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Abstract 

 

It is vital for adequate management, and operation of water distribution systems (WDS) to have 

reliable short-term water demand forecasts. Conventional time-series models present 

limitations when dealing with non-linear changes in water demand. Thus, it is proposed to 

employ deep learning algorithms to offer a more reliable forecast. Three models are used, two 

1-dimensional convolutional neural networks (1D-CNN), (a simple CNN, and a dilated causal 

CNN), and a recurrent neural network, particularly a long short-term memory (LSTM) based 

model. The performance of the models is tested on seven real-life water distribution systems 

in Italy with different uses and number of users. Also, a comparison with benchmark algorithms 

based on time-window techniques and pattern-based models is made. Additionally, the use of 

meteorological variables such as rainfall occurrence, temperature, and relative humidity is 

intended to test whether there is a positive effect on the forecast. Furthermore, a global model 

is built taking several years of data for training to test whether this bigger model increases 

generalization and improves accuracy in comparison to the individual cases. In addition, 

transfer learning is employed to predict individual cases and a WDS in the Netherlands. Lastly, 

a bigger global model is built and trained with 14 years of data to improve the performance of 

transfer learning on the Dutch WDS.   

To begin with, it was seen that 1D-CNNs outperformed the LSTM-based model, and the 

benchmark algorithms using data of the water demand, and a binary index indicating whether 

it is a weekday or a weekend day for six of the seven case studies. For the remaining case study, 

the results indicated that there is less than 1% in error between the best benchmark model and 

the proposed 1D-CNN algorithms. Moreover, the addition of meteorological variables showed 

to improve the calibration performance of the models but worsened the predictions on unseen 

data. It was observed that a simple 1D-CNN overfits when adding these extra variables due to 

its lack of regularization. Also, the global model showed to improve in accuracy compared to 

the individual models. The use of transfer learning (TL) did not indicate to improve the 

performance of one of the case studies, nonetheless, TL showed that by only using 75% of the 

data for training, the model offers a good generalization on the case with sudden changes in 

demands by the rapid increase of users due to seasonal touristic activities. For the Dutch WDS, 

TL performed similarly to the individual model, there errors ranged between 15% and 16% 

using different quantities of data for training. In addition, when having no data for training, the 

pre-trained model displayed showed lower than using 25% of data for training for the Italian 

cases. Lastly, the bigger global model performed in the same way as the smaller global model 

on the Dutch WDS. Also, when having no data for training, the model performed better.  

 

 

 
 
 
 
 
The code of this thesis is available at: 

https://github.com/dcorredor20/water_demand_forecasting.git  

https://github.com/dcorredor20/water_demand_forecasting.git
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1    Introduction 
 

Water Supply systems are under growing stress due to the rapid population increase and 

economic development worldwide (Esen et al., 2020). Moreover, climate change is expected 

to rise global water demand (X. Wang et al., 2016), and the exposure of the cities to floods and 

droughts (Güneralp et al., 2015). Therefore, the importance of water demand prompts water 

managers and policymakers to promote strategies that encourage the optimization of potable 

water (Haque et al., 2015). Then, a reliable water demand forecast can be used to determine 

the water demand for some hours ahead or tomorrow and help the water utilities make decisions 

on the operations of their treatment plants and wells to meet these demands (Donkor et al., 

2014). 

There has been a development of different techniques for water demand forecasting based on 

qualitative methods, univariate time series analysis, moving average and exponential 

smoothing models, stochastic processes models, time series regression models, scenario-based 

approaches, and artificial neural networks (ANNs) among others (Donkor et al., 2014). 

Furthermore, for short-term water demand forecasting, data-driven models, window moving 

techniques, and pattern-based methods have been employed (Pacchin et al., 2019). In this case, 

the data-driven model uses the multilayer perceptron (MLP) (which is one of the most common 

ANNs) to predict water demands of a time horizon of 24-h. An extra binary input indicating 

whether it is a weekday or weekend day is considered in the model. Also, the pattern-based 

model provides predictions using periodic patterns that affect the variations of water demand 

time series such as seasonal and weekly cyclical patterns due to daily water demands, and a 

daily recurrent pattern of hourly water demands. Next, the moving window model was 

designed to forecast average water demand with a 48-h horizon taking timesteps of 15 minutes 

(Bakker et al., 2013). This model accounts for an extra demand due to sprinkles. In addition, 

another method based on the average moving window was developed. The model uses a narrow 

window of 4 weeks that moves together with the forecasting time. The length of the window 

was proposed to capture the seasonal fluctuations in water consumption. Apart from these 

prediction methods, machine learning (ML) algorithms have been recently used to find patterns 

in the interaction of sociodemographic and infrastructure factors that could be ignored by 

conventional statistical models (Villarin & Rodriguez-Galiano, 2019). Equally,  Guo et al., 

(2018) mentioned that deep learning (DL) methods are rarely implemented in water demand 

forecasting and the performance is uncertain compared to seasonal auto-regressive integrated 

moving average (SARIMA) models. DL models are composed of multiple layers to understand 

non-linear representations of data with numerous levels of abstraction. Among the DL 

methods, RNNs have been widely used for time series and sequence prediction purposes. 

Equally, 1D-CNNs offer high performance when dealing with 1D signals. Compared to 

conventional 2D-CNN architectures, 1D-CNNs have lower computational complexity, 

meaning that they can be used for real-time and low-cost applications. Some of these functions 

are real-time electrocardiogram (ECG) monitoring, vibration-based structural damage 

detection for civil infrastructural purposes, monitoring the condition when rotating mechanical 

machine parts, (Kiranyaz et al., 2021) among others.  



       

12 

 

The objective of this study is to improve the performance of short-term water demand 

forecasting at a district level through deep learning techniques such as convolutional neural 

networks and recurrent neural networks. It is expected that DL algorithms will improve the 

accuracy of water demand predictions compared to other benchmark algorithms. This will have 

a positive impact on different actors such as policymakers as they could create strategies to 

encourage users to reduce the use of water of different appliances at household levels. 

Moreover, an accurate water demand projection may influence the decision-making on 

enhancing operations of the existing infrastructure. Also, it will potentially boost the use of 

new technologies in order to improve data collection and future research for improvement. 

This document is structured as follows. It starts with the literature review of the state of art 

of short-term water demand forecasting. In addition to this section, the research questions are 

presented. Chapter 2 contains the background of the most relevant concepts of deep learning 

and water demand modeling. Chapter 3 presents the data that was used for this project, and the 

way it was cleaned and processed. Chapter 4 shows the proposed methodologies and 

experiments to answer the research questions. Additionally, the development of the models is 

explained in detail. Chapter 5 illustrates the results obtained and the corresponding discussion. 

Lastly, in Chapter 6 the conclusions based on the research question are found together with the 

recommendations for future work. 

1.1 Literature review 

The prediction of the water demand has been an important factor for the design and 

management of water distribution networks.  To satisfy the users, infrastructure is planned and 

built based on demand projections. Over the years researchers and water managers have 

developed different techniques to forecast water demands for different time horizons.  Long-

term water demand forecasting goes from periods above 10 years (Mu et al., 2020). Medium-

term water demand predictions are made on a weekly to monthly basis (Tiwari & Adamowski, 

2015). Guo et al., (2018) claimed that short-term (less than a week) water demand forecasting 

improves the operations of water treatment plants and pumping stations, the management of an 

urban water distribution system, water pricing policy assessment, water conservation programs 

when droughts occur, etc (Jain et al., 2001).  

It has been found that ML models showed to outperform traditional forecasting techniques 

based on time series analysis such as the auto-regressive integrated moving average (ARIMA) 

and seasonal auto-regressive integrated moving average (SARIMA) (Antunes et al., 2018; Guo 

et al., 2018). Then, early use of artificial neural networks for water demand forecasting was 

done by Jain et al., (2001). Two goals were set: 1) The effective use of ANNs for water demand 

forecasting and 2) occurrence of rainfall is a factor with more relevance than the amount of 

rainfall when modeling the short-term water demand forecasts. They showed that ANNs 

outperform regression and time series methods and that at the location of the study (The Indian 

Institute of Technology) and that there was a higher correlation of the pick daily water demand 

between the rainfall occurrence than the amount of rainfall. It is concluded that the weekly 

water demand process is dynamic and driven by the temperature but disturbed by the 

occurrence of rainfall. Moreover, Adamowski, (2008) compared numerous linear regressions, 

time series analysis, and ANNs as methods for peak daily water demand forecasting. The 

author showed that ANNs have better performance for the forecast of peak daily summer water 
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demand.  Also, this peak daily demand is higher correlated to rainfall occurrence than the 

rainfall amount. Also, Ghalehkhondabi et al., (2017) reviewed the methods used for demand 

predictions published between 2005 and 2015. They included artificial neural networks 

(ANNs), support vector machines, fuzzy and neuro-fuzzy models, meta-heuristics, and system 

dynamics.  The authors showed that the use of soft computing is effective for short-term water 

demand forecasting. Tiwari & Adamowski, (2015) found that when having only a year of data, 

ANNs would not work effectively. Then, they implement a wavelet-bootstrap machine-

learning approach showing that a hybrid wavelet-bootstrap-artificial neural network 

(WBANN) model is useful to assess uncertainty in terms of confidence bands. Also, the study 

shows that wavelet-artificial neural network (WANN) and WBANN models are effective 

despite the lack of data. Pacchin et al., (2019) compared six different models to predict the 

short-term water demand of seven districts in Italy.  These models are an ANN, a pattern-based 

model, a probabilistic Markov chain-based model, a naïve benchmark model, and two pattern-

based models employing moving window techniques. The authors found that the accuracy of 

data-driven and pattern-based techniques is comparable. Guo et al., (2018) explored the 

capability of deep learning in short-term water demand forecasting. The authors developed a 

gated recurrent unit network (GRUN) that forecasts water demand at 15-min and 24-hour 

resolution. The GRUN model was compared with ANN and SARIMA models. it was found 

that the GRUN model outperformed the ANN and SARIMA models for both time horizon 

forecasts. Later, Mu et al., (2020) developed a model based on a long short-term memory 

(LSTM) to forecast short-term water demand at a district level for the city of Hefei,  China. 

The authors showed that LSTM displays a high performance when predicting water demands 

at high resolution (15 minutes).  

For time series forecasting, Temporal convolutional networks TCN have been proposed 

(Lara-Benítez et al., 2020; Lea et al., 2017). TCNs were designed to work with sequential data 

and are trained faster than RNNs (Oord et al., 2016). In principle, TCNs are based on 1-

dimensional convolutional neural networks (1D-CNN). Moreover, for water resources, the 

application of 1D-CNNs has been shown to perform better than a multi-layered perceptron 

(MLP) when predicting monthly rainfall (Haidar & Verma, 2018). Lang et al., (2019) 

introduced the application of CNN for electricity load forecasting. It was shown that the use of 

simple 1D-CNN architectures can achieve a good forecast. Also, Lara-Benítez et al., (2020) 

uses TCNs to forecast energy demand. They tested the performance of TCNs on the national 

electric demand and the power demand of charging stations for electric vehicles. Hewage et 

al., (2020) showed that TCNs produce better predictions than an LSTM algorithm and other 

conventional machine learning models for weather forecasting. These are some examples of 

the uses of CNNs for time series forecasting. In addition, the previous studies concluded that 

TCNs performed better than RNNs. Guo et al., (2018) mentioned that the use of DL has been 

rarely used for water demand forecasting. In addition, although the addition of meteorological 

has been proposed to improve the forecasts of conventional water demand models, no studies 

have employed DL algorithms for this purpose.  

On the other hand, the training of ANNs can require special hardware and large amounts of 

data. To tackle these challenges, a method named transfer learning (TL) has been implemented. 

TL takes an additional data source apart from the regular training data, then, it delivers 

knowledge from a source task to enhance learning in a target task (Fu & Aldrich, 2018). 

Kratzert et al., (2018) showed the potential of using LSTMs for runoff simulation from 

meteorological data. The authors also proposed to test the ability of the LSTMs on single 

catchments, then a general model was trained with the data of multiple catchments to test 
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whether this improves the prediction on another single catchment. Lastly, the authors employed 

the pre-trained model based on the general model to test the performance of individual 

catchments. The motivation for this is to show the use of DL and TL when there is not enough 

data or there are ungauged locations. Nonetheless, TL has not been applied for water demand 

forecasting purposes. Thus, its capabilities to train faster with fewer amounts of data opens the 

opportunity to be exploited to predict water demands.  

1.2  Research Questions 

DL has been widely used for a lot of different purposes. However, it has been noticed that these 

algorithms are rarely used for water demand forecasting. Therefore, this work is based on the 

following questions. 

1. Can 1D-CNNs outperform RNNs and other existing algorithms for water demand 

forecasting?  

2. Does external data, such as meteorological data, improve the performance of water 

demand forecasting? 

3. Can a general model be used to improve the predictions of water demand in individual 

cases?  

4. Can transfer learning improve the performance of deep learning algorithms for water 

demand forecasting for cases in which the years and the geographical locations are 

different? 

5. Can transfer learning be used to predict accurately the water demands of a water 

distribution system located in another country?  

6. Can a bigger global model be trained to improve the performance of transfer learning 

when being employed to predict the water demands of a water distribution system 

located in another country? 
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2    Background 
 

In this chapter, the background and conceptual framework are explained. An introduction of 

what deep learning is and some of its applications is presented. Next, the main algorithms that 

are used in deep learning for sequential data modeling. Lastly, additional concepts to 

understand how ANNs are trained and optimized together with some key performance 

indicators (KPIs) that are proposed to measure the error in regression models.  

Although the terms machine learning and deep learning are not new, they sound around 

more often due to the exponential increase in computational power. ML and DL present some 

differences. ML has shown some drawbacks in performance when dealing with large amounts 

of data whereas DL can keep good performance of models. Also, DL runs operations with high 

complexity and can find and extract features in labeled, and unlabeled data effectively 

(Simplilearn, 2021). For time series forecasting, some DL architectures have been used. 

Moreno et al., (2011) compared the performance of an MLP, Radial Basis Function (RBF), 

Generalized Regression Neural Network (GRNN) and, RNN. The results showed that the RBF 

and RNN models presented the best results. However, RBF requires to strictly use a single 

hidden layer (Chandradevan, 2017).  

On the other hand, it was shown that 1D-CNNs have been used recently for the forecasting 

of time series data. Equally, the success of RNNs in many fields opens an opportunity to apply 

them to forecast short-term water demand.  

2.1 Deep Learning  

Deep learning can be defined as a branch of machine learning that uses multiple layers of 

artificial neural networks (ANNs). The use of these deep architectures enables the extraction 

and learning of complex features from data. DL has been applied to tasks such as speech 

recognition, visual object recognition, object detection, and other applications (LeCun et al., 

2015). The core of DL is to obtain hierarchical features of data in which the higher-level 

features are defined by the lower-level features (Deng, 2014). 

2.1.1 Artificial Neural Networks 

Artificial neural networks were designed to mimic the function and structure of the human 

brain (Brownlee, 2019). The human brain contains more than 100 billion neurons and even 

more connections that enable learning quickly from experiences. The brain saves the 

information as patterns. The whole idea of storing and using these patterns to solve complicated 

tasks opened a field in computing (Anderson & McNeil, 1992). 
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An ANN can have many layers, Figure 1 displays the basic structure of an artificial neuron. 

A feed-forward network (FNN) is composed of three layers, the input layer which connects the 

input variables. Next, the hidden layer and lastly the output layer.  

 

Figure 1. Basic artificial neuron. 

Figure 1 shows the inputs can be represented by 𝑥𝑛. Each of these inputs is multiplied by a 

weight represented by 𝑤𝑛. Then, the node is composed of the sum of the previous 

multiplications and 𝜎 represents an activation function that introduces non-linearity. If bias 𝑏 is 

introduced in the operation, the output is represented by the following equation: 

𝑦 = 𝜎(𝑤𝑇𝑥 + 𝑏) (1) 

 ANNs can be deeper in the sense that more hidden layers can be added. Figure 2 shows the 

structure of a deep ANN composed of three hidden layers apart from the input and output 

layers. The combination of multiple nodes enables the network to learn complex functions.  

 

Figure 2. Fully connected layer (Navlani, 2019). 

There are a lot of variations in neural networks based on the basic structure of artificial 

neurons. This thesis, however, will focus on two types: convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs). Among the RNNs, LSTM models are used.  

2.1.2 Convolutional Neural Networks 

In principle, CNNs were designed for pattern recognitions within images (O’Shea & Nash, 

2015). Also, CNNs succeed at detection, segmentation recognition of items and zones in 

images. CNNs process data that comes in the style of arrays. 1D-CNNs are used for signals 

and sequences, 2D-CNNs are used for images or audio spectrograms, and 3D-CNNs for video 



       

17 

 

or volumetric images (LeCun et al., 2015). As the objective of this work is to predict water 

demand, the arrays can be considered as 1D. Figure 3 shows the architecture of a 1D-CNN. 

 

Figure 3. CNN applied to a 1D signal data (Lang et al., 2019) 

1D-Convolutional Layers 

Within these layers, the input is convolved with several filters or kernels. A kernel 𝑘 is applied 

to the data points of the input signal and on every time step the convolution of the filter with 

the respective overlapping region is calculated. The size of the kernel is a hyperparameter and 

the larger the kernel size, the larger the receptive field. Figure 4 displays the convolutional 

operations. The 𝑥𝑛 values represent the input variables, 𝑤𝑛 are the weights to be convolved 

with. It is shown in this case a 𝑘 = 3. Finally, 𝑐𝑛 represent the results of the convolutions in an 

output feature map.  

 

Figure 4. Convolution operation with k=3. 

During training, the model is forced to learn the values of every filter.  

A conventional convolution like the one shown above has some drawbacks when 

predicting time series data. When doing convolutions, the output feature map is smaller than 

the input feature map due to the kernel size. This may lead to a loss of information of the 

time dependencies. Also, this standard convolution takes data points from the future and the 
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past, this is called a non-causal convolution. This violates the order in which data are 

modeled and it is inconvenient for real-time applications such as text generation in which 

one should avoid looking at the future. The problem of taking information from future 

timesteps can be solved by adding causality to the convolutions.  

Causal Convolutions 

This type of convolution avoids taking data from future time steps so that the model does 

not violate the order in which data is trained. Therefore, the forecast 𝑝(𝑥𝑡+1 | 𝑥1, … , 𝑥𝑡) 

estimated by the model at timestep 𝑡 must not depend on the future timesteps 

𝑥𝑡+1, 𝑥𝑡+2, … , 𝑥𝑇   (Oord et al., 2016). Figure 5 shows what a conventional convolution 

looks like. 

 

Figure 5. Conventional convolution with k=4 (Batzner, 2019). 

Figure 6 shows what a causal convolution looks like for a kernel of size k = 3. It is 

seen that to predict the first timestep (orange color), only the first input timestep (blue 

color) is considered with 2 zeros padded on its left. In addition, the size of the input 

feature map is the same as the output feature map.  

 

Figure 6. Causal convolution with left padding with k=4 (Batzner, 2019).  

Causal convolutions, however, need deep networks with multiple layers of large kernel 

sizes to expand the receptive field. This will increase the number of parameters in the 

network making it computationally expensive (Oord et al., 2016). This issue can be solve 

using dilated convolutions.  

Dilated Convolutions 

In a dilated convolution, the receptive field is expanded without necessarily increasing the 

number of weights. This way, the kernel increases the receptive field. Formally, when using 

1D-CNNs, the sequence input x ∈ ℝ𝑛 and a kernel 𝑓: {0, … , 𝑘 − 1} → ℝ, the dilated 

convolution operator 𝐹 on the element 𝑠 of the sequence is defined as follows: 
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𝐹(𝑠) = (𝑥 ∗𝑑 𝑓)(𝑠) = ∑ 𝑓(𝑖) ∙ 𝑥𝑠−𝑑∙𝑖

𝑘−1

𝑖=0

 (2) 

Where 𝑑 is the dilation factor, 𝑘 is the kernel size, and 𝑠 − 𝑑 ∙ 𝑖 accounts for the direction 

of the past (Bai et al., 2018). Figure 7 displays a stack of dilated causal convolutional layers. 

The hidden layers are stacked with different dilation factors increasing exponentially. 

 

Figure 7. Visualization of a stack of dilated causal convolutional layers (Oord et al., 2016). 

2.1.3 Recurrent Neural Networks 

An RNN is a type of ANN designed to process sequential information. RNNs are widely used 

for speech synthesis, music generation, image captioning, video analysis, natural language 

processing, and time series forecasting among others (Lipton et al., 2015). As RNNs use 

sequential data, it means that they consider past information that will influence what can 

happen in the future. This DL architecture can “remember” previous input hidden states. By 

looping internally, RNNs can retain information. Figure 8 displays a piece of a neural network. 

𝐴 receives the input 𝑥𝑡, processes and outputs ℎ𝑡, then, a loop allows information to go through 

the next timestep.  

 

Figure 8. Recurrent neural network representation (Olah, 2015).  

RNNs, nonetheless, present some issues when preserving or remembering long-time 

dependencies. The more information there is, the higher the chance that back-propagation 

gradients accumulate, vanish, or explode resulting in an inefficient and slow training process  

(LeCun et al., 2015). Hochreiter & Schmidhuber, (1997) presented LSTM as a solution to the 

vanishing gradient problem in regular RNNs.  
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Long Short-Term Memory 

LSTMs contain a more complex structure than the standard RNNs. The cell state, which 

contains three gates, is the difference between LSTMs and regular RNNs. These gates allow 

the information to be “remembered” or “forgotten” when processing sequences. In principle, 

the gates are neural networks that figure out what information is permitted in the cell state (Phi, 

2018). 

 

Figure 9. Structure of an LSTM cell (Zebin et al., 2018). 

Figure 9 displays the structure of an LSTM cell in detail. Appendix A contains a detailed 

explanation of how the LSTM works.  

2.1.4 Additional deep learning concepts 

The following concepts will help the reader understand how ANNs are trained and optimized 

Activation functions 

In neural networks, activation functions transform the weighted sum of the input into an output. 

These transformations add non-linearity to the network. As deep neural networks have many 

layers, non-linearity is needed. The activations functions work as a decision-making function 

that detects the presence of a certain neural feature. The input will take inputs −∞ to +∞ but 

outputs values between {0,1} or sometimes {-1,1}. Some of the conventional activation 

functions are shown below. 

o Linear. The linear activation function, shown in Figure 10 a, is defined as: 

𝑦 = 𝑚𝑥 (3) 

o ReLU. The rectified linear unit ReLU, shown in Figure 10 b, is defined as: 

𝑅𝑒𝑙𝑈(𝑥) = max(0, 𝑥) (4) 
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o Tanh. The hyperbolic tangent function, shown in Figure 10 c, is defined as: 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(5) 

 
a) 

 
b) 

 
c) 

Figure 10. Activation functions. a) Linear, b) ReLU, c) Tanh. 

 

Loss function 

Another important concept is the loss function. It defines how close the output of the model is 

to the real values. Depending on the goal of the network, either for classification, clustering, 

or regression, the loss function is chosen. The objective is to minimize or maximize loss 

function. As this work is a regression problem, Mean Absolute Error (MAE) has been proposed 

to be the objective function when training the networks This loss is the mean overseen data of 

the absolute differences between real and predicted value. The following equation presents the 

MAE loss function: 

𝐽(𝑦𝑖, 𝑦𝑖̂) =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=0

(6) 

Where 𝐽 denotes the loss function, 𝑦̂𝑖 the predicted value and 𝑁 the number of samples. 
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The purpose of training neural networks is to find the correct weights to obtain the desired 

output. Thus, the loss function needs to be minimized in this case. As deep neural networks are 

trained to learn a large number of parameters, the conventional procedure of computing the 

derivatives to find the optimal point is not feasible. The process of training neural networks 

depends on the back-propagation algorithm which essentially takes the information of the loss 

function 𝐽(𝑤, 𝑏) to flow backward through the neural network to calculate the gradient. Since 

the output of the neural network depends on the weights 𝑤 and the bias terms 𝑏, the back-

propagation algorithm uses the partial derivatives to update 𝑤 and 𝑏 as follows: 

𝑤 ∶= 𝑤 − 𝛼
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤
(7) 

𝑏 ∶= 𝑏 − 𝛼
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
 (8) 

Where α represents the learning rate. This hyperparameter tells the amount of the update by 

the gradient descent algorithm. Gradient descent is a mode to minimize the loss function 𝐽(𝛳) 

which updates the parameters in the opposite direction of the gradient of the loss function 

𝛻𝛳𝐽(𝛳) concerning the parameters (Ruder, 2016). 

ADAM optimization algorithm 

The adaptive moment estimation (ADAM) algorithm was proposed by Kingma & Ba, (2017) 

as a gradient-based optimization of stochastic objective functions. In principle, ADAM 

computes an exponential weighted moving average of the gradient 𝑣𝑡. Next, the obtained 

gradient is squared. In addition, ADAM stores an exponentially decaying average of previous 

gradients 𝑚𝑡. Both, the moving average of past squared and decaying average of past gradients 

can be obtained as: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐽

𝜕𝑤
(9) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) [
𝜕𝐽

𝜕𝑤
]

2

(10) 

Where 𝑚𝑡 and 𝑣𝑡 are estimates of the mean, and the variance of the gradients, respectively. 

The authors suggest values at 0.9 and 0.999 for  𝛽1 and  𝛽2 respectively.  

Key Performance Indicators (KPIs) 

As defined above, MAE was the proposed metric error to compute and optimize the loss 

function. Additionally, the coefficient of determination (𝑅2) was employed to compare the 

performance of the models. In principle, when this value is closed to 1, it indicates that is a 

highly reliable model, and when it is close to zero otherwise. 𝑅2 is defined as: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (11) 

Where 𝑆𝑆𝑟𝑒𝑠 corresponds to the sum of squared of residual and 𝑆𝑆𝑡𝑜𝑡 is the total sum of 

squares. 
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In addition, since MAE is a scale-dependent accuracy measure, it is not possible to compare 

case studies when having different average water demands. Pacchin et al., (2019) proposed to 

use MAE% to compare models. MAE% solves the scalability issue (Vandeput, 2019). MAE 

% is defined as: 

𝑀𝐴𝐸% =
1

𝑁
∑ |

𝑒𝑖

𝜇𝑜𝑏𝑠
|

𝑁

𝑖=1

∗ 100 (12) 

Where 𝑁 is the amount of data for the specified period, 𝑒𝑖 is the error obtained by subtracting 

the predicted water demand from the real water demand and 𝜇 is the mean of the real values. 
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3    Data Preparation and 
Processing 

3.1    Water Demand Data 

Pacchin et al., (2019) collected data from seven different districts in Northern Italy.  These data 

were collected over two years at a time resolution of 1 hour. The data refer to real water 

distribution networks in which six are residential/industrial, and one corresponds to a touristic 

area.  Table 1 shows the average demands together with the number and type of users.  

Additionally, the case studies (CS) correspond to CS1 = Castelfranco Emilia, CS2 = Ferrara, 

CS3 = Cento, CS4 = Vigarano Mainarda, CS5 = Bondeno, CS6 = Ferrara Nord-Ovest, CS7 = 

Lido di Spina respectively.  

Table 1. Average water demands and case studies. 

Case Study CS1 CS2 CS3 CS4 CS5 CS6 CS7 

Number of users 7000 120000 9000 2500 7000 20000 300 - 3500 

Type of users Res Res/Ind Res/Ind Res Res Res/Ind Res/Tour 

Average demand [L/s] y1 54.04 934.41 100.05 24.12 52.96 177.14 28.86 

Average demand [L/s] y2 65.24 965.71 95.95 24.68 56.77 177.41 28.46 

It is important to highlight that CS2, CS3, CS4, CS5 and, CS6 are managed by the same 

water utility company. Also, these five districts are located close to each other, and the data 

were recorded in 2014 and 2015. The data of CS1 correspond to the years 1998 and 2000. 

Likewise, data of CS7 were recorded in 2013 and 2014. Apart from the hourly water demands, 

the dataset of Pacchin et al., (2019) has additional data such as the day of the week and whether 

there was a holiday, thus, it is given an index of 1 for the weekend days and holidays and 0 for 

the weekdays. This information is valuable because it is used as a binary index input for the 

models. This decision is made based on the idea that the water demand is higher on weekend 

days and public holidays than on weekdays. Figure 11 displays the hourly water demand of 

CS2 in 2014 during the first weeks of February. From Figure 11, it is observed that the time 

series starts with two peaks showing the demand of two consecutive weekend days (Saturday 

and Sunday) followed by the five-weekday demand. Then, once again the high peaks are seen.  
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Figure 11. Hourly water demand of CS2 from February 1st to February 14th, 2014. 

3.2    Meteorological Data 

The Regional Agency for Prevention, Environment, and Energy of Emilia-Romagna (Arpae) 1 

is in charge of concession, monitoring, control, and prevention to encourage sustainability, 

health and land protection of the resources, and environmental consciousness. Arpae’s website 

has a section to download meteorological data through their application named Dext3r 2. This 

application allows the user to select the period, variables, and location. This latter option can 

be chosen by basin, province, map, and more. As previous research showed that there is a 

correlation between the peak daily water demand and the rainfall occurrence (Adamowski, 

2008), it was decided to add this idea together with some other climatological variables such 

as maximum, average, and minimum hourly temperatures, hourly relative humidity.  

3.3     Water Demand Data (The Netherlands) 

Hourly water demand from a tourist place in the north of The Netherlands was provided. It 

contains data of 4 years (2014-2017). The table below shows the average water demand for the 

4 years. The number of users varies from 3000 to 15000. 

Table 2. Hourly Water Demand (The Netherlands) 

Year 2014 2015 2016 2017 

Average demand [L/h]  64.30 66.10 66.82 69.18 

 

1 https://www.arpae.it/it/arpae/arpae 
2 https://simc.arpae.it/dext3r/ 
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3.4    Data Pre-processing 

The following flowchart displays the pre-processing that the water demand and the other 

variables need before being transformed into the input of the models. 

 

Figure 12. Data pre-processing flowchart. 

3.4.1 Data cleaning and correlation between water demand and climatologic 
variables 

Before building the sequences of the meteorological data, there was a process of cleaning these 

data. For instance, some missing values were interpolated using interpolation methods. Among 

the 8760 values (hours in a 365-days year), there were less than 2% of missing values, and 

there were no outliers.  When there was a considerable number of missing values between 2-

5% the next closest station was used to complete those data points. 

Next, in order to choose the variables to use for training, linear correlations were performed.   

The Pearson’s correlation coefficient is calculated as follows: 

𝑟𝑥,𝑦 =
∑ (𝑥𝑖 −  𝑥̅)(𝑦𝑖 − 𝑦̅𝑛

𝑖=1 )

√∑ (𝑥𝑖 −  𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 −  𝑦̅)2𝑛

𝑖=1

 (13) 

Where n is the sample size, 𝑥𝑖 , 𝑦𝑖 are the sample points indexed with i. 

The table below shows the results of the correlation coefficients of the climatological 

variables with the water demands of the CS2 to CS7.  It can be seen that the values of CS1 are 

missing.  This was not applied to this case study as the data corresponds to 1998 and 2000 and 

there was not meteorological available data for these periods. The meteorological variables, 

except for precipitation amount, were not available. However, the correlation between rainfall 

amount and occurrence has the same pattern as the other case studies. 
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Table 3. Correlation of meteorological variables with water demand for CS2 up to CS7 in 2014. 

Variable CS2 CS3 CS4 CS5 CS6 CS7 

Precipitation amount -0.026 -0.017 -0.019 -0.012 -0.025 -0.011 

Precipitation occurrence -0.065 -0.055 -0.064 -0.048 -0.057 -0.109 

Maximum temperature 0.431 0.396 0.407 0.367 0.345 0.705 

Minimum temperature 0.418 0.337 0.396 0.341 0.329 0.703 

Average temperature 0.425 0.387 0.402 0.354 0.337 0.705 

Relative humidity -0.428 -0.36 -0.382 -0.317 -0.381 -0.526 

It is found that in general, the maximum temperature presents a higher correlation ranging 

from 0.34 to 0.42 with water demand than the average and minimum temperatures in the 

districts with residential and industrial users. CS7 shows the highest correlation between the 

maximum temperature and water demand at 0.705. This is expected as the demand increases 

in the summer. Additionally, as the temperature rises, relative humidity decreases. Thus, the 

relative humidity shows a negative correlation with water demand ranging between -0.317 to -

0.526. It is seen that there is a higher correlation between the precipitation occurrence than the 

amount of precipitation. Therefore, the additional data are the precipitation occurrence, 

maximum temperature, and relative humidity.  

3.4.2 Building sequences 

The first goal is to build a dataset of sequences to be the input in the deep learning models.  

The sequences were made through a simple function.  This function allows to automatically 

convert the time series data to sequences.  Furthermore, the function also returns the target 

sequences, thus, the final dataset is in the {<features>, <target>} format. This is the way any 

machine learning model is trained; thus, it can be interpreted as a supervised learning model.  

To understand how the sequences are created, the lookback concept is implemented. The 

main idea is to use the data from previous time steps to predict the next time step. For instance, 

the feature values at a given time step x(t) are x(t-1), x(t-2), ...., x(t-n) where n is the lookback. 

For this study, n equals 168 which is equivalent to the total hours in seven days. This 

information is used to predict the next 24-time steps.  Figure 13 displays this idea. It can be seen 

that in order to get a target of 24-time steps, the previous 168-time steps are taken. Also, 

Represents the number of sequences or samples that are possible to build. Then, the function 

moves a step forward to create the next N + 1 sample. 

 

Figure 13. Building sequences. 
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The same function is used to build the sequences of the other variables (temperature, relative 

humidity, rainfall occurrence, binary index of the type of day). 

3.4.3 Normalization, standardization, and dataset subdivision  

After data are converted into sequences, every array of variables is normalized to avoid 

problems of signal saturation (Hsu et al., 1995). The water demand, maximum temperature, 

and relative humidity are scaled in the interval [0,1]. Formally, normalization can be done as: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (14) 

Where 𝑥𝑖 are data points (𝑥1, 𝑥2, … , 𝑥𝑛), and 𝑥𝑛𝑜𝑟𝑚 are the normalized data points. Once 

the models are trained, there is a de-normalization and de-scaling procedure to analyze the real 

values.   

Additionally, standardization is also used to build a bigger model. For this case, the 

distribution of the water demands differs in most districts due to the number of users. 

Standardization is applied as follows: 

𝑍 =
𝑥𝑖 − 𝜇

𝜎
 (15) 

Where 𝑥𝑖 are data points, 𝜇 is the mean, 𝜎 is the standard deviation and 𝑍 is the Z-score or 

the standardized data points. The inverse process of de-standardization and de-scaling is 

performed after. Figure 12 shows the flowchart of the pre-processing stage. Furthermore, as 

there are two years of recorded data, year 1 is used for training a validation splitting it into 75% 

and 25% respectively. The data of year 2 is, therefore, used for testing the models.  

Figure 12 shows that the last step is the data normalization after splitting to train and 

validation. The MinMaxScaler object of Scikit-learn is used. This object comes with the fit( ) 

function that estimates the maximum and minimum observable values. Then, this function is 

applied to the dataset for training. After that, the transform( ) function with the normalized data 

is applied to the training, validation, and test datasets. Next, the input data is ready to feed the 

models.   
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4  Experimental Settings 
This chapter explains the proposed methodology, experiments, and a detailed description of 

the proposed models. Experiments are presented in the same order as the research questions to 

understand why they were proposed in that way. It starts with the first two research questions 

that involve the comparison of the performance between RNNs with 1D-CNNs together with 

benchmark models, and the performance when adding external variables. Then, how a bigger 

model is built to find whether predictions on individual models are better when having more 

data. Next, how TL is applied on cases other cases with different years of data, location, and 

types of users. Lastly, how TL is employed to predict water demands of another water 

distribution system in a different geographical position.  

4.1 Experiments 

4.1.1 Modeling with water demand data and additional variables 

To answer the first and second research questions, the following methodology and experiments 

were proposed. Once the data are normalized and scaled, it is ready to go into the models for 

training. Three algorithms were used to compare their performance: an LSTM, simple CNN, 

and dilated causal convolution (see  4.2.).  

Table 4 shows the different combinations of variables that feed the models. Systematically, 

the variables were added one by one to train the models. For instance, the first input is the 

sequences with water demand only. Then, the precipitation occurrence is added, as well as the 

rest of the variables. Next, two variables are added to the water demand. The same procedure 

is done until all the variables at the same time are employed. 

Table 4. Combination of input variables for the models. WD = Water Demand, P = Precipitation occurrence, RH 

= relative humidity, T = Temperature, D = Binary index for week/weekend day. 

No. of variables Input variables 

1 WD 

2 WD + (P or RH or T or D) 

3 WD + D + (P or RH or T) 

4 WD + D + P + (RH or T) 

5 WD + D + P + RH or T 

The modeling was done for all case studies. However, for CS1 in which there is no 

meteorological data, only experiments with the type of the day and rainfall occurrence were 

performed. Figure 14 displays the flowchart showing the proposed methodology to train the 

models. As mentioned in 3.4, there is a process of de-normalization and de-scaling to obtain 

the predictions. 
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Figure 14. Flowchart of DL models training, de-normalization, and predictions. 

4.1.2 Building a global model 

Another approach considered was to create a bigger dataset. Instead of feeding the DL models 

with individual datasets, a more robust one was built. As mentioned in section 3.1, CS2, CS3 

CS4, CS5, and CS6 are managed by the same water utility company. Also, it is assumed that 

the meteorological conditions of these areas do not differ much from each other. These five 

case studies were used to create the bigger dataset, with five years of data. There is, however, 

a difference when comparing with the previous methodology. There was no normalization but 

standardization. This was applied to the datasets individually to, subsequently, concatenate 

them. The standardization was performed through the StandardScaler( ) object of Scikit-learn.  

 

Figure 15. Flowchart of the global model construction. 

The fit( ) function has stored the mean (𝜇) and standard deviation (𝜎) of the water demands 

of every dataset. In order to test the model with the individual datasets CS2 to CS6, it is 

necessary a process of de-standardization and de-scaling of the datasets with the respective 

scaler. These predictions obtained from a bigger dataset will be compared with the ones 

computed individually. 
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4.1.3 Transfer learning approach 

As it was proposed by Kratzert et al., (2018), a global or general model was built. The data of 

CS2 to CS6 were used, but not CS1 and CS7. TL is proposed as a solution to forecast demands 

in CS1 and CS7. The “best” pre-trained model is saved. Then this model is uploaded, and the 

last fully connected layer(s) are re-trained to obtain predictions. Then, these findings are 

compared with the results obtained from the individual datasets CS1 and CS7. An additional 

approach to understand the capabilities of TL is to train models with fewer data (Donges, 2021). 

To compare the performance of this approach, the errors will be obtained using 0, 25, 50, and 

75% of the data of y1 for CS1 and CS7 individually. Next, the procedure is repeated but 

employing the pre-trained model. Thus, 25% of data correspond to the first three months of the 

year, 50% to half of the year, and 75% to 9 months. The following flowchart shows the process 

to implement TL and obtain predictions.  

 
Figure 16. Flowchart of transfer learning implementation. 

The same method is applied to data from a real Dutch water distribution system to test the 

performance of the pre-trained global model. As there are 4 years of data, the proposed 

experiments are to take the data of 2014 and predict 2017. Then, take 2014 and 2015 to predict 

2017. Lastly, take 2014, 2015, and 2016, to predict 2017 instead of using 25, 50, and 75% of 

data for training. 

4.1.4 Building a bigger global model 

Same as 4.1.2, a bigger global model was proposed to apply TL to the Dutch case study. For 

this experiment, all data from Italy was used to train a more robust model. Thus, the new global 

model was trained with 14 years of data instead of 5. The figure below displays the flowchart 

of the process to build and train this model. 
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Figure 17. Bigger global model flowchart. 

4.1.5 Additional experiments 

Other experiments were considered to test and compare their performance with the results 

obtained by the proposed experimental setups. Firstly, an additional binary input of the type of 

day is introduced in the dilated CNN model. This input connects to the 24 hours that correspond 

to the time horizon of prediction. For instance, the sequences take the previous 168 hours that 

might correspond to the hours from a Sunday at 00:00 to Saturday at 23:00, thus, the prediction 

will be made for the following Sunday. Then, there will be an input of 24 ones as it is a weekend 

day. After the model is trained, this extra input is added to refine the prediction on the 24-h 

output.  

Secondly, instead of using the rainfall occurrence only, it is wanted to know the effect of 

the amount of rainfall of the last 48, 72, and 96 hours on the water demand. A third experiment 

is similar to the binary index of the type of day. An extra variable with the information of the 

corresponding month of the year is proposed to see the effect that the month has on the water 

demand.  

These additional approaches were tested and compared with the results proposed in the 

previous experiments. Although positive results were obtained, they are not displayed in this 

report as they did not outperform the results achieved by the methodologies in 4.1.1 and 4.1.2. 

4.2    Models 

 

This section contains in detail, the architecture of the LSTM, simple CNN, and the dilated 

causal CNN models together with their hyperparameters. There was initial research on the 

architectures used for time series forecasting followed by an iterative process to find the models 
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with better performances. This process involves the search of hyperparameters such as the 

number of units, layers, activation functions, learning rates, etc. Once the “best” 

hyperparameters were found, the three models were set. As the training of deep neural networks 

is computationally expensive, the GPUs of Google Colaboratory were employed. This online 

platform is a reliable tool to accelerate the training processes. 

In general, the three models were trained using the ADAM optimization algorithm, and 

MAE as the loss function. Additionally, the EarlyStopping( ) function was used to reduce the 

chance of overfitting during training. This technique will stop the process of training once the 

loss stops decreasing after 6 consecutive epochs. The training was made with batches of 32 

samples, the maximum number of epochs was set at 200, however, the early stopping did not 

let the model run them all. In Addition, the ReduceLROnPlateau technique was used to 

improve the learning process. This function reduces the learning rate at a factor of 0.5 when 

the loss does not reduce over 6 epochs in this case. For instance, if the learning rate is equal to 

0.01, it will be reduced to 0.005.  

4.2.1  LSTM Model 

This type of RNN was chosen due to its advantages of processing sequential data and, 

overcoming the short-term memory problem that occurs when employing conventional RNNs 

as mentioned in section 2.1.3. Regular RNNs tend to forget information about the events that 

happened a while ago as they get new information (vanishing gradient problem).  

The LSTM architecture is presented as follows: 

• Input + LSTM(64, tanh) + LSTM(64, tanh) + Dropout(0.20) + FC(64, ReLU) + FC(24, 

linear)  

Apart from early stopping, a Dropout layer was added to the model after the second LSTM 

layer to reduce overfitting. In principle, it is possible to randomly “turn-of” a percentage of the 

neurons during training. Thus, the layer is forced to learn the same concept with different 

neurons resulting in better generalization. The figure below displays the flowchart of the LSTM 

model.  

 
Figure 18. LSTM architecture. 
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4.2.2  Dilated Causal Convolution 

As mentioned in section 2.1.2, The idea of dilated convolutions is to increase exponentially the 

receptive field and at the same time adding causality to the model. The literature names these 

convolutions as dilated temporal convolutions or dilated TCNs (Lea et al., 2017). To build a 

TCN, two aspects need to be fulfilled: 1) the length of the output feature map must be the same 

as the length of the input after convolving, and 2) causality must be considered. This means 

that no data from future timesteps are fed into the network. (Bai et al., 2018; Lea et al., 2017; 

Shen et al., 2020). To accomplish both requirements a number 𝑘 − 1 (𝑘 is the filter size) zeros 

are padded to the left side. Moreover, TCNs are built with residual temporal blocks (Bai et al., 

2018; Wan et al., 2019; Y. Wang & Liu, n.d.) with a defined number of convolutional layers. 

The filter size is 2 for the proposed architecture, and it is kept for all blocks. To increase the 

receptive field, the dilation factor (𝑑) is doubled for every block. The blocks for the proposed 

architecture are composed of a convolutional layer with 32 filters of size equals 2, a batch 

normalization layer that applies a normalization that re-centers the output of the convolutional 

layers. Next, a ReLU transformation to add non-linearity to the data, and a dropout layer for 

regularization. In addition, a residual connection is added with a 1x1 convolution to improve 

the propagation of the gradient thought the entire network (Oord et al., 2016). The residual 

connection also helps the length of the output keep the same length as the input (Bai et al., 

2018). Appendix E. Figure 1 shows the dilated CNN diagram. 

The following figure represents the proposed residual temporal block. 

 
Figure 19. Residual temporal block. 

Five of these blocks were stacked to build a deeper network increasing the receptive field. 

The final block would have a dilation factor equal to 16. It was found that without adding more 

blocks, the network can perform well. The output of the last block goes through a fully 

connected layer to generate the predictions (see Figure 20).  
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Figure 20. Dilated CNN architecture. 

4.2.3 Simple CNN 

Additionally, in order to compare the LSTM and dilated CNN models, a simple CNN was built. 

It does not have dropout layers for regularization. Also, it is composed of eight convolutional 

layers with filter size 𝑘 = 12. The output of the convolution operations goes through two FC 

layers of 64, and 24 units, respectively.  

The Simple CNN architecture is presented as follows: 

• Input + 1D-Conv(8, 𝑘 = 12, ReLU) + FC(64, ReLU) + FC(24, linear)  

 
Figure 21. Simple CNN architecture. 

It is seen that the number of trainable parameters is much lower compared to the Dilated 

CNN model. However, if more convolutional layers were added to the simple model, the 

number of trainable parameters would increase dramatically making the training process 

slower and inefficient. Thus, the advantages of the dilated CNN are highlighted as it is possible 

to build deeper networks without increasing too much the number of trainable parameters. 
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5    Results and Discussion  
 

This chapter presents the results of the proposed experimental setups mentioned in section 4. 

A comparison with the benchmark algorithms is discussed together with the performance of 

the algorithms used. Furthermore, every time a model is run, the results will differ slightly. 

Therefore, the results to be presented are the average values after running five times every 

combination presented in Table 4. The order of the results is presented according to the research 

questions mentioned in section 1.2. 

5.1.1.1 Research question 1 

Can 1D-CNNs outperform RNNs and other existing algorithms for water demand forecasting?  

The performance of the models proposed in section 4.2 is compared in terms of the 

coefficient of determination (𝑅2) and MAE for all seven case studies. The following graph 

shows the measures of performance using water demand data on CS5 without the addition of 

extra variables. The graphs of the other case studies are presented in appendix B. 

 
a) 

 
b)  

Figure 22. Performance of DL models on CS5. a) Validation, b) Test. 

The figures above display results for the validation and test phases corresponding to data 

from year 1 and year 2 respectively. Overall, it is observed that the three models perform 

similarly on the validation phase, and it is true for the other case studies. For all case studies, 

𝑅2 ranges between 0.94 and 0.98. Also, MAE values present a comparable behavior. There 

are, however, two trends. For CS1, CS4, CS5, and CS7, where the average water demand is 

less than 100 L/s, the difference between MAE values is small compared to the other case 

studies. This behavior is expected as MAE results are tied to the distribution network sizes. 

The results of the test stage show that CNN models perform better than the LSTM. Although 

the LSTM model shows high performance for validation, when testing on unseen data, it does 

not generalize well. In all case studies, the LSTM model performed worse. On the other hand, 

both CNN models have a similar performance. For all case studies the difference in 𝑅2 and 
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MAE is smaller compared to the validation stage.  This shows that CNNs outperform RNNs 

for water demand forecasting. Moreover, Bai et al., (2018) found that not only the accuracy of 

CNNs is higher than RNNs but also the memory retention when predicting on different 

sequence modeling tasks.  

The rest of the results are based MAE% (See equation 12).  This measure is proposed to 

compare to compare the performance of CNNs and RNNs with benchmark algorithms.  

Next, to fully answer the first research question, the results of three benchmark algorithms 

are presented in Table 5. Patt_WDF (Alvisi et al., 2007) corresponds to a pattern-based model 

that forecasts hourly water demand. The Bakk_WDF (Bakker et al., 2013) and αβ_WDF 

(Pacchin et al., 2017) models forecast hourly water demands using time window techniques. 

Table 5.  Results in terms of MAE% of benchmark algorithms (Pacchin et al., 2019) 

𝑀𝐴𝐸%𝑦2 CS1 CS2 CS3 CS4 CS5 CS6 CS7 

αβ_WDF 5.8 3.724 4.091 4.001 3.090 3.122 16.387 

Bakk_WDF 7.4 3.868 4.483 4.678 3.288 3.501 26.046 

Patt_WDF 6.5 3.561 3.551 3.444 3.823 2.857 17.373 

The following figure will show the performance of the benchmark, and the three models in 

terms of MAE% for year 2 (test phase), and all case studies. On the left, the figure depicts the 

performance only using water demand data whereas, on the right, the binary type of day index 

is included. The results obtained by Pacchin et al., (2019) have included this extra variable on 

their models. Figure 23 displays in light grey color the target results and in light yellow, light 

blue, and green, the results obtained on CS6.  

 
a)  

 
b)  

Figure 23. Test performance and comparison with benchmark models for CS6. a) Water demand only, b) Water 

demand and type of day. 

First, in general, the LSTM model performed worse than the CNNs. When looking at the 

benchmark results, the Patt_WDF model shows better results than αβ_WDF and Bakk_WDF 

in most case studies. The bar charts in a) show that CNNs can predict water demand at a 

comparable level to the benchmark models simply using water demand data. In b), the CNNs 

show lower errors than the Patt_WDF model. The following table shows the results for all case 

studies. The values highlighted in bold represent the lowest error in each case study.  



       

38 

 

Table 6. Performance of the proposed models in terms of MAE%. 

 Water demand only Water demand + day 

Case/Models LSTM Simple CNN Dilated CNN LSTM Simple CNN Dilated CNN 

CS1 10.6 5.86 6.98 9.57 5.69 6.73 

CS2 4.8 3.23 3.82 4.37 3.09 3.22 

CS3 4.8 3.64 3.81 4.27 3.62 3.52 

CS4 6 3.77 3.67 4.04 3.48 3.35 

CS5 2.77 3.26 3.29 4.13 2.77 3.05 

CS6 3.67 2.875 2.83 3.46 2.72 2.67 

CS7 15.8 15.5 15.01 14.695 14.93 14.585 

CS1 displays higher errors compared to the other case studies where the errors do not exceed 

4% considering that is also a residential district. These higher values might be due to the 

difference in demand between 1998 and 2000 since there was an increase of 20% in water 

demand. Nonetheless, for CS1, the simple CNN and dilated CNN present differences in errors 

at 0.68% and 1.18 % respectively with the best benchmark model. Moreover, it is observed 

that the simple CNN and dilated CNN outperform αβ_WDF and Bakk_WDF models using 

only water demand data. At CS7, the errors given by the benchmark models are high (16% - 

26%), and 14% to 16 % by the proposed models. This might indicate that demands for cases 

with high variations are not feasible to forecast with high accuracy. These extreme demands 

are due to the sudden variations during the summer. The dilated CNN presents the lowest errors 

at 15.01% using water demand only, and 14.58% after adding the extra variable. Additionally, 

when adding the binary index of the type of day, the three models performed better. The LSTM 

showed to improve considerably for most case studies. In addition, the dilated CNN has 

outperformed the benchmark algorithms for CS2, CS3, CS4, CS5, CS6, and CS7. Only at CS1, 

there is a lower error from the αβ_WDF model, but the difference with the dilated CNN is less 

than 1%. 

As it is shown that CNNs perform better when forecasting hourly water demand, the 

following results are based on the dilated CNN only. However, in appendix C, the results of 

the performance of the LSTM and simple CNN were added too.  

5.1.1.2 Research question 2 

Does external data, such as meteorological data, improve the performance of water demand 

forecasting?  

This part involves the addition of meteorological variables to the model to determine 

whether this improves accuracy. As shown in Table 4, the variables were added one by one to 

the water demand data to train the models. The following bar chart shows the performance of 

the dilated CNN model for CS3 as an example. Also, the error of the benchmark model is 

shown for comparison.  



       

39 

 

 

Figure 24. Performance of dilated CNN for CS3 after adding extra variables to the water demand individually. 

The following table shows the errors obtained using the dilated CNN for all case studies 

starting by using water demand data only, and the addition of the extra variables. The values 

highlighted in bold color indicate the best performances. Appendix C.1 contains the 

performances for the LSTM and simple CNN models after adding a variable to the water 

demand data. 

Table 7. Performance of dilated CNN after adding extra variables to the water demand individually. 

Case/Variables WD WD + D WD + P WD + T WD + RH 

CS1 6.98 6.73 8.07   

CS2 3.82 3.22 3.66 3.48 3.42 

CS3 3.81 3.52 4.11 4.13 4.2 

CS4 3.67 3.35 3.81 3.9 4.02 

CS5 3.29 3.05 3.17 3.62 4.33 

CS6 2.83 2.67 2.77 3.155 2.87 

CS7 15.01 14.585 14.7 15.44 15.7 

Overall, the addition of meteorological variables enhances the performance for year 1 

(validation). The mean percentage values are lower when adding extra variables than when 

using water demand data only (see appendix C.1). However, this is not reflected in year 2. Most 

cases show that meteorological data worsen the predictions on unseen data. This is an example 

of overfitting. For CS3, CS4, and CS5 the mean percentage values are increased by the 

temperature, relative humidity, and rainfall occurrence going to above 4%. As for the LSTM 

and simple CNN models, the results given in appendix C.1, show that the LSTM model has a 

similar response by the addition of meteorological variables. For year 1, the model increases 

its performance, but when testing on unseen data (year 2), it performs poorly compared to other 

algorithms. For CS7, the best performances are given with the binary variables showing an 

improvement of 1.6% and 1.7% respectively. The simple CNN, in contrast, performed worse 

in year 1. When adding any additional variable, the model raises the mean percentage values. 

In year 2, it is seen that outperforms the other algorithms.  
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Next, Appendix C.2 contains the results of the three models when adding two variables to 

the water demand data. When adding meteorological data, the performance drops further when 

testing on unseen data. However, when one of these climatologic variables is combined with 

the type of day variable, the errors are lower compared to using weather data. On the other 

hand, the simple CNN cannot handle the addition of two or more variables. When using 

climatologic variables, the mean percentage values in year 2 are very high compared to the 

LSTM and dilated CNN algorithms. It was also seen that when training the model, it starts 

overfitting since the only regularization added is the early stopping function. For this reason, 

the simple CNN will not further be analyzed.  

Next, when using three additional variables to the water demand data, the same behavior 

was seen. When using the binary index of the type of day combined with meteorological 

variables, the model presents low errors for year 2. In contrast, adding only climatological 

variables affect the performance negatively for all case studies (see appendix C.3). In general, 

the performance after adding 3 variables to the model does not vary much for year 1 whereas, 

in year 2, it decreases.  

Below in light blue color, the performance of the dilated CNN after adding all 

meteorological variables and the binary index of the day type is presented. Additionally, the 

results of the benchmark algorithms together with the best results of the dilated CNN using the 

binary index of the day type are shown.  

 
Figure 25. Performance of dilated CNN with all variables for CS2-CS7. 

The addition of all variables together did not improve the forecast on unseen data. For CS2 

and CS7, the model has outperformed the benchmark algorithms, but it is not as good as using 

the binary variable of the type of day. CS2, CS3, and CS4 showed a raise in performance 

compared to the model employing the three climatologic variables. This might be due to the 

generalization offered by the binary variables. Hourly, the binary variable will find whether a 

specific hour correspond to a weekday or a weekend day. Between 2014 and 2015, there is a 

shift of 24 hours, therefore, the model can learn these patterns to generalize better. On the other 

hand, meteorological variables such as temperature and relative humidity will not have the 
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same values hourly from one year to the next one. Although there is a high correlation between 

these variables from 2014 to 2015, hourly, the values are not the same.  

5.1.1.3 Research question 3 

Can a general model be used to improve the predictions of water demand in individual cases?  

This part contains the results after using a dataset composed of 5 years of water demand 

data. As described in section 4.1.2, a global model was built with the data of CS2, CS3, CS4, 

CS5, and CS6. This bigger dataset is believed to offer a better generalization of the patterns in 

the data.  

The following bar chart displays the performance of benchmark algorithms, individual case 

studies CS2 to CS6 using water demand and the binary index of the day type, and the bigger 

dataset using water demand data only. 

 
Figure 26. Performance of the dilated CNN on the global dataset using water demand only.  

The figure above shows that the global model outperformed the benchmark models for the 

five case studies. Also, the performance on CS3, CS4, and CS6 is higher when using the global 

model. A bigger dataset indicated the advantage of having more data to be trained. Thus, better 

generalization was obtained. Although for CS2 and CS5 the global model did not improve the 

prediction compared to the individual dataset, the difference in errors is 0.03% and 0.14% 

respectively. Furthermore, considering that the binary input of the day type offered the best 

results on individual datasets, this insight was applied to the global dataset too. Figure 27 

contains the performance of the global model after adding this variable compared to the 

previous results.  
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Figure 27. Performance of the dilated CNN on the global dataset using water demand and the binary index of 

the day type.  

It is seen that after adding the binary variable of the type of day has a positive effect on the 

performance of the global model. Overall, a bigger dataset of the water demand, and the type 

of day makes the model more robust increasing generalization. The forecast on CS5, 

nonetheless, decrease a little compared to the cases using only water demand data, and the 

individual dataset. Yet, the mean percentage values are lower than the benchmark algorithms. 

Appendix C.4 contains the results of the global models using water demand data only, and the 

results adding the binary input. 

A comparison of the prediction using the dilated CNN and LSTM models can be made 

together with the best global model. The following graphs on the left display the forecast for a 

24-hour horizon, and on the right, the errors of the predictions for CS2. Particularly, the days 

shown below correspond to high, low, and average demand days. In appendix D contains the 

graphs for the other case studies. 

 
Figure 28. High peak demand predictions with the 

observed demand over a 24-hour horizon for CS2. 

 
Figure 29. High peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS2 

Figure 28 shows that in general, the predictions of the models during a high peak in demand 

are accurate. However, the changes in demand are better generalized by the dilated CNN and 
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the global model. Around 2 – 4 am, during the lowest consumption the LSTM model predicts 

around 100 L/s more water than the observed demand. This is seen in Figure 29 from the errors. 

Also, at 5 am, the LSTM underestimates the demand. However, the dilated CNN and the global 

model also underestimate the demand during the peak of the day. Next, there is the evening 

demand from 3 – 5 pm. The dilated CNN and the global models recognized these patterns 

better than the LSTM, and the errors are lower. Below, the predictions and errors for an average 

demand day are shown. 

 
Figure 30. Average demand predictions with the 

observed water demand over a 24-hour horizon for 

CS2. 

 
Figure 31. Average demand error with the observed 

water demand over a 24-hour horizon for CS2. 

It is seen that the patterns are similar to the high peak demand. The LSTM presents the same 

behavior during the early morning. It overestimates and underestimates the demand. Along the 

day, there is a better generalization from the global and dilated CNN models as the errors are 

closer to 0. There is, nonetheless, a slight overestimation of water demand from the three 

models from 7 am to the rest of the day. The figures below show the predictions and errors for 

a low peak demand day. 

 
Figure 32. Low peak demand predictions with the 

observed water demand over a 24-hour horizon for 

CS2. 

 
Figure 33. Low peak demand error with the observed 

water demand over a 24-hour horizon for CS2. 

When there is low demand, the LSTM model performs poorly. It underestimates the 

demands during most of the day. The other two models show lower errors during the first 12 

hours of the day. It is seen a sudden change in demand rising from 3 pm, that leads to higher 

errors from the three models.  
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5.1.1.4 Research question 4 

Can transfer learning improve the performance of deep learning algorithms for water demand 

forecasting for cases in which the years and the geographical locations are different? 

Transfer learning was applied to predict CS1 and CS7. The following graph shows the 

comparison of the best performance when using 0, 25, 50, and 75% of the data for training on 

the individual CS1 dataset in year 2 (black color), the performance using TL (green color), and 

the benchmark model.  

 

Figure 34. Performance of transfer learning on CS1. 

The figure above shows the pre-trained model does not improve the performance of the 

prediction on CS1. It was reported before that none of the proposed DL models outperformed 

the best benchmark model (αβ_WDF). Nonetheless, the error difference between the individual 

dataset and the global one ranges from 0.25% using 75% of the data to 1.15% using half of the 

data for training. When using no data for training, the pre-trained model showed good 

performance in comparison to employing 25%, and 50% of data for training. This clearly shows 

that a pre-trained model can predict water demands with comparable accuracy to the 

benchmark models and the individual ones. Overall, the results suggest that TL must be 

employed carefully when fine-tuning the fully connected layers to achieve more accuracy. 

Below, the same comparison is displayed for CS7.  
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Figure 35. Performance of transfer learning on CS7. 

The figure above shows that water demands for a tourist area cannot be modeled using little 

data. When training the model with 25% of the data, the model does not learn patterns well, 

and the errors are high. This is clearly due to the way the data was selected. Since the training 

data corresponds to the demands of January, February, and March, the average demands are 

very low compared to the demand in the summer months (June, July, August). Therefore, when 

the model is required to predict on unseen data, the patterns of the water demand during the 

summer are not learned by the network. However, the pre-trained model contains different 

water demand patterns. This is reflected by the accuracy of the prediction using 25% of the 

data. Although the performance is poor, it does improve concerning the predictions with the 

individual dataset. On the other hand, the pre-trained model outperforms the individual when 

using 50% and 75% of the data for training by a difference of 0.90% and 0.97%. Also, using 

only 75% of the data is enough for the pre-trained model to deliver higher performance than 

the benchmark models. Finally, when using 0% of data for training, the pre-trained model 

shows to perform better than when using 25% of data for training. 

5.1.1.5 Research question 5 

Can transfer learning be used to predict accurately the water demands of a district located in 

a different country?  

This part includes the capabilities of using TL to predict the water demands of water 

distribution systems in a different country.  The following graph shows the performance of TL 

employed in a Dutch WDS.  
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Figure 36. Performance of transfer learning on the Dutch WDS. 

Figure 36 shows that there are comparable results when looking at the Italian case study. 

Both cases are distribution systems for touristic purposes. When using the pre-trained model 

with 0% of data for training, the predictions show lower errors compared to CS7. This shows 

that TL is useful for cases in which there is not data, for instance, a new project of development 

located in different regions. Since there is not a significant increase in the average water 

demand year by year, the errors after training with 1, 2, or 3 years of data are similar between 

15% and 16%. The performance of TL is as accurate as using the individual models.  

5.1.1.6 Research question 6 

Can a bigger global model be trained to improve the performance of transfer learning when 

being employed to predict the water demands of a water distribution system located in another 

country? 

 

As mentioned in section 4.1.4, a bigger global model was built using the 14 years of data of 

Italy. The model was trained to improve the accuracy of the predictions and make a comparison 

with the global model using 5 years of data.  
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Figure 37. Performance of transfer learning on the Dutch WDS using 14 years of data for training.  

The figure above displays that when using a bigger pre-trained model, the prediction using 

0% of data for training shows lower errors compared to using the pre-trained model with less 

data (see Figure 36). Nonetheless, there was no improvement in the accuracy when re-training 

the last fully connected layers of the bigger global model. When using 2 and 3 years of data 

for training, there is a slight drop in performance compared to the previous results. This 

suggests that when applying TL, fine-tuning must be done carefully.  
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6   Conclusions 
 

This section answers the research questions in section 1.2 by summarizing the results of the 

previous chapter. 

1. Can 1D-CNNs outperform RNNs and other existing algorithms for water demand 

forecasting?  

After an extensive process to find suitable hyperparameters and adequate architectures, 

three models were proposed to be compared with benchmark algorithms. Three DL models 

were built. A simple 1-dimensional convolutional neural network, a dilated causal 

convolutional neural network, and a long-short-term memory neural network. As the literature 

suggested for time series forecasting in other domains, 1D-CNNs outperform RNNs. With this 

idea in mind, it has been shown that 1D-CNNs perform better than RNNs on short-term water 

demand forecasting. It was seen that when using water demand data only, the performance of 

the CNNs was comparable to benchmark models. In addition, when adding extra information 

such as whether it is a weekday or a weekend day, the three models achieve higher 

performances, and especially the CNNs outperformed the existing models in 6 of the 7 cases 

studies. Nonetheless, there was less than a 1% of error difference between the best benchmark 

model and the 1D-CNNs models. Furthermore, there was an improvement in the forecast of 

the water demand under sudden changes by the rapid increase of users due to seasonal touristic 

activities.  

2. Does external data, such as meteorological data, improve the performance of water 

demand forecasting?  

The addition of meteorological variables was inspired by previous research showing that 

the amount of occurrence of rainfall improves the accuracy of water demand forecasting 

models. To address this question, it was decided to explore other variables such as relative 

humidity and maximum, minimum, and average temperature apart from the precipitation. The 

correlation of these variables with the water demand was calculated for 6 of the 7 case studies 

as the data of Castelfranco was not available for the years 1999, and 2000. It was found that 

the maximum temperature has a higher correlation with water demand followed by the relative 

humidity. Moreover, there is a higher negative correlation between the rainfall occurrence than 

the amount of rainfall with water demand. The results suggested that the addition of variables 

one by one increases the performance of the models at the validation stage. Nonetheless, when 

testing on unseen data, the three models decrease in performance. Then, when adding two, and 

three climatological variables to the models, the same behavior was observed. Overall, 

meteorological data did not improve the performance of short-term water demand forecasting. 

The addition of these types of variables showed to present overfitting in the three DL models 

when predicting on unseen data.  

3. Can a general model be used to improve the predictions of water demand in individual 

cases? 
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A global dataset was built with data from 5 districts due to their closeness. These 5 WDS 

are managed by the same water utility company. Since it was shown that the dilated CNN 

outperformed the other two models, this architecture was employed and trained with the 5-

year-dataset. Two experiments were carried out. First, the network was trained with water 

demand data only. It was shown that using a global model, the performances are higher 

compared to the benchmark models and individual models for most case studies. Second, the 

additional binary variable was added to this global model as it was shown that offers better 

generalization to the models. This approach showed to improve the accuracy of the global 

model further. Only 1 out of 5 case studies did not show improvement, however, the error is 

still lower than the best benchmark model. To sum up, a global model offers more 

generalization than the individual models even training with water demand data only.  

4. Can transfer learning improve the performance of deep learning algorithms for water 

demand forecasting for cases in which the years and the geographical locations are 

different? 

Transfer learning was applied to the other two case studies. The results suggested that the 

pre-trained model did not improve the forecast on one of the cases studies where there is an 

increase of the average water demand at 20% from 1998 to 2000. As this case study has a lack 

of data of one year, the model did not handle the change in the average water demands 

However, a pre-trained model showed a comparable performance when having no data for 

training. Additionally, when using different quantities of data for training, the results are also 

comparable to the benchmark models, and the individual ones.  

On the other hand, TL has shown an improvement in the predictions for the case with 

touristic purposes. The results showed that a pre-trained model can have a higher accuracy 

when having no data for training compared to training only with 25% of data. Overall, the 

performance over the 2 cases, suggests that TL must be employed carefully and that fine-tuning 

require more attention. 

5. Can transfer learning be used to predict accurately the water demands of a district located 

in a different country?  

Additionally, TL was implemented to predict the water demand of a WDS in the north of 

the Netherlands. This WDS is mainly used for touristic purposes meaning that the demand 

patterns present sudden changes throughout the year. In General, TL showed to have similar 

performances with the individual models when using different quantities of data for training. 

When using a pre-trained model to forecast water demands with zero data for training, the 

errors are below 20%. Overall, the results indicate that a pre-trained global model with water 

demand data of another country can be used to predict water demands with less than 20% error 

regardless of the amount of data for training.  

6. Can a bigger global model be trained to improve the performance of transfer learning 

when being employed to predict the water demands of a water distribution system located 

in another country? 

Lastly, a bigger global model was built and trained with 14 years of data. Compared to the 

previous case, this bigger model showed an improvement in the prediction of 2.81% when 

using zero data for training. When re-training the model with 1 year of data, there was a slight 

decrease in the errors. However, when using 2 and 3 years of data to re-train the model, the 
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errors increase a little compared to the previous results by applying the 5-year pre-trained 

model.  

6.1  Recommendations and Future Work 

Training DL models involve different processes that can be improved. Beginning, for instance, 

by adding more residual blocks to the dilated CNN architecture and finding better 

hyperparameters to improve the performance of the model. Also, a combination of RNNs and 

1D-CNNs can be employed to exploit the capabilities of both types of networks.  

The addition of meteorological variables can be further analyzed. As proposed in 2.1.4, the 

addition of variables in which the data of the prediction horizon is known such as the hourly 

temperature is encouraged. Normally, these predictions are accurate and can be used to refine 

the forecasts of the models. The same can be implemented for other climatologic variables 

(precipitation, relative humidity). Moreover, ranges of temperature can replace the exact values 

of hourly temperature to add generalization. These might be other approaches when processing 

meteorological data.  

Transfer learning showed different performances for the case studies analyzed. This 

indicates that this method requires further development to exploit its potential uses. For the 

case of the Dilated CNN, not only re-training the fully connected layers but also adding 

convolutional layers or complete residual blocks might improve the performance of the model.  

More research is always encouraged. Romero et al., (2021) used continuous kernel 

convolutions for sequential data (CKConv). The authors obtained state-of-art results when 

applying the techniques on multiples datasets. Results showed that CKConv outperformed 

RNNs, TCNs, and other algorithms.  
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Appendix A 
The first gate is called the forget gate layer which looks at ℎ𝑡−1 and 𝑥𝑡. It passes through a 

sigmoid activation function which decides what information is kept and forgotten for each 

number in the cell state 𝐶𝑡−1. Formally, it is expressed as follows: 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

Where 𝑤𝑓 represents forget weights that are learned during training, 𝑏𝑓 is the bias. After 

that, the new information which is going to be retained in the cell state passes through two 

gates. First, a layer with a sigmoid function called the input gate layer which tells the values 

to be updated. Then, the next gate layer contains a tanh function that generates a vector of new 

entrant values 𝐶𝑡̃ to be added to the cell state. The following equations represent the input gate 

layer and the candidate memory cell respectively. 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

𝐶𝑡̃ = tanh(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 

Where 𝑤𝑖 represents the input weights, 𝑤𝑐 the candidate wrights, 𝑏𝑐 and 𝑏𝑖 the 

corresponding bias. Combining equations 4 and 5, the internal long-term memory or the 

subsequent cell memory is produced as follows: 

𝑐𝑡 = 𝑓𝑡 ◦ 𝑐𝑡 + 𝑖𝑡 ◦ 𝐶𝑡̃ (6) 

Where ◦ represents an element-wise multiplication. 

Finally, the output gate can be generated. First, the output values of the cell state are filtered 

by a sigmoid layer. Next, the cell state goes through a tanh function and is multiplied by the 

output of the sigmoid gate. The hidden state output (ℎ𝑡) is calculated as follows: 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7) 

ℎ𝑡 = 𝑜𝑡 ◦ tanh(𝑐𝑡) (8) 

Where 𝑤𝑜 signifies the output weights and 𝑏𝑜 the bias term. 
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Appendix B 
The following graphs display the results of the performance of the three models in terms of  𝑅2 

and MAE using water demand data only. 

 
a) 

 
b) 

B. Figure 1. Performance of DL models on CS1. a) Validation, b) Test. 

 
a) 

 
b) 

B. Figure 2. Performance of DL models on CS2. a) Validation, b) Test. 

 
a) 

 
b) 

B. Figure 3. Performance of DL models on CS3. a) Validation, b) Test. 
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a) 

 
b) 

B. Figure 4. Performance of DL models on CS4. a) Validation, b) Test. 

 
a) 

 
b) 

B. Figure 5. Performance of DL models on CS6. a) Validation, b) Test. 

 

 
a) 

 
b) 

B. Figure 6 . Performance of DL models on CS7. a) Validation, b) Test.



      

 

Appendix C 
Appendix C.1 

The following graphs correspond to the performance of the three models in terms of MAE% 

using a variable at a time. 

C.1 Table 1. Performance of three models in terms of MAE% for water demand only 

 

C.1 Table 2. Performance of three models in terms of MAE% for water demand and rainfall occurrence 

 

C.1 Table 3. Performance of three models in terms of MAE% for water demand and temperature 

 

 

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1 5.265 10.6 6.04 5.86 5.58 6.98

CS2 3.1 4.8 2.379 3.23 2.62 3.82

CS3 3.3 4.8 3.45 3.64 3.31 3.81

CS4 5.9 6 3.75 3.77 3.54 3.67

CS5 2.92 2.77 2.8 3.26 2.88 3.29

CS6 2.78 3.67 2.925 2.875 2.71 2.83

CS7 12.92 15.8 12.8 15.5 12.98 15.01

Water Demand 

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1 4.52 10.175 6.08 5.87 5.59 8.07

CS2 2.505 4.615 2.8 4.48 2.48 3.66

CS3 2.915 5.04 3.54 6.44 3.54 4.11

CS4 3.45 4.2 3.51 3.52 3.3 3.81

CS5 2.89 4.45 2.89 2.79 2.88 3.17

CS6 2.85 3.48 2.71 2.77 2.57 2.77

CS7 12.14 14.78 12.89 14.89 11.78 14.7

Water Demand + Precipitation

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.705 4.755 2.79 3.36 2.355 3.48

CS3 3.23 4.705 3.5 4.16 3.08 4.13

CS4 3.33 4.31 4.24 4.26 3.43 3.9

CS5 3.13 4.38 3.31 3.12 2.8 3.62

CS6 2.745 3.565 2.88 3.11 2.54 3.155

CS7 12.55 17.05 14.01 15.99 12.47 15.44

Dilated CNN

Water Demand + Temperature

LSTM Simple CNN
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C.1 Table 4. Performance of three models in terms of MAE% for water demand and relative humidity 

 

C.1 Table 5. Performance of three models in terms of MAE% for water demand and binary input of the days 

 

 

Appendix C.2 

The following tables contain the performance in terms of MAE% using two extra variables. 

C.2 Table  1. Performance of three models in terms of MAE% for water demand with temperature and rainfall 

occurrence. 

 

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.64 5.12 3.08 3.41 2.51 3.42

CS3 2.55 6.48 3.78 4.22 3.13 4.2

CS4 3.61 4.47 4.16 4.31 3.47 4.02

CS5 2.92 5.89 3.21 3.54 2.77 4.33

CS6 2.62 4.01 3.19 3.19 2.68 2.87

CS7 12.12 16.4 13.1 15.8 13.2 15.7

LSTM Simple CNN Dilated CNN

Water Demand + relative humidity

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1 5.26 9.57 5.52 5.69 5.205 6.73

CS2 2.915 4.37 2.58 3.09 2.36 3.22

CS3 3.23 4.27 3.34 3.62 3.09 3.52

CS4 3.65 4.04 3.485 3.485 3.27 3.35

CS5 3.005 4.13 2.95 2.77 2.815 3.05

CS6 2.86 3.46 2.71 2.72 2.58 2.67

CS7 12.09 14.695 12.78 14.93 11.765 14.585

Water Demand + day

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.41 4.81 2.83 4.12 2.57 3.91

CS3 2.84 5.55 3.58 6.59 3.22 5.05

CS4 3.41 4.97 4.13 8.4 3.56 4.32

CS5 2.46 4.57 3.16 4.19 2.84 3.91

CS6 2.69 3.96 2.9 4.46 2.68 3.42

CS7 12.26 15.88 13.47 15.56 12.47 15.24

Simple CNN Dilated CNN

Water Demand + temperature + precipitation

LSTM
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C.2 Table  2. Performance of three models in terms of MAE% for water demand with temperature and relative 

humidity. 

 

C.2 Table  3. Performance of three models in terms of MAE% for water demand with temperature and rainfall 

occurrence. 

 

C.2 Table  4. Performance of three models in terms of MAE% for water demand with binary index of the day 

and rainfall occurrence. 

 

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.77 4.83 2.98 3.55 2.52 3.67

CS3 3 6.02 3.6 4.45 3.06 4.34

CS4 3.7 4.47 4.12 4.18 3.63 4.29

CS5 2.64 6.28 3.25 3.55 2.78 4.09

CS6 2.81 4.18 3.03 3.19 2.71 3.4

CS7 11.69 17.11 13.18 19.36 11.54 16.17

Water Demand + temperature + relative humidity

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.23 5 2.92 4.1 2.69 3.56

CS3 2.61 6.1 3.59 7.07 3.28 4.47

CS4 3.09 4.82 4.02 9.77 3.6 4.31

CS5 2.61 5.43 3.13 4.27 2.98 3.84

CS6 2.51 4.04 2.98 7.4 2.7 3.47

CS7 11.83 18.82 14.05 16.33 12.6 15.84

Water Demand + relative humidity + precipitation

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1 4.91 9.49 5.54 5.675 5.1 6.55

CS2 2.69 4.41 2.57 3.7 2.48 3.26

CS3 3.15 4.47 3.31 4.17 3.13 3.98

CS4 3.5 4.27 3.48 4.44 3.39 3.88

CS5 2.81 4.32 2.96 3.31 2.84 3.25

CS6 2.59 3.63 2.7 3.02 2.61 3.01

CS7 11.58 14.81 12.35 14.86 11.7 14.55

LSTM Simple CNN Dilated CNN

Water Demand + day + precipitation
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C.2 Table  5. Performance of three models in terms of MAE% for water demand with binary index of the day 

and temperature. 

 

C.2 Table  6. Performance of three models in terms of MAE% for water demand with binary index of the day 

and relative humidity. 

 

 

Appendix C.3 

The following tables show the performance of the three models using three extra variables. 

C.3 Table 1.Performance of three models in terms of MAE% for water demand with binary index of the day, 

rainfall occurrence, and temperature. 

 

 

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.78 4.54 2.62 3.12 2.39 3.35

CS3 3.16 4.48 3.4 3.8 3.11 3.56

CS4 3.56 4.18 3.52 3.63 3.25 3.55

CS5 3.025 4.04 2.93 2.81 2.78 3.2

CS6 2.73 3.52 2.76 2.95 2.59 2.86

CS7 11.17 14.85 13.62 15.75 12.08 14.85

Water Demand + day + temperature

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.6 4.68 2.8 3.32 2.34 3.27

CS3 2.82 5.55 3.39 3.85 3.22 3.64

CS4 3.51 4.15 3.84 3.88 3.35 3.56

CS5 2.76 6.06 3.02 3.72 2.76 3.18

CS6 2.75 3.52 2.78 2.99 2.7 2.88

CS7 11.55 15.06 12.6 15.76 11.63 14.91

LSTM Simple CNN Dilated CNN

Water Demand + day + relative humidity

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.60 4.66 2.68 3.69 2.39 3.30

CS3 2.96 4.97 3.37 4.82 3.11 3.92

CS4 3.42 4.58 3.53 4.47 3.33 4.26

CS5 2.66 4.5 2.92 3.29 2.73 3.27

CS6 2.51 4.05 2.73 4.36 2.52 3.06

CS7 10.97 14.98 13.20 15.53 11.93 14.84

Water Demand + day + prec + temperature

LSTM Simple CNN Dilated CNN
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C.3 Table 2. Performance of three models in terms of MAE% for water demand with binary index of the day, 

relative humidity, and temperature. 

 

C.3 Table 3. Performance of three models in terms of MAE% for water demand with temperature, relative 

humidity, and rainfall occurrence. 

 

C.3 Table 4. Performance of three models in terms of MAE% using all variables. 

 

 

 

 

 

 

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.64 4.71 2.64 3.24 2.38 3.27

CS3 3.08 5.14 3.40 4.14 3.10 3.73

CS4 3.50 4.32 3.70 3.86 3.33 3.59

CS5 2.64 5.79 3.07 3.30 2.73 3.49

CS6 2.48 3.81 2.87 3.05 2.49 2.87

CS7 11.37 15.12 13.82 16.86 11.50 15.18

Water Demand + day + temperature + relative humidity

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.61 5.16 3.17 5.67 2.64 3.69

CS3 2.46 6.38 3.64 6.74 3.11 5.20

CS4 3.46 4.81 4.09 7.54 3.68 4.82

CS5 2.60 6.78 3.30 5.21 2.84 4.57

CS6 2.24 4.17 3.08 5.22 2.65 3.59

CS7 11.53 16.99 13.70 17.05 12.09 16.87

Water Demand +  temperature + relative humidity + precipitation

LSTM Simple CNN Dilated CNN

Case

MAE val MAE test MAE val MAE test MAE val MAE test

CS1

CS2 2.48 4.67 2.64 3.75 2.36 3.36

CS3 2.65 6.24 3.39 5.85 3.04 4.15

CS4 3.30 4.44 3.79 6.89 3.27 3.90

CS5 2.52 5.74 3.18 4.02 2.73 3.55

CS6 2.54 4.01 2.91 3.86 2.48 3.10

CS7 10.67 14.91 12.39 16.38 11.52 14.91

Water Demand +  temperature + relative humidity + day + precipitation

LSTM Simple CNN Dilated CNN
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Appendix C.4 

C.4 Table 1. Performance of the global model in terms of MAE% using water demand only. 

 

C.4 Table 2. Performance of the global model in terms of MAE% using water demand and binary index of the 

day type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case

MAE val MAE test

CS2 1.9 3.26

CS3 2.44 3.32

CS4 3.08 3.29

CS5 2.23 2.9

CS6 2.42 2.45

Global Water Demand 

Dilated CNN

Case

MAE val MAE test

CS2 1.97 3.19

CS3 2.19 3.28

CS4 3.15 3.21

CS5 2.3 2.93

CS6 2.5 2.4

Global Water Demand + day 

Dilated CNN
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Appendix D 
The following graphs correspond to the predictions for the high, low, and average water 

demands and their corresponding errors. 

 
D. Figure 1. High peak demand predictions with the 

observed demand over a 24-hour horizon for CS1. 

 
D. Figure 2. High peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS1. 

 
D. Figure 3. Average demand predictions with the 

observed water demand over a 24-hour horizon for 

CS1. 

 
D. Figure 4. Average demand error with the observed 

water demand over a 24-hour horizon for CS1. 

 
D. Figure 5. Low peak demand predictions with the 

observed water demand over a 24-hour horizon for 

CS1. 

 
D. Figure 6. Low peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS1. 
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D. Figure 7. High peak demand predictions with the 

observed demand over a 24-hour horizon for CS3. 

 
D. Figure 8. High peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS3. 

 
D. Figure 9. Average demand predictions with the 

observed water demand over a 24-hour horizon for 

CS3. 

 
D. Figure 10. Average demand error with the 

observed water demand over a 24-hour horizon for 

CS3. 

 
D. Figure 11. Low peak demand predictions with the 

observed water demand over a 24-hour horizon for 

CS3. 

 
D. Figure 12. Low peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS3. 



       

67 

 

 
D. Figure 13. High peak demand predictions with 

the observed demand over a 24-hour horizon for 

CS4. 

 
D. Figure 14. High peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS4. 

 
D. Figure 15. Average demand predictions with the 

observed water demand over a 24-hour horizon for 

CS4. 

 
D. Figure 16. Average demand error with the 

observed water demand over a 24-hour horizon for 

CS4. 

 
D. Figure 17. Low peak demand predictions with the 

observed water demand over a 24-hour horizon for 

CS4. 

 
D. Figure 18. Low peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS4. 
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D. Figure 19. High peak demand predictions with 

the observed demand over a 24-hour horizon for 

CS5. 

 
D. Figure 20. High peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS5. 

 
D. Figure 21. Average demand predictions with the 

observed water demand over a 24-hour horizon for 

CS5. 

 
D. Figure 22. Average demand error with the 

observed water demand over a 24-hour horizon for 

CS5. 

 
D. Figure 23. Low peak demand predictions with the 

observed water demand over a 24-hour horizon for 

CS5. 

 
D. Figure 24. Low peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS5. 
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D. Figure 25. High peak demand predictions with 

the observed demand over a 24-hour horizon for 

CS6. 

 
D. Figure 26. High peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS6. 

 
D. Figure 27. Average demand predictions with the 

observed water demand over a 24-hour horizon for 

CS6. 

 
D. Figure 28. Average demand error with the 

observed water demand over a 24-hour horizon for 

CS6. 

 
D. Figure 29. Low peak demand predictions with the 

observed water demand over a 24-hour horizon for 

CS6 

 
D. Figure 30. Low peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS6. 
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D. Figure 31. High peak demand predictions with 

the observed demand over a 24-hour horizon for 

CS7. 

 
D. Figure 32. High peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS7. 

 
D. Figure 33. Average demand predictions with the 

observed water demand over a 24-hour horizon for 

CS7. 

 
D. Figure 34. Average demand error with the 

observed water demand over a 24-hour horizon for 

CS7. 

 
D. Figure 35. Low peak demand predictions with the 

observed water demand over a 24-hour horizon for 

CS7. 

 
D. Figure 36. Low peak demand errors with the 

observed water demand over a 24-hour horizon for 

CS7. 
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Appendix E 
The following flowchart illustrates in detail the architecture of the dilated CNN. 
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E. Figure 1. Dilated CNN architecture 
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