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Executive summary 
 

Introduction  
 

The European Commission has mandated the presence of some advanced safety features in all 

vehicles sold in the EU from 2022 onwards. Vehicle manufacturers are competing to be at the 

frontline of this technology. However, since the technology is still maturing, there have been 

reports of fatalities that involve vehicles equipped with these features. The main objective of 

such advanced driver assistance systems (ADAS) is to remove the human error factor in driving 

and aims to reduce the severity of the crashes, if not completely prevent it. One such ADAS 

feature prevalent in the market now is the lane-keeping system or lane assistance system. There 

are many vehicles already operational in the market with these systems equipped, with gaining 

focus on higher levels of vehicle automation. Despite the ADAS targeted to improve road 

safety, there are many limitations of this technology that has to be addressed. The systems are 

developed to function in certain conditions and has limitations. Hence it is important to 

understand them. Therefore, this research focuses on the lane-keeping system and uses 

simulation to understand the system limitations associated with it.  

 

The specific operating conditions defined by the original equipment manufacturer (OEM) in 

which the system or the ADAS feature is designed to function is known as the operational 

design domain (ODD) of the system. There are six levels of vehicle automation categorized by 

the Society for Automotive Engineers (SAE), ranging from no-automation (level 0) to full 

automation (level 5). Each of these SAE levels will have a different ODD definition that mainly 

includes infrastructural, environmental, geographic, operational constraints. The system might 

malfunction or disengage in driving situations outside its ODD, and a fallback sequence will 

be initiated to bring the vehicle to a safe stop. However, in the same level of vehicle autonomy, 

each OEM specifies the ODD differently. As a result of the different OEMs competing to be 

at the forefront of the autonomous vehicle market, a wide range of proprietary ODD definitions 

exists. Level 2 vehicle that has ADAS features like lane-keeping system equipped requires a 

human driver to monitor the driving environment at all times. The driver's only source of 

information about the ODD of the vehicle is the publicly available vehicle instruction manual, 

but on closer inspection, some of the ODD boundaries of the system are not explained very 

clearly in them. For example, the boundary conditions for the radius of curvature of the road is 

described as ‘sharp curves’ in 3 out of the 5 OEM manuals and also as ‘winding roads’ in 2 out 

of the 5 OEM manuals. However, what radius value classifies as a sharp curve is missing. 

Similarly, for lane width, 3 out of the 5 OEM manuals mentions that the system cannot function 

at narrow lane widths, but the exact lane width is not provided. Hence, bringing all these 

different ODD definitions by the OEMs under one umbrella is of paramount importance and is 

currently being attempted by regulatory organisations.  

 

A standard way of testing the impact of the different ODD attributes on the performance of a 

lane-keeping system is still absent. A cost and time-efficient way to tackle this problem is by 

using simulation to simulate the different driving situations to find the dependency of the 

different ODD attributes on the ODD definition. However, there is no standard ODD definition 
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format that can be used to test the ODD in a simulation environment. Therefore, this research 

aims to fill this by providing a conceptual framework and a method to assess the ODD 

boundaries of a lane-keeping system using simulation. This would then be beneficial to 

researchers, policymakers, OEMs to refine the ODD and to test the effect of the relevant ODD 

attributes on the performance of the system. This research objective is achieved using the 

following main research question:   

“How to assess the ODD boundaries of vehicles equipped with Lane-Keeping System at 

horizontal curves using PreScan?” 

This research focuses on testing the ODD compliance of the lane-keeping system at a 

horizontal curve. The simulation software used in this study is Simcentre Prescan owned by 

Siemens. The outcome of this thesis is the learnings about the impact of the tested ODD 

attributes on the lane-keeping performance and it can be used in Prescan to assess the ODD of 

more already built test cases in Prescan.  

 

Research method  

 
To answer the formulated research question, this study followed a sequence of three phases, 

namely the exploratory phase, development phase and simulation phase.  

 

The exploratory phase included an initial investigation of the ODD standards, academic 

literature and OEM manuals to gather the ODD attributes relevant to the lane-keeping system 

and the associated ODD boundary conditions. This exploratory phase also included learning 

about the simulation capabilities of Prescan. The vehicle speed, the radius of curvature of the 

curve, lane width and weather conditions were the ODD attributes tested in this research. Test 

vehicle speeds of 100 km/h, 110 km/h, 120 km/h, 130 km/h and 140 km/h were tested at curve 

radii of 750 m, 900 m, 1200 m, and lane widths of 2.6 m, 2.75 m, 3.0 m, 3.25 m, 3.5 m and 3.6 

m. A design speed of 120 km/h was used in the design of experiments and based on that; the 

minimum curve radius of 750 m was chosen from the Rijkswaterstaat guidelines. The tested 

speeds are based on the speed range provided in the OEM manuals. The lane widths values 

tested were chosen based on existing literature on lane-keeping performance. The weather 

conditions tested in this study were fog, heavy rain, extreme rain, heavy snow and extreme 

snow.  

 

The development phase brings together all the findings from the exploratory phase to develop 

the use cases on Prescan. A 0.3 m acceptable lateral offset value is termed as the ‘Offset 

threshold value’ in this study. This value was chosen based on the 0.3 m criterion used in a 

previous driver behaviour study to flag lane wandering events and lane changes. This 

classification involves assigning binary values 1 and 0 to the ‘Performance’ metric proposed 

in this study; 1 means the test vehicle is within the offset threshold value and 0 means the test 

vehicle is deviating beyond the offset threshold value. This performance metric was integrated 

into the developed use cases. While developing the test cases, one attribute was varied at a time 

and the other attributes were kept constant. This was done to check the level of impact each of 
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these attributes has on the lane-keeping performance of the test vehicle. Since none of the ODD 

attributes in a test case changes value during the run time, an initial ODD assessment is done 

that will hold for a specific test case throughout the test run.  

 

Finally, in the simulation phase, the developed test cases were run, the data collected was 

analysed and conclusions were formed. The lateral offset data for every timestep is measured 

from all the test cases run in Prescan. This data is then filtered, compiled and analysed to assess 

the effect of the tested ODD attributes on the lane-keeping performance. The mean lateral 

offset, maximum lateral offset and the proposed ‘Exposure’ metric were used in the analysis. 

The exposure metric is the ratio of the simulation time in which the test vehicle was within the 

offset threshold value based on the performance metric and the total simulation time for which 

the vehicle was driving on the curve. The results from the performance assessment are 

compared with the initial ODD assessment, and conclusions were drawn. 

 

Results and conclusions 

 
The test cases are classified into two, namely with precipitation and without precipitation. The 

test cases without precipitation are compared with each other to identify the impact of change 

in any one of the ODD attributes on the performance and then reflect on the initial ODD 

assessment of the test case. For the test cases with precipitation, they are compared with the 

sunny weather condition. The initial ODD assessment of the test cases with and without 

precipitation are compared with the results obtained from the performance assessment. Figure 

A and Figure B show the variation in mean lateral offset and maximum lateral offset of all the 

test cases without precipitation. As for the test cases with precipitation, the weather variations 

did not show much effect on the lane-keeping performance and hence no conclusive evidence 

could be extracted from it.  

 

 
Figure A: Maximum lateral offset variations of test cases without precipitation 
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Figure B: Mean lateral offset variations of test cases without precipitation 

All the test cases without precipitation at 100 km/h were found to be within the offset threshold 

value of 0.3 m for all lane width and radii of curvature tested. This means that if the upper 

ODD boundary for speed is set at 100 km/h, then all the test cases are fully within the offset 

threshold value. The upper boundary of speed increases to 110 km/h if the upper ODD 

boundary of lane width is set at 3.5 m because all test cases of the vehicle moving at 110 km/h 

have a lateral offset within 0.3 m for all lane widths less than 3.5 m. Similarly, if the vehicle 

has to move at 120 km/h, then only the test cases with the radius of curvature of 1200 m were 

fully within the offset threshold. All the test cases of 1200 m radius curve at 120 km/h in all 

lane width variations are completely within the 0.3 m offset threshold. Similarly, if the vehicle 

has to move at 120 km/h at a 750 m radius of the curve, then the lane width that ensures higher 

lane-keeping performance narrows down to 2.6 m to 2.75 m. This type of correlation between 

the ODD attributes makes it hard to concretely define a specific ODD boundary.  

 

A higher exposure value is indicative of better lane-keeping performance and a lower value of 

exposure is indicative of poorer lane-keeping performance. It was found that higher speeds 

have higher exposure values in narrow lane width compared to wider lane widths for curve 

radii 750 m and 900 m. In the 1200 m radius of curve test cases, there is a decrease in the 

exposure value at 2.6 m and 3.6 m lane width compared to the other lane width. For curve radii 

750 m and 900 m, an increase in lane width results in a higher exposure value. This may be 

because, at a higher radius, the effect of lane width variation becomes more prominent. For the 

same lane width and radius, increasing speed results in lower exposure. Similarly, for the same 

lane width and speed, an increase in radius of curvature results in higher exposure. From all 

the test cases, a lane width of 2.6 m has the highest exposure value and lowest mean lateral 

offset and maximum lateral offset within the same radius of curvature or speed. This is 

surprising since the OEM manuals mention narrow lane widths as outside ODD and do not 

mention wide lanes as an ODD limitation. It was also found that while exiting the curve, there 

was a deviation nature towards the opposing lane shown by the test vehicle. Within the same 
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radius and speed, this deviation nature was found in higher lane widths and minimal in narrow 

lane width.  

 

From the test cases that include weather variations, it was found that the impact of weather was 

negligible. The only notable differences found were the swerving nature at narrow lane width 

conditions and large deviations during extreme snow weather. The test vehicle was observed 

to be swerving heavily between the lane centre and the right lane marking in all-weather 

variations with a 2.6 m lane width. At 3.6 m lane width, the swerving is lesser, and the weather 

conditions do not seem to impact the lateral offset variations compared with the sunny weather 

conditions. Fog and rain conditions were expected to have a higher impact on the vehicle’s 

lane-keeping performance, but surprisingly it had less effect.  

 

It can be concluded from this research that there is a strong interdependency between the ODD 

attributes tested. This can lead to a possibility that the ODD definition may not exactly be a 

straightforward set of specific values in the form of a table, but instead can be dynamic 

considering this interdependency. It was also observed that some test cases classified inside 

ODD from the initial ODD assessment had poor lane-keeping performance and vice-versa. The 

lowest effect on the exposure was shown by weather variations. This can be because of the 

unreliable weather presets in Prescan because results from on-road experiments show a higher 

impact of weather conditions on the lane-keeping performance. It can also be because of any 

underlying factors at play inside the controller. Therefore, based on the impact of the tested 

ODD attributes, speed, radius of curvature and lane width can be classified as critical ODD 

attributes. Another observation from the test cases was the ability of the test vehicle to move 

at higher speeds in narrow lane widths with good lane-keeping performance compared to wider 

lane widths. This falls in line with findings from previous literature and will require validation. 

If narrow lane width does indeed ensure higher lane-keeping performance, then more lanes can 

be added to the roadway and it can facilitate higher capacity. The research approach of this 

study is used to develop a conceptual framework to assess the ODD boundaries of an ADAS 

feature in a simulation environment, as shown in Figure C. 
 

 
Figure C: Proposed framework to assess the ODD of an ADAS feature in simulation  
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Limitations and recommendations 
 

This study has some limitations due to the choices and assumptions made. The lane-keeping 

system’s ODD is not just restricted to the speed, lane width, the radius of curvature and weather 

variations alone. Hence, further studies are required to test more ODD attributes to gain further 

insight into ODD boundary conditions. The major limitation posed by this study is the omission 

of superelevation in the test cases due to the restrictions of the simulation software used. In 

terms of realism, superelevation is very important in the design of the experiments. However, 

the trends reported in this study is still expected to hold since the impact of including 

superelevation will affect all the test cases. Further investigation by including the effect of 

friction and superelevation will be very useful. The same research approach can be used on the 

same or another simulation environment to check if the trends are still visible. The biggest 

drawback in simulation studies is the combinatorial explosion, which limits this research as 

well. From all the combinations of values assigned to the chosen ODD attributes in this study, 

a total of 540 test cases could’ve been tested. However, only 130 cases were possible to test in 

this research. The Simcentre Prescan360 framework does provide a time and cost-effective 

way to address this problem. However, it was not implemented in this study. An initial peak in 

the lateral offset was observed in all test cases, which can be attributed to the lack of V2I 

communication or GPS sensor equipped on the test vehicle. The test vehicle was observed to 

deviate to the right side excessively while entering the curve. This behaviour might be because 

of the lack of superelevation at the curve, or due to the lack of V2I communication or GPS 

since the test vehicle cannot anticipate the curve segment until it reaches the curve.  

 

From a scientific perspective, the ODD assessment conclusions from this study can be 

compared with on-road experiments. With more attributes tested, a higher level of detail can 

be achieved regarding the ODD boundary conditions and the degree of correlation between the 

different ODD attributes must be mapped out as well. The framework proposed by this research 

can be used to perform a similar ODD assessment on lane-keeping systems on other simulation 

platforms or for other ADAS features. Realism can be increased for the simulations by using 

OpenStreetMap or other means of testing real-life driving situations. ODD attributes like time 

of day, road surface conditions, headway, condition of lane marking, driving in shadows, would 

be interesting directions for future research.  

 

From a practical perspective, the OEMs can use the results from this study and the framework 

to test the ODD boundary conditions and better define the OEM manuals. it is recommended 

to have open communication between the developer of the system, policymakers and road 

authorities. Furthermore, the OEM is advised to communicate the ODD boundaries of the 

system more clearly to the drivers to prevent accidents. If the ODD is defined by the OEMs, it 

would be useful for researchers and drivers to know how the ODD boundary conditions were 

tested and the principle behind it. The road authorities can also use this information to adapt 

the existing infrastructure for ensuring safety for vehicles equipped with lane-keeping systems. 

It can also be used by Siemens to fine-tune the lane-keeping algorithm and enhance the lane-

keeping functionality. The ODD assessment approach used in this study can be used to test and 

gather data for the many use cases that are already built on Prescan with a lane-keeping system.
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1. Introduction 

1.35 million people die every year due to road crashes (WHO, 2018), many of which are caused 

by human error. As per the National Highway Traffic Safety Administration (NHTSA), more 

than 90% of collisions are associated with human error, like distraction, fatigue and emotional 

driving (Singh, 2015). Autonomous vehicle (AV) technology removes this human factor in 

driving and aims to reduce the severity and amount of such crashes. It has been shown that the 

introduction of vehicle automation can increase the capacity of roads and intersections since 

AVs travel with shorter headways due to the improved safety that it provides (Kamal et al., 

2015). Additionally, AVs have shown a positive influence on the traffic flow efficiency based 

on indicators like capacity, capacity drop and traffic stability (Hoogendoorn et al., 2014). AVs 

have also proven to increase the mobility of people with limited mobility like the disabled and 

elderly population (Truong et al., 2017), and also increases fuel efficiency, resulting in lower 

emissions (Milakis et al., 2017). Consequently, the European Commission has mandated the 

presence of some advanced safety features in all vehicles sold in the EU from 2022 onwards 

(European Commission, 2018). This will contribute to the EU’s ‘Vision Zero’ project that aims 

at reducing road deaths to almost zero by the year 2050. Along with the safety of people, the 

EU mandate will also help drivers to gradually get used to the Automated Driving System 

(ADS). This will in return increase the public trust and acceptance of AV, eventually 

transitioning to fully autonomous driving.  

1.1. Background 
 

Vehicle manufacturers are competing to be at the frontline of this technology. However, there 

have been multiple incidents in the past few years that involved fatalities while driving an 

autonomous vehicle. One of the noteworthy fatal accidents that made the news is a Tesla with 

an ‘Autopilot’ system speeding up and steering into a concrete barrier1. It was reported that the 

vehicle was operating under conditions it couldn’t handle and that the driver was distracted. 

NHTSA has reported 11 crashes involving Tesla Autopilot, with 17 injuries and one death in 

these 11 crashes. The Tesla ‘Autopilot’ functionality is an advanced driver-assistance system 

(ADAS) designed to keep the vehicle in its lane and at a safe distance from vehicles in front of 

it. Despite the name, the system is designed for assisting the driver and expects the driver to be 

ready to intervene at all times. Another fatal accident that was reported involved an Uber test 

vehicle operating in self-drive mode, and it hit a pedestrian crossing the street with a bicycle2. 

Although the vehicle had a human safety backup driver in the driver’s seat with the ability to 

take over control in case of an emergency, it was shown that the backup driver was visually 

distracted. The investigation found the cause of the accident to be due to the inattention of the 

backup driver. Hence, the safety of commercial AVs is an ongoing debate. This shows a need 

to identify the limitations of the systems’ functionality and the need to evaluate the use of such 

systems in different driving situations. Additionally, drivers must also be aware of the actual 

capabilities of the AV and the limitations of the system in use.  

 
1 https://www.theguardian.com/technology/2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report 
2 https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html 

https://www.theguardian.com/technology/2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
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Each Original Equipment Manufacturer (OEM) are developing their own autonomous system 

that is designed to work in specific geographic, environmental, operational, or infrastructural 

conditions. These dimensions within which the system is designed to function is known as 

Operational Design Domain (ODD). OEMs are trying to implement their own ODD for ADS 

that promises hands-free driving or highly autonomous driving. Examples of such systems are 

the Cadillac SuperCruise system, the General Motors driver monitoring system, Nissan 

ProPilot system, iNext, and so on. Google-owned Waymo became the first service provider to 

offer robotaxi rides to the general public in Arizona3. Recently, Tesla has said to offer ‘full 

self-driving’ feature to private vehicle owners on a subscription basis4. Additionally, 

companies are partnering together to push the AV technology forward, like Ford and 

Qualcomm, Cruise (owned by General Motors), Honda and Microsoft. Amazon recently 

acquired the autonomous vehicle start-up called Zoox5 to also be a competitor in this arena. 

Apple Inc. has announced that they are planning to develop their own autonomous vehicle by 

20246. These recent developments in the market are pointing towards achieving the dream of 

fully autonomous vehicles on the road.  

Different OEMs competing against each other to be the leading brand in AV technology results 

in a wide variety of defined ODD. Each OEM specifies the ODD differently in the same level 

of automation, resulting in a mismatch in the expected capabilities by the driver and actual 

capabilities of the system defined in the OEM manual (Farah et al., 2021). Due to this, questions 

arise like ‘What happens when the AVs encounters a situation outside of its ODD?’ or ‘Are the 

failures outside the ODD permitted as long as the failure response is safe?’. There is no 

accepted standard of ODD that applies to all AVs equally. Additionally, the boundaries of 

existing ODDs are still unclear as well. For instance, in the owner’s manual of a Tesla Model 

S, under the LKAS system, it says that the system may not function properly in sharp curves, 

which is an ODD boundary of the system. However, they don’t specify what radius of the curve 

can be considered as a sharp curve. Similar cases exist in most of the owner’s manuals of other 

AVs with other factors as well. Often the drivers are not aware of the ODD designed for the 

vehicle they are driving and are not informed whether the different real-life driving situations 

are within the ODD of the vehicle or not. Ensuring proper knowledge of the system by the 

driver and awareness is crucial for AV development (Eboli et al., 2017).  Furthermore, there is 

no standard ODD definition format that can be used to test the ODD in a simulation 

environment.  

1.2. Problem definition 
 

Currently, there is no exact form of measurement to assess the ODD of any ADS system or 

ADAS features like lane-keeping system, adaptive cruise control, lane departure warning 

system, autonomous emergency braking system, etc. Having such a quantified ODD 

measurement would be useful in collaboration between the OEM and the other stakeholders to 

 
3 https://arstechnica.com/cars/2020/10/waymo-finally-launches-an-actual-public-driverless-taxiservice/ 
4 https://www.businessinsider.com.au/tesla-autopilot-full-self-driving-subscription-early-2021-elon-musk-2020-12 
5 https://www.forbes.com/sites/tomtaulli/2020/06/27/amazon-buys-zoox-why-self-driving-technology-is-existential/  
6 https://www.theguardian.com/technology/2020/dec/22/apple-plans-self-driving-car-in-2024-with-next-level-battery-technology 

https://www.theguardian.com/technology/2020/dec/22/apple-plans-self-driving-car-in-2024-with-next-level-battery-technology
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improve the system and the infrastructure, and for widespread use of safe AV technology. 

However, due to the competition in the AV market between the different OEMs, such ODD 

assessment reports are not publicly available which hinders the modifications required in the 

system or the infrastructure for better safety. Since the system is designed to perform within its 

ODD, and the current road infrastructure was designed for human drivers, it is imperative to 

test the ODD boundaries of the system in the different driving conditions that an AV might 

encounter. The driving conditions are dependent on the different factors related to the 

infrastructure, environmental conditions, system constraints, operational constraints, and more. 

This dynamic driving environment made of different combinations between these factors 

makes it very difficult to define the ODD and to measure it, as shown in Figure 1. 

 

 
Figure 1: ODD challenges for autonomous vehicles 

 

1.3. Research Objective  

The goal of this research is to identify the attributes relevant to the ODD definition of a specific 

ADS feature chosen to classify developed test cases into either inside or outside the ODD. This 

can then be used to compare with results from a performance metric to test the ODD boundaries 

of that specific feature of the test vehicle using simulation. The developed metric would then 

be beneficial to OEMs to test the ODD of their system and as a long-term objective, be 

beneficial for drivers to be constantly informed about the ODD boundaries during various 

driving situations.  

The ODD assessment metric will be able to test the effect of relevant road, vehicle and 

environmental characteristics on the performance of the lane-keeping system using the 
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simulation software Prescan. This ODD assessment approach will be able to check whether the 

test case classification within or outside the ODD boundary is valid based on the performance 

of the lane-keeping system. Since this is a fairly new topic of investigation and is getting more 

and more prominence lately, a conceptual framework will also be proposed that can guide 

future researchers as a roadmap on how to assess the ODD boundaries of an ADS using 

simulation. 

1.4. Research Approach 

This research aims to answer the research questions by defining scenarios for a specific selected 

ADS system and simulating it in PreScan. For that, the different capabilities of the software 

are first explored and the characteristics relevant to the ODD definition are identified, along 

with finding the ODD attributes relevant to the ADS system from literature and OEM manuals. 

Using this, the use cases are defined, and the test cases are prepared. The test cases will then 

be run to extract the results and then analysis of the results will be done. This performance 

results from the test cases will then be compared with the initial ODD assessment done on the 

test cases. The research approach used in this study is shown in Figure 2. The whole approach 

was utilized for creating a framework for testing the ODD boundaries of a lane-keeping system 

using simulation. 

 

Figure 2: Research approach used in the study 
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1.5. Research Scope  

The scope of this research is limited to the ODD of a lane-keeping system feature of an ADS 

at a horizontal curve. The type of curve (left or right) is not a considered factor in the study. 

The research does not take into account the human behavioural factor of driving or the fallback 

sequence of the system when it leaves its ODD. The interaction with other road users is also 

outside the scope of this research since the sole focus of this study is to understand the effect 

of the different ODD factors identified on the system in different driving scenarios. The effect 

of factors like tire condition, lane marking condition, the nighttime driving condition is also 

not investigated. Additionally, the research does not involve creating or modifying the sensor 

algorithm of the lane-keeping system, but only uses the algorithm that was already being used 

or available in Prescan provided by Siemens. Finally, this study does not aim to provide a new 

ODD definition or to provide a standard ODD definition for a lane-keeping system, but instead 

will focus on the ODD boundary assessment of the lane-keeping system in simulation.   

1.6. Research Outline 

The main findings from the literature review are discussed in Chapter 2, followed by the 

findings from reviewing the OEM manuals in Chapter 3. The research gaps and research 

questions are presented in Chapter 4. This is followed by the research methodology in Chapter 

5 and the results from the analysis are then presented in Chapter 6. The discussion of results 

and formed conclusions are described in Chapter 7. Finally, the recommendations, reflection 

and future studies of this research are detailed in Chapter 8.  
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2. Literature Review  
 

This chapter aims to discuss the findings from the literature review done on the research topic. 

Both academic literature and industrial documents were used for this. The sources used were 

Google Scholar, Researchgate, Elsevier, Sciencedirect, Transportation Research Record, 

among many others. These sources were used to find peer-reviewed journal papers, articles, 

reports, conference publications, and priority was given to the latest sources (2010 onwards).   

 

To find the relevant literature to the research topic more effectively, a review of the 

bibliography of the relevant sources and theses was done in order to narrow down the search. 

This process is called snowballing and it was done throughout the literature review phase. 

Several keywords were used (by itself or in combination) to limit the search for literature. Some 

of these keywords are Operational design domain, Lane keeping system, ADS, Sensors, 

Simulation, Autonomous vehicles, Self-driving, Scenarios, Connected and automated driving. 

These were used to refine the literature at the earlier stage and then further filtering was done 

by reviewing the title and abstract of the gathered literature. 

 

The main objective of the literature review is to provide state of the art of ODD definition so 

far from academic literature, ODD standards and OEM manuals, and to also identify relevant 

attributes to the ODD definition. These identified attributes would then be used to create the 

test scenarios for the simulation. It was found that there is only very limited research published 

on the topic of ODD, and that there is no universally accepted ODD standard yet. Furthermore, 

the ODD definitions provided on the OEM manuals are not clear enough in certain aspects.  

 

2.1. General  
 

With the advent of AVs, there has been immense research that focuses on identifying factors 

important for its safety and testing the performance of the system. Geyer et al. (2014) proposed 

a unified ontology that includes terms like ego vehicle, scenery, scene, scenario, etc. and 

ordered it into test and use case catalogues. This can be used for a structured representation of 

ODD. This was further specified into a two part ontology that consists of road structure by 

Czarnecki where the first one focuses on road structure (Czarnecki, 2018a), and the second one 

on road users and environmental conditions (Czarnecki, 2018b, p. 2). The road structure 

ontology includes factors like road type, road surface, road geometry, cross-section design, 

which can be used to define the ODD for an ADS. The second one covers road users (vehicles 

and pedestrians) and environmental conditions, that include atmospheric, lighting and road 

conditions. Colwell et al. (2018) suggested that models based on this ontology can be used as 

a reference to create an ODD.  

 

The concept of static ODD and dynamic ODD was also introduced by Seppelt et al. (2017) 

where the identified conditions and elements were classified into the two categories. Static 

ODD includes the set of roadway and environmental conditions with a fixed location, whereas 

dynamic ODD contains the set of roadway and environmental conditions for which on-board 

sensing is necessary to identify state changes with respect to time. The study also examined the 
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human considerations in the form of a questionnaire study that tested the knowledge of Tesla 

owners’ knowledge of the AutoPilot functionality. According to the categorisation by Seppelt 

et al. (2017), the ontology proposed by Geyer et al. (2014) is static in nature.  

 

The study done by Wittmann et al. (2015) uses the term ‘functional boundary’, which is similar 

to the ODD concept and highlights the need to monitor the functional boundary for safety 

purposes. The term is similar to ODD in the sense that the boundary defined is identical to the 

domain that can be defined. Identifying the relevant boundaries pertaining to all the 

factors/conditions of the ODD is a challenge because the AV itself is a complex system that 

runs through a complex environment with different variables. The functional boundary defined 

by Wittmann et al. is a combination of static environment, traffic dynamics, environmental 

conditions, vehicle state and passenger actions. Each of this element consists of multiple factors 

to be taken into consideration while defining the boundary. Wittmann et al. has highlighted in 

their study that for safe operation, the monitoring of functional boundary is required.  

 

These studies provide different ways of categorisation of the relevant factors for defining the 

functional boundary or ODD, and studies what an ODD should consist of. The complexity of 

defining a complete ODD of an AV, let alone a single ADAS feature is clearly hard. However, 

there is neither a standard way to define the ODD, nor a formal method to test the ODD and 

the safety and risk associated with it.  

  

2.2. Automated vehicles 
 

2.2.1 Levels of automation 

 

There exist an international standard by The Society of Automotive Engineers (SAE)  

(NHTSA, 2016) which defines AV from Level 0 (full control by the human driver) to Level 5 

(full control by the vehicle), as shown in Table 1.  

 
Table 1: SAE levels of Driving Automation 

 

Level 

 

Name 

Dynamic Driving Task (DDT)  

Fallback 

 

ODD 
Sustained Lateral & 

Longitudinal 

Vehicle Motion 

Control 

Object and Event 

Detection and 

Response 

0 No Driving 

Automation 

Driver Driver Driver N/A 

1 Driver  

Assistance 

Driver and System Driver Driver Limited 

2 Partial Driving 

Automation 

System Driver Driver Limited 

3 Conditional 

Driving 

Automation 

System System Driver Limited 
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4 High Driving 

Automation 

System System System Limited 

5 Full Driving 

Automation 

System System System Unlimited 

 

From Table 1 it can be understood that the ODD is limited to specific driving conditions except 

for level 5 which has unlimited ODD, which indicates that the system can perform all driver-

manageable driving tasks in every on-road driving situations. This means that level 5 ADS 

promise the same mobility that a human driver can provide (Colwell et al., 2018). The functions 

of the driver and system, and the features of the different levels is shown in Figure 3. 

 

 
Figure 3: SAE levels of driving automation and functions 

Driving automation refers to both ADAS and ADS. As per SAE definition, Levels 1 and 2 are 

called Driver Support Systems and Levels 3 to 5 are identified as ADS. However, levels 1 and 

2 are more commonly referred to as ADAS. The purpose of ADAS features on an AV is to 

support human drivers, whereas an ADS can ultimately be able to operate without a human 

driver.  

 

As the name suggests, in Level 0 the driver performs all longitudinal and lateral tasks like 

steering and acceleration. The driver is completely in control, although the system can give 

some warning like lane departure or collision alerts. At Level 1, the system can control the 

speed or steering of the vehicle, but not both simultaneously. Adaptive cruise control is an 
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example for this level of autonomy where a set speed and safe distance between the car ahead 

is maintained by automatically applying the brake and throttle. At Level 2, the vehicle takes 

over the two primary driving functions of lateral and longitudinal control. For example, having 

adaptive cruise control with lane keeping would require both the function and the system does 

that. However, the driver still has to be ready to take-over control in case the system cannot 

handle the driving situation. At Level 3 autonomy, the vehicle can monitor its surroundings 

and can change lanes or accelerate past a slower vehicle by controlling the steering, throttle 

and brake. The driver has to stay alert to take back control when the vehicle initiates it. An 

example feature of this is the traffic jam assist or highway autopilot which can be operated on 

highways or when the traffic is slow. In Level 4, more highly complex driving situations can 

be handled by the system itself. The driver can relax during driving situations that previous 

levels cannot manoeuvre, like construction sites or lane closures. The driver still has the option 

to manually takeover. However, since the ODD of Level 4 ADS is still limited, there can still 

be driving situations that the system cannot handle. In these situations, the vehicle prompts the 

driver to take back control, but if it receives no response, the vehicle brings itself to stop safely. 

Google Waymo is currently operating driverless taxi services in specific areas in the USA. 

Finally, Level 5 autonomy requires no human attention and no fallback ready driver to take 

over either. However, most of the current commercial AV only include Level 1 and Level 2 

autonomy where human drivers are assisted by driver assistance features and partial automation 

is provided. This means that the driver may be requested to take control of the vehicle in certain 

conditions outside the system’s ODD.  

 

The Vienna Convention of 1968 did not allow the large-scale use of higher levels of autonomy 

features on public roads with the exception of Germany. This is a direct consequence of lack 

of standardization and validation techniques (Takács et al., 2018). One of the major milestones 

towards deployments of ADS was the amendments to the 1968 Vienna convention in 2016 that 

allows automated driving technologies transferring driving tasks to the vehicle in traffic, given 

these technologies adhere to the United Nations vehicle regulations or if it can be overridden 

by the driver. As a result, the amendment allows ADS functionalities in AVs, provided that a 

driver is present and can take control of the vehicle (UNECE, 2016).  

 

During ODD violation when the ADS is outside the designed functional boundary, level 4 or 

level 5 ADS responds by automatically performing the DDT, whereas from level 1 to level 3 

ADS, the system requests manual control takeover from a fallback-ready user. The purpose of 

a DDT is to achieve a ‘minimum risk condition’ or ‘safe state’, which is dependent on the 

driving situation (Reschka & Maurer, 2015). When the system’s capability to monitor the 

driving environment is compromised, the DDT fallback sequence ensures the safety of the 

driver with minimal effect on the traffic state. An example DDT fallback sequence can be a 

pullover manoeuvre to the side of the road or braking to avoid an emergency hazard. The roles 

of the user and the ADS for each SAE level of driving automation is shown in Figure 4 

(Daimler, 2019). 
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Figure 4: Roles of driver and system in SAE levels  

The ADS of the vehicle must be aware of the impending ODD exit and alerts the driver for the 

driver to takeover. If the takeover request isn’t fulfilled, the system will initiate the DDT to 

achieve a minimal risk condition. For the driver, it would be more comfortable if the frequency 

of this takeover request is less. The elimination of this transfer situations for the control of 

vehicle between ADS and driver is important. Hence the continuity and length of the ODD 

plays an important role (Kulmala et al., 2019). 

 

The process of AV approaching an ODD exit is illustrated by SAE (SAE, 2018) is shown in 

Figure 5. 

 

 
Figure 5: Performance of AV when approaching ODD exit 
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2.2.2 ADS in vehicles 

 

ADS on a vehicle is capable to perform driving tasks and monitoring the driving environment 

(NHTSA, 2016). The human driver does not have to pay much attention in the driving 

circumstances that ADS assists with as long as the driving situation is within the ODD of the 

system. It provides various benefits that include better efficiency, safety and reduction of 

workload (Kalra, 2017). Driver support systems, as the name suggests, supports the driver by 

providing warnings, assisting in driving function and automating some driving functions. ADS 

replace the human driver decision making to eliminate possible human error and helps to 

provide a better assisted control over the vehicle (Piao & M Mcdonald, 2008). ADS cannot 

completely prevent the accidents from happening, but instead can reduce the severity of the 

accident and can better protect the drivers from some of the human factors and errors that are 

the cause of most of the traffic accidents (Ziebinski et al., 2017). Some of the ADS features 

present on vehicles in the market now are Adaptive Cruise Control (ACC), Blind-spot 

monitoring (BSM), Autonomous Emergency Braking System (AEBS), Lane Departure 

Warning System (LDW), Lane Keeping Assist (LKA), Pre-crash systems, Parking Assistance 

system and Forward Collision Warning (FCW).  

 

These systems are in place to increase the overall road safety and driving comfort. Shaout et 

al. (2011) has provided state of the art for many of these systems and have provided an elaborate 

description of the benefits and drawbacks of each of these systems. ACC helps reduce driver 

fatigue by allowing the driver to rest their foot from the gas pedal on long drives. It also 

enhances fuel economy by maintaining a constant speed when the system is activated. It uses 

lasers or radar to match the speed of the vehicle in front. Only systems paired with an AEBS 

system can automatically slow down or stop when the car ahead brakes. ACC reduces the 

number of brake and switch operation required of the driver (Yadav & Szpytko, 2017). This 

reduces the burden on the driver. The system is very helpful during foggy or poor weather 

conditions, when the driver is not able to judge the distance between the preceding vehicles 

effectively. Most OEMs have their own exclusive names for ACC, like ‘Distronic Plus’ by 

Mercedes, ‘Active Safe’ by Porsche or ‘Traffic Jam Assist’ by Volkswagen, which is an 

extension of ACC that is effective in congestion as well.  

 

Blind-spot monitoring system uses sensors mounted on side mirrors or rear bumper to detect 

vehicles approaching from adjacent lanes. Not only active sensors like LIDAR or ultrasound 

but also passive sensors have been used for blind spot detection (Kim et al., 2017). The study 

proposed an algorithm instead of the appearance-based feature to discriminate approaching 

headlights from background noise in the sensors, which was successfully implemented in 

simulation. The system is useful in situations where the driver is about to change lanes and the 

system detects a vehicle next to you. The system will then provide warnings and takes control 

of steering and brakes to avoid collision. Different OEMs have different names for blind-spot 

monitoring system, like ‘Side Assist’ by Audi, ‘Active blind spot detection’ by BMW or ‘Blind 

spot warning’ by Nissan. A side by side comparison of the conditions under which the system 

may not function is shown in Table 2. 
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Table 2: The comparison of boundary conditions of blind-spot monitoring system between BMW, Audi and Nissan  

BMW (Radar) Audi (Radar) Nissan (Camera sensor) 

When vehicle approaching 

faster than your own 

If passing a vehicle with 

relative speed greater than 15 

km/h 

If vehicle approaching 

rapidly from behind 

Speed below approximately 

30 km/h or 50 km/h 

Speed below 30 km/h Speed below 32 km/h 

Heavy fog, rain or snowfall Poor weather conditions like 

heavy rain, snow, mist or fog 

Sudden light changes like 

sunrise, sunset, tunnel, 

bridge 

Tight curves or narrow lanes Narrow lanes, wide lanes, 

driving at edge of lane, tight 

curves, slope on roadway 

Wider or narrow lanes than 

standard lane width 

If bumper is dirty or iced up  Wet roadway 

 

From 2022, the EU have mandated all new cars and light vehicles to be equipped with AEBS. 

It reduces the risk of rear-end crashes by 38% at low speed (Fildes et al., 2015). While the 

reduction of traffic accidents is expected because of the widespread use of the system, concerns 

regarding many drivers using the system without proper understanding of the trigger conditions 

(TCs) have arisen (Mimura et al., 2020). In this study done by Mimura et. al., the trigger 

conditions are classified into 17 types which are taken from the manufacturer website, and 

broadly into two categories, namely ‘do not work properly’ and ‘work accidently’. AEBS 

consists of camera and radar sensors that builds an internal model of the car environment and 

assesses whether emergency action is required to prevent an accident (Kopetz & Poledna, 

2013). The system warns the driver with auditory warnings first, and then applies warning 

brake if there’s no response. If there’s still no response, the system applies full brakes to avoid 

collision. AEBS also provides brake assist to provide the additional braking force required to 

avoid a collision. However, combining this with the human driver’s control can sometimes be 

the cause of an accident.  

 

Lane support or monitoring systems like LDW and LKA assist the driver by giving warnings 

or taking control before imminent accident for increased safety. Both the technologies are 

beneficial for bettering the safety for vehicle occupants and road users. LDW continuously 

monitors the position of the vehicle to be within the lane markers (Narote et al., 2018) and 

provides warning when it steers dangerously away from the lane markers. LKA on the other 

hand, can automatically steer the vehicle to the pre-determined location using steering control 

and differential braking (Chen et al., 2018). The system alerts can be visual, auditory or 

vibration on steering wheel. Most systems use cameras, laser sensors mounted in the front of 

the vehicle or infrared to recognize the lane markings to judge when to provide the warning or 

to steer. Different OEMs market this system in their vehicles under different names. There are 

limited studies regarding the environmental and road condition effects on LDW and LKA 

performance. Mansor et al. (2020) suggests a new test protocol for assessing the performance 

of LDW and LKA systems. The system in the study was designed to activate at a speed of 65 

km/h. For all the on-road test scenarios, the test vehicle successfully provided warning and 
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automatic correction in both dry and wet conditions. However, to assess large number of 

driving situations that an AV can encounter, traditional testing methods will not be able to keep 

up. In simulated environments however, thousands of simulated scenarios can be evaluated 

autonomously, saving time and cost (Huang et al., 2016).  

 

Precrash systems can detect and alert the driver to imminent accidents. The system uses radar 

or laser sensors to detect vehicles and alert the driver. It can even tension the seatbelts and 

charge the brakes to prepare for imminent collision. The different OEMs, like earlier, has 

different names and consists of different phases within the implementation of the system, but 

consists of more or less the same functionalities. The park assist system helps the driver to 

maneuver the vehicle into parking spaces. It uses radar to find the parallel, diagonal or 

perpendicular parking spots (Shaout et al., 2011).  

 

The OEMs does not completely educate the customers in two main aspects: real function of 

the system and capability of the system to perform the function (Lesemann, 2008). The study 

done by Lesemann have compiled the then existing ICT-based systems into a roadmap, as 

shown in Figure 6 and it shows that the systems are becoming more complex with single 

functionalities getting combines into single features which are complex sensor integration. The 

drivers being uncertain or assuming that the satisfactory conditions for the system of one OEM 

will work for another is something that has to be addressed. This obvious need of a 

commonality or standardization will promote quick and intuitive understanding in drivers. 

 

 
Figure 6: Roadmap of ICT-based safety systems (Lesemann, 2008) 

The most concerning aspect here is that similar systems are given different names by the 

different OEMs, with very minor operational differences like the phases or buttons involved, 

but all providing the same functionality. This lack of standard or coherency can lead to much 

misinterpretation, like the Tesla naming its driver assistance systems as ‘Autopilot’ or ‘Full 
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Self Driving (FSD)’ when it actually is not fully autonomous. Such a mismatch between the 

real capabilities of the system defined in the manual and the driver’s understanding of the 

system (Farah et al., 2021) can lead to dangerous driving situations. Hagl & Kouabenan (2020) 

concludes from their research on drivers’ perception of road risk and risky driving behaviours 

that it is of paramount importance to make drivers understand that ADS are not fool proof. 

They advise not to exaggerate the capabilities of the system for the sake of marketing purposes. 

Further studies and training session are very much needed for safer ADS implementation.  

 

A study done by Dickie & Boyle (2009) on the drivers’ understanding of ACC limitations 

shows that ACC is being misused in the case of partial driving automation because users expect 

it to perform effectively in situations when it actually cannot. This can have a negative impact 

on the safety benefit of such ADS features. However, the findings also show that with 

prolonged use, the drivers become more aware of the limitations that ACC pose and this in 

indicative that the drivers can be trained over time to properly and safely use the ACC system.  

 

2.2.3 Sensors 

 

The sensor technologies used for each of the ADS systems is mentioned in the previous section. 

Depending on the required functionality, the system will use a different combination of a set 

of sensors. There are mainly 4 types of sensor technologies used in AVs, namely radar, lidar, 

vision and infrared (IR).  

 

1. Radar: It uses high frequency electromagnetic waves to measure the distance and speed. 

Commonly used radar systems operate at 24 GHz and at 76/77 GHz.  

 

2. Lidar: Light Detection And Ranging (LIDAR) is a laser-based sensor. The laser 

increases the field of view and the resolution of lidar/radar sensors. It helps to identify 

road users and obstacles in the field of view.  

 

3. Vision: It uses one or more digital video cameras for road detection and on-road object 

detection. Road detection includes lane line marking detection and road surface 

detection. This helps in lane position or object mapping in the vehicle path (Pendleton 

et al., 2017).   

 

4. Infrared: It uses an IR LED and detector to measure the distance and map the roadway 

characteristics. This helps in object recognition and can detect objects in less visibility 

conditions 

 

These sensors can be broadly classified into two types; sensors that can detect longitudinal or 

lateral proximity objects, and sensors that can detect roadway or in-vehicle attributes for the 

stability of the vehicle. For instance, a BSM system require detection of short-range rear 

proximity objects and these can be detected by IR, vision, short range radar or laserscanner 

technologies. Figure 7 from the study done by Lesemann (2008) shows the various sensor 

technologies and the respective ranges. 
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Figure 7: Sensor technologies and their ranges (Lesemann, 2008) 

The most commonly used sensor for lane keeping systems is the camera sensor. Xing et al., 

(2018) studied about the two common approaches used for lane detection in vision-based LKS, 

namely conventional computer vision and novel deep learning. The computer vision-based 

algorithm that uses image processing for lane tracking has more computational efficiency than 

the deep learning-based algorithm that trains the deep neural network for lane detection. 

However, it was reported that the computer vision-based algorithm is unable to detect the lane 

markings in difficult driving situations like curves.  

 

There are other sensors like wheel speed sensor, yaw rate sensor, acceleration sensor, steering 

wheel angle sensor used by OEMs in some systems. Currently, radar sensors are widely used 

for obstacle detection (Piao & M Mcdonald, 2008) and compared to IR or vision, radar sensors 

perform equally well during day and night, in most weather conditions. But a large angular 

reach and resolution is one of the major issues with radar-based sensors (Agogino et al., 2000) 

and so it lacks the resolving power to observe lane marking (Bar Hillel et al., 2014). However, 

compared to radar, lidar has a better angular reach and resolution. Despite that, lidar based 

sensors are sensitive to weather conditions that can reduce the range and can detect pseudo 

objects due to the road spray. The effectiveness of the sensor depends on the operative range 

of the sensor uses and the road/weather conditions, and therefore the application of such 

systems are limited (Piao & M Mcdonald, 2008).  

 

Camera sensor can provide mono or stereo vision. The camera can map the objects ahead of 

the vehicle and measure the distance between the object and the vehicle. Additionally, the 

camera can detect the state of the motion, whether the object is stationary or is moving. 

Furthermore, stereo camera can be used for different ADS features like the Traffic Sign Assist 

(TSA) (Ziebinski et al., 2017). TSA can recognize and extract important information from 

traffic signs, like the speed limit, and communicates to the driver. For ACC and AEBS, the 

camera sensor measures the distance to the leading vehicle to avoid rear-end collisions. 

Similarly, for LKA and for LDW, camera is used to map the lane markings and provide the 

driver with warnings to change the lanes. 
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While cameras capture image and video data that is labelled by data analysts and interpreted 

by machine learning, radar and lidar provide further detail into the vehicle surrounding that can 

ensure more robustness in detecting and avoiding obstacles on the road. This becomes 

especially important in driving situations with lower visibility, like during bad weather 

conditions or during nighttime. However, radar sensors are relatively expensive compared to 

camera, and the data processing requires significant computing power from the vehicle.  Tesla 

had recently announced that all their vehicles will be moving towards a vision only system and 

removed radar sensor, claiming that a vision-only system is all that is needed for full autonomy. 

A summary of the view angles and the maximum operational distance for the sensors is shown 

in Table 3 (Ziebinski et al., 2017). 

 
Table 3: Summary of sensor view areas 

 Video (front) Infrared Short-range Radar Long-range Radar 

View angle [deg] 50 40 80 20 

Max. distance [m] 80 120 20 150 

 

2.3. Operational Design Domain (ODD) 

The problem arises when each of these OEMs manufacture their own vehicles without a 

common or standard ODD. There will be driving situations where high levels of automations 

can be granted, and in other complex situations where the ODD of the vehicle ends and the 

vehicle handover the control to the driver or perform a minimum risk maneuver (MRM). The 

ODD defined can be very specific, like a low speed public street or a single fixed route. 

Similarly, there is a plethora of ODD definitions in existing literature, with several visions of 

what the purpose of the ODD should be (Gyllenhammar et al., 2020). However, it is 

acknowledged that the safety of ADS depends on the list of all the attributes/conditions that 

the AV might encounter, i.e. the ODD of the system.  

2.3.1 Standards and definitions 

SAE defines the term ODD as “the operating conditions under which a given driving 

automation system or feature thereof is specifically designed to function, including, but not 

limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite 

presence or absence of certain traffic or roadway characteristics” (SAE, 2018). In other words, 

ODD defines the domain over which the automated vehicle (AV) can operate safely (Colwell 

et al., 2018). It defines the operating environment that the system is defined for. By definition, 

the ODD for Level 5 AVs is unlimited, because the vehicle is fully automated and is equipped 

to encounter any kind of scenario. However, for levels 1 to 4 the ODD is limited, and it is 

characteristic to the system, which is subject to changes depending on the OEM.  

ISO 21448:2019 defines ODD as the specific conditions under which a given driving 

automation system is designed to function (ISO, 2019). These conditions can be spatial, 

temporal, legal or environmental. This standard provides specific guidance on defining the 

safety of an ADS system or feature for its intended functionality. The guidance is on the 
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applicable design, verification and validation measures to achieve safety of the intended 

functionality (SOTIF), which is defined as the absence of unreasonable risk due to hazard 

resulting from functional insufficiencies of the intended functionality. The standard is intended 

for ADS or emergency intervention systems for which proper situational awareness is critical 

to safety.  

UL4600 released by Underwriters Laboratories (UL), an accredited standards developer in the 

USA and Canada, defines ODD as the set of environments and situations the system is intended 

to operate within (UL, 2019). This includes not only direct environmental conditions and 

geographic restrictions, but also a characterization of a set of objects, events, and other 

conditions that will occur within the environment. 

BSI PAS 1883:2020 released by the British Standards Institution (BSI) defines ODD as the 

operating conditions under which a given driving automation system or feature thereof is 

specifically designed to function safely (BSI, 2020). This includes but not limited to the 

environmental, geographical, and time-of-day restrictions, and/or the requisite presence or 

absence of certain traffic or roadway characteristics. The taxonomy provided in the standard 

with the ODD attributes is shown in Figure 8. 

 

Figure 8: BSI PAS 1883:2020 taxonomy for ODD attributes 

The industry program of SAE called The Automated Vehicle Safety Consortium (AVSC) 

provides a best practice document for describing an ODD for SAE Level 4 vehicles. It provides 

a conceptual framework and a lexicon that can be used by developers and OEMs to describe 

their ODD and to communicate this to the users (SAE, 2020). The elements in this lexicon are 

weather-related environmental conditions, road surface conditions, roadway infrastructure, 

operational constraints, road users, non-static roadside objects, and connectivity. These 
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variables have sub-classification that entails a detailed description of an ODD definition. This 

best practice provides a sample ODD definition, both in a tabular and descriptive format. 

However, the thresholds of many of these used parameters in the ODD definition is not present. 

Nevertheless, the main objective of this best practice document was to establish commonly 

defined terms related to ODD and recommending a framework in which they can be applied, 

which was successful.     

The U. S. Department of Transportation (USDOT) definition of ODD indicates that the ODD 

should be identified by the manufacturer (USDOT, 2018). Example ODD categories are 

provided in the Federal guidance report. OEMs are encouraged to define the ODD in their 

vehicles tested or deployed and document the process and procedure for assessment, testing 

and validation of the ADS functionality with the prescribed ODD. As per the report, an ODD 

describes the specific operating domains in which an ADS feature is designed to function with 

respect to roadway types, geographic area, speed range, lighting conditions, weather conditions 

and other operational constraints (NHTSA, 2017). The ODD will likely vary for each ADS 

feature, even if there are more than one ADS feature on a vehicle. The testing framework 

proposed in the report considers the potential range of ODDs and its potential test cases, using 

an ODD taxonomy that organized the different ODD elements identified through literature. 

The proposed taxonomy is shown in Figure 9. 

 

Figure 9: NHTSA taxonomy for ODD attributes (NHTSA, 2017) 

Similar to the SAE classification, there exists a classification called Infrastructure Support for 

Automated Driving (ISAD) by Carreras et al. (2018) which represents the infrastructure 

support level to the AVs in levels A, B, C, D, E; A represents highest infrastructural support 

level and E represents the lowest level. Erhart et al. (2020) uses this classification on the 

Austrian motorway network for a systematic evaluation of road section where infrastructural 

upgrades can close certain information gaps that can help the vehicle’s perception and adapt to 
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driving situations. However, the study assumes the ISAD classification to be static, but in 

reality, for AVs to adapt to situations on road, the classification has to be dynamic.  

2.3.2 Ongoing projects 

There have been very few studies on the effectiveness of the ODD of different OEMs and even 

fewer research to define ODD elaborately. Currently, each OEM are building their own 

proprietary ODD and a future where such data is shared between companies seems very far 

away because there isn’t much incentive to do otherwise. Hence, a standardization has become 

the need of the hour. This need of standards has urged many national and international 

standardization bodies attempting to standardize the ODD concept. One such standardization 

is being done by ASAM through the project called OpenODD (ASAM, 2020). There are other 

standardization activities done that addresses the needs of the industry, but there still exists the 

gap in the industry for an ODD definition format for simulation. This is where ASAM 

OpenODD aims to step in for representation of this abstract ODD specification in a more well 

defined and standard manner that enables machines to interpret and perform analysis. This 

would then be a standard format which is both human readable and machine readable.  

There is ISO TS 5083 which is under development which provides guidance on safety of an 

ADS system in its design and verification stage (ISO, 2021b). The standard aims to provide a 

guidance to developing and validating an AV equipped with ADS. It is intended for SAE level 

3 and 4 road vehicles, including trucks and buses. Another ongoing project is the ISO/AWI 

34503 which deals with the taxonomy for ODD of ADS (ISO, 2021a). This taxonomy in 

development will be complimented with a high-level definition format that is intended to be 

used by regulators and non-coders.  

There is the UNECE WP.29, the world forum for harmonization of vehicle regulations, which 

has already embarked on regulations for ADS with significant involvement from the UK 

(UNECE, 2021). Although this defines the safety and environmental performance requisites 

for all kind of vehicles like cars, vans, trucks, buses, powered two-wheelers and even non-road 

mobile machineries, it aims to improve global vehicle safety and the framework in 

development is intended to decrease environmental pollution and energy consumption.  

2.3.3 ODD attributes 

Common factors affecting the ODD are the time of day, weather, road features and vehicle 

characteristics. Studies done by Koopman & Fratrik (2019) and Kulmala et al. (2019) in 

Finland lists out the many attributes related to physical and digital infrastructure that can have 

an effect on the ODD.  

Koopman & Fratrik (2019) provides a comprehensive list of criteria, organized into eight 

categories that should at least be included in an ODD. There is a significant knowledge gap in 

the current understanding of ODD in terms of the attributes that can have an impact on the 

ODD and the level of importance of the attribute in the ODD definition. Filling this gap will 



 

  20 

increase knowledge not just about the ODD definition itself, but also the sensor capabilities, 

the developments and the impacts on AVs, paving the way to Highly Autonomous Vehicles 

(HAV). They also emphasize on other domain constraints that can be difficult to enumerate 

without significant experience. Another important aspect that is mentioned is the system’s 

inherent equipment limitation that can impact the ODD, like the minimum illumination 

required by the camera sensor. The list of ODD factors that is compiled in their research is 

shown in Table 4. 

Table 4: ODD attributes by Koopman & Fratrik (2019) 

ODD characteristic Attribute 

Operational terrain, vehicle 

surroundings and projected 

vehicle path 

Slope, camber, curvature, banking, coefficient of 

friction, road roughness, air density 

Operational infrastructure Navigation aids, traffic management devices, special 

road rule, vehicle to infrastructure availability 

Environmental/weather conditions 

and sensor interference 

Surface and air temperature, wind, visibility, 

precipitation, icing, lighting, glare 

 

Rules of interaction 

Traffic laws, social norms, customary signaling and 

negotiation procedures with other agents (human and 

autonomous) 

Communication (including 

machine to machine and human 

interaction)  

Modes, bandwidth, latency, stability, availability, 

reliability 

Infrastructure data availability, 

correctness, level of detail and 

temporary deviations 

Construction zones, temporary traffic rules during 

emergencies, traffic jams 

Expected distributions of 

operational state space elements 

Toll booths, police traffic stops 

One of the deliverables of the MANTRA project by Conference of European Director of Roads 

(CEDR) provides a list of relevant ODD attributes and a sample ODD for a Level-4 highway 

pilot (Ulrich et al., 2020). The work package 4 of project MANTRA analyzes the correlation 

between the automated functions and the infrastructure. The expected impacts to infrastructure 

from the need for the required ODD for the safe deployment of automated vehicles are 

addressed, which can further improve the ODD coverage of the automated functions. The 

MANTRA project uses ODD attribute list proposed by Kulmala et al. (2019).  

Kulmala et al. (2019) research from Finland as part of the European Union – European 

Innovation Partnership (EU-EIP) project studies the impacts and economic feasibility of 

automated driving and provides a roadmap and action plan. One of the main focus of the 

research is understanding the ODD requirements of Level 3 and Level 4 ADS like highway 

chauffeur and highway autopilot for passenger vehicles, buses, shuttles and freight vehicles. 

Since there is no standard ODD specification that could’ve been used for the study because it 
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is up to the OEMs to specify the ODD of the respective ADS. For this purpose, a list of 

attributes was developed in the study with its respective infrastructure and state 

characterization, as shown in Table 5. 

 

Table 5: ODD attributes proposed by Kulmala et al. (2019) 

ODD attribute Physical/Digital infrastructure Static/Dynamic 

Road Physical Static 

Speed range Physical Static 

Shoulder or kerb Physical Static 

Road markings Physical Static 

Traffic signs Physical Static 

Road furniture Physical Static 

Traffic - Dynamic 

Time - Dynamic 

Weather conditions - Dynamic 

HD map Digital Static 

Satellite positioning Digital Static 

Communication Digital Static 

Information system Digital Static 

However, there are some limitations in improving the ODD coverage and extending it because 

of the dependency on the capabilities of the sensors and software that the OEMs use to develop 

the ADS. Based on pilot studies, desktop analysis, expert interviews and workshops, the ODD 

requirements for the following five driving functionality use cases were chosen in the 

MANTRA project.  

• Highway autopilot including highway convoy (L4)  

 

• Highly automated (freight) vehicles on dedicated roads (L4)  

 

• Automated PRT (Public Rapid Transit)/shuttles in mixed traffic (L4)  

 

• Commercial driverless vehicles (L4) as taxi services  

 

• Driverless maintenance and road works vehicles (L4)  
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Since the OEM is responsible for specifying the ODD for its ADS and there is no universally 

accepted ODD specifications or list of attributes that can be used, the ODD specification for 

each of these use cases was assumed from publicly available reports, documents and 

discussions. The sample ODD requirements for Level-4 highway autopilot used in these studies 

is shown in Figure 10. 

 

Figure 10: ODD requirements for Level-4 highway autopilot (Kulmala et al., 2019) 

A study done by Gietelink (2007) investigates methods that can be used to study the impact of 

the possible disturbances and faults that can impact the ADAS. Environmental and ambient 

conditions like temperature, rain, snow, light, vibration, electro mechanic disturbances and fog 

are listed as few of these disturbances. Additionally, the driver is also mentioned as an 

important source of disturbances, like ignorance, distraction, panicking and over-reacting. 

Since it is difficult to quantify the influence of these psychological driving attributes on the 

system, they were excluded from the research.  



 

  23 

The research done by Seppelt et al. (2017) describes that the operational conditions (the ODD) 

of different ADS features vary based on factors such as vehicle’s position within a lane, road 

curvature, lane marking number and quality, lead vehicle presence and behaviour, road type, 

and location of road features (such as tunnels, construction zones, tollbooths or intersections). 

The review done by this study also mentions the concern about the driver’s use of ADS features 

due to potential misunderstanding of role distinctions complicated with a confusing array of 

ODD.  

 

2.3.4 ODD assessment  

The study done by Gyllenhammar et al. (2020) proposes a set of four strategies for the ADS to 

remain in its ODD by using use cases as a convenient strategy to map the different operating 

conditions. Using permutation and combinations on the different factors in driving (like 

geographical area, weather condition, road condition, lighting condition, speed of the vehicle, 

etc.), a variety of ODDs can be defined. The set of four strategies is proposed to ensure that the 

ADS does not encounter an ODD exit while activated rather than monitoring the ODD during 

runtime. The  Farah et al. (2021) developed an analysis method to assess the ODD for LKA. A 

field test was conducted with different road types and conditions to check the performance of 

the LKA system for different ODD classification (inside the ODD, outside the ODD, not in or 

out). The experiment resulted in finding a mismatch between the ODD specified by the OEM 

in the manual and by the driver in all test situations. In many situations where the system is not 

intended to work (outside ODD) and situations where the system may or may not perform 

adequately, drivers thought it was within the ODD; meaning the driver relied on the system 

where the driving situation was clearly not within the ODD. Such mismatches must be 

addressed by the OEMs by informing or warning the driver that the vehicle is outside the ODD. 

Each OEM specifies the ODD differently in the same level of automation, resulting in a 

mismatch in the expected capabilities by the driver and actual capabilities of the system defined 

in the OEM manual. This showed that drivers’ awareness of the system capabilities of AV is 

not sufficient and must be increased. 

The different OEMs or vehicle manufacturers have developed their own automated driving use 

cases based on their own sensor choice, connectivity, positioning options, and other factors 

concerning the ODD that are available to them in the most economically feasible way. The 

only influence on these choices is from the local, national and global regulatory frameworks 

(Ulrich et al., 2020). It was also pointed out that in the SAE J3016 group, the ODD is specific 

to the specific individual ADS feature and can only be defined by the OEM, based on the 

technological capacities and limitations of the system (Aigner et al., 2019). 

Additionally, most drivers do not read the manuals provided by the OEMs (Khastgir et al., 

2018). Hence the gap between the driver’s knowledge about the system and the actual 

capabilities grow even wider. The driving simulation study done by Khastgir et al. (2018) 

shines even more light into this need of making the driver aware of the system’s true 

capabilities. The authors found that after introducing the participants of the simulator study 

with the knowledge about the actual capabilities and limitations of the system, the trust in the 
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system increased as compared to when no knowledge was provided about the system. It can be 

argued that the results from this simulation environment cannot be directly transferred into the 

real world. Studying the evaluation of this trust in real-world is still ongoing. However, 

assessing the limitations of ODD as defined by OEMs can be effectively done by simulations 

than field test because it is a safer environment and is cost efficient. Additionally, a wide variety 

of scenarios can be tested in simulation which would be difficult to implement in real-life 

scenario. 

A recent recommended practice from SAE (NHTSA, 2016) presents the need to monitor ODD 

at runtime. This is done to check whether the ADS encounter only situations that it was 

designed to handle safely. When the ADS leave the ODD or is about to leave the ODD, it 

initiates a DDT fallback to achieve minimal risk condition. Until Level 3 ADS Systems, the 

DDT fallback is human intervention, and for Levels 4 and 5 it is executed by the ADS itself. 

If an ADS is expected to detect whether it has left its ODD, then the system must be equipped 

to monitor the ODD at runtime to detect the possible ODD exits (Colwell et al., 2018). This 

study proposes an approach to achieve maximum functionality during system failures by 

modifying a runtime representation of the ODD based on the system capabilities. This study 

on the restriction of ODD based on current system capabilities is termed as Restricted 

Operational Domain (ROD). The research focuses on ROD and continuous monitoring of the 

safe domain. The proposed approach would therefore allow an ADS to continue to operate 

within a safe domain during changing system capabilities.  

The approach for validation of AV safety before deployment proposed by Koopman & Wagner 

(2018) includes multiple levels of simulation and testing. The approach puts focus on assessing 

the system, checking for design faults in the system and a run-time monitoring approach to 

manage the identified risks. Koopman and Wagner argues that HAVs has to be deployed before 

the technology is fully mature, in a way that continuous improvement can be done based on 

the approach suggested. However, many ethical issues arise on implementing imperfect 

technology. The authors also address the fact that this approach will yield a process of iterative 

improvement. The study states that at a higher level of automation, the concept of ODD will 

assume that the AV won’t encounter a situation it cannot handle due to its highly reliable ODD 

or it will reliably detect that it is in a situation outside the ODD and will initiate failure response 

sequence. However, in reality, driving situations can be outside the ODD without being 

detected by the system due to the gaps in understanding the full scope of ODD definition or 

the gaps due to ignoring relevant ODD constraints by different OEMs.  

2.3.5 ODD boundaries  

 

García & Camacho-Torregrosa (2020) conducted on-road pilot tests for lane keeping systems 

where the test vehicle was run on different lane widths ranging between 2.28 m to 3.80 m. It 

was found that the lane keeping system cannot function on lane widths less than or equal to 

2.50 m. It was also concluded that the system can always operate on lane widths greater than 

or equal to 2.75 m. Although the field test showed that the lane keeping system can operate in 
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lane widths less than 2.5 m, it was reasoned that the lane widths cannot be reduces even further 

with the current stage of vehicle automation technology.  

 

The study done by García et al. (2020) by testing a Level 2 vehicle on different horizontal 

curves established a strong relationship between the maximum speed the system can attain and 

the curve geometry. This new maximum speed was termed as ‘automated speed’, which is 

found to be lower than the design speed and operating speed in many cases. It was also clear 

from the study that there was a strong relationship between the speed and the disengagements. 

Additionally, the system performance couldn’t be tested at higher speeds above the speed limit, 

and at curves sharper than 170 m for speeds as low as 50 km/h. The study concluded that the 

automated speed is lower than the design speed for curves sharper than 550 m.  

 

The field tests done by Reddy et al. (2020) identified the factors that affects the lane keeping 

performance and also investigated the effect of vehicle speed and visibility conditions on the 

lane keeping performance. The identified factors were lane width, type of curve, weather 

conditions, lighting conditions and speed. The highest lane keeping performance was observed 

on lane widths that are wider than 2.50 m. Similarly, only speeds higher that 90 km/h resulted 

in low lane keeping performance. It was also reported that curves are critical sections where 

the lane assistance systems might fail. 

 

Mecheri et al. (2017) tested the different lane width variations in a driving simulator 

experiment. It was reported that there is no significant in-lane position difference in different 

lane width variations and it was attributed to the driver penalty of risk of running into oncoming 

traffic or lane departure. An average offset value of 34 cm toward the edge line was reported 

for all the four lane widths tested (2.75 m, 3.0 m, 3.25 m, 3.50 m). 

 

The master thesis by Chaudhary (2021) on the infrastructure assessment for ODD of lane 

keeping system found that the test vehicle speeds of above 80 km/h resulted in better lane 

detection. Two test vehicles were used in the study’s experiment. It was also found that wet 

road conditions severely lowered the lane detection performance. It was also reported that the 

lane detection performance is significantly less during daytime compared to nighttime. 

Additionally, the test vehicle could not detect lanes of lane widths below 3 m. It was concluded 

in the study that the lane positioning performance was affected by lane width, lane marking 

type, curved sections, weather and lighting conditions for both the test vehicles.  

 

The study done by Ghasemzadeh & Ahmed (2017) aimed to use available naturalistic driving 

studies data to better understand how the driver adjust their driving behaviour to compensate 

for increased risk from reduced visibility. The research focused on drivers’ lane keeping ability 

in heavy rain and slippery road conditions. A criterion of ±0.3 m was kept to flag lane 

wandering events in the data. Continuous lane offset greater than this threshold value was 

considered as a full lane change. The standard deviation of lane position (SDLP) was defined 

in this study on a binary level; if the average SDLP is within 0.5 m, the lane keeping 

performance was considered acceptable, and if it was above 0.5 m, it was considered unreliable. 
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Additionally, it was also reported that heavy rain conditions have a statistically positive relation 

with the SDLP. 

 

2.4. Simulation  

 

2.4.1 Advantages and disadvantages of simulation  

 

Autonomous driving systems, as mentioned earlier, are becoming increasingly complex. 

Testing these systems before deployment and fine tuning them to increase efficiency is very 

important. Other than on-road testing, an effective method is virtual simulation. The advantage 

of simulation is that the testing is fairly simple, low-cost and easy to reproduce (Huang et al., 

2016). Despite on-road testing being highly representative, it is limited to a lot of critical 

scenarios that the vehicle can encounter, along with the time and cost associated with it. 

Simulation on the other hand can evaluate the system efficiency of multiple driving situations 

in a short time. However, the reliability and accuracy are dependent on the models used in the 

simulation. The main edge that simulation has over on-road testing is that it allows testing of 

scenarios that are otherwise highly regulated on public roads due to safety concerns (Yurtsever 

et al., 2020). 

 

Test cases and scenarios require a combination of ODD elements to describe a driving 

condition. Situations like ‘concrete surface with a light mist’ or ‘hilly road with a specific 

elevation’ is hard to re-create in test facilities and it may need new infrastructure to support 

testing (Thorn et al., 2018). ODD elements like weather is difficult to quantify and re-create, 

although on-road testing and functional safety design practices can be used to address such 

elements. A list of advantages of using simulation for testing provided by Thorn et al. (2018) 

is shown below: 

 

• Controllability: can control many aspects of a single test 

• Predictability: can be designed to run as specified and so there is less uncertainty about 

how the test will run 

• Repeatability: allows multiple execution of the same test in the same way, with same 

inputs and initial conditions 

• Scalability: allows generation of large number and type of scenarios 

• Efficiency: can include a temporal component, which can be used to speed up the 

simulation in real time so that many tests can be run in the very short time as compared 

to on-road testing 

The ASAM simulation guide about standardization for highly automated driving (ASAM, 2021) 

provides a comparison of physical testing on proving grounds and virtual testing in simulation. 

The comparison is shown in Table 6. 
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Table 6: Comparison between physical testing and simulation testing 

Physical testing on proving ground Virtual testing in simulation 

• Requires test drivers 

• Requires test vehicles 

• Need large dedicated areas for 

proving grounds 

• Relies on weather conditions for 

certain use cases 

• Expensive form of testing 

• Allows parallel testing 

• Able to create scenarios that focus on 

the test objectives 

• Enables to perform a greater number 

of tests in the same amount of time 

• Allows to replicate tests 

• Helps to define test focus for physical 

test sites 

 

The above factors depend upon the nature of the simulation software used. The simulation can 

be either stochastic or deterministic. If the simulation is stochastic in nature, it can account for 

a certain level of unpredictability or randomness. Multiple runs with same conditions can give 

different outcomes. Since stochastic models are derived from probabilistic theory, the results 

of two simulations ran with the same input parameters should give two different outcomes 

because it includes random and unpredictable behaviour. Whereas simulation software that are 

deterministic in nature contain no random variables or randomness, and therefore will provide 

the same outcomes for the same set of input values assigned in multiple runs. In that sense, 

deterministic models are predictable. 

Raju & Farah (2021) studied the different traffic microsimulation platforms available and their 

importance in modeling connected and automated vehicles (CAV). The research discusses the 

ongoing research attempts in CAV microsimulation and the limitations of the present CAV 

microsimulation studies. The study mentions that despite the many advantages of the 

microsimulation platforms, there are limitations as well. Since the simulation models requires 

calibration, in which some cases the microscopic data isn’t readily available, certain 

assumptions are made. The effect of these assumptions gets reflected on the simulation 

outcomes as well. Additionally, another reported drawback is the simulation’s processing 

factor, where in some microsimulation platforms it falls to a single core in the computer 

processor. This may not work very well with heavy traffic flow conditions, leading to the 

simulation crashing. 

One of the main limitations of simulation testing is combinatorial explosion. This happens in 

testing when a test object can be described by a number of parameters, each with a range of 

possible values. Hence, every combination of these parametric values would be a potential use 

case. Consequently, it becomes unfeasible to test every possible combination of the parameters 

(Grindal, 2007). There are combination strategies that helps identify a subset of all the 

combinations based on coverage, therefore enabling the objective evaluation of the selected 

combinations.  



 

  28 

2.4.2 Simulation software  

Virtual simulation is an efficient way of testing complex self-driving systems, with full access 

to ground truth data and performance evaluation, with a wide variety of scenarios (Dosovitskiy 

et al., 2017). There are many simulation softwares that can be used for this purpose. Some of 

them include CarCraft and SurfelGAN used by Google Waymo, Webviz and The Matrix used 

by Cruise, and DataViz used by Uber. Most of these are proprietary tools, but there are other 

softwares like PreScan, Vissim, Carla, SUMO, USARSim, etc. The latter two software have 

been reported to lack the detail in testing, especially in driving environment (Huang et al., 

2016).  

Carla is an open-source simulator which is used for the validation of ADAS. It is based on 

Python and C++. Vehicles, buildings, weather conditions, etc. are available on the open digital 

assets that Carla provides. CARLA is most suited for end to end testing of unique 

functionalities that AV offer such as perception, mapping, localization, and vehicle control 

because of many built-in automated features they support (Kaur et al., 2021). 

PreScan is a simulation software which follows a systematic physics-based approach for ADAS 

and AV system simulation. It uses MATLAB/Simulink internally for modelling the physics 

and motion behaviour of vehicles and pedestrians. PreScan has different libraries such as road 

infrastructure, weather conditions ,vehicles (also called actors) to create the scenarios. PreScan 

is better equipped to model dynamic movements of AV, whereas Vissim can be used to model 

interactions better. Prescan is a nanoscopic simulation platform that includes detailed physics-

based vehicle models, the associated sensors and external programming interface like 

MATLAB/Simulink/C++ for detailed tracking and control of the actor during the simulation 

runtime. This study is not focused on interactions between users and is more particularly 

focused on the system functionality. PreScan provides better detailed simulations for ADAS 

(Kaur et al., 2021), with higher resolution than Carla. Therefore, PreScan would be ideal for 

this study.  

The main steps or subdivisions used in PreScan is building the scenario, modelling the sensor 

systems, adding the control system algorithms, followed by executing the experiment, and 

visualization with a PreScan window called VisViewer that allows multiple perspectives such 

as top view or diagonal view. In the study done by Ortega et. al. (Ortega et al., 2020), the results 

showed that the elements modeled in the PreScan, such as the road infrastructure, sensors, and 

actors or vehicles, could be used in real-time scenarios. It also supports real-time data and GPS 

vehicle data recording, which can then be replayed later on. This is very helpful for situations 

which are otherwise not easy to simulate with synthetic data. 

 

2.5. Summary  
 

The ODD has been defined on a broader sense by many of the standardization organisations. 

There are few studies that provide a taxonomy for classification of the attributes relevant to the 

ODD definition. However, there is very limited research done on identifying the ODD 
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boundary conditions for the different vehicle, infrastructural and environmental attributes. A 

cost and time efficient way to tackle this problem is using simulation to simulate the different 

driving situations to find the dependency of the different attributes on the ODD definition. Even 

so, the relevant attributes of the ODD definition are dependant on the ADS feature and there is 

no standard way to test the boundaries in simulation. There is a lot of research on the lane 

keeping system and level 2 AVs, and that can be because such vehicles are on the road now 

and there are reports of problems associated with it. However, the ODD aspect of the lane 

keeping system is not explored much. Therefore, it is imperative to expand the current 

understanding of the ODD and to identify which factor has an effect on the system and to what 

level it impacts the ODD.  
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3. Review of OEM manuals  
 

The lane keeping system section from five OEM manuals were investigated. The ODD 

descriptions mentioned in these manuals are compiled into a table as shown in Table 7. The 

factors that affect the performance of the system are categorized into the list of attributes shown 

in the table. As per the OEMs, descriptions presented in the table under each attribute are the 

conditions that the vehicle may not detect the lane markings, affects the system performance 

or suspend the system in such cases. This table is used to get an overall idea of how the OEMs 

define the ODD in the OEM manual and is not intended for comparison between each other 

since the system’s capabilities are different. 

 
Table 7: Findings from OEM manuals 

OEM Cadillac Honda Volvo Nissan Tesla 

Attribute 

Speed Below 60 

km/h, above 

180 km/h 

Below 72 

km/h, above 

145 km/h 

Below 65 

km/h, above 

200 km/h 

Below 60 

km/h 

Below 64 

km/h, above 

145 km/h 

Weather Poor 

weather 

Fog, rain, 

snow 

Winter Fog, rain, 

snow 

Heavy rain, 

snow, fog 

Visibility Poor 

visibility 

 Bad weather 

with reduced 

visibility 

  

Headway Close 

vehicle in 

front 

Close vehicle 

in front 

 Close vehicle 

in front 

Vehicle in 

front 

Light 

variations 

Tunnels, sun 

shines 

directly into 

camera 

Tunnels, 

dawn, dusk, 

light reflected 

on roadway 

 Sunrise or 

sunset, tunnel, 

under a bridge 

 

Shadow Driving in 

shadows 

Driving in 

shadows 

  Shadow on 

lane markers 

Road 

condition 

 Low contrast; 

rough, bumpy 

or unpaved; 

snowy or wet 

Poor road 

surfaces 

Slippery, 

uneven, ice or 

snow on roads, 

 

Lane 

marking 

Poor lane 

marking 

Narrow, wide 

or changing 

 Multiple lane 

markers 

 

Road 

gradient 

Banked 

roads 

Hilly road or 

crest of hill 

   

Curves Sharp curves Sharp curves  Sharp curves 

or winding 

roads 

Winding 

roads 
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Road 

type 

   Outside 

freeways or 

highways 

 

Lanes 2-lane roads Double lines Narrow lane 

width 

Narrow lane 

width 

Narrow 

roads 

 

The blank cells in the table indicates that the attribute is not mentioned in the limitations of the 

OEM manual’s lane keeping system section or in the sensor limitations. It can be seen that for 

the feature or functionality offered, there are different set of operating conditions across the 

five OEMs. For the same attribute itself, there are different ranges that the OEM has defined 

for the system. For instance, the speed range or the weather conditions. Cadillac has mentioned 

poor weather as the outside ODD condition, but the exact conditions is missing. Similarly, for 

headway, it is mentioned in four out of the five OEM manuals that a close vehicle in front can 

affect the system performance. The exact value of headway is not specified. The same applies 

for the radius of the curve as well, where the OEMs have only mentioned sharp curves as the 

outside ODD condition. However, what defines a sharp curve for a specific OEM manual is 

not clear. Despite the ODD boundaries being vague, the OEMs expect the drivers to always 

have the ODD boundaries in mind while driving. It is also noteworthy that all the attributes 

except speed and headway in the table is static in nature while testing in simulation. In other 

words, only the speed and headway can change during a simulation run as the other attributes 

are environmental and infrastructural conditions in the simulation. This must be taken into 

account while performing the ODD assessment in simulation.  
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4. Research Gaps and Questions 

 

4.1. Research Gaps 

The research gaps found from the literature review are:  

(i)  The different ODD definitions that exist across the literature does not provide a concrete 

set of ODD boundaries. Most of the ODD standards only provide a taxonomy to define 

the ODD. However, some ODD standards take operational constraints into account 

whereas some others don’t. A similar trend is seen across the different OEMs as well. 

Moreover, there exist different ODD definitions in the OEM manuals for the same 

system or level of autonomy, with some OEMs providing very little information about 

the system and not providing the ODD boundaries itself. The OEMs not adhering to 

any standard ODD definition format or taxonomies provided makes it hard to compare 

the lane-keeping performance of two different vehicles as there is no single standard 

ODD framework that the ODD definition has to follow. This disparity in ODD creates 

a knowledge gap and can lead to a misunderstanding of the impact of certain attributes 

relevant to the ODD due to the lack of standardization.  

(ii)  The knowledge gap that exists between the driver’s understanding of the vehicle 

capabilities of staying within ODD or not and the actual capability of the system to stay 

within the ODD. Current systems do not provide a warning when the vehicle is 

approaching an ODD exit condition. The only source of knowledge about the ODD 

boundaries for the driver is from the OEM manuals which do not explain the ODD 

boundary conditions clearly enough to interpret them. This leads to an additional trust 

in the system by the driver in driving conditions that may not be within the ODD. 

(iii)  The absence of a framework to assess the ODD of ADAS features in a simulation 

environment restricts learning more about the characteristic and underlying information 

about the relevant ODD attributes. 

(iv)  The OEM manuals define the ODD boundary of the radius of a curve as ‘sharp’ and 

lane width as ‘narrow or wide lanes’. These boundary conditions are insufficient and 

report from the literature review shows different values for the ODD boundaries for the 

same system.   

The first and second gaps will not be addressed by this study. However, the research done here 

can be used to identify the relevant features necessary for standardization in the future and to 

bridge the driver’s understanding and the actual capability of the system. The third gap is aimed 

to be filled by creating a suitable framework to assess the ODD boundaries in the simulation 

environment. The fourth gap is aimed to be solved by mapping the different attributes relevant 

to the ODD into use cases in PreScan and simulating it to identify the ODD boundaries of the 

chosen attributes. 
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4.2. Research Questions 

To achieve the research objective, this study aims to answer the following main research 

question: 

“How to assess the ODD boundaries of vehicles equipped with Lane Keeping System at 

horizontal curves using PreScan?” 

This can be answered by splitting the main question into sub research questions, as follows:  

SQ1. How is the ODD of lane-keeping systems defined in the literature and the various 

OEM manuals so far? (Chapter 2) 

 

SQ2. What are the different road or vehicle characteristics, or environmental conditions 

widely factored to the ODD boundary of the lane-keeping system? (Chapter 2 and 

Chapter 3) 

 

SQ3. What are the simulation capabilities of PreScan to test the ODD boundaries of the 

lane-keeping system? (Chapter 5) 

 

SQ4. How can the ODD boundaries of an ADAS feature like lane-keeping system be 

tested in a simulation environment? (Chapter 5) 

 

SQ5. What are the test cases required to test the ODD boundaries for a test vehicle 

equipped with a lane-keeping system? (Chapter 6 and Chapter 7) 

 

SQ6. How does the test vehicle’s ODD compliance from the built test cases compare to 

the ODD boundaries of the attributes found from the literature and OEM manuals? 

(Chapter 7) 
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5. Research Methodology 

The research follows mainly three phases as illustrated in Figure 11. 

 
Figure 11: Research sequence followed 

The exploratory phase includes the state of the art where the current ODD definitions and 

relevant ODD attributes are identified from academic literature, standards, and OEM manuals. 

Along with that, the simulation capabilities of Prescan are also investigated to understand 

which attributes can be tested in PreScan and therefore included in the scenarios for testing.  

The development phase brings together all the findings from the exploratory phase to develop 

the test scenarios/use cases to be tested based on the chosen ADAS feature to be tested. A set 

of test cases are created from the developed use case. A test case is defined as an instantiation 

of the use cases in the simulation. In other words, it is the set of combinations of values assigned 

to the attributed used in the use case. Based on the ODD definitions found in the exploratory 

phase, the developed test cases are classified as either inside the ODD or outside the ODD.  

The ODD boundaries are also identified from the exploratory phase, which is used for the 

development of the use cases. Alongside this, the performance metric is created on MATLAB 

and then integrated into Prescan.  

Finally, the simulation phase involves simulating the developed use cases, analyzing and 

reporting the results. A cyclical approach is used here, wherein every successive cycle, the 

realism of the use cases is improved, and more attributes are added. An initial ODD assessment 

is done before running each test case and classification of either inside or outside the ODD is 

followed. After the simulation run, the performance assessment result of the test case is 

compared with the initial ODD assessment. This approach would check if the performance of 

the lane-keeping system is factored in the ODD definition. A test case that is classified as inside 

the ODD is expected to have good lane-keeping performance, and an outside ODD test case is 

expected to have poor lane-keeping performance. This is checked using the performance metric 

and exposure metric introduced in this study and will be described later in this section. The 

workflow and the back end of PreScan are detailed in Appendix A: Prescan.  
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5.1. Choices and assumptions 
 

Based on the findings from the exploratory phase, the lane-keeping system was chosen as the 

ADAS feature to be tested in this study. This system was chosen due to the availability of 

resources in Prescan based on the lane-keeping system. Additionally, there are not many studies 

in the literature that has tested this system in simulation with the different attributes. There was 

also the plan to expand to other functionalities/features, but due to time restrictions, it was not 

possible. The OEM manuals that were investigated for identifying the relevant ODD attributes 

for the lane-keeping systems are listed below with the name they have mentioned for their 

respective lane-keeping system: 

 

• Cadillac Escalade: Lane keep assist 

• Honda Clarity: Lane keeping assist system 

• Volvo S90: Lane keeping aid 

• Nissan Leaf: Intelligent lane intervention 

• Tesla Model S: Lane assist 

 

The chosen test vehicle on Prescan was the Mazda RX8. This was one of the most used test 

vehicles in Prescan for demo experiments. In addition, for this research, the model of the 

vehicle is not very relevant since the focus is more on the system performance and that depends 

solely on the sensors equipped. The only difference if another model of vehicle is used will be 

the dimensions of the vehicle.  First, a default lane keeping algorithm that brings the test vehicle 

to the lane centre purely based on the intended trajectory of the vehicle was implemented by 

equipping the test vehicle with a lane marker sensor by Prescan. However, this was too 

simplistic and full of errors. This sensor did not appear to be affected by weather conditions 

and also showed a strong swerving nature between the lane markings. Four out of the five OEM 

manuals that were investigated used a camera sensor for the lane-keeping system. Hence, a 

camera sensor was equipped on the test vehicle for more realistic simulation runs. The lane-

keeping algorithm was provided by Siemens for which the camera sensor connects to the 

Simulink end and tries to bring the test vehicle to the lane centre for the entire path. 

 

5.2. Simulation setup 
 

The dimensions of the test vehicle are 4.43 m x 1.86 m x 1.31 m. The simulation runs with a 

time step of 0.05 seconds. At each time step, the deviation from the lane centre is measured, 

known as the lateral position or the lateral offset. The right-hand coordinate system is used, 

where the distance towards the right is positive and towards the left is negative, as shown in 

Figure 12. The lateral offset data of each time step is recorded and the data points of the test 

vehicle at the curve section is filtered out.  
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Figure 12: Measurement of lateral offset 

 

5.2.1. Environmental conditions 

 

Prescan allows testing of precipitation conditions like fog, rain and snow. The preset levels of 

rain and snow available to test in Prescan are shown in Table 8 and Table 9 respectively.  

 
Table 8: Available levels of rain in Prescan 

Level of precipitation Velocity of rain (m/s) Diameter of particle (mm) 

Drizzle -1.0 0.77 

Very light rain -3.2 0.77 

Light rain -3.8 0.93 

Moderate rain -4.2 1.06 

Heavy rain -4.7 1.23 

Very heavy rain -5.6 1.57 

Extreme rain -6.6 2.03 

 
Table 9: Available levels of snow in Prescan 

Level of precipitation  Velocity of snow (m/s) Diameter of particle (mm) 

Light snow -1.0 2.5 

Moderate snow -1.0 5.0 

Heavy snow -1.0 10.0 

Extreme snow -1.0 20.0 

 

The quality of the shadow created by the sun on objects can be tested in Prescan on a scale of 

low, medium and high. However, this is not taken into account in this study because including 

shadow as an attribute would inherently add shadows of the test vehicle in the use case. 
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Consequently, this would require adding the position of the sun as well in the design of 

experiments. However, due to the limitation of combinatorial explosion, the effect of shadow 

was given the lowest priority and hence the sun shadow setting is always set to low. 

 

5.2.2. Vehicle dynamics 

 

Prescan provides a ‘Simple Dynamics’ model to easily simulate the vehicle dynamics 

behaviour. There are two available vehicle dynamics options, namely ‘simple 2D’ and ‘simple 

3D’. Simple 2D vehicle dynamics refers to a model that is capable of simulating a test vehicle’s 

longitudinal, lateral and roll motion. This is used on Prescan’s 2D roads, i.e. flat roads. A simple 

3D vehicle dynamics model can simulate the test vehicle’s longitudinal, lateral, vertical, pitch 

and roll motion, and includes the suspensions model as well. It’s used on Prescan’s 3D roads, 

i.e. roads with a height profile or banking.  

 

When the test vehicle has to steer, the vehicle dynamics model converts the angle into a wheel’s 

rotation angle using a steering factor. This is used to calculate the lateral forces generated by 

the tyres. There is a simple model in Prescan that takes the slip angle into account, i.e. it takes 

the deformation of the tyre into account. The equilibrium of these lateral forces and the inertial 

force results in a yaw moment, which is then applied to the vehicle’s centre of gravity and 

generates a yaw angle. This yaw angle is applied to the steering and makes the test vehicle 

steer.  

 

There is the path follower block in Simulink that translates a trajectory (consists of the path 

and speed profile) into steering angle input for the vehicle dynamics Simulink block. The 

system keeps the test vehicle aligned with the lane centre by applying a steering correction to 

the test vehicle whenever it deviates from it.  

 

5.2.3. Sensor properties 

 

A camera sensor is equipped on the test vehicle. The camera sensor has a minimum detection 

range of 0.1 m and a maximum detection range of 250 m. The position and orientation of the 

camera on the test vehicle are shown in Figure 13. Prescan allows the implementation of 

monovision or stereo vision configuration. A monovision camera is equipped on the test 

vehicle. The frame rate of the camera is 20 fps and has a focal length of 7.5 mm. The control 

algorithm associated with the camera sensor is lane centering in nature and tries to bring the 

test vehicle to the centre of the lane of the intended trajectory. The controller is triggered 

immediately when the test vehicle deviates from the lane centre. In such situations with 

deviation, the distance error between the lane centre and the actual trajectory is calculated at a 

timestep and is fed into the vehicle dynamics as a steering angle to bring the vehicle back to 

the lane centre. It is a linear control system where the distance error is proportional to the 

steering angle. Therefore, the system will be one timestep behind where the prediction is made 

from the values of the previous timestep. Figure 14 shows what the camera sensor sees in the 

simulation.  
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Figure 13: Camera sensor position on the test vehicle 

 

 
Figure 14: Camera sensor view 

5.2.4. Infrastructure  

 

The test vehicle follows the Netherlands’ rule of right-hand traffic. All the test cases involve 

the test vehicle taking a left curve, and right curves aren’t used since the impact of the type of 

curve is not the focus of this research. For experiments during nighttime, there are no 

streetlamps provided for the roads. Hence the only source of light is the vehicle headlights and 

the fog lamps. Although superelevation is possible on Prescan, it is not possible to provide 

superelevation at a curve without elevating the roadway with a ramp segment provided in 
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Prescan (see Figure 15). If this is done, then the curve will be elevated, and the vehicle has to 

climb uphill before every curve and downhill after the curve. Since it is not very realistic to 

elevate the road segment at every curve and it’s not possible to predict the effect it might have 

on the sensor, the superelevation is not provided at curve segments for this research.  

 

 
Figure 15: Banking of roads in Prescan 

5.3. Initial ODD assumption  
 

The sample ODD of the attributes tested is developed based on the findings from the literature 

review and is shown in Table 10. It is assumed before running the use cases that these driving 

situations are inside ODD. The ODD boundary conditions for speed and weather conditions 

are acquired from the OEM manuals. The boundary conditions of lane width are found from 

literature and for the radius of curvature, the Rijkswaterstaat guidelines are used. This is then 

compared with the results after the simulation runs. 

 
Table 10: Sample inside ODD conditions from the literature 

Attribute Boundary conditions 

Speed 60 km/h to 140 km/h 

Lane width Greater than or equal to 2.75 m 

Weather conditions Sunny and light precipitation 

Radius of curvature Greater than or equal to 750 m 

 

An example driving situation that is within the ODD of its lane-keeping system based on this 

sample ODD would be the test vehicle moving at a speed of 100 km/h in a lane of 3.5 m width 

during the daytime without any precipitation at a curve of 750 m radius. 
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5.4. Performance metric  
 

Since most of the attributes chosen are static like the infrastructure and environmental 

conditions, it is difficult to assess the ODD of the test vehicle during run time. Moreover, 

Prescan does not allow the extraction of the infrastructural details from the graphical user 

interface (GUI) to the Simulink end. Therefore, an initial assumption of the ODD boundaries 

of the test vehicle is formulated before running the test cases. A performance assessment of the 

test cases is done after running the test cases using the ‘performance assessment’ metric 

introduced, the mean lateral offset and the maximum lateral offset of each test case. The 

assessment metric will be a function of the lateral offset of the test vehicle, which is compared 

to the acceptable lateral offset threshold of 0.3 m, which was obtained from section 2.3.5 of the 

literature review. This performance assessment metric is then used to calculate the ‘exposure’ 

of each test case, which is the ratio of the simulation time for which the test vehicle was within 

the 0.3 m lateral offset and the total simulation time when the vehicle was at the curve. The 

results from the lane-keeping performance are finally compared with the initial ODD 

assessment done of the test cases. During the simulation run of a test case, speed and lateral 

offset are the only values that can change values. However, since each test case has the test 

vehicle moving at a constant speed, the lateral offset is the only dynamic value. The 0.3 m 

value used in the metric will be termed as the ‘Offset threshold value’ in this study.  

 

The metric integrated into Prescan on the Simulink end tests the lateral offset of the test vehicle 

at each time step. The lane-keeping performance assessment equation is shown in Equation 1, 

where ‘ui’ is the speed of the test vehicle in km/h at the timestep i, ‘lateral offseti’ is the lateral 

offset of the test vehicle at timestep i and ‘performance’ is the binary variable that returns the 

value 1 if the test vehicle deviates more than the 0.3 m offset threshold value, and 0 if the test 

vehicle is well within the 0.3 m offset threshold value.  

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  {
𝟏, 𝑖𝑓(𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑜𝑓𝑓𝑠𝑒𝑡𝑖 ≤ 0.3 𝑚) 

𝟎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Equation 1: Performance assessment metric equation 

This equation will be applied iteratively at each time step i for the whole simulation run. This 

equation can essentially map all the static attributes identified that are relevant to the ODD. 

Since the ODD boundary of speed is explicitly mentioned in the OEM manuals, it is assumed 

that the speed range has a particular effect on the lane-keeping performance of the system.  

 

5.5. Design of Experiments 
 

The use cases were built based on the minimum arc length and minimum horizontal curve 

radius guidelines by Rijkswaterstaat as shown in Table 11 and Figure 16, and based on the 

ODD attributes identified from the exploratory phase.  
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Table 11: Rijkswaterstaat guidelines for minimum arc length 

Lane type Design speed (km/h) 

 

Minimum arc length (m) 

 

Main road 120  100  

Non-main road on base of 

design speed 

90  75  

70  60  

50  40  

 

 
Figure 16: Rijkswaterstaat guidelines for minimum horizontal curve radius 

A design speed of 120 km/h is considered for the use cases since the recent UN regulation for 

Automated Lane-Keeping System (ALKS) allows vehicles equipped with the lane-keeping 

system only on motorways and expressways without any interactions with pedestrians or 

cyclists (UNECE, 2021). For a design speed of 120 km/h, the minimum length of the horizontal 

curve is 100 m. The curve length used in all the use cases is 300 m. The same curve length is 

used in all the use cases so that for all the test cases with the same speed, the vehicle will enter 

and leave the curve at the same time. This would be beneficial in comparing the data between 

the different test cases. Assuming a 5 per cent superelevation in the Rijkswaterstaat guidelines 

for minimum horizontal curve radius, the minimum curve radius is 750 m. Hence the curves 

750 m, 900 m and 1200 m are chosen for the testing. Five values of speed are taken for each 

use case, namely the design speed, two values of speed above and below design speed. 

Therefore, the speed values used for testing are 100 km/h, 110 km/h ,120 km/h, 130 km/h and 

140 km/h. As for the lane width, since the lane width has an impact on the performance of the 

system, the values between 2.5 metres to 4 metres at steps of 0.25 metres are tested (eg: 2.5 m, 

2.75 m, 3.0 m). However, the simulation does not work for lane widths less than 2.6 m and 

greater than 3.7 m. Also, for 3.7 m lane width, in most of the test cases, the vehicle was either 

going outside the roadway and entering back, or the simulation wasn’t working. Hence 3.7 m 

was omitted from the simulation. So, the lane width values tested in the use cases are 2.6 m, 

2.75 m, 3.0 m, 3.25 m, 3.5 m, and 3.6 m. Rain and snow weather conditions are tested, along 

with fog conditions. For both rain and snow, heavy and extreme levels for each weather 
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condition according to Table 8 and Table 9 are tested. All combinations of driving speed, the 

radius of curve and lane width are tested. Due to the limitation of combinatorial explosion, the 

impact of weather is only tested for a limited set of use cases. 

 

The level of abstraction for the design of use cases was inspired by the approach used by Project 

Pegasus (Steininger, 2019), as shown in Figure 17. 

 
Figure 17: Level of abstraction for scenarios by Project Pegasus (Steininger, 2019) 

The same level of abstraction is applied to this study as well, and the respective use case, value 

range for test cases and a sample test case are shown in Table 12. The functional scenario is 

the same as a use case that describes the driving situation. The logical scenario describes the 

range of values that can be assigned to the attributes used in the use case. The concrete scenario 

is the test case which has the specific values assigned to chosen attributes in the use case.  

 
Table 12: Level of abstraction for scenarios 

Use case  Value range for test cases  Test case (example) 

 

Test vehicle 

at a curve of 

design speed 

120 km/h 

Radius of curve (m): [750, 900, 1200] Test vehicle moving at a 

constant speed of 140 km/h 

at a curve of radius 750 m in 

a motorway of design speed 

120 km/h and lane width of 

3.5 m in light rain weather 

condition. 

Test speed (km/h): [100, 110, 120, 130, 140] 

Lane width (m): [2.6, 2.75, 3.0, 3.25, 3.5, 3.6] 

Precipitation: [Dry, Fog, Heavy rain, Extreme 

rain, Heavy snow, Extreme snow] 

 

Since Prescan is a physics-based simulation platform and deterministic in nature, there is no 

need to have multiple runs for the same set of values. Hence, the test cases are run only once 

with the set of combinations of values from the attributes chosen.  

 

Without taking precipitation into account, all the combinations of the radius of the curve, test 

vehicle speed and lane width are tested; a total of 90 test cases. As for precipitation, all the 
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combinations aren’t considered, but instead just to see the impact of weather conditions on the 

other attributes, only lane widths 2.6 m and 3.6 m, and speeds 100 km/h and 120 km/h are 

tested for horizontal curve radii of 750 m and 900 m with the weather conditions fog, rain and 

snow. Since there are 2 levels of precipitation each in rain and snow, another 40 test cases are 

run for the weather variations. Therefore, a total of 130 test cases are done in this study.    

 

5.6. Analysis 
 

The lateral offset data extracted from the simulation runs at each time step is analysed to 

understand the impact of the chosen ODD attributes on the performance of the lane-keeping 

system equipped on the test vehicle. The ‘mean lateral offset’ is calculated by averaging the 

lateral offsets of all the data points of the vehicle at the curve segment (see Equation 2). The 

limits ‘m’ and ‘n’ in the equation are the timesteps at which the test vehicle enters and leaves 

the curve respectively. The ‘maximum lateral offset’ values are also extracted for each test case 

as shown in Equation 3.  

 

𝑀𝑒𝑎𝑛 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑜𝑓𝑓𝑠𝑒𝑡 =  
∑ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑜𝑓𝑓𝑠𝑒𝑡𝑖

𝑛
𝑖=𝑚

𝑛 − 𝑚
 

Equation 2: Mean lateral offset equation 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑜𝑓𝑓𝑠𝑒𝑡 =  max
𝑖=𝑚 𝑡𝑜 𝑛

(𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑜𝑓𝑓𝑠𝑒𝑡𝑖) 

Equation 3: Maximum lateral offset equation 

 

The lateral offset data from each timestep is converted into a ‘Performance’ value using 

Equation 1 based on the acceptable lateral offset value of 0.3 m. This data is then converted 

into time for which the vehicle was within the acceptable lateral offset and time for which the 

vehicle was outside the acceptable lateral offset at the curve segment. An ‘exposure’ metric is 

introduced to compare the different test cases since speed is one of the ODD attributes tested 

and the test vehicle takes different times at the curve for different speeds in each simulation 

run. The formula for calculating ‘exposure’ is shown in Equation 4. From the analysis of this 

performance data, the critical and non-critical ODD attributes are aimed to be found and the 

performance of each test case is compared against the initial ODD boundary assessment. 

 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑜𝑓𝑓𝑠𝑒𝑡 𝑜𝑓 𝑒𝑔𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 0.3 𝑚  

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒
 

Equation 4: Exposure metric equation 

The simulation data is reported in two sets, first of the test cases without any precipitation and 

then the data of the test cases with precipitation. The mean lateral offset data, the maximum 

lateral offset data and the exposure data is reported for all the test cases. The complete dataset 

is presented in Appendix B: Simulation Data. 

 

The analysis is also done separately for the test cases without any precipitation first and then 

for the test cases with precipitation. For the test cases without precipitation, the three attributes 



 

  44 

tested in the collected dataset is the speed of the vehicle, the radius of curvature and the lane 

width. The impact of the variation of the three attributes is observed one at a time. One of the 

attributes is varied and the other two are kept constant. The effect of the change in that attribute 

is observed and reported. Similarly, the variations of the other two attributes are looked at 

separately and the impact is reported. For example, the impact of the variation in speed is 

observed for the same lane width and radius of curvature, as illustrated in Figure 18.  

 

 
Figure 18: Example analysis iteration 

For the simulation data with precipitation, a similar approach is used to check the effect of 

weather, speed change, lane width change and radius of curvature change separately. For both 

sets of data, the lateral offset for each test case is plotted along the simulation time and is shown 

in Appendix C: Lateral offset variations. 
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6. Analysis 
 

The simulation runs are done in two sets, the first set without precipitation and the second set 

with precipitation. After running the test cases, the mean and maximum lateral offset values in 

metres at the curve segment for each test case is compiled into a single table and the exposure 

data are also compiled into another table for comparison.  

 

In the case of test cases with precipitation, only the test cases with wider lane width and higher 

speed have a maximum lateral offset more than the offset threshold value of 0.3 m, and for the 

test case of a vehicle at 120 km/h at 2.6 m lane width for 750 m radius curve. The other test 

cases will give exposure values of 1 because it’s within the offset threshold throughout the 

simulation run. The mean lateral offsets for all these test cases are well within 0.3 m.  

 

6.1. Test cases without precipitation 
 

One attribute is varied at a time and then the change in exposure or mean lateral offset is 

observed. The maximum lateral offset is not chosen for comparison here because due to the 

lack of vehicle to infrastructure communication (V2I) in the simulation as the vehicle is not 

expecting the curve and because of that, there is an initial spike in the lateral offset value. There 

is an initial peak visible for all the lane width variations and this can be attributed to the lack 

of V2I communication. For example, Figure 19 shows the lateral offset variations for the 

different lane widths for a vehicle speed of 140 km/h and a radius of the curve of 750 m.  

 

 
Figure 19: Lateral offset variation for different lane widths in 140 km/h and 750 m radius condition 
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6.1.1. Mean lateral offset comparison 
 

The comparison of the mean lateral offset is done based on two sets of bar charts. The first set 

of bar charts comprises the lateral offset variations for the three different radii tested in three 

separate charts. Each chart consists of the mean lateral offset values for varying speed and lane 

widths. The second set of bar charts maps the variation in the radius of curvature and lane width 

for a specific speed. Figure 20, Figure 21 and Figure 22 shows the mean lateral offset variations 

for radii 750 m, 900 m and 1200 m respectively.  

 

 
Figure 20: Mean lateral offset variations for 750 m radius curve 

 

 
Figure 21: Mean lateral offset variations for 900 m radius curve 
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Figure 22: Mean lateral offset variations for 1200 m radius curve 

It can be seen from these three figures that there is a positive correlation between the mean 

lateral offset and lane width. For the same speed (the dark blue bar), as lane width increases, 

the mean lateral offset increases as well. Similarly, for the same lane width, as speed increases, 

the mean lateral offset increases at a higher rate. The variations along different radii for 100 

km/h, 120 km/h and 140 km/h are shown in Figure 23, Figure 24 and Figure 25 respectively.  

 

 
Figure 23: Mean lateral offset variation for 100 km/h 
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Figure 24: Mean lateral offset variations for 120 km/h 

 
Figure 25: Mean lateral offset variations for 140 km/h 

From these three figures, the effect of change in radius of curvature is visible. A higher radius 

of curvature has lower mean lateral offset values across all lane widths and speeds, and as 

established before, increasing lane width has a positive correlation with the mean lateral offset.  

 

6.1.2. Exposure comparison 

 

The exposure metric is beneficial to encompass the effect of the changes in the attributes from 

an ODD perspective and is used to map similar graphs to better understand the nature of impact 

each of these attributes has on the ODD. This can be utilized to compare the different test cases 

that are defined inside or outside from the initial ODD assessment using the performance 

assessment implemented. Figure 26, Figure 27 and Figure 28 shows the exposure comparison 

for lane width variations and speed variations at a constant radius of 750 m, 900 m and 1200 

m respectively. 
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Figure 26: Exposure data comparison between different lane widths and speeds for test cases of 750 m radius curve 

 
Figure 27: Exposure data comparison between different lane widths and speeds for test cases of 900 m radius curve 

 
Figure 28: Exposure data comparison between different lane widths and speeds for test cases of 1200 m radius curve 
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From Figure 26 and Figure 27, it can be seen that the exposure value is higher at lower speed 

and lower lane width for 750 m and 900 m radii. As speed increases, the exposure value 

decreases and as lane width increases, the exposure value decreases. In Figure 28, it can be 

seen that at 1200 m radius, the exposure values are 1 for speed 100 km/h, 110 km/h and 120 

km/h. For 130 km/h, the exposure value is 1 between 2.75 and 3.5 m lane width and is less than 

1 at 2.6 m lane width and 3.6 m lane width. A similar dip in the exposure at 2.6 m and 3.6 m 

can be seen for 140 km/h as well. This trend is seen only for the 1200 m radius and not for the 

other two radii. Similarly, the exposure comparison along the different radii for a constant 

speed of 100 km/h, 110 km/h, 120 km/h, 130 km/h and 140 km/h are shown in Figure 29, 

Figure 30, Figure 31, Figure 32, Figure 33 respectively.  

 

 
Figure 29: Exposure data comparison between different lane widths and radii for test cases of 100 km/h 

 

 
Figure 30: Exposure data comparison between different lane widths and radii for test cases of 110 km/h 
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Figure 31: Exposure data comparison between different lane widths and radii for test cases of 120 km/h 

 

 
Figure 32: Exposure data comparison between different lane widths and radii for test cases of 130 km/h 

 
Figure 33: Exposure data comparison between different lane widths and radii for test cases of 140 km/h 
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From Figure 29, it can be seen that the exposure value is 1 for all the test cases, meaning that 

the vehicle is within the lateral offset threshold for the entire curve section. This is the ideal 

case of how the test vehicle is expected to perform in all the driving situations. The decreasing 

trend on the exposure value as lane width increases can be seen in all these figures for radii 750 

m and 900 m. As seen in Figure 28, the dip in exposure value at narrow and wide lane width 

for 1200 m radius can be seen in these cases as well at speeds 130 km/h and 140 km/h (in 

Figure 32 and Figure 33 respectively). When comparing the radii, a higher radius result in a 

higher exposure value, especially at higher lane width and higher speeds. It can be that at a 

higher radius, the impact of lane width variations become more pronounced.  

 

6.2. Test cases with precipitation 
 

In the test cases with precipitation, the variation in lateral offset for the different weather 

conditions is generated for a 900 m radius curve. Figure 34 and Figure 35 shows the weather 

variations for a lane width of 2.6 m at speeds 100 km/h and 120 km/h respectively.  

 

 
Figure 34: Lateral offset variation for different weather conditions at 2.6 m lane width, 900 m radius and 100 km/h 

 
Figure 35: Lateral offset variation for different weather conditions at 2.6 m lane width, 900 m radius and 120 km/h 
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Similarly, Figure 36 and Figure 37 shows the weather variations for a lane width of 3.6 m at 

speeds 100 km/h and 120 km/h respectively. The lateral offset variations for all the simulation 

runs are shown in  

 

 
Figure 36: Lateral offset variation for different weather conditions at 3.6 m lane width, 900 m radius and 100 km/h 

 

 
Figure 37: Lateral offset variation for different weather conditions at 3.6 m lane width, 900 m radius and 120 km/h 
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other weather conditions do not vary much from the baseline condition. When comparing the 

mean lateral offset and maximum lateral offset data, the same pattern can be seen. The same 

set of graphs are generated for 750 m radius and a similar trend can be seen for a lower radius 

as well. Figure 38 and Figure 39 shows test cases with a constant lane of 2.6 m and speeds of 

100 km/h and 120 km/h respectively, and Figure 40 and Figure 41 for a constant lane width of 

3.6 m and speeds of 100 km/h and 120 km/h respectively. The mean lateral offset and maximum 

lateral offset is not seen to vary heavily with weather variations as compared to the other 

attributes in this case.  

 

 
Figure 38: Lateral offset variation for different weather conditions at 2.6 m lane width, 750 m radius and 100 km/h 

 

 
Figure 39: Lateral offset variation for different weather conditions at 2.6 m lane width, 750 m radius and 120 km/h 

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14

La
te

ra
l o

ff
se

t 
(m

)

Time (s)

Sun Fog Heavy rain Extreme rain Heavy snow Extreme snow

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12

La
te

ra
l o

ff
se

t 
(m

)

Time (s)

Sun Fog Heavy rain Extreme rain Heavy snow Extreme snow



 

  55 

 
Figure 40: Lateral offset variation for different weather conditions at 3.6 m lane width, 750 m radius and 100 km/h 

 

 
Figure 41: Lateral offset variation for different weather conditions at 3.6 m lane width, 750 m radius and 120 km/h 
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threshold value at the beginning of the curve can be due to the lack of V2I communication as 

mentioned earlier.  

 

 
Figure 42: Performance assessment of vehicle moving at 130 km/h at a curve of radius 900 m and 3.5 m lane width 

 
Figure 43: Performance assessment of vehicle moving at 120 km/h at a curve of radius 900 m and 3.5 m lane width 
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Figure 44: Performance assessment of vehicle moving at 120 km/h at a curve of radius 750 m and 3.5 m lane width 

The difference between test cases shown in Figure 43 and Figure 44 is the decrease in the radius 

of curvature. The curve being sharper with the same lane width and speed conditions results in 

an increase from one ODD exit to three ODD exits. The test case shown in Figure 45 shows 

the ODD assessment of vehicle moving at 120 km/h at a curve of 750 m radius and 3.25 m lane 

width.  

 

 
Figure 45: Performance assessment of vehicle moving at 120 km/h at a curve of radius 750 m and 3.25 m lane width 

Figure 44 and Figure 45 depicts the test cases with the same radius of 750 m and speed 120 

km/h, with the only difference being the lane width decreases from 3.5 m to 3.25 m. This 

change of lane width becoming narrower decreases the number of deviations beyond the offset 

threshold from three to one. It can be hypothesized from these results that geometric factors 

like lane width and radius of curvature have a higher impact on the performance compared to 

speed and weather conditions.   

 

The binary values of each time step across the different lane widths are averaged to gain more 

insights on the location and nature of the vehicle deviation from the lane centre at a specific 

curve. These values are then plotted similarly to the performance assessment graphs as shown 
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in Figure 46 and Figure 47 for test cases of 750 m – 120 km/h combination and 900 m – 120 

km/h combination respectively. Comparing these two can provide more clarity on the effect of 

radius on the performance for the same speed of 120 km/h. Figure 48 shows a similar graph 

for the 900 m – 130 km/h combination. A value of 1 indicates that for all the lane widths at a 

specific timestep, the lateral offset is within the offset threshold and 0 means the lateral offset 

for all the lane widths is beyond the offset threshold at a specific timestep. A value of 0.5 at a 

specific timestep implies 3 out of the 6 lane widths tested are within the offset threshold and 

the remaining 3 are outside the threshold at the specific timestep. In other words, when the 

value is 0.5, there is an equal probability of deviating outside the threshold and being within 

the threshold among the different lane widths. A value higher than 0.5 implies a higher 

probability of staying within the threshold among the different lane widths and a value lower 

than 0.5 is indicative of a higher probability of deviating outside the threshold among the 

different lane widths.  

 

 
Figure 46: Assessment average across different lane widths for 750 m radius and 120 km/h 

 
Figure 47: Assessment average across different lane widths for 900 m radius and 120 km/h 
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Figure 48: Average across different lane widths for 900 m radius and 130 km/h 

It can be seen from these figures that the decrease in the radius of the curve leads to more 

deviations higher than the threshold. The closer the plot is to the X-axis, the higher the 

frequency of the exit across the different lane widths. It can also be seen that for a higher radius, 

the amplitude of the deviating beyond the threshold decreases, meaning the exit becomes less 

frequent. A similar trend was observed when the radius increases to 1200 m as well. When 

comparing Figure 47 and Figure 48, it is also observed that an increase in speed leads to more 

deviations beyond the threshold for the test cases with the same radius. The results from the 

data analysis are shown in the following 3D plots. These plots are a compilation of the mean 

lateral offset, maximum lateral offset and exposure data for all the test cases without 

precipitation and will be used as a reference to form the conclusions. Figure 49 and Figure 50 

shows the maximum lateral offset and mean lateral offset for all the test cases without 

precipitation.  

 
Figure 49: Maximum lateral offset variations of test cases without precipitation 
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Figure 50: Mean lateral offset variations of test cases without precipitation 

Figure 51, Figure 52 and Figure 53 depicts the exposure variations for the different speed and 

lane width changes for each of the radius tested, namely 750 m, 900 m and 1200 m.  

 

 
Figure 51: Exposure variations of all the test cases of radius 750 m without precipitation 
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Figure 52: Exposure variations of all the test cases of radius 900 m without precipitation 

 

 

 
Figure 53: Exposure variations of all the test cases of radius 1200 m without precipitation 

The initial ODD assessment of the test cases with and without precipitation is shown in Table 

13 and Table 14 respectively. Each cell in the table is a test case and the colors green and red 

are indicative of the ODD presence of the test cases; green meaning inside the ODD and red 

meaning outside the ODD respectively. The term ODD presence can be defined as the ODD 

state of the vehicle in a test case. Since none of the attributes in the test case change value 

during the run time, this initial ODD assessment will hold for a specific test case throughout 

the test run.  
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Table 13: Initial ODD assessment of the test cases without precipitation 

Radius 

of curve 

Lane 

width 

Speed 

140 km/h 130 km/h 120 km/h 110 km/h 100 km/h 

750 m 

2.6 m           

2.75 m           

3 m           

3.25 m           

3.5 m           

3.6 m           

900 m 

2.6 m           

2.75 m           

3 m           

3.25 m           

3.5 m           

3.6 m           

1200 m 

2.6 m           

2.75 m           

3 m           

3.25 m           

3.5 m           

3.6 m           

 
Table 14: Initial ODD assessment of the test cases with precipitation 

Speed 
Radius 

of curve 

Lane 

width 

Weather conditions 

Sunny Fog 
Heavy 

rain 

Extreme 

rain 

Heavy 

snow 

Extreme 

snow 

100 

km/h 

750 m 
2.6 m             

 

3.6 m             
 

 

900 m 

2.6 m             
 

 

3.6 m             
 

 

120 

km/h 

750 m 

2.6 m             
 

 

3.6 m             
 

 

900 m 

2.6 m             
 

 

3.6 m             
 

 
 

Now the exposure data collected is filled into a similar table (see Table 15 and Table 16), with 

values closer to 1 indicative that the test case was mostly within the lateral offset threshold, 

and closer to 0 meaning that the test case was mostly outside the lateral offset threshold. This 

is then compared with the initial ODD assessment to see how the performance of a system 

when the test case is inside or outside the ODD. 
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Table 15: Performance assessment of test cases without precipitation 

Radius 

of curve 

Lane 

width 

Speed 

140 km/h 130 km/h 120 km/h 110 km/h 100 km/h 

750 m 

2.6 m 0.29 0.9 1 1 1 

2.75 m 0.16 0.78 1 1 1 

3 m 0.12 0.61 0.98 1 1 

3.25 m 0.09 0.42 0.92 1 1 

3.5 m 0.08 0.09 0.69 1 1 

3.6 m 0.08 0.08 0.41 0.92 1 

900 m 

2.6 m 0.55 0.94 1 1 1 

2.75 m 0.53 0.93 1 1 1 

3 m 0.24 0.91 1 1 1 

3.25 m 0.19 0.89 1 1 1 

3.5 m 0.14 0.73 0.93 1 1 

3.6 m 0.13 0.4 0.92 1 1 

1200 m 

2.6 m 0.83 0.96 1 1 1 

2.75 m 0.92 1 1 1 1 

3 m 0.91 1 1 1 1 

3.25 m 0.89 1 1 1 1 

3.5 m 0.86 1 1 1 1 

3.6 m 0.66 0.93 1 1 1 

 
Table 16: Performance assessment of test cases with precipitation 

Speed 
Radius 

of curve 

Lane 

width 

Weather conditions 

Sunny Fog 
Heavy 

rain 

Extreme 

rain 

Heavy 

snow 

Extreme 

snow 

100 

km/h 

750 m 

2.6 m 1 1 1 1 1 1 
 

3.6 m 1 1 1 1 1 1 
 

 

900 m 

2.6 m 1 1 1 1 1 1 
 

 

3.6 m 1 1 1 1 1 1 
 

 

120 

km/h 

750 m 

2.6 m 1 1 1 1 1 0.94 
 

 

3.6 m 0.41 0.39 0.4 0.42 0.4 0.34 
 

 

900 m 

2.6 m 1 1 1 1 1 1 
 

 

3.6 m 0.92 0.92 0.91 0.92 0.91 0.84 
 

 
 

Comparing Table 13 and Table 15 shows that many of the test cases that are classified as inside 

the ODD in the initial ODD assessment are not completely within the lateral offset threshold, 

with some test cases with exposure values closer to 0. This means that some test cases that are 

classified as inside ODD (for instance, the test cases with a speed of 130 km/h or the test cases 
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with a higher lane width of 3.6 m) shows poor lane-keeping performance. It is also worth 

mentioning that some test cases defined as outside the ODD (test cases with a lane width of 2.6 

m) shows better lane-keeping performance than the ones defined inside the ODD. This is 

surprising because as per the OEM manuals, driving in situations outside the ODD can lead to 

malfunctioning of the system. Similarly, Table 14 and Table 16 shows that although most of 

the test cases are classified as outside the ODD in the initial ODD assessment for test cases 

with precipitation, the performance assessment in these test cases shows that most of the test 

cases are well within the lateral offset threshold. This shows that test cases defined outside 

ODD do show good lane-keeping performance. For test cases with a 750 m radius, 3.6 m lane 

width and speed of 120 km/h, the performance is less. Therefore, test cases classified as inside 

the ODD need not have good lane-keeping performance and test cases classified as outside the 

ODD does show good lane-keeping performance. This means the ODD definition itself 

required much more attention from a performance aspect. Performance assessment can be the 

key to bringing more clarity into the ODD definition since it is difficult to capture the ODD 

boundaries of environmental or infrastructural ODD attributes that are missing from the OEM 

manuals. The lane-keeping performance is important in the ODD definition because it can be 

a safety concern if ignored. For instance, a driving situation that’s inside the ODD with poor 

lane tracking performance can lead to the vehicle steering into the opposing lane. Therefore, 

including the performance assessment also in the ODD assessment would be a good start in 

defining the ODD in a better manner. 
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7. Discussion and Conclusions 
 

7.1. Overview  
 

The European Commission has mandated the requirement of advanced safety features in all 

vehicles sold in the EU from 2022 onwards (European Commission, 2018). This will help 

drivers get gradually used to ADS, eventually transitioning to fully autonomous driving in the 

distant future. There are more vehicles on road now equipped with lane-keeping systems and 

other driver assistance systems due to the added benefit of safety. One such ADAS feature is 

the lane-keeping system which has plenty of performance evaluation research being done on it 

but lacks research from an ODD perspective in simulation. As for the ODD definition, there 

are many ODD taxonomies present in academic literature for the classification of ODD 

attributes. These are recommended to be used by OEMs to classify their ODD definition of the 

system for effective comparison between the same ADAS feature offered by two different 

OEMs. However, this is not seen to be done by the OEMs and causes a disparity between the 

ODD definitions, leading to misunderstanding or misinterpretation of the defined ODD. The 

OEMs do not exactly specify the ODD boundaries in publicly available instruction manuals of 

the vehicles. The conditions where the system cannot function properly are very vaguely 

mentioned. Furthermore, the different OEMs provides the same ADAS feature with different 

names with differently defined ODD boundaries. Bringing these ODD definitions of all these 

OEMs under one umbrella is currently being attempted by policymakers and regulatory 

organisations. A standard way of testing the impact of the different ODD attributes on the 

performance of a lane-keeping system is still absent. Therefore, this research aims to provide 

a method to assess the ODD boundaries of a lane-keeping system using simulation and is 

intended to be used by researchers, policymakers and OEMs to refine the ODD and to test the 

effect of the ODD attributes on the performance of the system.  

 

This research attempts to understand the current ODD definitions and provides a framework to 

apply this methodology in future ODD related studies. An initial ODD investigation is done to 

define the sample ODD of the system to be tested in simulation (using Prescan) and a 

preliminary ODD assessment of the test cases is done. Then a performance assessment of the 

test cases based on the 0.3 m acceptable lateral offset value is done to test the performance of 

the developed test cases. This would then be used to check the lane-keeping performance of 

the classified inside or outside ODD test cases. Since the ODD boundaries of ambient 

conditions are not readily available, the performance assessment would be useful to test the 

impact on the test cases developed by the different ODD attributes. This approach is extended 

to suggest an exposure metric to compare the different test cases investigated in this research. 

The use cases were defined based on the initial investigation and the lateral offset data is 

measured from all the test cases run in Prescan. This data was filtered, compiled and analysed 

to assess the effect of the attributes on the lane-keeping performance.  

 

This chapter discusses the conclusions of the results reported in the previous chapter and 

reflects on the research approach used and on the literature findings. Finally, the limitations of 

this research are also discussed. 
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7.2.  Answers to research questions 

The main research question was “How to assess the ODD boundaries of vehicles equipped with 

Lane-Keeping System at horizontal curves using PreScan?”. The following sub-sections 

answer the six sub-research questions one by one. 

1.  How is the ODD of lane-keeping systems defined in the literature and the various OEM 

manuals so far?  

There are very limited ODD definitions specific to the lane-keeping system available in the 

literature. There are ODD definitions provided by standardization organisations on a broader 

level, but research on ODD boundaries is very limited. When the chosen OEM manuals were 

explored, the ODD definition available there was also limited. The OEMs have described the 

driving situations where the performance of the lane-keeping system might be affected, but the 

boundary conditions are not described in detail. Additionally, the same lane-keeping feature 

offered by the different OEMs has different ODD limitations with different names. This can be 

attributed to the control algorithm that the OEM uses. However, there are many aspects of the 

ODD that is left out in the OEM manuals. Details like warnings, display options, turning on 

and off are mentioned in detail in the OEM manuals, but the crucial information about the 

system’s performance limitation is often mentioned very ambiguously. Furthermore, there is a 

lack of clarity on the underlying principle used by the OEMs while defining the ODD and 

hinders the refinement of the ODD gravely. These aspects of missing knowledge of the ODD 

from the available sources is indicative that the road authorities and drivers are not aware of 

the exact capability and limitation of the system. Therefore, the exact situations where the 

systems can perform properly is unclear.  

There are projects like ASAM OpenODD that does attempt to bring a single ODD definition 

format that can be used by all OEMs which are both machine and human-readable. The new 

proposed format can enable easy knowledge transfer between the involved parties with ODD 

descriptions that are exchangeable, comparable and processable. This facilitates efficient 

communication between the parties involved like the road authority, policymaker, development 

engineer, simulation engineer, data scientist. Defining and exchanging information in a 

standard format can result in a common understanding of the ODD definition. This would 

especially be beneficial in situations like when a city can describe the ODD for its infrastructure 

in the standard format and makes it available to the OEMs. The OEMs can use this description 

to test and match the system/vehicle within the defined ODD to check if the vehicle can be 

allowed to drive in that city. Additionally, this testing would benefit from assessing the 

performance of the system, be it in terms of safety, lane marking adherence, fuel efficiency or 

any other aspect.  

2. What are the different road or vehicle characteristics, or environmental conditions 

widely factored to the ODD boundary of lane-keeping system?  

The ODD attributes relevant to the lane-keeping system found from the literature review and 

the OEM manuals are shown in Table 17. 
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Table 17: ODD attributes from literature and OEM manuals 

Type of attribute List of attributes 

Environmental conditions Weather, illumination, shadows, 

particulates,  

Infrastructural attributes Radius of curvature, lane width, type of 

roadway, type of lane marking, lane 

marking condition, roadway surface 

condition, roadway geometry, road gradient 

Dynamic attributes Speed, headway 

3. What are the simulation capabilities of Prescan to test the ODD boundaries of lane 

keeping system?  

Prescan offers a wide variety of functionalities to test the different ODD attributes. Since 

Prescan is a physics-based simulation platform and deterministic, it cannot map uncertainty in 

the test cases. The many available sensors can enable quick and efficient testing of ADS or 

ADAS features in Prescan. One of the major limitations of simulation, in general, is the 

combinatorial explosion. The greater number of ODD attributes that have to be tested on 

Prescan and the higher the range of values associated with it makes it more complex since the 

correlation between all the attributes becomes difficult to map. This is because of the sheer 

number of test cases that have to be tested when there are more ODD attributes to test.  Prescan 

in itself does not address the combinatorial explosion issue, but a verification & validation 

framework called ‘Prescan360’ that uses Simcentre Prescan and Simcentre HEEDS together 

allows testing of a large number of test cases in very less time. The framework is illustrated in 

Figure 54.  

 

Figure 54: Simcentre Prescan360 framework 
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Prescan360 not only provides the solution to the combinatorial explosion but also gives access 

to massively parallelized simulations on cluster or cloud. HEEDS is a software that automates 

and accelerates the process by finding design configurations that best satisfy the requirements. 

Therefore, HEEDS provide the test cases sampling smartness essential for smart experimental 

design to overcome combinatorial explosion. However, Prescan360 and HEEDS were not 

utilised in this study. Moreover, the main advantage of Prescan is the range of available sensors. 

Although the idealized sensors in Prescan do not represent any actual sensors, these can provide 

much background information from the simulation environment that cannot be acquired from 

on-road testing or driving simulators.  

4. How can the ODD boundaries of an ADAS feature like lane-keeping system be tested 

in a simulation environment? 

The research approach used in this study can be utilised to test the ODD boundaries of a 

different ADAS feature in the same or different simulation environment. This performance 

assessment of the test cases can encompass most of the ambient conditions using the 

performance and exposure metrics, making it effective to compare the different test cases. 

However, it can depend on the type of attributes to be tested. In case more dynamic attributes 

are to be tested, the performance metric has to be adapted accordingly. For instance, if headway 

is also included in developing the test cases, then using only the offset threshold value of  

0.3 m won’t be sufficient. This is because a minimum headway is required between two test 

vehicles for perceived safety. In such cases, the headway can also be a function of the speed 

and therefore using a performance assessment similar to this study would be beneficial in 

capturing the exact ODD boundary of an attribute like headway. The framework proposed in 

this research (see Figure 55) can be applied to test the ODD boundaries of an ADAS in a 

simulation environment.  

 

5. What are the test cases required to test the ODD boundaries for a test vehicle equipped 

with lane-keeping system in Prescan?  

The test cases developed in this study is based on the findings from the literature review, OEM 

manuals and the understanding of the simulation capabilities of Prescan. The development of 

the test cases mostly depended on the attributes that has to be tested. The ODD attributes tested 

in this research are static and the value does not change during the simulation run. Therefore, 

the ODD presence of the test cases is either inside or outside the ODD throughout the run. The 

boundary conditions required to perform the initial ODD assessment are not easily available 

and they were extracted from different sources. The ODD boundaries of speed range and 

weather conditions were taken from the OEM manuals, the lane width boundary was taken 

from literature, and the radius of curve boundary was taken from the design guidelines. The 

boundary values provided in the ODD definitions of OEM manuals are very limited. For 

example, defining ODD boundary situations like a narrow road or sharp curve makes it very 

hard to define concrete test cases that are inside the ODD. This is why other sources like 

literature and design guidelines were also utilized to extract ODD boundary conditions for the 

lane-keeping system. The lack of clarity in the existing ODD boundaries and the absence of a 
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standard ODD definition restricts ODD based test case generation. Due to this reason, a 

performance assessment is used to check the lane-keeping performance of the vehicle in the 

test cases based on an acceptable lateral offset value of 0.3 m. The combinations of the different 

values assigned to the attributes have to be tested to find the correlation between the ODD 

attributes in the test case and the results of the performance assessment can then be used to 

reflect on the initial ODD assessment done. These combinations were created based on the 

design guidelines and the ODD boundary conditions found in literature and OEM manuals. A 

total of 130 test cases were tested in this research surrounding the speed of the vehicle, radius 

of curvature, lane width and weather conditions. The major setback here was the issue of 

combinatorial explosion. For context, if all the combinations of speed, the radius of curvature, 

lane width and weather variations were to be tested, a total of 540 test cases need to be 

generated. Therefore, for weather variations, just two values of each attribute are tested to 

check how the variation in the attribute with weather variations impact the ODD compliance. 

6. How does the test vehicle’s ODD compliance from the built test cases compare to the 

ODD boundaries of the attributes found from the literature and OEM manuals?  

An initial ODD boundaries assumption for the lane-keeping system was made based on 

findings from the literature and OEM manuals for the chosen attributes. These boundaries can 

hold if there are no other ODD attributes in play that can affect ODD compliance. Since this 

research combines the effects of the four ODD attributes chosen, the resulting ODD boundaries 

after the analysis is aimed to be described. As this research tests the different speed values, the 

time at the curve changes for the different speeds. Hence the exposure metric was introduced 

to test the lane-keeping performance of the vehicle in the different test cases. The test cases 

with weather conditions have a maximum lateral offset higher than 0.3 m when the vehicle 

moves at a higher speed at wider lanes. In the case of weather conditions like extreme rain and 

extreme snow, although the vehicle was well within the 0.3 lateral offset value in most of the 

test cases, there is a heavy when the lane width is narrow. Additionally, at a lane width of 2.6 

m, there is a swerving nature observed between the lane centre and the right lane marking by 

the vehicle in all the weather conditions. However, for a lane width of 3.6 m, the swerving 

nature is less prominent, and it appears that the weather conditions do not heavily impact the 

lateral offset. Fog and rain conditions were expected to have a higher impact on the vehicle’s 

lane-keeping performance, but surprisingly it had less effect.  

From the performance assessment, the upper boundary for speed is suggested to be 100 km/h 

because all test cases of vehicles moving at 100 km/h were within the 0.3 m offset threshold 

value the entire time for all the test cases. If the upper ODD boundary of lane width is 3.5 m, 

then the upper boundary of speed increases to 110 km/h because all test cases of the vehicle 

moving at 110 km/h have the lateral offset within 0.3 m for all lane widths less than 3.5 m. 

Since the curve is designed for speeds of 120 km/h and if a speed of less than 120 km/h results 

in poor lane-keeping performance (lateral offset greater than 0.3 m), then the value of the other 

ODD attributes in that test case might be outside the system’s ODD. For instance, at a 750 m 

radius curve, for lane widths 2.6 m and 2.75 m, the vehicle is completely within the offset 

threshold of 0.3 m when moving at a maximum speed of 120 km/h. When the lane width of 
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this curve increases to 3.0 m, 3.25 m or 3.5 m, the maximum speed it can achieve while 

completely staying within a 0.3 m lateral offset becomes 110 km/h. Similarly, for a 3.6 m lane 

width, the maximum speed comes down to 100 km/h. Assuming that the vehicle must be able 

to move at the design speed of 120 km/h, based on the performance assessment, the ODD 

boundary of the radius of curvature becomes 1200 m since all test cases of 1200 m radius curve 

at speed of 120 km/h in all lane width variations are completely within the 0.3 m lateral offset 

throughout the simulation run. If the vehicle has to move at 120 km/h at a curve of radius 900 

m, then lane widths between 2.6 m and 3.25 m are the ODD boundary conditions. Similarly, if 

the vehicle has to move at 120 km/h at a 750 m radius curve, then the boundary conditions for 

lane width reduces to 2.6 m to 2.75 m. This correlation between the attributes makes it hard to 

concretely define the ODD boundary. The ODD boundary for speed defined by the OEM 

manual (like 140 km/h) may hold for a certain set of driving conditions that is unknown to the 

drivers. Furthermore, the underlying principle for which the OEMs design the ODD boundaries 

(like perceived safety, fuel efficiency, lane-keeping performance, fault tolerance, etc.) is 

unavailable to the public. This lack of clarity or transparency is a huge barrier in testing the 

ODD boundaries.  

 

Higher speeds have higher exposure values in narrow lane width compared to wider lane widths 

for curve radii of 750 m and 900 m. For the 1200 m radius of the curve, there is a decrease in 

exposure at 2.6 m and 3.6 m lane width compared to the other lane widths, whereas for curve 

radii of 750 m and 900 m, an increase in lane width results in higher exposure value. This can 

be because at a higher radius, the effect of lane width variations becomes more prominent. For 

test cases with the same lane width and radius, an increase in speed results in lower exposure. 

It is noteworthy that the upper boundary of the ODD range for speed provided by the OEMs is 

around 140 km/h to 160 km/h. The lane-keeping performance of the system becomes less even 

at speeds of 140 kmph. Hence, speeds higher than that is expected to result in even lesser lane-

keeping performance.  

 

Finally, for the test cases with the same lane width and speed, an increase in radius results in 

higher exposure. From all the test cases simulated, it can be concluded that a lane width of  

2.6 m performs better in terms of the exposure value and because of the lowest mean and 

maximum lateral offset value within the same radius group. This is surprising because the OEM 

manuals classify narrow lane widths as outside ODD explicitly in the OEM manuals and do 

not mention wider lanes as an ODD limitation. It was also seen that the test vehicle tends to 

deviate into the opposite lane when leaving the curve for certain test cases; for instance, in the 

test case of 3.6 m lane width at 750 m radius, when the vehicle is moving at 120 km/h. 

However, for lane widths like 2.6 m and 2.75 m at a 750 m radius, the vehicle stayed well 

within the lane markings when exiting the curve, even at a speed of 120 km/h. Since the sole 

focus of this study is the performance of the lane-keeping system and the interaction in ODD 

attributes at the curve segment, the deviation at the end of the curve segment was not further 

investigated. 

 

In the initial plan, lane widths ranging from 2.5 m to 4.0 m was to be tested in this study. 

However, only lane width values between 2.59 m and 3.7 m were possible for testing speeds 
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of 140 km/h. In the initial testing, it was found that for a radius of 750 m, the maximum speed 

of the test vehicle was 50 km/h for lane widths of 2.5 m and 4.0 m. Since these speeds are not 

in the range of values planned to test in this research, lane widths that couldn’t attain speeds of 

140 km/h were omitted.  

 

It can be concluded that there is an interdependency between the ODD attributes tested in this 

research. Therefore, there is a possibility that the ODD definition may not exactly be a specific 

set of values in a lookup table, but instead can be dynamic considering this interdependency. 

Furthermore, it was also found that geometric factors like lane width and radius of curvature 

have a higher impact on the exposure, compared to speed and weather conditions. The weather 

was found to have the lowest effect on the performance.  

 

From the analysis of averaging exposure over the different lane widths, it is observed that 

sharper curves lead to more deviations beyond the offset threshold of 0.3 m. Additionally, as 

the radius increases, the frequency of such exits decreases over the lane widths. It was also 

seen that an increase in speed leads to a higher frequency of the exits within the test cases of 

the same radius. 

 

Based on the analysis done, the attributes tested in this research can be classified into critical 

and non-critical attributes, where the former has a higher level of importance in the ODD 

definition than the latter. The ODD attributes like speed, the radius of curvature and lane width 

can be classified as critical attributes due to the correlation they have in the performance 

assessment. Whereas, the weather variations were not reported to have a higher level of impact 

on the exposure compared to the other three attributes. The level of impact of the weather 

condition on the lane-keeping performance observed in this study is quite contrary to findings 

from previous research. This can either be because the control algorithm in Prescan is very 

good and may not be representative of a controller in real life, or because the weather presets 

provided in Prescan is not accurate enough. Extreme weather conditions like dense fog that 

completely obstructs the lane markings were tested to see if the weather affects the controller 

in Prescan. When the droplet size and intensity of fog were manually changed and tested in 

Prescan, it did have a significant impact on the lane-keeping performance. Hence, the weather 

variations provided as presets in Prescan labelled heavy and extreme is not very reliable and 

requires further refinement. Therefore, no conclusions can be drawn about the impact of 

weather conditions based on the available data.  

 

Having the sub-research questions answered, it is now possible to answer the main research 

question:  

 

“How to assess the ODD boundaries of vehicles equipped with Lane-Keeping System at 

horizontal curves using PreScan?”  

 

The answer to the main research question of this research is the implementation of the proposed 

framework shown in Figure 55 used in this study by using the exposure metric to assess the 

impact of the ODD attributes on the lane-keeping performance. The ODD boundaries and the 
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correlation between the identified ODD attributes are clearer by implementing this framework 

in Prescan on test vehicles equipped with a lane-keeping system at horizontal curves. The 

results from this approach essentially provide more insight into the ODD boundaries and their 

assessment. 

 

 
Figure 55: Conceptual framework to test the ODD boundary of ADAS in simulation 

The main requirements of this approach are the initial exploration of ODD definitions of lane-

keeping systems to find the attributes relevant to the system. These attributes are then filtered 

out based on the simulation capabilities of the simulation software. The use cases are built 

based on the filtered attributes and the values to be assigned for each test case are found from 

literature and OEM manuals. The classification of inside ODD and outside ODD is done based 

on the ODD boundaries identified from the exploratory phase. This is then compared to the 

performance assessment results from the simulation run of the test cases. Such a comparison 

helps identify the effect of each attribute on the ODD definition itself and the correlation 

between them. This methodology enables researchers and vehicle manufacturers to test the 

different ODD boundaries in a system’s ODD definition and assess whether an ODD 

classification of a driving situation based on the ODD definition is complete or not. The 

approach used in this study is converted into a conceptual framework that can be used for the 

ODD assessment of any ADAS feature or ADS as shown in Figure 55.  

 

From the results, it is seen that the performance aspect is not factored in the ODD definition 

and taking performance also into account will be useful for better defining the ODD 

boundaries. It is clear from the comparison between the initial ODD assessment and the 

performance assessment results that some test cases defined outside ODD has good lane-

keeping performance and some test cases that are defined inside ODD has poor lane-keeping 
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performance. This means that the ODD boundary definitions are incomplete and require further 

shaping. The reason behind it can be the lack of ODD boundary descriptions of all tested 

attributes in one place. The ODD boundaries were taken from design guidelines, OEM manuals 

and literature for the different ODD attributes since the OEM manuals did not contain all the 

necessary information. Additionally, the principle or basis behind the OEM’s ODD definition 

is unavailable and understanding that would be very beneficial for the ODD assessment of the 

test cases.  

 

7.3. Final Remarks 
 

There is plenty of research that performs a performance evaluation of the lane-keeping system 

in on-road conditions and simulation. However, there are very limited simulation studies that 

test the lane-keeping system performance from an ODD perspective. This research aims to fill 

that gap by providing a framework that enables researchers to test the ODD of lane-keeping 

systems or other ADAS features. The effect of ODD attributes and the impact of the correlation 

between the attributes on the ODD boundaries are investigated, which can help researchers and 

OEMs to improve the ODD boundaries of the lane-keeping system. The study also takes into 

account the design factors, which can aid policymakers and road authorities in the future while 

designing roads for vehicles equipped with lane-keeping systems. Siemens can use the 

performance metric developed as a plugin to test the different use cases and gain insights on 

the ODD of the vehicle tested using the approach from this study. Moreover, ODD is gaining 

much traction lately and as the future of autonomous vehicles is coming closer, ODD must be 

given importance now more than ever. 

 

There is a wide range of names assigned to lane-keeping systems by different OEMs with very 

limited information provided about the ODD. With the limited amount of knowledge available, 

the ODD must be experimentally tested by the road authorities or researchers to better 

understand the system’s capabilities and limitations. There is no warning system in the vehicle 

that alerts the driver about the vehicle leaving the ODD or coming close to the ODD boundary. 

Combining ODD assessment and performance assessment as done in this study would help to 

be aware of when a system leaves the ODD in different driving situations. However, there 

should be efficient knowledge transfer between the involved stakeholders, like the OEMs, road 

authorities, traffic agencies. Such a collaboration can help upgrade both the road infrastructure 

and the driving system for compliance with a standard ODD definition. In addition, 

policymakers can clearly specify the road infrastructure characteristics and OEM system 

requirements to complement each other for safer and more efficient traffic movement. One of 

the major challenges faced by the OEMs (especially in the European Union) would be to satisfy 

the infrastructure requirements of different countries within the EU due to different regulations. 

This can be resolved by ensuring a level of homogeneity in the infrastructure across the 

countries. An alternate solution would be to digitalize the road infrastructure and share it with 

the OEMs so that they can test the system with the provided data. Once the system is tested 

and validated with the data on a simulation environment like in this study, the vehicle would 

be ready for the infrastructure and can ultimately minimize the ODD exits. This can only be 

done with a massive collaboration with the different partners in the industry, research 
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organizations and government bodies. ODD requirement/sharing policies must come into 

effect more as international regulations rather than providing suggestions or taxonomies.    

 

Since lane-keeping systems function with the underlying objective of staying within the lane 

markings by detecting them via sensors, it can be concluded that there is a direct relationship 

between the system and the road infrastructure that it uses. However, there is a knowledge gap 

between the OEMs that design the system for specific infrastructure conditions and the road 

authorities who provide the infrastructure. Specific details concerning the infrastructure 

conditions like the lane marking contrast or pavement friction would be used while testing the 

system by the OEM. The road authorities would have to ensure certain standards that the OEMs 

use in the built infrastructure, or the OEMs have to test their systems in the most realistic 

driving situations possible. Given that a model of a vehicle will release in different countries 

with different design guidelines, traffic composition and policies, the best way to test the 

system is using simulation. With efficient communication about the ODD between the OEMs 

and the road authorities, the testing of the system can become quicker, paving the way to higher 

levels of autonomy in vehicles. The ODD requirements of a specific system must be standard 

and should be communicated to the road authorities. This way, the road authorities would be 

well prepared to ensure road safety with these systems equipped in the vehicles before 

launching the vehicles in the market. Additionally, this can work the other way as well. The 

road authorities can provide the ODD definitions offered in a city or a highway and the OEM 

can then test the system in that ODD before launching it. The system can be tested using the 

approach mentioned in this study. Furthermore, in a complete ODD definition with more 

attributes, a single attribute being outside its ODD boundary would classify that driving 

situation as outside the ODD. However, the system might still be able to perform well, as shown 

in this study. Therefore, the proposed performance metric would be useful to further refine the 

ODD and it can be investigated to see whether the ODD exit of just one attribute results in 

system malfunction. In addition, the classification proposed in this study to separate ODD 

attributes as critical and non-critical would be beneficial for this objective. 

 

It was seen from this study that lower lane width allows a higher speed of the test vehicle, along 

with better capability to map the lane-markings. This finding requires further validation. If this 

is validated, then based on it, the speed limits of the roads can be increased coupled with 

narrowing the lanes. Such a change can result in higher capacity and a chance to provide 

additional lanes. However, the vehicles need to communicate with each other with high 

precision regarding the vehicle position for safe movements of the vehicles. When the V2X 

(Vehicle-to-everything) communication technology is more advanced in the future, the 

proposed design change can indeed be a possibility. The perceived safety can be a problem 

since human drivers are still part of the loop. If lane narrowing becomes a possibility, then 

providing a dedicated lane for vehicles equipped with such systems can be a safer alternative 

in such a scenario to separate conventional vehicles from automated vehicles.  
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7.4. Reflection on the state of the art 
 

While comparing the boundary conditions of the ODD attributes tested in this study against 

literature, some differences are noteworthy. The most interesting aspect is the ODD boundary 

for lane width. The on-road pilot tests for lane-keeping systems done by García & Camacho-

Torregrosa (2020) found that the lane-keeping system cannot function on lane widths less than 

or equal to 2.50 m and that the system can always operate on lane widths greater than or equal 

to 2.75 m. The field tests done by Reddy et al. (2020) observed the highest lane-keeping 

performance on lane widths that are wider than 2.50 m. Similarly, only speeds higher than 90 

km/h resulted in low lane-keeping performance. The study done by Chaudhary (2021) on the 

infrastructure assessment for ODD of lane-keeping system found that the test vehicle speeds 

of above 80 km/h resulted in better lane detection. However, the test vehicle could not detect 

lane widths below 3 m. From this study, it was found that the lane-keeping system cannot 

function at a lane width lower than 2.6 m or higher than 3.6 m. In addition, the system 

performance for the different lane widths is dependent on the speed of the vehicle and the radius 

of curvature. Test vehicle speed of 100 km/h was found to be completely inside the offset 

threshold of 0.3 m for all lane widths and radius of curvature tested. Furthermore, the test 

vehicle speed of 110 km/h was found to be within the offset threshold for all radii of curvature 

tested with lane width between 2.6 m and 3.5 m. The study done by (Hayeri et al., 2015) 

indicates that the lane width could be reduced given that the lane-keeping systems guarantee 

the vehicle staying within the lanes. This is in line with the results from this study that the test 

vehicle at lower lane width is showing higher lane-keeping performance compared to wider 

lanes. It is also noteworthy that the OEM manuals specify narrow lane widths as the ODD 

boundaries in the OEM manuals. However, the results from this study prove that wider lane 

widths like 3.6 m might also be an ODD boundary based on the performance.  

 

García et al. (2020) concluded from testing a Level 2 vehicle on different horizontal curves that 

there is a strong relationship between the maximum speed the system can attain and the curve 

geometry. It was concluded in the study that there was a strong relationship between speed and 

disengagements. It was also found that the proposed ‘automated speed’ is lower than the design 

speed for curves sharper than 550 m. The research done in this thesis further establishes these 

correlations. The maximum speed that the lane-keeping system can attain (while staying within 

the ODD) from this research is dependent on the geometric design of the curve. Higher speeds 

can only be attained at lower lane widths or higher radius of curvature. For a design speed of 

120 km/h, the minimum curve radius is 750 m. For a curve radius of 900 m, the maximum 

attainable speed was 110 km/h provided all the test cases adhered to the 0.3 m offset threshold 

value used. For sharper curves like 750 m radius, the maximum attainable speed becomes 100 

km/h and for curves of radius 1200 m, the maximum attainable speed is 120 km/h. Hence it is 

found that the automated speed in this research is lower than the design speed for curves sharper 

than 900 m. As for the disengagements, it was also found in this research that higher speed 

leads to more deviations beyond the offset threshold value and longer time beyond the 

threshold (lower exposure values).  
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The level of impact of weather conditions on the exposure was the lowest compared to the 

other three ODD attributes tested. This was unexpected given the fact that all five of the OEM 

manuals that were reviewed reported ODD limitations for weather conditions like fog, rain and 

snow. In addition, the literature review also points out a strong effect of weather conditions on 

lane-keeping performance. Moreover, the tested weather conditions are the higher levels of 

rain and snow offered by Prescan. Further studies are required to capture the effect of weather 

conditions on the ODD by using other controllers or by testing more ODD attributes to see if 

the impact of weather becomes prominent in the presence of another ODD attribute that wasn’t 

tested in this study. 

 

7.5. Reflection on the methodology 
 

The main factor of this research is the performance equation based on the 0.3 m lateral offset 

threshold. The vehicle deviating beyond this threshold value can be indicative of the system 

performance itself. Therefore, the methodology used in this research can be used to better shape 

the ODD definition and can also be used to refine the system. More research must be conducted 

on whether using this 0.3 m offset threshold is a good method for the performance assessment 

and to see if such a parameter alone can be used to better shape the existing ODD boundaries. 

Additionally, other factors can determine the ODD boundary of the system. For instance, the 

0.3 m offset threshold can hold for two cars following very closely to each other. However, the 

perceived safety of the driver can become a factor there and hence the performance metric 

might need to include a headway factor as well when the test vehicle is interacting with a 

second vehicle.  

 

Using simulation is a good way to test many different driving situations which cannot be 

replicated in on-road experiments. A certain level of realism has to be achieved in the 

simulation tool to provide concrete recommendations. There can be many factors within the 

simulation that can be at play, which if not aware of, can be the reason for the system 

performing a specific way. In Prescan, the preset weather conditions showed little effect on the 

lane-keeping performance. It might be a possibility that the preset conditions are not very 

accurate, or the controller is too good to be realistic. Additionally, the weather conditions didn’t 

have much impact because the lane marking looks very new and clear, where in reality that 

need not be the case. Therefore, improving the realism on the simulation platform is very 

crucial for mapping the impact of ODD attributes better in future studies. Prescan do provide 

functionalities like adding mud patches on the lane marking, modifying tire conditions, fading 

and dirtiness parametrization of the lane markings. However, this was not the main focus of 

this study and was not used in the development of the use cases. 
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7.6. Research limitations 
 

As with any research, there are limitations to this research. They are discussed below. 

 

• The research is limited to the lane-keeping system at a horizontal curve. The system is 

expected to function in other types of road segments as well. Additionally, the type of 

curve (left or right) is beyond the scope of this research.  

 

• The use cases are built without including the superelevation at the curve into 

consideration due to the limitation posed by the simulation software Prescan. If 

superelevation has to be included in the study, a gradient has to be applied to the start 

and end of the curve segment and only then an angle of superelevation can be applied 

to it. Since gradient was not an attribute tested in this study and because it is not realistic 

to have the vehicle go uphill before the curve and downhill after the curve, the 

superelevation factor is ignored during the design of experiments. This is a pitfall of 

the simulation software used. Furthermore, if such a gradient is applied, the camera 

sensor will be able to see the sky when entering the curve from the initial increasing 

gradient and at the end of the curve when the road starts sloping down. Including 

superelevation into Prescan realistically is very important since Prescan is a physics-

based simulation platform. Moreover, since the results from this study capture the 

pattern in the performance observed from the correlation between the ODD attributes, 

including a superelevation might have the same impact on all the test cases and can 

result in the same correlation.  

 

• Prescan does not allow the extraction of the infrastructural details from the graphical 

user interface (GUI) to the Simulink end. This would have been beneficial to better 

understand the correlation between the performance of the vehicle and the 

infrastructural ODD attributes tested. If it was possible, then the ODD of the test vehicle 

during the runtime could have been monitored.  

 

• The performance assessment equation used (Equation 1) is based on the  0.3 m lateral 

offset threshold which was used to capture the lane-keeping performance changes with 

varying ODD attributes. If other dynamic attributes are to be tested, the equation has to 

be modified. Moreover, the 0.3 m lateral offset threshold can be subjective based on 

the dimensions of the vehicle, i.e. for a wider vehicle the equation might result in more 

offset threshold exits, especially at a narrow lane width. 

 

• There is an initial peak in the lateral offset visible in all test cases when the vehicle 

enters the curve segment. This is due to the lack of V2I communication or GPS sensor 

since in reality the vehicle will have GPS data and can know the vehicle is entering a 

curve segment beforehand itself.  
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• The biggest drawback of simulation studies is the combinatorial explosion, which limits 

this research as well. A total of 540 test cases could be mapped if all the combinations 

of the ODD attribute values are tested against each other. However, only 130 test cases 

were possible to test in this research. 

 

• In reality, an ADS will be equipped with so many sensors and not just a camera sensor. 

The vehicle would then have a sensor fusion model to map the entire surroundings of 

the vehicle. 

 

• In driver assistance systems like the lane-keeping system, the human driver plays a very 

crucial role in the performance. However, there is no human driver model included in 

this research and the interaction between the driver and the system is beyond the scope 

of this research. 

 

• The interaction with other road users or vehicles is also kept out of scope for this 

research. Real-life driving situations will include such interactions, but it is not 

addressed in this research. 

 

• The algorithm for detecting the lane marking was in-built in Prescan and is not very 

well described in terms of what happens on the back end. It could not be checked or 

tested if it is similar to a lane-keeping system in use or to check if the correlation found 

in the study can be attributed to the control algorithm.    

 

• Combinatorial explosion can be resolved by the ‘Prescan360’ framework developed by 

Siemens. However, that can result in a higher cost in computing infrastructure.  
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8. Recommendations  
 

The possible next steps are discussed in this chapter to take this research forward. The 

possibilities are categorized into two steps as described below.  

 

8.1. Scientific recommendations 

 
• The results from the ODD and performance assessment done in this study has to be 

validated. It can be done by comparing with on-road experiments to check if the trends 

reported in this study is reported in on-road experiments as well. The impact on the 

exposure observed in this study by ODD attributes must be explored in detail.  

 

• The degree of correlation between the ODD attributes needs to be mapped out better to 

compare the impact each ODD attribute has on ODD compliance. Identifying the 

patterns when ODD attributes interact with each other is a gap that has to be addressed 

to better understand the ODD. 

 

• Researchers can use the framework proposed in this study to perform the ODD 

assessment for other ADAS features like ACC or AEBS. To increase the realism of a 

future ODD assessment of lane marking system, more attributes have to be tested until 

all the ODD attributes in the ODD definition are covered. These attributes include 

headway, time of day, condition of lane marking, driving in shadows, wet road surface, 

the effect of tires in the different weather conditions, type of curve, gradient. 

Alternatively, OpenStreetMap can be used for defining the use case to increase more 

realism in the assessment. It was found by Chaudhary (2021) that wet road conditions 

severely lowered the lane detection performance and that the lane detection 

performance is significantly less during daytime compared to nighttime. These aspects 

of ODD were not tested in this thesis and it would be beneficial to study the impact of 

weather conditions coupled with wet road conditions and nighttime driving situations. 

 

• The ODD assessment can be done for on-road tests and the collected data can be used 

to conduct a qualitative study to compare the driver’s understanding of the ODD 

presence of a driving situation and the actual ODD of the system. This can provide 

further insights to check if the driving situation is actually inside ODD or not and if 

other factors like perceived safety must be taken into account in the ODD definition. 

 

• The application of critical and non-critical ODD attributes can be extended to more 

ODD studies for lane-keeping systems or other ADAS. Assigning a level of importance 

to the attributes list relevant to the ODD can save time in testing the ODD boundaries 

of critical attributes before the non-critical so that higher levels of autonomy reach 

public roads faster.  
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8.2. Practical recommendations  
 

• The assessment approach proposed in this study can be used to assess the ODD 

compliance of thousands of already built use cases on Prescan and that data can be 

processed to gain a better picture of the ODD of lane-keeping system or any other 

ADAS.  

 

• The OEMs must provide more information about the system and its ODD. The principle 

behind defining the ODD by the OEMs is not accessible and providing such information 

for developers or in testing would be very useful in interpreting the results from lane-

keeping behaviour in different test cases. Conveying the underlying principle used by 

the OEM for the design, testing and validation of their system’s ODD would be 

beneficial for future ODD based use case generation, ODD testing and research. 

 

• Road authorities are advised to develop the ODD of the infrastructure for testing before 

vehicle launch so that the OEM can test if the system performs well in the built 

infrastructure before the vehicle is launched into the market. To achieve this, it is 

recommended to digitalize the road infrastructure so that the ODD assessment can be 

extended to more realistic testing conditions. This can then be shared with the OEMs 

so that they can test the system’s ODD compliance faster.  

 

• One of the major limitations regarding ODD is the lack of information available to all 

the stakeholders. A solution would be to bring together the involved stakeholders and 

conduct a workshop to understand what the objective of each stakeholder is, what are 

the expectations and how to move forward together. It is recommended to have an open 

discussion about the ODD of the lane-keeping system or any ADAS between the 

developer of the system, the policymaker, road authority, data scientist, etc. to have 

better clarity of the ODD boundaries of the system for all the stakeholders involved. 

  

• Enforcing international regulations for a standard ODD would make it easier for testing 

the ODD of vehicles and can help avoid the disparity in ODD definitions, ODD 

boundaries and system names under the same level of autonomy by the different OEMs.  

 

• There should be a specific focus on the performance of the system at narrow lanes at 

different speeds. Since a higher lane-keeping performance was observed for narrow 

lanes even at higher speeds, more clarity on it would be useful for lane narrowing and 

increasing speed limits. This can ultimately result in higher capacity and lower travel 

times. 

  

• The OEMs can use the results from this study and the assessment method to better 

define the ODD boundary conditions provided in the vehicle manuals, especially with 

the lane widths. The results from the study prove that wider lane widths also have an 
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impact on the lane-keeping performance contrary to just narrow lane width as 

mentioned in the OEM manuals.  

 

• Since road characteristics are seen to have a higher impact on the ODD boundaries, it 

would be good to revise the design recommendations of geometric design of roadways, 

which was intended for human drivers in the first place. 

 

• The ODD limitations must be conveyed clearly to the end-users. If the ODD is already 

tested for a system by the OEM, it would be beneficial to know which attributes were 

tested by the OEM and what boundary conditions were used for the assessment. Such 

details can also be compared with this research. 
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Appendix A: Prescan 
 

Simcentre Prescan is a physics-based simulation software developed by Siemens for testing 

ADAS and automated driving. It delivers fully quantified and controlled testing conditions and 

enables quick and cost-effective testing. Validation of the system performance and its 

functionality would require billions of testing miles. A bulk of that validation can be done 

virtually by simulation that can provide a comprehensive physics-based platform that follows 

a systematic approach. Prescan does exactly this and hence one of the main benefits of using 

Prescan is that it reduces the amount of work required to bring an ADS to the market. It is 

equipped with advanced sensor simulation and world modelling. Prescan is also open to third-

party interfaces to support industry standards like OpenDRIVE and OpenSCENARIO. The 

simulation environment consists of mainly three elements, namely the GUI, Simulink and 

Prescan Viewer. The real-world driving conditions can be replicated by using the elements 

offers in the Simcentre Prescan database that includes roads, infrastructure components, 

weather conditions, light sources, actors, etc. The scenario development and equipping the 

sensor on to the test vehicle is done using the GUI. Simulink acts as the interface for the control 

systems to design and verify the control algorithms. Running the simulation would then provide 

much detail into the vehicle performance and its correlation to the driving environment. 

Furthermore, the parameters for roads, speed, lighting, sensors and many more can be varied 

to better map the vehicle performance, which would be time consuming and increasingly 

complex in on-road experiments. Finally, the simulation run can be visualized using the 

Prescan viewer. This process is illustrated in Figure 56. 

 

 
Figure 56: Main components in Prescan 

 

The sample curve segment developed in Prescan GUI is shown in Figure 57. The test vehicle 

can be seen in the beginning of the road segment and the yellow highlight indicates the range 

of the sensor equipped. The Simulink environment for the same experiment mainly consists of 
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the Simulink block of the actor that contains the different Simulink blocks of the vehicle within, 

like the vehicle dynamics, camera sensor, lane-keeping system. The expanded Simulink block 

of the actor is shown in Figure 58. After running the simulation, the Prescan Viewer visualizes 

the experiments and shows it in a window while running along with the vehicle parameters and 

the view from the camera sensor (see Figure 59). 

 

 
Figure 57: Curve segment in Prescan GUI 

 

 
Figure 58: Simulink end of the experiment developed in Prescan GUI 
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Figure 59: Information provided by Prescan while running the experiment 
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Appendix B: Simulation Data 
 

B.1. Test cases without precipitation 
 

B.1.1. Mean lateral offset 

 

The mean lateral offset data compiled for 750 m, 900 m and 1200 radii are shown in Table 18, 

Table 19, and Table 20 respectively.  

 
Table 18: Mean lateral offset data for 750 m radius curve 

Speed 
Lane width  

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

100 km/h 0.164 m 0.174 m 0.182 m 0.192 m 0.210 m 0.225 m 

110 km/h 0.195 m 0.200 m 0.210 m 0.223 m 0.246 m 0.257 m 

120 km/h 0.223 m 0.229 m 0.239 m 0.256 m 0.278 m 0.295 m 

130 km/h 0.264 m 0.271 m 0.283 m 0.299 m 0.323 m 0.341 m 

140 km/h 0.332 m 0.352 m 0.367 m 0.385 m 0.416 m 0.428 m 

 
Table 19: Mean lateral offset data for 900 m radius curve 

Speed  
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

100 km/h 0.150 m  0.150 m 0.158 m 0.168 m 0.186 m 0.202 m 

110 km/h 0.156 m 0.175 m 0.185 m 0.194 m 0.217 m 0.229 m 

120 km/h 0.196 m 0.200 m 0.209 m 0.222 m 0.245 m 0.259 m 

130 km/h 0.234 m 0.237 m 0.246 m 0.261 m 0.287 m 0.305 m 

140 km/h 0.290 m 0.298 m 0.309 m 0.330 m 0.358 m 0.370 m 

 
Table 20: Mean lateral offset data for 1200 m radius curve 

Speed  
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

100 km/h 0.106 m 0.113 m 0.114 m 0.123 m 0.142 m 0.157 m 

110 km/h 0.120 m 0.128 m 0.136 m 0.144 m 0.166 m 0.176 m 

120 km/h 0.142 m 0.147 m 0.154 m 0.167 m 0.186 m 0.197 m 

130 km/h 0.173 m 0.171 m 0.179 m 0.192 m 0.214 m 0.230 m 

140 km/h 0.214 m 0.220 m 0.229 m 0.245 m 0.270 m 0.284 m 

 

B.1.2. Maximum lateral offset 

 

Similarly, the maximum lateral offset data from the simulation runs of 750 m, 900 m, and  

1200 m radii are shown in Table 21, Table 22 and Table 23 respectively.  
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Table 21: Maximum lateral offset data for 750 m radius curve 

Speed 
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

100 km/h 0.199 m 0.199 m 0.214 m 0.231 m 0.253 m 0.274 m 

110 km/h 0.248 m 0.245 m 0.251 m 0.268 m 0.297 m 0.330 m 

120 km/h 0.277 m 0.290 m 0.302 m 0.332 m 0.360 m 0.382 m 

130 km/h 0.357 m 0.367 m 0.386 m 0.412 m 0.448 m 0.479 m 

140 km/h 0.506 m 0.520 m 0.549 m 0.575 m 0.622 m 0.644 m 

 
Table 22: Maximum lateral offset data for 900 m radius curve 

Speed  
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

100 km/h 0.190 m 0.177 m 0.194 m 0.197 m 0.231 m 0.250 m 

110 km/h 0.208 m 0.217 m 0.225 m 0.241 m 0.279 m 0.291 m 

120 km/h 0.249 m 0.259 m 0.267 m 0.287 m 0.324 m 0.339 m 

130 km/h 0.314 m 0.328 m 0.332 m 0.363 m 0.399 m 0.426 m 

140 km/h 0.431 m 0.449 m 0.450 m 0.495 m 0.537 m 0.562 m 

 
Table 23: Maximum lateral offset data for 1200 m radius curve 

Speed  
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

100 km/h 0.137 m 0.134 m 0.136 m 0.153 m 0.183 m 0.206 m 

110 km/h 0.167 m 0.163 m 0.176 m 0.190 m 0.220 m 0.225 m 

120 km/h 0.186 m 0.196 m 0.199 m 0.221 m 0.248 m 0.264 m 

130 km/h 0.237 m 0.238 m 0.254 m 0.267 m 0.308 m 0.332 m 

140 km/h 0.326 m 0.331 m 0.348 m 0.376 m 0.419 m 0.438 m 

 

B.1.3. Exposure 

 

The exposure data from the simulation runs of 750 m, 900 m, and 1200 m radii are shown in 

Table 24, Table 25 and Table 26 respectively. The exposure data is the ratio between the 

simulation time for which the test vehicle was within the offset threshold value of 0.3 m and 

the total simulation time of the vehicle at the curve, and hence does not have a unit. 

 
Table 24: Exposure data for 750 m radius curve 

Speed 
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

140 km/h 0.29  0.16  0.12  0.09  0.08  0.08  

130 km/h 0.90  0.78  0.61  0.42  0.09  0.08  
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120 km/h 1.00  1.00 0.98  0.92  0.69  0.41  

110 km/h 1.00  1.00  1.00  1.00  1.00  0.92  

100 km/h 1.00  1.00  1.00  1.00  1.00  1.00  

 
Table 25: Exposure data for 900 m radius curve 

Speed 
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

140 km/h 0.55  0.53  0.24  0.19  0.14  0.13  

130 km/h 0.94  0.93  0.91  0.89  0.73  0.40  

120 km/h 1.00  1.00  1.00  1.00  0.93  0.92  

110 km/h 1.00  1.00  1.00  1.00  1.00  1.00  

100 km/h 1.00  1.00  1.00  1.00  1.00  1.00  

 
Table 26: Exposure data for 1200 m radius curve 

Speed 
Lane width 

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m 

140 km/h 0.83  0.92  0.91  0.89  0.86  0.66  

130 km/h 0.96  1.00  1.00  1.00  1.00  0.93  

120 km/h 1.00  1.00  1.00  1.00  1.00  1.00  

110 km/h 1.00  1.00  1.00  1.00  1.00  1.00  

100 km/h 1.00  1.00  1.00  1.00  1.00  1.00  

 

B.2. Test cases with precipitation 
 

B.2.1. Mean lateral offset 

 

The mean lateral offset data for 2.6 m lane width and 3.6 m lane width at a 900 m radius curve 

for 100 km/h and 120 km/h and for the different weather conditions is shown in Table 27 and 

Table 28 respectively.  

 
Table 27: Mean lateral offset data for 2.6 m lane width and 900 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.150 m 0.137 m 0.143 m 0.147 m 0.150 m 0.149 m 

120 km/h 0.196 m 0.196 m 0.194 m 0.188 m 0.194 m 0.193 m 
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Table 28: Mean lateral offset data for 3.6 m lane width and 900 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.201 m 0.203 m 0.203 m 0.201 m 0.203 m 0.195 m 

120 km/h 0.259 m 0.257 m 0.257 m 0.258 m 0.257 m 0.266 m 

 

Similarly, for 750 m radius of curve, the mean lateral offset data at speeds 100 km/h and 120 

km/h for 2.6 m and 3.6 m lane width is shown in Table 29 and Table 30 respectively.  

 
Table 29: Mean lateral offset data for 2.6 m lane width and 750 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.164 m 0.170 m 0.162 m 0.170 m 0.168 m 0.163 m 

120 km/h 0.223 m 0.226 m 0.222 m 0.223 m 0.223 m 0.229 m 

 
Table 30: Mean lateral offset data for 3.6 m lane width and 750 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.225 m 0.225 m 0.226 m 0.225 m 0.225 m 0.255 m 

120 km/h 0.295 m 0.296 m 0.297 m 0.296 m 0.297 m 0.299 m 

 

B.2.2. Maximum lateral offset  

 

The maximum lateral offset data for 2.6 m lane width and 3.6 m lane width at a 900 m radius 

curve for 100 km/h and 120 km/h and for the different weather conditions is shown in Table 

27 and Table 28 respectively.  

 
Table 31: Maximum lateral offset data for 2.6 m lane width and 900 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.190 m 0.175 m 0.176 m 0.175 m 0.190 m 0.225 m 

120 km/h 0.249 m 0.249 m 0.249 m 0.249 m 0.256 m 0.240 m 
Table 32: Maximum lateral offset data for 3.6 m lane width and 900 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.250 m 0.250 m 0.250 m 0.250 m 0.250 m 0.277 m 

120 km/h 0.339 m 0.339 m 0.334 m 0.339 m 0.340 m 0.387 m 
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Similarly, for 750 m radius of curve, the maximum lateral offset data at speeds 100 km/h and 

120 km/h for 2.6 m and 3.6 m lane width is shown in Table 33 and Table 34 respectively. 

 
Table 33: Maximum lateral offset data for 2.6 m lane width and 750 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.199 m 0.207 m 0.199 m 0.207 m 0.222 m 0.210 m 

120 km/h 0.277 m 0.277 m 0.277 m 0.277 m 0.282 m 0.332 m 

 
Table 34: Maximum lateral offset data for 3.6 m lane width and 750 m radius curve 

Speed 

Weather conditions 

Sun Fog Heavy rain Extreme rain 
Heavy 

snow 
Extreme snow 

100 km/h 0.274 m 0.274 m 0.274 m 0.274 m 0.274 m 0.284 m 

120 km/h 0.382 m 0.382 m 0.382 m 0.382 m 0.383 m 0.390 m 

 

 

  



 

  100 

Appendix C: Lateral offset variations 
 

The lateral offset variations are shown in this section. The variation for the weather conditions 

are already shown in Chapter 6. The figures shown in this section are for the test cases without 

precipitation and is presented for each radius of the curve.  

 

i. Test cases with 750 m radius 

 

The lateral offset variations for the test cases with 750 m radius, for the speeds 100 km/h, 110 

km/h, 120 km/h, 130 km/h and 140 km/h are shown in Figure 60, Figure 61, Figure 62, Figure 

63 and Figure 64 respectively. 

 

 
Figure 60: Lateral offset variations for test cases with 750 m radius and speed of 100 km/h 

 
Figure 61: Lateral offset variations for test cases with 750 m radius and speed of 110 km/h 
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Figure 62: Lateral offset variations for test cases with 750 m radius and speed of 120 km/h 

 
Figure 63: Lateral offset variations for test cases with 750 m radius and speed of 130 km/h 

 
Figure 64: Lateral offset variations for test cases with 750 m radius and speed of 140 km/h 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12

La
te

ra
l o

ff
se

t 
(m

)

Time (s)

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12

La
te

ra
l o

ff
se

t 
(m

)

Time (s)

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10

La
te

ra
l o

ff
se

t 
(m

)

Time (s)



 

  102 

ii. Test cases with 900 m radius 

 

The lateral offset variations for the test cases with 900 m radius, for the speeds 100 km/h, 110 

km/h, 120 km/h, 130 km/h and 140 km/h are shown in Figure 65, Figure 66, Figure 67, Figure 

68 and Figure 69 respectively. 

 

 
Figure 65: Lateral offset variations for test cases with 900 m radius and speed of 100 km/h 

 
Figure 66: Lateral offset variations for test cases with 900 m radius and speed of 110 km/h 
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Figure 67: Lateral offset variations for test cases with 900 m radius and speed of 120 km/h 

 
Figure 68: Lateral offset variations for test cases with 900 m radius and speed of 130 km/h 

 
Figure 69: Lateral offset variations for test cases with 900 m radius and speed of 140 km/h 
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iii. Test cases with 1200 m radius 

 

The lateral offset variations for the test cases with 1200 m radius, for the speeds 100 km/h, 110 

km/h, 120 km/h, 130 km/h and 140 km/h are shown in Figure 70, Figure 71, Figure 72, Figure 

73 and Figure 74 respectively. 

 

 
Figure 70: Lateral offset variations for test cases with 1200 m radius and speed of 100 km/h 

 

 
Figure 71: Lateral offset variations for test cases with 1200 m radius and speed of 110 km/h 
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Figure 72: Lateral offset variations for test cases with 1200 m radius and speed of 120 km/h 

 
Figure 73: Lateral offset variations for test cases with 1200 m radius and speed of 130 km/h 

 
Figure 74: Lateral offset variations for test cases with 1200 m radius and speed of 140 km/h 

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12

La
te

ra
l o

ff
se

t 
(m

)

Time (s)

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m Threshold

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12

La
te

ra
l o

ff
se

t 
(m

)

Time (s)

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m Threshold

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

La
te

ra
l o

ff
se

t 
(m

)

Time (s)

2.6 m 2.75 m 3.0 m 3.25 m 3.5 m 3.6 m Threshold


	Acknowledgements
	List of Figures
	List of Tables
	Executive summary
	1. Introduction
	1.1. Background
	1.2. Problem definition
	1.3. Research Objective
	1.4. Research Approach
	1.5. Research Scope
	1.6. Research Outline

	2. Literature Review
	2.1. General
	2.2. Automated vehicles
	2.2.1 Levels of automation
	2.2.2 ADS in vehicles
	2.2.3 Sensors

	2.3. Operational Design Domain (ODD)
	2.3.1 Standards and definitions
	2.3.2 Ongoing projects
	2.3.3 ODD attributes
	2.3.4 ODD assessment
	2.3.5 ODD boundaries

	2.4. Simulation
	2.4.1 Advantages and disadvantages of simulation
	2.4.2 Simulation software

	2.5. Summary

	3. Review of OEM manuals
	4. Research Gaps and Questions
	4.1. Research Gaps
	4.2. Research Questions

	5. Research Methodology
	5.1. Choices and assumptions
	5.2. Simulation setup
	5.2.1. Environmental conditions
	5.2.2. Vehicle dynamics
	5.2.3. Sensor properties
	5.2.4. Infrastructure

	5.3. Initial ODD assumption
	5.4. Performance metric
	5.5. Design of Experiments
	5.6. Analysis

	6. Analysis
	6.1. Test cases without precipitation
	6.1.1. Mean lateral offset comparison
	6.1.2. Exposure comparison

	6.2. Test cases with precipitation
	6.3. Performance assessment

	7. Discussion and Conclusions
	7.1. Overview
	7.2.  Answers to research questions
	7.3. Final Remarks
	7.4. Reflection on the state of the art
	7.5. Reflection on the methodology
	7.6. Research limitations

	8. Recommendations
	8.1. Scientific recommendations
	8.2. Practical recommendations

	9. Bibliography
	Appendix A: Prescan
	Appendix B: Simulation Data
	Appendix C: Lateral offset variations

