Delft University of Technology
Master of Science Thesis in Electrical Engineering

Intent-Based Networking for
Non-programmable Networks

Dheeraj Ravi

Embedded
Networked
Systems

Intent-Based Networking for Non-programmable
Networks

Master of Science Thesis in Electrical Engineering

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Dheeraj Ravi
d.ravi@student.tudelft.nl
dheeraj.ravi.92@gmail.com

15-September-2022

mailto:d.ravi@student.tudelft.nl
mailto:dheeraj.ravi.92@gmail.com

Author
Dheeraj Ravi (d.ravi@student.tudelft.nl)

(dheeraj.ravi.92@gmail.com)
Title

Intent-Based Networking for Non-programmable Networks
MSc Presentation Date

15-September-2022

Graduation Committee
Prof. dr. ir. F.A. Kuipers Delft University of Technology

Dr. J.E. A.P. Decouchant Delft University of Technology
Mr. Mauro Antonio Di Francesco Viasat Netherlands B.V.

mailto:d.ravi@student.tudelft.nl
mailto:dheeraj.ravi.92@gmail.com

Abstract

Intent-based Networking (IBN) is one of the hot topics of research in the
modern field of networking. Abstracting the complexity of network management
away from the network operator through automation is the cornerstone of the
IBN concept. However, a lot of current research on intent-based networking is
concentrated towards programmable software defined networks (SDN), rather
than traditional non-programmable network devices which still hold a large
market share in modern networks. Moreover, when it comes to traditional
network devices, network validation becomes very crucial as it needs a vendor-
agnostic environment to evaluate the network. This thesis studies the important
aspects necessary for IBN adaptation for legacy devices and provides a solution
for adaptation into modern networks, while being vendor-agnostic. Based on
the design, the results obtained from the proofs-of-concept are then analyzed
and concluded upon, ending by elucidating avenues of future work.

Keywords - Intent-based networking, traditional network devices, Network
validation, vendor-agnostic, OpenConfig

v

“It is our choices that show what we truly are, far more than our abilities...” —
Albus Dumbledore

vi

Preface

Being a disciple of science since my childhood, there are very few things more
life-defining than a Master’s degree in a field of my liking. The hunger to learn
how things work — and break them apart to understand more — has been my
way of life since as long as I can remember. That eventually developed into a
love for electronics and telecommunication, which has ultimately led me here to
the brink of my Masters in the same field. The world turned upside down in
early 2020 due to COVID-19 and will probably never be the same again. This
mini-era of human history became a central theme of almost the entire duration
of my study here in the Netherlands. It became paramount to constantly remind
myself of the higher goal amidst all the uncertainty, hardships, challenges and
losses. All of this would not have been possible without the truly special people
who supported me throughout this period. This report, in short, represents the
blood, sweat and tears of the past 3 years of my Masters at Delft University
of Technology and one which I will look back with pride from the moment I
graduate.

First, I would like to offer my undying gratitude to Professor Fernando -
for not just being a great advisor and mentor, but also for providing me an
opportunity in the industry with Viasat under such testing times. Without his
patient guidance and knowledge, this thesis would not have been possible. My
future here in the Netherlands is also largely indebted to him.

Second, to the amazing people at Viasat - Mauro, Francesca and Mike - who
gave me an opportunity to work on an exciting topic and eventually a career
as well. Highly understanding human beings, buddies and in general, great to
work with.

Third, to my mother, Meera and father, Ravi - who sacrificed a lot to help
me pursue my dreams and the unconditional support they continue to give me.
I cannot thank them enough in one lifetime.

Last, and definitely not the least, to my beloved wife Sandra - for tolerating
my tantrums, being a partner in crime and a fellow Master student. We un-
dertook a difficult journey together and went through every hardship the last
couple of years. Quite simply, the person who has my user’s manual.

Dheeraj Ravi
Delft, 5th September 2022

vii

viii

Contents

[Prefacel

1__Introduction|
1.1 Background|

|2 Theoretical Background|

4 IBN architecture design|
4.1 Design challenges|
4.2 Defining the architecture|.
[4.2.1 CI/CD pipeline[.

[5 Network Configuration Representation|

5.1 Need for a common configuration representation|

5.3 YANG models and OpenConfig| . . .
5.4 Combining viModel and OpenConfig]

ix

vii

11
11
12
12
13

15
15
15
18
20
20
21
21
24

[6_Results

16.0.1 System performance of network pre-validation|.
16.0.2 Network Pre-validationl
16.0.3 Network configuration representation|.

Chapter 1

Introduction

1.1 Background

Modern society is now almost entirely dependent on the internet. Everything,
from daily essentials to the world economy, relies on the internet to function
properly. Human interaction is now heavily influenced through social media and
exchange of information through various types of digital devices. A fundamental
requirement for the usage of such large number of applications is to transfer huge
amounts of data at great speeds across the globe. This is done by interconnecting
tens of thousands of network devices throughout the world, which exchange
information with each other and strive to deliver data from source to destination
in milliseconds. These devices all belong to individual Internet Service Providers
(or network operators) whose primary job is to ensure proper management of
their networks while minimizing costs.

Due to the wide variety of network traffic (data, voice, media streaming, etc.)
that needs to be handled, network providers need to offer highly customized
and tailor-made services based on the traffic. This is necessary to optimize the
use of network resources while ensuring customer service level agreements are
fulfilled. Catering to such high requirements also creates high demand on the
management of the network and as such, network engineers are tasked with the
planning, design, operation and maintenance of the network while trying to keep
the operating expenditure as low as possible. Traditionally, engineers manually
maintain a database, login to devices and make the necessary changes needed
to run the network. A similar approach is followed when there is a fault in the
network and there is a need to troubleshoot it. To address this, recent advances
in Intent-based Networking (IBN) have made management of networks much
easier to network operators and engineers.

The goal of Intent-based Networking is to reduce the complexity of planning,
design, operation and management of networks through automation of activities.
It involves abstraction of the network from the engineer’s point of view by
taking inputs known as ‘intents’, while transferring the responsibility of handling
and managing the network to a centralized network controller [I7]. Intents are
generally business or system level policies, which are agnostic to device vendor

and network features, defined to specify the high-level requirements that the
network engineer wants to satisfy [I3]. Since intents are high-level requirements
engineers can specify them without considering the exact technical specifics and
how they are implemented, i.e., intents are concentrated more on describing the
outcome rather than the process towards the outcome: intents describe what
the engineer wants and not how it is realized [13]. These high-level intents are
then translated to lower level policies by the network controller so that they can
be applied to the network devices to achieve the desired objective.

A lot of current research on Intent-based networking is concentrated towards
programmable software defined networks (SDN) [32][31][5][28][33], since it is
easier and faster to apply translated policies on-the-go to network devices. But
SDNs are still in the growing phase in the market as network providers migrate
services to software based networks [I1][2I]. This means that traditional, non-
programmable network devices such as routers, switches, firewalls etc., continue
to be relevant today in almost all modern networks. Therefore, there is a need for
an adaptation of intent-based networking towards legacy devices so that network
operators can already start building their IBN infrastructures. Moreover, when
it comes to traditional network devices, network validation becomes very crucial
as explained in later chapters. This thesis studies important aspects necessary
for IBN adaptation for legacy devices and attempts to provide a solution for
adaptation into modern networks.

1.2 Problem definition

As stated earlier, research and development on Intent-based networking is
concentrated more towards software defined networks. But legacy devices still
continue to be relevant in modern networks as many services are still configured
on traditionally function-specific network devices (like routers, switches, fire-
walls etc.) through their own vendor-proprietary command line interfaces (CLI).
In addition to this, even Virtual Network Functions (NFV), designed to operate
on abstracted cloud infrastructure, use vendor specific CLI to configure func-
tionalities and services.

Currently there is a lack of research on the adaptation of IBN for legacy
devices. This also causes an additional problem when traditional devices and
software-defined networks need to be used seamlessly in a single IBN infrastruc-
ture. This thesis aims to address two important aspects of this adaptation of
legacy devices to an IBN framework - first, to provide a common solution which
is vendor-agnostic so that intents can be translated to any dedicated network
device and second, to design a framework for pre-validating network intents for
these legacy devices, before changes are applied on a live network.

1.3 Research Questions

The following questions will be central to the research done in this thesis:

1.

RQ1 How to design a framework which helps adapt the IBN concept to
traditional, non-programmable network devices. This framework should
be seamless for all types of network devices and be vendor-agnostic.

RQ2 How to design an intent structure for low-level intents (defined in
section [2.I] which can be used to pre-validate two popular types of network
requirements namely - BGP peering and end-to-end IP reachability.

(a) Based on the defined low-level intents, provide a proof-of-concept
to pre-validate network changes in an IBN infrastructure on legacy
devices before they are deployed on to the network.

RQ3 Design a method to have a common platform to manage network
configuration formats in a vendor-agnostic format.

1.4 Thesis Outline

This thesis report is structured as follows:

Chapter [2| introduces the reader to the necessary background concepts
involved in this thesis - beginning with introducing Intent-based network-
ing, intents, IBN architecture and the concept of network verification.

In Chapter |3| we define what network validation is and introduce Batfish
as a network analysis tool.

Chapter [4] discusses the IBN architecture, the design challenges and de-
cisions involved in defining a framework for traditional non-programmable
network devices. This is followed by the detailed design of the pre-
validation system and the intent database (with two specific types of in-
tents created).

Chapter [5| explains how network configurations can be represented in a
vendor-agnostic manner, which is a necessary integration with the IBN
framework.

Results from the thesis are discussed in Chapter [6] while Chapter [7]
concludes the report along with future scope of work.

Chapter 2

Theoretical Background

In this chapter, the main concepts involved in this thesis will be discussed along
with the current state of the art.

2.1 Intent-based networking

As stated in Chapter [1] the basic objective of Intent-based networking is to
take the complexity of network management away from the network operator
- this includes taking inputs on what needs to be done, instead of how the
objective can be achieved. This ideally involves a central network controller
which orchestrates all the necessary steps needed, starting from obtaining the
objective from the network operator till the appropriate network commands are
applied to the network devices to achieve said objective. The objective that the
network operator desires is supplied in the form of an intent.

2.1.1 What is an intent?

According to RFC7575 [I7], an intent is described as “An abstract, high-
level policy used to operate the network, which does not contain configuration or
information for a specific node”. Thus, an intent is a set of operational goals
that a network should satisfy by specifying the outcomes that needs to delivered,
without specifying how to achieve them. Intents are defined in a declarative way
which describes what need to be achieved. Thus, the two main salient features
of an intent are [7]:

e Data abstraction: The network operator should not be concerned about
the complexity of low-level device configurations.

e Functional abstraction: The network operator should not be concerned
about whether a particular outcome is achieved. They are only required
to specify what needs to be done.

In order for these intents (high-level policies) to be applied onto the network
devices, first they must be broken down into primitive form so that they can be
converted into network configurations. These are called low-level intents. In an

ideal intent-based networking environment, this process is automated and does
not require operator intervention.

The goal of the IBN system is to take away the complexity of device level
configurations from the network operator by creating a set of automated actions
which will ultimately satisfy the intent decided by the operator. Hence, it
is on the IBN system to convert the network operator’s intents into machine
understandable network configurations to satisfy the objective.

2.1.2 IBN Architecture

IBN is currently a hot topic in the field of network automation, hence there
have been multiple works which have attempted to define how an architecture
should be defined. There is no convention which needs to be followed for defin-
ing an IBN architecture, however there have been works done in the past which
give a baseline to build and design the architecture needed for this thesis. Cohen
et al. [8] designed an IBN reference architecture using an intent-based North
Bound Interface (NBI) and a network overlay abstraction achieved by Distrib-
uted Overlay Virtual Ethernet network (DOVE). However, details on the NBI
have not been elaborated, nor the actual design of the system implemented.

Cerroni et al. [5] started with an objective of defining an open, vendor-
agnostic, and inter-operable NBI and developed an architecture for end-to-end
services accross multiple network domains like Internet-of-thingss (IoT), SDN
and Cloud. Their architecture was more specialized to the use case considered
and thus did not attempt to standardise it for IBN in general. Han et al. [I3] de-
signed a layer-based architecture for an intent-based virtualized network. They
put forth the concept that each layer in the architecture should serve as an ab-
straction layer for the layer above, thereby splitting the entire architecture into
five component layers: protocol adaptation, abstraction, virtualization, virtual
abstraction, and intent layer.

Riftadi et al. [32] [31] inferred a general IBN architecture in their implement-
ation of intent-based networking with P4. Their architecture consisted of intent
definition getting converted to network level policies, followed by conversion
to service definitions which can be implemented onto programmable network
devices. The architecture also involves a monitoring system which ensures the
necessary policies are being enforced.

The network industry has also attempted to define IBN architectures. Cisco
defined an architecture with a centralized network controller while accomplish-
ing a closed-loop system serving 3 main functions: translation of network intents,
deploying these intents to the network and assurance that these intents are be-
ing continuosuly enforced on the network [6]. Juniper took a similar approach
with their Juniper Apstra IBN software system. This is mainly centered on the
design, building, deployment, and operation of data center networks while fo-
cussing on zero-touch deployment and continuous validation [20]. Nokia defined

a Network Services Platform (NSP) which also has a centralized network con-
troller and an open programmable platform that enables engineers to automate
network operations [26].

Validation

Implementation
on devices

Production
Network

\ 4

\ 4

\ 4

Intent Translation

network policies
Intent checks

A

-
1
1
1
1
1
1
. 1
Conversion to '
1
1
1
1
1
1
1
1
1
1

Figure 2.1: Basic IBN Architecture

All of the aforementioned works have their own design strategies and fea-
tures. However, the problem is that the IBN based infrastructures in these
works involve solutions for integrating Software-defined or programmable net-
work devices, i.e., they do not take into consideration the current market share
of traditional non-programmable devices and the need for defining an IBN solu-
tion for them. The logical approach to addressing traditional devices would
be to make dedicated tailor-made solutions per each vendor, but that adds an
additional layer of complexity in the system when devices from more than one
vendor is present in the networks (which is practically almost every commer-
cial network). This generates a research gap to expand the current state-of-
the-art for designing an infrastructure involving multi-vendor traditional non-
programmable devices. Using inferences from the above works, a generalised
framework for the IBN infrastructure has been designed in this thesis. A ba-
sic IBN framework is shown in figure A detailed description along with
research on design choices is presented in later chapters.

2.1.3 Network configuration representation

For an IBN infrastructure which needs to address network devices from mul-
tiple vendors, there is a need for a common network configuration representation
format. This is necessary because network devices from different vendors have
their own CLI for implementing configuration changes. In this thesis, we take
advantage of the fact that the Batfish tool builds a common data plane model for
all vendor devices [I5]. Since widely used common YANG [I6] representations
like OpenConfig [27] exist for the purpose of collaboration amongst network
operators, there is currently a need for converging a common network config-
uration format along with an IBN infrastructure to support true multi-vendor
functionality. The novel solution addressing this need is explained in detail in

chapter

2.2 Network Verification

Network verification and validation (described in detail in chapter help
the network operators in asserting whether the changes that have been carried
out in the network satisfy their chosen objectives. This is important in an
IBN infrastructure as configuration errors also need to be detected and rectified
by the network controller, to prevent a compromise in the performance of the
network. There are two main approaches that researchers use to analyze network
configurations and to detect errors: static analysis and dynamic data-plane
analysis.

The static approach involves directly analyzing network configuration files to
proactively detect errors before changes are deployed to the network. Configur-
ations of modern network devices have many interacting modules and protocols
(like BGP, OSPF, VLANs, ACLs, MPLS, L3VPNs, etc.) and hence, performing
a ‘what-if” analysis of the configuration files becomes complex. Existing static
configuration tools attempt to overcome this complexity by building their own
customized models for each feature in the configuration and other properties
[[25][29][36][@]. Ome such example is ‘rcc’, the router configuration checker,
which detects faults by building a normalized configuration representation [9].
rcc was designed to detect two types of faults - route validity faults and path
visibility faults - and verifies a range of errors by checking corresponding prop-
erties. FIREMAN is another static analysis tool which specializes in firewall
modelling and analysis [36]. By taking advantage of the finite state nature of
firewall configurations, it analyzes them by performing symbolic model check-
ing for all possible IP packets and their data paths. It also represents ACLs
as specific ‘rule-graphs’. The static approach is highly specialized on particular
features and relies on customized data models, which makes it limited in scope
for what can be checked and consequently requires network operators to look
for multiple tools to ensure all network errors have been identified.

The second popular approach to analyzing network configurations is by ana-
lyzing the forwarding behavior of the network using data plane snapshots. In
contrast to static analysis, data plane analysis detects any unwanted forward-
ing faults because the data plane is a result of the combination of all aspects
involved in the network configurations. Kazemian et al. [22] designed Net-
Plumber, a Header Space Analysis (HSA) based real time network policy check-
ing tool which maintains a dependency graph between policy rules. They claim
that NetPlumber is a natural fit for SDNs, but the underlying model can be
used for other devices as well. In another work, Kazemian et al. [23] implemen-
ted ‘Hassel’ a packet header analysis tool which analyses a variety of network
protocols. Anteater is another network analysis tool developed by Mai et al.
[24] which does static analysis of the data plane. Here, the approach is to con-
vert high-level network invariants into a boolean satisfiability problem (SAT)
and compares them using a SAT solver. Zeng et al. [38] also implemented a
network verifiying tool called ‘Libra’ which scales forwarding analysis for lar-
ger networks by making use of MapReduce [I4]. Data plane analysis is not a
proactive approach to detecting network faults, i.e., they cannot detect faults
before the undesirable forwarding occurs. This still causes two big challenges

for the network operator. First, even though the faulty forwarding has been
identified, the corresponding configuration lines causing the fault still need to
be narrowed down manually by the operator. Secondly, an impact of a config-
uration on forwarding need not be immediate - which means that an erroneous
configuration may manifest quite some time after the change has been made.

Static_ . .| Custom intermediate o Test tool-specific
analysis Config A >)
representation properties
approach
Data plqne . Test forwarding
analysis Data Plane snapshot >]
properties
approach
Batfish) .| Create Data Plane - Test forwarding
Config > > .
approach model properties

Figure 2.2: Batfish approach [10]

Fogel et al. [10] created the network analysis tool ‘Batfish’, which combines
the advantages of the above two approaches, as illustrated in figure Batfish
scraps the need for a customized representation, which is a drawback of static
configuration analysis methods and also the need for actual forwarding to build
a data plane. Instead, it builds a data plane that would eventually be the result
of a set of configurations in an environment. This gives the advantage of a
proactive approach to detect errors before they are deployed into the network,
while also provinding a platform to conduct correctness checks on forwarding
properties which can only be inferred from the data plane. ‘Minesweeper’ is also
another tool created by Beckett et al. [2] to translate the protocol information
from OSPF, BGP, static routing, etc., present in the configuration files, into
a logical formula which best represents the stable state to which the network
forwarding will converge.

There are advantages and disadvantages to every network verification tool.
In this thesis, Batfish has been chosen as the verification tool to pre-validate
network changes in the IBN architecture. The reasoning behind choosing Batfish
is explained in more detail in chapter

10

Chapter 3

Network validation

This chapter describes what network validation is and how it forms an integ-
ral part of IBN systems while automating network management. We will also
see how networks can be pre-validated and how we choose a specific tool for
performing pre-validation, namely, Batfish.

3.1 Defining Network Validation

One of the primary tasks of network engineers and administrators is to configure
and make changes on network devices. This usually involves the following steps:

1. Designing and planning a network based on a network requirement
2. Creating network device configurations for that design plan
3. Committing these changes to the network and

4. Ensuring the applied configurations adhere to the design plan and satisfy
the initial requirement.

Historically, these tasks were done manually, which were not only time-consuming
and laborious, but also highly error-prone since a single mistake could poten-
tially bring down an entire network [3]. To overcome these challenges, network
engineers are moving towards automating network tasks which reduces human
interaction (and thereby potential of human error). The aforementioned steps
also serve as a baseline towards automating changes on the network.

While automation removes the need for physical intervention from the ad-
ministrator to perform operations (logging into devices, extracting information,
pushing configuration changes, etc.) on the network, it does not inherently eval-
uate the correctness of the operations being carried out. Since all networks need
to work according to a design and to satisfy a set of operational requirements,
evaluation of the functioning of networks before and after making any changes
in the network is of high importance.

11

The process of validating changes after they are deployed onto the network
devices is called post-validation. Alternatively, the process of validating changes
before deploying them is called pre-validation [30]. Both pre-validation and
post-validation have their own purpose in network validation.

With post-validation, the functioning of the network is correlated to the re-
quirements after deploying the changes to the network. This means that config-
urational errors can only be captured by studying the impact it has had on the
network through live monitoring or fault management. It answers the question
“Did the change I made just now make the network function in the way I inten-
ded it to?”. By performing post-validation, the network administrator ensures
that the impact time is minimised after deploying the changes [30].

In case of pre-validation, the correlation study of the changes made with
respect to requirements is done more proactively i.e, before the changes are
deployed to the network. This enables the network administrator to ensure that
errors don’t reach the network before the changes are even deployed, thereby
providing a higher degree of protection to the live network as compared to post-
validation techniques [30]. Pre-validation gives the answer to the question “If
I make this change in the network, will it still function in the way I intend it
to?”. Although pre-validation may not be able to detect all the errors before
changes are deployed (since there may be faults which can only be detected
during runtime) it is a crucial step in evaluating the correctness of the changes
being planned on the network.

Validation vs verification

When it comes to network automation, there are two terminologies which
are used frequently - Verification and Validation. Validation is the process of
determining whether the overall functionality of the network meets the design
requirements and specifications. Validation helps predict how a potential change
could affect the network and also to diagnose network behavior which deviates
from the norm [30][3]. Verification, on the other hand, is the process of de-
termining the correctness of all possible scenarios within a specified context - for
e.g., ensuring all DNS packets can reach the DNS server. A combination of mul-
tiple verification methods may constitute the overall network validation process.
Logically, validation is the overall final step in a process, whereas verification is
ideally done at intermediate checkpoints [35].

3.2 Batfish

In this section, we will see what Batfish [15] is, and how it can be used for
network pre-validation using the capabilties it provides.

3.2.1 What is Batfish?

Batfish is an open-source multi-vendor network analysis tool that allows the
user to validate configuration data, query control plane state, verify ACL rule
sets, analyze routing/flow paths, as well as simulate network failure [10]. This

12

it does by creating a ‘snapshot’ of the network using information such as device
configurations, IP Tables, Layer-1 topologies, etc. It is a containerised service
which runs offline, which means that it does not need access to online libraries
while building its own vendor-agnostic models for network analysis. Once these
models are built in the container, they can be queried using the ‘pybatfish’
Python library to obtain the desired information related to the network.

3.2.2 Batfish as a network pre-validation tool

Batfish has a range of features which help in network validation and analysis
which would otherwise be difficult to accomplish in traditional methods, like
sending actual packets across the network [10]. Some features which make Bat-
fish ideal for network pre-validation are as follows:

e Impact analysis - Helps analyse how the network responds to faults such
as link or node failures.

e Configuration analysis - Ensures the correctness of the device config-
urations and whether the network functions according to the configured
parameters. In addition, Batfish can also be queried for protocol specific
configurations like BGP, OSPF, Interface properties, etc.

e Packet forwarding analysis - Batfish has the capability to perform
virtual traceroutes and reachability tests which help to assert whether
two nodes are connected without resorting to conventional methods like
sending actual IP packets. This includes analysis of specific packet header
parameters like application (e.g., SNMP) or transport level (TCP, UDP
ports).

e Multi-vendor support - Batfish functions on vendor-agnostic network
models which can be queries by the user to analyse the network. This
provides a wide range of support for popular network device vendors like
Cisco, Juniper, Arista, Cumulus, etc.

One of the drawbacks of Batfish is the lack of possibility to analyse/simulate
real-time packet flows, which might be needed to evaluate throughput and
packet loss based requirements. In addition to this, Batfish builds a control
plane model using the configuration files provided to it, hence it cannot pre-
dict physical network faults which might arise due to hardware related failures.
However, the advantages far outweigh the disadvantages when it comes to pre-
validation scenarios.

In the following chapter, we will cover the design aspects of the IBN ar-
chitecture for traditional non-programmable network devices, and where pre-
validation plays a role in its design.

13

14

Chapter 4

IBN architecture design

In this chapter, we will discuss the design decisions made for the IBN architec-
ture designed in this thesis and where the vendor agnostic pre-validation plays a
role in its design. This will aim to address RQ1 of the research questions listed
in the introduction chapter.

4.1 Design challenges

In section the existence of a research gap was underlined to expand the
current state-of-the-art for designing an infrastructure involving multi-vendor
traditional devices. However, an existing IBN architecture design would not be
sufficient in addressing the same. In this thesis, the following challenges were
taken into consideration and addressed to design a novel IBN architecture for
traditional devices:

e The IBN architecture should be modular, i.e., it should be capable of
accommodating any type of solution for the individual sub-components.
It should also be be easily scalable for future work.

e The architecture must be fairly simple and straightforward, while at the
same time not compromise on the necessary building blocks of an ideal
IBN architecture framework.

e It must make sense universally and be applicable for all types of net-
works.

e The design must not contain vendor-specific components for realiz-
ing the entire IBN system - failing which counter the design objective of
building a vendor-agnostic system.

4.2 Defining the architecture
There are many components in a system that help define a truly Intent based
provisioned network. A basic skeleton for all the required components in an IBN

infrastructure was illustrated in section Keeping this basic infrastructure
and the design challenges listed in section [4.1] in mind, an IBN framework for

15

the required objective was designed as illustrated in Figure 4.1 This shows
three main aspects (sub-divisions) of such a system, and a basic idea how these
components will interact. To account for the actual breakdown into functions
for the modularity, the sub-divisions - Intent Translation, Validation and Imple-
mentation - have been designed to consist of smaller functional blocks. These
functional blocks are then interconnected based on the actual flow of the IBN
process to form the overall IBN architecture design.

T ;
' P
| £
| 8
; 8 | ') '
! - Canfig Config Caonfig

g | -
! i Generation Management Deployment
A B > P
E £ A A
' = i Pre-deployment
[! Validation
! ! ;
i i Intent Check !
| ! i >
i i Rollback S Vo i
| | Procedure :
i i A i
i £ No @ i
' 2 ' i
P = P]
' = ' [l
| 2 | :
| g Post-Deployment i Production
: : Intent Check Validation ' Network
; | ; i
i i Trigger :
| | =
| | i
i i No~<Fass?> Yc |
| | :
i | Translated
| ! Implementation
' P
| c
; g Infent | intent .| Intent
| O Model Instances” | Compiling
| 5 |
e 1
; -
i £ ! Intent
; o Database
' i
; ;
! '

Figure 4.1: Flow in the IBN Architecture

First is the Intent Translation sub-division, which covers how the inputs
from Network engineers, using these systems, are interpreted and understood in
terms of networking needs and system parameters. As per the intent definition
stated in section a high-level intent in natural language needs to be conver-
ted to lower-level intents which can then be used to generate individual network
configurations for the devices. The translation of intents is done using Intent
Definition Languages (IDL) (e.g., Nile [19]) and stored in the Intent Database.

16

Intents definitions stored in the Intent database can then be compiled to build
network configurations based on the requirements (‘Intent Compiling’ block).
The actual translation process of high-level intents from natural language into
low-level intents is not in the scope of this thesis. However, low-level intents are
taken into consideration in this thesis (as described later in section and is
used in the demonstration of the proof-of-concept of IBN infrastructure. These
low-levels intent structures contain lesser information than what is needed for
the actual configuration of the protocol on the network device, thereby still
adhering to the simple nature of intents by definition.

In this way, clear instructions about system needs and parameters can be con-
veyed to the proper provisioning systems as represented in Figure between
the output of the ‘Intent compiling’ block and the input of ‘Config generation’
block. A proof-of-concept of how these low-level intents are gathered and defined

is explained in detail in sections and

Second is the Validation sub-division, once configurations have been inter-
preted and defined from the intention set, they can be verified and validated in
a closed loop via network validation tools like Batfish (see Figure) Closed-
loop validation is responsible for checking whether the desired intents have been
satisfied in the functioning network. As explained earlier, this comprises of both
pre- and post-validation mechanisms. For defining a pre-validation system of an
IBN architecture designed for traditional devices, the following design challenges
exist:

e The core logic of the pre-validation system must provide the required
and appropriate information to validate the network based on the
provided network intents.

e The pre-validation sub-system must be vendor-agnostic, i.e., it must be
able to validate intents for any type of vendor devices.

e The system must be scalable for number of devices and intents, i.e., the
processing time of the entire system must increase at a linear scale when
number of devices and/or intents are increased.

For addressing these challenges in an IBN system, a proof-of-concept pre-
validation pipeline has been designed and tested using Batfish, as shown in
Figure 4.2l This is explained in detail in section while the testing and
results are explained in chapter

The third sub-division in the architecture is Implementation, where existing
systems within the automation framework take care of delivering configuration
into the devices in the network. The function of this would be that the required
APIs and functions trigger these mechanisms once translation and validation
are completed. Since the goal of the overall architecture is also to be vendor-
agnostic in nature, it is necessary to manage configurations in a common format.
The use of OpenConfig towards achieving this objective is described in chapter

17

e
GUl » % < REST API

Uner Intent Database S Y SR .
) Validation Service ™,

® @] w Container
i IoRok:ay Sotp I -
Conf SetUp BGP validation Reachability
ey —— validation
F@L,—’ Intent Check trigger
G oK © T 5 Pybatiish
Jenkins pipeline ~ TTtmmemeeses e
Github Repo
* l S5L l
3 -

y on demand
-~

—~ e
2
. = -
= ‘ Docker run Topology
docker > G
Conf

Batfish container

Figure 4.2: The designed Batfish based closed-loop pre-validation system

Figure[4.2]shows the designed approach of a closed-loop network pre-validation
implementation with a Docker containerized Batfish service. The system avails
itself of a pipeline/workflow execution system, a configuration repository to store
the data, the validation framework (i.e., Batfish), the intent database (which
stores all network validation information), and the validation element (called
SNAP validation which interacts with Batfish).

4.2.1 CI/CD pipeline

Continuous Integration and Delivery (CI/CD) pipelines are integral to auto-
mating software processes. They provide several advantages to the operator
including earlier defect discovery, higher productivity and process modularity
[37]. There are several popular CI/CD tools which are available including Jen-
kins, Gitlab, Travis CI, Go CD, CircleCI etc., with each having its own advant-
ages and disadvantages. For the purpose of the design in this thesis, we choose
Jenkins as the CI/CD tool due to the following reasons [12]:

e It is open source - which means that it is low cost and is being continuously
improved by contributors around the globe.

e Variety of features - it has a large number of plugins available to perform
necessary actions while also having a friendly user interface

e Scalable - It is highly scalable for automation of large projects.

e Compatibility - Jenkins is compatible with Github and other repositories
which makes pipeline automation much easier.

In more detail, the steps depicted in the form of numbered arrows in Figure
41.2] represent the following steps in such pipeline:

A pre-validation system has been designed in this thesis to address the chal-
lenges that exist in defining a pre-validation system for traditional devices. As

18

stated in chapter[3] pre-validation involves evaluating configuration changes be-
fore they are deployed on the network devices. For a pre-validation system to
work in an IBN system, there is a requirement for:

e Reading/storing network intents, i.e., the intent database,

e An tool which evaluates network protocols in a vendor-agnostic manner
(Batfish, in this case)

e A central logical entity which interacts with the database and Batfish to
evaluate network intents and send a logical check to the Configuration
Management part of the IBN pipeline.

e An overall orchestrator which triggers the above functionalities (in the
form of a CI/CD pipeline).

The structure in has been designed with the above requirements. Batfish,
by itself, is not a pre-validation tool - it merely forms a network snapshot based
on which information can be extracted. The real logic of IBN pre-validation
is done by the ’Validation Service Container’. For the proof-of-concept, the
process works as follows.

Assumption: For the closed-loop validation process, all intents to be validated
have to be stored in the Intent Database, as depicted in Figure The process
how this data can be filled in by the user is explained in detail in section

1. A change in a version control system (e.g., Git) that publishes a change
in network configuration.

2. Changes in the version control system that triggers a change through a
CI/CD mechanism (e.g. Jenkins via APT Webhook).

3. The CI/CD broker, that given a potential change of configuration of the
system, instantiates batfish microservice in the form of a docker container.

4. Once that Batfish instantiation is done, it gets the required inputs (net-
work configurations) through a REST API interface, to perform cross
reference checks.

5. The actual trigger of Batfish checks against the intents stored in the In-
tent Database is done over two independent stages — BGP validation and
Reachability validation. Each of these stages is triggered by the CI/CD
broker. This is done through a REST API interface.

6. The broker, being able to discern the results of the intent check API call
to the system, would be approving/rejecting the changes proposed based
on these intentions.

The Batfish interfacing component, mentioned in steps 4 and 5 above, con-
tains services that allow parametric inputs of configuration, topology and in-
tents. Batfish as a tool needs this input to understand the network change or
service to be implemented in contrast to the intent. These intents that are to
be validated using Batfish, are categorized and stored in a particular manner
in the Intent Database, so as to comply with operational requirements (details
explained in section .

19

4.3 The Intent Database

In order to store and manage intents, a database is necessary. Depending upon
the requirement of the IBN system, a database can be chosen appropriately to
store intents. For the scope of this thesis the Intent Database implementation
makes use of VCMDB (Viasat Configuration Management Database) to store
and read intents. The reason for choosing the database is explained in the
following section.

4.3.1 VCMDB database

Viasat Configuration Management Database (VCMDB) is a ‘schema-less’
data service, that can store any kind of data, and can be accessed via a web
API and a visualization tool. It is technology agnostic and stores an invent-
ory of assets called resources, as well as any relationships between these assets.
The intelligence of the system is in the data, not the schema itself, which en-
ables dynamic content management without schema changes and the associated
downtime. VCMDB also has the ability to paint an end-to-end picture and
provide holistic views of an always expanding and evolving ecosystem. Further-
more, it has the capability to establish ‘relations’ between the database objects,
which will prove useful in future works where there is a need to interlink intents
between different devices.

The main disadvantage of using VCMDB would be its non-open-source nature
and a scope of using it only within the organization. A standard open-source
database like mySQL or MongoDB could also be used to store intents, but that
would come at the trade-off of the above features. Considering a recommend-
ation from Viasat for using VCMDB database for this proof-of-concept, it is
chosen as the Intent database.

Each entry (or VCMDB resource) in the database represents one intent which
is unique to the entire network; it also specifies the network parameters that
need to be satisfied for that intent. From the VCMDB perspective, each resource
in the database is defined by the following key fields:

e resource_type — Describes the type of database resource. Under the IBN
case, the ‘underlay_intent_reachability’ and ‘underlay_intent_bgp’ resource
type values are used accordingly.

e name — Unique user-readable identifier for each intent in the whole data-
base. Under the IBN case, the construction of the name is described in
section |4.3.2

e config — This is the field which contains the key network parameters
which describe the intent itself. A standardized set of values is used for
specifying BGP and reachability intents, which is being specified in the
section [4.3.3]

For the proof of concept, two lower level intents have been taken into consid-
eration - BGP peering and IP reachability. This will be explained in detail in
section 3.3

20

4.3.2 The intent nomenclature

To differentiate between Reachability and BGP peering intents, a naming
convention has been defined which follows the rules below.

1. For BGP peering intents, the naming of the VCMDB resource in the
database is as follows:

underlay_intent_bgp-{src_node}-{local_ip}-{remote_ip}
where:

e src_node — Hostname of the originating device
e local_ip — BGP peer IP in the originating device

e remote_ip — BGP peer IP in the destination device

2. For reachability intents, the naming of the VCMDB resource in the data-
base is as follows:

underlay_intent_reachability-{src_node}-{src_ip}-{dst_ip}
where:

e src_.node — Hostname of the originating device

e src_ip — IP address in the originating device, for which reachability
needs to be checked.

e dst_ip — IP in the destination device, for which reachability needs to
be checked.

4.3.3 The ‘config’ field

As briefly explained at the beginning of section [£.3] the config field contains
the network data of the intent, which is necessary to be applied/satisfied on
the network. Since BGP and Reachability intents are different in their goals,
two different data structures have been defined. Inside the ‘config’ field, the
parameters are stored in JSON formatting.

The BGP intent

The BGP peering intent is to check the session status of a pair of BGP
neighbors. Although the BGP protocol, in general, has many more parameters
to consider during pre-validation, in this current proof-of-concept the intent
involves a binary Established /Not-established status which will be verified using
Batfish. As mentioned earlier in section the actual translation of high-
level intent to lower-level intent is beyond the scope of this thesis. Hence for
the purpose of this proof-of-concept, a lower-level intent for BGP peering has
been designed as per the structure shown below. This design covers the basic
information necessary for validating a BGP peer pair, while also maintaining a
level of simplicity which is understandable to network operators. The system
shall then be able to validate the session status of such BGP peering through
the data contained in this intent.

21

Batfish validates the BGP sessions by creating a ‘snapshot’ in the docker
container based on the configuration file of the device provided through a GIT
repository. Once the snapshot has been created, the python library ‘Pybatfish’
can be used to ask ‘questions’ towards the Batfish service to retrieve BGP
specific information (this includes ‘established’ session status).

For creating/modifying a BGP intent, the following structure is in place in the
database. It can be seen that the above structure has been designed such that it
contains parameters that do not extensively cover the requirements for setting
up/evaluating a BGP peering session with a standard CLI based configuration.
This enables the intent to be independent of device vendor while also retaining
the simplicity characteristics of an intent:

{
"local_ip": "10.37.192.23",
"src_node": "node_name ",
"local_asn": "123456",
"local_vrf": "aabbcc",
"remote_ip": "10.37.192.22",
"bgp_status": {
"batfish_status": "<Not-Established/Established>"
},
"remote_asn": "123456",
"remote_vrf": "xxyyzz"

}

In the structure shown above as an example, fields include:

e ‘src_node’ - the network device (its hostname) originating the BGP con-
nection.

e ‘local_ip’ and ‘remote_ip’, indicate the BGP peering to be established
from the device ‘src_node’; using IP address ‘local_ip’ to the neighbor peer
whose IP address is ‘remote_ip’.

e ‘bgp_status’ - indicates the detected BGP session status. Each validation
framework is allowed to report its own status inside, in order to allow fu-
ture extensibility. The allowed values for these entries are Not-Established
(for successful verification) or Established (for unsuccessful verification).

e ‘local_asn’ and ‘remote_asn’ - indicate the values that should be used
and validate for the ASN, used locally on the device and remotely on its
peer (respectively).

e ‘remote_vrf’ and ‘local_vrf’ - instances that are used for this connection

(also called VRF's), both in the remote device and local device (respect-
ively).

22

The Reachability intent

This will represent, in the intent database, all ‘A-to-B’ information that the
system should validate in any traffic applicable form (ping, traceroute, TCP
and/or UDP). In other words, it represents all devices, and/or sub-instances
of them that should be connected to their counterparts needed for a particular
circuit or service connection. The current implementation of validation using
Batfish is to check the connectivity status between a pair of IP addresses.

A lower-level intent for IP reachability has been designed for this proof-of-
concept as per the structure shown below. This design covers the basic inform-
ation necessary for validating IP reachability, while also maintaining a level of
simplicity which is understandable to network operators. Like with BGP in the
previous section, Batfish validates the reachability by creating a ‘snapshot’ in the
docker container based on the configuration filed provided. Once the snapshot
has been created, the python library ‘Pybatfish’ can be used to ask ‘questions’
towards the Batfish service to retrieve reachability specific information based
on source and destination IP addresses.

The BGP and reachability intents differ in the way that the BGP intent
addresses the protocol messages validation capability of the system during pre-
validation, while the reachability intent tests the capability of forming routing
tables during pre-validation. This was the reason for choosing these two partic-
ular type of intents for the pre-validation proof-of-concept.

{
"dst_ip": "10.37.192.23",
"src_ip": "10.37.192.22",
"dst_vrf": "xxyyzz",
"src_vrf": "aabbcc",
"dst_node": "dest_node_name",
"src_node": "node_name",
"reachability_status": {
"batfish_status": "<Success/Denied>"
}

}

In the structure above shown as example, fields include:

e src_node and dst_node values that indicate the hostnames of the net-
work devices originating and ending a network connection (respectively)

e src_ip and dst_ip values that indicate the IP values associated from where
the traffic should originate to its destination (respectively)

e src_vrf and dst_vrf values that indicate the routing instances (also called
VRFs) where this connection occurs in both the ‘src_node’ and ‘dst_node’
(respectively)

23

e reachability_status which indicates the verified connection status. Each
validation framework is allowed to report its own status inside, in order to
allow future extensions. The allowed values for these entries are “Success”
(for successful verification) or “Denied” (for unsuccessful verification).

4.3.4 The Intent database User Interface

To facilitate the usage of intents in a fluid network operation process, a Graph-
ical User Interface (GUI) has been added as part of the IBN system, for creating
and visualizing the intents. Since the sole purpose of an IBN architecture is to
remove the complexity from the network operators, the main function of the
GUI is to provide an easy visualization to all the current intents created on the
VCMDB database — BGP and Reachability — and provide a means to create
and modify existing ones if needed. While it is not necessary to have a GUI in
an IBN architecture, having one is a design choice based on the operator needs.

For the case of Intent creation, when the user (i.e., the Network Engineer)
wants to create a new intent, they can do so by the ‘New item’ button option
on the GUI panel, wherein all the fields (i.e., network parameters) necessary for
creating an entry in VCMDB, can be filled in to create a new resource in the
database.

ulnet - BGP Intent Board ADD CSV FILE DELETE RANGE P ocour

uuu
1037.19223 Router! 4200010008 commoN 71 103710222 221212 sdsdsdsdsd ESTABLISHED s
103719422 Router! 4200012008 OPTICAL BACKBONE_DCN 105719423 2z aqweerr NOT_COMPATIBLE
103719612 Router2 4200012009 PPN_MGMT 10371913 12334212 Jhuneerertd NOT_COMPATIBLE

1037.196.10 Router2 4200012009 PPN_MGMT 1037.196.11 ass12842 fasusdvsr ESTABLISHED

Figure 4.3: IBN BGP intent list visualization from GUI panel

Fudstatas Bhsows Actons
103719224 103719224 srgvrgh sdsdsds Router2 Success
8888 105719220 sdsdsdsd assasas Routert Success l

103719223 103719222 tuyktredsg yinfgh Router3 Success al

Figure 4.4: IBN Reachability intent list visualization from GUI panel

For the case of intent visualization, the intent data is gathered in the GUI
by retrieving existing database resources. Through the backend, API queries
for these entries are sent towards the VCMDB IBN API, which are forwarded
to the VCMDB database, and then the retrieved information is passed back to
the backend. Then the backend uses this information to display it on the GUI
front-end as shown in Figure for the BGP intents and in Figure for the
reachability intents.

24

In summary of this chapter, a new IBN architecture was defined for multi-
vendor traditional devices. In the same architecture, a pre-validation system
was designed to validate network intents, using Batfish’s capabilities. Custom

schemas were then designed for low-level intents of BGP peering and IP reach-
ability scenarios.

25

26

Chapter 5

Network Configuration
Representation

In this chapter we will discuss how network configurations can be represented
in a vendor-agnostic manner, which is a necessary integration with the IBN
framework.

5.1 Need for a common configuration represent-
ation

The vendor-agnostic nature for an IBN system, which serves traditional non-
programmable devices, is a primary requirement. As discussed in chapter [4] in
the ‘Implementation’ sub-division of the architecture, one of the main build-
ing blocks which addresses this requirement is the ‘Config Management’ block.
This is the module responsible for delivering the configurations to and from the
network devices after they have been built from the intents.

In a scenario consisting of multiple vendor devices, it is necessary to have
a common platform/structure to represent network configurations. This poses
a significant challenge which has not been addressed before as part of an IBN
architecture. This thesis overcomes this challenge by providing a design which
uses OpenConfig as the middle-ground for device configurations. A proof-of-
concept for this is explained in section This is done by making use of
already existing entity in the system, namely Batfish, and using its data-plane
models to convert into OpenConfig.

5.2 Batfish viModel

As mentioned earlier in chapter [2] Batfish creates its own data plane model
using the configuration files of network devices. In addition to this, it also
supports a wide range of device vendors like Cisco, Juniper, Arista, etc. In
order to create a homogeneous data plane to analyse the network interactions
between the various types of devices, Batfish creates an internal data model
using a common template, called viModel. We take advantage of this to obtain

27

vendor-agnostic metadata which is converted into OpenConfig YANG models,
which will be discussed in section [5.3l The Batfish viModel, in itself, is a custom
tree-like structure which contains data parsed from the configuration files. This
posed a couple of challenges for justifying and realizing the design path chosen:

e The size of the OpenConfig tree is massive - the full YANG model of all
possible protocols and their defined structure in a configuration file is too
big to realize all at once.

e The conversion mechanism from vendor specific configuration to Open-
Config needs to be scalable for all protocols.

For this proof-of-concept, the magnitude of addressing these challenges is
considerably large and hence, needs to broken down into smaller targets. To
begin with, we perform the conversion of interface-related information from two
vendor specific configuration files - Cisco and Juniper - into OpenConfig format.
This can provide a template for future works on addressing the full conversion
of configuration files.

5.3 YANG models and OpenConfig

With a wide variety of vendors for network devices comes their own propriet-
ary CLIs to manage the devices and also to modify and retrieve device configura-
tions. This makes it complex to automate network functions in an environment
containing devices from multiple vendors. In 2003, the Internet Engineering
Task Force (IETF) designed the Network Configuration (NETCONF) protocol
to standardise a network configuration management protocol. NETCONF sup-
ported several features which were lacking in protocols such as SNMP [34].
However, this was not enough as a modelling language which was needed to
represent the network configurations in an vendor-agnostic format. In order to
support this, the YANG modelling language was developed in 2007. The YANG
language allows designers to define their own device configuration syntax along
with the semantics [34]. Since then, there have been many device configuration
representation models which were designed based on YANG.

When the IETF developed YANG, they realized that device vendors needed a
data model to model their own versions of YANG. The IETF version of YANG is
the simplest version of YANG available to define network configuration models.
It uses simpler modules as well as needs fewer lines of code for functioning.
Although this is simple to use and implement, this version is very limited in
scope for what it can configure between multiple vendors [4]. Hence, adoption
of the IETF model in the industry has been slow.

OpenConfig is a model created by a collaborative effort from network operat-
ors around the world (not vendors), which is vendor-neutral. The data models
of OpenConfig are written in YANG and expands upon the features offered in
the native IETF version of YANG. The ultimate goal of the OpenConfig group is
to move networks towards a fully programmable architecture and management
by having a standardized model of representing device configurations [27].

28

Having network configurations represented in the format of OpenConfig data
models provides a great platform to ensure vendor-agnostic configuration man-
agement in an IBN infrastructure. This is the reason why we have chosen
OpenConfig as the intermediate representation for all device configurations, ir-
respective of vendors.

5.4 Combining viModel and OpenConfig

The ideal objective of any IBN framework, including the one designed in this
thesis, is to be seamless for network automation involving all types of vendor
equipment. This vendor-agnostic framework of IBN requires the system to be
independent of device vendors so that network policy definitions are not restric-
ted by vendor proprietary CLI commands.

OpenConfig is an ideal model for representing network configurations and
services in a vendor neutral manner. As stated in section the OpenConfig
YANG model is a collaborative effort from network operators around the world,
making it a continuosly improving open-source effort. In this thesis, we take
advantage of this vendor-agnostic nature of OpenConfig to define a method
which converts vendor-specific configuration files into the OpenConfig format.

{OPENCONFIG

) YANG Model
Legacy viModel Schemas | OpenConfig YANG
. | structures
Network Build Data plane > vendor- —_— {
device config agnostic) { Datat
files 9 { Data2

Figure 5.1: Conversion from config files to OpenConfig using Batfish viModel

To realise this, we use the viModel of Batfish, which parses the configura-
tion files into vendor-agnostic metadata, and convert them using schemas into
OpenConfig YANG format as illustrated in figure As explained before, the
scale of realizing all possible protocols in the OpenConfig tree is a long term
target and hence, to start with, interface information was extracted from the
configuration files of Cisco and Juniper network devices. For the scalability solu-
tion, the Marshmallow library of Python was chosen as a template creator for
the schemas necessary to convert from Batfish viModel to OpenConfig format.
Since the model has been broken down into a schema using Marshmallow, a
template method has been set for creating a particular protocol’s conversion
into OpenConfig format. This means that the methodology of the implementa-
tion of the reduced scope in this thesis is applicable for other protocols in the
OpenConfig tree as well. Thus, when creating the schemas of future protocol
implementations, only the fields needs to be changed.

29

In the scheme of intent-based networking this provides the following advant-

ages:

1.

Conversion of intents into Services - The network controller in the
IBN infrastructure will need to translate and convert the specified intents
into low-level network policies. In case of legacy devices, each device
could potentially have a separate vendor proprietary CLI, which makes
construction and application of service policies really complex. In case
of a vendor-agnostic model like OpenConfig, the network controller can
create low-level policies in a common data model which is vendor-neutral.

Comparison of configuration deltas - Batfish’s viModel enables the
schematic representation of the current status of the network’s control
and data plane. This, in combination with the differential comparison of
snapshots in Batfish, enables comparison of data planes before and after
a config change has been made. When converted to OpenConfig, this can
point to where a potential fault might have occured when a change was
made.

Abstracting services into configs - Having a common medium like
OpenConfig can also be used to abstract services into configurations. For
example, a YANG model has been defined for L3VPN service delivery [18].
Data abstraction at that level can potentially make it easier to convert
them into device configurations.

In the scope of this thesis, design has been made for conversion of device
information and interface information into OpenConfig format using schemas,
in this novel approach.

A sample conversion from Juniper and Cisco devices has been illustrated
in chapter [0}

As explained earlier, the Marshmallow library of Python was chosen as
a template creator for the schemas necessary to convert from Batfish
viModel to OpenConfig format.

The interface information is abstracted from configuration files using Bat-
fish’s viModel.

Since the viModel is a schematic representation of the network’s control
and dataplane, it can be used to convert the available information into a
custom-designed schema made for the OpenConfig format.

This process of defining the Marshmallow schema of the OpenConfig is
based on the OpenConfig protocol tree. Even though the process is time
consuming to create a schema for each and every protocol, the advantages
it provides for making a vendor-agnostic format for device configurations
justifies the means.

Once the schemas have all been defined in this manner, entire device con-
figurations can be converted to a common, vendor-agnostic model which
can be used to evaluate traditional devices in IBN networks.

Expansion of this into all available features from viModel to OpenConfig is
work for the future.

30

Chapter 6

Results

In this chapter we will analyse the results obtained during this thesis. Based
on that and, with respect to the research questions set in chapter |1, we will also
draw conclusions in chapter

In chapter [4] we illustrated an IBN framework designed for traditional non-
programmable network devices. The main challenge of modularity was overcome
by defining the architecture into three distinct sub-divisions. Each of these sub-
divisions, in turn, needed novel design decisions to address the objectives set at
the beginning of this thesis. For these design decisions, the following proofs-of-
concept were successfully made:

e Low-level intent definition design in the ‘Intent Translation’ sub-division
(BGP and reachability).

e Network pre-validation pipeline for the above defined intents in the ‘Val-
idation’ sub-division (using Batfish).

e Defining a vendor-agnostic configuration management method in the ‘Im-
plementation’ sub-division (using OpenConfig and Batfish viModel).

This involved the full design of the pre-validation module - including Batfish,
the design of the intent database and its schemas and also the CI/CD pipeline
for the automation of processes.

The test setup

e The CI/CD pipeline automation, including the database, was hosted on
Viasat servers.

e To mimic network operators use-case, the pre-validation part of the Proof-
of-concept was also tested in a standard computer (16GB RAM, 2.4GHz
quad-core CPU).

6.0.1 System performance of network pre-validation

To study the latency performance of the pre-validation system, ‘time elapsed’
was taken as a parameter of measuring the overall process execution time. This

31

would present an estimate on the scalability of the system with respect to num-
ber of devices in the network and the number of intents. The following points
illustrate the process performed to measure the performance and the inferences
from the findings:

To perform the study, 100 different device configuration files were taken
(a combination of Cisco and Juniper). The number of network intents was
also taken as 100 in the VCMDB database.

To study the total time taken for the pre-validation process, the number of
network device configurations in the network was steadily increased from
5 to 100.

The overall process was split into 4 chronological phases: Setup time,
Batfish snapshot creation time, Intent processing time and Teardown time.

Time was measured using in-script timer in Python.

For each successive iteration for measuring latency performance, 5 more
device configurations were added.

For the overall process, the Jenkins pipeline setup time was on average 63
seconds (2 seconds). This includes connecting to Jenkins server, deploy-
ing 2 Docker containers based on required libraries (one for the Validation
service, one for Batfish), loading the scripts and configuration files from
Github. This is shown as ‘Jenkins setup time’ in figure jxxxxx;,.

Once setup, the load time for the scripts and initialization time of the
code on average was 0.075 seconds. This is shown in figure [6.2}

The snapshot creation time was the deciding point of interest for latency.
It was noticed that the snapshot creation time increased linearly with
number of configuration files while allowing a confidence interval of 5%
(as shown in figure[6.2)). This means that the system is scalable for higher
network sizes, i.e., an exponential rise in delay is not observed, which
would prove detrimental for practical use.

On average, a 2 second time delay was observed for retrieving intents from
the VCMDB database. Adding this to the intent comparison time (time
for matching the intents with the Batfish results), we get a total average
intent processing time of 2.367 seconds (£0.1522 seconds).

Once the process was completed, the average teardown time of the Batfish
snapshot and the Batfish network was 0.0091 seconds (40.0023 seconds).

The total time elapsed chart as a function of 'Number of configuration
files’ is as shown in figure [6.2]

Thus, it can be inferred that the designed system is scalable for practical
use according to the latency study of 100 network devices. From the linear
trend of the snapshot creation time with respect to number of devices
(figure , it can also be said that the system can scale well for even
bigger networks without causing high latency. Hence, the design choices
are justified for practical use of the designed system, when it comes to
latency performance requirements.

32

Snapshot creation time

Time elapsed (sec)

w

0 20 40 60 80 100
Number of configuration files

Figure 6.1: Snapshot creation time as a function of number of device configur-
ations

Total time elapsed breakdown chart

Teardown time
M Intent processing time
M Snapshot creation time
M Jenkins setup time
54
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

90 95 100

Time Elapsed (sec)
4 8 8 2 3 8 & N ¥

%]
o

Number of configuration files

Figure 6.2: Overall time elapsed as a function of number of device configurations

e In addition to this, to test the speed of snapshot switching, approximately
6900 different snapshots of 3 routers each were used as an input. The
loading and deleting of all of them together took around 180 minutes.

e From the result above, it can be concluded that the snapshot creation
time by Batfish is the major latency inducing factor involved in the pre-
validation method.

33

e Overall, the system operates at a practically low latency for pre-validation
scenarios. This means that an network administrator can pre-validate a
network of approximately 100 devices in around one and half minutes.
For a network evaluation on an everyday computer, this is a good result -
thereby justifying the design decisions taken.

6.0.2 Network Pre-validation

The system was tested and validated using intents defined for Viasat internal
network devices (which have been renamed here) and the following results were
obtained:

¢ BGP Pre-validation - BGP peering low-level intents were successfully
created in the VCMDB database using the designed schema and the cus-
tomised GUI. These intents were then pre-validated in the system (Viasat
servers and laptop both) to test whether the BGP sessions’ statuses were
successful or not based on the actual device configurations. Figure [6.3]is
an example of a summary of the pre-validation stage implemented in the
IBN framework. Each row denotes a separate intent that needs to be sat-
isfied in the system and the ‘bgp_status’ column signifies the BGP session
establishment check done by the system (whether it is ESTABLISHED,
DENIED or NOT-COMPATIBLE).

Figure 6.3: BGP Intents status

e Reachability Pre-validation - Similar to BGP peering, IP reachability
intents were also successfully created in the VCMDB database using the
designed schema and the customised GUI. These intents were then pre-
validated in the system to test whether the IP reachability from source
to destination were successful or not based on the actual device config-
urations. Figure [6.4] is an example of a summary of the pre-validation
stage implemented in the IBN framework. Each row denotes a separate
intent that needs to be satisfied in the system and the ‘reachability_status’
column signifies the IP reachability status done by the system.

The status of the intents were also successfully updated in the VCMDB intent
database after pre-validation.

The intent structures created were low-level, i.e., they maintain an under-
standable simplicity for the user while at the same time contain the basic in-
formation necessary for validating the addressed protocol/feature and not too
much information so that it moves away from the concept of IBN. From this,

34

Figure 6.4: Reachability Intents status

it can be inferred that the pre-validation proof-of-concept was successful based
on the provided intents and the design choice is a good one.

6.0.3 Network configuration representation

As described in chapter [5] in order to have a vendor-agnostic format for config-
uration files, OpenConfig was chosen as the data model for representation.

e Conversion of Cisco config into OpenConfig format - This is done
by first converting the Cisco configuration file into viModel using Batfish
(as shown in figure and then to an OpenConfig JSON as shown in

figure

e Conversion of Juniper config into OpenConfig format - This is
done by first converting the Juniper configuration file into viModel using
Batfish (as shown in figure[6.7) and then to an OpenConfig JSON as shown

in figure [6.8]

As can be seen from the results, the viModel of Batfish converts the data
plane of Cisco and Juniper into a common format. From here, using schemas
in Python, these were converted to OpenConfig format according to their cor-
responding configurations.

The requirement of a vendor-agnostic is re-addressed using this feature. By
not only providing a common platform in OpenConfig for representing network
configurations, this proof of concept also lays the foundations for expansion into
all available features from viModel to OpenConfig.

35

v object {4}
v answerElements [1]
v 0 {3}
class ! org.batfish.question.VIModelQuestionPlugin$VIModelAnswerElement
¥ nodes {1}

¥ routerl {51}
configurationFormat : CISCO_IOS_XR
exportBgpFromBgpRib ! true
generateBgpAggregatesFromMainRib : false
name : inar@l-iprod.nae@7
asPathAccessLists {0}
asPathExprs {0}
asPathMatchExprs {8}
authenticationkeyChains {8}
communityMatchExprs {27}
communitySetExprs {27}
communitySetMatchExprs {54}

¥y ¥ Y¥YYYYVYY

communitySets {8}
defaultCrossZoneAction : PERMIT
defaultInboundAction : PERMIT
deviceModel : CISCO_UNSPECIFIED
deviceType : ROUTER
disconnectAdminDownInterfaces ! true

v

dnsServers [4]
dnsSourceInterface : null
domainName : gi-nw.viasat.io

v

generatedReferenceBooks {8}
humanName : inar@l-iprod.nae@7
ikePhaselKeys {@}
ikePhaselPolicies {@}
ikePhaselProposals {0}
interfaces {84}
ipbAccessLists {0}
ipAccessLists {8}
ipSpaceMetadata {1}
ipSpaces {1}
ipsecPeerConfigs {0}

¥ ¥ Y¥YY¥YY¥YVYVYVYVYY

ipsecPhase2Policies {@}

» ipsecPhase2Proposals {0}

» loggingServers [1]
loggingSourceInterface : MgmtEth@/RPO/CPUR/@
mainRibEnforceResolvability : false

» mlags {0}

ntpServers [1]

ntpSourcelnterface : null

packetPolicies {0}

route6FilterLists {1}

routeFilterLists {6}

routingPolicies {54}

snmpSourceInterface : null

snmpTrapServers [@]

¥y ¥ v.vw v

y¥v

tacacsServers [@]
tacacsSourceInterface : MgmtEth@/RP0/CPUO/ O
» trackingGroups {0}
» vendorFamily {5}
» vrfs {7}

» zones {0}

summary : null
» question {8}
status : SUCCESS

» summary {4}

Figure 6.5: Cisco viModel

36

1

“interfaces": [

"name": "FortyGigE@/e/8/308",
"enabled": false,
“mtu": 1500

"description": "MANAGED | routerx | et-@/@/@ | |",
"name": "HundredGigE@/@/0/0",
"enabled": true,

“mtu": 9192
Y
{
"description": "MANAGED | routery | ©/@/8/0 | |",
"name": "HundredGigEe/e/0/1",
"enabled": true,
“mtu": 9192
{
"name": "HundredGigE®/@/0/2",
"enabled": false,
“mtu": 1500
h
{
"description™: "\"MAMNAGED | routera | HundredGigabit®/@/@/13\"",
"name": "HundredGigE®/e/0/3",
"enabled": true,
"mtu": 9192,
“subinterfaces": [
"description”: "\"MANAGED | routerl | HundredGigabit®/0/@0/13.601 | |
“name": "HundredGigE®/0/0/3.601",
"index": 601,
"enabled": true
H
{
“description": "\"MANAGED | routerl | HundredGigabit®/0/0/13.602 |
“name": "“HundredGigE®/8/0/3.602",
"index": 602,
"enabled": true
"description”: "\"MANAGED | routerl | HundredGigabit®/0/@/13.603 | |
“name": "HundredGigE®/0/0/3.683",
"index": 603,
"enabled": true
H
{
"name": "PTPQ/RPO/CPU/Q",
"enabled": false,
"mtu": 1500
h
{
"name": "PTP@/RP1/CPUQ/@®",
"enabled": false,
"mtu": 1500
}
1,
"name": "routerl",
"system": {
"dns": {
“servers'": |[
"'10.43.0.12",
"10.43.0.44",
"10.43.1.12",
"'10.43.1.44"
]
h

"hostname": "routerl",
"domain-name": 'gi-nw.viasat.io",
"ntp": {
"servers': [
{
"address": "10.137.188.93"

|
}
"vendor-model": "CISCO_IOS_XR"

Figure 6.6: Cisco Openconfig JSON

37

COMMON_RI_BACKHAUL\"",

| PPN_TO_CN_BACKHAUL\"",

PPN_TO_PPN_DATA_BACKHAUL\"",

¥ object {4}
v answerElements [1]
v o {3}
class : org.batfish.question.VIModelQuestionPlugin$VIModelAnswerElement
¥ nodes {1}
¥ routerl {51}
configurationFormat : JUNIPER
exportBgpFromBgpRib : false
generateBgpAggregatesFromMainRib : false
name : routerl
asPathAccessLists {@}
asPathExprs {0}
asPathMatchExprs {8}
authenticationkeyChains {8}
communityMatchExprs {120}
communitySetExprs {0}
communitySetMatchExprs {120}
communitySets {119}
defaultCrossZoneAction : PERMIT
defaultInboundAction : PERMIT
deviceModel : JUNIPER_UNSPECIFIED
deviceType : ROUTER
disconnectAdminDownInterfaces : true

¥y ¥ Y Y¥YY¥YYVYY

v

dnsServers [2]
dnsSourcelnterface : null
domainName : gi-nw.viasat.io

v

generatedReferenceBooks {0}
humanName : null
ikePhaselkeys {0}
ikePhaselPolicies {@}
ikePhaselProposals {0}
interfaces {145}
ipbAccessLists {@}
ipAccessLists {13}
ipSpaceMetadata {0}
ipSpaces {0}
ipsecPeerConfigs {8}

Y Y ¥YY¥YY¥YYVYVYVYY

ipsecPhaseZPolicies {0}

» ipsecPhase2Proposals {0}

» loggingServers [1]
loggingSourceInterface : null
mainRibEnforceResolvability : false

» mlags {0}

ntpServers [1]

v

ntpSourcelnterface : null
packetPolicies {@}
route6FilterLists {5}
routeFilterLists {119}
routingPolicies {319}

¥y v v.uy>5

snmpSourceInterface : null

v

snmpTrapServers [0]

v

tacacsServers [2]
tacacsSourcelnterface : null
trackingGroups {0}
vendorFamily {5}

vrfs {62}

» zones {@}

vy vy

summary : null
» question {8}
status : SUCCESS
» summary {4}

Figure 6.7: Juniper viModel

38

{
“system": {
"hostname": "routerl",
"dns": {

"servers": |[
"10.43.0.12",
"10.43.1.12"

]

}
"ntp": {
"servers": |[
"address": "10.137.188.204"
}
]
8

"vendor-model": "JUNIPER",
"domain-name": "gi-nw.viasat.io"
)
“pame": "routerl",
“interfaces": [
{
"name": "ael3",
"description": "netsw@l/@2-vprod | Po-13-14",
"mtu": 9192,
"enabled": true,
"subinterfaces": [
{
"name": "“ael3.1300",
"index": 1300,
"description": "router2 | ael3.1300",
"enabled": true

"name": "“ael3.1303",

"index": 1303,

"description": "router2 | IRB.1303",
"enabled": true

"name": "ael3.1499",
"index": 1499,
"description": "router2 | ael3.1499",
"enabled": true
}
]
h
Mname": "irb",
"subinterfaces": [
{
“name": "irb.2001",
"index": 2001,
"description": "SMAC_CTRL Tenant",
"enabled": true

"name": "irb.2002",

"index": 2002,

"description": "SMAC_DATA Tenant",
"enabled": true

"index": 2003,

"name": "irb.2003",

"description": "WWA_SAT_DATA Tenant",
"enabled": true

“name": "lo@",
"mtu": 1500,
"enabled": true,
"subinterfaces": [

"name": "1lo@.1006",

"index": 1006,

"description": "Internet | Loopback",
“enabled": true

"name": "lo@.1010",

"index": 10180,

"description": "MGMT_BACKHAUL_TYPE1 HUB | Loopback",
"enabled": true

{ 39
"name": "lo@.10006",

"index": 10006,

"description": "FIREWALL_INTERNET | Loopback",
“enabled": true

Figure 6.8: Juniper Openconfig JSON

40

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

This section concludes the work done in this thesis. This is mainly centered
around answering the research questions from chapter [1| based on the findings
and results that were obtained during this thesis.

1. RQ1 - How to design a framework which helps adapt the IBN
concept to traditional, non-programmable network devices. This
framework should be seamless for all types of network devices
and be vendor-agnostic. Over the course of this thesis, a customized
framework was created for the IBN concept to support traditional non-
programmable devices. This was illustrated in chapter[d The architecture
is modular, simple and is compatible universally with all types of networks.
The modular nature of the architecture was emphasised by the three sub-
divisions - Intent Translation, Validation and Implementation. Thus, the
IBN concept has been extended to legacy network devices as well.

2. RQ2 - How to design an intent structure for low-level intents
which can be used to pre-validate two popular types of network
requirements namely - BGP peering and end-to-end IP reachab-
ility. Section illustrates the custom schema format created for BGP
peering and IP reachability intents. This custom schemas enable network
operators to specify intents at a moderately high level in a vendor-agnostic
manner without resorting to specifying every parameter that needs to be
checked. The intents were stored and managed using a carefully chosen
intent database in the form of VCMDB (Viasat proprietary), which was
then used to pre-validate on the network.

¢ RQ2(a) - Based on the defined low-level intents, how to
pre-validate network changes in an IBN infrastructure on
legacy devices before they are deployed onto the network?
After researching multiple pre-validation tools, Batfish was chosen as
the best tool for pre-validating legacy device configurations. This is

41

mainly because Batfish builds a data plane model which is vendor-
agnostic and simulates the forwarding scenario based on the current
network snapshot. Taking advantage of this, BGP and reachability
status of the above mentioned intents can be validated. The design
choices in the sub-module of pre-validation have been explained in
detail in chapter Batfish also provides viModel, which proved
crucial in RQ1 stated above.

3. RQ3 Design a method to have a common platform to manage
network configuration formats in a vendor-agnostic format.For
making the architecture truly vendor-agnostic, OpenConfig was adopted
as the means to achieve this goal. Using viModel and schemas created
in Python, Proof-of-concept OpenConfig data models were created for

Juniper and Cisco devices for interface and node information as explained
in chapter

7.2 Future work

For future work, the following areas could potentially provide new areas of
research:

e Expand the current architecture to include Intent Definition Languages,
and use them to directly convert configurations to OpenConfig format.

e Take advantage of the modular nature of this architecture to integrate
with already existing Software-defined IBN frameworks.

e Explore the usage and integration of Machine Learning methods to predict
network faults based on network pre-validation data.

42

Bibliography

1]

2]

E.S. Al-Shaer and H.H. Hamed. Discovery of policy anomalies in distributed
firewalls. In IEEE INFOCOM 2004, volume 4, pages 2605-2616 vol.4, 2004.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A General
Approach to Network Configuration Verification. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 155-168, New York, NY, USA, 2017. Association for
Computing Machinery.

Barry W. Boehm. Verifying and validating software requirements and
design specifications. IEEFE Software, pages 75-88, 1984.

CBT Nuggets. Native YANG models: IETF vs Openconfig vs
Cisco. |https://www.cbtnuggets.com/blog/technology/networking/
native-yang-models-ietf-vs-openconfig-vs-cisco, Sep 2021. Last
accessed: May. 16, 2022.

Walter Cerroni, Chiara Buratti, Simone Cerboni, Gianluca Davoli, Chiara
Contoli, Francesco Foresta, Franco Callegati, and Roberto Verdone. Intent-
based management and orchestration of heterogeneous openflow/IoT SDN
domains. In 2017 IEEE Conference on Network Softwarization (NetSoft),
pages 1-9, 2017.

Cisco Systems. Cisco intent-based networking (IBN). https://www.cisco.
com/c/en/us/solutions/intent-based-networking.html, 2021. Last
accessed: May. 14, 2022.

Alexander Clemm, Laurent Ciavaglia, Lisandro Zambenedetti Granville,
and Jeff Tantsura. Intent-Based Networking - Concepts and Definitions.
IETF Network Working Group, Mar 2020.

Rami Cohen, Katherine Barabash, Benny Rochwerger, Liran Schour,
Daniel Crisan, Robert Birke, Cyriel Minkenberg, Mitchell Gusat, Renato
Recio, and Vinit Jain. An intent-based approach for network virtualiza-
tion. In 2013 IFIP/IEEFE International Symposium on Integrated Network
Management (IM 2013), pages 42-50, 2013.

Nick Feamster and Hari Balakrishnan. Detecting BGP Configuration Faults
with Static Analysis. In Proceedings of the 2nd Conference on Symposium
on Networked Systems Design Implementation - Volume 2, NSDI'05, page
43-56, USA, 2005. USENIX Association.

43

https://www.cbtnuggets.com/blog/technology/networking/native-yang-models-ietf-vs-openconfig-vs-cisco
https://www.cbtnuggets.com/blog/technology/networking/native-yang-models-ietf-vs-openconfig-vs-cisco
https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
https://www.cisco.com/c/en/us/solutions/intent-based-networking.html

[10]

[17]

[18]

[19]

[20]

[21]

22]

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. A general approach to
network configuration analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 469-483, Oakland,
CA, May 2015. USENIX Association.

Vikas Gaikwad and Rachita Rake. Software defined networking Market by
Component - Forecast 2020-2027. Allied Market Research, ”Sep” 2020.

Geekflare. 11 Best Continuous Integration(CI) Tools in 2022. https:
//geekflare.com/best-ci-tools/, Mar 2022. Last accessed: May. 15,
2022.

Yoonseon Han, Jian Li, Doan B. Hoang, Jae-Hyoung Yoo, and James
Won-Ki Hong. An intent-based network virtualization platform for SDN.
2016 12th International Conference on Network and Service Management
(CNSM), pages 353-358, 2016.

IBM Corporation. Apache MapReduce. https://www.ibm.com/topics/
mapreduce, 2021. Last accessed: May. 15, 2022.

Intentionet. Batfish. https://www.batfish.org/, 2021. Last accessed:
May. 15, 2022.

Internet Engineering Task Force (IETF). RFC 6020 - YANG - A Data
Modeling Language for the Network Configuration Protocol. https:
//datatracker.ietf.org/doc/html/rfc6020, Oct 2010. Last accessed:
May. 15, 2022.

Internet Engineering Task Force (IETF). RFC 7575 - Autonomic Network-
ing: Definitions and Design Goals. https://datatracker.ietf.org/doc/
html/rfc7575, Jun 2015. Last accessed: May. 15, 2022.

Internet Engineering Task Force (IETF). RFC 8049 - YANG Data Model
for LBVPN Service Delivery. https://datatracker.ietf.org/doc/html/
rfc8049, Feb 2017. Last accessed: May. 15, 2022.

Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira, and
Lisandro Zambenedetti Granville. Refining Network Intents for Self-Driving
Networks. In Proceedings of the Afternoon Workshop on Self-Driving Net-
works, SelfDN 2018, page 1521, New York, NY, USA, 2018. Association
for Computing Machinery.

Juniper Networks. Juniper Apstra IBN solution. https://www.juniper.
net/us/en/products/network-automation/apstra.html, 2021. Last ac-
cessed: May. 14, 2022.

Justina Alexandra Sava. Software-defined networking market revenue
worldwide 2020-2027. https://www.statista.com/statistics/468636/
global-sdn-market-size/, Feb 2022. Last accessed: May. 15, 2022.

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick
McKeown, and Scott Whyte. Real Time Network Policy Checking Using
Header Space Analysis. In 10th USENIX Symposium on Networked Systems

44

https://geekflare.com/best-ci-tools/
https://geekflare.com/best-ci-tools/
https://www.ibm.com/topics/mapreduce
https://www.ibm.com/topics/mapreduce
https://www.batfish.org/
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc8049
https://datatracker.ietf.org/doc/html/rfc8049
https://www.juniper.net/us/en/products/network-automation/apstra.html
https://www.juniper.net/us/en/products/network-automation/apstra.html
https://www.statista.com/statistics/468636/global-sdn-market-size/
https://www.statista.com/statistics/468636/global-sdn-market-size/

[23]

[24]

[25]

[29]

[30]

Design and Implementation (NSDI 13), pages 99-111, Lombard, IL, April
2013. USENIX Association.

Peyman Kazemian, George Varghese, and Nick McKeown. Header space
analysis: Static checking for networks. In 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pages 113-126,
San Jose, CA, April 2012. USENIX Association.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the Data
Plane with Anteater. In Proceedings of the ACM SIGCOMM 2011 Con-
ference, SIGCOMM ’11, page 290-301, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler,
and Shriram Krishnamurthi. The margrave tool for firewall analysis. In

Proceedings of the 24th International Conference on Large Installation Sys-
tem Administration, LISA’10, page 1-8, USA, 2010. USENIX Association.

Nokia Corporation. Network Services Platform. https://www.nokia.com/

networks/products/network-services-platform/, 2021. Last accessed:
May. 14, 2022.

OpenConfig group. OpenConfig. https://www.openconfig.net/, 2021.
Last accessed: May. 15, 2022.

Lei Pang, Chungang Yang, Danyang Chen, Yanbo Song, and Mohsen Guiz-
ani. A survey on intent-driven networks. IEEFE Access, 8:22862-22873,
2020.

B. Quoitin and S. Uhlig. Modeling the routing of an autonomous system
with C-BGP. IEEE Network, 19(6):12-19, 2005.

Ratul Mahajan, Intentionet. The what, when, and how of
network validation. https://www.intentionet.com/blog/
the-what-when-and-how-of-network-validation/, 2019. Last ac-
cessed: Mar. 17, 2022.

Mohammad Riftadi. Intent-based networking with programmable data
planes. Master thesis, Delft University of Technology, Delft, The Neth-
erlands, 2019.

Mohammad Riftadi and Fernando Kuipers. P4I/0O: Intent-Based Network-
ing with P4. In 2019 IEEE Conference on Network Softwarization (Net-
Soft), pages 438-443, 2019.

Barun Kumar Saha, Deepaknath Tandur, Luca Haab, and Lukasz Podleski.
Intent-Based Networks: An Industrial Perspective. In Proceedings of the
1st International Workshop on Future Industrial Communication Networks,
FICN 18, page 35-40, New York, NY, USA, 2018. Association for Com-
puting Machinery.

Jirgen Schonwélder, Martin Bjorklund, and Phil Shafer. Network configur-
ation management using NETCONF and YANG. IEEE Communications
Magazine, 48(9):166-173, 2010.

45

https://www.nokia.com/networks/products/network-services-platform/
https://www.nokia.com/networks/products/network-services-platform/
https://www.openconfig.net/
https://www.intentionet.com/blog/the-what-when-and-how-of-network-validation/
https://www.intentionet.com/blog/the-what-when-and-how-of-network-validation/

[35]

[37]

[38]

STC Admin - Software testing Class. Difference between Veri-
fication and Validation. http://www.softwaretestingclass.com/
difference-between-verification-and-validation/, Aug 2013. Last
accessed: May. 15, 2022.

Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and
P. Mohapatra. FIREMAN: a toolkit for firewall modeling and analysis. In
2006 IEEE Symposium on Security and Privacy (S P’06), pages 15 pp.—213,
2006.

Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, and Massimiliano
Di Penta. Ci/cd pipelines evolution and restructuring: A qualitative and
quantitative study. In 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 471-482, 2021.

Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju,
Junda Liu, Nick McKeown, and Amin Vahdat. Libra: Divide and Con-
quer to Verify Forwarding Tables in Huge Networks. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14),
pages 87-99, Seattle, WA, April 2014. USENIX Association.

46

http://www.softwaretestingclass.com/difference-between-verification-and-validation/
http://www.softwaretestingclass.com/difference-between-verification-and-validation/

	Preface
	Introduction
	Background
	Problem definition
	Research Questions
	Thesis Outline

	Theoretical Background
	Intent-based networking
	What is an intent?
	IBN Architecture
	Network configuration representation

	Network Verification

	Network validation
	Defining Network Validation
	Batfish
	What is Batfish?
	Batfish as a network pre-validation tool

	IBN architecture design
	Design challenges
	Defining the architecture
	CI/CD pipeline

	The Intent Database
	VCMDB database
	The intent nomenclature
	The `config' field
	The Intent database User Interface

	Network Configuration Representation
	Need for a common configuration representation
	Batfish viModel
	YANG models and OpenConfig
	Combining viModel and OpenConfig

	Results
	System performance of network pre-validation
	Network Pre-validation
	Network configuration representation

	Conclusions and Future Work
	Conclusions
	Future work

