of several parameters on thekicrg behaviour in a
tension-pull experiment will be investigated using theutessof the various calcu-
lations. The calculations are refered to by code, see tallsettion 7.3. Some
detailed results can also be found in appendices O to U.

7.6.1 Influence of reinforcement ratio

In this section the influence of the reinforcement ratio andhacking behaviour
of the tension-pull experiments will be examined. For thie simulations will be
compared: S4D12A and S8D12A. All material parameters avalezxcept with
S8D12A the reinforcement ratio is 1.00% whereas with S4Dit200.50%. The
mesh used in both calculations is given in figure 7.2 secti@n Both use the
same bond-slip relation (see figure 7.5). From a modellinrgpeztive only the
circumference for the interface elements and the truss @®estion, representing
the lumped rebars, differs. Figure 7.6 shows the resulti@ftlculations in a
load-displacement curve. For S4D12A and S8D12A about 1880187000 load
steps are needed respectively. Both graphs show extreneely drops every time

Load-displacement curve SLA analysis using axi-symmetry
250,000 : : : : :

«10° Load-displacement curve SLA analysis using axi-symmetry

200.000[

150.000

F N

100.000

50.0001

——Mayer S4D12-A Hordijk 50 teeth (B25 Gf=0.053 300x300x2500 mm) 0.5 ——Mayer S8D12-A Hordijk 50 teeth (B25 Gf=0.053 300x300x2500 mm)|
steel bar only steel bar only
0
0 1 2 3 4 5 6 % 1 2 3 4 5 6 7
u [mm] u, [mm]

Figure 7.6: Load-displacement curve simulation S4D12A (left) versD4.38 (right)

a primary crack occurs. It should be noted however that therete dimensions
are very different from the calculations in the previousptkees. The final crack
patterns are shown in figure 7.7. The complete crack devedapis given in
appendices O and P. No principal stress oscillations odcdigating that the
used sawtooth approximation for concrete is sufficientlguaate, and in both
cases the cracking starts at midpoint (see figure 7.8). Tthesirce of increased
reinforcement is in good agreement with what one would expkcsimulation
S8D12A secondary cracks occur between all primary crackdalthe increased
reinforcement and the primary crack distance is cut in halMee damage after
the formation of the primary crack pattern is shown in figu@ This shows that
with increased reinforcement the cracks are more dispemsddhe crack width
decreases (note that the scaling is equal in both figures).
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Figure 7.7: Final crack pattern simulation S4D12AB25 (top) and S8D IZZA@®ottom)

Principal stress in concrete along the rebar

Principal stress in concrete along the rebar
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Figure 7.8: Principal concrete stresses along inner side of rebar at firimary crack

initiation in simulation S4D12A (top) and S8D12A (bottom)

Iso
Model: S4D12AB25 I40
LC1: Load case 1 20
Step: 14000 LOAD: .14ES5 10
Gauss EL.ITEMS ITEM10 5
Max = 50 Min = 0 1
Results shown: I
Mapped to nodes 1,

Model: SBD12AB25

LC1l: Load case 1 Iso
Step: 25000 LOAD: .25ES I
Gauss EL.ITEMS ITEM10 i
Max/Min on results set: To
Max = 50 Min = 0

Results shown: s
Mapped to nodes |§

Figure 7.9: Damage simulation S4D12AB254gt3.65 mm and S8D12AB25 af,=3.40
mm (damage indicator N-direction, 50 equals complete damage)
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7.6.2 Influence of concrete type

In this section the influence of concrete type on the crackielgaviour of the
tension-pull experiments will be examined. For this twoudismtions will be com-
pared: S8D12A with B25 and B45. All other material parameteesegual. The
mesh used in both calculations is given in figure 7.2 secti@n The bond-slip
relation of course now differs (see figure 7.5). From a maagplberspective apart
from the bond-slip relation for the interface elements dls®concrete material
properties differ. Figure 7.10 shows the results of the watons in a load-
displacement curve. For S8D12AB25 and S8D12AB45 about 376681@000
load steps are needed respectively. Since the ultimateléwatlis governed al-
most entirely by steel yielding it is equal in both simulato The final crack

«10° Load-displacement curve SLA analysis using axi-symmetry «10° Load-displacement curve SLA analysis using axi-symmetry

05 ——Mayer S8D12-A Hordijk 50 teeth (B25 Gf=0.053 300x300x2500 mm) ——Mayer S8D12-A Hordijk 50 teeth (B45 Gf=0.099 300x300x2500 mm)|
steel bar only steel bar only
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5 6 7

Figure 7.10: Load-displacement curve simulation S8D12AB25 (leftuge88D12AB45
(right)

patterns are shown in figure 7.11. The complete crack denedapis given in
appendices P and Q. It can be seen that the average craakcdistéfers, with
B25 the average crack distance is about 156 mm whereas witht B4&out 132
mm.

Model: S8D12AB25
LC1: Load case 1
Step: 25000 LOAD: .25ES 1
Gauss EL.ITEMS ITEM04

4E-2

Model: S8D12AB45
LCl: Load case 1
Step: 35000 LOAD: .35ES 1 72282
Gauss EL.ITEMS ITEM04

2

Figure 7.11: Final crack pattern simulation S8D12AB25 (top) and S8EBUEA(bottom)
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Figure 7.12: Principal concrete stresses along inner side of rebarrst firimary crack
initiation in simulation S8D12AB25 (top) and S8D12AB45 (bottom)

The concrete principal stresses along the rebar at firsigpyirack initiation
(figure 7.12) show how the cracking starts for both simutegioFrom this, and
from the complete crack development for S8D12AB45 in appeiit can be
seen that with B45 cracking starts near a loaded end instaaded middle. This
behaviour is due to the increased relative bond-slip &i#é(see equations 7.3 and
7.4) which causes a much quicker load transfer from the lieb@mthe surrounding
concrete and therefore creating a local high stress pdiatgtmount of concrete
surrounding the rebar, i.e. the concrete cover, is insgfiicio disperse this local
high stress).

OSie  150.796x116.7

S8D12AB25: ratio= = =0. 7.3
E. 30000 0587 (7.:3)

OSie  150.796x377.3
E. 37400

S8D12AB45: ratio= = 1.521 (7.4)

With:

O total circumference of all rebars
Sie  Initial elastic stiffness of interface (see also figure 7.5)
E,.  concrete elastic stiffness

Finally figure 7.13 shows the damage for both simulationsrdfte formation of
the primary crack pattern. This shows that with B45 the cracksnore dispersed
and the crack width slightly decreases (note that the sgaiequal in both fig-
ures). Also with B45 cracks appear near the axis of rotation.
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Model: S8D12AB25
LC1: Load case

Model: S8D12AB45

LCl: Load case 1

Step: 29000 LOAD: .29ES

Gauss EL.ITEMS ITEM10
/M lts set:

Figure 7.13: Damage simulation S8D12AB25 a{=3.40 mm and S8D12AB45 at
u,=2.60 mm (damage indicator N-direction, 50 equals complete damage)

7.6.3 Influence of rebar diameter

In this section the influence of rebar diameter on the crackehaviour of the
tension-pull experiments will be examined. For this threesusations will be
compared: S4D12A, S4D16A and S4D25A all with concrete qu825. Model
S4D25A has a slightly larger reinforcement ratio of 1.20%mpared to the other
two (1.00%). The mesh used in the calculations is given inrégw.2 to 7.4
section 7.3. The bond-slip relation of course differs intesienulation (see fig-
ure 7.5). Figure 7.14 shows the results of the calculatinrasload-displacement
curve. For S4D12AB25, S4D16AB25 and S4D25AB25 about 1550000 &d
39000 load steps are needed respectively. With increashray diameter the lin-

Load-displacemen it curve SLA analysis using axi-symmetry
250.00( T T T T T

«10°  Load-displacement curve SLA analysis using axi-symmetry
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«10° Load-displacement curve SLA analysis using axi-symmetry
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Figure 7.14: Load-displacement curve simulation S4D12A (top left) geBdUD16A (top
right) and S4D25A (bottom)
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ear elastic stiffness increases but this is also due to ttreased concrete cross-
section with S4D16AB25 and S4D25AB25. The cracking of S4D123RBAd
S4D16AB25 are very similar although the ultimate load legehuch higher for
S4D16AB25. In simulation S4D25AB25 secondary cracks occtwéen all pri-
mary cracks. The final crack patterns are shown in figure 7.6 complete crack
development is given in appendices O, R and U. The concreteipal stresses

Model: S4D12AB25

LC1: Load case 1

Step: 14000 LOAD: .14ES
Gaus S 04

Figure 7.15: Final crack pattern simulations S4D12AB25 (top), S4D ABiddle) and
S4D25AB25 (bottom)

along the rebar at first primary crack initiation for S4D16AB#hd S4D25AB25
are very similar to the stress profile of S4D12AB25 (see figud? 30 they are
not give here. Finally figure 7.16 shows the damage for theetlsimulations
after the formation of the primary crack pattern. As couldgsben from the load-
displacement curve and appendix U in simulation S4D25AB2pjitears that the
interface stiffness is borderline sufficient to get secondeacks. The stiffness ra-

tio between the interface and the concrete for the threelations are calculated
as:
OSie  150.796x116.7

S4D12AB25: ratio= B 30000 = 0.587 (7.5)
. ORI 201.062x87.4
S4D16AB25: ratio= = =0. 7.6
=7 30000 0-586 (7.6)
. ORI 314.160x57.1
4D25AB25: r = = = 0. 7.7
S 5 5: ratio= 2 30000 0.598 (7.7)

With:

O total circumference of all rebars

St initial elastic stiffness of interface (see also figure 7.5)
E.  concrete elastic stiffness
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7.6. RESULTS TENSION-PULL EXPERIMENTS

Model: S4D12AB25 T
LC1: Load case 1
Step: 14000 LOAD: .14ES 10

Model: S4D16AB25
LC1: Load case 1 70
Step: 16500 LOAD: .165ES Tao
Gauss EL.ITEMS ITEM10 20
Max/Min on results set:

Max = 70 Min = 0
Results shown:
Mapped to nodes

I

5
.875

I7s

To

1

Model: S4D25AB25 1
LC1: Load case 1 170
Step: 35000 LOAD: .35ES 40
Gauss EL.ITEMS ITEM10 20
Max/Min on results set:

Max = 70 Min = 0 5
Results shown: 2
Mapped to nodes I3

Figure 7.16: Damage simulation S4D12AB25:gt3.65 mm, S4D16AB25 at,=4.60
mm and S4D25AB25 at,=6.15 mm (damage indicator N-direction, 50/70
equals complete damage)

The decreasing stiffnes ; for bond-slip with increasing rebar diameter is a nice
demonstration of the bond model (see also figure 2.11 se2t&)nlt can be seen
that the stiffness ratio for S4D12AB25 and S4D16AB25 are idahtvhereas the
ratio for S4AD25AB25 is slightly larger due to the increaseimumference. This

is the explanation for the development of a secondary cratteqm in case of
S4D25AB25.
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7. SLA calculations of the tension-pull experiments by Maye

7.6.4 Stress-average strain plots

The following figures show comparisons between the SLA d¢atmns and in-
dividual experimental results in a stress-average straimec To compute the
average strain the difference is taken between the digplacts at the two end
positions of the two meter strain gauges divided by the digtdbetween them.
The nodes taken are located on the outside of the equivatealar cross-section.
The stress is calculated from the reaction force at the lainglear divided by the
area of the lumped rebar.

Stress—average strain curve SLA analysis using axi-symmetry
600 T T T T T

S

o [N/mmz]

Mayer S2D25-A Hordijk 70 teeth (B25 Gf=0.053 400x400x2900 mm)
experiment S2D25-A
1

0 T T T T
0 0.5 1 1.5 2 2.5 3

Esm x10°

Figure 7.17: Stress-average strain curve from simulation S2D25AB25y8rsus exper-
imental result

Stress—average strain curve SLA analysis using axi-symmetry
600 -
500 -
400

300

S

o [N/mmz]

Mayer S4D25-A Hordijk 70 teeth (B25 Gf=0.053 400x400x2900 mm)
experiment S4D25-A
1

0 1
0 0.5 1 15 2 25 3

Esm x10°

Figure 7.18: Stress-average strain curve from simulation S4D25AB25y8rsus exper-
imental result
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7.6. RESULTS TENSION-PULL EXPERIMENTS

Stress—average strain curve SLA analysis using axi-symmetry
600 T T T T T

100 :

Mayer S6D16-A Hordijk 70 teeth (B25 Gf=0.053 400x400x2700 mm)
experiment
0 T T T T T

0 0.5 1 15 2 25 3

Esm x10°

Figure 7.19: Stress-average strain curve from simulation S6D16AB25 y8rsus exper-
imental result

The experiments are executed using displacement contcbdamot show
snap-backs. The cause of the differences between the eges and the SLA
calculations can be a number of things:

» bending stresses occuring in the experiment due to hangdadinon-straightness;

* pre-cracking due to shrinkage;

* non-uniform concrete strenght;

e deviations in dimensions.

Regarding the SLA calculations especially the fracture ggnand the crack
band width are parameters that could be changed to get ¢toer experimental
results.

7.6.5 Overview of results, number of cracks and crack spacing

Table 7.4: Results of calculated experiments

code number of primary cracks average crack spacing [mm]
S4D12AB25 7 312.50
S8D12AB25 15 156.25
S8D12AB45 18 131.58
S4D16AB25 7 337.50
S6D16AB25 14 180.00
S2D25AB25 7 362.50
S4D25AB25 14 193.33
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7. SLA calculations of the tension-pull experiments by Maye

7.7 Summary and conclusions chapter 7

In this chapter several tension-pull experiments by Ma$2f ére calculated with
SLA using the Matlab bond model derived in chapter 2 to caleuthe bond-
slip relations. These bond-slip relations are then appraied with a sawtooth
diagram using the sawtooth generator described in sect®nMvariety of con-
figurations is calculated, i.e. different reinforcemenios, rebar diameter as well
as concrete strength. The influence of these parameterstioybar on the crack-
ing behaviour is then analyzed. Because the report by Mayes dot contain
load-displacement curves or complete crack patterns onlield comparisons to
the experiments can be made. The following conclusionsdegathe SLA cal-
culations can be stated:

Use of the bond model

1. Forthe different configurations the bond model has deiratesl a great va-
riety in bond-slip curves. The linear elastic stiffnessswfrom S, .,=57.1
N/mm? to S; ,=377.3 N/mmi. Also with the parameters used the results
show both failure mechanisms, i.e. pull-out failure andtspd) failure.
Since the cracking in the tension-pull simulations is vegpehdent on the
(interface) stiffness the great variety in crack pattesresdirect result of the
various computed bond-slip curves. This therefore denmatest the impor-
tance of the use of the bond model.

2. For the sawtooth approximations in the simulations aelangmber of teeth
is used. Since many more load steps involve concrete crattkis has only
a minor effect on the computing time. Because the computed-sbp
curves only have a limited elastic part it is important tatste sawtooth
approximation already on the ascending part.

Influence of reinforcement ratio

1. The results are in good agreement with the expectatiorth Wcreased
reinforcement the number of cracks increases. The redslisshow that
with increased reinforcement the primary cracks show loevack strains
indicating a lower crack width. Also, apart from the primamacks, the
area close to and around the rebar is much more cracked.

Influence of concrete type

1. The cracking behaviour in simulation S8D12A with conergtality B45 is
very different from the one with B25. Because of the much highktive
interface stiffness with B45 (3x) there is a much shorter {vadsfer zone
and the first primary crack starts close to the loaded endpfiheipal stress
plot along the rebar also shows a peak stress at this locaBoocessive
primary cracks then evolve about every 132 mm from this enido Ahis
is the only simulation that shows cracking near to the axi®tition. The
cause of this latter behaviour is unclear.
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Influence of rebar diameter

1. From the results the influence of rebar diameter with ecgiaforcement
ratio appears to be limited. The calculation results frammugation S4D25A
are however interesting since in this case the developnfeatsecondary
crack pattern is only possible after a much higher appliedl.loThis sug-
gests the interface stiffness is borderline sufficient is ttase to initiate

secondary cracking prior to the steel yielding.

Comparison to experimental results

1. The comparison to the experimental results is somewhanhiiusive. The
sharp snapbacks found in the simulations do not appear iexijperiments.
This is most likely due to the use of displacement contraheéxperiments.
All experimental results show a weaker response in thessaresrage strain
plots. In the experimental testing this could be the redlleoding stresses,
pre-cracking due to shrinkage, non-uniform concrete gtrear deviations

in dimensions.
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Chapter 8

SLA calculation of a beam in
bending experiment by Walraven
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8. SLA calculation of a beam in bending experiment by Walrave

8.1 Introduction

In this chapter a short demonstration will be given of inahgdbond-slip in the
calculation of a bending beam with SLA. For this a reinforcedcrete beam that
was tested by Walraven will be simulated, see also [18],.[T9o calculations
will be presented, one using full bond (i.e. no interfaceradats) and one with a
bond-slip relation calculated with the Matlab bond modehlyCa short compari-
son of the two models will be made. In the experiment the bealsiih bending,
see figure 8.1. The beam has a thickness of 200 mm, a heighDahfrband a

Figure 8.1: Bending failure in experiment

main span of 1750 mm. The reinforcing consists of 210 and, 588 also fig-
ure 8.2. The material parameters used for the concrete rgarfaung’s modulus

275 375 1000 375 275

; ¢ | 200
ﬂ g8l
A K] Hes

Figure 8.2: Dimensions and reinforcement bending beam tested by \Walrav

E=25000 N/mm, Poisson’s ratia’=0.2, tensile strengtlfi,=2.5 N/mn%, fracture
energyG;=0.06 N/mm, crack band width=25 mm and shear retention factor
£=0.2. For the reinforcing bars the material parameters ¥oeing’s modulus
FE=210000, Poisson’s ratie=0.2, and yield stress,=400 N/mn?. The mesh is
given in figure 8.3. The red line indicates the position of thieforcement. For
the concrete part plane stress elements are now used. Tteofadiagrams used

Figure 8.3: Finite element mesh, boundary conditions and loading

for the steel and the concrete are given in figure 8.4. For {stipdhe sawtooth
approximation is calculated using a weighted diameter3s ¢nm, see figure 8.5.
For the concrete a compressive strength of 34.2 Nyisnused (see [19). For

the calculation of the effective cover three distances aeglu2x 25 mm and 1x

Lin the bond model the concrete Young’s modulus and tenséagth are both calculated from
the compressive strength see section 2.3
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8.1. INTRODUCTION

40 mm. This is based on the corner bars that have a concrede @b25 mm in
two directions. The distance of 40 mm refers to the distandbé inner side of
the beam. This is chosen equal to four times the largest oétgit 02

Sawtooth for Hordijk tension softening

Sawtooth for steel

250 # of teeth = 30 N 500F
p+=0.11337 N/mm'
— p- = 0.12594 N/mm?
Gf sawtooth = 0.06
2r £, =0.0001 H 400
L 0.0046738
e 15( oy = 00047738 || ~_ 300} number of teeth: 80 | |
s £ €,, = 0.0020052
- Z € =0.039092
200 ult
E, = 210000 N/mm®
100 0., = 440 Nimm?
— p- =16 N/mm?
0 . . . . . ; : — 0 . . .
0 0.5 1 15 2 25 3 3.5 4 4.5 0 0.01 0.02 0.03 0.04
Eot x107 €

Figure 8.4: Sawtooth approximation for concrete (left) and steel (right)

Bond stress versus slip (pull-out failure) g = 0.001

16} ]
14t 1
121 1
10t 1

—

£
z 8 1
-
6 L. .
—d =9.33mm; c_=29.1067 mm
4+ s eff &
—f =2.7678 N/mm% f_= 34.2 N/mm?
ct cc
2F Curve fit (spline) 5
# of teeth = 80; p+ = 0.1 N/mm?; 8,,= 0-30454 mm
0 ; ; ; ; ; ; ;
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

slip [mm]

Figure 8.5: Sawtooth approximation for bond-slip using 80 teeth

2this is the maximum value that is taken into account with thedomodel, higher values have
almost no effect on the response of the thick-walled cylinde
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8. SLA calculation of a beam in bending experiment by Walnave

8.2 Results using full bond

The damage evolution is given in figure 8.6.

Model: BEAMWALRNOBOND :3“
LC1: Load case 1 20
Step: 250 LOAD: 250 10
Gauss EL.ITEMS ITEM10 5
Max = 2 Min = 0 4
Results shown: I3
Mapped to nodes LY
I
1ers
.75
To
1
T30
Model: BEAMWALRNOBOND 1
LC1: Load case 1 20
Step: 1000 LOAD: .1E4 10
Gauss EL.ITEMS ITEM10 5

Max = 22 Min = 0
Results shown:
Mapped to nodes

Model: BEAMWALRNOBOND
LC1: Load case 1

Step: 3000 LOAD: .3E4
Gauss EL.ITEMS ITEM10
Max = 25 Min = 0
Results shown:

Mapped to nodes

SRS EED
RS SR

Model: BEAMWALRNOBOND
LC1: Load case 1
Step: 8000 LOAD: .8E4
Gauss EL.ITEMS ITEM10
Max = 28 Min = 0
Results shown:

Mapped to nodes

Model: BEAMWALRNOBOND
LCl: Load case

Step: 12000 LOAD: .12ES
Gauss EL.ITEMS ITEM10
Max = 29 Min = 0
Results shown:

Mapped to nodes

Model: BEAMWALRNOBOND
LC1: ase 1

Step: 16000 LOAD: .16ES
Gauss EL.ITEMS ITEM10
Max = 30

Results shown:

Mapped to nodes

Model: BEAMWALRNOBOND
LCl: Load case 1
Step: 25000 LOAD: .25E5

Gauss EL.ITEMS ITEMIf 5
Max = 30 Min = 0 4
Results shown: I3
Mapped to nodes | P

e e .

Model: BEAMWALRNOBOND
LCl: Load case 1

Step: 30000 LOAD: .3ES
Gauss EL.ITEMS ITEM10
Max = 30 Min =
Results shown:

Mapped to nodes

Figure 8.6: Damage evolution using full bond (damage indicator N-dire¢tdthequals
complete damage)
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8.3 Results with bond-slip

The damage evolution is given in figure 8.7.

Model: BEAMWALR :30
LC1: Load case 1 20
Step: 250 LOAD: 250 10
Gauss EL.ITEMS ITEM10 5
Max = 5 Min = 0 4
Results shown: L
Mapped to nodes [Py

Model: BEAMWALR :30
LC1l: Load case 1 20
Step: 1000 LOAD: .1E4 10
Gauss EL.ITEMS ITEM10 5
Max = 28 Min = 0 A
Results shown: 13

Mapped to nodes [ 9%

Model: BEAMWALR :30
LCl: Load case 1 20

Step: 3000 LOAD: .3E4 10
Gauss EL.ITEMS ITEM10 5
Max = 29 Min = 0 4
Results shown: I3

Mapped to nodes

Model: BEAMWALR :30
LC1: Load case 1 20
Step: 8000 LOAD: .BE4 10
Gauss EL.ITEMS ITEM10 5
Max = 30 Min = 0 1
Results shown: Iy
Mapped to nodes [ P

Model: BEAMWALR :30
1C1: Load case 1 20
Step: 12000 LOAD: .12ES 10
Gauss EL.ITEMS ITEM10 5
Max = 30 Mi 4
Results shown: I,
Mapped to nodes [ PS

Model: BEAMWALR :30
LC1: Load case 1 20
Step: 16000 LOAD: .16ES s
Gauss EL.ITEMS ITEM10 5
Max = 30 Min = 0

Model: BEAMWALR :30
LC1: Load case 1 20
Step: 25000 LOAD: .25ES 10
Gauss EL.ITEMS ITEM10 5
Max = 30 Min = 0 4
Results shown: I3
Mapped to nodes i,

Model: BEAMWALR :30
LC1: Load case 1 20
Step: 30000 LOAD: .3ES 10
Gauss EL.ITEMS ITEM10 5
Max = 30 Min = 0 2
Results shown: Iy
Mapped to nodes 1,

Figure 8.7: Damage evolution using bond-slip (damage indicator N-diracB80 equals
complete damage)
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8. SLA calculation of a beam in bending experiment by Walrave

8.4 Load-displacement curve
The results of both calculations are plotted in a load-dispinent curve together

with the experimental result and a previous SLA result by &#g]lsee figure 8.8.
The deviation from the curve by Belletti cannot be explainetha moment of

Load-displacement curve SLA analysis using plane stress

35.000 T T T
30.000— . -
25.000(— . : -
20.000~ 7 4 -

uw> 7
15.000— -
10.000(— o =

5.0001~ ——Beam Walraven Hordijk 30 teeth bond—slip 2x2 (h=25 mm Gf=0.060 N/mm)
—— Beam Walraven Hordijk 30 teeth full bond 2x2 (h=25 mm, Gf=0.060 N/mm)
—— Experiment
j j — Previous SLA calculation by Belletti using full bond [18]
0
0 2 4 6 8 10 12

uy [mm]

Figure 8.8: Load displacement curve, full bond versus bond-slip
writing, both use full bond. A noted difference is the useinéar elements by

Belletti instead of quadratic. The use of bond-slip is esgcvisible in the early
cracking stage, see figure 8.9.

Load-displacement curve SLA analysis using plane stress

18000 T | | |
16000}~ ; : : /
14000 > <
12000~ s i
10000}~ 2 i
= =
>
w
8000— =
6000— =
4000~ -
20001 —— Beam Walraven Hordijk 30 teeth bond-slip 2x2 (h=25 mm Gf=0.060 N/mm)|
—— Beam Walraven Hordijk 30 teeth full bond 2x2 (h=25 mm, Gf=0.060 N/mm)
—— Experiment
j j j — Previous SLA calculation by Belletti using full bond [18]
0
0 05 1 15 2 25 3 35 4
u, [mm]

Figure 8.9: Detail of figure 8.8
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9. Conclusions and recommendations

9.1 Conclusions

From the non-linear calculations of the tension-pull ekpent by Gijsbers the
following conclusions can be drawn:

1. To obtain a primary crack pattern consisting of sevex@sisectional cracks
in a tension-pull experiment it is absolutely necessarys® material im-
perfections. A calculation with no imperfections will réisa a very diffuse
crack pattern without localized (primary) cracks.

2. The degree of the material imperfections needed to geysigadily plausi-
ble crack pattern is unclear. In this specific calculatiopanfections were
used up until a strength and ultimate crack strain reduaiioR0%. Us-
ing imperfections however in general will cause an undarmedion of the
actual strength of the model.

3. Using displacement control it is possible to “jump” oveinpary cracks in
the load-displacement curve.

4. The use of a non-linear interface with a limitation of thienate bond stress
will limit the amount of cracking in the surrounding conaeT he influence
on the general stiffness of the model, i.e. in a load-disptant curve,
is however much less. Most likely the general strength aifithess of a
tension-pull model is more governed by the primary crossiseal cracks
and much less by the in-between cracking.

5. Good results were obtained with quadratic elements asthtvely coarse
mesh. The plots of the concrete principal stresses, steslssts and inter-
face bond stresses are all quite smooth. Possibly a crit&riobtain smooth
stress profiles can be determined in terms of the minimum eummbele-
ments needed between primary cracks. This all depends atrémgth and
stiffness values of the concrete as well as the interfacetl@ma@mount of
reinforcement.

6. The added value of using a full 3D model for a tension-pxtieziment is
limited. The only advantage is the somewhat better calicuiaif splitting
cracks. However to simulate this correctly also circuntiéed imperfec-
tions are needed to enforce localized primary splittingksa

7. The amount of unloading of the interfaces (i.e. revergalip) that takes
place in the tension-pull model is very limited. Therefoterging the
unloading behaviour (between elastic, secant or non+ljrees almost no
effect. The largest unloading takes place near the end facesar a pri-
mary crack. From literature it was found that the bond stedigsrelation
under cyclic loading conditions is highly complicated ahdrefore cannot
be expressed in a general unloading type. Despite thisyuth limited,
elastic unloading appears to be the best approximation.
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9.1. CONCLUSIONS

From the SLA calculations of the tension-pull experimentjgbers the fol-
lowing conclusions can be drawn:

1. The results of the model with imperfections are in excelégreement with
the non-linear analysis. Also with SLA snap-backs in thelldegsplacement
curve are captured after each primary crack. This indicatesis a good
alternative to non-linear analysis when using axi-symioetnd interface
elements. This was one of the primary objectives of thisishésee sec-
tion 1.4). The comparison to the non-linear analysis jestifhe conclusion
that the new code for axi-symmetric and interface elemesisell as the
sawtooth generator for Hordijk softening are working cotise

2. Despite the imperfections used the SLA analysis stilixsheomewhat bet-
ter crack localization, compared to the non-linear analysi

3. The adopted sawtooth approximation for bond-slip usmggual uplifting
and downshifting of the “mother” curve shows good resulteerms of the
calculated bond stress profiles.

4. The calculation in SLA without imperfections shows thenation of a pri-
mary crack pattern consisting of several primary crackss @ilamonstrates
SLA to be superior to non-linear analysis since obtainingrasult without
imperfections in a non-linear analysis is not possible.

5. In general with the tension-pull calculations crackgimate from stress
points close to the rebar. Prior to the formation of the firginpary crack
the principal stresses along the rebar show some stredkatisos. These
oscillations become more apparent when a sawtooth diagraohcrete
is used with less teeth (i.e. using a lower accuracy). Thie asults in
differences in primary crack locations. The same osailfegiare witnessed
when using a finer mesh. However with a finer mesh and equatawctor
the sawtooth approximation the stress oscillations irs@edt is believed
that this phenomenon is related to the stiffness ratio betviee concrete
and the interface (see section 6.7.2). Using an extreme auofbteeth
for the concrete as well as the interface has shown that theshkations
disappear.

6. Using stepwise shear retention instead of a constant sbation factor
improves the results. The stress oscillations diminishteagbrimary crack
locations are more consistent when the number of teeth Bictimcrete
sawtooth diagram is reduced.
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9. Conclusions and recommendations

From the SLA calculations of the tension-pull experimentsvayer the fol-
lowing conclusions can be drawn:

1. The various calculations with the bond model have demaiest a great va-
riety in bond-slip curves in terms of initial stiffness aral@ire mode. Since
this has a great effect on the primary crack pattern, in chagemsion-pull
experiment simulation, this emphasizes the importancesahe of the use
of a bond model.

2. The results of the simulations have demonstrated thesimfleiof the various
parameters (reinforcement ratio, concrete type and relbanader) on the
cracking behaviour. In general using a higher bond-slifngtss results in
an increase in primary cracks. When the stiffness ratio batwiee interface
and the surrounding concrete has reached a certain levknyrcracking
will initiate close to the loaded end (instead of in the cenbecause of the
occurrence of a local peak stress.

3. The comparison to the experiments, in terms of a stressage strain plot,
all show a weaker response. It is likely that this is the rtestibdditional
stresses occurring in the experiment (due to bending, traightness, han-
dling etc.) and a non-uniform concrete strength. The lattkicause crack-
ing to initiate in the weakest link. It is my opinion that ithprove difficult
to simulate a tension-pull experiment exactly since theenmtproperties
along the whole length of a specimen, which are usually uwknafluence
the response in terms of load-displacement and developofgotimary
cracks. A possibility could be to use a random strength fioglaments.

9.2 Guidelines for simulating tension-pull experiments

The following guidelines can be given for simulating a tenspull experiment
with non-linear analysis:

1. Good results are obtained using a relatively coarse mesh.

2. The use of material imperfections (or random strengthijtéd to get a pri-
mary crack pattern.

3. Using a limitation of the bond stress, in the bond-slipveurhas a great
influence on the cracking but not on the load-displacemespimese.

4. The use of a 3D model does not have any significant advantege¢he use
of axi-symmetry.

5. In case of continues loading until failure, the bond-sligoading type is
not relevant.
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9.2. GUIDELINES FOR SIMULATING TENSION-PULL EXPERIMENTS

The following guidelines can be given for simulating a tenspull experi-
ment with SLA:

1.
2.

With SLA material imperfections are not needed.

Best results are obtained using a relatively coarse mesh.

. A fine mesh can ultimately result in large areas crackirtg&en the pri-

mary cracks.

Best results are obtained using a stepwise shear retensiead of a con-
stant shear retention.

Itis recommended to use as many teeth as possible forticeate sawtooth
approximation.

Since many more loadsteps involve concrete cracking, it¢commended
to use an accurate sawtooth approximation for bond-slip els ag steel
since this has only a minor effect on computing time and cay iomprove
results.

It is recommended to check the principal stresses alangeihforcing bar
for oscillations prior to the initiation of the first primagrack. If strong
oscillations occur it is recommended to use more teeth actimcrete saw-
tooth approximation and/or a coarser mesh.

In case of actual experiment simulations the use of a bartkis vital to
get a reliable bond-slip relation.

For the cracking behaviour the following stiffness rasiof importance:

OSt,el
E.

(9.1)

With:

@] total circumference of all rebars
Sie  Initial elastic stiffness of interface
E.  concrete elastic stiffness
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9.3 Recommendations

1.

Creating an automated sawtooth generator for Hordijkidensoftening
within the current SLA environment.

The use of random concrete strength for tension-pull lsitians.

Possibly investigation into the new formulae for bonig-ghat will be pre-
sented in the new CEB-FIB MC model code that will be releasest tais
year. The formulae will be based on the bond model by Den UiBigaj

and it might be possible to create a material model for ush WHANA

and/or SLA.

Further investigation into the cause of the concretecppal stress oscilla-
tions occurring with SLA.

. The influence of including bond-slip in SLA in larger sttwres, such as

beams. A review could be performed to compare previous SkAlt®

. Comparing the average crack spacing obtained with SLA pem@xents or

known formulae.
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Summary

In non-linear concrete fracture mechanics computatior@lpms can arise such
as non-convergence or bifurcations. These types of prabbEnome of more im-

portance when dealing with a structure that has a very uni&iress distribution.

Most often the non-linear analysis fails in such cases sratacking will start

simultaneously in large parts of the structure when theiegtress equals the
tensile strength. This results in a very diffuse crack pattestead of a pattern
with localized (primary) cracks. In real life concrete stures because of the
non-uniform tensile strength cracking will occur in the \kest link.

An alternative method to conventional non-linear analysisequentially linear

analysis or SLA for short. The aforementioned problems¢hatarise with non-

linear analysis are non-existent with SLA. In SLA the negasilope of the stress-
strain curve for concrete in tension (the softening cursegplaced by a sawtooth
diagram of positive slopes and the incremental-iteratie¢yod used in non-linear
analysis is replaced by a series of linear analyses. In dwadstep in the analy-
sis a local damage is given to the integration point that hstsess closest to its
local strength. This procedure ensures damage to becomekxt since in every

loadstep only one integration point is given a local damage.

In this thesis the possibilities to simulate bond-slip hetar between steel and
concrete with SLA and with the use of interface elements aptoeed. For this
the existing SLA software implementation of the finite eletgrogram

DIANA at Delft University is extended with newrtran77 code to incorporate
axi-symmetric and interface elements. Because in all calicns the non-linear
Hordijk softening curve is used for concrete in tension @aso called sawtooth
generator is written in Matlab. This will create the needadtsoth diagram used
in SLA.

To examine the local bond-slip mechanism for this thesiteadiure study is car-
ried out. From this study it becomes clear that bond-slipoisanly dependent
on material properties but also on structural propertiesthiérmore two distinct
failure mechanisms exist, namely pull-out failure andttiply failure, each having
there own unique bond-slip relation. The possibilities teate such a bond-slip
relation are explored. One such possibility is the use o€BB-FIB MC90 model

code where simple formulae are used dependent on pure algteperties. An-

other possibility is the use of a more sophisticated bondeh@dbond model can
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incorporate material as well as structural properties tovee bond-slip relation.
One such bond model is the one that was developed by Den UijBagmaj [8].
This model has many advantages one of them being that itdeiitify pull-out or
splitting failure automatically. For this thesis the motetompletely written in
Matlab code using the formulas of the dissertation by Bighpj&l a previously
developed Excel sheet. Also the parts and formulations eitbdel that were
somewhat hard to understand from [8] are reported. For teenith SLA the
Matlab bond model is also extended with a sawtooth genet@agproximate the
bond-slip curve.

Before SLA calculations are performed first the possibgibémodeling a tension-
pull experiment using standard non-linear analysis aréoegg. This also serves
as areference calculation to compare to the SLA resultsetfaptions are used to
enforce the development of a primary crack pattern. For thiel Fiscretization
axi-symmetry is used. The same tension-pull experimertigs also modelled
and analyzed using 3D elements. For the bond-slip relatidinsh a simple bi-
linear elasto-plastic relation is taken. For the axisymimoeglculation the unload-
ing of the interfaces (i.e. the bond-slip) is explored areluke of three different
types of unloading behaviour is then analyzed using a useredematerial model
with DIANA that is written inFortran77code. This shows that only limited un-
loading takes place and changing it's behaviour has nofgignt effect on the
results.

The non-linear calculation with axi-symmetric elementd aith material imper-

fections is recalculated with SLA to compare both resultse Tesults show that
the SLA calculation is in excellent agreement with the noedr analysis. The
comparison to the non-linear analysis justifies the commtuthat the new code
for axi-symmetric and interface elements as well as the aatiwtgenerator for
Hordijk softening are working correctly.

Next the model is analyzed in SLA but now without the use ofenfigctions. The

results show that it is indeed possible to retrieve a princaagk pattern without
the use of imperfections. The damage observed in the mosieldg@monstrates
excellent localization similar to the non-linear analysisere imperfections are
used. Several specific aspects of the SLA analysis are epfarther. For an
SLA analysis an important aspect is the computing time. @bect is examined
by reducing the number of teeth of the sawtooth diagrams fmeithe various

non-linearitys in material behaviour. Also the influenceusing different shear
retention relations is examined. Finally with this moded tise and influence of
mesh refinements is explored. The results show that prihsipess oscillations
occur in the concrete close to the rebar that effect the argdkehaviour espe-
cially when using a fine mesh or a low number of teeth for thecoete sawtooth
diagram.

For the use of the Matlab bond model and the sawtooth gemeaatariety of
tension-pull experiments that were conducted by Mayer Hr2]simulated. In
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all models axi-symmetry is used. The experiments all cowdiong reinforced
columns with various reinforcement ratios, concrete dieali rebar diameters etc.
The calculated bond-slip curves using the bond model showeat yariety in
bond-slip relations. The results of the calculations shosvihfluence the differ-
ent parameters have on especially the fully developed qrattkrn.

Finally a calculation is made of a simply supported reinéarconcrete beam with
and without the inclusion of bond-slip. The results showt thigh the inclusion
of bond-slip cracks are much more localized.
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A. Matlab bond model: code

19-5-10 15:18

D:\sensink\Bigaj\bigajbondslipinput.m

1 of 14

function bigajbondslipinput
clear all;clc;close all;

o°

Calculation of bond-slip relation

taken from:
of Plactic Hinges in RC Beams and Slabs"
Units:

mm, N, degrees

o o° o° o° o° o° o° o o°

Input material properties

Hh

cc =
if isempty (fcc)
fce = 25;
end
nuc = input ('Concrete Poisson''s ratio ?
if isempty (nuc)
nuc = 0.2;
end
ds = input('Steel bar diameter in mm ?
if isempty (ds)
ds = 12;

[12]1: ");

end
eps_s = input('Steel strain
if isempty (eps_s)

eps_s = 0;
end
nrc = input ('How many concrete cover directions

if isempty (nrc)

nrc = 1;
end
if nre==1
c = input('Concrete cover in mm ? [35]: ');
if isempty(c)
c = 35;
end

elseif nrc==
c=zeros(2,1) ;

ctemp = input ('Concrete cover #1 in mm ? [35]
if isempty(ctemp)
ctemp=35;
end
c (1) =ctemp;clear ctemp
ctemp = input ('Concrete cover #2 in mm ? [35]
if isempty(ctemp)
ctemp=35;
end
c(2)=ctemp;clear ctemp
elseif nrc==
c=zeros(3,1);
ctemp = input ('Concrete cover #1 in mm ? [35]
if isempty (ctemp)
ctemp=35;
end

[0.2]: ");

1999)

input ('Concrete cube compressive strength in N/mm2 ?

(for pull-out failure only)

(minimum=1,

")

")

")

Based on concrete confinement model by Agnieszka Bigaj
"Structural Dependence of Rotation Capacity
(Bigaj,

[25]: ');

2 [01: ");

maximum=4) ? [1]: ');
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D:\sensink\Bigaj\bigajbondslipinput.m

of

14

c(l)=ctemp;clear ctemp

ctemp input ('Concrete

if isempty (ctemp)
ctemp=35;

end

c(2)=ctemp;clear ctemp

ctemp input ('Concrete

if isempty (ctemp)
ctemp=35;

end
c(3)=ctemp;clear ctemp

elseif nrc==

else

end

alpha_s=60; %

o o o

%
5
o
s

n=3;

nstep=250;

Input parameters
alpha=0.14; %
w0=0.20;

c=zeros (4,1);

ctemp input ('Concrete

if isempty (ctemp)
ctemp=35;

end

c(l)=ctemp;clear ctemp

ctemp input ('Concrete

if isempty (ctemp)
ctemp=35;

end

c(2)=ctemp;clear ctemp

ctemp input ('Concrete

if isempty (ctemp)
ctemp=35;

end

c(3)=ctemp;clear ctemp

ctemp input ('Concrete

if isempty (ctemp)
ctemp=35;

end
c(4)=ctemp;clear ctemp

cover #2 in mm ? [35]
cover #3 in mm ? [35]
cover #1 in mm ? [35]
cover #2 in mm ? [35]
cover #3 in mm ? [35]
cover #4 in mm ? [35]

disp ('Number of concrete cover directions incorrect!')

return

and normal to closest concrete surface

concrete

S
<
5

Other input

o\

o° o° o°

mu_frict=1; %

o
s
%
s

saw

Sawtooth input

input ('Create sawtoot

if isempty (saw)

softening curve

fct ratio inflexion point

ultimate crack width

angle between critical splitting plane

(45-60 degrees)

number of fictitious radial cracks
number of steps for stage II and stage III
and also for spline when using sawtooth

approximation
coefficient of friction

h approximation ? y/n [n]
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19-5-10 15:18 D:\sensink\Bigaj\bigajbondslipinput.m 3 of 14

saw = ('n'");
end
if saw=='y'

s = input ('Number of sawteeth ? [30] : ');
if isempty(s)
s=30;
end
s=s+1;
pplus = input ('Uplifting value p+ in N/mm2 2 [0.1] : ');
if isempty (pplus)
pplus=0.1;
end
legendloc = input ('Legend location in graph, NorthEast (NE), NorthWest (NW), ¥
SouthWest (SW) or SouthEast (SE) ? [SE] : ','s');

if isempty(legendloc)
legendloc=('SE") ;
end
if legendloc=='NE'
legendloc=1;
elseif legendloc=='NW'
legendloc=2;
elseif legendloc=='SW'
legendloc=3;
else
legendloc=4;

end
matnr=input ('Material number in DIANA dat-file ? [1] :');
if isempty (matnr)
matnr=1;
end
end
£=0.05; % fraction of maximum shear stress to start sawtooth diagram

% bar radius
rs=ds/2;
% Concrete modulus of elasticity
if fcec<=0
disp('Concrete compressive strength must be positive!!')
return
end
Ec=10"4* (fcc)*0.3; % from Excel
% Concrete cylinder strength
if fce>62.5
fc=0.85*fcc; % from Excel
else
fc=0.8*fcc; % from Excel
end
% Concrete tensile strength
fet=2.1*log(1+fc/10) ;
$fct=2.1;
% Effective cover
c=ceff (c,rs,alpha_s) ;
% Critical bond stress
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4 of 14

tau bl=5*fct;
cl=c+rs;
phi=0.1*fc;
eps_cr=1.2*fct/Ec; % factor 1.2 from Excel
% factors al, a2, bl and b2 bi-linear softening diagram (from Excel)
if fec<30
beta=0.25;
else
beta=0.25-0.0015* (£c-30) ;

end
al=- (1-beta) /alpha;a2=-beta/ (l-alpha) ;bl=1;b2=beta/(1-alpha) ;
B e mm o calculate stage I and stage II --------------------

rcr=linspace(rs,cl,nstep+1) ;

[sigrrsII epsrrsII]=fstagell(rcr,rs,fct,cl,eps_cr,n,w0,al,bl,nuc);

% plot stage I

figure (1)

plot ([0 epsrrsII(1l)], [0 sigrrsII(1)])

hold on

% plot stage II

plot (epsrrsII,sigrrsII)

xlabel ('\epsilon {r,rs}"')

ylabel ('\sigma {r,rs} N/mm"{2}")

x1lim ([0 0.01])

F e calculate stage III ------------=----=——--————~———~—~—~—~—-
[sigrrsIII epsrrsIII C3]=fstageIII(al,a2,eps_cr,n,w0,cl,bl,b2,rs,fct,nstep);
hold on

plot (epsrrsIII,sigrrsIII)

grid on

set (gca, 'YTick',0:2:4+round (max (sigrrsII)))

title('Thick-walled-cylinder model, radial stress versus radial strain')
777777777777777777777 total sigma and epsilon -----------------"--"---~--~---
total sigma [r,rs] vector
sigrrs=[linspace(0,sigrrsII (1) ,nstep)';sigrrsII(2:nstep+l)';sigrrsIII];

% total epsilon [r,rs] vector

<
5
%
s

epsrrs=[linspace (0,epsrrsII(1l),nstep)';epsrrsII(2:nstep+l)';epsrrsIII];

if max(sigrrs)<tau bl/mu_frict
splitting failure
slip when splitting failure

o°

o\°

slip_split=(epsrrs*rs/(tand(phi)))'; $ Eg (4.30)

figure (2)

tau=(sigrrs*mu_frict)'; $ Eq (4.29)

plot (slip split,tau, 'r', 'LineWidth', 1)

stringl=(['d s = ' num2str(ds) ' mm;' ' c {eff}= ' num2str(c) ' mm']);

hold on

plot ([0 0],[0 O], 'r', 'Linewidth',1) % dummy plot for string2

string2=([' £ {ct}= ' num2str(fct) ' N/mm*2;' ' £ {cc}= ' num2str(fcc) '¥
N/mm*2']) ;

grid on

x1im ([0 1.25])

xlabel ('\delta [mm]')

ylabel ('\tau N/mm*{2}")

title('Bond stress versus slip (splitting failure)')
if saw=='n', legend(stringl,string2,1), end

if saw=='y';
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19-5-10 15:18 D:\sensink\Bigaj\bigajbondslipinput.m 5 of 14

o

% create sawtooth approximation
xx2=linspace(slip split (nstep),max(slip_split),nstep);
%SEN: spline does not work with repeated x values
for i=l:length(slip_split)-2
if slip split(i+1l)<=slip split (i)
slip split (i+1)=slip split (i+1)+0.001* (slip split (i+2)-slip split«
(i+1));
end
end
yy2=spline (slip_split, tau,xx2) ;
hold on
plot ([0 xx2(1)]1, [0 yy2(1)],"':g")
hold on
plot ([0 0], [0 0], 'b") gdummy plot for string 4
hold on
plot (xx2,yy2,':g")
string3=('Curve fit (spline)');
pup=yy2+pplus*ones (1, length (xx2)) ;
hold on
plot (xx2,pup, ':g'")
pdown=yy2-pplus*ones (1, length (xx2)) ;
hold on
plot (xx2,pdown, ':g"')
hold on
St=zeros (1,s);
St (1)=yy2(1)/xx2(1);
for i=2:s
xsol (i-1)=fzero(@(x) (St (i-1) *x-ftaupullup (slip_split,tau,pplus, £, x)) , xx2¥¢

ysol (i-1)=spline(slip split, tau+pplus,xsol(i-1));
if ysol(i-1)<0
s=1-2;
disp ('number of teeth has been reduced to fit curve')
end
St (i)=(ysol(i-1)-2*pplus)/(xsol(i-1));
plot ([xsol(i-1) xsol(i-1)], [ysol(i-1) ysol(i-1)-2*pplus],'b');
hold on
end
for i=2:s-1
plot ([xsol(i-1) xsol(i)], [ysol(i-1)-2*pplus ysol(i)],'b")
end
hold on
plot ([0 xsol(1)], [0 ysol(1)])
string4=(['# teeth = ' num2str(s-1) '; p+ = ' num2str(pplus) ' N/mm"2' '¢
\delta {max}= ' num2str(xsol(s-1)) ' mm']);
legend (stringl, string2, string3, string4, legendloc)
x1im ([0 1.1*xsol(s-1)1);
format short e
disp ([’ st(i) ' tau(i) '])
disp([St(l:s-1)"' ysol(l:s-1)'])
fid = fopen('sawtooth splitting.txt', 'wt');

fprintf (£id, '$s\n', ' ' 'materials''');
fprintf (£id, '%g HARDIA %8.6E %8.6E\n',matnr,St(1),ysol(1));
for j = 2:s-1

fprintf (fid, ' $8.6E %8.6E\n',St(j),ysol(j));
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end
fclose (fid) ;
disp('hardia table written to file: sawtooth splitting.txt')
end
else
% pull-out failure
disp(['Maximum bond stress found: ' num2str(max(sigrrs)) ' N/mm"2'...
' (critical bond stress = ' num2str(tau_bl) ' N/mm"2)'])

epsilon_rl 0, find epsilon rl 0 by linear interpolation
SEN: kan ook beter met rcr bepalen in fstageIIl met fzero waarbij
sigrrsII=tau bl/mu frict, hieruit volgt eps rl 0

o° o° oP°

ind:find(sigrrs>tau_b1/mu_frict,1);
eps_rl_O=epsrrs(ind-1)+...
((tau_bl-sigrrs(ind-1))/ (sigrrs(ind)-sigrrs(ind-1)))*...
(epsrrs(ind) -epsrrs(ind-1)) ;
% slip delta 1,0

delta 1 0=2*eps rl O*rs/(tand(phi)); % Eq (4.40)
% slip delta 3max

delta 3max=0.33*ds; % Table 4.5
% max. residual bond stress tau b3max

tau b3max=2.5*fct; % Table 4.5

o

% max. radial strain eps_3max

sigrrs_b3max=tau_b3max/mu_frict; Eq (4.29)

% epsilon_r3 max, find epsilon r3 max by linear interpolation

ind2=find(sigrrs>sigrrs_b3max, 1) ;

eps_r3max=epsrrs (ind2-1)+...
((sigrrs_b3max-sigrrs(ind2-1))/ (sigrrs(ind2) -sigrrs(ind2-1)))*...
(epsrrs (ind2) -epsrrs (ind2-1)) ;

% calculate slip delta_2

delta 2 0O=delta 3max/2; $ Eq (4.36)

% calculate epsilon r2
eps_r2_ 0=(eps_r3max+eps_rl 0)/2;
delta_pull=linspace(0,delta_3max, 250) ;
eps pull=feps pull O(eps rl 0,eps r2 0,eps r3max,delta 1 0,delta 2 0,delta 3max, ¥

delta pull);

figure (2)

plot (delta_pull,eps_pull, 'r')

grid on

xlabel ('\delta [mm]"')

ylabel ('\epsilon r')

title('\epsilon r versus slip (pull-out failure)')

o

o

Eq (4.37)

stringl=('\epsilon s = 0');
if eps_s==
legend (stringl, 4)
clear rcr
tau pull(1)=0;
for i=2:length(delta_pull)
if eps_pull(i)<epsrrsII(1)
sigrrs pull(i)=(eps_pull (i) /epsrrsII(1l))*sigrrsII(1);
tau pull (i)=sigrrs pull(i)/mu_frict;
else
rcr_temp=fminbnd(@(rcr temp) (fstageIIpull (rcr temp,rs,fct,cl,eps cr,¥
n,w0,al,bl,nuc,eps pull(i))),rs,cl);
[sigrrs_pull (i) epsrrs_pull]l=fstagelI(rcr temp,rs,fct,cl,eps _cr,n,¥
w0,al,bl,nuc);
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end

tau pull (i)=sigrrs_pull (i) /mu_frict;
end

figure (3)

plot (delta pull,tau pull, 'r', 'LineWidth', 1)

hold on

plot ([0 0], [0 0],'r', 'Linewidth',1) % dummy plot for string 3
set (gca, 'YTick',0:2:round (max (tau_pull))+1)

string2=(['d s = ' num2str(ds) ' mm;' ' c {eff}= ' num2str(c) ' mm']);

string3=(['f {ct}= ' num2str(fct) ' N/mm"2;' ' £ {cc}= ' num2str(fcc) '¥¢
N/mm*2'1) ;

grid on

ylim ([0 1.2*max(tau pull)]l)

xlabel ('\delta [mm]"')

ylabel ('\tau [N/mm”{2}]")

title('Bond stress versus slip (pull-out failure) \epsilon s = 0')
if saw=='n', legend(string2,string3,4), end

if saw=='y';

o

% create sawtooth approximation
ind3=find(tau pull==max(tau pull),1);
xx2=1linspace (f*delta pull (ind3) ,max(delta pull) , nstep) ;
%SEN: spline does not work with repeated x values
for i=1l:length(delta_pull) -2
if delta pull(i+1l)<=delta pull (i)
delta pull (i+1l)=delta _pull(i+1)+0.001* (delta_pull (i+2)-¢

delta_pull (i+1));

f,x)),xx2(1))

end
end
yy2=spline (delta_pull, tau pull,xx2) ;
hold on
plot ([0 xx2(1)], [0 yy2(1)],"':g")
string4=('Curve fit (spline)');
hold on
plot ([0 0], [0 0],'b") % dummy plot for strings
hold on

plot (xx2,yy2,"':9")
pup=yy2+pplus*ones (1, length (xx2)) ;
hold on
plot (xx2,pup, ':g'")
pdown=yy2-pplus*ones (1, length (xx2)) ;
hold on
plot (xx2,pdown, ':g')
hold on
St=zeros(1l,s) ;
St (1) =yy2 (1) /xx2(1) ;
for i=2:s

xsol (i-1)=fzero(@(x) (St (i-1)*x-ftaupullup(delta _pull,tau_pull,pplus, ¥

ysol(i-1)=spline(delta_pull,tau pull+pplus,xsol(i-1));
St (i)=(ysol(i-1)-2*pplus)/(xsol(i-1));
plot ([xsol(i-1) xsol(i-1)], [ysol(i-1) ysol(i-1)-2*pplus],'b');
hold on
end
for i=2:s-1
plot ([xsol(i-1) xsol(i)], [ysol(i-1)-2*pplus ysol(i)],'b")
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hold on
end
plot ([0 xsol(1)], [0 ysol(1l)],'b")
x1im ([0 1.2*xs0l(s-1)1);
string5=(['# teeth = ' num2str(s-1) '; p+ = ' num2str(pplus) ' N/mm"2;'¥
" \delta {ult}= ' num2str(xsol(s-1)) ' mm']);

legend(string2, string3, string4, string5, legendloc)
format short e

disp ([’ st(i) ' tau(i)'])
disp([St(l:s-1)' ysol(l:s-1)'])

fid = fopen('sawtooth pullout.txt', 'wt');

fprintf (£id, '$s\n', '' 'materials''');
fprintf (fid, '%g HARDIA %8.6E %8.6E\n',matnr,St(1),ysol(1l));
for j = 2:s-1

fprintf (fid, "' %8.6E %8.6E\n',St(j),ysol(j));
end
fclose (fid) ;
disp('hardia table written to file: sawtooth pullout.txt')

if eps_s>0
% slip delta_1 s Eg (4.34)
delta 1 s=delta 1 0;
% epsilon_r3
eps_r3=eps_r3max*exp(-8.5*eps_s) ;
% epsilon_rl s Eq (4.35)
eps_rl_s=(eps_rl_0O-eps_r3) *exp(-30*eps_s)+eps_r3;
% delta_3min
delta 3min=2.1*delta 1 0;
% delta 3 s Eg (4.38)
delta_3_s=(delta_3max-delta_3min)*exp(-100*eps_s)+delta_ 3min;
% epsilon r3_s Eqg (4.39)
eps_r3 s=eps_r3max*exp(-8.5*eps_s) ;
% delta 2 s (Egq 4.36)
delta 2 s=delta 3 s/2;
% epsilon_r2_s (Eq 4.37)
eps_r2 s=(eps_rl s+eps_r3_s)/2;
delta pull s=linspace(0,delta 3_s,250);
eps _pull s=feps pull s(eps rl s,eps r2 s,eps r3_s,delta 1 s,delta 2 s,V
delta 3 s,delta pull_s);

hold on
plot (delta pull_s,eps_pull_s,'b')
string2=(['\epsilon s = ' num2str(eps_s)]);

legend(stringl, string2,4)

clear rcr
tau pull(1)=0;
for i=2:length(delta_pull_s)
if eps pull s(i)<epsrrsII(1l)
sigrrs pull(i)=(eps_pull s(i)/epsrrsII(1l))*sigrrsII(1);
tau pull (i)=sigrrs pull(i)/mu_frict;
else
rcr_temp=fminbnd (@ (rcr_ temp) (fstageIIpull (rcr_ temp,rs,fct,cl,eps_cr,¥
n,w0,al,bl,nuc,eps_pull s(i))),rs,cl);
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[sigrrs pull (i) epsrrs pull]=fstagelIl(rcr temp,rs,fct,cl,eps cr,n, v«
w0,al,bl,nuc) ;
tau_pull (i) =sigrrs_pull (i) /mu_frict;
end
end
figure (3)
plot (delta pull_s,tau pull, 'r')
string3=(['d s = ' num2str(ds) ' mm;' ' c {eff}= ' num2str(c) ' mm']);
hold on
plot ([0 0], [0 0],'r') % dummy plot for string2
string4=(['f {ct}= ' num2str(fct) ' N/mm"2;' ' £ {cc}= ' num2str(fcc) '¢
N/mm”*2']) ;
grid on
ylim ([0 1.2*max(tau_pull)])
xlabel ('slip [mm] ")
ylabel ('\tau [N/mm*{2}]")
title(['Bond stress versus slip (pull-out failure) \epsilon s = ' num2str¥¢
(eps_s)1)
if saw=='n', legend(string3,string4,4), end
if saw=='y';
ind3=find(tau_pull==max(tau_pull),1);
xx2=linspace (f*delta_pull_s(ind3),max(delta pull_s),nstep);
$SEN: spline does not work with repeated x values
for i=1:length(delta _pull s)-2
if delta pull s(i+1)<=delta pull_s (i)
delta pull s (i+l)=delta pull s(i+1)+0.001* (delta_pull_s(i+2)-¢
delta_pull_s(i+1));
disp(['warning: equal values found in delta pull s (index='¥

num2str(i+l) '), corrected for spline'])
end
end
yy2=spline (delta pull_s,tau_pull,xx2);
hold on
plot ([0 xx2(1)]1, [0 yy2(1)],"':g")
string5=('Curve fit (spline)');
hold on
plot ([0 0], [0 0],'b') % dummy plot for stringé
hold on

plot (xx2,yy2,':9")

legend (stringl, string2, string3, string4, 4)

pup=yy2+pplus*ones (1, length (xx2)) ;

hold on

plot (xx2,pup, ':g")

pdown=yy2-pplus*ones (1, length (xx2)) ;

hold on

plot (xx2,pdown, ' :g')

hold on

St=zeros(1,s);

St (1) =yy2 (1) /xx2 (1) ;

for i=2:s
xsol (i-1) =fzero (@ (x) (St (i-1)*x-ftaupullup(delta pull s, tau pull,¥

pplus, f,x)),xx2(1)) ;

ysol(i-1)=spline(delta_pull_s,tau_pull+pplus,xsol(i-1));
St (i)=(ysol(i-1)-2*pplus)/(xs0ol(i-1));
plot ([xsol(i-1) xsol(i-1)], [ysol(i-1) ysol(i-1)-2*pplus]);
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hold on
end
for i=2:s-1

plot ([xsol(i-1)
end
hold on
plot ([0 xsol(1)], [0 ysol(1)])
x1lim ([0 1.2*xsol(s-1)]);

xs0l (i)], [ysol (i-1)-2*pplus ysol(i)])

num2str (pplus) '¥

%$8.6E\n',matnr, St (1),ysol (1)) ;

%8.6E\n',St(j),ysol(3));

sawtooth pullout_steelstrain.txt')

string6=(['# of teeth = ' num2str(s-1) '; p+ = '
N/mm*2; ' \delta {ult}= ' num2str(xsol(s-1)) ' mm']);
legend (string3, string4, string5, string6, legendloc)
format short e
disp ([’ st(i) ! tau(i)'])
disp([St(1l:s-1)"' ysol(l:s-1)'])
fid = fopen('sawtooth pullout_ steelstrain.txt',6 'wt');
fprintf (£id, '$s\n', ' ' 'materials''"');
fprintf (fid, '3g HARDIA %8.6E
for j = 2:s-1
fprintf (£id, "' %8.6E
end
fclose (£id) ;
disp('hardia table written to file:
end
end
end

function ceff=ceff(c,rs,alpha_s)

Calculation of effecive cover

o° o° oP°

if nargin < 3,
m=1length(c) ;
for i=1:m
if ¢ (1i)<0
disp('negative c value used!')

alpha s = 45; end

return
end
if c(i)>8*rs
c(i)=8*rs;
disp(['concrete cover #' num2str(i) '
end
end
if rs<=0
disp('bar radius must be greater then zero!')
return
end
c_min=min(c) ;
ceff max=((c_min+rs)/(cosd(alpha_s)))-rs;
xi=zeros(m, 1) ;
ceff temp=zeros(m,1);
for i=1:m
if c(i)<=ceff max
xi(i)=1;
else

reduced to '

num2str (8*rs) ' mm'])
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xi(i)=0;
end
ceff temp(i)=c(i)*xi(i)+ceff max*(l-xi(i));
end
ceff=sum(ceff temp)/m;
end

function [sigrrsII epsrrsII]=fstagell(rcr,rs,fct,cl,eps_cr,n,w0,al,bl,nuc)

calculate sig rrs and eps_rrs stage II
note: incoming parameter rcr is a vector

o° o° oP° o

Cl=(cl™2-rcr.”2)./(cl”™2+rcr.”2);

o°  o°

calculate sigma(r,rs) LE
sigrrsLE= (rcr/rs) *fct.*Cl; % Egq (4.5)

o\

C2=(2*pi*eps_cr)/(n*wo) ;

calculate sigma(r,rs) NL
sigrrsNL=( ((al*C2*rs) /2)* ((rcr/rs)-1)."2+bl* ((rcr/rs)-1)) *fct; $ Eq (4.14)

calculate sigma(r,rs) stage II

o

sigrrsII=sigrrsLE+sigrrsNL; % Eq (4.15)

o o

calculate epsilon(r,rs) LE
epsrrsLE= (rcr/rs) *eps_cr.* (1+nuc*Cl) ; % Eq (4.7)

% calculate epsilon(r,rs) NL

epsrrsNLl=eps_ cr*Cl.*rcr.*log(rcr/rs)/rs; % Eq (4.19)

epsrrsNL2= ( ( (eps_cr*al*C2) /4) * (2*rcr.”2.*log (rcr/rs) -4*rcr.* (rcr-rs) ...
+(rcr.”2-rs”2) ) +eps_cr*bl* (rcr.*log(rcr/rs) - (rcr-rs))) /rs; $ Eq (4.20)

epsrrsNL=epsrrsNL1l+epsrrsNL2; $ Eq (4.21)

% calculate epsilon(r,rs) stage II

epsrrsII=epsrrsLE+epsrrsNL; % Eq (4.22)
end

function [sigrrsIII epsrrsIII C3]=fstageIlI(al,a2,eps_cr,n,w0,cl,bl,b2,rs,fct,nstep)

o
g

C2=2*pi*eps_cr/(n*wo) ;
C3=zeros (nstep, 1) ;
C3(1)=cl*C2;
C3crit=C2* (cl+rs) /2- (b2-bl)/(a2-al) ;
step=(C3crit-C2*%cl) /fix ((C3crit-C2*cl)/(1-C2*cl) *nstep) ;
for i=1:nstep
C3(1+1)=C3 (1) +step;
end

o

sigrrsIIIl=((al*C3+bl)* ((cl/rs)-1)-(al*C2*rs/2)*((cl/rs) 2-1))*fct;
sigrrsIII2=((a2*C3+b2)* ((cl/rs)-1)- (a2*C2*rs/2)*((cl/rs)”2-1))*fct;
sigrrsIII=zeros (nstep+l,1);

a=zeros (nstep+1,1) ;

b=zeros (nstep+1,1) ;

for i=l:nstep+1l
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sigrrsIII(i)=max(sigrrsIII1(i),sigrrsIII2(i));
if sigrrsIII1(i)>=sigrrsIII2 (i)

a(i)=al;
b(i)=bl;
else
a(i)=a2;
b(i)=b2;

end
end
% calculate epsilon(r,rs) RBM
epsrrsRBM=C3* (n*w0/ (2*pi*rs)) ;
% calculate epsilon(r,rs) delta c
epsrrsdc=zeros (nstep+1,1) ;
for i=1:nstep+1l
epsrrsdc (1) =eps_cr* (a(i)*C3(i)+b(i))*((cl/rs)*log(cl/rs)-(cl/rs)+1)...
-(a(i)*C2*eps_cr*rs/4)* (2% (cl/rs) "2*log(cl/rs) - (cl/rs) "2+1) ;
end
epsrrsIII=epsrrsRBM+epsrrsdc;
end

function taupull=ftaupullup (delta_pull,tau pull,pplus, f,x)

index=find(tau pull==max(tau pull),1);
xmin=f*delta pull (index) ;

if x>xmin

taupull=spline(delta pull,tau_pull+pplus,x);
else

taupull=spline(delta pull,tau_pull+pplus,xmin) ;
end

function eps_pull=feps pull O(eps rl 0,eps r2 0,eps r3max,delta 1 0,delta 2 0,¥
delta 3max,delta pull)

Pull-out failure with zero steel strain
Quadratic function between points a and b

Quadratic function between points b and c
Exponential function between points c¢ and d

o o° o o o o

delta pull _ab is allowed to be a vector

eps_pull=zeros (length(delta pull),1);
for i=1:length(delta_pull)
if delta pull(i)<=delta_1 0
eps_pull (i)=- (eps_rl 0/(delta_1 072))*delta pull(i).”2....
+2% (eps_rl 0/delta_1 0)*delta_pull(i);
elseif delta pull(i)>delta 1 0 && delta pull(i)<=delta 2 0
eps_pull (i)=- ((eps_rl O-eps_r2 0)/(delta 2 0"2+delta 1 0"2-¢
2*delta 1 O*delta_2 0))...
*delta pull (i)."%2+...
(2*delta_1 0*(eps_rl O-eps_r2 0)/(delta 2 0"2+delta 1 0%2-¢
2*delta_1 O*delta 2 0))...
*delta pull(i)+eps_rl O...
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-delta 1 0"2*(eps rl O-eps r2 0)/(delta 2 0"2+delta 1 0"2-¢
2*delta_ 1 O*delta_2 0);
elseif delta pull(i)>delta 2 0 && delta pull(i)<=delta_3max
eps_pull (i) =((eps_r3max-eps_r2 0)/(delta_ 3max*exp(-1)-delta 2 O*exp(-¥
delta 2 0/delta 3max)))...

*delta_pull(i).*exp(-delta_pull(i)/delta 3max)+eps_r2 O-delta 2 O*exp(-¥

delta_2_ 0/delta_3max) ...
* (eps_r3max-eps_r2 0)/(delta_3max*exp(-1)-delta 2 O*exp(-¢
delta_2 0/delta_ 3max));
end

function epsrrsII=fstagelIpull (rcr,rs,fct,cl,eps_cr,n,w0,al,bl,nuc,eps_pull_s)

calculate sig rrs and eps_rrs stage II

note: incoming parameter rcr is a vector

o° o° o° o

Cl=(cl™2-rcr.”2)./(cl”™2+rcr.”2);

o° o

calculate sigma(r,rs) LE
igrrsLE= (rcr/rs) *fct.*C1l;

o\

S

o

C2=(2*pi*eps_cr)/(n*wo) ;

calculate sigma(r,rs) NL

sigrrsNL=(((al*C2*rs)/2)* ((rcr/rs)-1) .7 2+bl* ((rcr/rs)-1)) *fct; Eq (4.13)

calculate sigma(r,rs) stage II

igrrsII=sigrrsLE+sigrrsNL; %

]

s Egq (4.15)

o o

calculate epsilon(r,rs) LE
epsrrsLE= (rcr/rs) *eps_cr.* (1+nuc*Cl) ;

5

Eq (4.7)

% NL

epsrrsNLl=eps cr*Cl.*rcr.*log(rcr/rs)/rs; Eqg (4.19)

epsrrsNL2=( ( (eps_cr*al*C2) /4)* (2*rcr.”2.*log(rcr/rs) -4*rcr.* (rer-rs) . ..
+(rcr.A2—rsA2))+eps_cr*b1*(rcr.*log(rcr/rs)—(rcr—rs)))/rs; Eq

epsrrsNL=epsrrsNLl1+epsrrsNL2; Eq (4.21)

calculate epsilon(r,rs)

%
s

3
5

(4.20)

o
5

% calculate epsilon(r,rs) stage II
epsrrslIl=epsrrsLE+epsrrsNL; Eqgq
epsrrsII=abs (epsrrsII-eps_pull s);
end

o
S

(4.22)

function eps_pull s=feps pull_s(eps
delta 3_s,delta_pull)

rl s,eps_r2 s,eps _r3_s,delta 1 s,delta 2 s,¥

Pull-out failure with fixed steel

Quadratic function between points
Quadratic function between points
Exponential function between poin

d° o o o0 o oP

delta_pull_ab is allowed to be a

strain level

a and b

b and c
ts ¢ and d
vector
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eps_pull_ s=zeros(length(delta pull),1);
for i=1:length(delta_pull)
if delta pull(i)<=delta 1_s
eps_pull s(i)=-(eps_rl s/(delta 1 s”2))*delta_pull (i)." 2+2*¢
(eps_rl s/delta_1_s)...
*delta_pull (i) ;
elseif delta pull(i)>delta 1 s && delta pull(i)<=delta 2 s
eps pull s(i)=-((eps rl s-eps r2 s)/(delta 2 s*2+delta 1 s*2-¢
2*delta 1_s*delta_2_s)).
*delta_pull (i) .
(2*delta_1 s*(eps rl s-eps r2 s)/(delta 2 s”2+delta 1 s™2-¢
2*delta_1_s*delta_2_s)).
*delta pull (i)
-delta_1_s”2*(
2*delta 1 _s*delta_2_s);
elseif delta_pull(i)>delta_2_s && delta_pull(i)<=delta_3_s
eps_pull s(i)=((eps_r3_s-eps_r2_s)/(delta_3_s*exp(-1)-delta_2_ s*exp(-
delta 2 s/delta 3 _s))).
*delta_pull(i). *exp( delta pull(i)/delta 3_s)+eps r2 s-delta 2 s*exp (-
delta 2 s/delta 3 s)...
* (eps_r3_s-eps_r2_s)/(delta_3_s*exp(-1)-delta_2_ s*exp(-
delta_2_s/delta_3_s));
end

+eps_rl_s.
eps rl s-eps r2 s)/(delta 2 s”2+delta 1 s”2-¢

end
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B. Matlab bond model: verification

In this appendix a description will be given of the verificas performed on
the Matlab bond model. The calculated bond-slip curveshissame parameters
as the ones reported in [14]. Three concrete qualities ard: u830, B60 and
B100. Also three rebar diameters are used: 12, 16 and 20 mm.

Figure B.1 shows a comparison of the Matlab bond model witheaipus Ex-
cel version in terms of the radial stress-radial strain easp of the thick-walled
cylinder for the various rebar diameters for B30.
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Figure B.1: Radial stress-strain response thick-walled cylinder, Matlatdomodel (left)
versus Excel version (right) for B30, from top to bottom: @12, @16 and @2
mm (f..=30 N/mn%, f,=2.57 N/mm, E.=27742 N/mm, c. s p=4xd,, v=0.2)
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Figure B.2 shows a comparison of the Matlab bond model withexipus
Excel version in terms of the radial stress-radial stragpoase of the thick-walled
cylinder for the various rebar diameters for B60.
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Figure B.2: Radial stress-strain response thick-walled cylinder, Matkatdomodel (left)
versus Excel version (right) for B60, from top to bottom: @12, @16 and &2
mm (f..=62 N/mn%, f.,=3.75 N/mm, E.=34492 N/mm, c s f=4xd,, v=0.2)
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Figure B.3 shows a comparison of the Matlab bond model withexipus
Excel version in terms of the radial stress-radial straspoase of the thick-walled
cylinder for the various rebar diameters for B100.
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Figure B.3: Radial stress-strain response thick-walled cylinder, Matkatdomodel (left)
versus Excel version (right) for B100, from top to bottom: @12, @16 and
@20 mm (=100 N/'mni, f,=4.73 N/mm, E.=39811 N/mm, c.fr=4xds,
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In figure B.4 bond-slip relations are given for B30. These haenlzompared
to [14]. The initial elastic stiffness is given in the captifor each rebar diameter.

Bond stress versus slip (pull-out failure) €= 0
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Figure B.4: Bond-slip calculated with Matlab bond model for B30 andO, from
top to bottom: @12 §; ;=129 N/mni), @16 (S; =97 N/mn¥) and @20
mm S =77 N/mn¥)(f..=30 N/'mn¥, f.,=2.57 N/mm, E,=27742 N/mm,

Ceff:4Xd5, 1/20.2)
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In figure B.5 bond-slip relations are given for B60. These haenlcompared
to [14]. The initial elastic stiffness is given in the captifor each rebar diameter.
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Figure B.5: Bond-slip calculated with Matlab bond model for B60 agd0, from top
to bottom: @12 6, ;=341 N/mni), @16 (S; =256 N/mni) and @20 mm
(S1.e1=205 N/mnmi)(f..=62 N/mn%, f.=3.75 N/mm, E.=34492 N/mm,

Ceff=4Xd5, I/=0.2)
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In figure B.6 bond-slip relations are given for B100. These Hasen com-
pared to [14]. The initial elastic stiffness is given in thepton for each rebar
diameter.
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Figure B.6: Bond-slip calculated with Matlab bond model for B100 ageD, from top
to bottom: @12 §; ;=700 N/mnt), @16 (S; ;=519 N/mnt) and @20 mm
(St.=416 N/mni)(f..=100 N/mni, f,=4.73 N/mm, F,=39811 N/mm,

Ceff:4Xd5, I/=0.2)
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Bond model: calculation of stage Il
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C. Bond model: calculation of stage Il

The calculation ofo/!’ ande/!! in the entirely cracked stage (stage Ill) of
the bond model is not well documented in [8]. Here a completévdtion of this
stage will be given. The formulas used are partially takemfan Excel version
of the bond model. The formulations will be given in a steAfesshion similar to
the programming done in Matlab. The parameters neededdolatd stage Ill are
given in table C.1. The first step is to calculate the constar(see [8] equation

ay, as, by, by, wy | parameters bi-linear softening curve (constants)

fet concrete tensile strength

€cr crack strain ., = 1.2%)

n number of fictitious radial cracks (constant)

Ts bar radius

c sum of effective cover and bar radius:= c.¢y + 7

Nstep discretization parameter (constant) controlling par@me}

Table C.1: Parameters stress stage |l

(4.11)):

O, = 2Mear (C.1)

nwoy

Stage Il is guided by the paramet€s which is a parameter for the total crack
width. ThereforeC; is stepwise increased, the first (initial) value(f is calcu-

lated as:
2€

Cs = 10y = (Cepy +74) o (C.2)
Next a critical value folC5 is defined:
Cé:rit _ 02(61 + TS) . (b2 _ bl) (C3)

2 (ag — ay)

Now the values fo; "**”*! are consecutively calculated from the previous value

as: .
(Cé:mt _ 0201)

fiX((Cth — CgCl)/<1 - CZCl)nstep)

Fix is a Matlab command that rounds values towards zeroingeattegers (simi-
lar to the Excel command: TRUNC). Now/!! is calculated with equation (4.25)
from [8] for both parts of the bi-linear softening curve (i.esing parameter set
a1, by as well as parameter sef, by*:

2
Ui’lévalbl = <(G1C3 + bl) (i—l — 1) — <CL102%) <(;—i) — 1)) fct
2
ot = (1o (2 1) - () ((2) 1)) e 9

Inote that bold font is used to designate vectors

Citt =i+ (C.4)
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Finally the radial stress at the interfaa¢!! is taken as the maximum value from
both parameter sets:

ol = max{alah, glIT ez (C.6)
Also the corresponding softening parameters eith@r a, andb, or b, are stored
in vectors:a andb. These will be used to calculate the strafii . The rigid body

movement part of the radial strain is calculated using equd#.27) from [8]:

lBM _ ¢, M0 (C.7)

TiTs 277,

Next the change in wall thicknesA¢) part of the radial strain is calculated using
equation (4.28) from [8]:

€2 = ¢, (aCs + b) (ﬂln (C—l) —C—1+1)
Ts Ts Ts
aCye.,r ca\2 c a\2
_alseqrs (2 (_1> n <_1) ~ (_1> N 1) (C.8)
4 Ts Ts Ts
Finally the radial strain at the interface is calculatechgsequation (4.26) from

[8]:
IIT _ (RBM |  Ac

rrs T TS TTs

(C.9)
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Appendix D

Bond model: pull-out failure,
derivation of radial strain - slip
relations
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D. Bond model: pull-out failure, derivation of radial straislip relations

e

A B, C
T b
Ero |-
er],s _ _:
Ep2s
Erimax|l. :-:
Er3,s - ': '
af . ' i 1
8!,051,532,3 83,s aimax 8

80.5
Figure D.1: Radial strain - slip relation for pull-out bond failure, taken fornj [8

Used formulations for pointsa, b, c and d whene¢,=0 (boundary curve)

Pointa has coordinates (0,0). Poilnhas coordinates{ o,e,1,0). €,1,0 IS the strain
corresponding to the radial stress for which holds (seessdstion 2.4):
Tv1
= —— D.1

Orirs cot(o) (®.1)
Where, is the critical bond stress, see [8] table 4%, is given by equation
(4.40) in [8]:
o 2‘57"1,07”‘3
~ tan(y)

Pointc has coordinate9 o,e,20). First the coordinates of poiat(ds az €3 max)
are neededj; ... iS given in [8] table 4.5:

(D.2)

1,0

Ss.mas = 0.33d, (D.3)

€r3.maz 1S the strain corresponding to the radial stress for whidds¢see also

section 2.4):
Th3,mazx

Wheremys mq. 1S the maximum residual bond stress, see [8] table 4.5. liitied
coordinates of point are determined by equations (4.36) and (4.37) from [8]:

(D.4)

0 max
Op0 = = (D.5)
2
€r00 = <€r3,maz + €r1,0> (D6)

2
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Used formulations for pointsa, b, c and d whene, >0

dos IS chosen to be zero, therefore poinhas coordinates (0,0). Poihthas
coordinatesd s,e,1.5)- 01,5 IS given by equation (4.34) in [8]:

2 ™ S
015 =005+ 010 = €r1,07 (D.7)
tan(p)
To calculate:,; ; firste, is needed:
€r3 = 6r3,ma$e_K(ET3)€s (D8)

Where K (¢,3) is a reduction constant, see [8] table 4.5. Nowy; is calculated
with equation (4.35) from [8]:

€rls = (67‘1,0 - 67’3)6_K(ET1)55 + €r3 (Dg)

WhereK (¢,1) is a reduction constant, see [8] table 4.5. Now first the doatds
of pointd are needed. Point has coordinatesi{ e, ). To calculate)s s, first
03 min 1S Needed:

03.min = 2.1019 (D.10)

Now d5 , is calculated with equation (4.38) from [8]:

—K(03)es

53,5 - (53,ma$ - 63,min)e + 53,min (Dll)

Where K (d3) is a reduction constant, see [8] table 4&; ; is calculated with
equation (4.39) from [8]:

€r3,s = Er3,maxe_K(er3)€s (D12)

WhereK (¢,3) is a reduction constant, see [8] table 4.5. Finally the coatds of
pointc (42 ,€,2,5) are calculated using equations (4.36) and (4.37) from [8]:

03,5
A ; (D.13)
€ras = M (D.14)

2
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D. Bond model: pull-out failure, derivation of radial straislip relations

Derivation op parabolic function between points a and b:

6(6) = ad® + b + ¢ (D.15)
Boundary conditions:
P1=(0;0) (D.16)
P2 = ((51,0; 67«170) (Dl?)
de
—omsro = D.18
75 5=010 =0 (D.18)
From equation D.16 it follows:
c=0 (D.19)
From equation D.18 it follows:
de,
%|5:51,0 =2a01p+b=0& b= —2ad (D.20)

From equations D.17 arf?P it follows:

€r1,0
€10 = adt g — 2007y = —adiy & a = ——5~ (D.21)

From equations D.20 and D.21 it follows:

p= 2rLo0 (D.22)
01,0

Wanted parabolic function between points a and b:

& (8) = —(S52)0% +2(0)s (D.23)

2
51,0 51,0
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Derivation op parabolic function between points b and c:

6(6) = ad> + b5 + ¢

Boundary conditions:
P1 = (0105 €1)

P2 = (620; €20)

de,
%b:aw =0
From equation D.27 it follows:
de,
%’5:51’0 = 2&51,0 +b=0&0b= —2a51,0

From equations D.25 and D.28 it follows:
€1 = —adio +c
From equations D.26 and D.28 it follows:
€0 = a3 — 281 002) + ¢

Subtracting equation D.30 from D.29 gives:

€r1 — €2 = —CZ(SiO — &((Sg — 2517052) = a4 = —

(67‘1 - ETQ)

From equations D.28 and D.31 it follows:

2010(€r1 — €2)

b pu—
(65 4+ 639 — 201,002)

From equations D.29 and D.31 it follows:

(67‘1 - 67‘2)

(05 4 07 o — 201,002)

2
C = 67»1 - 6170

Wanted parabolic function between points b and c:

€r(5) — (67’1 — 67‘2) 52 " 25170(@1 — €r2)

5...
(624025 — 201005) (03 + 02 — 201.002)

(05 + 07 g — 201,002)

(67‘1 - 67‘2)

2
+ €1 — 517()

(05 + 07 5 — 201,002)

(D.24)

(D.25)
(D.26)

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)

(D.34)
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D. Bond model: pull-out failure, derivation of radial straislip relations

Derivation of exponential function between points ¢ and d

,(0) = bde ™ 4 ¢ (D.35)
Boundary conditions:
Pl = (5270; Er2> (D36)
P2 = (63max; €r3mam> (D37)
de
e = D.38
d5 |6—53maz O ( )
From equation D.38 it follows:
de?‘ —a —a
%‘az&smam — be 03mazx _ ab(sSmaxe 03max — 0
1
S b—abdsmer =0 a = 5 (D.39)
3maz
From equations D.36 and D.39 it follows:
%20
€rg = b5270€ 98maz 4 C (D40)
From equations D.37 and D.39 it follows:
6 max
€r3maz — bé3ma:c6_ 637"‘” +c= b53maz6_1 +c (D41)
Subtracting equation D.40 from D.41 gives:
%20
€r3maz — €r2 = _662,06 3maz bé?;maxeil
(67" maz — €r )
sbh= E “— (D42
(63max€_l - 52,067 63"”“")
From equations D.40 and D.42 it follows:
5 %20
6 max —_—
C= € — 2,06 3 (€T3max 67“2) (D43)

%20
(53ma:p€_1 - 52,06 63"”””)

Wanted exponential function between points ¢ and d:

%20
Er((;) = <€r3max _ ETQ) 5 5efm + €9 — 52706 S3maz (Er3max _5 Er?)
__ %2 %20
(53mam€_1 - 626 53"”“”) (53maxeil — 52’06 53maz)

(D.44)

lthe use ofe,.(0) = be~® + ¢ leads to equation-abe~*%sms= = () when using boundary
condition D.38 yielding no nonzero solution fer
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Alternative derivation of exponential function between pants ¢ and d us-
ing equal slope at point c:

Note that this derivation did not yield an analytical solutifor the unknowns a,b
and c. Therefore it was not used in the Matlab bond model.

Using an equal slope at point ¢ implies boundary conditicd8Mow changes to:

de,

%|6:62,0 =Q (D.45)

With ) some constant of the slope &t, from the parabolic function between
points b and c. In this case the function can be given as:

6.(0) = be™ ¥ + ¢ (D.46)

since the new boundary condition now does not necessavig/azero solution
for a. Using all boundary conditions leads to equations:

€rp = be 020 4 ¢ bem 20 = ¢, 4 ¢ (D.47)
€raman = be03mar 4 ¢ (D.48)
—abe 20 = () (D.49)

Substituting equation D.47 into D.49 gives:

—a(ent+0)=Q & c= % + €9 (D.50)
Subtracting D.47 from D.48 gives:

(67‘3max - 67"2) (D51)

—ad max —aé — —
b(e ad3 —e a 2,0) = €r3max — €r2 & b= (6—(153ma1 . €7a52,0)

Substituting equation D.50 and D.51 into D.47 gives:

<€r3max - 67‘2) —ada o Q (€T3max — €r2) —abao Q
(i ) e = e & ey =
(D.52)

This is were the derivation got stuck, | was only able to sageation D.52
numerically for the unknown constamtusing Maple.
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D. Bond model: pull-out failure, derivation of radial straislip relations
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Derivation of constitutive matrix for
axi-symmetric elements in SLA
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E. Derivation of constitutive matrix for axi-symmetric etents in SLA

General 3D strain-stress relation:

€xx 1 —v —v 0 0 0 O

Eyy -v 1 —v 0 0 0 Oyy

€. | 1 |-v —v 1 0 0 0 |0

2, E|O0 0 0 2(1+4v) 0 0 T | owy

2¢€y. 0 0 O 0 2(1+v) 0 Oyz

| 264 | 0 0 0 0 0 2(1+v) | 0 |
(E.1)

For plane strain and axi-symmetsy,. ando., are set equal to zero, therefore
equation E.1 reduces to:

€ 1 —v —v 0 O g
€y | i v 1 —v 0 oy
€. | E|-v —v 1 0 0. (E-2)
2€, 0 0 0 2(1+v) o

In the next derivations two indices are used. The first ide€dlto the stress direc-
tion which is being evaluated, the second is the sourcesstliesction. Since it is
fully uncoupled the shear term is ignored.

Only uniaxial stress .,

el _ a - Oax
Cax EIZ Cyy = —Vyx }5; €2z = Vg EI; (E3)

Only uniaxial stresg, :

oz g oz
€xx = _nyELj Cyy = EL;J €22 = _yzyEL; (E4)
Only uniaxial stress. . :
€ox =~V BE €y = — Uy, B € = ZE (E.5)

Using the principle of superposition combiniag,, o,, ando. . gives:

L —Vay —Vrz 0
€xx Eqy Ey E, Oxx
—Vya 1 —Vyz 0
Cyy | _ | Ea E, E. Tyy (E.6)
| |F B om0 | |9= '
x y z
Vay 0 0 0 w Ozy

Note that2e;; = ~;;. Inverting this matrix (using Maple) gives the stressistra
relation:

UI.Z’ 61’1’
(%2 €

wl —p | W (E.7)
UZZ €ZZ
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With D denoted as:

(Vyslsy — 1) E, —(VaslVsy + Vay) By —(VayVys + Vi) By 0O
F —(Vaalyz + Vya) By (Vaalur — 1) E, —(VyaVee +vy2) By 0
—(Vyaloy + Vez) B, —(Vaglay + Vay) . (Vyalay — 1) E, 0
0 0 0 &
(E.8)
In which: 5
G=—" E.9
21+v) (E-9)
and:
1
F = (E.10)

(szyazyyyz + VyaeVazVzy + VogVez + VyzVay + VyzVay — 1)

For a damaged element the axis in the xy-plane is rotated twal ht-plane.
The z-axis remains unchanged (i.e. fixed). Changing nostiora local dam-
aged axis-system (i.e. ntz-axis) gives the wanted cotiggtmatrix for an axi-
symmetric element in SLA:

O-TLTL 6’I'L’I'L
Ot €t
=D (E.11)
O-ZZ EZZ
Ont ’ynt

With D denoted as:

(Vtzyzt - 1)En _(Vnszt + Vnt>En _(Vntytz + Vnz)En 0
Ja _(Vznytz + th)Et (Vznynz - 1)Et _(th]/nz + VtZ)Et 0
_(thyzt + Vzn)Ez _(Vznynt + Vzt)Ez (thynt - 1)EZ 0
0 0 0 g
(E.12)
In which:
G-t (E.13)
2(1+v) '
and:
1
. (E.14)

(VznVntVtz + VinVnzVzt + VonVnz + VinVnt + ViVat — ]-)

For shear reduction options see section 3.3.
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E. Derivation of constitutive matrix for axi-symmetric etents in SLA
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Verification of SLA code for
axi-symmetric elements
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F. Verification of SLA code for axi-symmetric elements

The test model (figure 1) consists of one square linear Q8Aethent (sides
of 40 mm) with four point Gauss integration (note that the poat integration
scheme does not work in the SLA environment). The elemehbeitested with
different loading schemes (witt=0 or »=0.2). For axi-symmetric elements the
axis of rotation is always the y-axis. Only proportionaldogy will be tested.

‘ Model: AXITEST ‘

N
=

QU4
Y

% X 1 | 3

Figure F.1: Mesh for test axi-symmetric element

Loading schemes:

1. All four nodes are given a uniform translation of unity wdkxection. This
will cause mainly circumferential stresses.

2. Nodes 2 and 4 are given a uniform translation of unity inngation. Nodes
1 and 3 are constrained in y-direction and nodes 1 and 2 astraored in
x-direction. This will cause mainly stresses in the xy-glan

3. Nodes 2 and 4 are given a translation of unity in y-directimodes 3 and 4
are given a translation of 0.5 in x-direction.

Because the element is linear all stresses in the xy-plarmastant, whereas the
stresses.. depend on the distance from the axis of rotation & “=). Integra-
tion points 1 and 3 are located nearest to the axis of rotafitve distance ratio
r for the two rows of integration points is approximately, / r; 5 = 3.734, this
ratio can be used to check the stress ratios. The crackihdevihitiated with a
very small hardia table consisting of just 2 teeth:

2.800000E+04 2.5
2.400000E+04 2.3

For each loading scheme and Poisson’s ratio the followinggthhave been
checked:

* is the corrent critical load multiplier identified from tls&resses
* is the principal stress calculated correctly
* is the constitutive matrix updated correctly

 does the program stop correctly (e.g. when no more damausgble)
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G. Overview of routines for SLA software extensions

Table G.1: Overview of SLA routines for axi-symmetric elemé&ht€{ modified original
DIANA file; (M°deX) modified existing SLA filé?®"): newly created SLA file)

routine
DLPEAX™d) | SLA element initialization, store parameters at IP level.
MATAXI| (Mod) 1 Prevent initially orthotropic materials to be used with SLA

LAMBIB (modex)

Redirect axi-symmetric SLA elements to routine LAM

AXI.

LAMAX]| Mew)

Calculate admissible load factox)(

DAMAXI ") | Update damage indicator for critical integration point.
Get all relevant material model parameters and calculate ne
MATAX2 (") | stress-strain relation matrix for critical integrationiftousing
routine SEAXI2.
SEAX|2(ew) Calculate stress-strain relation matrix in local crack ayistem

(NTZ) and rotate back to general axis system.

Table G.2: Overview of SLA routines for interface elemef&'¢X) modified existing SLA

file; (new).

newly created SLA file)

routine

LAMBIB (modex)

Redirect interface SLA elements to routine LAMLIE.

LAMLIE MeW)

Calculate admissible load factox)(

DAMLIE ("W

Update damage indicator for critical integration poi

MATIF2 (o0

Calculate bond stress-slip relation matrix.

Table G.3: Overview of SLA routines for cable (truss) eleméRt§} modified original
DIANA file)

routine

ISCLTR™Md | Write constitutive matrix to integration point level in caseSLA.
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Matlab sawtooth generator for
Hordijk tension softening: code
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H. Matlab sawtooth generator for Hordijk tension softeniogde

Note: the Matlab sawtooth generator is not full proof, i.ewill not give
a good solution for all possible combinations of parameaertematically. This
depends on the user defined parameter (q) that controls ltineosanterval for
p+. See also section 4.2.2 equations 4.8 and 4.9.

Main program:

19-5-10 15:54

D:\sensink\Matlab\sawtooth5.m 1 of 4

clc;clear all
tic

o\

For details

version: 0.

Units: N,mm

o° o° o o° o° O° A° o° A° o° o o° o° o° o° o° o° o° o° o° o

-- Material
E0=25000;
Gf=0.06;
h=12.5;

-- Sawtooth
n=10;
matnr=1;

cl=3;

m=50;
tol=1e-6;
g=1;

end input

o

o o°

;close all;

This model calculates a sawtooth diagram based on
a total strain model for the Hordijk nonlinear concrete
tension softening curve.

see Diana manual 18.1.1.5

5 (total strain model)

function files: hordijk.m : normalized Hordijk function f (x)

hordijk2.m : non-normalized Hordijk function
f (eps_cr)

hordijk min.m : normalized Hordijk lower boundary
hordijk plus.m : normalized Hordijk upper boundary
vel.m : linear equation
fxmax.m : calculate x-coordinate of last sawtooth
mini2.m : calculate fracture energy F (pplus)

data input --

o

% initial elastic stiffness
% fracture energy softening curve
% crack band width

o

% initial elastic tensile strenght

input --

o

% number of teeth in sawtooth diagram

o

% material number in DIANA

-- Hordijk softening parameters --

-- Model parameters --

o

% number of points for plotting
% tolerance for zero finding

o

% factor determinating bound values of p+

% begin calculation

n=n+1;

options=optimset ('TolX', tol) ;

disp('-- calculation can be interrupted by pressing "CTR-C" --')
AP (1 === = mm )
% -- check if h is too large --

hmax=0.743*GE*E0/ (££*2) ;

if h>hmax

ft=sqrt (0.743*GE*E0/h); % equation (18.49)
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19-5-10 15:54 D:\sensink\Matlab\sawtooth5.m 2 of 4

disp ('warning: h too large, ft has been reduced!')

disp(['reduced initial tensile strength: ft red = ' num2str(ft) ' N/mm*2'])
end
% -- calculate elastic and crack strain --
eps_el=ft/E0;

Gfred=Gf-0.5*eps_el*ft*h; % compensate fracture energy for total strain
eps_cr_ult=5.136* (Gfred/ (h*ft)) ;

% -- calculate pplus --

[pplus fval exitflag output]=fminbnd(@(pplus) (mini2 (E0,ft,eps el,eps cr ult,h,n,¥
pplus,Gf,tol)),0.75*ft*q/n, ft*q/n,options) ;

disp(['pplus =' num2str(pplus) ' N/mm"2'])

disp(['error =' num2str(fval)])

% -- calculate pmin --

pminO=pplus;

[pmin fval] = fminsearch(@(pmin) ( (fxmax(n,E0,eps_el,eps_cr ult, ft,pplus,pmin,tol)-1)¥
*2),pmin0,options) ;

disp(['pmin = ' num2str(pmin) ' N/mm*2'])

disp(['computed error in calculating pmin: ' num2str(fval)l)

if fvalstol
disp('warning: error in calculating pmin: >tol, decreasing pmin0O, start«
iterating.."')
iter=0;
while fvalstol
if iter<10
pmin0=0.9*pmino0;
else
pmin0=0.8*pmin0;

end
if iter>35
disp(['iteration failed..' '(last error: ' num2str(fval) ')']l)
return
end
[pmin fval]l = fminsearch(e@(pmin) ( (fxmax(n,E0,eps_el,eps cr ult, ft,pplus,pmin, ¢

tol)-1)"2),pmin0,options) ;
iter=iter+1;

end

disp(['number of iterations: ' num2str(iter)])

disp(['pmin = ' num2str(pmin) ' N/mm*2' ' (error: ' num2str(fval) ')'])
end
% -- preallocate for speed --

xsol=zeros(1l,n-1);
ysol=zeros(1l,n-1);
eps_cr=zeros (1, (n-1));
E=zeros(1,n);

E(1)=EO;
% -- calculate and plot sawtooth diagram --
x0=0.5;

for i=2:n
xso0l (i-1)=fzero(@(x) (yel (x*eps_cr ult,E(i-1),eps_el)-hordijk plus(x, ft,pplus)),¥
x0,options) ;
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H. Matlab sawtooth generator for Hordijk tension softeniogde

19-5-10 15:54 D:\sensink\Matlab\sawtooth5.m 3 of 4

eps_cr(i-1)=xsol(i-1)*eps_cr_ult;
ysol (i-1)=hordijk plus(xsol(i-1),ft,pplus);
% note: E(i) calculated on non-normalized x-axis
(i) =(ysol(i-1) -pplus-pmin)/ (xsol(i-1) *eps cr ult+eps_el);
% plot vertical lines sawtooth diagram
plot ([xsol(i-1)*eps_cr_ult+eps_el xsol(i-1)*eps_cr ult+eps_el], [ysol(i-1) ysol(i-¥¢
1) -pplus-pmin]) ;
if ysol(i-1)-pplus<-le-3
$clc
disp('calculation failed, try changing number of teeth')
%close all

=

return
end
hold on
end
% -- plot elastic stiffness lines sawtooth diagram --

for i=2:n-1
plot ([xsol(i-1)*eps_cr_ult+eps_el xsol(i)*eps_cr ult+eps_el], [ysol(i-1)-pplus-¢
pmin ysol(i)])
end
hold on
% -- plot Hordijk graphs and text --
plot ([0 xsol(1l)*eps_cr_ult+eps_el]l, [0 ysol(1)])
hold on
x=linspace(0,1,m);
plot (x*eps_cr_ult+eps_el,hordijk(x,ft),'r")
hold on
clear x
x=linspace (xsol(1),1,m);
plot (x*eps cr ult+eps_el,hordijk plus(x, ft,pplus),':g")

hold on

plot (x*eps_cr ult+eps_el,hordijk min(x, ft,pmin),':g")
hold on

plot ([0 eps_ell, [0 ft],'r")

(
x1im ([0 eps_cr ult+eps _el])

ylim ([0 ysol (1) +pplus])

title('Sawtooth for Hordijk tension softening')
xlabel ('\epsilon {tot}")

ylabel ('f {t} N/mm™{2}")

stringl=(['# of teeth = ' num2str(n-1)]);
string2=(['p+ = ' num2str(pplus) ' N/mm™2']);
string3=(['p- = ' num2str(pmin) ' N/mm”*2']);
% -- print sawtooth diagram on screen and write to textfile ---
format short e
E(n)=E(n-1)/10000; % assume extreme low stiffness for last teeth
ysol (n) =ysol (n-1)/10000; % assume extreme low tensile strenght for last teetnh
disp ([’ E(1) vt fe(i)'])
disp([E(1:n)"' ysol(l:n)'])
fid = fopen('sawtooth.txt!', 'wt');
fprintf (fid, '$s\n', ' ' 'materials''');
fprintf (£id, '%g HARDIA %8.6E %8.6E\n',matnr,E(1),ysol(1));
for j = 2:n
fprintf (£id, ' $8.6E %8.6E\n',E(J),ysol(3));
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end
fclose (fid) ;
% -- calculate fracture energy Hordijk curve --

A el=0.5*eps_el*ft;
gl=(quad(@(eps_cr)hordijk2 (eps_cr,eps_cr ult,ft,c2),0,eps_cr_ult,le-8)+A el)*h;

disp(['calculated fracture energy mother curve: ' num2str(gl)])
g2=quad (@ (x) hordijk(x,1),0,1,1le-8) ;

disp(['alpha = ' num2str(g2) ' see Diana manual 18.1.1.5'])

% -- calculate fracture energy sawtooth diagram --

A _sawdia_el=1/2* (eps_el+xsol (1) *eps_cr_ult) *ysol (1) ;
A tooth=zeros(1,n-2);
for i=2:n-1
A tooth(i-1)=(xsol(i)-xsol(i-1))*eps cr ult*(ysol(i)+ysol(i-1)-pplus-pmin)/2;

end

A sawdia=(sum(A_tooth)+A sawdia el);

disp (['fracture energy sawtooth diagram = ' num2str (A sawdia*h)])
disp('hardia table written to file: sawtooth.txt'

string4=(['Gf sawtooth = ' num2str (A sawdia*h)]);
string5=(['\epsilon {el} = ' num2str(eps _el)]);
stringé6=(['\epsilon {cr,ult} = ' num2str(eps_cr ult)]);
string7=(['\epsilon {tot,max} = ' num2str(eps_cr_ult+eps_el)l);

hl = legend(stringl, string2,string3,string4,string5,stringé,string7,1) ;

print -djpeg sawtooth.jpg
disp('sawtooth graph written to file: sawtooth.jpg')

time=toc;
disp(['time to compute = ' num2str(toc) ' sec'l)
nu0=0.2;

nu_red=nu0*E/EO0;
G=E./(2* (1+nu_red)) ;

figure (2)

plot (E(1:n-1),G(1l:n-1))

title(['Stepwise shear softening with Hordijk ' num2str(n-1) ' teeth ' '(\nu = '¥¢
num2str (nuo) ')'])

xlabel ('E n N/mm™{2}")
ylabel ('G N/mm™{2}")

set (gca, 'xdir', 'reverse') ;
grid on

Function files:

19-5-10 16:02 D:\sensink\Matlab\hordijk.m 1 of 1

function y=hordijk(x, ft,c2)

cl=3;

if nargin<3
c2=6.93;

end

y1l=(1+(cl*x).”%3) .*exp (-c2*x) ;
y2=-x* (1+cl1”3) *exp (-c2) ;
y=(yl+y2) *ft;
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19-5-10 15:59 D:\sensink\Matlab\fxmax.m 1 of 1

function xmax=fxmax(n,EO0,eps el,eps cr ult,ft,pplus,pmin,tol)
% calculate x-coordinate of last sawtooth

options=optimset ('TolX', tol) ;

E=EQ;

for i=2:n
% xsol determined on normalized strain-axis
% yo from yel determined on non-normalized strain-axis
xsol=fzero (@ (x) (yel (x*eps_cr ult,E,eps_el)-hordijk plus(x,ft,pplus)),0.5,¢
options) ;
% ysol determined on normalized strain-axis
ysol=hordijk plus(xsol, ft,pplus);
% E(i1) calculated on non-normalized strain-axis
E=(ysol-pplus-pmin)/ (xsol*eps_cr_ult+eps_el);
end

xmax=xsol;

end

19-5-10 16:03 D:\sensink\Matlab\hordijk2.m 1 of 1

function y=hordijk2(eps_cr,eps_cr ult, ft,c2)
% Hordijk function: f (eps_cr)
cl=3;
if nargin<4
c2=6.93;

end

yl=(1+(cl*eps_cr/eps_cr_ult).”"3).*exp(-c2*eps cr/eps_cr ult);
y2=- (eps_cr/eps_cr ult)*(1+cl”3) *exp(-c2);

y=(yl+y2) *ft;

19-5-10 16:02 D:\sensink\Matlab\hordijk min.m 1 of 1

function y=hordijk min(x, ft,p,c2)

cl=3;

if nargin<4
c2=6.93;

end

yl=(1+(cl*x).”3).*exp (-c2*x) ;

y2=-x* (1+cl”3) *exp (-c2) ;

y=(yl+y2) *ft-p;
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19-5-10 16:01 D:\sensink\Matlab\hordijk plus.m 1 of 1

function y=hordijk plus(x, ft,p,c2)

% Hordijk function with normalized strain: £ (x)
cl=3;
if nargin<4
c2=6.93;
end

for i=1:1length (x)
if x(1)<0
y(i)=ft+p;
else
yl=(1+(cl*x(i))."3) . .*exp(-c2*x(i));
y2=-x (i) * (1+cl1l”3) *exp (-c2) ;
v (i)=(yl+y2) *ft+p;
end
end

end
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19-5-10 15:58 D:\sensink\Matlab\mini2.m 1 of 2

function deltaGf=mini2 (EO, ft,eps_el,eps_cr ult,h,n,pplus,Gf,tol)

o° o

calculates difference between fracture energy softening curve
and sawtooth diagram depending on pplus

pminO=pplus;

options=optimset ('TolX', tol) ;

[pmin fval] = fminsearch(@(pmin) ( (fxmax (n,E0,eps_el,eps_cr_ult, ft,pplus,pmin,tol)-1)¥

*2),

pmin0O, options) ;

if fvalstol

iter=0;
while fvalstol
if iter<1o0
pmin0=0.9*pmino0;
else
pmin0=0.8*pmino0;
end
if iter>35
disp(['iteration in mini2.f failed..' '(last error: ' num2str(fval) ')'])
return
end
[pmin fval] = fminsearch(@(pmin) ( (fxmax(n,E0,eps_el,eps_cr ult,ft,pplus,pmin, ¢

tol) -1)*2),pmin0,options) ;

iter=iter+1;

end
end
% -- preallocate for speed --

xsol=zeros (1,n-1) ;
ysol=zeros (1,n-1);
E=zeros (1,n) ;

E(1)=E0;

% -- calculate sawtooth diagram --
x0=0.5;

for i=2:n

xs0l (1-1) =fzero(@(x) (yel (x*eps_cr_ult,E(i-1),eps_el)-hordijk plus(x,ft,pplus)), ¢

x0,options) ;

ysol (i-1)=hordijk plus(xsol(i-1),ft,pplus);
% note: E(i) calculated on non-normalized x-axis
E(i)=(ysol(i-1)-pplus-pmin)/ (xsol(i-1)*eps_cr_ult+eps_el);
if i==n
if ysol(n-1)-pplus<-le-3
disp ('warning: calculation pmin failed in mini2.f, ysol(n-1)-pplus<-le-¥¢

3")
disp(['with large number of teeth the used tolerance could be too low'l])
return
end
end
end
% -- calculate fracture energy sawtooth diagram --

A sawdia_el=1/2* (eps_el+xsol (1) *eps_cr ult) *ysol (1) ;
A tooth=zeros(1,n-2);

for

i=2:n-1
A tooth(i-1)=(xsol(i)-xsol(i-1))*eps_cr ult* (ysol(i)+ysol(i-1)-pplus-pmin)/2;

end

19-5-10 15:58 D:\sensink\Matlab\mini2.m 2 of 2
disp(['pplus = ' num2str (pplus)])

disp([' (error: ' num2str (h* (sum(A_tooth)+A sawdia_el)-Gf) ')'l)

deltaGf=abs (h* (sum(A_tooth)+A sawdia_el) -Gf) ;

end

174



Appendix |

Nonlinear axi-symmetric
calculation: DIANA program
settings

175



I. Nonlinear axi-symmetric calculation: DIANA program 8e{s

Used element types and integration scheme:

CL6TR Truss element (default integration)
CL12I Interface element (5-point lumped integration)
CQ16A Axi-symmetric element (3x3 Gauss integration)

OtherDIANA program settings used:
Interface elements in plane stress configuration (MEMBRA)
Non-linear settings:

Energy based convergence criterion (default tolerance0®i01)
Maximum number of iterations: 40
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J. DIANA User interface models BOND3N, BOND3S and BOND3E codg an
verification

File: /Thomel/sensink/usrifc.f

SUBROUTINE USRIFC(U®, DU, NT, AGEO, DTIME, TEMPO,

(NORMALLY ZERO) MODEL BOND3E ONLY]

PROGRAMMED BY S.W.H. ENSINK
Author: S.W.H. ENSINK
Revision: 0.1

Date: 2009/11/02

$ DTEMP, ELEMEN, INTPT, COORD, SE, ITER,
$ USRMOD, USRVAL, NUV, USRSTA, NUS,
$ USRIND, NUI, TRA, STIFF)
et e e e Copyright (c) 2009-2010 TU DELFT
C..
C.. PURPOSE :
C.. USER-SUPPLIED ELASTO-PLASTIC (TANGENTIAL DIRECTION) AND
C.. ELASTIC (NORMAL DIRECTION) INTERFACE MODELS WITH VARIOUS
C.. UNLOADING BEHAVIOR.
C..
C.. MODELS AND UNLOADING TYPE:
C.. BOND3N  NONLINEAR UNLOADING
C.. BOND3S  SECANT UNLOADING
C.. BOND3E  ELASTIC UNLOADING
C..
C... ARGUMENTS:
C.. TRA double out TRACTION VECTOR
C.. STIFF  double out STIFFNESS MATRIX
C.. TRA double in  TRACTION VECTOR
C.. STIFF  double in  STIFFNESS MATRIX
C.. USRVAL double in  PLASTIC SHEAR STRESS LIMIT VALUE
C.. [USRSTA double in  ELASTIC BRANCH ORIGIN SLIP VALUE,
C..
C..
C..
C..
C..
C..
C
C

CHARACTER*6 USRMOD

INTEGER NT, NUV, ELEMEN, INTPT, ITER, NUS, NUI,
USRIND (NUI)

DOUBLE PRECISION UO(NT), DU(NT), STIFF(NT,NT), TRA(NT),
USRVAL(NUV), AGEO, DTIME, TEMPO, DTEMP,
COORD(3), SE(NT,NT), USRSTA(NUS), D11, D22,
DSTIF(2), TAUULT

A A A

C... GET MATERIAL DATA
CALL GTC('../MATERI/DSTIF', DSTIF, 2)

aNe]

GET MATERIAL DATA FROM USRVAL
TAUULT = USRVAL(1)
CALL PRIVAL( TAUULT, 'TAUULT" )

MODEL BOND3N: ELASTO-PLASTIC (BI-LINEAR) BONDSLIP TANGENTIAL
LINEAR NORMAL
NLE UNLOADING
INPUT FROM DATFILE: USRVAL (SHEAR STRESS LIMIT VALUE)
CALCULATE CURRENT TOTAL TRACTIONS AND TANGENT STIFFNESS
IF (USRMOD .EQ. 'BOND3N') THEN
TRA(1) = DSTIF(1) * (UG(1) + DU(1))
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
IF (ABS(UG(2) + DU(2)) .GE. TAUULT / DSTIF(2)) THEN
IF (U0(2) + DU(2) .GE. TAUULT / DSTIF(2)) THEN
TRA(2) = TAUULT
ELSE
TRA(2)
END IF

o000 n

-TAUULT
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File: /homel/sensink/usrifc.f

ELSE
TRA(2) = DSTIF(2) * (UG(2) + DU(2))
STIFF(2,2) = DSTIF(2)

END IF

MODEL BOND3S: ELASTO-PLASTIC (BI-LINEAR) BONDSLIP TANGENTIAL
LINEAR NORMAL
SECANT UNLOADING
INPUT FROM DATFILE: USRVAL (SHEAR STRESS LIMIT VALUE)
CALCULATE CURRENT TOTAL TRACTIONS AND TANGENT STIFFNESS
ELSE IF(USRMOD .EQ. 'BOND3S') THEN
100  CONTINUE
TRA(1) = DSTIF(1) * (UO(1) + DU(1))
C... BLOCK 1 INITIAL ELASTIC BRANCH
IF (ABS(UOG(2) + DU(2)) .LT. TAUULT / DSTIF(2) .AND.
$ STIFF(2,2) .EQ. DSTIF(2)) THEN
TRA(2) = DSTIF(2) * (UG(2) + DU(2))
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) DSTIF(1)
STIFF(2,2) DSTIF(2)
CALL LOGPRI('USRIFC: INITIAL ELASTIC BRANCH',0)
C... BLOCK 2 FIRST PLASTIC BRANCH
ELSE IF (ABS(U0(2) + DU(2)) .GE. TAUULT / DSTIF(2) .AND.
$ STIFF(2,2) .EQ. DSTIF(2)) THEN
IF (U0(2) + DU(2) .GE. TAUULT / DSTIF(2)) THEN
TRA(2) = TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: FIRST PLASTIC BRANCH',0)
ELSE
TRA(2) = -TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: FIRST PLASTIC BRANCH',0)
END IF
C... BLOCK 3 PLASTIC BRANCH LOADING
ELSE IF (STIFF(2,2) .EQ. O .AND. DU(2) / UG(2) .GT. 0) THEN
IF (U0(2) + DU(2) .GE. TAUULT / DSTIF(2)) THEN
TRA(2) = TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: PLASTIC BRANCH LOADING',0)
ELSE
TRA(2) = -TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: PLASTIC BRANCH LOADING',0)
END IF
C... BLOCK 4 PLASTIC BRANCH FIRST UNLOADING
ELSE IF (STIFF(2,2) .EQ. ©0 .AND. DU(2) / UG(2) .LE. 0) THEN
IF (ABS(DU(2)) .LE. ABS(UO(2))) THEN
D22 = TAUULT / ABS(UO(2))
TRA(2) = D22 * (UO(2) + DU(2))
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) DSTIF(1)
STIFF(2,2) D22
CALL LOGPRI('USRIFC: PLASTIC BRANCH FIRST UNLOADING',0)
ELSE IF (ABS(DU(2)) .GT. ABS(UOG(2))) THEN
DU(2) = UO(2) + DU(2)
ue(2) = 0.b0
CALL RSET(0.DO, STIFF, NT*NT)

eleolekalale!
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J. DIANA User interface models BOND3N, BOND3S and BOND3E codg an

verification

File: /homel/sensink/usrifc.f

OO0 00n

STIFF(1,1) = DSTIF(1)
STIFF(2,2) = DSTIF(2)
GO TO 100

END IF

BLOCK 5 SECANT BRANCH
ELSE IF (STIFF(2,2) .LT. DSTIF(2) .AND.
STIFF(2,2) .GT. 0) THEN
IF (DU(2) / UO(2) .GT. O .AND. ABS(DU(2) + UOG(2)) .LE.
$ TAUULT / STIFF(2,2)) THEN
TRA(2) = STIFF(2,2) * (UO(2) + DU(2))
D22 = STIFF(2,2)
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = D22
CALL LOGPRI('USRIFC: SECANT BRANCH',0)
ELSE IF (DU(2) / UO(2) .GT. O .AND. ABS(DU(2) + UO(2)) .GT.

$ TAUULT / STIFF(2,2)) THEN
STIFF(2,2) = 0
GO TO 100
ELSE IF (DU(2) / UO(2) .LE. 0 .AND. ABS(DU(2)) .LE.
$ ABS(UO(2))) THEN

TRA(2) = STIFF(2,2) * (UB(2) + DU(2))
D22 = STIFF(2,2)
CALL RSET(0.DO®, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = D22
CALL LOGPRI('USRIFC: SECANT BRANCH',0)
ELSE IF (DU(2) / UO(2) .LE. 0 .AND. ABS(DU(2)) .GT.
$ ABS(UO(2))) THEN
DU(2) = UO(2) + DU(2)
uoe(2) = 0.D0
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) DSTIF(1)
STIFF(2,2) DSTIF(2)
GO TO 100
END IF
END IF

MODEL BOND3E: ELASTO-PLASTIC (BI-LINEAR) BONDSLIP TANGENTIAL
LINEAR NORMAL
ELASTIC UNLOADING
INPUT FROM DATFILE: USRVAL (SHEAR STRESS LIMIT VALUE)
USRSTA 0 (ELASTIC BRANCH ORIGIN VALUE)
CALCULATE CURRENT TOTAL TRACTIONS AND TANGENT STIFFNESS
ELSE IF(USRMOD .EQ. 'BOND3E') THEN
TRA(1) = DSTIF(1) * (UOG(1) + DU(1))
BLOCK 1 INITIAL ELASTIC BRANCH
IF (ABS(UO(2) + DU(2)) .LT. TAUULT / DSTIF(2) .AND.
$ USRSTA(1) .EQ. 0) THEN
TRA(2) = DSTIF(2) * (UO(2) + DU(2))
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = DSTIF(2)
CALL LOGPRI('USRIFC: INITIAL ELASTIC BRANCH',O0)
BLOCK 2 FIRST PLASTIC BRANCH
ELSE IF (ABS(UOG(2) + DU(2)) .GE. TAUULT / DSTIF(2) .AND.
$ STIFF(2,2) .EQ. DSTIF(2) .AND. USRSTA(1) .EQ. 0) THEN
IF (U0(2) + DU(2) .GE. TAUULT / DSTIF(2)) THEN
TRA(2) = TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
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CALL LOGPRI('USRIFC: FIRST PLASTIC BRANCH',0)
ELSE
TRA(2) = -TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: FIRST PLASTIC BRANCH',0)
END IF
C... BLOCK 3 PLASTIC BRANCH LOADING
ELSE IF (STIFF(2,2) .EQ. © .AND. DU(2) / UO(2) .GT. O .AND.
$ USRSTA(1) .EQ. 0) THEN
IF (U0(2) + DU(2) .GE. TAUULT / DSTIF(2)) THEN
TRA(2) = TAUULT
CALL RSET(0.DO®, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: PLASTIC BRANCH LOADING',0)
ELSE
TRA(2) = -TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: PLASTIC BRANCH LOADING',0)

END IF
C... BLOCK 4 PLASTIC BRANCH FIRST UNLOADING
ELSE IF (STIFF(2,2) .EQ. © .AND. DU(2) / UG(2) .LE. O .AND.
$ USRSTA(1) .EQ. 0) THEN
IF (U0(2) .GT. O .AND. ABS(DU(2)) .LE. 2*TAUULT / DSTIF(2))
$ THEN

USRSTA(1) = UO(2) - TAUULT / DSTIF(2)

TRA(2) = DSTIF(2)*(UO(2)+DU(2)-USRSTA(1))

CALL RSET(0.DO, STIFF, NT*NT)

STIFF(1,1) = DSTIF(1)

STIFF(2,2) = DSTIF(2)

CALL LOGPRI('USRIFC: PLASTIC BRANCH FIRST UNLOADING',0)
ELSE IF (U0(2) .LE. 0 .AND. ABS(DU(2)) .LE.

$ 2*TAUULT / DSTIF(2)) THEN

USRSTA(1) = UOG(2) + TAUULT / DSTIF(2)

TRA(2) = DSTIF(2)*(UO(2)+DU(2)-USRSTA(1))

CALL RSET(0.DO, STIFF, NT*NT)

STIFF(1,1) = DSTIF(1)

STIFF(2,2) = DSTIF(2)

CALL LOGPRI('USRIFC: PLASTIC BRANCH FIRST UNLOADING',0)
ELSE IF (UO(2) .GT. 0) THEN

USRSTA(1) = UOG(2) - TAUULT / DSTIF(2)

TRA(2) = -TAUULT

CALL RSET(0.DO, STIFF, NT*NT)

STIFF(1,1) = DSTIF(1)

STIFF(2,2) =0

CALL LOGPRI('USRIFC: PLASTIC BRANCH FIRST UNLOADING',0)
ELSE

USRSTA(1) = UOG(2) + TAUULT / DSTIF(2)
TRA(2) = TAUULT

CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)

STIFF(2,2) =0

CALL LOGPRI('USRIFC: PLASTIC BRANCH FIRST UNLOADING',0)

END IF
C... BLOCK 5 SHIFTED ELASTIC BRANCH
ELSE IF (USRSTA(1) .NE. O .AND. ABS(UO(2) + DU(2)) .GT.
$ ABS (USRSTA(1)) - TAUULT / DSTIF(2) .AND. ABS(UOG(2) + DU(2))
$ .LT. ABS(USRSTA(1)) + TAUULT / DSTIF(2) .AND. STIFF(2,2)
$ .EQ. DSTIF(2)) THEN

TRA(2) = DSTIF(2)*(UO(2)+DU(2)-USRSTA(1))
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J. DIANA User interface models BOND3N, BOND3S and BOND3E codg an
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File: /Thomel/sensink/usrifc.f

CALL RSET(0.DO®, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = DSTIF(2)
CALL LOGPRI('USRIFC: SHIFTED ELASTIC BRANCH',0)
C... BLOCK 6 SHIFTED FIRST PLASTIC BRANCH
ELSE IF (USRSTA(1) .NE. O .AND. ABS(UO(2) + DU(2)) .GE.
ABS (USRSTA(1)) + TAUULT / DSTIF(2) .AND. STIFF(2,2) .EQ.
DSTIF(2) .NEQV. (USRSTA(1) .NE. O .AND. ABS(UOG(2) + DU(2))
.LE. ABS(USRSTA(1)) - TAUULT / DSTIF(2) .AND. STIFF(2,2)
.EQ. DSTIF(2))) THEN
IF (U0(2) + DU(2) .GT. USRSTA(1)) THEN
TRA(2) = TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: SHIFTED FIRST PLASTIC BRANCH',O0)
ELSE
TRA(2) = -TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
CALL LOGPRI('USRIFC: SHIFTED FIRST PLASTIC BRANCH',0)
END IF
C... BLOCK 7 SHIFTED PLASTIC BRANCH LOADING
ELSE IF (USRSTA(1) .NE. O .AND. STIFF(2,2) .EQ. O .AND.
$ DU(2) / (UB(2) - USRSTA(1)) .GT. 0) THEN
IF (U0(2) .GT. USRSTA(1)) THEN
TRA(2) = TAUULT
CALL RSET(0.D0O, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = 0
CALL LOGPRI('USRIFC: SHIFTED PLASTIC BRANCH LOADING',0)
ELSE
TRA(2) = -TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) DSTIF(1)
STIFF(2,2) 0
CALL LOGPRI('USRIFC: SHIFTED PLASTIC BRANCH LOADING',0)
END IF
C... BLOCK 8 SHIFTED PLASTIC BRANCH FIRST UNLOADING
ELSE IF (USRSTA(1) .NE. O .AND. STIFF(2,2) .EQ. O .AND.
$ DU(2) / (UB(2) - USRSTA(1l)) .LT. 0) THEN
IF (U6(2) .GT. O .AND. ABS(DU(2)) .LE. 2*TAUULT / DSTIF(2))
$ THEN
USRSTA(1) = UO(2) - TAUULT / DSTIF(2)
TRA(2) = DSTIF(2)*(UO(2)+DU(2)-USRSTA(1))
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = DSTIF(2)
CALL LOGPRI('USRIFC: SHIFTED PLASTIC BRANCH FIRST UNLOADING',O)
ELSE IF (UO(2) .LE. © .AND. ABS(DU(2)) .LE.
$ 2*TAUULT / DSTIF(2)) THEN
USRSTA(1) = UG(2) + TAUULT / DSTIF(2)
TRA(2) = DSTIF(2)*(U0B(2)+DU(2)-USRSTA(1))
CALL RSET(0.D0O, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = DSTIF(2)
CALL LOGPRI('USRIFC: SHIFTED PLASTIC BRANCH FIRST UNLOADING',O)
ELSE IF (UO(2) .GT. 0) THEN
USRSTA(1) = UO(2) - TAUULT / DSTIF(2)
TRA(2) = -TAUULT
CALL RSET(0.D0O, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)

H A A A
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File: /homel/sensink/usrifc.f

STIFF(2,2) = 0
CALL LOGPRI('USRIFC: SHIFTED PLASTIC BRANCH FIRST UNLOADING',O0)
ELSE
USRSTA(1) = UO(2) + TAUULT / DSTIF(2)
TRA(2) = TAUULT
CALL RSET(0.DO, STIFF, NT*NT)
STIFF(1,1) = DSTIF(1)
STIFF(2,2) = 0
CALL LOGPRI('USRIFC: SHIFTED PLASTIC BRANCH FIRST UNLOADING',O)
END IF
END IF
ELSE
CALL PRGERR('USRIFC',001)
END IF
END

Two small scale tests using different loading have beeropaed to check
the correctness of the user supplied interface models. Tukeheonsists of three
elements connected to create a small scale tension-puklma€L6TR truss el-
ement, an CL12I interface element and an CQ16A axi-symmdaient. Using
displacement control the load is given to the truss elemeéné bi-linear elasto-
plastic bond-slip relation is used, see figure 5.5.

In the first test positive load steps are taken until a disptant of 0.075 mm.
Then the same loadsteps are given in the opposite diresgenfigure J.1 for the
results. In the second test load steps are taken that coashuchange sign and

Figure J.1: Results first loading, from left to righBOND3N, BOND3Sand BOND3E

also jump from a positive plastic region to a negative ptagtgion, see figure J.2
for the results.

Wy m

.
] |
i

Figure J.2: Results second loading, from left to rigBOND3N, BOND3Sand BOND3E
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J. DIANA User interface models BOND3N, BOND3S and BOND3E codg an
verification
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Appendix K

Nonlinear 3D calculation: DIANA
program settings
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K. Nonlinear 3D calculation: DIANA program settings

Used element types and integration scheme:

CL9TR Truss element (default integration)

CL18I Line-solid interface element (5-point lumped integra)
CTP45 3D wedge element (4x3 integration)

CHX60 3D brick element (default integration)

OtherDIANA program settings used:
Interface element with ZAXIS 0 0 1 and DIAMET 8

Non-linear settings:
Energy based convergence criterion (default tolerance0®i01)
Maximum number of iterations: 100
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Appendix L

Sawtooth diagrams used in section
6.5
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L. Sawtooth diagrams used in section 6.5

Table L.1: Accuracy of sawtooth diagrams (with concrete 50 teeth)

concrete (50 teeth

bond-slip (23 teeth

steel 40 teeth

average op+ enp— [N/mm?] (0.087+0.094)/2 (0.22+0.22)/2 (0+28)/2
maximum elastic value [N/m#i 25 6.25 400
ratio 3.6% 3.5% 3.5%

Table L.2: Accuracy of sawtooth diagrams (with concrete 25 teeth)

concrete (25 teeth

bond-slip (12 teeth

steel (19 teeth

average op+ enp— [N/mm?] (0.17+0.20)/2 (0.46+0.46)/2 (0+59)/2
maximum elastic value [N/m#j 25 6.25 400
ratio 7.4% 7.4% 7.4%

Table L.3: Accuracy of sawtooth diagrams (with concrete 12 teeth)

concrete (12 teeth) bond-slip (6 teeth) steel (9 teeth)
average op+ enp— [N/mm?] (0.34+0.43)/2 (0.96+0.96)/2 (0+123)/2
maximum elastic value [N/mfi 2.5 6.25 400
ratio 15.4% 15.4% 15.4%
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Sawtooth for Hordijk tension softening

25 # of teeth = 50 1
p+ = 0.087194 N/mm?
— p- = 0.094728 N/mm?
Gf sawtooth = 0.06
€,, = 8.9286e-005
e =0.010866

crult

— =0.010955
15 tot,max

0.5

L L L —
0 0.002 0.004 0.006 0.008 0.01

Eot

Figure L.1: Sawtooth approximation for concrete using 50 teeth

Sawtooth for bond-slip Sawtooth for steel
7 " 450F ]
6L WAAAAAAAAAAA AT ] ]
sk ]
Ng 4l 4 “‘E ]
> number of teeth: 23 > number of teeth: 40
= 3f ———5,=0.025 N o 200 €, = 0.0020801
al ——3,,=012186 | 150 €, = 0.035257 J
- 3 _ 2
Slo =250 N/mm 100 E0 =192300 N/mm~ ||
1t T =6.25N/mm? || o =400 N/mm?
max 50 max B
—— p=0.22 N/mm? — p- = 28 N/mm?
0 . . . n N n 0 . . . . n N n
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
3 [mm] €

Figure L.2: Sawtooth approximation for bond-slip using 23 teeth (left) and s&eg 40
teeth (right)

Sawtooth for Hordijk tension softening

# of teeth = 25
25 p+=0.17014 N/mm?|
— p-=0.19573 N/mm?
Gf sawtooth = 0.06
€ = 8.9286e-005
2 el
€ =0.010866
cr.ult
o — Cotmax = 0.010955
£ 15
F
1
0.5
0 . . . P
0 0.002 0.004 0.006 0.008 0.01

£t

Figure L.3: Sawtooth approximation for concrete using 25 teeth
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L. Sawtooth diagrams used in section 6.5

Sawtooth for bond-slip Sawtooth for steel
WMAAANAN A A il -
6f vy L
5L
T af o
£ £
> number of teeth: 12 > number of teeth: 19
=3 ———5,=0025 © 200F €, = 0.0020801
———3§,=0.13591 150} €, = 0036777
oL i
- 3 _ 2
St, =250 N/mm 1001 E, = 192300 N/mm*| |
1 T = 6:25 N/mm? |4 O, = 400 N/mm?
50 i
— p=0.46 N/mm? — p- =59 N/mm?
0 . . . n n n n 0 . . . . n n n
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
3 [mm] €

Figure L.4: Sawtooth approximation for bond-slip using 12 teeth (left) and steg 19
teeth (right)

Sawtooth for Hordijk tension softening

#of teeth = 12

p+ = 0.33984 N/mm?
—— p- = 0.42567 N/mm?
Gf sawtooth =0.06 |
€, = 8.9286e-005

€ =0.010866

25

2 erult
I € =0.010955

tot,max

] 0.002 0.004 0.006 0.008 0.01

Eiot

Figure L.5: Sawtooth approximation for concrete using 12 teeth

Sawtooth for bond-slip Sawtooth for steel

450
T MUWAA |
i AAZ |
5L
& o~
£ £
= i £
> number of teeth: 6 > number of teeth: 9
= —3,=0025 ° € =0.0020801
3t el el
— 3 =0.13564 e =0.03933
ult ult
2F Sty =250 N/mm® | E, = 192300 N/mm? ||
T =6.25 N/mm? G__ =400 N/mm?
1r max - max i
——p=0.96 N/mm? —p-=123 N/mm?
o . n n o . . . . n n n
0 0.05 0.1 0.15 0 0005 001 0015 002 0025 003 0035 004
3 [mm] €

Figure L.6: Sawtooth approximation for bond-slip using 6 teeth (left) and steiely 9
teeth (right)
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Appendix M

Sawtooth diagrams used in section
6.7
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M. Sawtooth diagrams used in section 6.7

Sawtooth for Hordijk tension softening Sawtooth for Hordijk tension softening

# of teeth = 100 i # of teeth = 50

25
25 ol
p+ = 0.051787 N/mm? p+ = 0.10167 N/mm?
— p- = 0.054533 N/mm? — p-=0.11165 N/mm?
2 Gf sawtooth = 0.06 Gf sawtooth = 0.06
&= 8.9286e-005 2 &= 8.9286e-005
€ =0.021958 € =0.021958
‘cr,ult ‘cr,ult
NE 15 _ E&ol‘max =0.022047 i NE s _ Etal‘max =0.022047 |
£ £
Z Z
1 1 1
05 b 0.5
0 L L L — — 0 L L n B e
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
Elut sml
Sawtooth for Hordijk tension softening Sawtooth for Hordijk tension softening
#of teeth = 25 3l #of teeth = 12 i
25 p+=0.19771 N/mm?| | p+ = 0.38697 N/mm?
’ — p- = 0.23062 N/mm? — p- = 0.50279 N/mm?
Gf sawtooth = 0.06 25 Gf sawtooth = 0.06
€ =8.9286e-005 € =8.9286e-005
2 el i el
— 0.021958 ) — 0.021958
% _ Emt,max =0.022047 NE _ Etal‘max =0.022047
E 15 £
Z Z
1
0.5
0 L L L — T 0 L L L e
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02

Figure M.1: Sawtooth approximation for concrete used for first meshemefent, 100
teeth (top left), 50 teeth (top right), 25 teeth (bottom left) and 12 teeth (bottom
right)
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Sawtooth for Hordijk tension softening Sawtooth for Hordijk tension softening

# of teeth = 50 # of teeth = 25
25 p+ = 0.11657 N/mm?|| —— p+ = 0.22604 N/mm?
—— p- =0.12937 Nimm? 25 —— p- = 0.26689 N/mm?||
Gf sawtooth = 0.06 Gf sawtooth = 0.06
2 €, =8.9286e-005 | €, = 8.9286e-005
€ =0044145 2 — & =0044145
cr,ult crult
R =0.044235 R =0.044235
%o ot max o ot max
£ £
z z
1
05
0 L L L L L L L i 0 L L L L L L I
0 0005 001 0015 002 0025 003 0035 004 0 0005 001 0015 002 0025 003 0035 004

Eiot £t

Sawtooth for Hordijk tension softening

#of teeth = 12
p+ =0.43075 N/mm? |

— p- = 0.58428 N/mm?
Gf sawtooth = 0.06

25 €, = 8.9286e-005 ||

—F =0.044145
orult
2 —¢ =0.044235 |4

tot,max

f Nimm?

t

0 L ! L L L L - S
0 0.005 0.01 0.015 0.02 0.025 003 0.035 0.04

£t

Figure M.2: Sawtooth approximation for concrete used for second mdistemeent, 50
teeth (top left), 25 teeth (top right) and 12 teeth (bottom)
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M. Sawtooth diagrams used in section 6.7
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Appendix N

Sawtooth diagrams used in chapter
:
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N. Sawtooth diagrams used in chapter 7

Sawtooth for Hordijk tension softening Sawtooth for Hordijk tension softening

: 35 : -
# of teeth = 50 # of teeth = 50
2 p+ = 0.067547 N/mm?[{ s p+ = 0.1046 N/mm?
— p- = 0.073004 N/mm? — p- =0.11295 N/mm?
Gf sawtooth = 0.053 Gf sawtooth = 0.099
€ =7e-005 e =8.8235e-005 ||
el 25 el
15 g . =0.0060422 g . =0.0071694
‘cr,ult cr,ult
N £ e = 0-0061122 o~ 2 ———— 1ot max = 00072576 ||
£ 3
E £
z z
JOVIE ! — 15
1
05
05
0 0
[ 0

Sawtooth for Hordijk tension softening

# of teeth =70
2 p+ = 0.05138 N/mm? ||
18 — p-=0.054595 N/mm?||
Gf sawtooth = 0.053
1.6 &= 7e-005
14 €= 0-0075075 ||
N £ max = 0:0076675
£ 12 ]
£
=1
08
0.6
0.4f
02} =
o ——
o 1 2 3 4 5 6 7
£t x10°

Figure N.1: Sawtooth approximation for concrete, Hordijk 50 teeth B25 émesimula-
tions S4D12AB25 and S8D12AB25 (top left), Hordijk 50 teeth B45 used for
simulation S8D12AB45 (top right) and Hordijk 70 teeth used for simulations
S4D16AB25, S6D16AB25, S2D25AB25 and S4D25AB25 (bottom)
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Sawtooth for steel Sawtooth for steel

600F T T T T T T 3 T T T T T T
(11444444444 4344%4 VAV
5000 1 500 1
400 4 400 4
o o
£ £
S 3000 1 S 300 1
© ©
number of teeth: 80 number of teeth: 80
200l —¢,=00027143 || 200} — ¢, =0.0025567
e =0.030293 e =0.03034
ult ult
E, = 196000 N/mm” E, = 203000 N/mm®
100 ° 5 1 100 o 5 [
o =532 N/mm o__ =519 N/mm'
'max max
—p-=16 N/mm? —p-=16 N/mm?
0 . . . . T T 0 . . . . T T
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
€ €

Sawtooth for steel

600 q
VWA VVRA
500 q
400 q
o
13
£
zZ
S 300 4
number of teeth: 80
€= 0.0028676
200¢ €, = 0.025643
ult
E, = 204000 N/mm*
100 o =585 N/mm? ||
max
—p-=16 N/mm?
0 . . . n .
0 0.005 0.01 0.015 0.02 0.025 0.03
e

Figure N.2: Sawtooth approximation for steel, @12 (top left), @16 (top right) @25
(bottom)
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N. Sawtooth diagrams used in chapter 7
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Appendix O
Mayer S4D12-A (B25)
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O. Mayer S4D12-A (B25)

Model: S4D12AB25
LC1: Load case 1
Step: 2000 LOAD: .2E4 111E-1

L999E-2

Max = .122E-1 .888E-2
Min = 0 L777E-2
Results shown:

Mapped to nodes

333E-2
222E-2
111E-2

Model: S4D12AB25
LC1: Load case 1

Step: 4000 LOAD: .4E4 Iiree-1
Gauss EL.ITEMS ITEMO4 ! 1osE-1
28E 929E-2

0 813E-2
Results shown: 697E-2
Mapped to nodes 1 5g1E-2

464E-2
I 3a8E-2
123282
.116E-2
1
Model: S4D12AB25
LCl: Load case 1 1
Step: 6000 LOAD: .6E4 128-1
Gauss EL.ITEMS ITEM04 1 losE-1
Max = .132E-1 .962E-2
Min = 0 .B42E-2
Results shown: 72282
Mapped to nodes 1 6o1E-2

Model: S4D12AB25
LC1: Load case 1

Step: 8000 LOAD: .8E4 1.113e1
04 10281

906E-2

0 793E-2
Results shown: 679E-2
Mapped to nodes I s66E-2

453E-2
32
1 22682
| 113E2
Model: S4D12AB25 1
LC1: Load case 1 J113E-1
Step: 10000 LOAD: .1ES 110281
Gauss EL.ITEMS ITEMO 906E-2
Max = .125E-1 Min = 0 L792E-2
Results shown: (679E-2
Mapped to nodes I seer-2
¥ las3E-2
34E-2
226E-2
I 113E-2
1
Model: S4D12AB25S
LC1: Load case 1 112681
Step: 12000 LOAD: .12E5 11141
Gauss EL.ITEMS ITEMO4 L101E-1
Max o 139E-1 Min = 0 885E-2
esults shown: 759E-2
Mapped to nodes I 63252
1 s06E-2
.379E-2
.253E-2
.126E-2
1
Model: S4D12AB25S
LC1: Load case 1 T 13sg1
Step: 14000 LOAD: .14ES Il22e1
Gauss EL.ITEMS ITEMO .108E-1
Max = .149E-1 Min = 0 946E-2
Results shown: 811E-2
Mapped to nodes 1
.676E-2
.54B-2
I a0sE-2
12782
:.135E—2

Figure O.1: Crack straire]”*, from top to bottom (approximate displacement)=0.85

mm, u,=1.25 mm,u,=1.65 mm,u,=2.20 mm,u,=2.55 mm,u,=2.95 mm
andu,=3.65 mm
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Appendix P
Mayer S8D12-A (B25)
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P. Mayer S8D12-A (B25)

$8D12AB25

LOAD: .2E4

Mapped to nodes

Model: S8D12AB25
LC1: Load case 1

Step: 4000 LOAD: .4E4
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .539E-2 Min = 0
Results shown:

Mapped to nodes

Model: S8D12AB25

LC1: Load case 1

Step: 5000 LOAD: .5E4

Gauss EL.ITEMS ITEMO4
x/Min on results set:

x = .637E-2 Min = 0

Results shown:

Mapped to nodes

Ma:
Ma:

Model: S8D12AB25

LC1: Load case 1

Step: 7000 LOAD: .7E4
Gauss EL.ITEMS ITEMO4
Max/Min on results se
Max = .631E-2 Min = 0
Results shown:

Mapped to nodes

Max/Min on results set:
Max .544E-2 Min = 0
Results shown:

Mapped to nodes

L49E-2

L441E-2
L392E-2
343E-2
L294E-2
.245E-2
L196E-2
L147E-2
L981E-3
L49E-3

.574E-2
L517E-2
L459E-2
L402E-2
344E-2
.287E-2
.23E-2
L172E-2
L115E-2
| 574E-3

Model: S8D12AB25
LCl: Load case 1
LOAD:

Model: S8D12AB25

LC1: Load case 1

Step: 12000 LOAD: .12ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .739E-2 Min = 0
Results shown:

Mapped to nodes

Model: S8D12AB25

LC1: Load case 1

Step: 14000 LOAD: .14E5
Gauss EL.ITEMS ITEMO
Max/Min on results set:
Max = .802E-2

Min = -.141E-5

Results shown:

Mapped to nodes

Model: SBD12AB25S
LC1: Load case 1
Step: 16000 LOAD: .16ES
Gauss EL.ITEMS ITEMO4
Max/Min on results sef
Max = .817E-

Min -.152E-5
Results shown:
Mapped to nodes

»
®
2
2]
N

L729E-2
L656E-2
.583E-2
.51E-2
L437E-2
L364E-2
1 20182
L219E-2
.146E-2
L727E-3

Figure P.1: Crack straine’"", from top to bottom (approximate displacement),=0.50
mm, u,=0.70 mm,u,=0.85 mm,u,=1.05 mm,u,=1.25 mm,u,=1.35 mm,

u,=1.80 mmu,=2.10 mm and:,=2.30 mm
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Model: S8D12AB25

LC1: Load case 1

Step: LOAD: .175ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .805E-2

Min = -.293E-5

Results shown:

Mapped to nodes

Model: S8D12AB25
LC1: Load case 1

Step: 19000 : L1985

Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .695E-2

Min = -.502E-5

Results shown:

Mapped to nodes

Model: S8D12AB25S

LCl: Load case 1

Step: 20000 LOAD: .2ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .762E-2

Min = -.164E-5

Results shown:

Mapped to nodes

Model: S8D12AB25

Max/Min on results set:
Max = .77E-2
Min = -.165E-5

Results shown:

Mapped to nodes

Model: S8D12AB25
LCl: Load case 1

Step: 23000 LOAD: .23ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .714E-2

Min = -.262E-5

Results shown:

Mapped to nodes

Model: S8D12AB25

LC1: Load case 1

Step: 25000 LOAD: .25E
Gauss EL.ITEMS ITEM04
Max = .794E-2

Min = -.693E-5

Results shown:
Mapped to nodes

mm,u,=2.50 mm,u,=2.60 mmu,=2.70 mm,u,,

L731E-2

N
2
I
]
©

L729E-3

L627E-3

=
©
°
=
©

1
162am-2

&
o
2
N

0
B
o
2
N

Figure P.2: Crack straire”*, from top to bottom (approximate displacement),=2.40

2.85 mm and:,=3.40 mm
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P. Mayer S8D12-A (B25)
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Appendix Q
Mayer S8D12-A (B45)
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Q. Mayer S8D12-A (B45)

Mode!
LC1:

S8D12AB45
Load case 1

Step: 2000 LOAD: .2E4
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .504E-2

Min = -.616E-6

Results shown:

Mapped to nodes

Max/Min on results set:
Max = .614E-2 Min 0
Results shown:

Mapped to nodes

Model: S8D12AB45

LCl: Load case 1

Step: 6000 LOAD: .6E4
Gauss EL.ITEMS ITEM04
Max/Min on results set:
Max = .595E-2

Min -.404E-5
Results shown:
Mapped to nodes

Model: SBD12ABAS

LCl: Load case 1

Step: 7500 LOAD: .75E4
Gauss EL.ITEMS ITEMO04
Max/Min on results set:
e 595E-2

= -.155E-5
Results shown:
Mapped to nodes

Model: S8D12AB45

LC1l: Load case 1

Step: 9000 LOAD: .9E4
Gauss EL.ITEMS ITEM04
Max/Min on results set:
Max TE-2

Min = -.373E-5

Results show
Mapped to nodes

Mode S8D12AB45
LC1: Load case 1
Step: 10500 LOAD: .105ES
Gauss EL.ITEMS ITEMO4
Max/Min on results se
Max = .594E-2

Min = -.354E-5
Results shown:
Mapped to nodes

Model: S8D12AB45

Max/Min on results set:
M 593E-2

-.353E-5
Results shown:
Mapped to nodes

Model: S8D12AB45

LC1: Load case 1

Step: 13500 LOAD: .135ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .578E-2

Min = -.344E-5
Results shown:
Mapped to nodes

Model: S8D12AB4S5
LC1: Load case 1
Step: 15000 LOAD: .15ES
Gauss EL.ITEMS ITEMO4

Results shown:
Mapped to nodes

Figure Q.1: Crack strain2?

cr !

b
[
N

.558E-2
L502E-2
L446E-2
.39E-2

L335E-2
L279E-2
1722382
L167E-2
L112E-2
:.5533—3

L541E-2
1 28782
L433E-2
L379E-2
L325E-2
L27E-2
121682
.162E-2
.108E-2
| 5383

1 53082
1 ese-2
L431E-2
L377E-2
L323E-2
.269E-2
.215E-2
L161E-2
.108E-2
:.535E—3

.525E-2
I.473E'2
.42E-2
.368E-2
.315E-2
1 26382

115782

from top to bottom (approximate displacement)=0.50

mm, u,=0.70 mm,u,=0.85 mm,u,=0.95 mm,u,=1.10 mm,u,=1.20 mm,

u,=1.30 mm,u,=1.40 mm and:,=1.40 mm
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Model: S8D12AB4S

LC1: Load case 1

Step: 17000 LOAD: .17ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .596E-2

Min = -.352E-5

Results shown:

Mapped to nodes

Model: S8D12ABAS

LCl: Load case 1

Step: 18500 LOAD: .185ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .599E-2

Min = -.354E-5

Results shown:

Mapped to nodes

Model: S8D12AB45

LCl: Load case 1

Step: 20000 LOAD: .2ES
Gauss EL.ITEMS ITEMO04
Max/Min on results set:
Max = .603E-2

Min = -.356E-5

Results shown:

Mapped to nodes

Model: S8D12AB45

LC1: Load case 1

Step: 21500 LOAD: .215ES5
Gauss EL.ITEMS ITEM04
Max/Min on results set:
Max = .597E-2

Min = -.353E-5

Results shown:

Mapped to nodes

Model: S8D12AB4S
LC1: Load case 1

Step: 23000 LOAD: .23ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .576E-2

Min = -.34E-5

Results shown:

Mapped to nodes

Model: S8D12AB45
LC1l: Load case 1
Step: 24500 LOAD: .245ES

Max/Min on results set:
Max = .551E-2

Min = -.326E-5

Results shown:

Mapped to nodes

Model: SBD12AB4S

LC1: Load case 1

Step: 26000 LOAD: .26ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .511E-2

Min = -.302E-5

Results shown:

Mapped to nodes

Model: S8D12AB45S

LC1l: Load case 1

Step: 27500 LOAD: .275SES
Gauss EL.ITEMS ITEM04
Max/Min on results set:
Max = .472E-2

Min = -.279E-5

Results shown:

Mapped to nodes

Model: S8D12ABAS

LCl: Load case 1

Step: 29000 LOAD: .29ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .538E-2

Min = -.337E-5

Results shown:

Mapped to nodes

uy=2.10 mmu,,=2.05 mm and:,=2.60 mm

L489E-2
L44E-2

.391E-2
342E-2
.293E-2
.244E-2
L196E-2
L147E-2
.976E-3
486E-3

Figure Q.2: Crack straire’, from top to bottom (approximate displacement)=1.70
mm, u,=1.85 mm,u,=2.00 mm,u,=2.10 mm,u,=2.15 mm,u,=2.15 mm,
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Q. Mayer S8D12-A (B45)
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Mayer S4D16-A (B25)
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R. Mayer S4D16-A (B25)

: S4D16AB25
: Load case 1
: 4000 LOAD: .4E4

L131E-1 Min =

Mapped to node:

Model: S4D16AB2S

LCl: Load case 1

Step: 6000 LOAD: .6E4
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .168E-1 Min = 0
Results shown:

Mapped to nodes

Model: S4D16AB2S

LC1: Load case 1

Step: 8000 LOAD: .8E4
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .213E-1 Min = 0
Results shown:

Mapped to nodes

Model: S4D16AB25
LC1: Load case 1
Step: 10000 LOAD: .1ES

Max/Min on results set:
Max = .228E-1 Min = 0
Results shown:

Mapped to nodes

Model: SAD16AB25

LCl: Load case 1

Step: 12000 LOAD: .12ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .226E-1 Min = 0
Results shown:

Mapped to nodes

Model: S4D16AB25

LCl: Load case 1

Step: 14000 LOAD: .14ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .127E-1 Min = 0
Results shown:
Mapped to nodes

Model: S4D16AB25

LCl: Load case 1

Step: 16500 LOAD: .165ES
Gauss EL.ITEMS ITEMO04
Max/Min on results set:
Max = .237E-1

Min = -.273E-5
Results shown:
Mapped to nodes

Y
S
3
il
-

Figure R.1: Crack straire”", from top to bottom (approximate displacement)=0.75
mm, u,=1.30 mm,u,,=2.15 mm,u,=2.75 mm,u,=3.30 mm,u,=2.10 mm

andu,=4.60 mm
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S. Mayer S6D16-A (B25)

This appendix shows some detailed results of simulation18&B25 not
given in chapter 7. Load-displacement curve (41000 loguk3te

5 Load-displacement curve SLA analysis using axi-symmetry
T T T T T T

7x10

—— Mayer S6D16-A Hordijk 70 teeth (B25 Gf=0.053 400x400x2700 mm)
“““ steel bar only

0 1 2 3 4 5 6 7
uy [mm]

Figure S.1: Load-displacement curve simulation S6D16-A (B25)

Principal stress in concrete along the rebar Principal stress in concrete along the rebar
23 T T . T T 2.1483
221 - 2.1483
X

4 2.1483

_ 1 — 21483
NE E
E £

Z - z 2.1483

° 1 ° 21483

H 2.1483

largest principal stress step 89 2.1482 largest principal stress step 27
X global (2.1483 Nimm?) global maximum (2.1483 Nimm?)
L L L L 2.1482
500 1000 1500 2000 2500 1000 1100 1200 1300 1400 1500 1600 1700
y [mm] y [mm]

Figure S.2: Principal stress along inner side of rebar at crack initiation
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Mapped to nodes

Model: S6D16AB2S

LC1: Load case 1

Step: 5000 LOAD: .5E4
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .129E-1 Min = 0
Results shown:

Mapped to nodes

Model: S6D16AB25
LC1: Load case 1
Step: 7000 LOAD: .7E4

Gauss EL.ITEMS ITEMO4 113281

Max/Min on results set: L119E-1

Max = .145E-1 Min = 0 .106E-1

Results shown:

Mapped to nodes -924E-2
792E-2

Model: S6D16AB25

Max/Min on results set:
Max = .123E-1

Min = -.266E-5

Results shown:

Mapped to nodes

Model: SE6D16AB25

LC1: Load case 1

Step: 12000 LOAD: .12ES
Gauss EL.ITEMS ITEMO04
Max/Min on results set:
Max = .133E-1

Min = -.287E-5

Results shown:

Mapped to nodes

Model: S6D16AB25
LC1: Load case 1

Step: 14000 LOAD: .14ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .132E-1

Min = -.296E-5

Results shown:

Mapped to nodes

Model: S6D16AB25

Max/Min on results set:
Max = .165E-1

Min = -.354E-5

Results shown:

Mapped to nodes

Model: S6D16AB25

Step: 19000 LOAD: .19ES
Gauss EL.ITEMS ITEMO4
Max/Min on results set:
Max = .153E-1

Min = -.117E-4

Results shown:

Mapped to nodes

Figure S.3: Crack strairel."", from top to bottom (approximate displacement),=0.75
mm, u,=1.05 mm,u,=1.50 mm,u,=1.55 mm,u,=1.90 mm,u,=2.15 mm,
uy=3.15 mm and:,=3.20 mm
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S. Mayer S6D16-A (B25)

Model: S6D16AB25
LCl: Load case 1

Step: 21000 LOAD: .21ES
Gauss EL.ITEMS ITEMO4

Max/Min on results set: 1 14sp-1
Max = .159B-1 Ilisea
Min = 1.1278-4 116E-1
Results shown: Toip1
Mapped to nodes

PP 868E-2

-
&
N

Model: S6D16AB25

LC1: Load case 1

Step: 27000 LOAD: .27ES
Gauss EL.ITEMS ITEMO04
Max/Min on results set:

[ JEPLS-NY

Max = .161E-1 I 132m-1

Min = ~.181E-4

Results shown: Bty

Mapped to nodes S103E-1

.879E-2

173282
1 sese-2
Ila3oE-2
120282
I iase-2
1

Model: S6D16AB25

LC1: Load case 1

Step: 29000 LOAD: .29E5

Gauss EL.ITEMS ITEMO4

Max/Min on results set: T 17sg-1

Max = .193E-1 1s8E-1

Min = ~.126E-4

Results shown: ‘§§§E31

Mapped to nodes osm1
187582
169082
152482
134082
11782
1

Model: S6D16AB25

LC1: Load case 1

Step: 33000 LOAD: .33ES

Gauss EL.ITEMS ITEMO4

Max/Min on results set: ¥ 16sE-1

Max = .185E-1 1528-1

Min = ~.1648-4

Results shown: ‘}iii,}

Mapped to nodes lorE1
14162
167382
15082
1 33682
116782
1

Model: SED16AB25

LC1: Load case 1

Step: 37000 LOAD: .37ES

Gauss EL.ITEMS ITEMO4

Max/Min on results set: 116181

Max = .177E I lasE-1

Min - .516E-4 :

Results shown: 'ii;i,i

Mapped to nodes '953E 2
1 8o2E-2
16ar-2
14792
131882
1 1s6E-2
1

Model: S6DL6AB25

LC1: Load case 1

Step: 40000 LOAD: .4ES

Gauss EL.ITEMS ITEMO4 I 20381

Max = .224E-1

N
3
@
w
N

Figure S.4: Crack straire]”*, from top to bottom (approximate displacement),=3.45

cr !

mm,u,=3.50 mmu,=4.00 mmu,=4.20 mm,u,=4.60 mm and.,=5.95 mm

Model: S6D16AB25

LC1l: Load case 1 I
Step: 40000 LOAD: .4ES Iso
Gauss EL.ITEMS ITEM10 I40
Max/Min on results set: 20

Max = 70 M

10
Results shown: 5
Mapped to nodes 1,

Figure S.5: Damage at,=5.95 mm (damage indicator N-direction, 70 equals complete
damage)
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T. Mayer S2D25-A (B25)

This appendix shows some detailed results of simulation252B25 not
given in chapter 7. Load-displacement curve (18000 logak3te

5 Load-displacement curve SLA analysis using axi-symmetry

6x10

— Mayer S2D25-A Hordijk 70 teeth (B25 Gf=0.053 400x400x2900 mm)
Sl steel bar only

0 1 2 3 4 5 6 7 8 9
uy [mm]

Figure T.1: Load-displacement curve simulation S2D25-A (B25)

Principal stress in concrete along the rebar Principal stress in concrete along the rebar
22 . : < § 21483
/N

| 2.1483

2.1482

— o 2.1481
NE ~ E

£ £ 21m

° ° 21481

¥ 2.148

largest principal stress step 201 2.1479 . largest principal stress step 201
X global maximum (2.1483 Nimm?) global maximum (2.1483 Nimm?)
0.8 L L L L L 2.1479
500 1000 1500 2000 2500 1200 1300 1400 1500 1600 1700
y [mm] y [mm]

Figure T.2: Principal stress along inner side of rebar at crack initiation

Model: S2D25AB25 1
LC1: Load case 1 70
Step: 17000 LOAD: .17ES 40
Gauss EL.ITEMS ITEM10 20
Max/Min on results set: 10
Max = 70 Min = 0 5
Results shown: 1
Mapped to nodes N

Figure T.3: Damage at,,=6.40 mm (damage indicator N-direction, 70 equals complete
damage)
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Model: S2D25AB25
LC1: Load case 1
Step: 3000 LOAD: .3E4

Gauss EL.ITEMS ITEMO4 ¥ 22381
Max/Min on results set: L201E-1
Max = .246E-1 Min = 0 .179E-1
Results shown: 156E-1

Mapped to nodes

L134E-1
L112E-1
LB94E-2
L67E-2

L447E-2
.223E-2

Model: S2D25AB25
LC1: Load case 1
Step: 5000 LOAD: .5E4

Gauss EL.ITEMS ITEMO04 .235E-1
Max/Min on results set: L211E-1
Max = .258E-1 Min = 0 .188E-1
Results shown: [164E-1

Mapped to nodes .141E-1

L117E-1
L939E-2
.704E-2
L47E-2

.235E-2

Model: S2D25AB25

Gauss EL.ITEMS ITEMO4 ¥ 17681
Max/Min on results set: .158E-1
Max = .193E-1 Min = 0 J14E-1
Results shown: 1238-1

Mapped to nodes

Model: S2D25AB25

LCl: Load case 1

Step: 11000 LOAD: .11ES
Gauss EL.ITEMS ITEMO04
Max/Min on results set:
Max = .276E-1

Min 163E-5

Results shown:

Mapped to nodes

Model: S2D25AB25

LC1l: Load case 1

Step: 13000 LOAD: .13ES

Gauss EL.ITEMS ITEM04 1

Max/Min on results set: +259E-1

Max .285E-1 .233E-1

Min .182E-5 .207E-1

Results shown: .181E-1

Mapped to nodes .155E-1
.129E-1
.104E-1
.776E-2
.518E-2
.259E-2

Model: S2D25AB25

LCl: Load case 1

Step: 15000 LOAD: .15ES
Gauss EL.ITEMS ITEM04
Max/Min on results set:
Max = .293E-1

Min 292E-5

Results shown:

Mapped to nodes

Model: S2D25AB25

LC1: Load case 1

Step: 17000 LOAD: .17ES
Gauss EL.ITEMS ITEMO4

Max/Min on results set: 1 308-1
Max .34E-1 .278E-1
Min 303E-5 .247E-1
Results shown: .216E-1
Mapped to nodes TesE-1
1 154E-1

.124E-1

I,92SE'2

61782

:.309E*2

Figure T.4: Crack strairel”*, from top to bottom (approximate displacement),=1.40
mm, u,,=2.00 mm,u,=1.95 mm,u,=3.20 mm,u,=3.95 mm,u,=4.90 mm
andu,=6.40 mm
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T. Mayer S2D25-A (B25)
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Mayer S4D25-A (B25)
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U. Mayer S4D25-A (B25)

Model: S4D25AB25
LC1: Load case 1
Step: 3000 LOAD: .3E4 1
Gauss EL.ITEMS ITEM04 9498-2
Max/Min on results set: ! 8saz-2
Max = .104E-1 Min = 0 L759E-2
Results shown: 664E-2
Mapped to nodes 57E-2
147582
l38E-2
I 28582
1l1og-2
:Asqss-z
Model: S4D25AB25
LC1: Load case 1
Step: 5000 LOAD: .SE4 1
Gauss EL.ITEMS ITEMO4 97E-2
Max/Min on results set: Ile73e2
Max = .107E-1 Min = 0 L776E-2
Results shown: (67982
Mapped to nodes ceors
¥ 4ssE-2
138882
I 29182
1 104E-2
}-o7E-3
Model: S4D25AB25
LC1: Load case 1
Step: 7000 LOAD: .7E4
Gauss EL.ITEMS ITEMO4 1
Max/Min on results set: -12E-1
Max - .131E-1 I l08E-1
Min - -.512E-6 L956E-2
Results shown: l8378-2
Mapped to nodes 717E-2
[598E-2
L478E-2
(359E-2
239E-2
‘119E-2
Model: S4D25AB25
LCl: Load case 1
Step: 10000 LOAD: .1ES
Gauss EL.ITEMS ITEMO4 .
Max/Min on results set: | 6792
Max = .967E-2 791E-2
Min = -.186E-5 703E-2
Results shown: 616E-2
Mapped to nodes 528E-2

Model: S4D25AB25

LC1l: Load case 1

Step: 12000 LOAD: .12ES5
Gauss EL.ITEMS ITEMO04
Max/Min on results set:
Max

Min = -.189E-5

Results shown:

Mapped to nodes

Model: S4D25AB25

Max/Min on results set: 1 g618-2
Max = .947E-2 .775E-2
Min = -.195E-5 .689E-2
Results shown: 603E-2

Mapped to nodes

Model: S4D25AB25

Max/Min on results set:
Max = .18E-1

Min = -.408E-5

Results shown:

Mapped to nodes

Model: S4D25AB25

LCl: Load case 1

Step: 19000 LOAD: .19ES

Gauss EL.ITEMS ITEMO4

Max/Min on results set:
16

E-1

Results shown:
Mapped to nodes

Figure U.1: Crack straine..”, from top to bottom (approximate displacement)=0.65
mm, u,=0.90 mm,u,=1.40 mm,u,=1.20 mm,u,=1.35 mm,u,=1.55 mm,
u,=3.40 mm and,=3.35 mm
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Model: S4D25AB25

LCl: Load case 1

Step: 21000 LOAD: .21ES
Gauss EL.ITEMS ITEMO4

"
&
@
1
o

Max/Min on results set:

Max = .184E-1 .151E-1
= -.97E-5 L134E-1

Results shown: J117E-1

Mapped to nodes .101E-1

IS
5]
N

Model: S4D25AB25
LC1l: Load case 1
Step: 24000 LOAD: .24E5
Gauss EL.ITEMS ITEMO4 1
Max/Min on results set: .136E-1
Fl122p1
109E-1
.952E-2
.816E-2
1 6sE-2
¥ sa3p-2
140782
1271E-2
1132
1
Model: S4D25AB25
LC1: Load case 1
Step: 27000 LOAD: .27ES
Gauss EL.ITEMS ITEMO4 1
Max/Min on results set: | 174E-1
Max = .192E-1 157E-1
Min = -.895E-5 .139E-1
Results shown: J122E-1
Mapped to nodes 104E-1

®
I
N

Model: S4D25AB25
LC1: Load case 1

Max/Min on results set: : 153E-1
Max 138E-1
Min = -.17E-4

Results shown:
Mapped to nodes

Model: S4D25AB25

LC1: Load case

Step: 32000 LOAD: .32E5

Gauss EL.ITEMS ITEMO4 1

Max/Min on results set: I-IGIE-I

Max = .177E-1 .145E-1

Min = -.137E-4 .128E-1

Results shown: L112E-1

Mapped to nodes 963E-2
1 802e-2
1 6a1E-2
1 as1E-2
Ila2e2
1 1sE-2
1

Model: S4D25AB25

LC1: Load case 1

Step: 35000 LOAD: .35ES

Gauss EL.ITEMS ITEMO4 1

Max/Min on results set: +213E-1

Max = .235B-1 L192E-1

Min = -.541E-4 L171E-1

Results shown: 149E-1

Mapped to nodes 128E-1

o
3
3
&
©

cr !

mm, u,=4.40 mm,u,=4.40 mm,u,=4.95 mm,u,=4.70 mm andu,=6.15
mm

Figure U.2: Crack straine, from top to bottom (approximate displacement)=4.25
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