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Abstract

In this dissertation we look at the seriation problem and the applications of this problem. Given
a set of items, we try to find an ordering based on the similarity between the items.
We start by explaining the mathematical theory behind the seriation problem. Then we describe
a couple of different methods that can be used to find a solution for the problem. After that, we
apply these methods to various different datasets. The results of these tests will be analysed.
Solving a seriation problem can be an alternative way to already existing methods when finding
a ranking of items for a given dataset. The goal is to find out if is also a viable method to use
in practice.
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Chapter 1

Introduction

1.1 The seriation problem

You have got your favourite books lying before you. When putting them back in the closet you
want to order them from best to least good. That is not an easy task. For example, how do you
decide what is your seventh favourite book? It is much easier to compare the books in relative
terms ’I like this book better than that one’, which you can decide for every pair of books.
Constructing a ranking from these pairwise comparisons is an example of a seriation problem.
Given a set of items, we want to construct an ordering for these items based on the similarity
between them. Often only pairwise comparisons between items are known from which similarity
scores can be computed. Solving a seriation problem has many different applications, often
related to finding a ranking for different items. For example, finding which teams are the best
in a sport competition or finding a ranking for the best universities.

1.2 Origin of the seriation problem

The seriation problem originates in the late nineteenth century with a man called Flinders Petrie
[16]. He was an archaeologist and was excavating tombs in Egypt. The tombs they found had no
evidence of their date and common dating techniques we use nowadays were not yet available.
Petrie invented a seriation technique to sequence the tombs by looking at the pottery within
them. First, he classified the different styles of the pottery they found inside the tombs and
assumed that each style came from a different time period. Then he made the assumption that
if two styles had many similarities, they would originate with a closer period of time in between.
In this way he reordered the different styles of pottery into a ranking and could determine the
chronological order of the tombs by looking at the style of pottery present within them.
After that, the seriation problem was studied throughout the years in many different envi-
ronments [12]. The particular problem often does not have a clear mathematical formulation.
Therefore, finding a solution involves the constructing and solving of a mathematical model.
Because of this, the problem also has known different descriptions and definitions. One of these
definitions, the one we will use, can be found in e.g. Fogel, Daspremont and Vojnovic (p. 3, [7]).

Definition 1.2.1 (Seriation problem). The seriation problem seeks to reorder n items given a
similarity matrix between these items, such that the more similar two items are, the closer they
should be.

In practice, this often translates to finding a perfect ranking for a set of items, which is often
not possible. We will explain more details about this perfect ranking in Chapter 2. Our task
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10 CHAPTER 1. INTRODUCTION

will not be to find a perfect ranking, but to find the ’best’ ranking possible, which is sometimes
a subjective process.

1.3 Goal of our research

Solving a seriation problem can be used to create a ranking for a set of items. In reality, there
are many instances where a ranking for items is created through some sort of method. We want
to see if our methods, that solve a seriation problem, can be equally good or even better than
the existing methods. Therefore we have three different datasets we can try to find a ranking
for (See Section 4.1).
We have a ’Test set’ which is a set of items with a given ranking which we can use to test the
solving methods we find.
Furthermore, we have data from a korfball competition [14], from which we know which team
beat which team within the competition. This Korfbal League competition produces a ranking
by using the classical point system seen in most sports. We will compare our rankings with this
known ranking.
Finally, we have a dataset with different rankings for universities in Europe. We will try to
combine these different rankings into a singular one by translating it to seriation problem we
can solve. This combining of different rankings is part of a discipline sometimes called ’voting
theory’, where you try to elect a winner from a set of different votes or rankings. There exist
many methods to do this and we will compare our rankings to some of them.

1.4 Outline of dissertation

We will start of with a mathematical analysis of the seriation problem in Chapter 2. Here we
discover what needs to be done in order to get to a solution and we will also find the reason
such a solution is often not fully satisfactory.
Because of this, many different ways were developed over the years to tackle the problem. We
will have a look at a couple different existing methods in Chapter 3. The first is a spectral
method from Fogel et al. [7], which is based on an older work from Atkins et al. [2]. Further
one we will also rewrite the problem, namely as a quadratic assignment problem (QAP), which
is a well known problem inside the optimisation discipline. The thesis of M. Seminaroti [18]
describes a special case of the QAP called the 2-Sum problem, which we will use in the first
place. To find a solution for the quadratic assignment problem we will study the heuristics and
algorithms found in Burkard et al. [4].
After describing different solution methods, we will apply them in Chapter 4 to the three datasets
and analyse the results. Finally, in Chapter 5, we will we argue which solution method gave the
best results. We will also determine if solving a seriation problem can be a good alternative to
existing ranking methods.



Chapter 2

Mathematical analysis

We will start of with describing the seriation problem in a mathematical setting. In doing so,
we will discover why the problem does not always have a satisfactory solution.
Solving the seriation problem (Definition 1.2.1) consist of finding a ranking of items out of
a similarity matrix, in which is stored how similar two items are compared to each other.
The datasets we want to analyse do not give us any similarity matrices, but only pairwise
comparisons, for example which korfball team lost to which other teams. So before we look
at methods to find a ranking, we will first have to translate these pairwise comparisons into a
similarity matrix.

2.1 Comparison matrices

From a given dataset we have the pairwise comparisons between the n items. A good way to
display and work with this information is a comparison matrix. In a comparison matrix all the
pairwise comparisons are stored. It is constructed as follows.

Definition 2.1.1 (Comparison matrix). Given a set of n items and their pairwise comparisons.
Then matrix C ∈ {−1, 0, 1}n×n is the comparison matrix with

Ci,j = −Cj,i and Ci,j =


1 if i is higher ranked than j or i = j,

0 if i and j are not compared or in a draw,

−1 if i is lower ranked than j.

(2.1)

At first it may seem a bit strange that the diagonal elements are set to 1. It looks like an
element is higher ranked than itself. However, the following part gives us a good reason to define
the comparison matrix in this way.
From a comparison matrix we want to construct a pairwise similarity matrix. The question to
ask here is ’How do we define the similarity between two items?’ If we look at a tournament
setting we can give an answer. Two teams that defeated the same teams and lost to the same
teams should have a similar ranking in the end, and thus have a high similarity score. In other
words, we compute the similarity score for two items i and j by looking at the similarity between
the pairwise comparisons with all the other n− 2 items.

Definition 2.1.2 (Similarity matrix). The similarity score between item i and item j is equal
to:

Smatchi,j =

n∑
k=1

(
1 + Ci,kCj,k

2

)
. (2.2)

The matrix Smatch is called the similarity matrix.
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12 CHAPTER 2. MATHEMATICAL ANALYSIS

If Ci,k and Cj,k have matching signs that means that both items i and j compare in the same
way to item k, which makes them more similar. Therefore, if the signs match we get Ci,kCj,k = 1
and that has a positive effect on the similarity score like we want. If the signs are not matching,
then Ci,kCj,k = −1 and the similarity score does not get increased. This also makes sense
because items i and j relate in a different way to item k and should not be considered more
similar because of these comparisons. Since the pairwise comparisons are not always complete,
it could happen that either i or j are not compared to item k. Then Ci,kCj,k = 0 and this will
give a slight positive effect to the similarity.
The definition of the similarity matrix clarifies why all the diagonal elements of the comparison
matrix (2.1.1) have a 1. Intuitively, an items is very similar to itself, so when creating the
similarity matrix the entry Ci,i should always have a positive effect on the similarity of that
particular item i.
Instead of calculating the similarity score between each pair of items with the sum (2.1.2), we
can do it all at once by translating this to matrix multiplications and additions. With 1 being
a all-ones vector of length n we get:

Smatch =
1

2
(n11T + CCT ). (2.3)

2.2 Partial orders and Chains

Now that we have translated the pairwise comparisons to a similarity matrix we can begin with
analysing the seriation problem. We will have a look at what it means to have a solution for
the problem and also in which occasions such an solution does or does not exist. We start of
with defining what a proper solution is, therefore we need to following definitions as found in
e.g. Aliprantis and Burkinshaw (pp. 7-8, [1]).

Definition 2.2.1 (Partial order). A relation � is said to be a partial order for a set X if it
satisfies the following three properties:

1. x � x for every x ∈ X (reflexivity)

2. If x � y and y � x, then x = y (antisymmetry)

3. If x � y and y � z, then x � z (transitivity)

The set X is then called a partially ordered set.

Definition 2.2.2 (Chain). A subset Y of a partially ordered set is called a chain if for every
pair x, y ∈ Y , either x � y or y � x. The chain Y is also called a totally ordered set.

Looking at the last definition, a chain of all items seems like the ranking we are looking
for when solving the seriation problem. Therefore, finding such a chain is our ultimate goal in
solving the seriation problem. We define this as a perfect ranking.

Definition 2.2.3 (Perfect ranking). Given a set S of n items and pairwise relations between
these items. If the pairwise relations define a chain on all the n items (i.e. S is a totally ordered
set), then we call such a chain a perfect ranking of S.

A chain requires that their is an comparison between every two items in the chain, which
gives an immediate problem. Often in reality, not all pairwise comparisons are available or there
are ties between items, as described earlier while defining the comparison matrix (Def. 2.1.1).
In general, this makes finding a perfect ranking impossible. We generalise the perfect ranking
by removing the requirement of having every comparison available.
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Definition 2.2.4 (Consistent ranking). Given a set S of n items and pairwise relations between
these items. If the pairwise relations define a partial order on S, than there exists an ordering
of S which respects the partial order. Such an ordering is called a consistent ranking.

It is quickly seen that any consistent ranking can be expanded to a perfect ranking by adding
missing comparison relations. Such a perfect ranking no longer has to be unique.
If we have a seriation problem with missing comparisons between items, our goal will be to find
a consistent ranking, which can be expanded to a perfect ranking if needed. Such an consistent
ranking often does not exist, which is the very reason the seriation problem is more like solving
a mathematical model as argued in Paragraph 1.2. In the following example we show a situation
where no consistent ranking exists.

Example 2.2.5 (No consistent ranking). Consider a set of three different sport teams A,B
and C. The pairwise comparisons are defined by the teams playing against each other with the
following results. Team A beat team B, team B beat team C and team C beat team A. Or in
other words A � B,B � C,C � A. With every team losing once and winning once we cannot
declare a clear victor and loser, therefore it will be impossible to find a consistent ranking for
this set of items.

One can imagine that this type of situations can easily come up in any dataset.
In the next section we will find in which cases a consistent ranking exists and in which cases it
does not.

2.3 R-matrices

In order to prove for which similarity matrices we can find a consistent ranking we have to
introduce some new theory. We start with the Robinson similarity matrix (R-matrix).

Definition 2.3.1 (R-matrix). (Fogel et al., Definition 2.1, [7]). Let A be a symmetric n × n
matrix. If Ai,j ≤ Ai,j+1 and Ai+1,j ≤ Ai,j whenever 1 ≤ j < i ≤ n (the lower triangle), then A
is called a Robinson similarity matrix or R-matrix.

So in other words, an R-matrix is a symmetrical matrix in which coefficients do not increase
as we move away from the diagonal.

Example 2.3.2 (Example of an R-matrix).

A =


7 4 2 1
4 8 6 3
2 6 7 4
1 3 4 7

 (2.4)

We are going to rearrange different items. With the definition of the comparison and similar-
ity matrices (Def. 2.1.1 and 2.1.2) we have seen that each row (and each column with the same
number) corresponds to an item. Rearranging these items would be the same as swapping rows
and columns at the same time. In matrix notation this rearrangement translates to applying
a permutation on both the rows and columns. Let π ∈ Sn be a permutation, where we define
Sn as the collection of all permutations of {1, . . . , n}. Let A be an n × n matrix, then we will
denote the appliance of permutation π to matrix A as Aπ = (Aπ(i),π(j))

n
i,j=1.

You could find a permutation for a given R-matrix where the new matrix is still an R-matrix,
but this is not always possible. We define the matrices for which it is not possible as a special
kind of R-matrix.



14 CHAPTER 2. MATHEMATICAL ANALYSIS

Definition 2.3.3 (strict-R). An R-matrix A is strict-R if and only if the identity and reverse
identity permutations are the only permutation that reorder A as an R-matrix.

Here the reverse identity permutation is the permutation that reverses the row and columns
of a matrix, so (1, 2, . . . , n− 1, n)→ (n, n− 1, . . . , 2, 1).
To solve the seriation problem we have to rearrange items to find a consistent ranking, but in
terms of given matrices we will find that this is the same as finding a permutation that permutes
the similarity matrix into an R-matrix. We know that the seriation problem does not always
have a consistent ranking, so we cannot always find such a permutation, therefore we define the
so-called pre-R-matrix.

Definition 2.3.4 (pre-R). A matrix A is pre-R if there exists a permutation π such that the
permuted matrix Aπ is an R-matrix. If there exist only two of such permutation matrices, then
A is called pre-strict-R.

Logically, a matrix A that can be permuted into a strict-R-matrix is called a pre-strict-R-
matrix. This happens exactly when there are only two permutations that permute A into an
R-matrix.

Example 2.3.5 (Example of an pre-R matrix).

B =


7 2 4 6
2 7 1 4
4 1 7 3
6 4 3 8

 (2.5)

Let π = (2, 4, 1, 3) be a permutation. Then Bπ is the matrix A from Example 2.3.2, which is an
R-matrix. This means that B is a pre-R-matrix.

2.4 R-matrices and the seriation problem

Now that we have defined R-matrices we want to relate them to the similarity matrices we found
before and thus to the seriation problem.
Say we have a set of n items with a perfect ranking. If we made the comparison matrix according
to this ranking we will have a matrix with in the bottom triangle -1 and for the rest only 1.
Creating a similarity matrix from this comparison matrix will give us an R-matrix, as shown by
the next proposition from Fogel et al..

Proposition 2.4.1. (Fogel et al., Proposition 2.3, p. 4, [7]) Given all pairwise comparisons
between items ranked according to a chain, the similarity matrix Smatch constructed in (2.3) is
a strict R-matrix and

Smatchi,j = n− |i− j| ∀i, j = 1, . . . , n (2.6)

Proof. As noted before we have Ci,j = −1 if i < j and Ci,j = 1 otherwise. Definition (2.2) gives
us:

Smatchi,j = 1 · (min(i, j)− 1) + 0 · (max(i, j)− (min(i, j)− 1)) + 1 · (n− (max(i, j)− 1))

= n− (max(i, j)−min(i, j))

= n− |i− j|

Because |i− j| < n, Smatch is strictly positive. And the further away you are from the diagonal
the larger |i − j| is, so the smaller the coefficients of Smatch will be, hence Smatch is a strict
R-matrix.
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So when there exists a perfect ranking and we chose this ranking as the order of the items
to make the comparison matrix with, we will get a similarity matrix that is strict-R.

Example 2.4.2 (Comparison and similarity matrices for perfect ranking). We consider four
sport teams {A,B,C,D}. Let A � B � C � D be the perfect ranking of this set. If we chose
this as the starting order, the comparison matrix C and similarity matrix S will be:

C =


1 1 1 1
−1 1 1 1
−1 −1 1 1
−1 −1 −1 1

 S =


4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

 (2.7)

You can see the described pattern of ones and minus ones in the comparison matrix and we see
that the similarity matrix indeed is a strict-R matrix.

Now lets say that the pairwise comparisons again define a perfect ranking for the items, but
we did not choose the proper order to make the comparison matrix. Proposition 2.4.1 implies
that the similarity matrix we get from this will be a pre-strict-R matrix. So to find the ranking
we are looking for we have to find the permutation that changes the pre-strict-R matrix to the
strict-R matrix. This permutation will tell us what the final ranking should be, because applying
it to the starting order will change it to the order corresponding with the strict-R-matrix and
we know that that order should be a perfect ranking.
In the next chapter we will explore different methods to permute the similarity matrix into an
R-matrix, if this is possible, and thus find the ranking we are looking for.





Chapter 3

Solution methods

We are looking for algorithms that can solve the seriation problem, i.e. that can find a consistent
ranking for n items given pairwise comparisons if such an ranking exists. In the previous chapter
we have seen that this corresponds to rearranging the similarity matrix (Def. 2.1.2) to an
strict-R matrix (Def. 2.3.3). We do this by finding the right permutation that achieves this
goal. Applying the found permutation to the starting order will then define the ranking we are
looking for, because the items will then be in the same order as they would be for creating the
strict-R-matrix (Theorem 2.4.1). In this chapter we will look at different methods that can find
this permutation.

3.1 SerialRank

3.1.1 Defining the method

The first method (Fogel et. al., [7]) is a spectral computation method and it is based on sorting
the so-called Fiedler vector of the similarity matrix.

Definition 3.1.1 (Fiedler vector). The Fiedler vector of a matrix A is the eigenvector cor-
responding to the Fiedler value. The Fiedler value is the second smallest eigenvalue of the
Laplacian matrix of A (LA = diag(A1)−A).

Here diag(v) is the function that makes a matrix out of a vector v by putting the entries of
the vector on the diagonal of a matrix of equal size. All non-diagonal elements of the matrix
are zero.
1 is an all-ones vector.
With this we get the following algorithm to find a ranking out of pairwise comparisons.

Algorithm 1 (SerialRank). (Fogel et al. [7]).
Input: A comparison matrix C as defined in (2.1.1).
Result: A permutation π.

Step 1: Compute the similarity matrix S from C (2.3).
Step 2: Compute the Laplacian matrix LS = diag(S1)− S.
Step 3: Compute a Fiedler vector of S.
Step 4: Find the permutation that sorts the Fiedler vector of S in either increasing or
decreasing order to minimize the number of upsets.

17



18 CHAPTER 3. SOLUTION METHODS

Minimizing the number of upsets means that we pick the permutation that would make the
most sense for the problem we are solving. For example, for a given sports competition the
algorithm finds two rankings, one by sorting in decreasing order and one by sorting in increasing
order. Both rankings will be the exact opposite. One of these will have teams that won a lot
of games as the highest ranking teams and one will have teams that lost a lot of games as the
highest ranking teams. Teams that won most games should be high ranked, so we would pick
the first permutation in this case. This decision is very easy to make when solving a seriation
problem with the Algorithm SerialRank. A Matlab[19] implementation of this algorithm can
be found in Appendix B.2. The following Theorem is found in another wording in Fogel et al.
(Theorem 3.6, [7]).

Theorem 3.1.2 (Fogel et al., Theorem 3.6, [7]). Given the pairwise comparisons of a totally
ordered set, the algorithm SerialRank recovers the perfect ranking of the items.

This Theorem tells us that the algorithm SerialRank (Algorithm 1) actually works and finds
the permutation we are looking for. We have to take multiple steps in order to proof this.
First of all, we note that the similarity matrix S created in step 1 is an pre-strict-R-matrix,
as we described earlier as a consequence of Proposition 2.4.1. Theorem 3.1.2 now says that we
can sort the Fiedler vector of this matrix, and that this permutation gives us the perfect ranking.

The perfect ranking is unique. This means that the permutation which induces the perfect
ranking is also unique. Therefore, for Theorem 3.1.2 to hold, it can only output one valid
permutation. This poses a couple of problems, because we are getting the permutation from
sorting the Fiedler vector:

1. The Fiedler vector could contain complex entries, making it impossible to sort.

2. The Fiedler vector could not be unique, suggesting multiple possible permutations.

3. The Fiedler vector could contain repeated entries, suggesting multiple possible permuta-
tions.

We will show that the algorithm is not affected by any of these three problems. After that, we
will prove that the algorithm indeed recovers the perfect ranking.

3.1.2 Proving Theorem 3.1.2

First of all, we consider the case in which the Fiedler value is zero. This can occur when the
similarity matrix is a so-called reducible matrix.

Definition 3.1.3 (Reducible matrix ). (Hiai et al., p.57, [10]) A square n×n matrix A is called

reducible if there exists a permutation π ∈ Sn such that Aπ is of the form Aπ =

(
A1 B
0 A2

)
,

where A1 and A2 are square and nonempty matrices. A is called irreducible if it is not reducible.

According to the Perron-Frobenius Theorem (Hogben, section 9.2, [11]), if the similarity
matrix S is an irreducible matrix, there will be at least one positive eigenvalue and thus a
positive Fiedler value. However, it is certainly possible that S is not an irreducible matrix.
This problem is easily avoidable. If the matrix S is reducible, that means that there exists a
permutation π such that Sπ is a block diagonal matrix, since B = 0 because of symmetry. We
can then apply the algorithm to each block separately and merge the results together to find
a ranking induced by the first similarity matrix. If one of the smaller blocks happened to be a
reducible matrix as well, we repeat the same process for that matrix. The following Theorem
from Atkins et al. [2] describes this more formally.
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Theorem 3.1.4 (Atkins et al. , Lemma 4.2, p. 303, [2]). Let Si, i = 1, . . . , k, be the irreducible
blocks of a pre-R-matrix S, and let πi be a permutation of block Si such that the submatrix (Si)πi
is an R-matrix. Then the permutation formed by concatenating the πi’s will make S become an
R-matrix.

With this Theorem it suffices to show that the algorithm SerialRank (Algorithm 1) works
for irreducible similarity matrices, so for now, we assume that this is the case.

Eigenvectors can contain complex entries. If the Fiedler vector would have complex entries
we would not be able to sort it, luckily this will not be a problem for us. The similarity matrix
S is a symmetric matrix and one can quickly see that the Laplacian matrix of S will also be a
symmetric matrix. The eigenvalues and eigenvectors of a symmetric matrix are never complex
and thus we know that the Fiedler vector has no complex entries and we will be able to sort it.

There exists only one perfect ranking. If there are multiple permutations that sort the Fiedler
vector in ascending order(or descending order), the algorithm would give multiple permutations
that induce the perfect ranking which would imply that there are multiple different perfect
rankings. This should be impossible because the perfect ranking is unique.
The Fiedler vector is an eigenvector belonging to the Fiedler value, which is a smallest non zero
eigenvalue. If the algebraic multiplicity of the Fiedler value is more than one, the Fiedler value
induces multiple independent Fiedler vectors. We would have a choice of different eigenvectors
to sort, which each eigenvector giving a possible different permutation. For the algorithm to
work in every occasion the Fiedler value should have an algebraic multiplicity of one, because
there is only one perfect ranking. In other words, the Fiedler value has to be a simple eigenvalue
and the Fiedler vector should be a unique eigenvector up to a multiplicative constant.

Lemma 3.1.5. Let S be an irreducible pre-R matrix, then S has a simple Fiedler value.

Proof. There exists a permutation π that sorts the matrix S as a R-matrix S′. If x is a Fiedler
vector of S, than we know that πx is a Fiedler vector of S′ corresponding to the same Fiedler
value. Therefore, it suffices to show that S′ has a simple Fiedler value, implying that S has a
simple Fiedler vector. S′ is an R-matrix. This means that S′n,1 is among its minimal elements.
As Fogel et al. argues (Proof of Lemma 3.3, [7]), subtracting S′n,1 from S′ does not change the
nonnegativity of S′ and it still is an R-matrix. [Atkins et al., Theorem 4.6, [2]] now tells us that
S′ has a simple Fiedler value.

An eigenvector could have repeated entries. If the Fiedler vector would have repeated entries
there would not be an unique way of sorting the vector in ascending or descending order and
thus the algorithm would give multiple permutations that induce perfect rankings, which is not
possible. With results from Fogel et al. [7] we can prove the following lemma.

Lemma 3.1.6. Let S be an irreducible pre-R-matrix, then the Fiedler vector of S does not have
repeated entries.

Proof. From [Fogel et al, Lemma 3.5, [7]] follows that if we have a irreducible R-matrix that is
strict R, then there are no distinct indices r < s such that for any k 6∈ [r, s], Ar,k = Ar+1,k =
. . . = As,k. By [Fogel et al, Lemma 3.4, [7]], such a matrix has a Fiedler vector that is strictly
monotonic. Let π be the permutation that permutes S into an R-matrix, then Sπ has an strictly
monotonic Fiedler vector. This is a Fiedler vector without repeated entries. Permuting a matrix
does not change entries of its Fiedler vector, but only the order. This means that if the Fiedler
vector of Sπ has no repeated entries, neither has the Fiedler vector of S.
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We now know that the Fiedler vector can be sorted and that the permutation to sort the
Fiedler vector is unique. Left to show is that this permutation turns a pre-strict-R-matrix into
a strict-R-matrix and thus induces the perfect ranking. Therefore we will need the following
theorem found in Atkins et al.

Theorem 3.1.7. (Atkins et al., Theorem 3.2, [2]) If A is an R-matrix then it has a monotone
Fiedler vector.

With this we can now prove the next major Theorem. For easier notation, we use permutation
matrices to describe a permuted matrix. So consider a permutation π of n items and a n × n-
matrix A. The permuted matrix Aπ, where the rows and columns of A are permuted according
to permutation π, would be the same as Aπ = ΠAΠT . Here Π ∈ {0, 1}n×n is the permutation
matrix with Πi,j = 1 if π(i) = j.

Theorem 3.1.8. (Fogel et al., Theorem 3.2, [7]) Let S be an irreducible pre-R-matrix with
a simple Fiedler value and a Fiedler vector v that has no repeated entries. Let Π1 and Π2

respectively be permutation matrices such that Π1v is strictly increasing and Π2v is strictly
decreasing. Then Π1SΠT

1 and Π2SΠT
2 are R-matrices and no other permutations of S produce

R-matrices.

Proof. The Fiedler value of S is simple, so the Fiedler vector is unique. Because of this unique-
ness we can observe that if v is the Fiedler vector of S, then Πv is the Fiedler vector of ΠSΠT for
any permutation matrix Π. So permuting the matrix permutes the Fiedler vector in the same
way. Let Πs be the permutation such that ΠsSΠT

s is an R-matrix. Theorem 3.1.7 tells that
the Fiedler vector Πsv is monotone. From Lemma 3.1.6, we know its strictly monotone because
there are no repeated entries and thus Πs is the permutation that sorted the Fiedler vector in
ascending or descending order.

With these Lemmas and Theorems we can prove that the SerialRank algorithms works
properly.

Proof of Theorem 3.1.2. Proposition 2.4.1 tells us that S is a pre-strict-R-matrix. Lemmata
3.1.6 and 3.1.5 tell us that the Fiedler value of this matrix is simple and the Fiedler vector
has no repeated entries. Theorem 3.1.8 shows that only the permutations that sort the Fiedler
vector permute S into an strict-R-matrix are the ones that sort the Fiedler vector in increasing
or decreasing order. We know from Theorem 2.4.1 that a perfect ranking would give such an
strict-R-matrix. We chose between the two potential perfect rankings by choosing the one with
the least upsets to find the perfect ranking.

We now have a proper method to solve the seriation problem. However, this is not the only
method we are going to use. In the next section we will discuss a second way of solving the
seriation problem.

3.2 2-SUM and QAP

3.2.1 2-SUM

Seminaroti [18] describes a different method of finding a solution to a seriation problem. Solving
the so-called 2-SUM problem is another way to go from the described similarity matrix (Def.
2.1.2) to a ranking for the items by finding a permutation. The idea is to model this problem as a
discrete optimisation problem. To do this we want to find a permutation while minimizing a given
objective function, called the seriation measure. With Sn the set of all different permutations
of {1, 2, . . . , n}, the seriation measure of 2-SUM is defined in the following way.
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Definition 3.2.1 (2-SUM problem). (Seminaroti, relation (7.2), [18])

min
π∈Sn

n∑
i=1

n∑
j=1

Aπ(i),π(j)(i− j)2. (3.1)

Where in our problem Aπ is the similarity matrix with permuted rows and columns according
to π. Intuitively, one can see that this criterion pushes high values in A, the items with high
similarity, closer to the diagonal. Possibly so that the further away from the diagonal you go,
the smaller the values get. This reminds of the special matrix we have seen before, the R-matrix
(Def. 2.3.1). In Proposition 2.4.1 we have seen that such an R-matrix corresponds with a
consistent or perfect ranking. So, it looks like the permutation which is optimal for the 2-SUM
problem (3.1), is also the permutation that sorts A into an R-matrix and thus is the permutation
that gives the consistent or perfect ranking we are looking for, if one of them exists.
The following result from Fogel et al. [8] shows that, when the pairwise comparisons induce a
perfect ranking, the permutation that sorts the similarity matrix into an R-matrix is indeed the
optimal solution to the 2-SUM problem (3.1). Before we can show the theorem, we will first
have to introduce interval-cut matrices.

Definition 3.2.2 (Interval-cut matrix). (Seminaroti, p. 133, [18]) Given two integers u and v
with 1 ≤ u ≤ v ≤ n. The interval-cut matrix I(u, v) is the symmetric n× n matrix with

Ii,j =

{
1, if u ≤ i and j ≤ v
0, otherwise

. (3.2)

Theorem 3.2.3. (Fogel et al., Theorem [8]) If a symmetric n × n matrix A can be written
as a conic combination of interval- cut matrices, then the identity permutation is optimal for
2-SUM (3.1). More generally if, for some π ∈ Sn , Aπ can be written as a conic combination
of interval-cut matrices, then π is optimal for 2-SUM (3.1).

In Proposition 2.4.1 we have seen that the similarity matrix of a set with a perfect ranking
corresponds to Si,j = n − |i − j|. One can easily see that such a matrix can be written as
a conic combination of interval-cut matrices. Thus, Theorem 3.2.3 shows that if the pairwise
comparisons induce a perfect ranking, then the optimal solution for the 2-SUM problem (3.1)
is the permutation that sorts the similarity matrix into the strict-R-matrix corresponding with
the perfect ranking and so this permutation induces the perfect ranking we are looking for.
We now know that solving the 2-SUM problem can give us the perfect ranking if it exists.
However, if there is no perfect ranking, the corresponding R-matrix will often not be able
to be written as a conic combination of interval-cut matrices. Seminaroti [18] has removed the
restriction of Theorem 3.2.3 and shown that solving 2-SUM works for every pre-R-matrix. Before
we look at the theorem from Seminaroti (Theorem 3.2.8), we will first have to go back to a more
general version of the 2-SUM problem, as it is a special version of the quadratic assignment
problem.

3.2.2 QAP

The Quadratic Assignment Problem, QAP in short, is an optimisation problem introduced by
Koopmans and Beckmann [15] in 1957 as a mathematical model for location problems. In an
QAP(A,B), we have to assign n facilities to n different locations. We have a so-called flow
matrix A, where each entry Aij stands for the flow of activity between facility i and facility j.
B is the distance matrix and each entry Bij represents the distant between facility i and j. The
objective of QAP is to assign the facilities to the locations in such a way so that the total cost of
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the flows and distances combined is minimized. An example could be when new buildings have
to be placed on building sites. The entries of flow matrix A would contain the amount of people
that need to walk from one building to another on a given day. The entries of B would be the
amount of meters needed to walk from one building site to another building site. The objective
would then be to minimize the amount of meters walked by all people together in a given day.
We can see a certain assignment of facilities to locations as a permutation of the flow matrix A.
This explains the following definition of a QAP.

Definition 3.2.4 (QAP(A,B)). (Burkard et al., pp. 203-206, [4]). Given a symmetric flow
matrix A and a symmetric distance matrix B of sizes n× n, find a permutation π of {1, . . . , n}
minimizing:

min
π∈Sn

n∑
i=1

n∑
j=1

Aπ(i)π(j)Bij . (3.3)

From this definition one can quickly see that 2-SUM (3.1) is a special case of QAP. Namely
the case where the entries of the distance matrix are Bij = (i− j)2.

Before we can formulate the theorem that proves that 2-SUM is a good way to solve a
seriation problem we first need to introduce two special matrices.

Definition 3.2.5 (anti-R-matrix). The matrix B is called a Robinson dissimilarity matrix or
anti-R-matrix if −B is an R-matrix (Def. 2.3.1).

In other words, where the entries of an R-matrix do not increase as we move away from the
diagonal, the entries of an anti-R-matrix do not decrease as we move away from the diagonal.
We call B pre-anti-R if −B is pre-R (Def. 2.3.4).

Definition 3.2.6 (Toeplitz). A matrix B is called Toeplitz if Bij = Bi+1,j+1, ∀ 1 ≤ i, j ≤ n− 1.

In other words, the entries on the diagonals are all the same.

Example 3.2.7 (Toeplitz matrix). An example of an Toeplitz matrix B:

B =


2 0 4 1
3 2 0 4
2 3 2 0
7 2 3 2

 (3.4)

Seminaroti (Theorem 7.2.5, [18]) has shown that, with some restrictions, R-matrices are the
optimal solution for the QAP and thus 2-SUM. He extends this to the following result.

Theorem 3.2.8. (Seminaroti, Corollary 7.2.6, p. 144, [18]) Let A and B be symmetric n× n
matrices. Assume that A is a pre-R-matrix and B an pre-anti-R-matrix. Let π and τ be
permutations that reorder A and B as an R-matrix and anti-R-matrix respectively. Assume that
one of the matrices Aπ or Bτ is a Toeplitz matrix. Then the permutation τ−1π is optimal for
QAP (A,B).

Earlier, with Theorem 3.2.3, we needed to be able to write the similarity matrix as a conic
combination of interval-cut matrices to solve the 2-SUM problem. With Theorem 3.2.8, we can
see that this restriction is not needed, as the matrix B of the 2-SUM problem always is an anti-R
and Toeplitz matrix. The following example clarifies this.
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Example 3.2.9 (B matrix from 2-SUM). We have seen that the 2-SUM problem (3.1) is a
QAP(A,B) with Bij = (i − j)2. With n = 4 the dimensions of the n × n matrix A the matrix
B would be:

B =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

 (3.5)

From this example one can quickly derive that the matrix B from the 2-SUM problem will always
be an anti-R-matrix and a Toeplitz matrix. Therefore we can use Theorem 3.2.8 with the 2-SUM
problem.

Solving the seriation problem with QAP

In Chapter 2 we have seen that solving the seriation problem involves finding the permutation
that sorts the pre-R similarity matrix as an R-matrix. With Theorem 3.2.8 we have a way to
find such a permutation. Say we have a similarity matrix A from a given seriation problem that
is pre-R. We can then choose an anti-R-matrix B that is Toeplitz and solve the QAP(A,B).
Theorem 3.2.8 tells us that the optimal solution of this QAP will be a permutation that sorts
A into an R-matrix and thus is the permutation that induces the perfect ranking.
We note again that the 2-SUM problem (3.1) is the same as an QAP with distance matrix
Bij = (i − j)2, which is anti-R and Toeplitz. According to Theorem 3.2.8 this means the
permutation π that would sort a pre-R-matrix A as an R-matrix is also the optimal solution of
the 2-SUM problem (3.1).
Our goal now is to find a method to get a solution for the discrete optimisation problem QAP.

Gilmore-Lawler bound

The quadratic assignment problem is a NP-hard problem, so it can be very hard to find a
solution. Therefore, bounds on the problem can be very useful. The Gilmore-Lawler bound
(GLB)(Burkard et al. , Paragraph 7.5.1, pp. 225-227, [4]) is one of these bounds.
We consider a

QAP (A,B) = min
π∈Sn

n∑
i=1

n∑
j=1

Aπ(i)π(j)Bij = min
π∈Sn

n∑
i=1

n∑
j=1

AijBπ(i)π(j).

First, we define the following minimum scaler product

〈a, b〉− = min
π∈Sn

n∑
i=1

aibπ(i), with a, b ∈ Rn. (3.6)

Proposition 5.8 from Burkard et al. [4] tells us that this value can easily be calculated.
We now acquire the (n-1)-vectors âi by taking the ith row of matrix A = (aij) from the QAP

and deleting the element aii. We get a b̂i for every row in matrix B = (bij) in the same way.
We then note that for any i ∈ {1, . . . , n} and π ∈ Sn the following holds.

〈âi, b̂π(i)〉− + aiibπ(i)π(i) ≤
n∑
k=1

aikbπ(i)π(k). (3.7)

This gives us a lower bound for each row, given a certain permutation π. In order to find a lower
bound on the optimum value of QAP, we want to find the permutation π which minimizes the
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lower bounds. So we want to find the permutation π that satisfies:

min
π∈Sn

n∑
i=1

〈âi, b̂π(i)〉− + aiibπ(i)π(i). (3.8)

To solve this we define a cost matrix L = (lij) := (〈âi, b̂j〉− + aiibjj). So we need to find the
permutation that satisfies:

min
π∈Sn

n∑
i=1

liπ(i).

This problem is called a linear sum assignment problem (LSAP) ([4], equation (1.6)). It is a
well known problem within the optimisation discipline and there exist many algorithms to solve
it. These algorithms have a fairly fast runtime. For example, the Hungarian algorithm ([4], pp
85-87) can be implemented with a runtime of O(n3).
By solving the LSAP with cost matrix L we obtain the Gilmore-Lawler lower bound for the
QAP .
We can obtain a upper bound by following the same procedure, but instead of 〈a, b〉− we use

〈a, b〉+ = max
π∈Sn

n∑
i=1

aibπ(i).

In the next section we will discuss a way to find the optimal solution of the discrete optimisation
problem QAP.

3.2.3 Simulated Annealing

As said before, a quadratic assignment problem, and thus the 2-SUM problem are NP-hard to
solve. However, there are methods that can find a solution. One of these methods is simulated
annealing.
Simulated annealing (SA) is a probabilistic technique based on simulating a thermodynamic
process. It is designed to approximate the global optimum of a function without getting stuck
in a local optimum worse than the global optimum. The first real study of this algorithm was
done in 1983 by Kirckpatrick et al. [13].
The goal of the SA algorithm is to find the optimal solution for a given objective function
f(x). The SA process begins with a starting solution x and a parameter called the initial
’temperature’ T0. It is an iterative process, which means it finds a new solution after each
iteration. In an iteration the algorithm finds a neighbouring solution x′ of the starting solution
and then calculates the costs f(x) and f(x′) of these solutions. If the neighbouring solution x′

has a lower cost than the initial solution, i.e. f(x′) < f(x), x′ is accepted as the new solution.
But when f(x) > f(x′), the neighbouring solution will not automatically get discarded as it
would be with a local search algorithm. Instead, the worse neighbouring solution gets accepted
as the new solution with a certain probability exp(−(f(x′)− f(x))/T0).
This possibility of accepting a worse solution makes it so the algorithm does not get stuck in a
local optimum. The probability of it happening depends on two things. The first is the difference
f(x′)− f(x) between the initial solutions score and the score of the neighbouring solution or in
other words, how much worse is the new solution we try to accept. If this difference is very large,
the changes of it being accepted becomes slim. The other influence on the probability comes
from the current temperature T . The temperature start at an initial value T0 and decreases as we
go through more iterations of the algorithm. A high temperature makes it very likely we accept
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a new solution and makes the objective function f(x) of little importance. As the temperature
decreases, the objective function becomes more and more significant to the point where the
temperature approaches zero, making acceptance of a worse solution almost impossible. At that
point the algorithm essentially is a local search algorithm where the solution becomes trapped
in the lowest minima.
In summary, the SA algorithm for a given objective function f(x) looks like this:

Algorithm 2 (Simulated Annealing). (Kirkpatrick et al., [13])

Input:

– Objective function f(x)

– Starting solution x0

– Starting Temperature T0

– Amount of iterations I

Result: An optimal solution for the objective function
initialization, with x = x0 and T = T0;
for i = 0 to I do

Find neighbouring solution x′ of x ;
if f(x′) ≤ f(x) then

Accept x′ as new solution x ;
else

Accept x′ as new solution x with chance exp(−(f(x′)− f(x))/T );
end
Decrease the temperature T according to a cooling method ;

end

Convergence of SA algorithm

The idea of the simulated annealing algorithm is fairly intuitive, but can we know for sure that
it always finds the optimal solution? Hajek (Theorem 1, 1998, [9]) has proven that certain SA
algorithms indeed always convergence to the optimal solution in a probabilistic sense. He has
shown that this convergence depends a bit on the initial values of the problem, but mostly on
the cooling method that is used to decrease the temperature. In the next section we will describe
how we handle the different aspects of the SA algorithm. Which each aspect we will explain the
criteria Hajek has found in order to be able to prove the convergence of the algorithm. We will
also explain whether we hold on to these criteria or not.

3.2.4 Solving 2-SUM with SA

We will use simulated annealing (Algorithm 2) to find a solution for the 2-SUM (3.1) problem.
Naturally, the objective function of our SA algorithm will be the 2-SUM measure.

f(π) =

n∑
i=1

n∑
j=1

Aπ(i),π(j)(i− j)2. (3.9)

This means that the solution we are looking for is, of course, a permutation. From Theorem 3.2.8
we know that finding the optimal solution to the 2-SUM problem will give us the permutation
that sorts the similarity matrix into an R-matrix. This is also the permutation which gives us
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the perfect ranking as consequence of Proposition 2.4.1. We will now discuss how we approach
the different aspects of the algorithm when solving the 2-SUM problem.

Starting solution

To start the algorithm we need a initial permutation π. We can either pick a random permutation
or a permutation that we think might already be a good solution. An example could be the
permutation we find by Algorithm 1 SerialRank. The upside of using such a permutation over
a random one is that the convergence to the optimum solution is likely faster. The downside
is that we need to compute this fixed permutation first. We will start by picking a random
permutation, if it turns out that the computation time takes too long, we will use the fixed
permutation given by SerialRank (Algorithm 1).

Neighbouring solution

We define the distance between to permutations π and π′ as

d(π, π′) = |{i : π(i) 6= π′(i)}|. (3.10)

A Neighbouring solution of π will then be an element of the collection

Nk(π) = {π′ ∈ Sn : d(π, π′) ≤ k, π′ 6= π}. (3.11)

Were k is an integer that can be chosen.
We will find our neighbouring solution for π by picking a random element from N2(π), which is
the same as switching to elements inside π.
In this way, it is possible to go from any permutation to any other permutation while only
travelling through neighbours, in other words the set of permutations would form a connected
graph if we connect neighbouring permutations. This is one of the criteria needed to prove the
convergence of the algorithm, as shown by Hajek [9]. It is a very intuitive one, for when the
graph would not be connected the possibility exists that the optimal solution is not reachable
from the starting permutation.

Starting temperature

In the first iterations of the algorithm we want to make sure that it is very likely to accept a
worse solution, even when the difference between the current solution and worse solution score
is large. Therefore, we want to pick a temperature

T0 > max f(π)−min f(π).

This ensures that, in the first iterations, solutions with the largest difference objective score
possible still give a good change of picking the worse solution to use in the next iteration.
Because we do not know max f(π) and min f(π), as min f(π) is exactly the solution we are
trying to find, we can use upper and lower bounds for f(π) instead. We will use the Gilmore-
Lawler bounds (3.2.2). We can also double the starting temperature to make sure the algorithm
has enough time to escape local optima.

Cooling method

As Tsuzuki et al. (section 2.7, [20]) shows, many ways have been found to define the cooling
method of the SA algorithm. The only real restriction we have for a cooling method is that
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the temperature has to decrease over time, making it so that the change of accepting a worse
solution eventually approaches zero.
However, we are not able to proof for every cooling method that the algorithm convergence to
the optimal solution. Bertsimas and Tsitsiklis [3] use Hajeks Theorem (Theorem 1, [9]) to show
that using the following cooling method does ensure convergence of the algorithm.

Tk =
T0

ln(k)
.

Here T0 is the starting temperature as defined earlier and k the iteration. Because this method
ensures convergence to the optimal solution when performing infinite iterations, it is a very
popular cooling method.
However, while the convergence with this method is certain, nothing is said about the speed of
this convergence and it turns out that it is pretty slow in practice.
For our purpose, it is sufficient to use a rather simple but efficient cooling scheme, first used by
Kirkpatrick et al. [13].
If Tk is our current temperature. The temperature used in the next iteration will be

Tk+1 = αTk.

Where α ∈ (0, 1). Tsuzuki et al. (p. 13, [20]) numerical experiments have shown that a
α = 0.99 is a good choice for α. This cooling method will make the temperature converge rather
quickly to zero, because we apply it in every iteration. By using this cooling method, we can
not mathematically proof that the algorithm will actually convergence to the optimal solution.
However, we can still almost guarantee that we find the optimal solution by performing multiple
numerical experiments and comparing results, because our datasets are relatively small.

3.3 Summary so far

In Chapter 2 we have seen that sorting the similarity matrix as an R-matrix gives us the
consistent or perfect ranking we are looking for. In this chapter we have described two algorithms
(Alg. 1 and Alg. 2) that can find the permutation from which the desired ranking can be derived.
However, as said before, it often happens that a consistent ranking does not exist for a given
dataset. For those kind of data, the algorithms can still create a permutation. We want to test
how good the rankings given by these permutations are. To do this we will apply our algorithms
to various different datasets in the next chapter.





Chapter 4

Numerical results

In the previous section we have explored different methods that can find a solution for the
seriation problem. In this chapter we apply our algorithms to different datasets in order to find
a ranking. We will analyse these results. Sometimes a dataset comes with a given ranking for
the items (e.g. a tournament result). We will call such a ranking the historical ranking. A
historical ranking will be a useful tool in analysing the results from the algorithms.

4.1 Datasets

Their is a wide variety of datasets the seriation problem applies to, but almost all of them start
with pairwise comparisons between items. The solving methods are made in such a way that
they will always find a perfect ranking if such a ranking exists. In reality the perfect ranking
often does not exist, but we can still apply the algorithms and see how good the results are.
All datasets we look at have an existing ranking. Our goal is to see if our algorithms produce a
ranking that is equally good or arguably even better than the historical rankings for the datasets.
A short description of the three data sets we use is found below.

Test set This dataset of nine items will serve as a test set. All comparisons are known and
follow a total ordering, which means that there exists a perfect ranking. Our algorithms
should always be able te find this ranking.

Dutch Korfbal League This is a small dataset of ten items. Not every comparison is known
and a consistent ranking does not exist. We know the historical ranking of this competition
and thus we can see how our algorithms results compare to the historical ranking.

Europe universities This is larger dataset of thirty items. All comparisons are known, but a
consistent ranking does not exist. We will use our algorithms to combine three rankings
into one. There exist many other methods to do this, which we will compare to our
algorithms.

4.1.1 Test set

We have a test set of nine items, the numbers 1 through 9. We define the perfect ranking
of these numbers as (9, 8, 7, 6, 5, 4, 3, 2, 1). We will start of with a randomly generated ordering
(6, 8, 5, 9, 2, 4, 3, 7, 1), which the algorithms will have to sort. Before we can apply the algorithms
we have to create a comparison matrix for this set:

Cij =

{
1 if number i is higher than number j

−1 if number i is less than number j
(4.1)

29
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Applying this equation creates the following matrix:

C =



1 −1 1 −1 1 1 1 −1 1
1 1 1 −1 1 1 1 1 1
−1 −1 1 −1 1 1 1 −1 1

1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 1 −1 −1 −1 1
−1 −1 −1 −1 1 1 1 −1 1
−1 −1 −1 −1 1 −1 1 −1 1

1 −1 1 −1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 −1 1


(4.2)

In the next section we will apply our algorithms to this comparison matrix. Because there ex-
ist a perfect ranking, this should yield us with the correct permutation to reorder the random
ordering of the nine items into the perfect ranking. With this dataset it is very easy to see
what the correct permutation should be, the first item in the ranking is the nine, which is in
the fourth place in the starting order, meaning the permutation should start with a 4. The
eight is located in the second place in the starting order, meaning that the second entry of the
permutation should be a 2, etc.. In this way one can find the permutation (4, 2, 8, 1, 3, 6, 7, 5, 9)
to be the permutation we are looking for.

4.1.2 Dutch Korfbal League

For this dataset we will look at the results from the Dutch Korfbal League from the season
2015/2016 [14]. There are ten teams competing in this tournament, playing each opponent
twice. Based on the results of these games the teams score points, two points for winning,
one point for a tie and zero points if they lose. This point system is often used in sporting
competitions and yields a ranking at the end of the tournament. We will compare the rankings
of our algorithms with this historical ranking.
There are ten teams attending the League tournament. For easy reference we have numbered
them according to alphabetical order. This will also be our starting order when inputting the
data in the algorithms:

1 2 3 4 5 6 7 8 9 10

AW Blauw Wit Dalto DOS’46 DVO Fortuna KZ LDODK PKC TOP

Table 4.1: Korfbal League teams in their starting order.

The historical ranking, found by the point system from the tournament itself, is found below.
From left to right we go from best ranked team to least ranked team. Meaning that team PKC
has won the competition.

9 10 2 7 6 8 4 5 1 3

PKC TOP Blauw Wit KZ Fortuna LDODK DOS’46 DVO AW Dalto

Table 4.2: Historical ranking Korfbal League teams.

Because we numbered the starting order with numbers 1 through 10 (See Table 4.1), we can
very quickly find the permutation that is needed to permute the starting order in the historical
ranking. It is the same as the order of the numbers as depicted above the teams in Table 4.2. In
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the same way, when we find a permutation later the numbers in the permutation will correspond
to the different teams. Therefore, the permutation itself will be equal to the ranking it produces.

For our algorithms to find a ranking, we need pairwise comparisons, derived from the games
the teams played against each other. We will translate the played games into a comparison
matrix in the following way.

Cij =


1 if team i beat team j twice

0 if team i beat and lost once to team j

−1 if team i lost to team j twice

(4.3)

Applying this equation with the starting order of the teams given by first table shown above,
we receive this comparison matrix, hereby we used the results of the competition [14]:

C =



1 −1 1 −1 0 −1 0 0 −1 −1
1 1 1 1 0 0 0 −1 0 0
−1 −1 1 −1 1 −1 −1 0 −1 −1

1 −1 1 1 0 −1 0 0 −1 −1
0 0 −1 0 1 0 −1 1 −1 −1
1 0 1 1 0 1 0 0 −1 −1
0 0 1 0 1 0 1 0 −1 −1
0 1 0 0 −1 0 0 1 −1 −1
1 0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 −1 1


(4.4)

Because each team played against each other twice it is possible that a team beats another team
once but also loses to that team ones, resulting in a zero entry in the comparison matrix. A
zero entry means that those two teams are not compared, there is no clear winner. Thereby not
all comparisons are known, which means that a perfect ranking is not possible. The algorithms
will thus try and find a consistent ranking instead.
There does not necessary exist a consistent ranking either. A team could have won almost all
their games and thus ended up with the highest score en best place in the ranking, but they
still may have lost to a team that lost a lot of games and has a low ranking, resulting in a non
consistent final ranking. This means that it is very well possible that our algorithms will not
produce a ranking similar to historical ranking of the tournament, as it is not presumably not
a consistent ranking.

4.1.3 Europe Universities

There are a lot of good universities in Europe. From time to time an organisation or research
center publishes a ranking for the top universities. These rankings often have many differences.
We have picked out thirty of the top universities in Europe. The data consists of three different
rankings for these universities made by three different organisations. We will try to combine
these three rankings into a singular one. The three rankings can be found in the Appendix
A. We numbered the universities 1 through 30 according to the first ranking, this will also be
the starting order we use as input for the algorithms. As with the Korfbal League teams, the
numbering will make a lot easier to switch between permutations and rankings, as they are
essentially the same ordering of the numbers.
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From the three rankings we will create a comparison matrix in the following way.

Cij =

{
1 if university i is higher ranked than university j in most rankings

−1 if university i is lower ranked than university j in most rankings
(4.5)

To make this matrix by hand would be a lot of work, but with a program it can quickly be
computed, see Appendix B.1.

Voting Theory

Combining multiple rankings into a singular one can be compared to combining vote results
to elect a winner. In our case we have three different authorities who all ’voted’ for the best
universities and from those results we try to find a ranking. There exist many methods to elect
a winner from votes and many criteria on which these methods are marked good or bad. Wallis
(2014, [22]) describes a couple of these methods and criteria in his book. To see if our algorithms
produce reasonable rankings we can compare them to the rankings derived from more traditional
methods.
However, we can not use just any traditional method. Most methods are designed to produce a
single winner out of different votes, but we are interested in producing a whole ranking. Instead
of altering a lot of methods to make them produce rankings instead of a winner we have chosen
two methods that already produce a ranking and adhere to different good criteria inside the
voting theory. We will use the so-called ’Borda count’ method (Wallis, Section 2.6, [22]) and
the ’Nanson’ method (Wallis, Section 3.6, [22]) to combine the three given rankings into a single
one. Both implementations can be found in Appendix B.6. The details of these methods are
beyond the scope of this dissertation, since we only use their results for comparison.

4.2 Results

4.2.1 Means of analysis

We will apply the algorithms to the datasets and have a look at the different rankings the
algorithms give. There are a couple of different criteria we can analyse with each result we get
from the algorithms:

• The runtime of the algorithm.

• The amount of ’errors’ present in the given ranking. We define a single error as follows:
Item i is higher ranked than item j by the algorithm while the pairwise comparison implies
that i should be lower ranked than j. We can count how many of these errors occur given
a comparison matrix and ranking (see Matlab[19] code B.4).

• Comparison with historical ranking.

• Comparison with Gilmore-Lawler bounds (3.2.2)

4.2.2 Test set

The main reason we apply our algorithms to the test set is to check if our programs work correctly.
All the algorithms should find the permutation that leads to the perfect ranking. This ranking
should have no errors when compared to the comparison matrix and the lower Gilmore-Lawler
bound should be close to the 2-SUM score of the permutation that the algorithm gives.
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SerialRank

With Theorem 3.1.2 we have proven that the algorithm SerialRank should always give us the
perfect ranking if it exists. To test if our Matlab[19] implementation (see Appendix B.2) is
correct we apply the algorithm to the Test set as described earlier. We started with a randomly
chosen order of the nine numbers in this test set. Running the algorithm with the corresponding
comparison matrix (4.2) yielded the following Fielder vector and permutation derived from that.

0.0855
0.3243
0.0000
0.5944
−0.3243
−0.0855
−0.1849
0.1849
−0.5944


Permutation = (4, 2, 8, 1, 3, 6, 7, 5, 9).

We can see that the permutation corresponds with sorting the found Fiedler vector in descending
order. Applying this permutation to the shuffled numbers indeed yields us the numbers nine to
one in decreasing order, which we defined as the perfect ranking of this set. This means that
the algorithm works correctly for this dataset.
With finding the final permutation we also got some additional results.

Number of errors = 0

2-SUM score = 3936

Lower Gilmore-Lawler bound = 3936

The found ranking has zero ’errors’ when compared to the pairwise comparisons. This is what
we would expect, because this data set has a perfect ranking.
The 2-SUM score (3.1) of this permutation was calculated at 3936. Interestingly, This score is
equal to the Lower Gilmore-Lawler bound.
The starting order for the items should not make a difference on the results, as changing the
starting order would accordingly change the order of the Fiedler vector. To make sure that this
is indeed the case we have tested the algorithm with many different starting orders. We found
that it indeed always yields the same results.
All these results make it very plausible that the implementation of the algorithm and calculation
programs is correct. The algorithm needed approximately zero seconds to run.

Simulated Annealing

With the comparison matrix (4.2) from the test set we create the similarity matrix. Then we
apply the Simulated Annealing algorithm 2 to solve the 2-SUM problem (3.1) with this similarity
matrix. This gave us the following result.

Permutation = (4, 2, 8, 1, 3, 6, 7, 5, 9).

The algorithm yields the same desired permutation as the SerialRank algorithm did and therefore
there are again no errors when this ranking is compared to the pairwise comparisons.
Before the algorithm settled on this final permutation we can see that the algorithm had 1339
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incidents where it accepted a worse solution. The next graph (Figure 4.1) will show what the
probabilities were of accepting these worse solutions. For better visibility the cases where the
new solution was better than the current solution, an thus when the probability of accepting
was equal to 1, are not displayed in the graph.

Figure 4.1: The probability a worse solution is accepted

We can clearly see that the as we move through the iterations, the general probability of
accepting a worse solution lowers. This is of course a consequence of the cooling method lowering
the temperature with each iteration in the SA algorithm. The next graph (Figure 4.2) shows
the 2-SUM scores of each iteration.

Figure 4.2: The 2-SUM score for every iteration

We can see that the score jumps all over the place in the first 3000 iterations. This is in
sync with the probability of accepting worse solutions being very high at that point in time.
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When the probability begins to lower, we can see that the scores begin to settle more towards
the optimum value were it is eventually trapped at a score of 3936, equal to the lower Gilmore-
Lawler bound. It is interesting to see that the scores never get close to the upper GLB of 7516.
The algorithm needed approximately 2.2 seconds to run.

4.2.3 Korfbal League

Historical ranking

This dataset is about a korfball competition from 2015/2016. The competition has ended, so we
know the historical ranking this competition produced. With our starting order in mind (Table
4.1), the historical ranking looks like this in permutation form.

Permutation for historical ranking = (9, 10, 2, 7, 6, 8, 4, 5, 1, 3).

The historical ranking itself, among with the other rankings we find in this section, can be found
in Table 4.3 at the end of the section.
We can compare this ranking with the comparison matrix to find the number of errors. We can
also determine the 2-SUM score of the historical ranking.

Number of errors of historical ranking = 3

2-SUM score of historical ranking = 7951

SerialRank

With the comparison matrix (4.4) as input the algorithm SerialRank (1) found the following
Fiedler vector and the permutation that sorts the Fiedler vector.

0.2038
−0.2738
0.4695
0.0603
0.3280
−0.0648
0.0297
0.1818
−0.6636
−0.2709


Permutation = (9, 2, 10, 6, 7, 4, 8, 1, 4, 3).

It is interesting to see that in this case the Fiedler vector gets sorted in ascending order, where
it was in descending order with the Test set.
The ranking that follows from this permutation, by applying it to the initial order, can be found
in Table 4.3. The first thing we notice here is that the highest and lowest scoring team get the
same rank compared to the historical ranking. The eight teams in between all get a different
ranking than the tournament result gave them. The difference in these rank is never larger
than one, as the eight teams are divided in four neighbouring pares that switch positions in the
ranking compared to the historical ranking.
From the ranking given by SerialRank we also find the following results.

Number of errors = 3

2-SUM score = 7787
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This dataset does not have a perfect ranking. As a consequence, the ranking found by Serial-
Rank has 3 errors when compared to the pairwise comparisons, instead of zero.
We can see that the number of errors is the same as with the historical ranking, which is sur-
prising as the two rankings differ quite a bit. Because of this we could say that both rankings
are equally good. However, the 2-SUM score of this ranking is lower than that of the historical
ranking, implying that the newly found ranking is better. The runtime of the algorithm approx-
imated zero seconds.

Simulated Annealing

The SA algorithm gives the following result.

Permutation = (9, 2, 10, 6, 7, 4, 1, 8, 4, 3).

The ranking this permutation produces can again be found in Table 4.3. We can see that it
is almost exactly the same as the ranking found by SerialRank, only team 8 and team 1 got
switched around.
This ranking found by SA gives us the following values.

Number of errors = 3

2-SUM score = 7787

We also found that the Lower Gilmore-Lawler bound for the 2-SUM problem was equal to 7661
for this dataset. The 2-SUM found by the ranking is a bit higher than this bound, which is
expected because there is no perfect ranking.
It is interesting to see that both the number of errors as the 2-SUM score given by the SA
ranking is equal to those of the SerialRank ranking. This means that the SA algorithm could
also have ended on the same ranking and thus that there is no unique optimal solution for the
2-SUM problem in this case.
The runtime of the algorithm was approximately 1.7 seconds.

Rankings

If we apply the three permutations to the initial order of the teams we get the rankings found
in Table 4.3:

Historical ranking Ranking by SerialRank Ranking by SA

9 PKC 9 PKC 9 PKC

10 TOP 2 Blauw Wit 2 Blauw Wit

2 Blauw Wit 10 TOP 10 TOP

7 KZ 6 Fortuna 6 Fortuna

6 Fortuna 7 KZ 7 KZ

8 LDODK 4 DOS’46 4 DOS’46

4 DOS’46 8 LDODK 1 AW

5 DVO 1 AW 8 LDODK

1 AW 5 DVO 5 DVO

3 Dalto 3 Dalto 3 Dalto

Table 4.3: Ranking of Korfbal League teams
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4.2.4 Universities

SerialRank

Applying SerialRank to the comparison matrix (4.5) yields the following permutation.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 20, 26, 15, 21, 12, 27, 16, 19, 22, 18, 24, 30, 28, 29, 13, 23, 17, 11, 25)

Applying this permutation gives the ranking found in Table 4.4 at the end of the section, the
higher up in the table, the higher the university is ranked.
It is interesting to notice that the first ten elements stay in the exact same order they started
in, which order is the same as one of the three rankings used in making the comparison matrix.
With this ranking we get the following results.

Number of errors = 12

2-SUM score = 1663262

The runtime of the algorithm was approximately 0.6 seconds.

Simulated Annealing

The SA algorithm gives us the following permutation.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 10, 20, 26, 15, 21, 12, 27, 16, 19, 22, 18, 24, 30, 28, 29, 23, 13, 17, 11, 25).

The ranking by applying this permutation to the initial order can be found in Table 4.4. We can
see that the ranking is quite similar to the ranking found by SerialRank. There are two pairs of
universities that are switched around. The SA ranking also gives us the following results.

Number of errors = 10

2-SUM score = 1663138

This result is very interesting, as both values indicate that the SA ranking is better than the
ranking found by SerialRank. Apparently, switching the two pairs of universities in the ranking
causes two less errors when you compare the ranking to the pairwise comparisons. This also
results in a lower 2-SUM score. The 2-SUM score is still always above the Lower Gilmore-Lawler
bound, which is calculated at 1648901.
The runtime of the algorithm was approximately 13.1 seconds.

Borda Count and Nanson method

The rankings found by both classical methods can be found in Table 4.4. We have calculated
the number of errors and 2-SUM score of these rankings.

Number of errors of Borda Count = 36

2-SUM score of Borda Count = 1723094

Number of errors of Nanson method = 35

2-SUM score of Nanson method = 1754494

Both methods make quite an number of errors if we compare the ranking to the pairwise com-
parisons. A lot more than SerialRank and the 2-SUM method do. It is interesting to see that
the Nanson method has one fewer error, but a higher 2-SUM score than the Borda count.
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Combined University rankings

In Table 4.4 all rankings can be found. For the classical methods only the numbers we gave to
the universities are displayed to make the table better readable.

Table 4.4: Combined rankings given by the algorithms and other methods
Ranking by SerialRank Ranking by SA Borda Count Nanson

1 University of Cambridge 1 University of Cambridge 1 1

2 University of Oxford 2 University of Oxford 2 2

3 University College London 3 University College London 3 3

4 ETH Zurich 4 ETH Zurich 4 4

5 Imperial College London 5 Imperial College London 5 5

6 EPFL 6 EPFL 6 6

7 The University of Edinburgh 7 The University of Edinburg 7 7

8 King’s College London 8 King’s College London 9 14

9 The University of Manchester 9 The University of Manchester 8 8

10 École normale supérieure 14 The University of Sheffield 20 9

14 The University of Sheffield 10 École normale supérieure 10 10

20 Technical University of Munich 20 Technical University of Munich 15 20

26 KU Leuven 26 KU Leuven 14 26

15 Londen School of Economics 15 Londen School of Economics 12 15

21 École Polytechnique 21 École Polytechnique 21 21

12 University of Glasgow 12 University of Glasgow 26 12

27 University of Birmingham 27 University of Birmingham 16 16

16 Universität Heidelberg 16 Universität Heidelberg 27 19

19 LMU Munich 19 LMU Munich 18 13

22 University of Bristol 22 University of Bristol 22 27

18 University of Amsterdam 18 University of Amsterdam 19 18

24 University of Copenhagen 24 University of Copenhagen 13 11

30 University of Zurich 30 University of Zurich 24 22

28 Lund University 28 Lund University 17 17

29 University of Southampton 29 University of Southampton 11 24

13 The University of Warwick 23 TU Delft 30 30

23 TU Delft 13 The University of Warwick 23 23

17 University of Nottingham 17 University of Nottingham 28 28

11 University of St Andrews 11 University of St Andrews 29 29

25 Durham University 25 Durham University 25 25

We can see that there are many differences between the rankings we found with our algo-
rithms and the classical methods, but also a lot of similarities. The same university almost never
has a drastically higher or lower rank if we look at two different rankings in the table. Even
better, the top seven scoring universities and the lowest scoring university are the same in all
four rankings.
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Conclusion and Recommendations

5.1 Korfbal League ranking

With our algorithms, SerialRank (Alg. 1) and simulated annealing (Alg. 2), we have found
two rankings for the teams in the Korfbal League competition. The rankings where almost the
same, only two teams got switched around. Both rankings had a total of three errors. From this
we can conclude that there exists no consistent ranking for this dataset, as we had assumed.
Interestingly, while the two rankings differ a little bit, they still had the exact same 2-SUM
score. This means that the ranking found by the simulated annealing algorithm was not unique,
because both permutations that lead to the different ranking would be optimal.
The historical ranking, created by the point system of the tournament itself had a couple of
differences when compared to our found rankings. The best and worst team were the same,
but most other teams had a slightly different rank. Upon testing the historical ranking we
found that it had three errors when compared to the pairwise comparisons, similar to the rank-
ings we found. Based on that observation alone, we could conclude that the rankings found
by SerialRank and SA are equally good when compared to the historical ranking if we look
at errors made. However, the 2-SUM score of the historical ranking turned out to be higher
than that of the other rankings. From this we could conclude that based on the 2-SUM mea-
sure, the historical ranking is actually worse than the two rankings we found with the algorithms.

All in all, we have found that the point system used in the Korfbal League competition to
rank the different teams might not be the best method to find a ranking, at least not based on
the criteria we used. Revising the ranking system or even replacing it with either SerialRank or
the solving of a 2-SUM problem with simulated annealing can result in a ranking system that
is even ’fairer’ for all teams within.

5.2 Merging different rankings

We have applied the algorithms to the dataset of universities to try and merge three different
rankings into a singular one. The two rankings we got from our algorithms were almost the
same. The slight differences made us think that the ranking gained by solving the 2-SUM prob-
lem with SA was a little better than the ranking gained by SerialRank, as the one from SA had
fewer errors and a lower 2-SUM score.
We have compared our algorithms results to two existing methods, the Borda Count and Nan-
son method. The rankings gained by the classical methods were not identical, but had a lot of
similarities. The number of errors and the 2-SUM score were almost the same. We saw that
there were many differences between the rankings of these classical methods and the SerialRank

39
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and 2-SUM method, but there were also a significant number of universities that got the same
rank or close to the same rank when comparing all four rankings.

The similarities between rankings give the implication that solving a seriation problem could
very well be a good method to produce a singular ranking out of multiple ones or, if that is
the goal, to produce a winner out of a set of votes. We could even argue that, based on the
number of errors and 2-SUM measure, the rankings produced by solving the seriation problem
were better. However, their are many more criteria one could apply when electing a winner out
of a set of votes and testing all of these was beyond the scope of this dissertation. Still the
results are promising and we would recommend the testing of more criteria for a further study.

5.3 Discussion: SerialRank versus 2-SUM

Below a quick summary of the differences in results from the two algorithms.

Test set The results from both algorithms were the same.

Korfbal set The final rankings of both algorithms had a slight difference, but both the errors
as well as the 2-SUM score were equal.

University set The final rankings of both algorithms were slightly different. The ranking from
the SA algorithm had fewer errors and a lower 2-SUM score.

We have also seen that the SerialRank algorithm had a significantly faster runtime when com-
pared to the simulated annealing algorithm.
In all cases, solving the 2-SUM problem with SA was either equally good or better than using
the SerialRank algorithm, since the number of errors and the 2-SUM score was always lower or
equal with 2-SUM compared to SerialRank.
For small datasets however, the rankings were equally good. Therefore, we would advise the
use of SerialRank for small datasets because of the very fast runtime. For the larger dataset,
we have found that the result of solving the 2-SUM problem was better than using the Seri-
alRank algorithm. The 2-SUM problem may be NP-hard, be we have seen that it can still be
solved fairly quick using simulated annealing. So based on our results, we would advise the use of
the SA algorithm to solve the 2-SUM problem when trying to find a ranking for a larger dataset.

It is important to note that these results came from just three datasets. Applying the
algorithms in different situations could further enhance the understanding of these algorithms
and this would be a recommendation for a further study.
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Appendix A

University rankings

Table A.1: Ranking from QS topuniversi-
ties [17]

1 University of Cambridge

2 University of Oxford

3 University College London

4 ETH Zurich

5 Imperial College London

6 EPFL

7 The University of Edinburgh

8 King’s College London

9 The University of Manchester

10 École normale supérieure

11 Londen School of Economics

12 University of Bristol

13 The University of Warwick

14 École Polytechnique

15 University of Amsterdam

16 Technical University of Munich

17 TU Delft

18 University of Glasgow

19 LMU Munich

20 University of Copenhagen

21 Universitt Heidelberg

22 Lund University

23 Durham University

24 University of Nottingham

25 University of St Andrews

26 KU Leuven

27 University of Zurich

28 University of Birmingham

29 The University of Sheffield

30 University of Southampton

Table A.2: Ranking from U.S. News
Education[21]

1 University of Oxford

2 University of Cambridge

3 Imperial College London

4 University College Londen

5 ETH Zurich

6 The University of Edinburgh

7 EPFL

8 King’s College London

9 University of Copenhagen

10 KU Leuven

11 The University of Manchester

12 University of Amsterdam

13 Universitt Heidelberg

14 University of Zurich

15 University of Bristol

16 Technical University of Munich

17 Lund University

18 University of Southampton

19 University of Glasgow

20 University of Birmingham

21 The University of Sheffield

22 University of Nottingham

23 Durham University

24 The University of Warwick

25 TU Delft

26 École Polytechnique

27 École normale supérieure

28 University of St Andrews

29 Londen School of Economics

30 LMU Munich
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Table A.3: Ranking from CWUR [6]
1 University of Cambridge

2 University of Oxford

3 ETH Zurich

4 University College London

5 Imperial College London

6 EPFL

7 École Polytechnique

8 École normale supérieure

9 The University of Edinburgh

10 The University of Manchester

11 University of Copenhagen

12 LMU Munich

13 KU Leuven

14 Universitt Heidelberg

15 Kings’s College London

16 University of Zurich

17 Technical University of Munich

18 University of Amsterdam

19 Lund University

20 University of Bristol

21 University of Glasgow

22 University of Nottingham

23 University of Southampton

24 University of Birmingham

25 The University of Sheffield

26 Durham University

27 TU Delft

28 The University of Warwick

29 Londen School of Economics

30 University of St Andrews



Appendix B

Matlab code

B.1 Creating university comparison matrix

1 f unc t i on [ Comp ] = Creatematr ix ( )
2 %Creates the comparison matrix o f the Un ive r s i ty datase t .
3 A = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 3 0 ] ; %ranking QS u n i v e r s i t y
4 B = [ 2 1 5 3 4 7 6 8 20 26 9 15 21 27 12 16 22 30 18 28 29 24 23 13

17 14 10 25 11 1 9 ] ; %ranking U. S . News .
5 C = [ 1 2 4 3 5 6 14 10 7 9 20 19 26 21 8 27 16 15 22 12 18 24 30 28

29 23 17 13 11 2 5 ] ; %ranking CWUR
6

7 Comp = ze ro s (30 ,30) ;
8 %Creat ing the matrix .
9 f o r i = 1 :30

10 %Run over a l l e lements to compare .
11 f o r j = 1 :30
12 %Run over a l l e lements to be compared with .
13 r e s u l t = 0 ;
14 Aplace i = f i n d (A==i ) ;
15 %Find the p l a c e s in the ranking o f the e lements that

we w i l l compare .
16 Aplace j = f i n d (A==j ) ;
17 Bplace i = f i n d (B==i ) ;
18 Bplace j = f i n d (B==j ) ;
19 Cplace i = f i n d (C==i ) ;
20 Cplace j = f i n d (C==j ) ;
21 i f Aplace i < Aplace j
22 %Compare two elements in the f i r s t ranking .
23 r e s u l t = r e s u l t + 1 ;
24 e l s e i f Aplace i > Aplace j
25 r e s u l t = r e s u l t − 1 ;
26 end
27 i f Bp lace i < Bplace j
28 %Compare two elements in the second ranking .
29 r e s u l t = r e s u l t + 1 ;
30 e l s e i f Bp lace i > Bplace j
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31 r e s u l t = r e s u l t − 1 ;
32 end
33 i f Cp lace i < Cplace j
34 %Compare two elements in the t h i r t h ranking .
35 r e s u l t = r e s u l t + 1 ;
36 e l s e i f Cplace i > Cplace j
37 r e s u l t = r e s u l t − 1 ;
38 end
39 i f r e s u l t > 0
40 %I f element i was h igher more o f t en than j i t has a

p o s i t i v e entry in the comparison matrix .
41 Comp( i , j ) = 1 ;
42 e l s e i f r e s u l t < 0
43 % I f element i was h igher l e s s o f t en than j i t has a

negat ive entry .
44 Comp( i , j ) = −1;
45 end
46 end
47 end
48 diagonaalmat = diag ( ones (30 , 1) ) ;
49 %Elements are not compared to themse lves be fore , and we g ive them the

d e f a u l t 1 .
50 Comp = Comp + diagonaalmat ;
51 %Fina l matrix .
52 end

B.2 Serial Rank

1 f unc t i on permutat ie = Ser ia lRank (Comp)
2 %Creates the permutation used f o r so r t ing , and thus the f i n a l order

o f the t a r g e t e lements .
3 S = 0 . 5∗ ( s i z e (Comp, 1 ) ∗ ones ( s i z e (Comp, 1 ) ) + Comp∗Comp’ )
4 %Constructs the S i m i l a r i t y matrix .
5 L = diag (S∗ ones ( s i z e (S , 1 ) , 1) ) − S ;
6 %Constructs the Laplac ian matrix from the S i m i l a r i t y matrix .
7 [V, D] = e i g (L) ;
8 %Cal cu l a t e s the e i g e n v e c t o r s and e i g e n v a l u e s o f the Laplac ian matrix .
9 D = diag (D) ;

10 %Takes the e i g e n v a l u e s as a vec to r .
11 [ Dsort , p l a a t s ] = s o r t (D) ;
12 i f round ( Dsort (1 ) , 10 , ’ dec imals ’ ) == 0
13 F i e d l e r p l a a t s = p l a a t s (2 ) ;
14 e l s e
15 F i e d l e r p l a a t s = p l a a t s (1 ) ;
16 %Finds the p lace o f the s m a l l e s t nonzero e i g enva lue and

corre spond ing e i g e n v e c t o r .
17 end
18 F i e d l e r v e c = V( 1 : end , F i e d l e r p l a a t s )
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19 %Gets the F i e d l e r v e c t o r o f the s i m i l a r i t y matrix .
20 [ ˜ , permutat ie1 ] = s o r t ( F i ed l e rvec , ’ descend ’ ) ;
21 %Sort s the F i e d l e r v e c t o r in descending order and remembers the

r e v e r s e permutation used .
22 [ ˜ , permutat ie2 ] = s o r t ( F i ed l e rvec , ’ ascend ’ ) ;
23 %Sort s the F i e d l e r v e c t o r in ascending order and remembers the r e v e r s e

permutation used .
24 i f ErrorAmount (Comp, permutat ie1 ) < ErrorAmount (Comp, permutat ie2 )
25 %Checks which permutation has the l e a s t e r r o r s .
26 permutat ie = permutat ie1 ;
27 e l s e
28 permutat ie = permutat ie2 ;
29 end
30 end

B.3 SimulatedAnnealing

1 f unc t i on [ Permutation ] = SimAnn( Comp, Permutation , Temperature ,
Time )

2 %Simulated Annealing 2−SUM. A func t i on to perform Simulated annea l ing
f o r the 2−SUM problem .

3 %Given a comparison matrix , s t a r t i n g permutation , s t a r t i n g
temperature and

4 %i t e r a t i o n time , t h i s func t i on c a l c u l a t e s the permutation that
minimizes

5 %the 2−SUM problem .
6 P r o b a b i l i t i e s = [ 1 ] ;
7 % A l i s t to keep track o f the p r o b a b i l i t y o f choos ing a worse

s o l u t i o n .
8 counter = 0 ;
9 % A counter that t r a ck s how o f t en a worse s o l u t i o n i s chosen .

10 Scores = ze ro s (1 , Time−1) ;
11 % A l i s t to keep track o f the 2−SUM sco r e o f each i t e r a t i o n .
12 f o r t = 2 : Time
13 S t a r t s c o r e = sumscore (Comp, Permutation ) ;
14 %Calucu la te s the s co r e o f cur rent permutation .
15 Scores ( t−1) = S t a r t s c o r e ;
16 NewPerm = NeighPermutation ( Permutation , 2) ;
17 %Creates a ne ighbour ing permutation .
18 Newscore = sumscore (Comp, NewPerm) ;
19 %Cal cu l a t e s the s co r e o f ne ighbour ing permutation .
20 i f Newscore <= S t a r t s c o r e
21 Permutation = NewPerm ;
22 %I f the New sco r e i s lower , we accept the

ne ighbour ing permutation .
23 P r o b a b i l i t i e s = [ P r o b a b i l i t i e s , P r o b a b i l i t i e s ( end ) ] ;
24 e l s e
25 x = rand ;
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26 i f x < ( exp ( ( S t a r t s c o r e − Newscore ) /Temperature ) )
27 Permutation = NewPerm ;
28 % I f the New sco r e i s higher , we accept the

ne ighbour ing permutation with a c e r t a i n change .
29 counter = counter + 1 ;
30 end
31 P r o b a b i l i t i e s = [ P r o b a b i l i t i e s , exp ( ( S t a r t s c o r e −

Newscore ) /Temperature ) ] ;
32 end
33 Temperature = Temperature ∗ 0 . 9 9 9 ;
34 %Decreases the Temperature .
35 end
36 i f ErrorAmount (Comp, Permutation ) > ErrorAmount (Comp, f l i p l r (

Permutation ) )
37 Permutation = f l i p l r ( Permutation ) ;
38 %F l i p s the permutation i f nece s sa ry .
39 end
40 f i g 1 = f i g u r e ( ) ;
41 %Creates graphs o f the data .
42 p lo t ( P r o b a b i l i t i e s )
43 x l a b e l ( ’ I t e r a t i o n ’ ) ;
44 y l a b e l ( ’ P r o b a b i l i t y o f accept ing a worse s o l u t i o n ’ ) ;
45 f i g 2 = f i g u r e ( ) ;
46 p lo t ( Scores )
47 x l a b e l ( ’ I t e r a t i o n ’ ) ;
48 y l a b e l ( ’2−SUM sco r e o f s o l u t i o n ’ ) ;
49 AcceptingWorseSolut ion = counter + 1 − 1
50 end

B.4 ErrorAmount

1 f unc t i on [ e r r o r s ] = ErrorAmount ( Comp, permutation )
2 %Cal cu l a t e s number o f e r r o r s between f i n a l ranking and comparison

matrix .
3 % Checks f o r every pa i r o f e lements i f the ranking in the permutation
4 % corresponds with the Comparison matrix .
5 e r r o r s = 0 ;
6 l en = length ( permutation ) ;
7 f o r i = 1 : ( len −1)
8 f o r j = ( i +1) : ( l en )
9 i f Comp( permutation ( i ) , permutation ( j ) ) < 0

10 e r r o r s = e r r o r s + 1 ;
11 end
12 end
13 end
14 end
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B.5 Gilmore-Lawler bounds

As explained in Section 3.2.2, to calculate the Gilmore-Lawler bound we have to solve a LSAP.
To do this we use the Hungarian method. We use a Matlab [19] implementation written by Y.
Cao [5]. In the program below, this function is called munkres().

1 f unc t i on [ s co r e ] = GilLaw ( A, B, Bound )
2 %Cal cu l a t e s the Gilmore−Lawler upper and lower bound f o r a g iven QAP(

A,B) .
3 n = s i z e (A, 1 ) ;
4 L = ze ro s (n) ;
5 f o r i = 1 : n
6 a = A( i , : ) ;
7 a ( i ) = [ ] ;
8 a = s o r t ( a , ’ ascend ’ ) ;
9 a i i = A( i , i ) ;

10 f o r j = 1 : n
11 b = B( j , : ) ;
12 b( j ) = [ ] ;
13 i f Bound == 1
14 b = s o r t (b , ’ ascend ’ ) ;
15 e l s e
16 b = s o r t (b , ’ descend ’ ) ;
17 end
18 b i i = B( j , j ) ;
19 L( i , j ) =(a∗b ’ ) + ( a i i ∗ b i i ) ;
20 end
21 end
22 %Cal cu l a t e s the co s t matrix L
23 [ ˜ , s c o r e ] = munkres (L) ;
24 %Determines the s o l u t i o n to the LSAP with co s t matrix L
25 end

B.6 Borda count & Nanson method

1 f unc t i on [ ranking ] = Borda ( )
2 % Determines the ranking found by the Borda Count from three g iven

rank ings .
3 A = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 3 0 ] ; %ranking QS u n i v e r s i t y
4 B = [ 2 1 5 3 4 7 6 8 20 26 9 15 21 27 12 16 22 30 18 28 29 24 23 13

17 14 10 25 11 1 9 ] ; %ranking U. S . News .
5 C = [ 1 2 4 3 5 6 14 10 7 9 20 19 26 21 8 27 16 15 22 12 18 24 30 28

29 23 17 13 11 2 5 ] ; %ranking CWUR
6 Points = l i n s p a c e ( 1 . 0 , 0 . 0 , 30) ;
7 Scores = ze ro s (1 , 30 ) ;
8 f o r i = 1 :30
9 Scores (A( i ) ) = Scores (A( i ) ) + Points ( i ) ;

10 Scores (B( i ) ) = Scores (B( i ) ) + Points ( i ) ;
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11 Scores (C( i ) ) = Scores (C( i ) ) + Points ( i ) ;
12 %Gives po in t s to the u n i v e r s i t i e s based on t h e i r ranking .
13 end
14 [ ˜ , ranking ] = s o r t ( Scores , ’ descend ’ ) ;
15 %The more po in t s a u n i v e r s i t y sco re s , the h igher they get ranked .
16 end

1 f unc t i on [ Ranking ] = Nanson ( )
2 % Determines the ranking found by the Nanson method from three g iven

rank ings .
3 A = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 3 0 ] ; %ranking QS u n i v e r s i t y
4 B = [ 2 1 5 3 4 7 6 8 20 26 9 15 21 27 12 16 22 30 18 28 29 24 23 13

17 14 10 25 11 1 9 ] ; %ranking U. S . News .
5 C = [ 1 2 4 3 5 6 14 10 7 9 20 19 26 21 8 27 16 15 22 12 18 24 30 28

29 23 17 13 11 2 5 ] ; %ranking CWUR
6 Ranking = ze ro s (1 , 30 ) ;
7 f o r k = 1:29
8 Points = l i n s p a c e ( 2 . 0 , 1 . 0 , l ength (A) ) ;
9 Scores = ze ro s (1 , 30 ) ;

10 f o r i = 1 : l ength (A)
11 Scores (A( i ) ) = Scores (A( i ) ) + Points ( i ) ;
12 Scores (B( i ) ) = Scores (B( i ) ) + Points ( i ) ;
13 Scores (C( i ) ) = Scores (C( i ) ) + Points ( i ) ;
14 %Gives po in t s to the u n i v e r s i t i e s based on t h e i r

ranking .
15 end
16 m=min( Scores ( Scores >0) ) ;
17 l o s e r = f i n d ( Scores==m) ;
18 l o s e r = l o s e r (1 ) ;
19 %Determines the lowest ranking u n i v e r s i t y
20 Ranking ( l ength (A) ) = l o s e r ;
21 %Adds i t to the end o f the f i n a l ranking .
22 A = A(A˜= l o s e r ) ;
23 B = B(B˜= l o s e r ) ;
24 C = C(C˜= l o s e r ) ;
25 %Removes the l o s i n g u n i v e r s i t y and repea t s the proce s s .
26 end
27 Ranking (1 ) = A(1) ;
28 %Adds the l a s t u n i v e r s i t y .
29 end
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