

Delft University of Technology

Visual Navigation in Real-World Indoor Environments Using End-to-End Deep
Reinforcement Learning

Kulhanek, Jonas; Derner, Erik; Babuska, Robert

DOI
10.1109/LRA.2021.3068106
Publication date
2021
Document Version
Accepted author manuscript
Published in
IEEE Robotics and Automation Letters

Citation (APA)
Kulhanek, J., Derner, E., & Babuska, R. (2021). Visual Navigation in Real-World Indoor Environments Using
End-to-End Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 6(3), 4345-4352.
https://doi.org/10.1109/LRA.2021.3068106

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/LRA.2021.3068106
https://doi.org/10.1109/LRA.2021.3068106

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

Visual Navigation in Real-World Indoor Environments Using
End-to-End Deep Reinforcement Learning

Jonáš Kulhánek1, Erik Derner2, and Robert Babuška3

Abstract—Visual navigation is essential for many applications
in robotics, from manipulation, through mobile robotics to
automated driving. Deep reinforcement learning (DRL) provides
an elegant map-free approach integrating image processing,
localization, and planning in one module, which can be trained
and therefore optimized for a given environment. However, to
date, DRL-based visual navigation was validated exclusively
in simulation, where the simulator provides information that
is not available in the real world, e.g., the robot’s position
or segmentation masks. This precludes the use of the learned
policy on a real robot. Therefore, we present a novel approach
that enables a direct deployment of the trained policy on real
robots. We have designed a new powerful simulator capable of
domain randomization. To facilitate the training, we propose
visual auxiliary tasks and a tailored reward scheme. The policy
is fine-tuned on images collected from real-world environments.
We have evaluated the method on a mobile robot in a real office
environment. The training took approximately 30 hours on a
single GPU. In 30 navigation experiments, the robot reached a
0.3-meter neighbourhood of the goal in more than 86.7 % of
cases. This result makes the proposed method directly applicable
to tasks like mobile manipulation.

Index Terms—Vision-based navigation, reinforcement learning,
deep learning methods.

I. INTRODUCTION

V ISION-BASED navigation is essential for a broad range
of robotic applications, from industrial and service

robotics to automated driving. The wide-spread use of this
technique will be further stimulated by the availability of low-
cost cameras and high-performance computing hardware.

Conventional vision-based navigation methods usually build
a map of the environment and then use planning to reach

Manuscript received: October 15, 2020; Revised February 16, 2021; Ac-
cepted February 16, 2021.

This paper was recommended for publication by Editor Eric Marchand upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by the European Regional Develop-
ment Fund under the project Robotics for Industry 4.0 (reg. no.
CZ.02.1.01/0.0/0.0/15_003/0000470). Robert Babuška was supported by the
European Union’s H2020 project Open Deep Learning Toolkit for Robotics
(OpenDR) under grant agreement No 871449. A part of the computational
resources was supplied by the project "e-Infrastruktura CZ" (e-INFRA
LM2018140) provided within the program Projects of Large Research, De-
velopment and Innovations Infrastructures.

1Jonáš Kulhánek is with the Czech Institute of Informatics, Robotics, and
Cybernetics, Czech Technical University in Prague, 16636 Prague, Czech
Republic jonas.kulhanek@cvut.cz

2Erik Derner is with the Czech Institute of Informatics, Robotics, and
Cybernetics, Czech Technical University in Prague, 16636 Prague, Czech Re-
public and with the Department of Control Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, 16627 Prague, Czech
Republic erik.derner@cvut.cz

3Robert Babuška is with Cognitive Robotics, Faculty of 3mE, Delft
University of Technology, 2628 CD Delft, The Netherlands and with the Czech
Institute of Informatics, Robotics, and Cybernetics, Czech Technical Univer-
sity in Prague, 16636 Prague, Czech Republic r.babuska@tudelft.nl

Digital Object Identifier (DOI): see top of this page.

the goal. They often rely on precise, high-quality stereo
cameras and additional sensors, such as laser rangefinders,
and are computationally demanding. As an alternative, end-
to-end deep-learning systems can be used that do not employ
any map. They integrate image processing, localization, and
planning in one module or agent, which can be trained
and therefore optimized for a given environment. While the
training is computationally demanding, the execution of the
eventual agent’s policy is computationally cheap and can be
executed in real time (sampling times around 50 ms), even
on light-weight embedded hardware, such as NVIDIA Jetson.
These methods also do not require any expensive cameras.

The successes of deep reinforcement learning (DRL) on
game domains [1]–[3] inspired the use of DRL in visual
navigation. As current DRL methods require many training
samples, it is impossible to train the agent directly in a real-
world environment. Instead, a simulator provides the training
data [4]–[14], and domain randomization [15] is used to cope
with the simulation-to-reality gap. However, there are several
unsolved problems associated with the above simulator-based
methods:

• The simulator often provides the agent with features that
are not available in the real world: the segmentation
masks [4], [6], [10], distance to the goal, stopping signal
[4]–[7], [11], [12], [14], etc. This information is given
either as one of the agent’s inputs [4], [10] or in the form
of an auxiliary task [6]. While this improves the learning
performance, it precludes a straightforward transfer from
simulation-based training to real-world deployment. For
auxiliary tasks using segmentation masks during training
[6], another deep neural network could be used to anno-
tate the inputs [16], [17]. However, this would introduce
additional overhead and noise to the process, and it would
diminish the performance gain.

• Another major problem with the current approaches [4]–
[7], [11], [12], [14] is that during the evaluation, the agent
uses yet other forms of input provided by the simulator.
In particular, it relies on the simulator to terminate the
navigation as soon as the agent gets close to the goal.
Without this signal from the simulator, the agent never
stops, and after reaching the goal, it continues exploring
the environment. If we provide the agent with the ter-
mination signal during training, in some cases, the agent
learns an efficient random policy, ignores the navigation
goal, and only explores the environment efficiently.

To address these issues, we propose a novel method for
DRL visual navigation in the real world, with the following
contributions:

1) We developed a fast and realistic environment simulator

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

based on Quake III Arena [18] and DeepMind Lab [19].
It allows for pre-training the agents quickly, and thanks
to the high degree of variation in the simulated environ-
ments, it helps to bridge the reality gap. Furthermore, we
propose a procedure to fine-tune the pre-trained agent
on a dataset consisting of images collected from the
real-world environment. This enables us to use a lot
of synthetic data collected from the simulator and still
train on data visually similar to the target real-world
environment.

2) We designed a set of auxiliary tasks that do not require
any input that is not readily available to the robot in
the real world. Therefore, we can use the auxiliary tasks
both during the pre-training on the simulator and during
the fine-tuning on previously unseen images collected
from the real-world environment.

3) Similarly to [8], [9], we use an improved training pro-
cedure that forces the agent to detect whether it reached
the goal automatically. This enables the direct use of the
trained policy in the real world, where the information
from the simulator is not available.

4) To demonstrate the viability of our approach, we report
a set of experiments in a real-world office environment,
where the agent was trained to find its goal given by an
image.

II. RELATED WORK

The application of DRL to the visual navigation domain has
recently attracted a lot of attention [4]–[14]. This is thanks
to the deep learning successes in the computer vision [17],
[20] and gaming domains [2], [3], [21]. However, most of the
research was done in simulated environments [4]–[10], [13],
[14], where one can sample an almost arbitrary number of
trajectories. The early methods used a single fixed goal as
the navigation target [7]. More recent approaches are able to
separate the goal from the navigation task and pass the goal as
an input either in the form of an embedding [4], [9], [14] or as
an input image [5], [6], [11], [12]. Visual navigation was also
combined with natural language in the form of instructions for
the agent [10].

The use of auxiliary tasks to stabilize the training was
proposed in [7] and later applied to visual navigation [6]. In
our work, we use a similar set of auxiliary tasks, but instead of
using segmentation masks to build the internal representation
of the observation, we use the camera images directly. This
allows us to apply our method to the real world without
labelling the real-world images.

Most of the current approaches [4]–[14] were validated only
in simulated environments, where the simulator provides the
agent with signals that are normally not available in the real-
world setting, such as the distance to the goal or segmentation
masks. This simplifies the problem, but at the same time,
precludes the use of the learnt policy on a real robot.

There are methods [11], [12], [14] which attempt to apply
end-to-end DRL to real-world domains. In [14], the authors
trained their agent to navigate in Google Street View, which
is much more photo-realistic than other simulators. They,

however, did not evaluate their agent on a real robot. In [11], a
mobile robot was evaluated in an environment discretized into
a grid with about 27 states, which is the order of magnitude
lower than our method. Moreover, they did not use visual
features directly but used ResNet [20] features instead. This
makes the problem easier to learn, but the final environment
has to have a lot of visual features recognizable by the trained
ResNet. In our case, we do not need such a requirement, and
our agent is much more general.

Generalization across environments is discussed in [12].
The authors trained the agent in domain-randomized maze-
like environments and experimented with a robot in a small
maze. Their agent, however, does not include any stopping
action, and the evaluator is responsible for terminating the
navigation. Our evaluation is performed in a realistic real-
world environment, and we do not require any external signal
to stop the agent.

We focus on end-to-end deep reinforcement learning. We
believe that it has the potential to overcome the limitations of
and have superior performance to other methods which use
deep learning or DRL as a part of their pipeline, e.g., [22],
[23]. We also do not consider pure obstacle avoidance methods
such as [24]–[26], or methods relying on other types of input
apart from the camera images, e.g., [27], [28].

III. METHOD

We modify and extend our method [6] to adapt it to real-
world environments. We design a powerful environment simu-
lator that uses synthetic scenes to pre-train the agent. The agent
is then fine-tuned on real-world images. The implementation
is publicly available on GitHub1, including the source code of
the simulator2.

A. Network architecture & training

The architecture from our prior work [6] uses a single deep
neural network as the learning agent. It outputs a probability
distribution over a discrete set of allowed actions. The input
to the agent is the visual output of the camera mounted on the
robot, and an image of the goal, i.e., an image taken from the
agent’s target pose. The previous action and reward are also
used as inputs to the agent.

The network is trained using the Parallel Advantage Actor-
Critic (PAAC) algorithm [29] with off-policy critic updates.
We have also considered the Proximal Policy Optimization
(PPO) algorithm [30] as an alternative. While the used network
architecture can, in principle, accommodate various training
algorithms, we have chosen the PAAC algorithm thanks to the
performance it demonstrated in our previous work [6].

The network uses a stack of convolutional layers at the
bottom, Long Short-Term Memory (LSTM) [31] in the middle,
and actor and critic heads. To improve the training perfor-
mance, the following auxiliary tasks were used in [6]: pixel
control, reward prediction, reconstruction of the depth image,
and of the observation and target image segmentation masks.

1https://github.com/jkulhanek/robot-visual-navigation
2https://github.com/jkulhanek/dmhouse

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

KULHÁNEK et al.: VISUAL NAVIGATION IN REAL-WORLD INDOOR ENVIRONMENTS USING END-TO-END DEEP REINFORCEMENT LEARNING 3

Each auxiliary task has its own head, and the overall loss
function is computed as a weighted sum of the individual
losses. For further details, refer to [6], [7].

To be able to train the agent on real-world images, we
modified the set of auxiliary tasks. We no longer use the
segmentation masks as they cannot be obtained from the
environment without manual labelling. We have therefore
replaced the two segmentation auxiliary tasks with two new
auxiliary tasks: one to reconstruct the observation image and
the other one to reconstruct the target image, see Fig. 1. This
guides the convolutional base part of the network to build
useful features using unsupervised learning. We hypothesize
that having the auxiliary tasks share the latent space with
the actor and the critic will have a positive effect on the
training performance. This hypothesis is verified empirically
in Section IV.

last reward

last action

observation

target

conv-base

LSTM

actor

critic

pixel-control

reward-prediction

depth-map

input-image

target-image

A
2C

U
N
R
E
A
L

au
x
il
ia
ry

V
N

Fig. 1. Neural network architecture. It is similar to [6] with the difference
in the visual navigation (VN) auxiliary tasks: we use the raw camera images
instead of the segmentation masks, which are not readily available in the
real-world environment.

Similarly to [9], we have also modified the action set to
include a new action called terminate. This action stops the
navigation episode and, therefore, enables the trained agent to
navigate in a real-world environment using only the camera
images, without additional sensors providing its actual pose in
the environment. During training, when the episode terminates
with the terminate action, the agent receives either a positive
or a negative reward based on its distance to the goal. The
episode can also terminate (with a negative reward) after a
predefined maximum number of steps.

B. Environment simulator

Since DRL requires many training samples, we first pre-
train the agent in a simulated environment and then fine-tune
on images collected from the real world. We have designed
a novel, fast, and realistic 3D environment simulator that
dynamically generates scenes of office rooms. It is based on
DeepMind Lab [7], and it uses the Quake III Arena [18]
rendering engine. We have extended the simulator with office-
like models and textures. Rooms are generated by placing

random objects along the walls, e.g., bookshelves, chairs, or
cabinets. In total, there are seven object classes in the simulator
and up to 14 available spaces to which an object can be placed.
When generating a room layout, nine randomly selected spaces
are filled with random objects.

For each room layout, a new map is generated, which is
then compiled and optimized using tools designed for Quake.
To speed up the training, we keep the same room layout
for 50 episodes before reshuffling the objects. The simulator
also randomizes lighting conditions for each episode. After
generating the room layout, the target object is selected from
the set of objects placed in the room, and a target image is
taken from the proximity of the object. Fig. 2 shows four
random examples of images from the environment.

Compared to other simulators, e.g., Habitat [32], or AI2-
THOR [33], our simulator is less photo-realistic while being
faster and capable of domain randomization. We do not require
the simulator to be photo-realistic since it is used only for
pre-training. Moreover, when using a feature-rich environment
simulator, the agent often learns to use only the recognized
features while ignoring the 3D properties of the environment
[5]. We claim that by having less detail in the environments,
the agent can focus on the navigation using the 3D properties
of the environment instead of recognizing the features.

Fig. 2. Images taken from our environment simulator.

C. Fine-tuning on real-world data

Since the simulated environment does not precisely match
the real-world environment, we fine-tune the agent on a set
of real-world images. Throughout the rest of this paper, we
restrict the motion of the robot to a rectangular grid, both for
the image collection and for the final evaluation experiments.

To collect the training data, we placed the mobile robot
equipped with an RGB-D camera in the real-world envi-
ronment. We programmed the robot to automatically col-
lect a set of images and depth maps from each point of
a rectangular grid in all four cardinal directions. Odom-
etry was used to derive and store the robot’s pose (po-
sition and orientation) from which the image was taken.
In this way, we obtained a dataset consisting of tuples
(x, y, φ, i, camera image, depth map), where x, y, and φ are

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

the pose coordinates, and i is the index of the observation
image, as several images were taken from each pose.

The pre-trained agent was then fine-tuned on the collected
dataset. It was initialized at a random pose, and its current
policy was used to move to the subsequent pose on the grid.
For each pose, a random image was sampled from the dataset,
and this process repeated until the episode terminated. In this
way, the agent was trained in an on-policy fashion on rollouts
generated from previously collected data.

D. Real-world deployment

After the training, the agent uses its trained policy and
requires only the camera observation and the target image – no
depth image or localization is necessary. To deploy our method
to a new environment, we propose the following procedure.
First, the agent is pre-trained in a simulated environment using
our simulator. RGB-D images are then semi-automatically
collected from the real-world environment, and the agent is
fine-tuned on this dataset. Finally, the agent can be placed
in the real-world environment with an RGB camera as its
only sensor. Note that the depth maps are not needed for the
deployed robot.

IV. EXPERIMENTS

First, we compared several algorithms on our 3D simulated
environment. Then, the pre-trained agent was fine-tuned on
the real-world images. We used these real-world images to
evaluate the performance of our method. Finally, we evaluated
the method on the real robot.

A. Hyperparameter configuration

The input images to the network were downsized to 84 ×
84 pixels. The shared convolutional part of the deep neural
network had four convolutional layers. The first convolutional
layer had 16 features, kernel size 8 × 8, and stride 4. The
second convolutional layer had 32 features, kernel size 4× 4,
and stride 2. The third layer had 32 features with kernel
size 4 × 4 and stride 1. The first fully-connected layer had
512 features and the LSTM also had 512 output features
and a single layer. The deconvolutional networks used in the
auxiliary tasks had two layers with kernel sizes 4 × 4 and
strides 2, first having 16 output features. For image auxiliary
tasks, the first layer was shared. The pixel control task used a
similar architecture, but it had a single fully-connected layer
with 2592 output features at the bottom, and it was duelled, as
described in [7], [34]. We used the discount factor γ = 0.99
for simulated experiments and γ = 0.9 for the real-world
dataset. The use of smaller γ for the real-world data was
motivated by shorter episodes to make the algorithm converge
faster. The training parameters are summarized in Table I.
The learning rate decays with f , which is the total number of
frames presented to the learning algorithm. The actor weights,
critic weight, etc., correspond to the weights of each term
in the total loss [6]. Note that the hyper-parameters of other
methods (PPO, PAAC, UNREAL) are omitted from this paper
for brevity, but they are included in the published source code.

TABLE I
OUR METHOD’S PARAMETERS.

name value

discount factor (γ) 0.99 simulated / 0.9 real-world dataset
maximum rollout length 20 steps
number of environment instances 16
replay buffer size 2 000 samples

optimizer RMSprop
RMSprop alpha 0.99
RMSprop epsilon 10−5

learning rate max(0, 7× 10−4
(
1− f

4×107

)
)

max. gradient norm 0.5

entropy gradient weight 0.001
actor weight 1.0
critic weight 0.5
off-policy critic weight 1.0
pixel control weight 0.05
reward prediction weight 1.0
depth-map prediction weight 0.1
input image reconstruction weight 0.1
target image reconstruction weight 0.1
pixel control discount factor 0.9
pixel control downsize factor 4
auxiliary VN downsize factor 4

B. Experiment configuration

For both the simulated environment and the real-world
dataset, we have evaluated the performance of the proposed
algorithm and compared it to the performance of relevant
baseline algorithms. The results were computed from 1000
trials, where the starting position and the goal were sampled
randomly. We present the mean cumulative reward and the
success rate – the percentage of cases when the agent reached
the goal.

C. Simulated environment

In the simulated environment, we trained the algorithm for
8 × 106 training frames. We gave the agent a reward of 1 if
it reached the goal and stopped using the terminate action.
We gave it a reward of −0.1 if it used the terminate action
incorrectly close to (and looking at) an object of a different
type than the goal, e.g., a bookcase while the goal was a chair.
Otherwise, the reward was 0. In the simulated environment,
we did not stop the agent when it used the terminate action
incorrectly. This leads to improved training efficiency because
generating a new room layout is time-consuming.

The evaluation was done in 100 randomly generated envi-
ronments. A total of 1000 simulations were evaluated with
the initial positions and the goals randomly sampled. The
success rate, the mean travelled distance, the mean number
of simulation steps, and their standard deviations are given in
Table II. The mean number of simulation steps was computed
from the successful episodes only, i.e., those episodes which
resulted in the agent signalling the goal correctly.

The training performance can be seen in Fig. 3. Our
algorithm is compared to PAAC [29], which has a comparable
performance to A3C [21], and with PPO [30]. We compared
the proposed method also with the UNREAL method [7].

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

KULHÁNEK et al.: VISUAL NAVIGATION IN REAL-WORLD INDOOR ENVIRONMENTS USING END-TO-END DEEP REINFORCEMENT LEARNING 5

TABLE II
METHOD PERFORMANCE ON SIMULATED ENVIRONMENTS.

algorithm success rate distance travelled (m) simulation steps

ours 1.000 7.691±3.415 41.552±25.717
PAAC 0.420 66.913±30.329 398.214±276.642
PPO 0.408 81.122±25.564 457.404±288.726
UNREAL 0.999 8.322±6.187 45.541±50.349

0 1 2 3 4 5 6 7 8

frames ×106

102

103

st
e
p
s

PAAC

UNREAL

PPO

ours

Fig. 3. The plot shows the average episode length during training in the
simulated environment. The PAAC, UNREAL, PPO, and our algorithm are
compared. Note that we plot the average episode length, which may not
correlate with the success rate – the probability of signalling the goal correctly.
In the case of UNREAL and our algorithm, however, this metric better shows
the asymptotic behaviour of the two algorithms since both converged to the
success rate of one.

D. Real-world dataset

In an office room, we used the TurtleBot 2 robot (Fig. 4)
to collect a dataset of images taken at grid points with a
0.2m resolution. Examples of these images can be seen in
Fig. 5. When we collected the dataset, we estimated the robot
pose through odometry. The odometry was also used for the
evaluation of the trained agent in the experimental environment
to assess whether the agent fulfilled its task and stopped close
to the goal.

The target was sampled from the set of robot positions near
a wall or near an object and facing the wall or the object. The

Fig. 4. Mobile robot TurtleBot 2 in the experimental environment.

Fig. 5. Training images from the real-world dataset.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

frames ×107

−1.5

−1.0

−0.5

0.0

0.5

1.0

re
tu

rn

PAAC

UNREAL

ours

Fig. 6. The average return during training on the simulated environment.

initial position was uniformly sampled from the set of initial
positions, and the initial orientation was chosen randomly. The
set of initial positions is adapted via curriculum learning [6],
[14]. At the beginning of the training, it is defined as all
non-target positions with a distance of up to three steps to
the goal state. Between frames 0.5 × 106 and 5 × 106, this
distance gradually increases to the maximum distance given
by the environment.

The final position of the robot was considered correct when
its Euclidean distance from the target position was at most
0.3m, and the difference between the robot orientation and
the target orientation was at most 30◦. The tolerance was set
to compensate for the odometry inaccuracy. For the purpose
of training, we had chosen the reward to be equal to 1 when
the agent reached and stopped at its target. We penalized the
agent with a reward of −0.01 if it tried to move in a direction
that would cause a collision. Otherwise, the reward was zero.

The algorithm was trained on 1.65 × 107 frames. The
training performance can be seen in Fig. 6. Our method was
compared to the PAAC algorithm [29], and the UNREAL
algorithm [7], modified in the same way as described in
Section IV-C. All agents were pre-trained in the simulated
environment. We evaluated the algorithms in a total of 1000
simulations with the initial positions and the goals randomly
sampled. The success rate, the mean distance from the goal

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

(goal distance) when the goal was signalled, and the mean
number of simulation steps are given in Table III. We also
show a comparison with the same methods trained on the real
images from scratch (labels beginning with np, which stands
for no pre-training). Same as before, the mean number of
simulation steps was computed from the successful episodes
only. For comparison, we also report the shortest path and
the performance of a random agent. The random agent selects
random movements, and when it reaches the target, the ground
truth information is used to signal the goal.

TABLE III
METHOD PERFORMANCE ON REAL-WORLD DATASET.

algorithm success rate goal distance (m) steps on grid

ours 0.936 0.145±0.130 13.489±6.286
PAAC 0.922 0.157±0.209 14.323±10.141
UNREAL 0.863 0.174±0.173 14.593±9.023

np ours 0.883 0.187±0.258 15.880±7.022
np PAAC 0.860 0.243±0.447 13.699±6.065
np UNREAL 0.832 0.224±0.358 15.676±6.578

random 0.205 1.467±1.109 147.956±88.501
shortest path – 0.034±0.039 12.595±5.743

np = not pre-trained

E. Real-world evaluation

Finally, to evaluate the trained network in the real-world
environment, we have randomly chosen 30 pairs of initial and
target states. The trained robot was placed in an initial pose,
and it was given a target image. The results are summarized in
Table IV, where we also include the simulation of the trained
agent on the real-world image dataset. We show the mean
number of simulation steps, the mean distance from the goal
(goal distance), and the success rate, where the mean number
of simulation steps was computed from the successful episodes
only. The latter results slightly differ from the results reported
in the first row of Table III, as in this case, a different smaller
set of the initial state – goal state pairs was used.

TABLE IV
COMPARISON OF REAL-WORLD AND SIMULATION EXPERIMENTS.

evaluation success rate goal distance (m) steps on grid

real mobile robot 0.867 0.175±0.101 15.153±6.455
simulated on real images 0.933 0.113±0.109 14.750±6.583

V. DISCUSSION

A. Alternative agent objective

In this work, we framed the navigation problem as the
ability of the agent to reach the goal and stop there. To this end,
we introduced the terminate action and trained the agent to use
it. Alternatively, we could stick to the approach of previous
visual navigation work [4], [6]–[8], [12] in which the agent
is stopped by the simulator. In the real-world environment,
a localization method [35], [36] would then have to be used
to detect whether the agent reached the goal. However, this

would introduce unnecessary computational overhead for the
robot, and it would obscure the evaluation, as a navigation
failure could be caused by either of the two systems.

B. Simulated environments

Training the agent on the simulated environments was
difficult since the agent was supposed to generalize across
different room layouts. In this case, the agent did not learn
to navigate to a given target by using the shortest path but
to locate the target object in the environment first and then to
navigate to it while minimizing the total number of steps. From
some initial positions, the target could not be seen directly,
and the agent had to move around to see the target. Also,
sometimes, there were many instances of the same object,
complicating the task even more.

Our method achieved the best results of all compared
methods, closely followed by the UNREAL algorithm [7], see
Table II. This clearly indicates the positive effect of using
auxiliary tasks for continuous spaces. The similarity between
our method and the UNREAL algorithm is that both were close
to the optimal solution and could not improve anymore. This is
implied by the fact that both methods reached and signalled the
goal successfully almost always. The difference between PPO
and PAAC was marginal during the training. Both algorithms
were oscillating throughout the training, and unlike our method
and UNREAL, they were not able to stabilize and shorten the
episode length.

C. Real-world dataset

In the case of the real-world dataset (Table III), the goal was
to learn a robust navigation policy in a noisy environment. The
noisiness came from the fact that we did not have access to the
precise robot positions and orientations when the dataset was
collected, but only to their estimates based on odometry. Our
method achieved the best performance. It was followed by the
raw PAAC algorithm [29]. The UNREAL method [7] was the
worst of these methods. We see that for these algorithms, the
average number of steps to get to the target is very close to
the minimal number of steps.

We did not require the agent to end up precisely in the
correct position, but only in the 30 cm neighbourhood of the
target position. Within this neighbourhood, the reward was
always the same, regardless of the actual distance from the
target. The noisiness in the position labels in the dataset might
cause the agent to stop closer to the goal than it was necessary
to meet a safety margin at the cost of more steps.

D. Ablation study

The results in Table III demonstrate the effectiveness of each
of our contributions separately. A substantial performance im-
provement can be observed when using pre-training regardless
of the training algorithm. Although the simulated environment
used continuous space, it looked visually different, and the
set of control actions was different, the pre-training was still
remarkably beneficial for the overall performance.

The pre-training has, however, a relatively small impact
on the UNREAL method. This might be caused by the

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

KULHÁNEK et al.: VISUAL NAVIGATION IN REAL-WORLD INDOOR ENVIRONMENTS USING END-TO-END DEEP REINFORCEMENT LEARNING 7

ineffectiveness of its auxiliary tasks. As the environment was
not continuous, and the rotation actions turned the robot by
90 ◦, the observations at these rotations were non-overlapping.
Therefore, the task of predicting the effect of each action be-
came much more difficult, and instead of helping the algorithm
converge faster, it was adding noise to the gradient.

Our additional auxiliary tasks helped the algorithm re-
gardless of whether pre-training was used. We can notice
this by comparing our algorithm with UNREAL and ‘np
ours’ with ‘np UNREAL’ for the no pre-training case. In
our method, the auxiliary tasks might help the agent learn a
compact representation of each state more quickly and make
the algorithm converge faster. We believe that the proposed
visual navigation auxiliary tasks have a similar effect as using
autoencoders in model-based DRL [37]. In contrast to model-
based methods, the agent is not trained to reconstruct the
observations precisely. Instead, the image reconstruction loss
gradient guides the training process and helps the algorithm
converge in the presence of a noisy policy gradient, especially
at the beginning of the training.

E. Real-world experiment

The results of the real-world experiments indicate that our
algorithm is able to navigate in the real environment well. The
discrepancy in the performance between the simulation and
the real-world environment can be caused by a generalization
error in transferring the learned policy as well as by the errors
in odometry measurements, which were used to estimate the
robot position for the evaluation of the experiment.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed a deep reinforcement learn-
ing method for visual navigation in real-world settings. Our
method is based on the Parallel Advantage Actor-Critic algo-
rithm boosted with auxiliary tasks and curriculum learning. It
was pre-trained in a simulator and fine-tuned on a dataset of
images from the real-world environment.

We reported a set of experiments with a TurtleBot in an
office, where the agent was trained to find a goal given by
an image. In simulated scenarios, our agent outperformed
strong baseline methods. We showed the importance of using
auxiliary tasks and pre-training. The trained agent can be
easily transferred to the real world and achieves an impressive
performance. In 86.7 % of cases, the trained agent was able to
successfully navigate to its target and stop in the 0.3-meter
neighbourhood of the target position with a heading angle
difference of at most 30 degrees. The average distance to the
goal in the case of successful navigation was 0.175 meters.

The results show that DRL presents a promising alternative
to conventional visual navigation methods. Our architecture
provides a powerful way to combine a large number of
simulated samples with a comparatively small number of real-
world ones. We believe that it brings us closer to real-world
applications of end-to-end visual navigation, so avoiding the
need for expensive sensors.

In our future work, we will evaluate this approach in
larger environments with continuous motion of the robot rather

than on the grid. We will perform the experiments using a
motion capture system for accurate ground-truth localization.
To extend the memory of the actor, one can pursue the idea of
implicit external memory in deep reinforcement learning [38]
and transformers [39]. By using better domain randomization,
a general agent can be trained that will not need the robot
pose data accompanying the images in the fine-tuning phase.
We also plan to work with a continuous action space and with
a model of the robot dynamics.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[2] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi,
D. Guo, and C. Blundell, “Agent57: Outperforming the Atari human
benchmark,” arXiv preprint arXiv:2003.13350, 2020.

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[4] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable
agents with a realistic and rich 3D environment,” arXiv preprint
arXiv:1801.02209, 2018.

[5] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 3357–3364.

[6] J. Kulhánek, E. Derner, T. de Bruin, and R. Babuška, “Vision-based
navigation using deep reinforcement learning,” in 2019 European Con-
ference on Mobile Robots (ECMR). IEEE, 2019, pp. 1–8.

[7] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” arXiv preprint arXiv:1611.05397, 2016.

[8] Y. Wu, Y. Wu, A. Tamar, S. Russell, G. Gkioxari, and Y. Tian, “Bayesian
relational memory for semantic visual navigation,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 2769–
2779.

[9] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi, “Visual se-
mantic navigation using scene priors,” arXiv preprint arXiv:1810.06543,
2018.

[10] P. Shah, M. Fiser, A. Faust, J. C. Kew, and D. Hakkani-Tur, “FollowNet:
Robot navigation by following natural language directions with deep
reinforcement learning,” arXiv preprint arXiv:1805.06150, 2018.

[11] X. Ye, Z. Lin, H. Li, S. Zheng, and Y. Yang, “Active object perceiver:
Recognition-guided policy learning for object searching on mobile
robots,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 6857–6863.

[12] A. Devo, G. Mezzetti, G. Costante, M. L. Fravolini, and P. Valigi,
“Towards generalization in target-driven visual navigation by using deep
reinforcement learning,” IEEE Transactions on Robotics, 2020.

[13] K. Chen, J. P. de Vicente, G. Sepulveda, F. Xia, A. Soto, M. Vázquez,
and S. Savarese, “A behavioral approach to visual navigation with graph
localization networks,” arXiv preprint arXiv:1903.00445, 2019.

[14] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K. Anderson,
D. Teplyashin, K. Simonyan, A. Zisserman, R. Hadsell, et al., “Learning
to navigate in cities without a map,” in Advances in Neural Information
Processing Systems, 2018, pp. 2419–2430.

[15] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 23–30.

[16] Y.-T. Hu, J.-B. Huang, and A. Schwing, “MaskRNN: Instance level
video object segmentation,” in Advances in neural information process-
ing systems, 2017, pp. 325–334.

[17] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 10 781–10 790.

[18] W. W. Connors, M. Rivera, and S. Orzel, “Quake 3 arena manual,” 1999.
[19] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright,

H. Küttler, A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al., “DeepMind
Lab,” arXiv preprint arXiv:1612.03801, 2016.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3068106, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[21] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[22] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cogni-
tive mapping and planning for visual navigation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2616–2625.

[23] S. Bhatti, A. Desmaison, O. Miksik, N. Nardelli, N. Siddharth, and
P. H. Torr, “Playing Doom with SLAM-augmented deep reinforcement
learning,” arXiv preprint arXiv:1612.00380, 2016.

[24] P. Regier, L. Gesing, and M. Bennewitz, “Deep reinforcement learning
for navigation in cluttered environments,” 2020.

[25] L. Xie, S. Wang, A. Markham, and N. Trigoni, “Towards monocular
vision based obstacle avoidance through deep reinforcement learning,”
arXiv preprint arXiv:1706.09829, 2017.

[26] A. Singla, S. Padakandla, and S. Bhatnagar, “Memory-based deep
reinforcement learning for obstacle avoidance in UAV with limited en-
vironment knowledge,” IEEE Transactions on Intelligent Transportation
Systems, pp. 1–12, 2019.

[27] N. Botteghi, B. Sirmacek, K. A. Mustafa, M. Poel, and S. Stramigioli,
“On reward shaping for mobile robot navigation: A reinforcement
learning and SLAM based approach,” arXiv preprint arXiv:2002.04109,
2020.

[28] C. Sampedro, H. Bavle, A. Rodriguez-Ramos, P. de la Puente, and
P. Campoy, “Laser-based reactive navigation for multirotor aerial robots
using deep reinforcement learning,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 1024–1031.

[29] A. V. Clemente, H. N. Castejón, and A. Chandra, “Efficient
parallel methods for deep reinforcement learning,” arXiv preprint

arXiv:1705.04862, 2017.
[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-

imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, “Habitat:
A platform for embodied AI research,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019.

[33] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi, “AI2-THOR: An
interactive 3D environment for visual AI,” 2019.

[34] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning, 2016, pp. 1995–2003.

[35] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual place recognition: A survey,” IEEE Trans-
actions on Robotics, vol. 32, no. 1, pp. 1–19, 2016.

[36] Z. Chen, A. Jacobson, N. Sünderhauf, B. Upcroft, L. Liu, C. Shen,
I. Reid, and M. Milford, “Deep learning features at scale for visual
place recognition,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 3223–3230.

[37] N. Wahlström, T. B. Schön, and M. P. Deisenroth, “From pixels to
torques: Policy learning with deep dynamical models,” arXiv preprint
arXiv:1502.02251, 2015.

[38] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou,
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[39] E. Parisotto, H. F. Song, J. W. Rae, R. Pascanu, C. Gulcehre, S. M.
Jayakumar, M. Jaderberg, R. L. Kaufman, A. Clark, S. Noury, et al.,
“Stabilizing transformers for reinforcement learning,” arXiv preprint
arXiv:1910.06764, 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:32:51 UTC from IEEE Xplore. Restrictions apply.

