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Summary

We increasingly encounter artificial intelligence-based technology in our daily lives, from
smart home devices to self-driving cars to invisible systems running on our internet. Many
artificial intelligence techniques use machine learning, algorithms that learn to predict or
act based on collected data. Unfortunately, the most popular machine learning techniques,
such as neural networks and ensembles, are so complex that humans cannot understand
how theymake predictions. Without understanding the prediction process, it is difficult to
trust the model. Therefore, in this dissertation, we work on algorithms that learn models
that are understandable to humans. The type of model we consider is a decision tree,
a flowchart-like model that can easily be visualized so humans can understand it. These
models ask a series of questions about an input and use the answers to derive a prediction.

Decision trees were popularized in the 1980s and extensively studied, but there is still
room for improvement. The most popular algorithms for learning decision trees are fast
but do not necessarily lead to the best performance. They are not robust, meaning tiny
changes in the data can negatively influence the quality of their predictions. Also, the ex-
isting algorithms cannot be directly applied to problems where multiple sequential predic-
tions have to be made. Therefore, this dissertation studies several techniques for learning
decision trees for robustness and sequential decision making problems.

In Part I of the dissertation, we consider the problem of optimizing decision trees to
make good predictions while being robust to small changes in the data. In Chapter 4, we
tackle the problem of learning good decision trees quickly in this setting. We improved
the runtime of an existing algorithm by speeding up one of the key operations. In Chap-
ter 5, we solve the problem of finding the best possible robust decision tree. The idea is
to formulate the problem as an Integer-Linear Program, a special mathematical problem
that can be solved with highly optimized algorithms. In Chapter 6, we propose a method
that allows learning of models that are more flexible in terms of robustness, i.e., by al-
lowing data changes in different shapes. To create an efficient algorithm, we optimize
only the model’s predictions, not the model’s question part. Finally, in Chapter 7, we use
techniques for improving data privacy to enable robustness against another kind of data
change: someone adding or removing data.

Part II of this dissertation is about sequential decision making problems. In these set-
tings, we control a device or agent that tries to achieve some goal in a potentially uncertain
environment. Sequential decision making problems are significantly different from the su-
pervised learning problems considered in Part I since the data is not pre-collected. This
class of problems encompasses many real-life problems; one of the simplest of those could
be a thermostat that measures the temperature in a room and needs to decide whether to
turn a heater on or off constantly. Highly complex problems such as self-driving cars can
be modeled similarly. We aim to find a controller represented by a simple decision tree
for such problems. Such a controller is called a policy, and by representing it with a small
decision tree, humans can understand it. In Chapter 9, we assume that we have a perfect
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mathematical description of the problem and use it to find the best possible decision tree
via Integer Programming techniques. Later in Chapter 10, we assume that we can only
interact with the environment and do not have a mathematical description of the prob-
lem. In this setting, we find good policies by iteratively updating the tree to achieve better
scores using gradient information.

In our research, we have developed various algorithms for learning decision trees in
settings that are hard to optimize with existingmethods: robust predictions and sequential
decisionmaking. We hope that our work on decision tree learning for these settings allows
human-understandable machine learning to be used inmore real applications in the future.
By improving model understanding and robustness, we aim to enable machine learning
systems that humans can trust.
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Samenvatting

In het dagelijks leven komen we steeds vaker in aanraking met technologie die gebruik
maakt van kunstmatige intelligentie, van smart home apparaten, tot zelfrijdende auto’s
tot de onzichtbare systemen die op ons internet draaien. Veel technieken voor kunstma-
tige intelligentie maken gebruik van machine learning, algoritmes die leren voorspellen
of keuzes maken aan de hand van data. Helaas zijn de meest gebruikte technieken voor
machine learning, neural networks en ensembles, zo complex dat mensen niet kunnen be-
grijpen hoe de modellen voorspellingen maken. Zonder dat we de voorspellingen kunnen
begrijpen is het moeilijk om de modellen te vertrouwen. In dit proefschrift proberen we
daarom algoritmes te ontwikkelen die modellen kunnen leren die voor mensen te begrij-
pen zijn. Het type model waar we aan werken is een decision tree, een model dat lijkt
op een stroomdiagram en makkelijk te visualiseren is zodat mensen hem kunnen begrij-
pen. Decision trees stellen een aantal vragen over de invoer en gebruiken de antwoorden
daarop om uiteindelijk tot een voorspelling te komen.

Decision trees zijn populairemodellen sinds de jaren 80 en uitgebreid onderzocht, maar
er is nog steeds ruimte voor verbetering. De meeste algoritmes om decision trees te leren
zijn snel, maar vinden niet altijd de beste oplossing. Ze zijn niet robuust, waardoor voor-
spellingen kunnen veranderen door een miniscule aanpassing in de data. Ook zijn de
bestaande methodes niet direct toepasbaar voor problemen waar meerdere afhankelijke
voorspellingen achter elkaar moeten worden gemaakt.

In Deel I van het proefschrift bestuderen we het probleem van decision trees leren die
goede robuuste voorspellingen maken en dus goed omgaan met kleine aanpassingen. In
Hoofdstuk 4 werken we aan technieken om snel goede decision trees te vinden. We ver-
snellen een bestaand algoritme door een van de belangrijke operaties veel efficiënter uit te
voeren. In Hoofdstuk 5 werken we aan algoritmes die de best mogelijke robuuste decision
tree vinden. Hiervoor formuleren we het probleem als een Integer-Linear Program, een
speciaal soort wiskundig probleem dat opgelost kan worden met slimme algoritmes. In
Hoofdstuk 6 presenteren we een methode die flexibeler is in termen van robuustheid, zo
kunnen we bijvoorbeeld decision trees optimaliseren die robuust zijn voor aanpassingen
in verschillende vormen. Om daar een efficiënt algoritme voor te ontwikkelen optimalise-
ren we de voorspellingen van de decision tree en niet de vragen. In Hoofdstuk 7 gebruiken
we technieken voor het verbeteren van data privacy om robuustheid te realiseren voor een
andere manier van aanpassen: als iemand data verwijdert of toevoegt.

Deel II van dit proefschift gaat over sequential decision making problemen. Bij dit
soort problemen besturen we een apparaat of ‘agent’ die probeert een bepaald doel te be-
reiken in een onzekere omgeving. Dit soort problemen zijn anders dan de problemen uit
Deel I omdat niet alle data van tevoren verzameld is. Sequential decision making proble-
men omvatten veel problemen die we ook in het dagelijks leven tegenkomen. Een van
de simpelste varianten is bijvoorbeeld een thermostaat die de temperatuur van een kamer
meet en continu moet beslissen of de verwarming aan of uit moet worden gezet. Maar
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veel complexere problemen zoals zelfrijdende auto’s kunnen zo ook worden gemodeleerd.
Ons doel is om een controller in de vorm van een decision tree te vinden voor zulk soort
problemen die de beslissingen kan maken. Zo’n decision tree wordt ook wel een policy ge-
noemd, en door hem klein (en dus simpel) te houden, kunnen mensen hem goed begrijpen.
In Hoofdstuk 9 nemen we aan dat we een volledige wiskundige beschrijving van het pro-
bleem hebben, en gebruiken die beschrijving om de best mogelijke decision tree te vinden
met Integer Programming technieken. Later in Hoofdstuk 10 nemen we aan dat we alleen
kunnen leren via interacties met de omgeving en zo proberen we om zonder wiskundige
beschrijving van het probleem toch goede decision trees te optimaliseren. In deze situatie
vinden we goede policies door steeds kleine aanpassingen te doen aan de decision tree die
de score verhoogt aan de hand van de gradiënt.

In ons onderzoek hebben we verschillende algoritmes ontwikkeld voor het leren van
decision trees voor taken die lastig te optimaliseren zijn met de bestaande methoden: ro-
buuste voorspellingen en sequential decision making. We hopen dat ons werk meer toe-
passingen van begrijpelijke machine learning methoden mogelijk maakt in het dagelijks
leven. Door het verbeteren van de begrijpelijkheid van modellen en hun robuustheid ho-
pen we het mogelijk te maken om kunstmatige intelligentie systemen te ontwikkelen die
mensen kunnen vertrouwen.
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2 1 General Introduction

Machine learning techniques are increasingly deployed in products that we encounter
in our daily lives. For example, chatbots such as ChatGPT are used by over a hundred
million weekly users [1] and use machine learning models to generate natural language.
However, it is hard to trust the predictions of many machine learning models. ChatGPT
is notorious for telling convincing lies [2], and since the model behind ChatGPT is too
complex to be human-interpreted, it is challenging to determine when the model will lie.
Moreover, neural networks are overly sensitive to tiny changes in the input, making them
brittle, and can reveal private data they were trained on. This results in models that make
mispredictions when single pixels in an image are changed. In contexts where we need
to rely on the predictions of a machine learning model, we need the model to be human-
understandable. A promising type of model for this is the decision tree [3].

Decision trees are simple machine learning models. These models can be visualized
by flow-chart-like diagrams where one follows a path through the diagram based on a
series of questions and ends in a leaf node that holds a prediction. When limiting the size
of decision trees, they are intuitive and can be readily understood by humans. Therefore
they can be used to solve the problem of transparency in machine learning, but they still
have their limitations. Just like neural networks, they are brittle in the presence of tiny
changes in the data. Also, they cannot be applied to sequential decision-making problems
in which multiple co-dependent predictions have to be made. We want to find decision
trees that make good predictions, are robust to small changes and can be applied in se-
quential decision making.

Unfortunately, optimizing decision trees for arbitrary objectives is a difficult task. The
most popular techniques in machine learning rely on gradient descent, an optimization
method that makes small incremental updates to the model. Decision trees do not allow
for this approach since the true/false questions they consist of do not smoothly change and
therefore cannot be differentiated. Instead, decision trees require specialized optimization
methods. While there is a rich literature on decision tree optimization techniques for
classical classification and regression tasks, these methods do not extend directly to other
settings. Therefore, in this dissertation, we consider the problem of optimizing decision
trees for hard-to-optimize tasks that are currently not handled well by existing methods.
Specifically, we study optimizing decision trees for robustness and sequential decision
making problems. Although the problems are different, we can use similar algorithmic
ideas to optimize decision trees for them.

1.1 Optimizing Decision Trees
Decision trees are promising models for their interpretability when limited in size. We
briefly introduce decision tree models and the problem settings that we apply them to:
robust learning and sequential decision making.

1.1.1 Decision Tree Models
Decision trees, such as the one visualized in Figure 1.1 (left), are hierarchical models that
combine a series of tests on information from an input to determine its prediction. When
limiting a decision tree’s size, humans can easily interpret it. In recent years, this property
has motivated more research into decision trees in response to the increasing popularity
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3

if X ≤ -0.5

O X

yes no

if X ≤ 1.5

O X

yes no

if Y ≤ 0.3

yes no

Figure 1.1: (left) A decision tree of depth 2. By following the path from the root node to a leaf, we can find the
prediction for an instance. For example, for an instance with 𝑋 = 2.0, 𝑌 = 0.0, we follow the path left of the root
node since 0.0≤ 0.3 and right at the second node since 2.0≰−0.5, the leaf that we end up in predicts the class ‘blue
cross.‘ (right) The training dataset for this tree is visualized by circles and crosses, and the box-shaped regions
the decision tree leaves cover. The background color of each box represents the prediction of the associated leaf.

of extremely complex models such as neural networks. An added advantage of decision
trees over other interpretable methods, such as linear models, is that they can model non-
linear relationships in an interpretable way. For example, a linear model cannot accurately
predict the dataset in Figure 1.1 (right), but a decision tree can. In this figure, the decision
tree correctly separates most of the red and blue points by splitting up the space in only 4
regions.

A single decision tree (see Figure 1.1) is usually represented by a binary tree of decision
nodes that contain tests on a feature and leaf nodes that hold a prediction. The root node
of a decision tree is the node that starts the prediction process and is usually placed at the
top of the diagram. To make a prediction, we compare the feature values of a data instance
to the root node and follow the path to the leaf that satisfies all decision nodes. The final
prediction is simply the value indicated by the leaf.

Decision trees are usually limited in size by either limiting the depth of the tree (the
length of the longest decision path), limiting the number of nodes (or, equivalently, the
number of leaves), or both. While it is possible to create decision trees with more than 2
decisions at each node, we will limit ourselves to binary trees in this work. This is because
they naturally encode true/false relations that are easy for humans to interpret and are as
powerful as trees with more than 2 decisions per node.

Decision Node Predicates Binary decision trees model true/false decisions where an
instance follows either the left or right path at each decision node. A common predicate
to use for these decisions in the case of numerical data is the less-than-or-equal predicate
(≤) which compares the value of an instance’s feature to a fixed threshold value. However,
in real-world applications, datasets often contain a mix of numerical feature data such as
‘weight’ or ‘size’ and categorical features such as ‘student/teacher’ or ’language,’ and these
categorical features benefit from using different predicates. Some of the algorithms in this
work use specialized predicates for such cases while other algorithms rely on the user to
encode such features with numerical values.
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80% accuracy

0% adversarial accuracy

70% accuracy

70% adversarial accuracy

Figure 1.2: (left) the predictions of a simple decision tree that correctly classifies 80% of the red and blue samples.
When the samples move by a small amount, they all get misclassified so this model is not robust. (right) the
predictions of a robust tree, even when samples move within a specified box, they are still predicted correctly.
Based on the example by Chen et al. [9].

Leaf Nodes Leaf nodes are special nodes with no children and indicate some prediction
or action to be taken. In classification problems, these nodes hold a prediction such as ‘cat’
or ‘dog,’ while in regression problems, the nodes hold a continuous value to be predicted.
There are also multi-output settings in which each leaf predicts a value for each of the
multiple outputs. For example, in Chapter 10, we use multi-output regression trees that
predict a probability for each available action in the problem.

1.1.2 Decision Tree Ensembles
Aside from their desirable interpretability properties, decision trees are also popular due to
their success in ensembles. An ensemble is a collection of machine learning models whose
predictions are combined into one final prediction to create a more powerful model. Con-
sequently, ensemble models can be much harder to interpret, and depending on the num-
ber of models in the ensemble, they trade off interpretability for predictive performance.
Depending on the use case, it can be desirable to have a single interpretable decision
tree or increase performance at the cost of interpretability with tree ensembles. Random
forests [4] and gradient-boosted decision tree ensembles [5–7] are particularly popular
ensemble methods. These ensembles often outperform neural network-based models on
tabular data prediction tasks since they can easily learn highly discontinuous patterns [8].

1.1.3 Adversarial Robustness
Machine learning algorithms have been applied to many different use cases. Unfortu-
nately, they can be brittle in the presence of noise. For example, when applying an im-
perceptible amount of noise to inputs of neural networks their predictions can drastically
change [10]. The same problem applies to decision trees and their ensemble, see Figure 1.2.
To alleviate this problem, much research has gone into achieving adversarial robustness.
In this adversarial learning setting, a model is not scored by its performance on the col-
lected clean data, but on data with perturbations [11]. These perturbations are adversarial
in the sense that we assume an adversary gets to perturb the samples in a way that they
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Figure 1.3: A decision tree for a sequential decision making problem. One has to traverse the maze from
start to finish without hitting the crosses, the maze walls can be hit without penalty. The actions left, right, up,
and down randomly move the agent in a direction similar to the intended action. Decision tree algorithms for
supervised learning cannot solve this type of problem.

cause the model to make bad predictions. The adversary is limited by some user-specified
constraints that encode their uncertainty in the collected data, usually a small ball of fixed
radius around each data point.

Poisoning Robustness Another kind of robustness considers data poisoning. In such
attacks, an adversary is assumed to completely remove data points or add new data to
the dataset. Such attacks can happen in the real world when data is collected from the
internet, for example when training large language models it is common to collect data
from online forums that users can add data to. To be poisoning robust we usually assume
the model should not change significantly when a small percentage of the training data
is changed. Decision trees and tree ensembles suffer from both adversarial perturbations
and data poisoning attacks.

1.1.4 Sequential Decision Making
Our previous mentions of machine learning have only considered supervised learning set-
tings. In supervised learning the algorithm receives a dataset with its associated labels
and needs to learn to predict the labels for unseen data. Sequential decision making prob-
lems are significantly different from this setting, instead of receiving pre-collected data,
the algorithm either gets a mathematical description of an environment [12] (planning) or
gets to collect its own data from the environment [13] (reinforcement learning). The goal
is then to maximize some objective by making a series of predictions inside of such an en-
vironment. In this dissertation, we consider the problem of learning a policy (a function)
that assigns an action to each input, an example is given in Figure 1.3. Specifically this
policy is a small decision tree so it is easy for humans to interpret. Sequential decision
making problems are challenging to solve due to the fact that the environments are often
non-deterministic (they contain random effects) and require sequences of interdependent
predictions.
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1.2 Research Goal
Although size-limited decision trees have the desirable property of interpretability, we
have not yet considered how these models are optimized. There are highly successful
heuristics [14, 15] and optimal methods [16–20] for decision trees in supervised learning
tasks such as classification and regression, but they cannot be directly applied outside
this setting. At a high level, this dissertation aims to develop methods for optimizing de-
cision trees in settings where existing methods cannot be applied or do not scale. The
settings we consider are robust optimization and sequential decision making problems.
What makes these settings significantly harder is that predictions in one part of the deci-
sion tree influence what predictions should be made in other parts of the tree to achieve
good performance [20]. Our main goal results in 5 research questions about optimization
methods for decision trees:

How to learn robust decision trees?

1. How can we efficiently optimize decision trees for robustness against adversarial
examples?

2. How can we find provably optimal robust decision trees against adversarial exam-
ples?

3. How can we optimize decision trees for robustness against data poisoning attacks?
(train-time versuses test-time robustness)

How to learn decision trees as policies for Sequential Decision Problems?

4. How can we find provably optimal decision tree policies for non-deterministic plan-
ning problems?

5. How can we optimize decision tree policies in reinforcement learning settings with-
out imitating neural networks?

We have answered these questions by developing algorithms that optimize decision trees
for robustness and sequential decision making leading to the contributions below.

1.2.1 Contributions
For question 1, we did this by analytically solving the split scoring functions used in robust
decision tree learning heuristics, which decreased the split scoring time complexity from(𝑛) to (1). We also considered robustly optimizing only the leaves of a decision tree by
keeping the structure of the tree (the splitting nodes) fixed. This results in a polynomial-
time algorithm for binary classification problems and can be applied to arbitrary pertur-
bation norms.

To tackle question 2, we translated the problem of optimizing robust decision trees into
a Mixed-Integer Programming Formulation. This resulted in the first published method
for training optimal robust trees against adversarial examples.

We answered question 3 by using differential privacy. With this technique developed
to improve data privacy, we could train decision trees that provide a robustness guarantee
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against data poisoning. We improved the performance of differentially-private trees by
adapting the algorithm based on the amount of available data.

For question 4, we translated the optimization problem of finding optimal decision
tree policies for Markov Decision Processes into Mixed-Integer Linear Programming. The
resulting method can find the best tree for a given size limit on a fully specified MDP.

Our algorithm for answering question 4 could not be directly used for question 5 since,
in reinforcement learning, the MDP is assumed to be unknown. We developed a method
based on policy gradients to optimize a decision tree policy heuristically. The key idea is to
incorporate gradient information into the decision tree without explicitly differentiating
it.

1.3 Outline
The rest of the dissertation contains a more comprehensive introduction to decision tree
optimization in Chapter 2 and is then followed by two main parts: Part I concerns the
problem of optimizing decision trees for robustness, and Part II focuses on decision tree
optimization in sequential decision making problems. Each of the parts start with an in-
troduction chapter (Chapters 3 and 8) that provides background knowledge. The chapters
within these parts are based on the papers written during the PhD, and their background
sections are combined in the introduction chapters. Some published papers were omitted
from the main content. The complete list of papers can be found in 11.4.

In Part I, we first look at howwe can speed up heuristic algorithms for robust decision
tree learning (Chapter 4), and then solve this problem to optimality Chapter 5. After
that, in Chapter 6, we consider the problem of only robustly optimizing leaf predictions.
Finally, we investigate data poisoning robustness in Chapter 7.

In Part II, we sequential decision making problems. In Chapter 9, we investigate the
problem of finding an optimal decision tree that can be used as a policy inMarkovDecision
Processes (MDPs). This method requires full knowledge of the MDP, so we follow it up in
Chapter 10 with a reinforcement learning method that only uses the MDP as a simulator.

Finally, we end the dissertation with a discussion on important considerations, limita-
tions, and recommendations for future work in Chapter 11.
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2
Introduction to Decision Tree

Optimization

Decision tree learning is the problem of finding a good decision tree model for a dataset. The
most established algorithms for decision tree learning have been developed for classification
and regression tasks, i.e., tasks where the decision tree predicts a class label or number based
on some given information. This chapter introduces the heuristic algorithms for classification
and regression tree learning that are commonly used today and also presents lesser-known
methods for learning optimal decision trees. Understanding decision tree optimization for
classification and regression gives a good foundation for understanding themethods for robust
optimization and sequential decision-making in the rest of this dissertation.
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2.1 Classification and Regression
Classification and regression problems have been studied for many decades. In classifica-
tion, we are given some information about an instance, and we have to predict the class
that this instance belongs to. For example, given the weight and height of an animal, pre-
dict whether this animal is a cat or a dog. The pieces of information about an instance,
such as weight and height in our example, are called the features, and the labels ‘cat’ and
‘dog’ are called the classes. Formally, the classification learning problem concerns finding
a classifier 𝐶 ∶ ℝ𝑚 → {0, ..., (𝑘−1)} that maps the input represented as a vector of 𝑚 fea-
tures 𝑥 ∈ ℝ𝑚 to one of 𝑘 > 1 classes. We often refer to binary classification as classification
problems for two classes 𝑘 = 2 and multiclass classification as 𝑘 > 2.

Regression is a similar problem to classification, except where classifiers predict a dis-
crete class, regressors predict a real number. One example of a regression problem is
predicting the age of an animal given their weight and height. Formally, in regression, we
are concerned with finding a regressor 𝑅 ∶ ℝ𝑚 → ℝ that accurately predicts a real number
target from an input.

2.1.1 Learning as an Optimization Problem
Supervised machine learning is the problem of identifying a good model, e.g., a classifier
or regressor, from a set of prerecorded instances labeled with their associated target out-
put, which we usually refer to as the training set. A key aspect of supervised learning is
determining the quality of a model because once we have a measure of quality, we can
use optimization methods to maximize the measure. For example, for a classifier, we can
determine the quality of the model by counting the number of instances for which the clas-
sifier assigns the correct label as determined by the training set, which is often referred
to as accuracy. For regression, we could measure how much the regressor’s predictions
differ from the true targets, which is often referred to as the absolute error.

Generally, we measure model quality with a loss function 𝐿 ∶  × → ℝ that maps a
model’s prediction for an instance ( denotes the space of predictions) and the instance’s
target to a value that represents the cost of this prediction, where lower costs mean better
predictions. The goal of learning is then to identify a model (e.g. a classifier or regressor)
ℎ∗ from a hypothesis class (a set of possible models)  that minimizes the expected loss
over the true distribution of 𝑋 and 𝑌 , the samples and labels:

ℎ∗ = argmin
ℎ∈ 𝔼𝑥,𝑦[𝐿(ℎ(𝑥), 𝑦)]. (2.1)

Unfortunately, this is generally impossible as we rarely know the true joint distribution
𝑃(𝑥,𝑦). Therefore in this dissertation, and typically in the field of machine learning, we
will focus on empirical risk minimization: minimizing the expected loss on a finite sample
of training data. That means that all supervised learning algorithms in this dissertation
either explicitly or implicitly minimize the expected loss on the training set,

ℎ∗ = argmin
ℎ∈

1
𝑛

𝑛
∑
𝑖=1

𝐿(ℎ(𝑥𝑖), 𝑦𝑖), (2.2)

where 𝑛 is the number of samples in the training data. The essence of developing learning
algorithms is to find methods that efficiently minimize the expected loss. Since the choice
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of loss function 𝐿 significantly influences the difficulty of the optimization problem, we
will briefly introduce some important loss functions for classification and regression.

Loss Functions for Classification
For classification tasks, an interesting value to optimize is often the accuracy, i.e., the
percentage of samples that are correctly classified by the model. Unfortunately, many al-
gorithms require the loss function to be differentiable with respect to the predicted value
ℎ(𝑥), which is why these methods optimize smooth surrogate losses instead. As we will
see later, most decision tree learning algorithms can directly optimize non-differentiable
metrics such as accuracy. Below we give two important loss functions for binary classifi-
cation, i.e. the true class 𝑦 ∈ {0,1} and predicted probability �̂� = ℎ(𝑥) ∈ [0,1]:

• The 0-1 loss 𝐿0−1(�̂�, 𝑦) = 𝕀[�̂� = 𝑦] counts misclassifications, and minimizing it is
analogous to maximizing accuracy. This loss function is not differentiable at �̂� − 𝑦
and has 0 slope elsewhere.

• The cross-entropy or log loss 𝐿log(�̂�, 𝑦) = −𝑦 log �̂� − (1 − 𝑦) log(1 − �̂�) treats �̂� as a
probability of predicting 0 or 1. This loss function is differentiable and monotonic
w.r.t. �̂�.

Loss Functions for Regression
In regression, the targets 𝑦 ∈ ℝ and �̂� ∈ ℝ are continuous values. Two common loss func-
tions are:

• The absolute error loss 𝐿AE(�̂�, 𝑦) = |�̂�−𝑦 | minimizes the difference between the pre-
diction and target. This loss function is not differentiable at �̂� = 𝑦.

• The squared error loss 𝐿SE(�̂�, 𝑦) = (�̂�−𝑦)2 minimizes the squared difference between
the prediction and target. This loss function is differentiable but, compared to the
absolute error, has the disadvantage that it is sensitive to outliers, i.e., samples with
target 𝑦 far from �̂� dominate the expected loss.

When we interpret the inputs to the squared error loss 𝐿SE as probabilities of binary
classes (𝑦 ∈ [0,1] and �̂� ∈ [0,1]) it is analogous to maximizing the Brier score, i.e. it is
the equivalent of the mean squared error for classification. As we will see later, the most
popular learning algorithm for classification implicitly optimizes the Brier score.

2.2 Greedy Decision Tree Learners
In the 1980s, the decision tree learning algorithms CART [1] and ID3 [2] were published
and have become hugely successful since. These algorithms are greedy, meaning that
in every step of the algorithm they make the choice that results in the largest gain at
that moment. Although the methods are heuristics based on a greedy algorithm, and
thus cannot guarantee optimality, they perform well in practice and run very efficiently,
which explains their widespread adoption. In this section, we will go through a detailed
explanation of the algorithms and generalize their principles into a meta-algorithm for
greedy decision tree learning.
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2.2.1 Classification and Regression Trees
The decision tree learning algorithms proposed by CART [1] greedily split up the dataset
one node at a time. For every node, they score all possible splits in the dataset with a
criterion and pick the best one. Then, they split the dataset according to the best split
and continue the splitting procedure for the left and right subtrees of the newly created
node. The algorithm contains stopping criteria to decide when to stop splitting subtrees
further and create a leaf node. Usually, this is done when the leaf is ‘pure’, i.e. it contains
only samples with the same target, when the size of the tree has met a user-specified limit,
and/or when the split / leaf would be too small, e.g. it would contain fewer than 10 samples.
The pseudocode for classification and regression trees is given in Algorithm 1.

The CART algorithm is recursively defined and knows two cases: if the tree size has
reached a limit or 𝑦 fulfills some stopping properties it creates a leaf node, otherwise CART
splits the dataset by creating a decision node. When creating a leaf for a classification
tree CART sets the prediction value to the majority class that appears in the leaf, this
maximizes the accuracy of the leaf. For regression trees minimizing mean squared error
the leaf’s prediction is the mean of targets in the leaf. While CART does not define a
splitting criterion based on the mean absolute error, modern implementations do often
support it [3], and in this case, one minimizes the mean absolute error by setting the
prediction to the median of the targets.

When creating a decision node, CART searches through all possible feature and thresh-
old combinations to find a split that best partitions the targets of the dataset. To identify
all possible thresholds, CART first sorts every feature’s values and selects the thresholds
that are right in the middle between two consecutive values. Determining splits like this
leads to a ‘maximal margin’ around the thresholds which is intuitively a good idea since it
leaves room for uncertainty around the samples and also has theoretical motivations [4].

CART determines the quality of splits by measuring the quality of the two leaves that
the split would produce by their ‘impurity’ values. The impurity measures how homo-
geneous a set of targets is. The impurity values of the leaves are computed both for the
left and right subsets of samples and then averaged and weighted by the percentage of
samples that are in the subset (i.e. by the probability of being in that leaf). The weighted
score function for targets in the left subset 𝑦𝑙 and targets in the right subset 𝑦𝑙 is:

𝑆(𝑦𝑙 , 𝑦𝑟 ) =
|𝑦𝑙 |

|𝑦𝑙 |+ |𝑦𝑟 |
𝐼 (𝑦𝑙)+

|𝑦𝑟 |
|𝑦𝑙 |+ |𝑦𝑟 |

𝐼 (𝑦𝑟 ), (2.3)

where 𝐼 (𝑦′) is a function that measures impurity in a set of targets 𝑦′. When training
classification trees CART uses the Gini impurity for 𝐼 . The Gini impurity measures the
probability of misclassifying a sample from the set when predicting classes according to
the probability with which they appear in that set. Define the proportion of samples in 𝑦′

with label 𝑘 as 𝑝𝑘 = |{𝑦𝑖∶𝑦𝑖=𝑘}|
|𝑦 | , then the Gini impurity is defined as:

𝐼Gini(𝑦′) =∑
𝑘
𝑝𝑘(1−𝑝𝑘) =∑

𝑘
𝑝𝑘 −𝑝2𝑘 = 1−∑

𝑘
𝑝2𝑘 . (2.4)

The ID3 [2] algorithm uses entropy as a measure of impurity instead, but the Gini impurity
and entropy functions rarely lead to different splits [5]. Often, work on decision trees will
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refer to information gain or impurity reduction that can be generally written as:

𝐼𝐺(𝑦𝑙 , 𝑦𝑟 ) = 𝐼 (𝑦𝑙 ∪𝑦𝑟 )− 𝑆(𝑦𝑙 , 𝑦𝑟 ), (2.5)

i.e. the improvement in ‘impurity’ after partitioning the data. Maximizing gain is equiv-
alent to minimizing 𝑆. When training regression trees with CART, the impurity function
is replaced by a measure of the variance within targets 𝑦′. Minimizing the variance of the
targets is equivalent to minimizing the mean squared error when predicting the mean of
the targets that reach each leaf. Let us now walk through an example of how to apply
CART to a binary classification problem.

Example 1. Consider a dataset with samples𝑋 = {(0.0,1.0), (0.11,0.11), (0.22,0.56), (0.33,0.44),
(0.44,0.22), (0.56,0.89), (0.67,0.67), (0.78,0.33), (0.89,0.78), (1.0,0.0)} and their binary labels
𝑦 = {0,0,0,0,0,1,1,1,1,1} visualized in Figure 2.1 1⃝.

We can think of the CART algorithm as starting with a tree containing a single leaf and it-
eratively splitting up this leaf to improve the tree. To start splitting, we find sort each feature 𝑗
and determine itsmaximal-margin thresholds: 𝑉0 = (0.06,0.17,0.28,0.39,0.50,0.61,0.72,0.83,0.94)
and 𝑉1 = (0.06,0.17,0.28,0.39,0.50,0.61,0.72,0.83,0.94) as visualized in step 2⃝. we compute
for each feature 𝑗 and for each possible threshold value 𝑣 ∈ 𝑉𝑗 the score function 𝑆 (using
Equation 2.3) with the Gini impurity and store the 𝑗∗, 𝑣∗ that minimize 𝑆. We compute (and
display in 2⃝) the 𝑆 values for all possible splits, and we find that the optimal split is given by
𝑗∗ = 0, 𝑣∗ = 0.28with a value for 𝑆 of 0.29. Note that both (𝑗 = 0, 𝑣 = 0.28) and (𝑗 = 1, 𝑣 = 0.72)
minimize 𝑆 so we chose one of these solutions arbitrarily.

In step 3⃝, we recursively continue the CART algorithm on the region left of 0.28 for feature
0 (x-axis) and the region right of it. On the left side, we find that the set of targets is completely
pure since it only contains (red) samples with 𝑦𝑖 = 0. Therefore we create a leaf and do not
recurse on that side. On the right side, we do not satisfy the stopping criteria, so we continue
splitting. We identify the possible split thresholds 𝑉0 = (0.39,0.50,0.61,0.72,0.83,0.94) and
𝑉1 = (0.11,0.28,0.39,0.56,0.72,0.83), and find that the optimal split is given by 𝑗∗ = 1, 𝑣∗ =
0.72 with a value for 𝑆 of 0.0.

In step 4⃝, we recurse on the regions left and right of 0.72 for feature 1 (y-axis). In both
cases, we find that the sets of samples are completely pure and have, therefore, satisfied one
of the stopping criteria. We create a leaf for both sides and end up with a final decision tree
of 2 nodes and 3 leaves. The resulting decision tree accurately predicts the training dataset.

2.2.2 Different Branch Node Predicates
Categorical Features
Unfortunately, many implementations of machine learning algorithms only support nu-
merical feature values, so it can be interesting to consider changing categorical features
into numerical ones. One naive approach would be to encode a categorical feature’s 𝑘
categories into numbers 0..𝑘. For example, for a categorical feature ‘language,’ we could
encode its values as ‘Dutch’ = 0, ‘French’ = 1, and ‘English’ = 2. While this enables training
on categorical features with algorithms that only support numerical features, a disadvan-
tage is that it introduces an arbitrary ordering of the categories. In our example, Dutch
and English are now less similar than Dutch is to French, which is an undesirable effect
as there is usually no clear notion of distance between discrete categories.
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Figure 2.1: Visualization of Algorithm 1 running on a simple binary classification task in two dimensions. By
greedily adding nodes to the tree according to the best Gini impurity and creating a leaf when the node is pure
(only contains samples with the same label), we end up with a decision tree that fits the data well.
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Algorithm 1 Classification and regression trees
1: procedure FITDECISIONTREE(𝑋,𝑦)
2: if stopping criterion (e.g. maximum depth/number of nodes, pure leaf) then
3: return LEAF(𝑦)
4: end if
5: for 𝑗 = 0...𝑚 do
6: let 𝑍 be the sorted set of unique feature values 𝑋𝑖𝑗 for 𝑖 = 0...(𝑛−1)
7: compute all threshold values 𝑉𝑗 = {... , 12 (𝑍

(𝑖)+𝑍 (𝑖−1)) , ...} where (𝑍 (𝑖) > 𝑍 (𝑖−1))
8: end for
9: 𝑗∗, 𝑣∗ = argmin𝑗 ,𝑣∈𝑉𝑗 𝑆({𝑦𝑖 ∶ 𝑋𝑖𝑗 ≤ 𝑣}, {𝑦𝑖 ∶ 𝑋𝑖𝑗 > 𝑣}) ⊳ see Equation 2.3

10: 𝑇𝑙 = FITDECISIONTREE({𝑋𝑖 ∶ 𝑋𝑖𝑗∗ ≤ 𝑣∗}, {𝑦𝑖 ∶ 𝑋𝑖𝑗∗ ≤ 𝑣∗})
11: 𝑇𝑟 = FITDECISIONTREE({𝑋𝑖 ∶ 𝑋𝑖𝑗∗ > 𝑣∗}, {𝑦𝑖 ∶ 𝑋𝑖𝑗∗ > 𝑣∗})
12: return NODE(𝑗∗, 𝑣∗, 𝑇𝑙 , 𝑇𝑟 )
13: end procedure

When considering categorical features containing few categories (e.g., up to 10), it
can be a good idea to encode the feature into multiple separate numerical features that
indicate whether or not the category belongs to the instance. Such an encoding is known
as one-hot encoding. This way, the feature ‘language’ with categorical values ‘Dutch,’
‘French,’ and ‘English’ can be encoded into three numerical features ‘is_Dutch,’ ‘is_French,’
and ‘is_English.’ One-hot encoding allows us to use algorithms for numerical features
and creates interpretable decision nodes that send instances with one category to the left
subtree and all other categories to the right subtree. One disadvantage of this method
is that if single categories carry little information on the target, we would need a large
decision tree with many decision nodes to get good predictive results.

We will consider one more way to deal with categorical features, which is by ‘natively’
supporting them with a predicate for categorical values. The predicate partitions the cat-
egories into a set for a node’s left and right subtree. Returning to our example, we can
interpret the predicate to say: ‘language ∈ {Dutch, English},’ which would send the in-
stance to the left subtree if true and to the right subtree if not true. Although dealing
with categorical features this way requires a specialized algorithm, it results in trees that
require fewer nodes than trees trained with one-hot encoding. As we will see later, some
algorithms can efficiently support these kinds of features.

Features with Missing Data
Aside from dealing with different types of features, there is sometimes also the problem
with datasets that contain missing values. Usually, these are datasets where, for some
instances, a specific feature value is unknown. While there is a plethora of work on dealing
with this issue in machine learning, decision trees can natively support missing values by
treating them as a separate category, which is usually as effective and more efficient than,
for example, imputing missing values [6]. To deal with missing values as a category we
simply keep track in a decision node of whether missing values for the chosen feature
move to the left or right subtree.
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2.2.3 Oblique Decision Trees
In typical decision trees, the decision nodes select one feature to split on, thereby cutting
up the sample space with axis-parallel splits (as seen in Figure 1.1). While this aids in-
terpretability by making the decision tree behavior easier to understand, it also limits the
expressivity of the model. Therefore some lines of work consider trading interpretability
for expressivity using oblique decision trees, decision trees in which the decision nodes
(and sometimes also the leaves) can use linear functions. Instead of axis-parallel cuts in
the sample space, this results in arbitrary hyperplanes.

Oblique decision trees can be heuristically learned by greedily splitting up the space us-
ing linear classifiers, which is a modification of the CART algorithm [1]. Such algorithms
can often get stuck in local minima, so other algorithms were proposed with random-
ization to overcome these local optima [7, 8]. Some Mixed-Integer Linear Programming
methods (see Section 2.4.3) such as Bertsimas and Dunn [9] can produce optimal oblique
decision trees by relaxing integer constraints.

There are also versions of oblique decision trees that not only allow nodes to make
oblique splits but also create more powerful leaf nodes. In these kinds of trees, each leaf
node holds a separate linear model that is used to arrive at the final prediction. Deci-
sion trees with oblique splits and linear models in the leaves can represent models that
are equivalent to ReLU neural networks [10]. However, even though machine learning
methods hold the same representation power, it does not mean that they are equivalent,
as they might use different optimization methods, which results in different solutions for
the same training data. Some other methods use decision trees with splits on single fea-
tures but with linear models in the leaves¹.

2.3 Decision Tree Ensembles
Although singular size-limited decision trees are interpretable and can predict non-linear
relationships, there are situations when an application requires a more complex model to
achieve an accurate predictor. In these situations, it is common to give up interpretability
for performance by combining many decision trees into an ensemble. Although neural
network-based techniques dominate the field for unstructured tasks with, for example,
audio and video data, for tabular datasets, tree ensembles still often outperform neural
networks [11]. The field of decision tree ensembles is too broad to cover in full detail in
this introduction, thus we will focus our attention on the two most popular types of tree
ensembles: random forests and gradient boosting.

2.3.1 Random Forests
Random forests [12] were introduced by Breiman. The random forest algorithm trains
large decision trees that perfectly predict the training data and uses two methods to en-
sure the diversity of the ensemble, which prevents overfitting. See Algorithm 2 for the
pseudocode.

The first method to promote ensemble diversity is called bootstrap aggregation [13]
(often referred to as bagging), which trains each tree on a separate bootstrap sample. Such
a bootstrap sample is generated by sampling with replacement from the training dataset

¹https://github.com/cerlymarco/linear-tree

https://github.com/cerlymarco/linear-tree


2.3 Decision Tree Ensembles

2

19

until a new training set of the same size is gathered. Effectively, such a bootstrap dataset
contains roughly two-thirds of the samples from the original dataset and contains multiple
copies of some samples.

The second method that random forests use to create diversity is to limit the possible
features during each iteration of the greedy splitting procedure. Every time a tree creates a
new node, it randomly samples different features until it has the square root of the number
of total features. The best split is then chosen from this limited set of features. Since each
node can only split on a feature from the random subset of features, the probability that
two trees in the ensemble use the same features is very low.

Random forests have had widespread success on tabular prediction tasks as they usu-
ally perform very well with little tuning. Modern greedy decision tree learners have ex-
tremely efficient implementations, and since all trees of a random forest can be trained
in parallel, the algorithm is orders of magnitude faster to train than a neural network.
One disadvantage of random forests is that they consist of tens or hundreds of large deci-
sion trees, which does not allow for interpretation and makes automated verification quite
challenging. Particularly for datasets with millions of samples and many unique feature
values, each tree can contain thousands of nodes when hyperparameters are not tuned.
Random forests are often outperformed by well-tuned gradient boosting ensembles on
large datasets. Still, random forests are commonly used in situations when the number
of samples per feature is low. For example, random forests are widespread in biological
fields where data is gathered from expensive clinical trials or rarely observed phenomena.

Hyperparameters

By default, random forest implementations such as the one in Scikit-learn [3] train 100
trees that are unrestricted in size, which generally works well and requires little tuning.
However, on large and complex datasets, this can lead to impractically large models. One
simple improvement is to set the minimum number of samples per leaf to at least 0.1%
of the dataset size. This has minimal impact on the final performance and reduces the
number of leaves. Also, as we will see in Part I it reduces the fragility of the model. If the
resulting random forest is still too large, then the trees can be limited in the number of
nodes or depth, but this often comes at a cost in predictive performance.

Why Random Forests Work

Traditionally, the success of random forests has been explained in terms of the bias-variance
trade-off [14]. Specifically, the choice to train decision trees that perfectly classify the
training set introduces low bias, and by averaging multiple trees whose covariance is low
(due to the diversity), the variance is reduced. Very recently, the adaptive smoothing ef-
fect of random forests has been studied [15] as a richer explanation of the effectiveness
of random forests and gradient boosting ensembles.
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Algorithm 2 Random Forest
1: for 𝑚 = 1...𝑀 do
2: sample a bootstrap dataset 𝑋𝑚, 𝑌𝑚

of size |𝑋 | with replacement
3: learn tree 𝑇𝑚 on 𝑋𝑚, 𝑌𝑚
4: end for
5: return 𝑓 (𝑥) = 1

𝑀 ∑𝑀
𝑚=1 𝑇𝑚(𝑥)

Algorithm 3 Gradient Boosting

1: create leaf 𝑓0 = argmin𝜃∑
𝑁
𝑖 𝐿(𝑦𝑖, 𝜃)

2: for 𝑚 = 1...𝑀 do
3: residual 𝑟𝑚𝑖 = − 𝜕𝐿(𝑦𝑖 ,𝑓𝑚−1(𝑥𝑖))

𝜕𝑓𝑚−1(𝑥𝑖)
4: learn regression tree 𝑇𝑚 on 𝑋 , 𝐫𝐦
5: update 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥)+𝛼𝑇𝑚(𝑥)
6: end for
7: return 𝑓 (𝑥) = 𝑇0(𝑥)+𝛼∑𝑀

𝑚=1 𝑇𝑖(𝑥)

2.3.2 Gradient Boosted Decision Trees
Gradient-boosted decision trees are currently among the most popular machine learning
methods and typically outperform neural networks on tasks involving tabular data [11].
Gradient boosting [16–18] works by iteratively adding weak learners to the ensemble
that compensate for the errors made by the preceding learners. Modern implementations
such as XGBoost [19], LightGBM [20], Catboost [21], and HistGradientBoosting (Scikit-
learn) [3] are highly optimized and have achieved top scores in machine learning compe-
titions². Many of these frameworks offer native support for mixed numerical, categorical,
and missing data which is important for many real-world applications.

Learning Algorithm
Gradient boosting algorithms start with an initial predictor and improve its predictions by
iteratively adding decision trees that compensate for the residual error of the preceding
models. The pseudocode for the algorithm is given in Algorithm 3. An advantage of gradi-
ent boosting over other algorithms for classification and regression is that its generalized
formulation allows for optimizing arbitrary differentiable loss functions. This way, we can
train a regressor by minimizing the mean squared error, train a classifier by minimizing
the cross-entropy loss, and train rankers using a specialized loss function, for example.
We will assume that the user provides us with a differentiable loss function 𝐿(𝑥,𝑓 (𝑥)).

To start the algorithm, it is common to optimize a decision tree that consists of a single
leaf with value 𝜃 by optimizing 𝜃 = argmin𝜃∑𝑖 𝐿(𝑦𝑖, 𝜃). For some specific loss functions,
such as the mean squared error, we can directly compute 𝜃 = �̄� as the mean of the targets 𝑦.
After initializing the ensemble, in every iteration𝑚, we compute the pseudo-residual 𝑟𝑚𝑖=
− 𝜕𝐿(𝑦𝑖 ,𝑓𝑚−1(𝑥𝑖))

𝜕𝑓𝑚−1(𝑥𝑖) for every sample 𝑥𝑖 as the negative gradient of the loss with respect to the
predictions made by the current ensemble. We then learn a regression tree to predict these
residuals and add it to the ensemble weighted by a factor 𝛼. The non-negative learning
rate 𝛼 is usually chosen to be a small constant such as 0.1 to avoid making excessively
large changes to the ensemble in an iteration. After 𝑀 iterations or a stopping criterion,
such as a lack of improvement in the validation loss, the boosting process is terminated.
Finally, predictions are made by summing the 𝛼-weighted tree predictions to the initial
leaf prediction.

²Kaggle (https://www.kaggle.com/competitions) is a well-known organization that hosts a variety of machine
learning competitions, winning submissions for tabular competitions often use gradient boosting techniques.

https://www.kaggle.com/competitions
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Histogram-based Tree Learners
Since gradient boosting ensembles are used to train sometimes hundreds or thousands of
decision trees on datasets with millions of samples there has been a need to make the de-
cision tree learners more efficient. Frameworks such as XGBoost have pioneered methods
that use histograms inside of the decision tree learning algorithm to make the splitting
procedure extremely fast. Typical decision tree learners consider a split at every unique
feature value, but when scaling up to millions of samples, with potentially millions of pos-
sible split locations, this becomes inefficient and probably unnecessary. Histogram-based
algorithms consider limiting the number of possible splits per feature to a fixed value, such
as 255, and then pre-process the dataset by assigning each feature value into one of the re-
sulting bins. Specifically, feature value histograms improve runtime efficiency since they
do not require sorting each feature of the dataset and can be partitioned after splitting
with fewer operations.

While primarily motivated by runtime efficiency for greedy learners, histogram-based
tree learners can also be useful in other algorithms. For example, in our work on dif-
ferential privacy, we will see that limiting the number of possible splits with fixed-size
histograms leads to a better privacy-performance trade-off. Also, limiting the number of
splits for optimal decision tree methods removes the optimality guarantee but, in practice,
gives better trees than the greedy methods and is much faster than proving optimality on
all possible splits.

Algorithmic Improvements
Thepseudocode for gradient boosting in Algorithm 3 gives a high-level procedure but does
not contain many of the algorithmic improvements that exist in many modern implemen-
tations. While there are too many to list, we will discuss a few notable ones:

• XGBoost uses an approximation of the hessian of the loss function to improve the
iterative updates. The second-order gradient information can be used to reduce
relative step sizes when the curvature of the loss is high to avoid overly large steps.
Methods that do not use second-order derivatives often perform an extra line search
step to individually weigh the leaves in every update.

• Many frameworks support categorical values natively, by partitioning categories
into a left and right subset trees can make more informative splits than by simply
splitting on categories one at a time with one-hot encoding.

• By considering missing numbers as a separate value, many frameworks allow the
learner to choose whether missing values belong to the left or right subtree at each
node. This way of handling missing values is much more efficient than imputing
missing values and often outperforms it in predictive performance when the fact
that a value is missing carries information, i.e. when the missingness of values is
not truly random.

• Multiple frameworks offer GPU support with specialized algorithms that allow for
greater parallelization. This can speed up the algorithm significantly on very large
datasets.
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• All frameworks offer a large number of hyperparameters that can be tuned to regu-
larize the models or offer a trade-off between runtime and predictive performance.

• Some frameworks offer options to set constraints that enforce properties such as
monotonicity. For example, one can encode knowledge that an increase in a fea-
ture’s value can only result in a decrease/increase in the target value. Incorporating
domain knowledge into the training procedure reduces the number of data points
that a model needs to achieve good performance by restricting the number of pos-
sible models that fit the data.

Hyperparameters
Every framework contains numerous specific hyperparameters, but the most common and
significant ones for tuning are worth mentioning. The predictions of gradient boosting
ensembles slowly get more and more different from constant predictions as more trees are
added. Therefore to control the effective complexity of the ensemble, the combination of
the learning rate 𝛼 and the number of trees in the ensemble is vital to tune. Usually, 𝛼 is
tuned, and the number of trees is determined by stopping the iterative learning procedure
when performance on a held-out validation set does not improve.

Another important hyperparameter is the size of each tree that is added, which can
be controlled by limiting the number of nodes or limiting the depth (which implicitly also
limits the number of nodes) of the tree. By limiting the size of each decision tree, the
ensemble is more regularized. While the exact effect of a limit on the number of nodes is
hard to interpret, limiting the depth intuitively limits the number of possible interacting
features to the depth of the tree.

Lastly, the specific loss function that the model optimizes is an important modeling
choice as well. There is an abundance of possible loss functions varying in properties
such as sensitivity to outliers, convergence rate, and computational efficiency. Depending
on the use case of the resulting tree ensemble different loss functions are appropriate.

2.3.3 Other Tree Ensembles
While random forests and gradient boosting ensembles are currently the most popular
algorithms for training decision trees, there are some other methods worth mentioning.
AdaBoost [22] is one of the earliest boosting methods and a foundation of algorithms for
gradient boosting. It is typically used to train a series of decision stumps (decision trees
of depth 1) that improve on the mistakes of preceding stumps by reweighing the samples.
Extremely randomized trees [23] is an ensemble of decision trees whose splits are chosen
completely at random. These trees can be created very efficiently, but using random splits
comes at the cost of predictive performance.

Tree ensembles have also been applied to unsupervised learning tasks; we reference
some notable works. Isolation forests [24] are models for anomaly or outlier detection
and also use random splits to create the decision trees in the ensemble. Isolation forests
compute an outlier score for a point by estimating how many random splits are necessary
to separate that point from the training dataset completely. Extended isolation forests [25]
use oblique decision trees instead of typical axis-aligned decision trees, which can improve
performance on some tasks. Half-space trees [26] use techniques like isolation forests to
create anomaly detectors for streaming data.
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2.4 Optimal Decision Tree Learners
While greedy decision tree learners are successful, they do not find the most accurate
models. They can even get stuck on specific datasets, leading to the same performance
as random guessing while perfectly accurate models exist. Unlike heuristic decision tree
learners such as CART (Section 2.2), optimal decision tree learners provably find the tree
that achieves the best possible score on the training data. In this section, we will intro-
duce Mixed-Integer Linear Programming-based decision tree learners. We currently limit
ourselves to classification trees, but many methods could be extended to a regression set-
ting with modest changes. We end with a short reflection on when which paradigm is
favorable.

2.4.1 Mixed-Integer Linear Programming
Linear programs (LPs) considermathematical optimization problems that optimize a linear
function of continuous variables under a set of linear constraints. These problems are
generally formulated in their standard form

max 𝐜⊤𝐱
s.t. 𝐴𝐱 ≤ 𝐛

𝐱 ≥ 0,

where 𝐜 is a fixed vector of weights, matrix 𝐴 and vector 𝐛 represent a set of linear con-
straints and the vector 𝐱 ∈ ℚ𝑛 holds the decision variables. These optimization problems
have been studied for many decades and, without going into extensive detail, can be solved
up to huge scales with simplex [27] or interior point methods [28]. Although popular
methods such as the simplex algorithm take worst-case exponential time, there are inte-
rior point methods for linear programs that run in polynomial time.

Mixed-integer linear Programming (MILP) is an extension of linear programming that
restricts the set of possible values for some variables to integers. Whereas LPs represent
convex problems, MILPs are non-convex optimization problems and are expected to not be
polynomial-time solvable as they are NP-hard. However, with decades of algorithmic im-
provements for MILP solving, we have modern solvers that can scale up to large instances.
A typical notation for MILPs is:

max 𝐜⊤𝐱+𝐡⊤𝐲
s.t. 𝐴𝐱+𝐺𝐲 ≤ 𝐛

𝐱 ≥ 0
𝐲 ≥ 0
𝐲 ∈ ℤ𝑛.

Which is simply the LP standard form with extra variables 𝐲 that are forced to take integer
values. Most formulations for optimal decision trees do not permit the values 𝐲 to take
any integer value but further limit 𝐲 to take a binary value, i.e., 𝐲 ∈ {0,1}𝑛. A MILP with
only integer variables is called an Integer Linear Program (ILP), and a problem with only
binary variables is called a 0-1 linear program. Note that although the decision variables
𝐲 must take integer values, the coefficients 𝐜, 𝐡, 𝐴, 𝐺 and 𝐛 can still take rational values.
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MILP solving
A key part of MILP solving involves the LP relaxation, i.e. the LP we get when we allow
variables 𝐲 to take rational values by relaxing the integer constraint. An important prop-
erty of the LP relaxation is that it never disallows a solution to the original MILP, which
means that the objective value of its optimal solution is never worse than that of the MILP.
Therefore solving the LP relaxation naturally gives a bound on the objective value of the
original MILP. MILPs are usually solved with a combination of branch-and-bound and
cutting plane techniques that both make heavy use of the LP relaxation.

At a high level, branch-and-bound [29] splits up the problem into two branches by
making an assumption on some variable (for example, 𝑥𝑖 ≤ 5 and 𝑥𝑖 ≥ 6) and solves the
relaxed problems to get a bound on the objective value of both branches. If one of the
branches has a worse relaxed objective than the current best solution, then it can be safely
ignored. Otherwise, the branch-and-bound procedure can be continued until the LP relax-
ation gives us a solution that satisfies the integer constraints.

Another important technique in MILP solving is cutting plane generation. The idea
is to solve the LP relaxation and if the resulting solution does not satisfy the integer con-
straints, introduce a new constraint (a cutting plane) that is guaranteed to be valid for all
integer solutions but that invalidates the current non-integer solution. While it is possible
to solve MILPs with cutting planes alone [30], the technique is more effectively used in
combination with branch-and-bound [31] to produce ‘branch-and-cut’ techniques.

MILP formulations in practice
The runtime required to solve MILP instances increases exponentially in terms of the size
of the formulation. However, aside from formulation size, there are other practical con-
siderations that can have a significant effect on solving times. Below are some tips for
formulation design that usually improve solving time:

• Introduce extra constraints to remove symmetries. Whenmultiple different variable
assignments can represent the same object inside the formulations, the solver might
have to branch multiple times to prove the optimality of a solution. In the cases
where it is possible to add a few extra constraints to remove such symmetries, it is
usually beneficial to do so. For example, in decision trees, it is not useful to create
the same split in multiple descendant nodes, and this behavior can be disallowed by
introducing extra constraints.

• Reduce the number of integer variables. Since solving the LP relaxation does not
guarantee that solutions will hold integer values for integer variables, MILPs are
solved by branching on integer variables. When reducing the number of integer
variables, the size of the complete branch-and-bound search tree will also be smaller
and will likely also reduce runtime in practice.

• Use constraints that are ‘tighter’ when relaxed. Tightness in the LP relaxation refers
to how close LP solutions will be to the integer version of the constraints. For exam-
ple, if a constraint relies heavily on variables to be integers to be valid, then relaxing
it will likely result in a useless constraint. On the other hand, constraints that are
still useful when relaxed will lead to tighter bounds and, therefore, improved solve
times (since better bounds allow more search tree nodes to be pruned).
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Figure 2.2: An example instance of the Exact Cover by 3-sets problem (with the solution highlighted) and its
corresponding decision tree optimization problem: find a tree with two branch nodes that correctly classifies
all data. By reducing the NP-complete exact cover problem to an optimal decision tree problem, the optimal
decision tree problem is proven to be NP-complete.

• Prevent numerical problems due to float imprecision. While there exist exact solvers,
practical solvers use imprecise floating point numbers to represent values since
these are much more efficient. However, when a MILP formulation contains both
extremely large and extremely small numbers, the solver has to be executed with
reduced tolerances to prevent numerical errors, which slows down execution sig-
nificantly. It can, therefore, be more beneficial to formulate problems with more
integer variables if this reduces numerical instability.

2.4.2 NP-completeness
We give a short proof of the NP-completeness of decision tree optimization inspired by the
proof of Hyafil and Rivest [32]. The proof is based on a reduction from the Exact Cover by
3-Sets (X3C) problem to the decision problem ‘does there exist a decision tree of at most
𝑘 nodes that correctly classifies all data points?’.

Theorem 1. Constructing a binary decision tree of at most 𝑘 nodes that correctly classifies
all training data 𝑋 ∈ {0,1}𝑛×𝑚 with labels 𝑌 ∈ {0,1}𝑛 is an NP-complete problem.

Proof. Wewill first show that the problem is in NP and then prove that it is NP-hard using
a reduction from the Exact Cover by 3-Sets. (X3C) problem.

Verifying a solution to the problem can be done in polynomial time by computing the
decision tree’s predictions for each of the 𝑛 rows of 𝑋 and checking if these are correct
with respect to 𝑌 . This takes time linear in terms of 𝑛 and the size of the tree. Therefore
the problem is in NP.

The exact cover problem is one of Karp’s 21 NP-complete problems [33], and its variant
Exact Cover by 3-Sets (X3C) with sets of exactly size 3 is also NP-complete [34]. Given a
set of triples  = {𝑆1, 𝑆2, ..., 𝑆𝑠} that each have elements from a set 𝑍 = {𝑧1, 𝑧2, ..., 𝑧𝑧} with 𝑧
a multiple of 3, the X3C problem is to find a subset of ∗ ⊆  that satisfies:

• The set ∗ contains one of each element of 𝑍 , i.e. ⋃𝑆∈∗ 𝑆 = 𝑍 .
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• The sets in ∗ do not overlap, i.e. 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ∀(𝑆𝑖, 𝑆𝑗 ) ∈ ∗ ×∗, 𝑖 ≠ 𝑗 .

In the reduction from X3C to decision tree optimization, we create a binary dataset (𝑋,𝑌 )
that encodes an exact cover instance (𝑍,) and set 𝑘 = 𝑧

3 (which is an integer since 𝑧 is
chosen as a multiple of 3). We will create the data matrix 𝑋 such that the rows (samples)
correspond to elements of the set 𝑍 and columns (features) correspond to the sets  . The
binary entry 𝑋𝑖𝑗 encodes whether or not element 𝑧𝑖 is included in set 𝑆𝑗 . Let the label 𝑌𝑖
be 1 for all 𝑖 = 1,2, ..., 𝑧. We add one more entry 𝑥𝑧+1 to 𝑋 with all zero values and label
𝑌𝑧+1 = 0. An example of the encoding from an instance of X3C to optimal decision trees is
given in Figure 2.2. This conversion can be done in polynomial time by enumerating the
(𝑧 +1) × 𝑠 entries of 𝑋 and the 𝑧 +1 entries of 𝑌 . To prove that the reduction is correct,
we show that a yes-instance of the optimal decision tree problem implies a yes-instance
of X3C and vice-versa.

Given a yes-instance for the optimal decision tree problem (𝑋,𝑌 ,𝑘), the solution will
be a binary decision tree with at most 𝑘 nodes. Each node splits off at most 3 data points
at a time since each feature only contains 3 ones by construction. A solution will also split
off at least 3 data points at a time because, in order to separate 𝑧 = 3𝑘 samples with class
1 from the sample with class 0 with nodes that split off at most 3 samples at a time, the
nodes must split off at least 𝑧

𝑘 = 3 samples. Therefore the 𝑘 sets indicated by the features
used in the 𝑘 branch nodes are an exact cover.

Given a yes-instance for the exact cover problem (𝑍,), the solution will be a subset
𝑆 ⊆ ) of cardinality 𝑘 = 𝑧

3 . We can construct a decision tree with 𝑘 nodes (all connected
by the false cases), that each use one of the features corresponding to the sets selected by
𝑆. By definition, the data rows of 𝑋 corresponding to these features do not overlap, and
all have label 𝑌𝑖 = 1, which means that the constructed decision tree can correctly classify
all of the samples in 𝑋 (with 𝑘+1 leaf nodes).

Since the optimal decision tree problem is in NP and there is a polynomial-time reduc-
tion from the NP-complete problem X3C to it, the problem is NP-complete.

2.4.3 Optimal Trees using Integer Programming
The papers in this section provide mathematical formulations of the decision tree opti-
mization problem in a way that the formulations can be input into powerful MILP solvers.
Recall that MILP formulations consist of a linear objective termwith a set of linear inequal-
ity constraints. For more background on (Integer) Linear Programming, see Section 2.4.1.
The notation used in the MILP formulations of this section is summarized in Table 2.1. In
the different formulations, we highlight variables used to determine node features in blue,
node threshold values in red, and leaf predictions in yellow.

Optimal Classification Trees (Bertsimas and Dunn)
In 2017, Bertsimas and Dunn published one of the most popular papers on optimal deci-
sion tree learning using Integer Linear Programming. For their formulation, from here
onwards, referred to as OCT (Optimal Classification Trees), the user provides training
data with 𝑝 normalized feature values 𝐱𝐢 ∈ [0,1]𝑝 and labels 𝑦𝑖 for each instance 𝑖 = 1...𝑛.
It is important that all feature values are normalized into the range [0,1] since this is later
required for the validity of the constraints. OCT then finds a tree that minimizes the error
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if ? < ?
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Figure 2.3: In MILP formulations such as OCT [9] the tree structure is fixed and the solver decides the features
and thresholds used in the branch nodes, and the predictions in the leaf nodes. A numbering starting at 1 in the
root node and going top-down, left-to-right can be conveniently used to define parent-child relations.

plus a weighted term that penalizes tree size. OCT proposes three hyperparameters for
regularization:

• 𝐷: the maximum depth of the decision tree.

• 𝑁min: the minimum number of samples required for creating a leaf node.

• 𝛼: the weight of the tree size regularization term in the objective.

ThewayOCT formulates classification tree optimization as an integer program is by fixing
the structure of a full binary tree of given depth 𝑑 and then assigning values to the split
features, split thresholds, and leaf predictions inside of each node. That way the tree can
be thought of as a template into which the decision node and prediction leaf contents will
be assigned by the solver. The nodes and leaves are numbered in increasing order starting
at 1 from top to bottom and left to right as in Figure 2.3. This numbering is useful since
one can identify parents and children of some node 𝑡 by simple arithmetic.

Using the numbering system, the tree is partitioned into two sets: the set of decision
nodes 𝐵 = {1, ...,2𝐷 − 1}, where node 1 is the root node, and the set of leaf nodes 𝐿 =
{2𝐷, ...,2𝐷+1−1}. Moreover, the notation 𝑝(𝑡) = ⌊ 𝑡

2⌋ is used to indicate node 𝑡’s parent and
𝐴(𝑡) the set of all ancestors of 𝑡. The set 𝐴(𝑡) is further partitioned into 𝐴𝐿(𝑡) and 𝐴𝑅(𝑡)
where 𝐴𝐿(𝑡) contains the ancestors of 𝑡 for which 𝑡 is in the left subtree and 𝐴𝑅(𝑡) the
ancestors for which 𝑡 is in their right subtree.

Constraints In a typical classification tree, each node splits on a feature and an associ-
ated threshold value. In the OCT formulation, the binary variables 𝑎𝑗𝑚 indicate whether
or not node 𝑚 splits on feature 𝑗 and continuous variables 𝑏𝑚 hold the threshold value
associated with node 𝑚. Since OCT allows decision nodes to be ‘turned off,’ the solver is
allowed to set either all 𝑎𝑗𝑚 = 0 and 𝑏𝑚 = 0 for node 𝑚 or set one of the 𝑎 variables to 1
and 𝑏𝑚 to a non-zero value. The variables 𝑑𝑚 indicate whether a node is ‘on’ or ‘off’. This
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behavior is encoded using the constraints:

𝑝

∑
𝑗=1

𝑎𝑗𝑚 = 𝑑𝑚, ∀𝑡 ∈ 𝐵, (2.6)

0 ≤ 𝑏𝑚 ≤ 𝑑𝑚, ∀𝑚 ∈ 𝐵, (2.7)
𝑎𝑗𝑚 ∈ {0,1}, 𝑗 = 1, ...,𝑝,∀𝑚 ∈ 𝐵, (2.8)
𝑑𝑚 ∈ {0,1}, ∀𝑚 ∈ 𝐵. (2.9)

When a parent node is ‘turned off’, its children should also be turned off:

𝑑𝑚 ≤ 𝑑𝑝(𝑚), ∀𝑡 ∈ 𝐵 ⧵ {1}. (2.10)

The variables 𝑧𝑖𝑡 are introduced to indicate whether data sample 𝑖 reaches leaf 𝑡. The extra
variables 𝑢𝑡 then indicate whether any data sample reaches leaf 𝑡. The 𝑢𝑡 variables are used
to model the requirement that every leaf node either contains no samples or at least 𝑁min
samples:

𝑧𝑖𝑡 ≤ 𝑢𝑡 , 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿, (2.11)
𝑛
∑
𝑖=1

𝑧𝑖𝑡 ≥ 𝑁min𝑢𝑡 , ∀𝑡 ∈ 𝐿, (2.12)

𝑧𝑖𝑡 ∈ {0,1}, 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿, (2.13)
𝑢𝑡 ∈ {0,1}, ∀𝑡 ∈ 𝐿. (2.14)

Now we will start to model the assignment of samples to leaves. The idea behind this part
of OCT is to force each sample to be assigned to exactly one leaf:

∑
𝑡∈𝐿

𝑧𝑖𝑡 = 1, 𝑖 = 1, ..., 𝑛, (2.15)

and to prevent sample 𝑖 from being assigned to leaf 𝑡 when the splits in the ancestor nodes
of 𝑡 do not enable the sample going to 𝑡:

𝐚⊺𝑚𝐱𝑖 < 𝑏𝑚+𝑀1(1− 𝑧𝑖𝑡), 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿,∀𝑚 ∈ 𝐴𝐿(𝑡), (2.16)
𝐚⊺𝑚𝐱𝑖 ≥ 𝑏𝑚−𝑀2(1− 𝑧𝑖𝑡), 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿,∀𝑚 ∈ 𝐴𝑅(𝑡). (2.17)

In effect, OCT forces 𝑧𝑖𝑡 = 0 for each unreachable leaf 𝑡, which forces sample 𝑖 to be assigned
to the only reachable leaf 𝑡′ (𝑧𝑖𝑡′ = 1) because each sample must be assigned to one leaf
(Constraint 2.15).

The pair of constraints 2.16 and 2.17 are important to further discuss as these are ex-
amples of big-M constraints and generally known to have relatively loose relaxations [35].
Moreover, Constraint 2.16 requires a strict inequality, which is something that cannot be
directly modeled in MILP. Therefore one first rewrites the constraint to:

𝐚⊺𝑚(𝐱𝑖+ 𝝐) ≤ 𝑏𝑚+(1+ 𝜖max)(1− 𝑧𝑖𝑡), 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿,∀𝑚 ∈ 𝐴𝐿(𝑡), (2.18)
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where 𝝐 is chosen in such a way that it is larger than zero but smaller than any difference
between two adjacent feature values (to make sure the constraint does not disallow any
useful splits). Let 𝑥(𝑖)𝑗 be the 𝑖th largest value of feature 𝑗 , then 𝝐 is defined as:

𝜖𝑗 = min
{
𝑥(𝑖+1)𝑗 −𝑥(𝑖)𝑗 | 𝑥(𝑖+1)𝑗 ≠ 𝑥(𝑖)𝑗 , 𝑖 = 1, ..., 𝑛−1

}
. (2.19)

Now, the big-M values have to be selected large enough that they satisfy the constraint
for any setting of 𝑎𝑗𝑚 and 𝑏𝑚, but as small as possible to maintain the tightness of the LP
relaxation. Since 𝑥𝑖𝑗 ∈ [0,1], 𝑎𝑗𝑚 ∈ [0,1] and 𝑏𝑚 ∈ [0,1], one can set𝑀1 = 1+𝜖max and𝑀2 = 1
(their smallest valid values).

OCT minimizes the sum of classification errors. To count misclassifications the con-
stant 𝑌𝑖𝑘 is introduced which is defined as:

𝑌𝑖𝑘 =

{
+1 if 𝑦𝑖 = 𝑘
−1 otherwise

, 𝑘 = 1, ...,𝐾 , 𝑖 = 1, ..., 𝑛. (2.20)

Intuitively, it is +1 when the correct class 𝑘 (out of 𝐾 total classes) is predicted, and -1
otherwise.

Limitations Since the OCT formulation relies on big-M constraints the relaxations are
not tight which results in long runtimes when proving optimality. Furthermore, the strict
inequality of Equation 2.16 leads to the introduction of a small constant 𝜖𝑗 which means
the tolerances of the solver have to be set appropriately to prevent floating point errors.
With smaller tolerances the solver is further slowed down. Later MILP formulations for
optimal decision trees have worked on speeding up optimization. However, OCT still
provides a useful foundation for modeling.

Combined Formulation The complete MILP formulation for OCT³ is:

³There are some minor differences between the OCT formulation as presented in this dissertation and the for-
mulation in [9]. Some of these are corrections, and others are made to preserve the consistency with the rest of
this dissertation.
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min
1

𝐿base
∑
𝑡∈𝐿

𝐿𝑡 +𝛼 ∑
𝑚∈𝐵

𝑑𝑡 (2.21)

s.t. 𝐿𝑡 ≥ 𝑁𝑡 −𝑁𝑘𝑡 −𝑛(1− 𝑐𝑘𝑡 ), 𝑘 = 1, ...,𝐾 ,∀𝑡 ∈ 𝐿, (2.22)

𝐿𝑡 ≤ 𝑁𝑡 −𝑁𝑘𝑡 +𝑛 𝑐𝑘𝑡 , 𝑘 = 1, ...,𝐾 ,∀𝑡 ∈ 𝐿, (2.23)

𝐿𝑡 ≥ 0, ∀𝑡 ∈ 𝐿, (2.24)

𝑁𝑘𝑡 =
1
2

𝑛
∑
𝑖=1

(1+ 𝑌𝑖𝑘)𝑧𝑖𝑡 , 𝑘 = 1, ...,𝐾 ,∀𝑡 ∈ 𝐿, (2.25)

𝑁𝑡 =
𝑛
∑
𝑖=1

𝑧𝑖𝑡 , ∀𝑡 ∈ 𝐿, (2.26)

𝐾
∑
𝑘=1

𝑐𝑘𝑡 = 𝑢𝑡 , ∀𝑡 ∈ 𝐿, (2.27)

𝐚𝑚 ⊺𝐱𝑖 ≥ 𝑏𝑚 −(1− 𝑧𝑖𝑡), 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿,∀𝑚 ∈ 𝐴𝑅(𝑡), (2.28)

𝐚𝑚 ⊺(𝐱𝑖+ 𝝐) ≤ 𝑏𝑚 +(1+ 𝜖max)(1− 𝑧𝑖𝑡), 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿,∀𝑚 ∈ 𝐴𝐿(𝑡), (2.29)

∑
𝑡∈𝐿

𝑧𝑖𝑡 = 1, 𝑖 = 1, ..., 𝑛, (2.30)

𝑧𝑖𝑡 ≤ 𝑢𝑡 , ∀𝑡 ∈ 𝐿, (2.31)
𝑛
∑
𝑖=1

𝑧𝑖𝑡 ≥ 𝑁min𝑢𝑡 , ∀𝑡 ∈ 𝐿, (2.32)

𝑝
∑
𝑗=1

𝑎𝑗𝑚 = 𝑑𝑚, ∀𝑚 ∈ 𝐵 , (2.33)

0 ≤ 𝑏𝑚 ≤ 𝑑𝑚, ∀𝑚 ∈ 𝐵 , (2.34)

𝑑𝑚 ≤ 𝑑𝑝(𝑚), ∀𝑚 ∈ 𝐵 ⧵ {1}, (2.35)
𝑧𝑖𝑡 ∈ {0,1}, 𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿, (2.36)
𝑙𝑡 ∈ {0,1}, ∀𝑡 ∈ 𝐿, (2.37)

𝑐𝑘𝑡 ∈ {0,1}, 𝑘 = 1, ...,𝐾 ,∀𝑡 ∈ 𝐿, (2.38)

𝑎𝑗𝑚 ∈ {0,1}, 𝑗 = 1, ...,𝑝,∀𝑚 ∈ 𝐵 , (2.39)

𝑑𝑚 ∈ {0,1}, ∀𝑚 ∈ 𝐵 . (2.40)

leaf 𝑡 predicts class 𝑘

node 𝑚 splits on feature 𝑗

threshold of node 𝑚

Binary Optimal Classification Trees (Bin-OCT)
A downside of the OCT formulation is that it creates multiple constraints for each sample
in the dataset. Since the runtime of MILP solving grows worst-case exponentially in terms
of the input size, this has a significant impact on the runtime. To enable the training of
optimal classification trees on datasets with more samples, Verwer and Zhang proposed
Bin-OCT [36]. The idea behind Bin-OCT is to use the fact that many samples in a dataset
share feature values to combine multiple constraints into one. The name Bin-OCT refers
to the use of binary variables to represent feature, threshold, and class label decisions.
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The threshold values are also encoded using binary numbers, e.g. the threshold values 1,
2, 3, and 4 within some feature might be encoded by only 2 binary values as 00, 01, 10, 11
respectively. The notation is explained in Table 2.1.

Formulation The complete formulation for Bin-OCT is given below⁴:

min ∑
𝑡∈𝐿

∑
𝑘∈𝐾

𝑒𝑡,𝑘 (2.41)

s.t. ∑
𝑗∈𝐽

𝑎𝑚,𝑗 = 1, ∀𝑚 ∈ 𝐵 (2.42)

∑
𝑘∈𝐾

𝑐𝑡,𝑘 = 1, ∀𝑡 ∈ 𝐿, (2.43)

∑
𝑡∈𝐿

𝑧𝑖𝑡 = 1, 𝑖 = 1, ..., 𝑛, (2.44)

𝑀 𝑎𝑚,𝑗 + ∑
𝑖∈𝑙𝑟(𝛽)
𝑡∈𝑙𝑙(𝑚)

𝑧𝑖,𝑡 + ∑
𝜏∈𝑡𝑙(𝛽)

𝑀( 𝑏𝑚,𝜏 −1) ≤𝑀, ∀𝑗 ∈ 𝐽 ,𝛽 ∈ 𝑏𝑖𝑛(𝑗), 𝑖 = 1, ..., 𝑛, (2.45)

𝑀 ′ 𝑎𝑚,𝑗 + ∑
𝑖∈𝑢𝑟(𝛽)
𝑡∈𝑟𝑙(𝑚)

𝑧𝑖,𝑡 − ∑
𝜏∈𝑡𝑙(𝛽)

𝑀 ′ 𝑏𝑚,𝜏 ≤𝑀 ′, ∀𝑗 ∈ 𝐽 ,𝛽 ∈ 𝑏𝑖𝑛(𝑗), 𝑖 = 1, ..., 𝑛, (2.46)

𝑀 ′′ 𝑎𝑚,𝑗 + ∑
𝑖∶𝑋𝑖𝑗>𝜏𝑗max
𝑡∈𝑙𝑙(𝑚)

𝑧𝑖,𝑡 + ∑
𝑖∶𝑋𝑖𝑗>𝜏𝑗min
𝑡∈𝑟𝑙(𝑚)

𝑧𝑖,𝑡 ≤𝑀 ′′, ∀𝑚 ∈ 𝐵, 𝑗 ∈ 𝐽 , (2.47)

∑
𝑖∶𝑦𝑖=𝑘

𝑧𝑖, 𝑡 −𝑀 ′′′ 𝑐𝑡,𝑘 ≤ 𝑒𝑡,𝑘 , ∀𝑡 ∈ 𝐿, 𝑘 ∈ 𝐾, (2.48)

𝑎𝑚,𝑗 ∈ {0,1}, ∀𝑚 ∈ 𝐿, 𝑗 ∈ 𝐽 (2.49)

𝑏𝑚,𝜏 ∈ {0,1}, ∀𝑚 ∈ 𝐿, 𝜏 ∈ T (2.50)

𝑐𝑡,𝑘 ∈ {0,1}, ∀𝑡 ∈ 𝐿, 𝑘 ∈ 𝐾 (2.51)

0 ≤ 𝑒𝑡,𝑘 ≤
𝑛
∑
𝑖=1

𝕀[𝑦𝑖 = 𝑘], ∀𝑡 ∈ 𝐿,∀𝑘 ∈ 𝐾, (2.52)

0 ≤ 𝑧𝑖,𝑡 ≤ 1, ∀𝑡 ∈ 𝐿, 𝑖 = 1, ..., 𝑛. (2.53)

node 𝑚 splits on feature 𝑗

node 𝑚 uses threshold 𝜏

leaf 𝑡 predicts class 𝑘

Limitations The motivation for Bin-OCT is to find good decision trees more quickly
than previous methods for optimal classification trees. While the technique of combining
multiple constraints with big-M values works for this goal (since fewer constraints speed
up operations inside the solver), it does reduce the tightness of the LP relaxation. This
reduces the solver’s efficiency when proving optimality.

⁴There are some minor differences between the Bin-OCT formulation as presented in this dissertation and the
formulation in [36]. The notation has been updated to be consistent with the otherMILPmethods in this chapter.
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Bin-OCT proposes a pre-processing technique that removes thresholds that could only
lead to suboptimal solutions. The idea is that when multiple samples in a sorted feature
have the same label, it is not necessary to consider thresholds between these samples.
However, Lin et al. [37] showed that this technique of ‘bucketization’ can remove optimal
thresholds on specific datasets. Therefore when the goal is to train optimal classification
trees, the bucketization pre-processing technique should not be applied.

Network Flow-Based Optimal Classification Trees (Flow-OCT)
In an effort to improve the tightness of MILP formulations for optimal classification trees,
Aghaei et al. propose FlowOCT [35]. By formulating optimal classification trees as a
network-flow problem, the authors create MILP instances that do not rely on big-M for-
mulations. The method is relatively flexible and can be extended to optimize fairness [38]
and robustness [39].

Formulation

min
𝑛
∑
𝑖=1

∑
𝑡∈𝐿

𝑓𝑖,𝑡,sink (2.54)

s.t. ∑
𝑗∈𝐽

𝑎𝑚,𝑗 = 1, ∀𝑚 ∈ 𝐵, (2.55)

∑
𝑘∈𝐾

𝑐𝑡,𝑘 = 1, ∀𝑡 ∈ 𝐿, (2.56)

𝑓𝑖,𝑎(𝑚),𝑚 = 𝑓𝑖,𝑚,𝑙(𝑚)+ 𝑓𝑖,𝑚,𝑟(𝑚), 𝑚 ∈ 𝐵, 𝑖 = 1, ..., 𝑛, (2.57)
𝑓𝑖,𝑎(𝑡),𝑡 = 𝑓𝑖,𝑡,sink, 𝑡 ∈ 𝐿, 𝑖 = 1, ..., 𝑛, (2.58)
𝑓𝑖,source,1 ≤ 1, 𝑖 = 1, ..., 𝑛, (2.59)

𝑓𝑖,𝑚,𝑙(𝑚) ≤ ∑
𝑗∈𝐽∶𝑋𝑖𝑗=0

𝑎𝑚,𝑗 , 𝑚 ∈ 𝐵, 𝑖 = 1, ..., 𝑛, (2.60)

𝑓𝑖,𝑚,𝑟(𝑚) ≤ ∑
𝑗∈𝐽∶𝑋𝑖𝑗=1

𝑎𝑚,𝑗 , 𝑚 ∈ 𝐵, 𝑖 = 1, ..., 𝑛, (2.61)

𝑓𝑖,𝑡,sink ≤ 𝑐𝑡,𝑦𝑖 , 𝑡 ∈ 𝐿, 𝑖 = 1, ..., 𝑛, (2.62)

𝑎𝑚,𝑗 ∈ {0,1}, ∀𝑚 ∈ 𝐵, 𝑗 ∈ 𝐽 , (2.63)

𝑐𝑡,𝑘 ∈ {0,1}, ∀𝑚 ∈ 𝐿, 𝑘 ∈ 𝐾, (2.64)

𝑓𝑖,𝑎(𝑚),𝑚 ∈ {0,1}, ∀𝑚 ∈  , 𝑖 = 1, ..., 𝑛, (2.65)
𝑓𝑖,𝑡,sink ∈ {0,1}, ∀𝑡 ∈ 𝐿, 𝑖 = 1, ..., 𝑛. (2.66)

node 𝑚 uses binary feature 𝑗

leaf 𝑡 predicts class 𝑘

2.4.4 New General Formulation
We also propose a new formulation to generalize the previous MILP formulations to arbi-
trary classification loss functions (such as those used for algorithm selection and prescrip-
tion). It only uses a binary variable for each possible split and one for each possible leaf
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prediction. Conceptually, it is similar to FlowOCT but does not require an explicit repre-
sentation of the flow using binary variables. Instead, it expresses the path of a sample to
a leaf directly in a single constraint.

Formulation

min
1
𝑛

𝑛
∑
𝑖=1

𝑙𝑖 (2.67)

s.t. ∑
𝑗∈𝐽

𝑎𝑚,𝑗 = 1, ∀𝑚 ∈ 𝐵, (2.68)

∑
𝑘∈𝐾

𝑐𝑡,𝑘 = 1, ∀𝑡 ∈ 𝐿, (2.69)

𝑙𝑖 ≥∑
𝑘

𝑐𝑡,𝑘 𝐿𝑖(𝑘)− (𝐿max
𝑖 −𝐿min

𝑖 )(

∑
𝑚∈𝐴𝐿(𝑡)

∑
𝑗∈𝐽∶𝑋𝑖𝑗=1

𝑎𝑚,𝑗

+ ∑
𝑚∈𝐴𝑅(𝑡)

∑
𝑗∈𝐽∶𝑋𝑖𝑗=0

𝑎𝑚,𝑗 − |𝐴(𝑡)|)),

𝑖 = 1, ..., 𝑛,∀𝑡 ∈ 𝐿, (2.70)

𝑎𝑚,𝑗 ∈ {0,1}, ∀𝑚 ∈ 𝐵,∀𝑗 ∈ 𝐽 , (2.71)

𝑐𝑡,𝑘 ∈ {0,1}, ∀𝑡 ∈ 𝐿,∀𝑘 ∈ 𝐾, (2.72)

𝐿min
𝑖 ≤ 𝑙𝑖 ≤ 𝐿max

𝑖 , 𝑖 = 1, ..., 𝑛. (2.73)

node 𝑚 uses binary feature 𝑗

leaf 𝑡 predicts class 𝑘

Flexibility of the General Formulation
This formulation is convenient because it generalizes multiple concepts while still being
concise and relatively efficient:

• Instead of encoding only branch nodes of the form ‘feature value ≤ threshold’, it
uses binary features to encode arbitrary predicates (like FlowOCT).

• It is not restricted to the 𝐿0-1 (error rate) classification loss. Instead, it relies on an
arbitrary loss function 𝐿𝑖(𝑘) that returns the loss associated with predicting class
𝑘 for sample 𝑖. This allows for easy extensions to weighted classification or causal
prescription.

• It introduces only 3 groups of decision variables and uses fewer total variables. Us-
ing fewer variables often reduces the number of branch-and-bound iterations re-
quired for solving.

• It uses only 3 groups of constraints: nodes choose one predicate, leaves choose one
class, and if a sample lands in a leaf, its loss is forced.
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• It does not rely on combined constraints to limit formulation size. Therefore it has
a relatively tight relaxation.

The formulation can be applied to the 𝐿0-1 loss, for example. In that case, we simply set
𝐿min
𝑖 = 0 and 𝐿max

𝑖 = 1, and substitute 𝐿𝑖(𝑘) for 𝕀[𝑦𝑖 ≠ 𝑘]. This replaces Constraint 2.70 by:

𝑙𝑖 ≥∑
𝑘
𝕀[𝑦𝑖 ≠ 𝑘]𝑐𝑡,𝑘 −

⎛
⎜
⎜
⎜
⎝

∑
𝑚∈𝐴𝐿(𝑡)
𝑗∈𝐽∶𝑋𝑖𝑗=1

𝑎𝑚,𝑗 + ∑
𝑚∈𝐴𝑅(𝑡)
𝑗∈𝐽∶𝑋𝑖𝑗=0

𝑎𝑚,𝑗 − |𝐴(𝑡)|
⎞
⎟
⎟
⎟
⎠

. (2.74)

2.4.5 Comparison
When developing algorithms for combinatorial optimization problems, the most special-
ized method is often the most efficient. For classification trees (and weighted classification
variants), the dynamic programming-based methods are the most specialized. They make
use of the structure in the search space of decision trees to reduce the amount of required
computation. This means their time complexity scales linearly in terms of the number of
samples and only exponentially in terms of features and tree depth. This is difficult to beat
with integer programming and boolean satisfiability-based techniques since these general
solvers run in exponential time in terms of samples, features, and tree size.

When training optimal classification trees in practice, we recommend using methods
such as Streed [40]. If proven optimality is not required, it can be helpful to use a solver-
based technique, as these can usually be stopped at any time to recover an approximate
solution. The general MILP formulation is a flexible option for this. The remainder of
this dissertation does not propose dynamic programming formulations for decision tree
learning for another reason: current dynamic programming techniques require the opti-
mization process of subtrees to be mostly separated, and this does not hold for the kinds
of problems we will consider (robustness and sequential decision making).
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Symbol Type Definition
𝑎𝑗 ,𝑚 variable node 𝑚 splits on feature 𝑗
𝑏𝑚 variable node 𝑚’s continuous threshold value
𝑏𝑚,𝜏 variable node 𝑚 uses threshold 𝜏
𝑐𝑡,𝑘 variable leaf node 𝑡 predicts class 𝑘
𝑑𝑚 variable node 𝑚 is used
𝑒𝑡,𝑘 variable number of samples with class 𝑘 misclassified in leaf 𝑡
𝑓𝑖,𝑚,𝑚′ variable flow on the edge between 𝑚 and 𝑚′

𝑙𝑖 variable loss for sample 𝑖
𝑢𝑡 variable leaf 𝑡 is used
𝑧𝑖,𝑡 variable sample 𝑖 is in leaf 𝑡
𝑋𝑖𝑗 constant value of data row 𝑖 in feature 𝑗
𝑦𝑖 constant class label of data row 𝑖
𝑛 constant number of samples
𝛼 constant regularization term in OCT’s objective
𝑁min constant minimum number of samples required for creating a leaf node
𝑛 constant number of samples
𝐷 constant maximum depth of the decision tree
𝐽 set all features
𝐾 set all classes
𝐴(𝑡) set ancestors of node 𝑡
𝐴𝐿(𝑡) set ... with left branch on the path to 𝑡
𝐴𝑅(𝑡) set ... with right branch on the path to 𝑡𝐵 set all decision nodes𝐿 set all leaf nodes
𝑏𝑖𝑛(𝑗) set feature 𝑗 ’s binary encoding ranges
𝑙𝑟(𝛽) set rows with values in 𝛽’s lower range, 𝛽 ∈ 𝑏𝑖𝑛(𝑗)
𝑢𝑟(𝛽) set rows with values in 𝛽’s upper range, 𝛽 ∈ 𝑏𝑖𝑛(𝑗)
𝑡𝑙(𝛽) set 𝑏𝑚,𝜏 variables for 𝛽’s ranges
𝑙𝑙(𝑚) set node 𝑚’s leaves under the left branch
𝑟𝑙(𝑚) set node 𝑚’s leaves under the right branch

Table 2.1: Summary of the notation used in the MILP formulations of this section.
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2.5 Interpretability and Explainability
It makes sense that the ability to understand a machine learning model is a desired trait.
However, in the literature, we currently find a variety of terms used to describe this prop-
erty such as ‘interpretable’, ‘explainable’, ‘XAI’ (eXplainable Artificial Intelligence [41]),
and ‘transparent’. We briefly introduce the notions of transparency used in our work.
In this dissertation, we will only use the terms interpretable and explainable and define
similarly to [42]:

Interpretability. Or: inherent interpretability, refers to the property of a model
that a human can directly understand how it makes predictions.

Explainability. Thegeneral concept of improving human understanding of amodel,
usually done by generating high-level explanations of predictions.

These definitions are abstract and can become clearer when matched with examples.
For instance, small decision trees and sparse linear models are often referred to as inter-
pretable since a user could, in theory, print these out on paper and understand exactly
how theymake predictions. Methods for explainablemachine learning often rely on post-
hoc explanation methods that use different techniques to highlight important features for
the prediction. Although such explanations can help users understand the models, the im-
portant difference between interpretability and explainability is that model explanations
do not necessarily allow the user to understand the complete model exactly. Therefore
some works warn that explanations could mislead users by giving a false sense of model
understanding [42–44].

2.5.1 Inherent Interpretability
Some types of models, such as decision trees, linear models, and rule lists, are generally
considered inherently interpretable. However, their size or level of sparsity is important.
In the mythos of model interpretability [45], Lipton separates the goals of interpretabil-
ity for transparency into three levels: simulatability (understanding the whole model),
decomposability (understanding individual components of the model), and algorithmic
transparency (understanding the training algorithm). In this work, we mainly focus on
simulatability, being able to understand the complete model, and for this, it is vital that
the model is reasonably simple. ‘Reasonably’ is a subjective term here and cannot gener-
ally be defined. We can, however, give some examples of models that are often considered
inherently interpretable but are not reasonably simple. One example is a decision tree
with more than 50 nodes. Such a model is too large to succinctly visualize, and humans
cannot easily comprehend their predictions. Similarly, a linear model using more than 50
non-zero coefficients will be difficult to understand: making predictions by hand will take
minutes. In this dissertation, we usually resort to training trees of at most depth 3 or 4 (at
most 8 or 16 branch nodes, respectively). Although larger sizes could increase predictive
performance while still being interpreted, we choose these to stay on the safe side of the
subjective ‘reasonably simple’ requirement.
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2.5.2 Feature Importance
Although the main focus of this dissertation is on inherent interpretability, we highlight
tree ensemble feature importance, which is a commonly used post-hoc explanationmethod.
Most post-hoc machine learning explanations are based on feature attribution. In feature
attribution explanations, some method is used to determine how important each of the
features of some input is for the final prediction. For most machine learning models, fea-
ture importances are estimated by some model agnostic methods such as SHAP [46] and
LIME [47]. However, for tree-based models, there are techniques that use information
inside the model to determine feature importance more efficiently [48]. Since in typical
decision trees, each node selects one feature to split on, and these nodes can be easily
enumerated, this provides useful properties for generating explanations.

Misleading Explanations Although feature importance explanations can be useful, it
is important to consider their limitations. There are situations where feature importances
are not truthful to the underlying models or can be misleading. For example, when us-
ing feature importances generated from tree ensembles, we have to consider the number
of unique values that the features have. When a feature has many more unique values
than others, and thus allows the tree to split on that feature more often, there is a high
probability of the model using more nodes that split on that feature. This does not mean
that the feature holds more information than another one. Another problem occurs when
multiple features are correlated. In this case, the decision tree gains similar information
when splitting on any of the features, and thus, importance will be arbitrarily spread over
the features. Lastly, model-agnostic explanation methods such as LIME and SHAP are not
robust [44, 49]. By carefully making small changes to the inputs, they can be fooled into
generating different explanations.
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3
Introduction to Robust

Decision Trees

While regular decision trees and decision tree ensembles perform well at typical supervised
learning tasks, their performance degrades when there is uncertainty in the data. In fact,
when making small changes to regular decision tree inputs, it is possible to change the predic-
tions that the inputs receive significantly. Being susceptible to these adversarial perturbations
means that the model is not adversarially robust. In this part, we will consider the problem of
optimizing decision tree models for adversarial robustness by considering uncertainty during
the training phase. Specifically, we will consider that an adversary can make small changes
to the data points in order to cause misclassification. An attractive property of robust decision
trees and decision tree ensembles is that their robustness can be tractably verified, whereas
more complex models such as neural networks typically only heuristically improve robustness.
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In this chapter, we introduce adversarial robustness within the field of machine learn-
ing. We will start by defining robustness and show why robustness is an important prop-
erty. Next, we will discuss different methods of evaluating the robustness of machine
learning models and, more specifically, (ensembled) decision trees. We introduce general
techniques that consider worst-case adversarial perturbations during the optimization pro-
cess. Lastly, we define poisoning robustness as a special kind of robustness that considers
the ability of potential attackers to add or remove samples from the training data of a
machine learning model.

3.1 Adversarial Robustness
In 2013, Szegedy et al. [1] found that making very small changes to inputs of neural net-
works could cause the model to misclassify them completely. These perturbed inputs were
so similar to their unperturbed versions that humans could not notice a difference. Such
perturbed inputs that cause models to display unintended behaviors are referred to as
adversarial examples. The work by Szegedy et al. and earlier works by Biggio et al. [2]
that demonstrated the fragility of machine learning models to modified inputs motivated
research into optimizing machine learning models that are robust to adversarial examples.

For a model to be robust to adversarial examples, we want to ensure that there is no
‘small’ change that one could make to an input such that it gets misclassified by the model.
This is often defined by a set of user-specified perturbations Δ, each of which should not
cause a misclassification when added to an input 𝑥 . So for a classifier 𝐶 and dataset 𝐷 we
aim to satisfy:

𝐶(𝑥 +𝛿) = 𝑦, ∀(𝑥,𝑦) ∈ 𝐷,∀𝛿 ∈ Δ. (3.1)

For mathematical convenience the set Δ is often described by a 𝐿𝑝-norm ball of radius 𝜖:
Δ = {𝛿 ∶ ||𝛿||𝑝 ≤ 𝜖}, for some 𝑝 ∈ [1,∞]. The 𝐿∞ norm is particularly convenient for deci-
sion trees since their axis-aligned splits partition the space into high-dimensional boxes
just like an 𝐿∞ ball of fixed radius. However, while mathematically convenient, realistic
perturbations are often not accurately modeled by 𝐿𝑝 norms.

Decision trees can also suffer from adversarial examples. In Figure 3.1 we visualize a
dataset and its associated decision tree. While the decision tree achieves an accuracy of
80% by using just one branching node, the accuracy gets reduced to 0% when applying
small adversarial perturbations to each sample. We want to find decision trees that are
robust to small changes in the data. We can define ‘small changes in the data’ as, for ex-
ample, changes within a box with a fixed radius around each sample. In that case we hope
to find a tree such as the one visualized in Figure 3.2. This robust decision tree achieves a
reduced accuracy of 70% but maintains that accuracy after adversarial perturbations.
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blue red

if Y ≤ 0.15

yes no
80% accuracy

0% adversarial accuracy

Figure 3.1: A non-robust depth-1 decision tree and its predictions on a toy dataset. While the tree has good
associated accuracy (80%), its accuracy when accounting for small adversarial perturbations is 0%. Based on the
example by Chen et al. [3].

blue red

if X ≤ 0.9

yes no
70% accuracy

70% adversarial accuracy

Figure 3.2: A robust depth-1 decision tree and its predictions on a toy dataset. While the tree has a reduced
accuracy of 70%, its accuracy when accounting for adversarial perturbations limited by a box of radius 0.1 is still
70%. Based on the example by Chen et al. [3].

3.2 Evaluating Robustness
To evaluate the adversarial robustness of a machine learning model, we are usually inter-
ested in answering one of two questions:

Definition 1. The feasible adversarial example problem: Find an adversarial example 𝑥+𝛿
for input 𝑥 with label 𝑦 such that 𝐶(𝑥 +𝛿) ≠ 𝑦 and the perturbation 𝛿 is in the set of possible
perturbations Δ.

Definition 2. The optimal adversarial example problem: Find an adversarial example 𝑥+𝛿
for input 𝑥 with label 𝑦 such that 𝐶(𝑥 + 𝛿) ≠ 𝑦, the perturbation 𝛿 is in the set of possible
perturbations Δ, and minimize 𝑑(𝑥,𝑥 +𝛿) for some distance function 𝑑.

Given a solution to the optimization version of the problem, the feasibility problem is
trivial to answer.
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Distance norm
Model class 𝐿0 𝐿𝑝 ,𝑝 ∈ (0,∞) 𝐿∞

decision tree ( ) ( ) ( )
stump ensemble ( log ) (2 ) ( log )
tree ensemble (2 ) (2 ) (2 )

Table 3.1: Robustness verification time complexities (based on [4]) for decision tree-based models. For all 𝐿𝑝-
norms, single decision trees can be verified in linear time, while (additive) tree ensembles are NP-hard to verify.
For stump ensembles, special algorithms for the 𝐿0 and 𝐿∞ norms allow for linearithmic runtimes.

However, depending on the model, it can be computationally challenging to evaluate
its robustness. For example, due to the scale and structure of typical neural networks,
determining whether an adversarial example within Δ is often intractable. Therefore, for
neural networks, we commonly apply heuristic methods to find adversarial examples and
use approximated bounds to prove the non-existence of adversarial examples. A major
advantage of decision trees and decision tree ensembles over neural networks is that they
usually allow for tractable computation of adversarial examples. When we evaluate a
model’s robustness, we assume we have access to its parameters, which in the literature
is referred to as transparent or white-box attacking.

Wang et al. [4] collected and proved the time complexities for different kinds of tree-
based models. Their results are summarized in Table 3.1. In the sections below, we explain
how to derive the complexities of two important cases: single decision trees and tree
ensembles.

3.2.1 Adversarial Examples for Decision Trees
Robustness against 𝐿𝑝 norm perturbations can be verified in linear time for single decision
trees. To verify whether there exists an adversarial perturbation 𝛿 such that ||𝛿||𝑝 ≤ 𝜖 and
𝐶(𝑥 + 𝛿) is a misclassification the idea is to simply compute the minimal perturbation
required to move point 𝑥 into every leaf of the tree. Given that the minimal perturbation
for a point to a leaf can be computed quickly (linear in the number of dimensions), the
complete procedure runs in time linear in terms of the number of leaves.

Minimal perturbation onto a leaf The minimum norm perturbation 𝛿∗ required to
move a point 𝑥 into a decision tree leaf can be computed quickly in closed form. This
is possible because decision trees with axis-aligned splits create box-shaped leaves that
allow us to find a minimum perturbation in each dimension separately. Denote the box-
shaped space that a leaf covers as the set 𝐵 = {𝑥 ∶ 𝑙𝑡𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑡𝑗 ∀𝑗}, i.e. a box defined by
a lower bound 𝑙𝑗 and upper bound 𝑢𝑗 for each feature 𝑗 . For any 𝐿𝑝 norm the minimum
perturbation 𝛿∗ is:

𝛿∗ ∶= argmin
𝑥′∈𝐵

||𝑥 −𝑥′||. (3.2)
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if x3 ≤ 0.5

1 -K
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if x2 ≤ 0.5

1
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1

Figure 3.3: Decision tree created for clause (𝑥1 ∨¬𝑥2 ∨¬𝑥3) in the reduction from 3-SAT to adversarial example
finding. Finding an adversarial example for an ensemble of these trees constitutes solving a 3-SAT formula,
proving that finding adversarial examples in tree ensembles is NP-hard.

Which can be computed in closed form by separating each feature 𝑗 :

𝛿∗𝑗 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥𝑗 𝑙𝑡𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑡𝑗
𝑙𝑡𝑗 𝑥𝑗 < 𝑙𝑡𝑗
𝑢𝑡𝑗 𝑥𝑗 > 𝑢𝑡𝑗

. (3.3)

3.2.2 Adversarial Examples for Decision Tree Ensembles
Finding adversarial examples for decision tree ensembles is a non-trivial task. Below we
repeat a short proof on the NP-hardness from Kantchelian et al. [5]. After, we explain
the MILP formulation that can be used to solve this NP-hard problem to find optimal
adversarial examples.

NP-hardness
For brevity, we only repeat the high-level idea of the NP-hardness proof for finding adver-
sarial examples in tree ensembles. For details, we refer to the original paper [5]. The idea
behind the proof is to reduce the NP-complete problem of 3-SAT to finding an adversarial
example in a tree ensemble (Definition 1). This proves that finding adversarial examples
is at least as difficult as solving 3-SAT.

Problem is in NP Without loss of generality, define the prediction function of a tree
ensemble as 𝐶(𝑥) = sign(∑𝑖 𝑇𝑖(𝑥)), i.e. predicting 1when the sum of individual tree predic-
tions is greater than 0, and −1 otherwise. Computing the prediction 𝐶(𝑥) for an instance
𝑥 can be done in time linear in the size of the tree ensemble. Therefore, a solution to the
problem can be verified in polynomial time, and the problem is in NP.

Problem is NP-hard Consider a 3-SAT instance 𝑆 consisting of 𝐾 clauses, each with 3
literals. We will construct a decision tree with 3 branch nodes for each clause.
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Take, for example, the clause (𝑥1 ∨¬𝑥2 ∨¬𝑥3); this clause will be transformed into the
decision tree given in Figure 3.3. Each literal is encoded into a binary feature, for instance,
𝑥1 is encoded as feature 𝑥1. Each branch node of the tree will then test whether the value
of 𝑥𝑗 is true/false (1 or 0) using the predicate [𝑥𝑗 ≤ 0.5]. Then the tree is constructed in
such a way that any satisfying assignment to the variables in the clause causes the tree
to 1, while any assignment that does not satisfy the clause results in a prediction of −𝐾 .
Since a tree predicts at most 1, this means that if any clause is not satisfied, the sum of tree
predictions can be at most −𝐾 +∑𝐾−1

𝑖=1 1 = −𝐾 +𝐾 −1 = −1 (one tree predicts −𝐾 while
all remaining trees predict 1) which results in 𝐶(𝑥) = −1. Whenever an input represents a
solution to the 3-SAT instance that satisfies all clauses, the trees will all predict 1, which
results in a positive prediction 𝐶(𝑥) = 1. Therefore the presence/absence of an adversarial
example 𝑥 + 𝛿 causing 𝐶(𝑥 + 𝛿) = 1 directly translates to a solution to the 3-SAT instance
𝑆. Finding adversarial examples in tree ensembles is NP-hard.

MILP Formulation
While the problem of finding adversarial examples in tree ensembles is NP-hard, this does
not mean that solving the problem is necessarily intractable. Kantchelian et al. [5] pro-
posed a MILP formulation that can be used to find adversarial examples for tree ensem-
bles. Although for large random forests that contain deep trees, the MILP instances can
take hours to solve, they generally run in seconds or minutes for models such as gradient
boosting ensembles with much smaller trees.

The formulation is made for decision trees that use predicates of the type ‘the value of
feature 𝑗 ≤ threshold 𝑏’. The idea of the formulation is not to explicitly search for a per-
turbation 𝛿 but to find out what predicates inside the ensemble must be simultaneously
satisfied to cause a misclassification. The size of the perturbation that is required to satisfy
these predicates is then cleverly encoded in the objective. We will first introduce the deci-
sion variables. We highlight them in bold for clarity. Define a decision variable 𝐩(𝐢)𝐣 ∈ {0,1}
for every unique branch node in feature 𝑗 , such that the predicates are ordered by thresh-
old value with 𝑖, i.e. when predicate 𝐩(𝐢)𝐣 is satisfied 𝐩(𝐢+𝟏)𝐣 is also satisfied (Constraint 3.5).
Define a decision variable 𝐥𝐤,𝐭 ∈ {0,1} that indicates whether or not the adversarial example
lies in leaf node 𝑡 of tree 𝑘. The adversarial example will be in exactly one leaf in every
tree 𝑘 = 1, ..., 𝑇 (Constraint 3.6).

To determine whether the perturbed sample can reach a certain leaf the variables 𝐥𝐤,𝐭
must be forced to 0 when a predicate disallows the perturbed sample to follow a path
to that leaf. For this, we introduce the function true(𝑡, 𝑗 , 𝑖) that determines whether the
𝑖th predicate of feature 𝑗 needs to be true to reach leaf 𝑡, and false(𝑡, 𝑗 , 𝑖) for whether this
should be false. When a predicate 𝐩(𝐢)𝐣 is true/false, we force the leaves on the respectively
false/true sides to 0 with Constraints 3.7 and 3.8. Without loss of generality, the formula-
tion is designed to optimize for a prediction of 𝐶(𝑥+𝛿) = 1. For an additive tree ensemble,
this means that the sum of all the predicted values of the tree should be greater or equal
to 0 (Constraint 3.9). We use the notation 𝑣𝑘,𝑡 to denote the constant value of leaf 𝑡 in tree
𝑘, 𝐼𝑗 the number of unique threshold values for feature 𝑗 , 𝑇 the total number of trees, and 𝑘
𝐿 the indices 𝑡 of the leaves for tree 𝑘.
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min ∑
𝑗∈𝐽

𝐼𝑗
∑
𝑖=1

𝑤𝑗 ,𝑖𝑝(𝑖)𝑗 (3.4)

s.t. 𝑝(𝑖)𝑗 ≤ 𝑝(𝑖+1)𝑗 , ∀𝑗 ∈ 𝐽 , 𝑖 = 1, ..., 𝐼𝑗 −1 (3.5)

∑
𝑡∈ 𝑘

𝐿

𝐥𝐤,𝐭 = 1, 𝑘 = 1, ..., 𝑇 (3.6)

∑
𝑡∶𝑡∈ 𝑘

𝐿 ∧true(𝑡,𝑗 ,𝑖)

𝐥𝐢,𝐭 ≤ 𝐩(𝐢)𝐣 , ∀𝑗 ∈ 𝐽 , 𝑖 = 1, ..., 𝐼𝑗 , 𝑘 = 1, ..., 𝑇 (3.7)

1− ∑
𝑡∶𝑡∈ 𝑘

𝐿 ∧false(𝑡,𝑗 ,𝑖)

𝐥𝐢,𝐭 ≥ 𝐩(𝐢)𝐣 , ∀𝑗 ∈ 𝐽 , 𝑖 = 1, ..., 𝐼𝑗 , 𝑘 = 1, ..., 𝑇 (3.8)

𝑇
∑
𝑘=1

∑
𝑡∈ 𝑘

𝐿

𝑣𝑘,𝑡 𝐥𝐤,𝐭 ≥ 0 (3.9)

𝐩(𝐢)𝐣 ∈ {0,1} ∀𝑗 ∈ 𝐽 , 𝑖 = 1, ..., 𝐼𝑗 (3.10)

𝐥𝐤,𝐭 ∈ {0,1} ∀𝑘 = 1, ..., 𝑇 , 𝑡 ∈  𝑘
𝐿 . (3.11)

Denote the perturbed sample as 𝑥′ = 𝑥 + 𝛿. The objective is to minimize the distance
from the perturbed sample 𝑥′ to the original sample 𝑥 . Recall that an arbitrary 𝐿𝑝 norm
can be computed in 𝑛 dimensions as:

||𝑥′−𝑥 ||𝑝 =(

𝑛
∑
𝑖=1

|𝑥′−𝑥 |𝑝
)

1
𝑝

.

To enable formulations for arbitrary 𝐿𝑝 norms the distance that is minimized is raised to
the power 𝑝:

||𝑥′−𝑥 ||𝑝𝑝 =
𝑛
∑
𝑖=1

|𝑥′−𝑥 |𝑝 .

So the objective is to minimize the sum of absolute differences raised to the power 𝑝 in
every dimension. These values can be precomputed for every interval indicated by the
pairs (𝑝(𝑖)𝑗 ,𝑝(𝑖+1)𝑗 ) and used to set the values of 𝑤𝑗 ,𝑖 in the objective.

Instead of finding a minimal adversarial example, it is also common to use the formu-
lation to verify whether an adversarial example exists within a certain distance. In this
case, the objective is removed and turned into a constraint. This feasibility version of the
formulation runs significantly faster on average.

3.3 Robust Optimization
Recall from chapter 2 that we can define learning as an optimization problem by minimiz-
ing a loss function 𝐿. In this typical learning setting, we aim to find model parameters 𝜃
that result in the minimal expected loss on the training data:

min
𝜃

𝔼𝑥,𝑦𝐿(𝜃,𝑥,𝑦). (3.12)
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In the robust (or adversarial) setting, we will take into account that the samples 𝑥𝑖 could
be perturbed by an adversary. Define the set Δ that contains all possible perturbations.
The robust learning problem (following the definition of Madry et al. [6]) is then defined
as:

min
𝜃

𝔼𝑥,𝑦 [max
𝛿∈Δ

𝐿(𝜃,𝑥 +𝛿,𝑦)] . (3.13)

Before computing the loss of model parameters 𝜃 on some pair (𝑥,𝑦), the adversary finds
the worst-case perturbation 𝛿 and applies it to 𝑥 . These min-max optimization problems
are common in the field of robust optimization and are often significantlymore challenging
to solve than purely minimization or maximization problems.

A common approach to solving min-max problems is to break the problem up into two
parts. First, one computes some new values of 𝜃 and fixes these. Then, since the values of
𝜃 are fixed constants, solve the pure maximization problem

max
𝛿∈Δ

𝐿(𝜃,𝑥 +𝛿,𝑦) (3.14)

to find the worst-case perturbation. This technique is used in adversarial learning for
neural networks, for example [6]. One of our contributions in this dissertation is a MILP
reformulation of the robust learning problem for decision trees in such a way that the min-
max problem effectively becomes a pure minimization problem (Chapter 5). This way, the
problem can be directly solved without having to resort to solving it in two separate stages.

3.3.1 Epigraph reformulations
Within the field of mathematical programming, there is a general way in which minimax
problems can be naturally split into two stages. Consider an optimization problem:

min
𝑥∈𝑋

max
𝑢∈𝑈

𝑓 (𝑥,𝑢). (3.15)

If 𝑈 is a finite set, we can rewrite the problem into its epigraph form by introducing a
constraint for each possible uncertain value 𝑢:

min 𝑟 (3.16)
s.t. 𝑟 ≥ 𝑓 (𝑥,𝑦), ∀𝑢 ∈ 𝑈 . (3.17)

When the constraints 3.17 can be expressed using linear relations, this formulation is espe-
cially useful as the problem can then be encoded as an (Integer) Linear Program. Of course,
if the set of 𝑈 is large, then the optimization problem will also have many constraints. For-
tunately, for many specific optimization problems, it is not necessary to consider all these
constraints to solve the problem; instead, one can use constraint generation techniques. In
constraint generation, the idea is to iteratively add only those constraints that are needed
to cut away infeasible solutions. This means that when the solver proposes a solution
(𝑟 ′, 𝑥′) that should be infeasible, one solves a problem like 𝑢∗ = argmax𝑢∈𝑈 𝑓 (𝑥′, 𝑢) to add
the constraint 𝑟 ′ ≥ 𝑓 (𝑥′, 𝑢∗)which invalidates the previous solution. In modern ILP solvers
such as GUROBI¹, this procedure can be efficiently implemented in the search using call-
backs. Such an implementation could be used to extend the methods from Chapter 5 to
different kinds of perturbation sets.
¹https://www.gurobi.com/

https://www.gurobi.com/
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3.3.2 Distributionally Robust Optimization
Robust optimization optimizes an objective for the worst-case outcome from some user-
specified uncertainty set. This can be overly pessimistic since uncertainty in the real world
is often not adversarial but stochastic. For example, if we consider robustness in a machine
learning setting, the probability that all samples will be set to their worst possible locations
when they are randomly perturbed is very low. A technique that bridges the gap between
robust and stochastic optimization is distributionally robust optimization. Distribution-
ally robust optimization defines the uncertainty set as a set of probability distributions
over the uncertain entities in the problem. This means that in our example of machine
learning robustness, an adversary does not perturb each sample individually but collec-
tively perturbs the entire dataset. An example of an uncertainty set could be ‘the sum of
all samples’ perturbation sizes should be within the total perturbation budget 𝜖.’

The general distributionally robust optimization problem for machine learning can be
written as:

inf
𝜃

sup
ℚ∈𝑈 (𝑋,𝑌 )

𝔼(𝑥,𝑦)∼ℚ [𝐿(𝜃,𝑥,𝑦)] , (3.18)

where 𝑈 (𝑋,𝑌 ) defines the uncertainty set around the dataset given by 𝑋 and 𝑌 , and ℚ
is the perturbed distribution. One minimizes the expected loss of the worst-case distribu-
tion shift from the original dataset. Under certain conditions, such a problem can be solved
using constraint generation techniques based on the epigraph reformulations mentioned
earlier. Some work already considers these kinds of approaches for decision trees [7].
Distributionally robust machine learning has promising use cases in, for example, gener-
alization guarantees [8] and as a regularization technique [9].

3.4 Robust Decision Tree Learning
We summarize previous works that propose heuristic methods for optimizing robust de-
cision trees. In Table 3.2 we compare each algorithm’s runtime complexity and threat
model. Most of these algorithms build on ideas used for popular greedy algorithms for
classification and regression trees (CART).

Algorithm Runtime Threat model
GROOT (𝑛 log𝑛) 𝐿∞ and variations
Provably robust boosting (𝑛2) 𝐿∞
TREANT (𝑛2) axis-aligned rules
Chen et al. exact (𝑛2) 𝐿∞
Chen et al. heuristic (𝑛 log𝑛) 𝐿∞
MILP hardening (𝑛 log𝑛) 𝐿0 / 𝐿1 / 𝐿2 / 𝐿∞
Approx. hardening (𝑛 log𝑛) 𝐿0

Table 3.2: Overview of algorithms for fitting robust decision trees. Runtimes in terms of 𝑛 number of samples,
all algorithms also grow linearly in number of features and exponentially in depth.
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3.4.1 Robust Boosting of Tree Ensembles
Setting the foundations of robust decision trees, Kantchelian et al. [5] propose an approach
to improve the robustness of tree ensembles and prove that finding adversarial examples
under distance constraints is NP-hard for tree ensembles. Their robust ensemble learning
method works by robust boosting, i.e., incrementally adding learners to the ensemble to
compensate for the fragility of the preceding learners. They also provide a MILP formula-
tion to solve the adversarial example optimization problem for arbitrary 𝐿𝑝 norm, which
we use to verify the robustness of our models in Section 4.5.

3.4.2 Robust Decision Trees
Chen et al. [3] present an algorithm that fits robust decision trees against 𝐿∞ norm pertur-
bations by using a new splitting criterion. This criterion is the worst-case information gain
or Gini impurity when an attacker moves points within an 𝐿∞ radius. The authors find
that they can compute the criterion exactly using gradient descent which takes (𝑛) time
in terms of 𝑛 samples. They deem this computation intractable for boosting ensembles and,
therefore, give a fast heuristic based on four representative cases. GROOT’s criterion is
equivalent to the exact criterion but speeds up the computation to (1) time and thereby
enables its use in ensembles.

3.4.3 TREANT
TREANT [10] introduces a more flexible approach to specifying attacker capabilities. By
allowing the user to describe an adversary using axis-aligned rules, attackers can be more
realistically modeled with asymmetric changes and different constraints for different axes.
Also, attackers can bemodeledwith a ‘budget’ that they can spend on changing data points,
which allows the user to evaluate robustness against attackers of different strengths. TRE-
ANT still greedily builds a tree, but it directly optimizes a loss function instead of using
a splitting criterion. Although this allows TREANT to train against a variety of attack-
ers, their algorithm deploys a solver to optimize the loss function and pre-computes all
possible attacks which takes in the order of hours to run.

3.4.4 Provably Robust Boosting
Where Chen et al. and TREANT describe algorithms for fitting a single robust tree, prov-
ably robust boosting [11] directly fits a robust ensemble. The authors find that they can
efficiently compute the adversarial loss for boosted decision stumps and use this to de-
rive an upper bound on the adversarial loss of boosted decision trees. By optimizing this
bound on boosted decision trees, they reach state-of-the-art performance on adversarial
accuracy in tree ensembles and can compete with results from neural networks. While
their ensembles contain many shallow trees which grants fast inference time, the training
time of the method is in the order of hours.

3.5 Poisoning robustness
Data poisoning attacks are attacks in which a malicious actor adds, removes, or modifies
the data that a machine learning model is trained on. By making specific changes to the
dataset, attackers can, for example, reduce the model’s performance or plant a backdoor
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that allows the attacker to inject a specific ’trigger pattern’ into an input of themodel at test
time to control its prediction. Whilemuchwork has gone into defending against poisoning
attacks [12–14] and into provable robustness against other attacks such as evasion [15,
16] it is notoriously difficult to provide provable guarantees on poisoning defenses. In
Chapter 7, we consider defending against data poisoning attacks using differential privacy.

3.5.1 Differential privacy
Differential privacy [17–19] provides strong privacy guarantees for algorithms over ag-
gregate datasets, which implies that the existence of any record in the dataset does not
influence the output probability with factors 𝜖 and 𝛿. This property prevents membership
attacks, attacks aimed at determining whether specific samples were included in the train
set of a model, with a high probability if 𝜖 is chosen small enough.

Definition 3 (Differential privacy). A randomized algorithm  satisfies (𝜖,𝛿)-differential
privacy if for all neighboring datasets ,′ ∈ ℕ| | differing in one element, and any  ⊆
Range(),

Pr[() ∈ ] ≤ 𝑒𝜖Pr[(′) ∈ ]+𝛿 (3.19)

whereℕ is the set of non-negative integers and  is the universe for all datasets. If 𝛿 is 0, 
satisfies 𝜖-differential privacy.

Among differentially private mechanisms, the Laplace mechanism adds noise to a nu-
merical output, and the exponential mechanism returns a precise output among a group
according to the utility scores for each element. Both mechanisms are widely used and
are defined as follows.

Definition 4 (Laplace mechanism [18]). A randomized algorithm satisfies 𝜖-differential
privacy over a real value query 𝑓 ∶ℕ| | → ℝ𝑘 if

(, 𝑓 , 𝜖) = 𝑓 ()+ (𝑦1 … 𝑦𝑘) , 𝑦𝑖 ∼ Lap(
Δ𝑓
𝜖 ) (3.20)

where Lap(𝑏) is the Laplace distribution with scale 𝑏 that Lap(𝑥 | 𝑏) = 1
2𝑏 exp(−

|𝑥 |
𝑏 ), and Δ𝑓

is the 𝑙1-sensitivity that

Δ𝑓 = max
𝑋,𝑋 ′∈ℕ| | ,||𝑋−𝑋 ′ ||1≤1

||𝑓 (𝑋 )− 𝑓 (𝑋 ′)||1 (3.21)

With the Laplace mechanism, the Laplace noise is added to the accurate output of the
query 𝑓 so that the output of  satisfies 𝜖-differential privacy over the query. Other
mechanisms, such as the Gaussian mechanism and geometric mechanism [20], achieve
differential privacy in a similar way. The geometric mechanism is similar to the Laplace
mechanism but works with integer values. An algorithm (, 𝑓 , 𝜖) is 𝜖-differentially
private when the noise follows the two-sided geometric distribution:

Pr[𝑦𝑖 = 𝛿] =
1− 𝜖
1+ 𝜖

𝜖|𝛿| (3.22)

with a query 𝑓 , the parameter 𝜖 ∈ (0,1) and every integer 𝛿.
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Definition 5 (Exponentialmechanism [21]). A randomized algorithm satisfies 𝜖-differential
privacy over a utility function 𝑢 ∶ℕ| | ×→ ℝ if  selects an element 𝑡 ∈ with the prob-
ability that

Pr[(, 𝑢, 𝜖,) = 𝑡 ∈] =
exp(𝜖𝑢(, 𝑡)/(2Δ𝑢)) ⋅𝜇(𝑡)

∑𝑟∈ exp((𝜖𝑢(, 𝑟)/(2Δ𝑢)) ⋅𝜇(𝑟)
(3.23)

where Δ𝑢 is the sensitivity that

Δ𝑢 = max
𝑟∈ max

𝑋,𝑋 ′∈ℕ| | ,||𝑋−𝑋 ′ ||1≤1
|𝑢(𝑋,𝑟)−𝑢(𝑋 ′, 𝑟)| (3.24)

where  is the range for output, and 𝜇 is a measure over .

In contrast to the Laplace mechanism, the exponential mechanism assigns a proba-
bility to each possible output in the group according to the utility score. By doing that,
the mechanism can output a precise element using the probabilities, and perturbation is
added for the selection procedure. Similarly, permute-and-flip [22] randomly chooses a
value from a set of options, weighed by a utility score and the privacy parameter 𝜖. For
each possible output, the mechanism simulates flipping a biased coin, and the item is re-
turned if the head is upwith a probability according to an exponential function. Otherwise,
it flips the coin for the next item with new probabilities assigned. Compared to the expo-
nential mechanism, the probability of outputting an item is updated for each round, and
the authors of [22] also show that the permute-and-flip mechanism never performs worse
than the exponential mechanism in expectation and better in other situations.

Meanwhile, differential privacy holds sequential and parallel composition properties
[23] as shown in Theorems 2 and 3. For a series of mechanisms [𝑘] = (1,… ,𝑘),
each 𝑖 is 𝜖𝑖-differentially private for 𝑖 ∈ [𝑘]. The sequential composition indicates that
(∑𝑖 𝜖𝑖)-differential privacy is guaranteed if the series of mechanisms are applied sequen-
tially to the input, and the parallel composition implies that (max𝑖 𝜖𝑖)-differential privacy
is achieved if the series of mechanisms are applied to different disjoint subsets of the input.

Theorem 2 (Sequential composition). If mechanism 𝑖 is 𝜖𝑖-differentially private, the se-
quence of [𝑘](𝑋 ) provides (∑𝑖 𝜖𝑖)-differential privacy.

Theorem 3 (Parallel composition). If mechanism 𝑖 is 𝜖𝑖-differentially private, and 𝑖
are disjoint subsets of the input domain , the sequence of [𝑘](𝑋 ∩𝑖) provides (max𝑖 𝜖𝑖)-
differential privacy.

The privacy parameter 𝜖 is often called the privacy budget as it can be intuitively inter-
preted this way. Following the intuition, a private algorithm has a total budget of 𝜖 that it
can spend on composed operations. Operations that have little budget will return noisier
results than operations with a large budget, so by composing operations in parallel when
possible and by carefully distributing the budget over the operations, one can achieve a
good trade-off between privacy and utility.

3.5.2 Differentially-private decision tree learning
Many previous works have proposed algorithms for training differentially private decision
trees. These algorithms address privacy leakage in regular trees by replacing the node
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Method Features Mechanism
Name Year Ref Cat. Num. Splitting Labeling
SuLQ ID3 2005 [24]  # Gaussian Gaussian
Private-RDT 2009 [25]   - Laplace
SuLQ-based ID3 2010 [26]   Laplace Laplace
DiffPID3 2010 [26]   𝐸𝑀 Laplace
DiffGen 2011 [27]   𝐸𝑀 Laplace
DT-Diff 2013 [28]   𝐸𝑀 Laplace
dpRFMV/dpRFTA 2014 [29]   - Laplace
DPDF 2015 [30]  # 𝐸𝑀 Laplace
Rana et al. 2015 [31]   Laplace Laplace
Smooth Random 2017 [32]   - 𝐸𝑀 *
ADiffP 2018 [33]  # 𝐸𝑀 Laplace
DPGDF 2019 [34]  # 𝐸𝑀 𝐸𝑀 *
BDPT 2020 [35]   𝐸𝑀 * Laplace
TrainSingleTree 2020 [36] #  𝐸𝑀 Laplace
DiffPrivLib 2021 [37] #  - 𝑃𝐹
PrivaTree This work   𝑃𝐹 * 𝑃𝐹

Table 3.3: Overview of methods for training differentially private decision trees, algorithms marked with * use
smooth sensitivity. Most methods use the exponential mechanism 𝐸𝑀 for splitting and Laplace for labeling
leaves. Methods without splitting a mechanism use random trees.

splitting and leaf labeling operations with differentially private alternatives. Fletcher and
Islam [38] wrote a survey on this topic which also examines ensembles such as in private
boosting [39].

Table 3.3 summarizes existing algorithms for training private decision trees. In the
‘features’ column, we indicate whether the algorithm considers categorical and numerical
features. We remark that algorithms for numerical splits can also support categories us-
ing one-hot encoding, and algorithms for categories can heuristically support numerical
features by applying binning. Note that unless computed using differential privacy, the
resulting bins reveal information about the training data. In that case, the model only
guarantees differential privacy for the leaves, which is equivalent to labelDP [40]. The
mechanism columns of the table indicate the private mechanisms used for node splitting
and leaf labeling. Besides the specific choice of mechanism, the way these mechanisms
are sequentially applied and the way the privacy budget is distributed have a significant
effect on the algorithm’s performance.

There are two main categories of algorithms for training differentially-private trees.
The first category trains random decision trees, that replace split searching by splitting
uniformly at random from the domain of possible feature values. A benefit of doing so is
that splitting does not depend on the data and does not consume any private budget, so
labeling can be performed within the complete budget. However, random splits do not
necessarily produce good leaves, as having worse splits leads to leaves that contain a mix
of samples from all classes. As a result, accurate labels will still cause misclassifications.



3

58 Introduction to Robust Decision Trees

For certain datasets, the poor quality of random splits strongly affects the performance
of the resulting tree. For this reason, random decision trees are almost exclusively used
in ensembles. Examples of such algorithms are Private-RDT [25], dpRFMV/dpRFTA [29],
Smooth Random Trees [32] and the implementation of DiffPrivLib trees [37].

The second category consists of algorithms that train a greedy tree by probabilistically
choosing a split weighed by a scoring function such as the information gain or the Gini im-
purity. SuLQ ID3 [24] and SuLQ-based ID3 [26] do so by adding Gaussian or Laplace noise
to the scores themselves, while works like DiffPID3 [26], DiffGen [27], DT-Diff [28] and
TrainSingleTree [36] do so not by perturbing the scores, but using the exponential mecha-
nism so the privacy budget does not have to be divided over so many queries. DPDF [30]
further increases the utility of the queries by bounding the sensitivity of the Gini impurity,
while ADiffP [33] dynamically allocates the privacy budget.

We compare against three of the latest algorithms for training private trees. BDPT [35]
is a greedy tree algorithm that uses the exponential mechanism for splitting but with
smooth sensitivity, allowing for a higher utility per query than previousworks. DPGDF [34]
is a similar algorithm that uses smooth sensitivity for creating the leaves rather than the
splits. This algorithm only supports categorical features. Finally, DiffPrivLib [37] offers
a recent implementation of random trees. For the leaves, it uses the permute-and-flip
mechanism, which performs better in practice than the exponential mechanism [22]. This
algorithm only supports numerical features.

3.5.3 Provable poisoning robustness
While it is difficult to provide strong guarantees for poisoning robustness, several works
have done so in the past. Steinhardt et al. [41] remove outliers based on metrics such
as distance from the centroid of a class and can formally guarantee the accuracy of con-
vex learners under specific poisoning attacks. Rosenfeld et al. [42] consider label-flipping
attacks in which only the labels can be changed by the attacker. They certify robust predic-
tion of specific test samples for linear models by giving a bound on the minimum number
of training labels that must be flipped to change the test sample’s prediction. Deep Parti-
tion Aggregation (DPA) [43] trains an ensemble on disjoint subsets of the training dataset
such that each sample is seen by only one ensemble member. Then, for a specific test sam-
ple, one can compute a bound on the number of train samples that should be perturbed to
flip the prediction. These previous methods do not apply to single decision tree models.

Several works have guaranteed robustness using differential privacy. Ma et al. [44]
prove general bounds on the attack cost for varying numbers of poisoned samples and
apply this analysis to logistic regression. Also, several works have used differentially
private neural networks to be more robust against poisoning attacks [45–47], sometimes
even demonstrating robustness in configurations in which the theoretical guarantees do
not apply. Unlike DPA, differential privacy guarantees the robustness of a global met-
ric such as accuracy, while methods like DPA guarantee robust predictions for each test
sample individually. The link between robustness and privacy is also explored in several
works [48–50].
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4
Efficient Training of Robust

Decision Trees

Current state-of-the-art algorithms for training robust decision trees have high runtime costs
and require hours to run. We present GROOT, an efficient algorithm for training robust deci-
sion trees and random forests that runs in a matter of seconds to minutes. Where before the
worst-case Gini impurity was computed iteratively, we find that we can solve this function
analytically to improve time complexity from (𝑛) to (1) in terms of n samples. Our re-
sults on both single trees and ensembles on 14 structured datasets as well as on MNIST and
Fashion-MNIST demonstrate that GROOT runs several orders of magnitude faster than the
state-of-the-art works and also shows better performance in terms of adversarial accuracy on
structured data.

This chapter is based on  D. Vos and S. Verwer. Efficient Training of Robust Decision Trees Against Adversarial
Examples, ICML 2021 [1].



4

64 4 Efficient Training of Robust Decision Trees

4.1 Introduction
Recently it has been shown that neural networks [2, 3] and similarly linear models, deci-
sion trees and support vector machines [4] are vulnerable to adversarial examples: per-
turbed samples that trick the model into misclassifying them. Much research has gone
into training robust neural networks [5–8]. These models perform well on unstructured
data such as images and audio, but decision tree ensembles often outperform them on
structured data. Additionally, when using a single decision tree, the models are easily
interpreted by humans. Recently the first methods have been proposed to train decision
trees and their ensembles robustly [9–12] but the state-of-the-art methods are expensive
to run.

In this work we propose GROOT, an efficient algorithm for training robust decision
trees. Like Chen et al. [10], we closely mimic the greedy recursive splitting strategy that
traditional decision trees use and we score splits with the adversarial Gini impurity. We
prove that the adversarial Gini impurity is concave with respect to the number of modified
data points and use its analytical solution to compute the function in constant time. Our
results show that GROOT trains trees 3 to 6 orders of magnitude faster than the state-
of-the-art method TREANT [11] and GROOT trains random forests 100-1000 times faster
than provably robust boosting [12]. Leveraging this speedup we can fit robust random
forests using the adversarial Gini impurity and we do not have to rely on a heuristic such
as Chen et al.

Moreover, GROOT scores competitively on adversarial accuracy which we evaluate
on 14 structured datasets as well as on MNIST and Fashion-MNIST. On the structured
data, both GROOT trees and GROOT forests outperform the state-of-the-art robust tree
and forest methods. GROOT trees obtain a small performance improvement over TRE-
ANT. GROOT forests outperform provably robust boosting. Interestingly, GROOT trees
and forests obtain top and similar ranks. Showing that in contrast to regular accuracy,
there is not much difference between the adversarial accuracy obtained by robust decision
trees and forests. On MNIST and Fashion-MNIST, provably robust boosting outperforms
GROOT forests on robustness by respectively 0.8% and 5.5% but takes 122 times and 162
times longer to train. We implement and publish GROOT’s source code in a Scikit-learn
[13] compatible classifier. We take inspiration from TREANT and allow users to easily
configure the perturbation range for each separate feature. Our main contributions are:

• An efficient score function that allows us to fit trees orders of magnitude faster than
the state of the art.

• An algorithm that achieves competitive performance to the state of the art in the
adversarial setting.

• A flexible implementation that allows users to specify attacks in terms of axis aligned
perturbations.
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Figure 4.1: Decision regions of GROOT trees attacked by different threat models (indicated above each image).
The threat model greatly influences the learned trees, e.g. robust decision trees against 𝐿∞ perturbations (top
right) are different from trees robust against other attackers (bottom).

4.2 Specifying Threat Models
In our work, we assume the existence of an attacker that knows the model and perturbs
samples according to a user-specified threat model. Assuming that the attacker knows
the model means that we are also protected from attacks that assume only ‘black-box’
access to the model. To support a wide range of attack types we take inspiration from
TREANT [11] and let the user define the perturbation limits for each individual feature.
The specification is as follows:

• “”or None: This feature cannot be perturbed.
• > or <: This feature can be increased / decreased.
• >: This feature can only be perturbed to a higher value.
• <: This feature can only be perturbed to a lower value.
• <>: This feature can be perturbed to any value.
• 𝜖: The feature can be perturbed by a distance of 𝜖.
• (𝜖𝑙 , 𝜖𝑟 ): The feature can be perturbed 𝜖𝑙 left or 𝜖𝑟 right.

We visualize GROOT trees with a variety of threat models in Figure 4.1. It is worth noting
that all these cases can be translated to the tuple notation, e.g. we can encode > as (0,∞)
or a number 𝜖 as (𝜖,𝜖). For conciseness we only use the tuple notation in the algorithms
in section 4.4. When we set the threat model to 𝜖 for each feature, it behaves identically
to an 𝐿∞ norm. We also allow the user to choose whether one or both of the classes can
be perturbed.
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In the rest of the chapter we use an 𝐿∞ threat model where both classes move and
where features are scaled to the range [0,1] since this allows us to compare to existing
work. To foster further research we implemented GROOT according to the Scikit-learn
API and published the code on GitHub¹.

4.3 Adversarial Gini Impurity
Similar to robust decision trees [10] we use the worst-case Gini impurity to score threshold
values. We show that we can efficiently compute this function by leveraging its concavity.

4.3.1 Adversarial Gini Impurity for Two Moving Classes
We typically fit decision trees with a splitting criterion such as the Gini impurity. To
determine the quality of a split we then take the weighted average of the scores on both
sides. We can define the Gini impurity for two classes as:

𝐺(𝑛0, 𝑛1) = 1−( 𝑛0
𝑛0+𝑛1 )

2−( 𝑛1
𝑛0+𝑛1 )

2 (4.1)
Where 𝑛0 and 𝑛1 are the number of samples of label 0 and 1 respectively. Then we

combine this into a score function by taking the weighted average with respect to num-
ber of samples on each side of the split (other works use the Gini gain which behaves
identically):

𝑆(𝑙0, 𝑙1, 𝑟0, 𝑟1) =
(𝑙0+ 𝑙1) ⋅𝐺(𝑙0, 𝑙1)+ (𝑟0+ 𝑟1) ⋅𝐺(𝑟0, 𝑟1)

𝑙0+ 𝑙1+ 𝑟0+ 𝑟1
(4.2)

Where 𝑙0 and 𝑙1 are the number of samples on the left side of the split of label 0 and 1
respectively. Similarly 𝑟0 and 𝑟1 represent samples on the right. Normally one searches for
a split that minimizes this score function. Instead, we keep track of a set 𝐼 that contains
all samples close enough to the split to cross it under adversarial influence. We minimize
the score function after the attacker maximizes it by perturbing the samples in 𝐼 .

Where one normally minimizes the Gini impurity, we assume an attacker that aims
to maximize 𝑆(𝑙0, 𝑙1, 𝑟0, 𝑟1) by moving samples from 𝐼 to different sides of the split. We
visualize this maximization problem in Figure 4.2. Here, 𝑖1 is the number of points with
label 1 that are close enough to the split that the adversary can move them to either side.
Mathematically we are looking for the integer 𝑚1 ∈ [0, 𝑖1] such that 𝑚1 points of 𝐼1 move
to the left side of the split and 𝑖1−𝑚1 to the right. Similarly we have an 𝑖0 and 𝑚0 for the
class 0 samples. The score function under attacker influence is:

𝑆robust(𝑙0, 𝑙1, 𝑟0, 𝑟1, 𝑖0, 𝑖1) = max
𝑚1∈[0,𝑖1],𝑚0∈[0,𝑖0]

𝑆(𝑙0+𝑚0, 𝑙1+𝑚1, 𝑟0+ 𝑖0−𝑚0, 𝑟1+ 𝑖1−𝑚1) (4.3)

We can then write the 𝑚′
1 and 𝑚′

0 that maximize it as:

𝑚′
1,𝑚

′
0 = argmax

𝑚1∈[0,𝑖1],𝑚0∈[0,𝑖0](
(𝑙0+𝑚0)(𝑙1+𝑚1)
𝑙0+ 𝑙1+𝑚1+𝑚0

+
(𝑟0+ 𝑖0−𝑚0)(𝑟1+ 𝑖1−𝑚1)
𝑟0+ 𝑟1+ 𝑖0+ 𝑖1−𝑚1−𝑚0 ) (4.4)

The algorithm by Chen et al. [10] optimizes a similar function by iterating through the
𝐼 samples to perform gradient ascent. However, since the function is concave with respect
¹https://github.com/tudelft-cda-lab/GROOT

https://github.com/tudelft-cda-lab/GROOT
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Figure 4.2: Example of the adversarial Gini impurity where samples can move in the range of the arrows. We
want to move a number of samples from 𝐼 over the threshold (line, center) to maximize the weighted average of
Gini impurities. In this example we can move the single blue (filled) sample from 𝑅𝐼 into 𝐿𝐼 to maximize it.

to 𝑥 and 𝑦, we can do this faster by maximizing the function analytically and rounding to
a near integer solution. The maxima form the following line (proofs in the appendix²):

𝑚′
0 =

𝑙1(𝑟0+ 𝑖0)− 𝑙0(𝑟1+ 𝑖1)
𝑙1+ 𝑟1+ 𝑖1

+
(𝑙0+ 𝑟0+ 𝑖0)𝑚′

1
𝑙1+ 𝑟1+ 𝑖1

(4.5)

Using gradient ascent and given enough movable samples one would end up on the
optimal line, but not necessarily on the closest point on the line to the starting values for
𝑚1 and 𝑚0. We argue that the closest point is intuitively a better solution than a random
point on the line, because it represents the least number of samples to move. Therefore
in GROOT we find the closest point on the solution line to the starting values of 𝑚1,𝑚0
(|𝐿𝐼1|, |𝐿𝐼0|) then round to the nearest integers.

Computing the point and rounding it takes (1) time. Therefore we have an efficient
method (constant time) to compute 𝑆robust (Equation 4.2).

4.4 GROOT
We introduce GROOT (Growing RObust Trees), an algorithm that trains decision trees
that are robust against adversarial examples generated from a user-specified threat model.
The algorithm stays close to regular decision tree learning algorithms but searches through
more candidate splits with a robust score function and propagates samples according to an
attacker. Like regular decision tree learning algorithms, GROOT runs in(𝑛 log𝑛) time in
terms of 𝑛 samples. Similar to these algorithms, GROOT greedily makes splits according
to a heuristic. This strategy performs well in practice but has no provable bound [14].

4.4.1 Scoring Candidate Splits
Similar to regular decision tree learning algorithms we can search over all possible splits
and compute a score function to find the best split. In Algorithm 4 we iterate over each
²https://arxiv.org/abs/2012.10438

https://arxiv.org/abs/2012.10438
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Algorithm 4 Find Best Robust Split on Numerical feature
Input: feature values 𝑋 , perturbation limits (𝜖𝑙 , 𝜖𝑟 )
𝑋1 refers to the samples with label 1
1: 𝑆 ← 𝑋 ∪ {𝑜− 𝜖𝑙 |𝑜 ∈ 𝑋 } ∪ {𝑜+ 𝜖𝑟 |𝑜 ∈ 𝑋 }
2: for 𝑠 ∈ 𝑆 do
3: 𝑅← {𝑜|𝑜 ∈ 𝑋 ∧ 𝑜 > 𝑠+ 𝜖𝑟 }
4: 𝑅𝐼 ← {𝑜|𝑜 ∈ 𝑋 ∧ 𝑠 < 𝑜 ≤ 𝑠+ 𝜖𝑟 }
5: 𝐿𝐼 ← {𝑜|𝑜 ∈ 𝑋 ∧ 𝑠− 𝜖𝑙 < 𝑜 ≤ 𝑠}
6: 𝐿← {𝑜|𝑜 ∈ 𝑋 ∧ 𝑜 ≤ 𝑠− 𝜖𝑙}
7: (𝑚1𝑠 ,𝑚0𝑠)← number of samples from 𝐼 to move left ⊳ See Equation 4.5
8: 𝑚1𝑠 ← round(𝑚1𝑠), 𝑚0𝑠 ← round(𝑚0𝑠)
9: 𝑔𝑠 ← 𝑆(|𝐿0|+𝑚0𝑠 , |𝐿1|+𝑚1𝑠 , |𝑅0|+ |𝐼0|−𝑚0𝑠 , |𝑅1|+ |𝐼1|−𝑚1𝑠) ⊳ See Equation 4.2

10: end for
11: 𝑠′ ← argmin𝑠 𝑔𝑠
12: split with threshold 𝑠′

Output: (𝑠′, 𝑔𝑠′ ,𝑚1𝑠′ , 𝑦𝑠′)

Algorithm 5 Fit Robust Tree on Numerical Data
Input: sample set 𝑋 , perturbation limits (𝜖𝑙 , 𝜖𝑟 )
𝑋1 refers to the samples with label 1
1: if stopping criterion (e.g. maximum depth) then
2: create Leaf(|𝑋0|, |𝑋1|)
3: else
4: for 𝑓 ← 1...𝐹 do
5: 𝑠𝑓 , 𝑔𝑓 ,𝑚1𝑓 ,𝑚0𝑓 ← BestRobustSplit(𝑋 𝑓 , 𝜖𝑙 , 𝜖𝑟 )
6: end for
7: 𝑓 ′ ← argmin𝑓 𝑔𝑓
8: determine 𝑅, 𝑅𝐼 , 𝐿𝐼 , 𝐿 for split 𝑓 ′ as in Alg. 4
9: move 𝑚1𝑓 ′ random samples from 𝐼1 to 𝐿𝐼1, move remainder in 𝐼1 to 𝑅𝐼1

10: move 𝑚0𝑓 ′ random samples from 𝐼0 to 𝐿𝐼0, move remainder in 𝐼0 to 𝑅𝐼0
11: node𝑙 ← FitRobustTree(𝐿∪𝐿𝐼 )
12: node𝑟 ← FitRobustTree(𝑅∪𝑅𝐼 )
13: create DecisionNode(𝑠𝑓 ′ ,node𝑙 ,node𝑟 )
14: end if

sample in sorted order to identify candidate splits. We evaluate each candidate split with
the adversarial Gini impurity from Section 4.3 to find the split that is accurate against
an adversary. Below, we describe our algorithm for numerical features; for categorical
features, we refer to the Appendix³. The time complexity in terms of 𝑛 samples for both
cases is bounded by (𝑛 log𝑛) per feature.

In regular decision tree learning algorithms we score candidate splits at each position
in which a sample moves from the right to the left side. However, when an adversary can

³https://arxiv.org/abs/2012.10438

https://arxiv.org/abs/2012.10438
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Figure 4.3: Runtimes of decision trees and ensembles in seconds on a logaritmic scale. Decision trees, random
forests and gradient boosting enjoy Scikit-learn’s optimized implementation. GROOT and Chen et al. consis-
tently run 100-1000 times faster than TREANT and provably robust boosting. TREANT’s spambase runs were
terminated after 24 hours.

perturb samples there are more possible splits that affect the sample counts on each side.
Therefore we consider also candidate splits where a movable sample becomes in or out of
range of 𝐼 . Take for example a sample at position 0.4 that can be perturbed in a radius of
0.1, we score a split at 0.3, 0.4 and 0.5. At the start of Algorithm 4 we sort all candidate
splits. We can then compute the sample counts and evaluate each split in (1) time, as
explained in Section 4.3. Recall that we consider at maximum 3𝑛 splits, where 𝑛 is number
of samples. Therefore the time complexity of evaluating splits is (𝑛) per feature and this
means the fitting run time is dominated by the sorts of complexity (𝑛 log𝑛).
4.4.2 Propagating Samples
When fitting regular decision trees one can simplymove all samples lower than a threshold
left and higher to the right. In our robust trees we account for samples that the adversary
moves by modifying this propagation which we define in Algorithm 5. We do not only
keep track of left (𝐿) and right (𝑅) samples, but also store an ‘intersection’ set 𝐼 = 𝐿𝐼 ∪𝑅𝐼
that contains samples that can move to both sides. Here 𝐿𝐼 are the samples from 𝐼 that
were originally on the left side and 𝑅𝐼 were originally on the right side.

In section 4.3 we showed that 𝑚′
1 and 𝑚′

0 are the optimal values for the adversarial
Gini impurity. From 𝐼1 we move samples over the split to place 𝑚′

1 samples on the left and
𝐼1 −𝑚′

1 on the right. If there were, before moving, fewer than 𝑚′
1 samples on the left we

move samples from the right. If there were more samples on the left we move them to the
right. We do this to keep as many samples as possible on the original side of the split. We
repeat the same procedure for 𝑚0 and 𝐼0.
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The actual samples that move are randomly selected from the intersection 𝐼 this makes
our algorithm non-deterministic and therefore with different randomization seeds the al-
gorithm can fit different trees. Our intuition behind random selection is that it prevents
influence on the data distribution in splits further down the tree. If we were to move
e.g. the closest samples to the threshold over the split, these samples might correlate with
other features and cause any side of the split to become biased to specific values of that
feature. The strategy differs between methods, e.g. TREANT chooses to move a sample
to the side where it currently incurs the greatest loss. In future works, one could fit trees
by optimizing all splits at once instead of a greedy method. In that case it is not needed to
implement a sample propagation strategy but algorithms for optimal decision trees come
at the cost of runtime.

4.4.3 GROOT Random Forests
To enable its use in ensembles we also implement a random forest of GROOT decision trees.
In random forests it is important that the individual models have low covariance which we
achieve using the same techniques as regular random forests [15]. Specifically, we train
each decision tree on a bootstrap sample of the original training set and limit each decision
node to scanning a random selection of

√
𝑓 features (given 𝑓 the total number of features).

We do not limit the size of the decision trees. Similarly to Scikit-learn’s implementation
of random forests, the ensemble makes predictions by averaging and then rounding all
individual tree predictions.

4.5 Results
We present results on 14 structured datasets as well as MNIST [16] and Fashion-MNIST
[17]. We compare GROOT against regular tree based models, the methods by Chen et al.,
TREANT and provably robust boosting. For the regular models we use scikit-learn’s [13]
implementation as it is widely used for research in the field. The used hyperparameters
are summarized in Table 4.4. All datasets can be retrieved from OpenML⁴, their specific
versions, size and corresponding 𝜖 values can be found in Table 4.1. We removed any data
row with missing values as it is unclear how to measure robustness against these samples.

4.5.1 Training Runtime
To compare the efficiency of the algorithms, we plot the run times of each run in Figure 4.3,
the results shown are averaged over 5 data folds. All experiments ran on a Linux machine
with 16 Intel Xeon CPU cores and 72GB of RAM total. Each algorithm instance ran on a
single core and therefore did not use any parallel optimizations.

Regarding the single decision tree models, regular decision trees enjoy the optimized
code by Scikit-learn which is clearly the fastest. Comparing TREANT and GROOT, we
see that our algorithm runs three to six orders of magnitude faster. TREANT exhaustively
searches for attacks using an exponential search and uses a sequential quadratic program-
ming solver to optimize the loss function which likely contributes to the higher run time.
The heuristic by Chen et al. has a similar runtime as GROOT as it only uses a different
splitting criterion, which we implemented in the code of GROOT.

⁴https://www.openml.org/

https://www.openml.org/


4.5 Results

4

71

Figure 4.4: Average adversarial accuracy (left) and accuracy scores (right) over 13 structured datasets. TREANT
and GROOT fit the most robust decision trees while provably robust boosting and GROOT random forests fit the
most robust ensembles. More robust models tend to score up to 5% worse on regular accuracy.

In the ensemble model results we again see very fast results from the optimized imple-
mentations by Scikit-learn (Random forest and Gradient boosting) and Chen et al. boost-
ing which is built on XGBoost [18]. Still, GROOT and the Chen et al. forest run 2 to 3
orders of magnitude faster than provably robust boosting.

4.5.2 Predictive Performance on Structured Data
To determine the quality of the models produced by each algorithm we measure adversar-
ial accuracy using the exact MILP attack [9] which we modified to a feasibility problem as
done in [12] to improve run time. The adversarial accuracy is the accuracy after samples
have been optimally perturbed within an 𝐿∞ ball of radius 𝜖.

We encoded the above threat models in TREANT’s attack rules using precondition
[−∞,∞] and postcondition 𝜖 or−𝜖. Each rule has cost 1 and the attacker has a budget equal
to the depth of the trees. In the original TREANT implementation, it allows attack rules to
be applied to the same feature multiple times (in each decision node), resulting in attacks
larger than 𝜖. To exactly match the threat model specifications, we modify TREANT to
only use attack rules once per feature. Preliminary testing without this modification gave
poor results. Given these modifications the attack rules exactly encode the 𝐿∞ radius
attack model.

Another popular method for measuring robustness (e.g. in [9, 10]) is to compute the
average perturbation distance required to cause a misclassification. We choose against
this metric as it assumes features can perturb arbitrarily and with equal cost.

We train each model on each dataset with 5 fold stratified cross validation. All single
decision trees were trained up to a depth of 4 to maintain interpretability. We imple-
mented GROOT and the heuristic by Chen et al. in Python but used TREANT’s existing
implementation with before-mentioned minor modifications. Scikit-learn uses the Gini
impurity and TREANT optimizes the sum of squared errors. All models required at least
10 samples to make a split and 5 samples to create a leaf. We allowed all models to split
multiple times on the same feature. All ensembles were limited to training 100 trees. We
report the average adversarial accuracy and regular accuracy over 13 of the 14 structured
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Dataset Samples Features 𝜖

banknote-authentication (1) 1372 4 0.1
blood-transfusion (1) 748 4 0.1
breast-cancer (1) 683 9 0.3
climate-model-simulation (4) 540 18 0.1
cylinder-bands (2) 277 37 0.1
diabetes (1) 768 8 0.05
haberman (1) 306 3 0.1
ionosphere (1) 351 34 0.2
parkinsons (1) 195 22 0.1
planning-relax (1) 182 12 0.1
sonar (1) 208 60 0.1
spambase (1) 4601 57 0.05
SPECTF (2) 267 44 0.1
wine (1) 6497 11 0.05

Table 4.1: Structured datasets used by OpenML (version) name. Whenever possible, 𝜖 is taken from earlier work.

datasets in Figure 4.4. We present the number of wins and average ranks over the datasets
in Table 4.2. In both, we left out the results on spambase as TREANT did not finish fitting
after multiple days of running.

While all models considered scored well on accuracy, the scores in the adversarial set-
ting differ. Regarding single trees, TREANT and GROOT perform similarly on adversarial
accuracy and both significantly improve on regular decision trees by approximately 33%.
GROOT obtains just over 1% more adversarial accuracy on average than TREANT, only
one more win, but does obtain a higher mean overall rank. The heuristic by Chen et al.
score approximately 7% worse than TREANT and GROOT. The individual results for each
dataset are given in the appendix⁵.

The ensemble results show that the GROOT random forest and provably robust boost-
ing clearly achieve the best adversarial accuracy scores by about 5% difference over Chen
et al. forest. Moreover, GROOT performs about 2.5% better than provably robust forest on
average and obtains the best mean rank across all methods. The results from Chen et al.
boosting were significantly lower than the scores from the random forest. We expect that
the boosting model is more sensitive to the specific hyperparameters and that one could
improve the scores using a hyperparameter search.

Interestingly, there is no clear difference between the best ensemble models and single
decision tree models with regards to adversarial accuracy. This is in contradiction with
the regular accuracy scores of decision trees and random forests. In those scores we see a
clear 5% difference.

⁵https://arxiv.org/abs/2012.10438

https://arxiv.org/abs/2012.10438
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Model Nr. Wins Mean rank
Chen et al. boosting 0 7.5
Chen et al. forest 3 4.3
Chen et al. tree 0 5.1
Decision tree 0 7.9
GROOT forest 9 1.5
GROOT tree 7 1.8
Gradient boosting 0 9.8
Provably robust boosting 2 3.7
Random forest 0 8.2
TREANT tree 6 2.7

Table 4.2: Summary of relative adversarial accuracy scores on 13 structured datasets.

MNIST 2 vs 6
Model Acc. Adv. acc. Time
Random forest 99.7% 0.0% 3.9 sec.
Chen et al. forest 98.9% 89.1% 2.1 min.
GROOT forest 99.4% 91.9% 2.5 min.
Provably robust boosting 99.2% 92.7% 5.1 hr.

Fashion-MNIST sandals vs sneakers
Random forest 95.8% 0.0% 5.9 sec.
Chen et al. forest 90.0% 52.6% 4.3 min.
GROOT forest 89.0% 70.4% 5.0 min.
Provably robust boosting 88.9% 75.9% 13.5 hr.

Table 4.3: Comparison of tree ensembles on image data. Provably robust boosting achieves the best adversarial
accuracy but takes in the order of hours to run while GROOT runs in minutes and significantly improves on
other fast models.

4.5.3 Predictive Performance on Images
To compare predictive performance on image data we present results on MNIST and
Fashion-MNIST. GROOT is limited to binary classification problems so we modify the
datasets to MNIST 2 vs 6 and Fashion-MNIST sandals vs sneakers, similar to what previ-
ous works have done [9, 10, 12]. The prediction scores and runtimes are given in Table
4.3. On these datasets we ran provably robust boosting with parallelization enabled. All
models ran on a system with 8GB RAM and 4 Intel i7-4710MQ CPU cores (8 logical cores),
the hyperparameters were the same as in the previous experiment. The datasets were ran-
domly split in a 70%-30% stratified train-test split and were evaluated against an 𝐿∞ radius
of 0.4.

On bothMNIST and Fashion-MNIST provably robust boosting achieved the best scores
on adversarial accuracy. GROOT significantly improved on the adversarial accuracy scores
of the other two models and scores close (0.8% difference) to the adversarial accuracy of
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(a) MNIST 2 vs 6 (b) Fashion-MNIST sandals vs sneakers

Figure 4.5: Minimal adversarial examples, 𝐿∞ distances from the original are given below each example, larger
is better. Some images already get misclassified without modification.

Parameter Decision
tree

Chen et al.
tree

GROOT
tree

TREANT
tree

Random
forest

Gradient
boosting

Chen et al.
boosting

Chen et al.
forest

GROOT
forest

Provably
robust

boosting
max_depth 4 4 4 4 None 8 8 None None 8

min_samples_split 10 10 10 10 10 10 - 10 10 10
min_samples_leaf 5 5 5 - 5 5 - 5 5 5

n_estimators - - - - 100 100 100 100 100 100
𝜂 - - - - - - 0.2 - - 0.2
𝛾 - - - - - - 1.0 - - -

min_child_weight - - - - - - 1 - - -
affine - - - False - - - - - -

Table 4.4: Hyperparameters of all models used in our experiments. Parameters that were not applicable were
left blank. Except for n_estimators, the values were copied from their original works wherever possible.

provably robust boosting on MNIST. GROOT achieves these scores while running more
than 100 times faster.

Previous works [19] have described the accuracy-robustness trade-off and we find it
here too. Particularly on the Fashion-MNIST dataset the most robust model sacrifices 6.9%
regular accuracy where on the MNIST dataset this difference is 0.5%.

Figure 4.5 shows theminimal 𝐿∞ norm perturbations required to change the prediction
of each model. We generate the adversarial examples using a MILP formulation for attack
tree ensembles [9]. The random forest models need visibly more perturbed feature values
than the provably robust boosting model so by optimizing the 𝐿∞ norm they also increase
robustness in the 𝐿0 norm. We expect this is due to the random forest approach of training
each decision node on a limited selection of features which causes more variety in the
selected features.
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4.6 Discussion and Conclusions
We present GROOT, an algorithm for learning robust decision trees. It uses an analytical
solution for computing the adversarial Gini impurity and by doing so runs two to six
orders of magnitude faster than the state-of-the-art approaches. Our results show that
GROOT trees score competitively with TREANT and so do GROOT random forests with
provably robust boosting. While the single GROOT trees are the same size as those of
TREANT, there is a noticeable difference between the size of random forest and boosting
models. In the case of random forests we do not limit the size of the trees, where gradient
boosting trees were trained to a maximum depth of 8 (this is intended and does not reduce
model performance). This means that while our method trains quickly, the models suffer
from relatively longer inference and robustness verification times. In further research, the
random forests may be post-processed to reduce the size.

For the sake of comparison, we experimented on the same public datasets that similar
works on robustness used, but these datasets were originally not intended for research into
adversarial attacks. In the near future, wewill apply themethodswe discussed to problems
where adversarial modifications are an important concern such as fraud, malware and
intrusion detection. Chen et al. [20] have successfully applied robust decision trees for
such security applications. Our fast splitting criterion can also be used to speed up their
algorithm.

While greedy algorithms that choose locally optimal splits are popular for fitting de-
cision trees, they can theoretically perform arbitrarily poorly. There have been many suc-
cessful efforts in training optimal decision trees [21–24] and their results show that the
greedy algorithms come close to optimal performance. An optimal algorithm for robust
decision trees will determine whether the greedy approaches for robust trees perform as
well as their regular counterparts.
We conclude that:

• By solving the adversarial Gini impurity analytically we can now fit robust trees
with the same time complexity as regular trees: (𝑛 log𝑛), for 𝑛 samples.

• This algorithm, GROOT, runs orders of magnitude faster than the state-of-the-art
works and as efficiently as an existing heuristic.

• GROOT consistently achieves scores competitive with the state-of-the-art work in
terms of robustness.
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5
Robust Optimal

Classification Trees

Decision trees are a popular choice of explainable model, but just like neural networks, they
suffer from adversarial examples. Existing algorithms for fitting decision trees robustly against
adversarial examples are greedy heuristics and lack approximation guarantees. In this paper
we propose ROCT, a collection of methods to train decision trees that are optimally robust
against user-specified attack models. We show that the min-max optimization problem that
arises in adversarial learning can be solved using a single minimization formulation for deci-
sion trees with 0-1 loss. We propose such formulations in Mixed-Integer Linear Programming
and Maximum Satisfiability, which widely available solvers can optimize. We also present
a method that determines the upper bound on adversarial accuracy for any model using bi-
partite matching. Our experimental results demonstrate that the existing heuristics achieve
close to optimal scores while ROCT achieves state-of-the-art scores.

This chapter is based on D. Vos and S. Verwer. Robust Optimal Classification Trees Against Adversarial Examples,
AAAI 2022 [1].
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5.1 Introduction
While breakthroughs in machine learning research have enabled training of powerful pre-
dictive models, most models are still vulnerable to adversarial examples, samples with tiny
perturbations that cause them to be misclassified. Since the discovery of adversarial ex-
amples in neural networks [2] much work has gone into training models that are robust
to these attacks and recently, the first efforts were made to train robust decision trees
against adversarial examples [3–5]. However, the current methods are greedy and offer
no performance guarantees. They can fail on arbitrary datasets and give results no better
than random guessing (Figure 5.1).

In decision tree learning, there has been an increased interest in optimal learning al-
gorithms [6]. Although the problem of learning decision trees is NP-complete [7], these
methods can produce optimally accurate decision trees for many (typically small) datasets.
Most methods translate the problem to well-known frameworks such as Mixed-Integer
Linear Programming [8, 9], Boolean Satisfiability [10, 11], andConstraint Programming [12].

In this work, we combine these lines of research and propose Robust Optimal Classi-
fication Trees (ROCT), a method to train decision trees that are optimally robust against
user-specified adversarial attack models. This model is robust in the sense that it pre-
dicts the correct ground-truth label in a box of specified size surrounding each sample,
this optimizes robustness against corrupted instances [13]. Like existing robust decision
tree learning algorithms [4, 5], ROCT allows users to specify a box-shaped attack model
that encodes an attacker’s capability to modify feature values with the aim of maximizing
loss. Existing robust decision tree learning methods use a greedy node splitting approach.
Other robust learning algorithms such as adversarial training [14] solve the inner maxi-
mization (adversarial attacks) and the outer minimization problems (minimize expected
loss) separately. In this work we prove that this separation is not needed in the case of
decision trees. We provide a formulation that solves the problem of fitting robust decision
trees exactly in a single minimization step for trees up to a given depth.

ROCT¹ uses a novel translation of the problem of fitting robust decision trees into

¹https://github.com/tudelft-cda-lab/ROCT

(a) GROOT (b) TREANT (c) ROCT (ours)

Figure 5.1: Existing methods (a)(b) greedily optimize one split at a time and cannot find a good tree to fit the
XOR-shaped data. ROCT optimizes the entire tree at once and finds the optimal tree that exactly fits the dataset.

https://github.com/tudelft-cda-lab/ROCT
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Mixed-Integer Linear Programming (MILP) or Maximum Satisfiability (MaxSAT) formu-
lations. We also propose a new upper-bound calculation for the adversarial accuracy of
any machine learning model based on bipartite matching, which can be used to choose ap-
propriate attack models for experimentation. Our results show that ROCT trees optimized
with a warm-started MILP solver achieve state-of-the-art adversarial accuracy scores com-
pared to existing methods on 8 datasets. Moreover, given sufficient solver time, ROCT
provably finds an optimally robust decision tree. In our experiments, ROCT was able
to fit and prove optimality of depth 2 decision trees on six datasets. Where there are no
known approximation bounds on the performance of existing heuristic methods for fitting
robust decision trees, our results demonstrate that they are empirically close to optimal.

5.2 ROCT: Robust Optimal Classification Trees
When training robust classifiers we find ourselves in a competition with the adversary.
Madry et al. [14] present the robust learning problem as the following min-max optimiza-
tion problem:

min
𝜃

𝔼(𝑥,𝑦)∼𝐷(max
𝛿∈𝑆

𝐿(𝜃,𝑥 +𝛿,𝑦)) (5.1)

Like in traditional machine learning, the goal is to find model parameters 𝜃 that min-
imize the expected loss 𝐿(𝜃,𝑥,𝑦) over feature 𝑥 and class 𝑦 variables from distribution 𝐷
(outer minimization). This minimization takes into account that an attacker aims to maxi-
mize this loss by changing samples (𝑥,𝑦) from 𝐷 with perturbation 𝛿 ∈ 𝑆 (inner maximiza-
tion), where 𝑆 is a predefined set of allowed perturbations. Intuitively, the min-max nature
of training robust models makes it a much more challenging optimization problem than
regular learning. For example in adversarial training [14] one approximately optimizes
this function by incorporating expensive adversarial attacks into the training procedure.
In this work, we demonstrate that this intuition is wrong when learning decision trees.

Let  denote a decision tree that maps any data point 𝑥 to a leaf node 𝑡 =  (𝑥) and
assigns 𝑐𝑡 as its prediction. 𝐿 denotes the set of leaf nodes. A leaf node 𝑡 represents a box
in feature space 𝑡𝑓 = {𝑥′ ∈ℝ𝑝 ∣ 𝑡 =  (𝑥)}. When this set intersects with the space of possible
perturbations 𝑆(𝑥) = {𝑥 + 𝛿 ∣ 𝛿 ∈ 𝑆}, we say 𝑡 is reachable and denote the set of reachable
leafs using  𝑆(𝑥)

𝐿 = {𝑡 ∈ 𝐿 ∣ 𝑡𝑓 ∩ 𝑆(𝑥) ≠ ∅}. We now present Robust Optimal Classification
Trees (ROCT), which turns Equation 5.1 into a single minimization problem that can be
solved using combinatorial optimization:

Theorem 4. Robust learning (Equation 5.1) with 0-1 loss in the case of binary classification
trees is equivalent to:

min
𝜃

∑
(𝑥,𝑦)∼𝐷

⎡
⎢
⎢
⎢
⎣

⋁
𝑡∈ 𝑆(𝑥)

𝐿

𝑐𝑡 ≠ 𝑦
⎤
⎥
⎥
⎥
⎦

Proof. For 0-1 loss 𝐿0-1, Equation 5.1 is equivalent to:

min
𝜃

∑
(𝑥,𝑦)∼𝐷

(max
𝛿∈𝑆

𝐿0-1(𝜃,𝑥 +𝛿,𝑦))
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Any perturbation in the inner maximization max𝛿∈𝑆 such that  (𝑥) =  (𝑥 + 𝛿) gives the
same classification outcome for 0-1 loss. The maximization over all 𝛿 ∈ 𝑆 can therefore be
replaced by a maximization over all reachable leaf nodes 𝑡 ∈  𝑆(𝑥)

𝐿 . By definition, the 0-1
loss term is equivalent to the absolute difference |𝑐𝑡 −𝑦 | of prediction 𝑐𝑡 and label 𝑦, which
gives:

min
𝜃

∑
(𝑥,𝑦)∼𝐷(

max
𝑡∈ 𝑆(𝑥)

𝐿

|𝑐𝑡 −𝑦 |
)

The term |𝑐𝑡 − 𝑦 | takes value 1 when 𝑐𝑡 ≠ 𝑦 and 0 otherwise. When any of the reachable
leaves 𝑡 ∈  𝑆(𝑥)

𝐿 predict 𝑐𝑡 ≠ 𝑦, the inner maximization becomes 1. This is equivalent to the
disjunction over 𝑐𝑡 ≠ 𝑦 for all reachable leaves:

min
𝜃

∑
(𝑥,𝑦)∼𝐷

⎡
⎢
⎢
⎢
⎣

⋁
𝑡∈ 𝑆(𝑥)

𝐿

𝑐𝑡 ≠ 𝑦
⎤
⎥
⎥
⎥
⎦

ROCT solves this formulation in one shot using discrete optimization solvers. We
present 6 versions that vary in the kind of solver (MILP or MaxSAT) and type of variables
used to represent splitting thresholds, see Table 5.2.

5.2.1 Attack Model
We assume the existence of a white-box adversary that can move all samples within a
box-shaped region around each sample. This box-shaped region is defined by two vectors
Δ𝑙 and Δ𝑟 from ℝ𝑛 specifying for each feature 𝑖 ∈ [1, 𝑛] how much 𝑖 can be decreased and
increased respectively, i.e., 𝑆 = {𝛿 ∈ℝ𝑛 ∶ ∀1≤𝑖≤𝑛Δ𝑙

𝑖 ≤ 𝛿𝑖 ≤Δ𝑟
𝑖 }. For the ease of our formulation,

we scale all feature values to be in the range [0,1], which means that the values in Δ𝑙 and
Δ𝑟 encode distance as a fraction of the feature range. While our encoding is more flexible,
we only test on attack models where Δ𝑙 = Δ𝑟 = (𝜖,… , 𝜖), encoding an 𝐿∞ norm with 𝜖
perturbation radius. This allows us to easily evaluate performance against a variety of
attacker strengths.

5.2.2 Intuition
We borrow much of the notation from OCT [8], summarized in Table 5.1. Figure 5.2 vi-
sualizes the variables in ROCT and Figure 5.3 shows an example of the constraints for a
single sample and a tree of depth 1. In the regular learning setting where samples cannot
be perturbed by an adversary, samples can only propagate to the left or right child of deci-
sion node. In the adversarial setting, samples can permute and are able to reach both the
left and right sides, i.e. 𝑠𝑖𝑚0 and 𝑠𝑖𝑚1 can be true at the same time.

Given the attacker capabilities Δ𝑙 and Δ𝑟 , we create the constraints to set the variables
𝑠. To determine whether sample 𝑋𝑖 can move left of the chosen split we can decrease its
feature values as far as the attacker capabilities allow (𝑋𝑖−Δ𝑙) and see if it reaches the left
side. Similarly to see if it reaches the right side we increase the feature values maximally
(𝑋𝑖+Δ𝑟 ). We give two kinds of constraints for determining these 𝑠 variables that differ in
whether decision thresholds are represented by binary or continuous variables.
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Symbol Type Definition
𝑎𝑗𝑚 variable node 𝑚 splits on feature 𝑗
𝑏𝑣𝑚 variable node 𝑚’s threshold is left/right of 𝑣
𝑏′𝑚 variable node 𝑚’s continuous threshold value
𝑐𝑡 variable leaf node 𝑡 predicts class 0 or 1
𝑠𝑖𝑚0 variable sample 𝑖 can move left of node 𝑚
𝑠𝑖𝑚1 variable sample 𝑖 can move right of node 𝑚
𝑒𝑖 variable sample 𝑖 can be misclassified
𝑋𝑖𝑗 constant value of data row 𝑖 in feature 𝑗
𝑦𝑖 constant class label of data row 𝑖
Δ𝑙
𝑗 constant left perturbation range for feature 𝑗

Δ𝑟
𝑗 constant right perturbation range for feature 𝑗

𝑛 constant number of samples
𝑝 constant number of features
𝐴(𝑡) set ancestors of node 𝑡
𝐴𝑙(𝑡) set ... with left branch on the path to 𝑡
𝐴𝑟 (𝑡) set ... with right branch on the path to 𝑡
𝑆 set all possible perturbations
𝑆(𝑥) set ... applied to sample 𝑥𝐵 set all decision nodes𝐿 set all leaf nodes
 𝑆(𝑥)
𝐿 set ... that intersect with 𝑆(𝑥)

𝑉𝑗 set unique values in feature 𝑗

Table 5.1: Summary of the notation used throughout the paper.

Continuous Decision Thresholds
To select a threshold value an intuitive method is to create a continuous variable 𝑏𝑚 for
every decision node. We can then use this variable to determine the values 𝑠𝑖𝑚0 and 𝑠𝑖𝑚1
by checking whether 𝑋𝑖−Δ𝑙 and 𝑋𝑖+Δ𝑟 can reach the left and right side of the threshold
respectively. We create the following constraints:

(𝐗𝐢−𝚫𝐥) ⋅𝐚𝐦 ≤ 𝑏′𝑚 ⟹ 𝑠𝑖𝑚0

(𝐗𝐢+𝚫𝐫) ⋅𝐚𝐦 > 𝑏′𝑚 ⟹ 𝑠𝑖𝑚1

Since these constraints use a dot product with continuous variables it is not possible to
implement this in MaxSAT. Another challenge comes with the second constraint being a
strict inequality which is not directly supported in MILP. Like [8], we add a small value to
the right hand side to turn it into a regular inequality.

Binary Decision Thresholds
We create a set of variables 𝑏𝑣𝑚 for each unique decision threshold value 𝑣, with 𝑣 in ascend-
ing order. Instead of forcing one of them to true, we create an ordering in the variables
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(a) Decision node 𝑚 (binary) (b) Decision node 𝑚 (continuous) (c) Path variables for sample 𝑖

Figure 5.2: Example of ROCT’s formulation. For each decision node the 𝑎 variables select a splitting feature and
𝑏 select the threshold value. 𝑏 can be defined as multiple binary (a) or a single continuous (b) variable. Using the
𝑠 variables (c) ROCT traces all sample paths through the tree to the leaves and counts an error if any reachable
leaf predicts the wrong class.

Method Threshold
formulation Solver Init. with GROOT

LSU-MaxSAT binary LSU (glucose 4.1) no
RC2-MaxSAT binary RC2 (glucose 4.1) no
Binary-MILP binary GUROBI 9 no

Binary-MILP-warm binary GUROBI 9 yes
MILP continuous GUROBI 9 no

MILP-warm continuous GUROBI 9 yes

Table 5.2: Summary of introduced methods, they differ in solver type and whether thresholds are formulated
with binary or continuous variables. The ‘warm’ methods are initialized with the GROOT heuristic.

such that if one threshold variable is true, the larger variables also become true:

𝑏𝑣𝑚 ⟹ 𝑏(𝑣+1)𝑚

Intuitively if 𝑏𝑣𝑚 is set to true a sample with feature value 𝑣 will be sent to the right of the
split and when 𝑏𝑣𝑚 is false it will be sent to the left. A useful property of this constraint
is that we only have to encode the local influence of a threshold variable 𝑏𝑣𝑚 on close-by
data points, the rest is forced by the chain of constraints. For each feature 𝑗 we determine
what threshold values 𝑣𝑙 and 𝑣𝑟 correspond to 𝑋𝑖𝑗 −Δ𝑙

𝑗 and 𝑋𝑖𝑗 +Δ𝑟
𝑗 and check whether

their 𝑏𝑣𝑚 values indicate that the sample can reach the left / right side:

𝑎𝑗𝑚 ∧¬𝑏𝑣𝑙𝑚 ⟹ 𝑠𝑖𝑚0

𝑎𝑗𝑚 ∧ 𝑏𝑣𝑟𝑚 ⟹ 𝑠𝑖𝑚1

Selecting Features
Consider a single decision node 𝑚, such a decision node needs to decide a feature to split
on. We create a binary variable 𝑎𝑗𝑚 for each feature 𝑗 and force that exactly one of these
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variables can be equal to 1:

𝑝

∑
𝑗=1

𝑎𝑗𝑚 = 1

This constraint can be relaxed to ∑𝑝
𝑗=1 𝑎𝑗 ≥ 1 as selecting more than one feature can only

make more 𝑠 variables true and thus can only increase the number of errors.

Counting errors

We create a variable 𝑒𝑖 for each sample 𝑖 which is true when any reachable leaf 𝑡 ∈  𝑆(𝑥)
𝐿

(see Theorem 1) predicts the other class. These leaves are found by following all paths a
sample can take through the tree using the 𝑠𝑖𝑚0 and 𝑠𝑖𝑚1 variables. This is visualized in
Figure 5.2c. Sample 𝑖 can reach leaf 𝑡 when the values 𝑠𝑖𝑚... are true for all nodes 𝑚 on the
path to 𝑡, i.e. ⋀𝑚∈𝐴𝑙(𝑡) 𝑠𝑖𝑚0⋀𝑚∈𝐴𝑟 (𝑡) 𝑠𝑖𝑚1. Here 𝐴𝑙(𝑡) refers to the set of ancestors of leaf 𝑡
of which we follow the path through its left child and 𝐴𝑟 (𝑡) for child nodes on the right.
When sample 𝑖 can reach leaf 𝑡 and its label does not match 𝑡’s prediction (𝑦𝑖 ≠ 𝑐𝑡 ), force 𝑒𝑖
to true:

⋀
𝑚∈𝐴𝑙(𝑡)

𝑠𝑖𝑚0 ⋀
𝑚∈𝐴𝑟 (𝑡)

𝑠𝑖𝑚1 ∧ (𝑐𝑡 ≠ 𝑦𝑖) ⟹ 𝑒𝑖

With one constraint per decision leaf and sample combination this determines the 𝑒 values.
To then turn all possible paths into predictions we need to assign a prediction label to each
decision leaf. Each leaf 𝑡 gets a variable 𝑐𝑡 where falsemeans class 0 and truemeans class
1.

Objective Function
Our goal is to minimize the equation from Theorem 1. This is equivalent to minimizing
the sum of errors 𝑒𝑖 (𝑖 = 1...𝑛). We convert this MILP objective to MaxSAT by adding a soft
constraint ¬𝑒𝑖 for each sample and maximizing the number of correctly predicted samples:

maximize
𝑛
∑
𝑖=1

¬𝑒𝑖 or minimize
𝑛
∑
𝑖=1

𝑒𝑖

5.2.3 Complete Formulation
Belowwe give the full formulation for ROCT, in Table 5.1 we summarize the notation used.
The equations can easily be formulated as MILP or MaxSAT instances, for MILP this was
done with big-M constraints.
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Figure 5.3: Example of a decision tree of depth 1 with the binary threshold formulation. Sample A and C get
correctly classified since all their reachable leaves predict the correct label. Sample B reaches both leaves, since
the left leaf predicts the wrong label, B gets misclassified.

min.
𝑛
∑
𝑖=1

𝑒𝑖

subject to:
𝑝
∑
𝑗=1

𝑎𝑗𝑚 = 1, ∀𝑚 ∈ 𝐵
𝑏𝑣𝑚 ⇒ 𝑏(𝑣+1)𝑚, ∀𝑚 ∈ 𝐵 , 𝑣=1..|𝑉𝑗 |−1

⋀
𝑚∈𝐴𝑙(𝑡)

𝑠𝑖𝑚0⋀
𝑚∈𝐴𝑟 (𝑡)

𝑠𝑖𝑚1 ∧ [𝑐𝑡≠𝑦𝑖]⇒ 𝑒𝑖, ∀𝑡 ∈ 𝐿, 𝑖=1..𝑛
continuous threshold variables:

(𝐗𝐢 −𝚫𝐥) ⋅𝐚𝐦 ≤ 𝑏′𝑚 ⇒ 𝑠𝑖𝑚0 ∀𝑚 ∈ 𝐵 , 𝑖=1..𝑛
(𝐗𝐢 +𝚫𝐫) ⋅𝐚𝐦 > 𝑏′𝑚 ⇒ 𝑠𝑖𝑚1 ∀𝑚 ∈ 𝐵 , 𝑖=1..𝑛
binary threshold variables:
𝑎𝑗𝑚 ∧¬𝑏𝑣𝑙𝑚 ⇒ 𝑠𝑖𝑚0, ∀𝑚 ∈ 𝐵 , 𝑖=1..𝑛, 𝑗=1..𝑝
𝑎𝑗𝑚 ∧ 𝑏𝑣𝑟𝑚 ⇒ 𝑠𝑖𝑚1, ∀𝑚 ∈ 𝐵 , 𝑖=1..𝑛, 𝑗=1..𝑝

In both the continuous and binary threshold formulations the size of the instances is
dominated by the constraints setting the 𝑠 variables. In the continuous case this size is of
complexity (2𝑑𝑛) where 𝑑 is the depth of the tree and 𝑛 the number of samples. For the
binary threshold case the size complexity is (2𝑑𝑛𝑝) where 𝑝 is the number of features.
The solvers run in (worst-case) exponential time.

Example
For clarity we give a small example of a decision tree of depth 1 that we fit on 3 samples.
In Figure 5.3, we show three data points 𝐴=(0.2,0.2),𝐵=(0.5,0.8),𝐶=(0.8,0.3) and all their
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Figure 5.4: Computing a bound on adversarial accuracy by maximum matching. The maximum matching and
minimum vertex cover are shown in black. Since the matching has a cardinality of 2 it is impossible to misclassify
fewer than 2 samples when accounting for perturbations.

feature values can be perturbedwithin a 𝐿∞ norm radius 0.2. This results in feature 1 taking
one of the 6 possible threshold values: {0.0,0.3,0.4,0.6,0.7,1.0} (due to bounding boxes).
Suppose the solver selects feature 1 for decision node 1: 𝑎1,1 = 1 and 𝑎2,1 = 0. Suppose the
solver selects the third threshold value: 𝑏1,1 = 𝑏1,2 = 𝑏1,3 = 0 and 𝑏1,4 = 𝑏1,5 = 𝑏1,6 = 1 (note
this is a unary encoding). Due to the binary threshold constraints we then obtain:

𝑎1,1 ∧¬𝑏1,1 ⇒ 𝑠1,1,0, 1∧¬0⇒ 𝑠1,1,0=1

Thus, the first data point (A) can move to the left of decision node 1, since 𝑏1,1 = 0. From
Figure 5.3, we see that 𝑏1,1 = 0 implies the decision threshold is to the right of the lower
bound of the bounding box for point A. Hence indeed, it should be able to move left.
Similarly for the upper bound:

𝑎1,1 ∧ 𝑏3,1 ⇒ 𝑠1,1,1, 1∧0⇒ 𝑠1,1,1∈{0,1}

Thus, since 𝑏3,1 = 0, the constraints pose no restriction on whether point 𝐴 can move to
right of decision node 1. The correct behavior (A cannot move to the right) is forced by
the objective function, which can only become worse by setting 𝑠1,1,1 = 1. The remaining
𝑠 variables become:

𝑎1,1 ∧¬𝑏2,1 ⇒ 𝑠2,1,0, 1∧¬0⇒ 𝑠2,1,0=1

𝑎1,1 ∧ 𝑏5,1 ⇒ 𝑠2,1,1, 1∧1⇒ 𝑠2,1,1=1

𝑎1,1 ∧ 𝑏6,1 ⇒ 𝑠3,1,1, 1∧1⇒ 𝑠3,1,1=1

𝑠3,1,0 remains unconstrained and can therefore be set to 0 by the solver. Since 𝑐1 = 𝑦1 and
𝑐3 = 𝑦3, 𝑒1 and 𝑒3 are unconstrained andminimized to 0 by the solver, and since 𝑠2,0 = 𝑠2,1 = 1
the constraints force 𝑒2 = 1. The second sample is hence misclassified (it reaches at least
one leaf with a prediction value different than its label). Note that, although the thresholds
in Figure 5.3 are always exactly on the perturbation ranges of a sample, we post-process
these to maximize the margin.
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Figure 5.5: Varying the 𝐿∞ perturbation radius 𝜖 and computing the adversarial accuracy bound. Datasets are
affected differently, e.g. 𝜖=0.1 has no effect on cylinder-bands while the bound for blood-transfusion shows that
it is not possible to score better than constantly predicting its majority class.

5.3 Upper Bound on Adversarial Accuracy
In a regular learning setting with stationary samples one strives for a predictive accuracy
of 100%. As long as there are no data points with different labels but same coordinates
achieving this score is theoretically possible. However, we realize that in the adversarial
setting a perfect classifier cannot always score 100% accuracy as samples can be perturbed.
We present a method to compute the upper bound on adversarial accuracy using a bipar-
tite matching that can be computed regardless of what model is used. We use this bound
to choose better 𝜖 values for our experiments. It also lets us compare the scores of opti-
mal decision trees to a score that is theoretically achievable by perfect classifiers. Such a
matching approach was also used in [15] to train robust kNN classifiers.

Theorem 5. The maximum cardinality bipartite matching between samples with overlap-
ping perturbation range and different labels {(𝑖, 𝑗) ∶ 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅ ∧ 𝑦𝑖 ≠ 𝑦𝑗 } gives an upper
bound to the adversarial accuracy achievable by any model for binary decision problems.

Proof. The reduction to maximum bipartite matching is based on the realization that when
the perturbation ranges of two samples with different labels overlap it is not possible
to predict both of these samples correctly. A visual explanation is given in Figure 5.4.
Formally, given a classifier 𝐶 that maps samples to a class 0 or 1, a sample 𝑖 can only
be correctly predicted against an adversary if its entire perturbation range 𝑆𝑖 is correctly
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Dataset (OpenML) 𝑛 𝑝 Maj.
haberman (1) 306 3 .735
blood-transfusion-service-center (1) 748 4 .762
cylinder-bands (2) 277 37 .643
diabetes (1) 768 8 .651
ionosphere (1) 351 34 .641
banknote-authentication (1) 1372 4 .555
breast-w (1) 683 9 .650
wine_quality (1) 6497 11 .633

Table 5.3: Overview of datasets used in the experiments. Number of samples, features and ratio of majority class
samples.

.

predicted:
∀𝑥 ∈ 𝑆𝑖 ∶ 𝐶(𝑥) = 𝑦𝑖 (5.2)

Now given a sample 𝑗 of a different class (e.g. 𝑦𝑖 = 0 and 𝑦1 = 1) that has an overlapping
perturbation range such that 𝑆𝑖∩𝑆𝑗 ≠∅, it is clear that Equation 5.2 cannot simultaneously
hold for both samples. We create a bipartite graph 𝐺 = (𝑉0, 𝑉1,𝐸) with 𝑉0 = {𝑖 ∶ 𝑦𝑖 = 0} and
𝑉1 = {𝑖 ∶ 𝑦𝑖 = 1}, i.e., vertices representing samples of class 0 on one side and class 1 on the
other. We then connect two vertices with an edge if their perturbation ranges overlap and
their labels are different: 𝐸 = {(𝑖, 𝑗) ∶ 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅∧𝑦𝑖 ≠ 𝑦𝑗 }.

To obtain the upper bound, we consider the minimum vertex cover 𝑉 ′ from 𝐺. By
removing all vertices / samples in 𝑉 ′, none of the remaining samples can be transformed
to have identical feature values with a sample from the opposite class. A perfect classifier
𝐶′(𝑥) would therefore assign these rows their correct class values and an attacker will
not be able to influence the score of this classifier. It is not possible to misclassify fewer
samples than the cardinality of the minimum vertex cover 𝑉 ′ since removing any vertex
from it will add at least one edge 𝑒 ∈ {(𝑖, 𝑗) ∶ 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅ ∧ 𝑦𝑖 ≠ 𝑦𝑗 } which will cause an
additional misclassification. By König’s theorem such a minimum cover in a bipartite
graph is equivalent to a maximum matching. Therefore we can use a maximum matching
solver to compute an upper bound on the adversarial accuracy.

5.3.1 Improving Experiment Design
In previous works [4, 5] attacker capabilities were arbitrarily chosen but this limits the
value of algorithm comparisons, shown in Figure 5.5. In this figure we vary the 𝐿∞ radius
𝜖 by which an adversary can perturb samples. Particularly, if this value is chosen too large,
the best possible model is a trivial one that constantly predict the majority class. If 𝜖 is
chosen too small, the adversary has no effect on the learning problem.

To improve the design of our experiments we propose to choose values for 𝜖 along
these curves that cause the adversarial accuracy bound to be non-trivial. In our experi-
ments we choose three 𝜖 values for each dataset such that their values corresponds to an
adversarial accuracy bound that is at 25%-50%-75% of the range. When choosing 𝜖 at 100%
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of the range, the bound is equal to the ratio of the majority class samples, i.e. predicting
only that class.

5.4 Results
To demonstrate the effectiveness of ROCT we compare it to the state-of-the-art robust
tree learning algorithms TREANT and GROOT, and to the regular decision trees from
scikit-learn [16]. First we run the algorithms on an artificial XOR dataset to show that the
heuristics can theoretically learn arbitrarily bad trees, see Figure 5.1. Then to compare the
practical performance we run the algorithms on eight popular datasets [3, 5] and varying
perturbation radii (𝜖). All of our experiments ran on 15 Intel Xeon CPU cores and 72
GB of RAM total, where each algorithm ran on a single core. These datasets are used in
many of the existing works to compare robust tree learning algorithms. The datasets are
summarized in Table 5.3 and are available on OpenML².

5.4.1 Predictive Performance on Real Data
To demonstrate the practical performance of ROCT we compared the scores of ROCT,
GROOT and TREANT on eight datasets. For each dataset we used an 80%-20% train-test
split. To limit overfitting it is typical to constrain the maximum depth of the decision tree.
To this end we select the best value for the maximum depth hyperparameter using 3-fold
stratified cross validation on the training set. In each run, every algorithm gets 30 minutes
to fit. For MILP, binary-MILP and LSU-MaxSAT this means that we stop the solver and
retrieve its best solution at that time. The methods GROOT, TREANT and RC2-MaxSAT
cannot return a solution when interrupted. Therefore when these algorithms exceed the
timeout we use a dummy classifier that predicts a constant value. As the dual of the MILP-
based formulations is hard to solve, we focus the solver on the primal problem. The final
adversarial accuracy scores were determined by testing for each sample whether a sample
with a different label intersects its perturbation range.

Table 5.4 shows the aggregated results over these 8 datasets, 5.5 contains the individial
test scores for a selection of the compared methods. The overall best scores were achieved
with the MILP-warm method which is the MILP formulation with continous variables
for thresholds and is warm started with the tree produced by GROOT. The LSU-MaxSAT
method also performed well and runs without reliance on trees trained with GROOT. TRE-
ANT’s scores were lower than expected which can be attributed to the number of time
outs.

5.4.2 Runtime
An advantage of using optimization solvers for training robust decision trees is that most
solvers can be early stopped to output a valid tree. In figure 5.6 we plotted the mean train-
ing scores over all datasets for trees of depth 3 of the solvers that can be stopped. We
see that all algorithms converge to nearly the same value given enough time. Moreover
we find that LSU-MaxSAT quickly achieves good scores where it takes MILP-warm and
Binary-MILP-warm approximately 10 and 100 seconds to catch up. The MILP-based meth-

²http://www.openml.org

http://www.openml.org
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Mean adv. Mean rank Wins
Algorithm accuracy
Decision Tree .388 ± .055 8.917 ± .083 0
TREANT .692 ± .013 5.167 ± .604 7
Binary-MILP .714 ± .013 3.958 ± .576 10
MILP .720 ± .015 2.917 ± .454 12
RC2-MaxSAT .724 ± .014 2.667 ± .393 10
GROOT .726 ± .015 2.375 ± .450 16
Binary-MILP-warm .726 ± .015 2.083 ± .399 16
LSU-MaxSAT .729 ± .014 2.125 ± .303 13
MILP-warm .735 ± .015 1.583 ± .225 17

Table 5.4: Aggregate test scores over 8 datasets, means are shown with standard error. All methods trained for
30 minutes and selected their depth using 3-fold cross validation.

ods that were not warm started with GROOT took approximately 1000 seconds to catch
up with LSU-MaxSAT.

5.4.3 Optimality
Existing robust decision tree learning algorithms such as TREANT and GROOT have no
performance guarantees. Using the LSU-MaxSAT solver we can find trees and prove their
optimality on the training set which allows us to compare the scores of the heuristics with
these optimal scores. In Figure 5.7 we plot the approximation ratios of GROOT trees after
2 hours of training. Although LSU-MaxSAT was not able to prove optimality for many
datasets after a depth of 2 we can still see that GROOT scores close to optimal. All but one
tree scores within a ratio of 0.92 with only one case having a ratio of approximately 0.87.
We also plot the ratio between our upper bound and optimal trees. Interestingly, optimal
trees of depths 1 and 2 already score close to the upper bounds in some cases.
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Dataset 𝜖 Dec.
Tree MILP GROOT LSU MILP

warm
banknote- .07 .665 .742 .775 .796 .822
authentication .09 .589 .669 .684 .724 .720

.11 .491 .625 .640 .644 .629
blood- .01 .687 .747 .720 .760 .747
transfusion- .02 .647 .727 .727 .767 .767
service-center .03 .627 .767 .767 .760 .767

breast-cancer .28 .095 .869 .869 .869 .869
.39 .073 .818 .818 .818 .818
.45 .073 .774 .774 .774 .774

cylinder-bands .23 .000 .732 .732 .714 .714
.28 .000 .679 .643 .679 .750
.45 .000 .643 .643 .679 .643

diabetes .05 .455 .649 .649 .649 .649
.07 .364 .649 .649 .649 .649
.09 .286 .649 .649 .649 .649

haberman .02 .726 .742 .726 .742 .742
.03 .726 .742 .742 .742 .742
.05 .677 .742 .742 .742 .742

ionosphere .2 .310 .817 .845 .817 .845
.28 .169 .817 .845 .817 .845
.36 .042 .775 .775 .775 .775

wine .02 .602 .638 .680 .661 .674
.03 .541 .633 .662 .639 .662
.04 .472 .633 .659 .635 .659

Table 5.5: Individual test scores for each dataset and 𝜖 combination. Best scores are marked in bold.
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5.5 Conclusions
In this work we propose ROCT, a new solver based method for fitting robust decision trees
against adversarial examples. Where existing methods for fitting robust decision trees can
perform arbitrarily poorly in theory, ROCT fits the optimal tree given enough time. Impor-
tant for the computational efficiency of ROCT is the insight and proof that the min-max
adversarial training procedure can be computed in one shot for decision trees (Theorem 1).
We compared ROCT to existing methods on 8 datasets and found that given 30 minutes of
runtime ROCT improved upon the state-of-the-art. Moreover, although greedy methods
have been compared to each other in earlier works, we demonstrate for the first time that
the state-of-the-art actually performs close to optimal. We also presented a new upper
bound for adversarial accuracy that can be computed efficiently using maximum bipartite
matching (Theorem 2).

Although ROCTwas frequently able to find an optimal solution and shows competitive
testing performance, the choice of tree depth strongly influences runtime. Optimality
could only be proven for most datasets up to a depth of 2 and for some until depth 4.
Additionally, the size of ROCT’s formulation grows linearly in terms of the number of
unique feature values of the training dataset which results in an exponential increase in
runtime. For small datasets of up to a few 1000 samples and tens of features ROCT is likely
to improve performance over state-of-the-art greedymethods. Overall, ROCT can increase
the performance of state-of-the-art heuristic methods and, due to its optimal nature and
new upper bound, provide insight into the difficulty of robust learning.

In the future, we will investigate realistic use cases of adversarial learning in security
such as fraud / intrusion /malware detection. Such use casesmight havemore complicated
attackers that require non-box-shaped threat models. We expect our upper-boundmethod
to be a useful tool in determining the sensibility of adversarial learning problems and for
robust feature selection.
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6
Robust Leaf Relabeling

Decision trees are popularmodels for their interpretation properties and their success in ensem-
ble models for structured data. However, common decision tree learning algorithms produce
models that suffer from adversarial examples. Recent work on robust decision tree learning
mitigates this issue by taking adversarial perturbations into account during training. While
these methods generate robust shallow trees, their relative quality reduces when training
deeper trees due the methods being greedy. In this work we propose robust relabeling, a
post-learning procedure that optimally changes the prediction labels of decision tree leaves to
maximize adversarial robustness. We show this can be achieved in polynomial time in terms
of the number of samples and leaves. Our results on 10 datasets show a significant improve-
ment in adversarial accuracy both for single decision trees and tree ensembles. Decision trees
and random forests trained with a state-of-the-art robust learning algorithm also benefited
from robust relabeling.

This chapter is based on  D. Vos and S. Verwer. Adversarially Robust Decision Tree Relabeling, ECML-PKDD
2022 [1].
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6.1 Introduction
With the increasing interest in trustworthy machine learning, decision trees have become
important models [2]. Due to their simple structure humans can interpret the behavior of
size-limited decision trees. Additionally, decision trees are popular for use within ensem-
ble models where random forests [3] and particularly gradient boosting ensembles [4–7]
achieve top performance on prediction tasks with tabular data. However, decision trees
are optimized without considering robustness which results in models that misclassify
many data points after adding tiny perturbations [8, 9], i.e. adversarial examples. There-
fore we are interested in training tree-based models that correctly predict data points not
only at their original coordinates but also in a radius around these coordinates.

Recent work has proposed decision tree learning algorithms that take adversarial per-
turbations into account during training to improve adversarial robustness [10–12]. These
methods significantly improved robustness for shallow decision trees, but lacked perfor-
mance for deeper trees due to their greedy nature. Optimal methods for robust decision
tree learning [13, 14] have also been proposed but they use combinatorial optimization
solvers which makes them scale poorly in terms of both tree depth and data size. Ad-
versarial pruning [15, 16] is a method that pre-processes datasets by removing a minimal
number of samples to make the dataset well-separated. While this method helps ignore
samples that will only worsen robustness when predicted correctly, the learning algorithm
is unchanged so the resulting models still suffer from adversarial examples. It is important
to be able to train deeper robust trees as shallow trees can significantly underfit the data.
Particularly in random forests where we aim to ensemble unbiased models [17] we need
to be able to train very deep trees.

To improve the performance of robust decision trees we propose Robust Relabeling¹.
This post-learning procedure optimally changes the prediction labels of the decision tree
leaves to maximize accuracy against adversarial examples. We assume that the user spec-
ifies an arbitrary region around each sample that represents the set of all possible pertur-
bations of the sample. Then, we only consider a sample to be correctly predicted under
adversarial attacks if there is no way for an attacker to perturb the sample such that the
prediction is different from the label. We prove that in binary classification the optimal
robust relabeling is induced by the minimum vertex cover of a bipartite graph. This prop-
erty allows us to compute the relabeling in polynomial time in terms of the number of
samples and leaves.

We compare the classification performance of decision trees and tree ensemble mod-
els on 10 datasets from the UCI Machine Learning Repository [18] and find that robust
relabeling improves the average adversarial accuracy for all models. We also evaluate the
performance when relabeling robust decision trees trained with a state-of-the-art method
GROOT [12]. The resulting models improve adversarial accuracy compared to the default
GROOT models by up to 20%. Additionally, we study the effects of standard Cost Com-
plexity Pruning against robust relabeling. Both methods reduce the size of the learned
decision trees and can improve both regular accuracy and adversarial accuracy compared
to unpruned models. While, Cost Complexity Pruning performs better on regular accu-
racy, robust relabeling results in better adversarial accuracy.

¹https://github.com/tudelft-cda-lab/robust-relabeling

https://github.com/tudelft-cda-lab/robust-relabeling
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6.2 Background Information
6.2.1 Robust Decision Tree Learning
In the field of robust decision trees, we usually assume that an adversary modifies our
data points at test time to cause misclassifications. Then, we aim to train a decision tree
that is maximally robust to such modifications. The type of modifications that we allow
the adversary to make strongly influences the learned trees. In this work, we consider
an adversary that can make arbitrary changes to each test data point 𝑖 within a radius
𝜖 of the original point. In line with previous works [10, 12] we measure this distance
with the 𝐿∞ norm. Therefore the set of all possible perturbations applied to data point 𝑖
is 𝑆(𝑖) = {𝑥 + 𝛿 ∶ ||𝛿||∞ ≤ 𝜖}. For a decision tree  it is especially important to know what
leaves 𝐿 sample 𝑖 can reach after applying perturbations, we refer to this set as  𝑆(𝑖)

𝐿 .

6.2.2 Minimum Vertex Covers and Robustness
To the best of our knowledge, Wang et al. [16] first published that for any given dataset 𝐷,
there can be pairs of samples that can never be simultaneously correctly predicted against
adversarial examples. For example, when considering perturbations within some radius
𝜖, two samples with different labels that are within distance 2𝜖 cannot both be correctly
predicted when accounting for these perturbations. Given this fact, one can create a graph
𝐺 with each vertex representing a sample and connect all such pairs. When we compute
the minimum vertex cover of this graph, we find the minimum number of data points 𝐶 to
remove from𝐷 such that𝐷⧵𝐶 can be correctly predicted. Although𝐷⧵𝐶 can be correctly
predicted, non-robust learning algorithms can and will still learn models that suffer from
adversarial examples, e.g. because decision planes are placed too close to the remaining
data points.

Wang et al. [16] used this minimum vertex cover idea by removing 𝐶 from the training
data in order to learn a robust nearest neighbor classifier. Adversarial pruning [15] uses a
similar method to train nearest neighbor models, decision trees, and tree ensembles from
𝐷 ⧵𝐶. In ROCT (Chapter 5), we also used a minimum vertex cover to compute an upper
bound on adversarial accuracy, which improved the time needed to train optimal robust
decision trees and helped us choose experiment parameters.

6.2.3 Relabeling and Pruning Decision Trees
Improving the quality of decision trees with respect to some metrics by changing their
leaf predictions is not a new idea. Many pruning algorithms have been proposed that
remove parts of the decision tree to improve generalization. For example, Cost Complexity
Pruning [19] is a widely used method that merges leaves when this improves the trade-
off between the size of the tree and its predictive performance. Similarly, ideas to relabel
decision trees have been used to improve performance for objectives such as fairness [20]
and monotonicity [21]. Such metrics are not aligned with the objective that is optimized
during training. To the best of our knowledge, we are the first to propose using leaf
relabeling to improve adversarial robustness. Since relabeling methods never add new
leaves, they can be seen as pruning methods since they reduce the size of the trees (after
merging leaves that have the same label).
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Leaf 1

Regular decision tree Create graph representation
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Robust relabeled decision tree

Figure 6.1: Example of the robust relabeling procedure applied to a decision tree that suffers from adversarial
examples. We first create a bipartite graph that connects samples with different labels that can reach the same
leaf with perturbations. After removing the samples corresponding to the graph’s minimum vertex cover we can
relabel the decision tree to correctly predict the remaining samples. The resulting labeling is maximally robust
to adversarial perturbations.

6.3 Robust Relabeling
Since regular decision trees and ensembles suffer from adversarial examples we are inter-
ested in post-processing the learned models to improve their robustness. In this work, we
propose ‘robust relabeling’ (Algorithm 6) a method that keeps the decision tree structure
intact but changes the predictions in the leaves to maximize adversarial accuracy. Robust
relabeling is closely related to earlier works that determine minimum vertex covers to im-
prove robustness [13, 15, 16]. In these works, the authors leverage the fact that samples
with overlapping perturbation ranges and different labels can never be simultaneously
classified correctly under optimal adversarial perturbations. We notice that in decision
trees, two samples cannot be simultaneously classified correctly under optimal adversar-
ial perturbations when they both reach the same leaf. Using this property we can find the
smallest set of samples to remove from the dataset such that all remaining samples can
be classified correctly under perturbations. These samples then induce a labeling of the
decision tree that correctly classifies the largest possible set of samples against adversarial
perturbations.

To robustly relabel a decision tree  we create a bipartite graph 𝐺 = (𝐿,𝑅,𝐸) where 𝐿
represents the set of sampleswith label 𝑦𝑖 = 0 and𝑅 the set of sampleswith label 𝑦𝑗 = 1. The
set of edges 𝐸 is defined by connecting all pairs of samples (𝑖, 𝑗) that have different labels
𝑦𝑖 ≠ 𝑦𝑗 and overlapping perturbation ranges  𝑆(𝑖)

𝐿 ∩  𝑆(𝑗)
𝐿 ≠ ∅. Here 𝑆(𝑖) is the set of all

possible perturbations applied to data point 𝑖 and  𝑆(𝑖)
𝐿 is the set of leaves that are reached

by 𝑆(𝑖). We find the minimum vertex cover 𝐶 of 𝐺 and remove the samples represented by
𝐶 from the dataset. We can then relabel the decision tree to classify all remaining samples
correctly even under optimal adversarial attacks.

In this paper, we consider only the case where 𝑆(𝑖) describes an 𝐿∞ radius around each
data point, as this is common in research on robust decision trees. However, our proof
does not make use of this fact and robust relabeling can easily be extended to other attack
models such as different 𝑙-norms or arbitrary sets of perturbations.

Theorem 6. The optimal adversarially robust relabeling for decision tree leaves 𝐿 is deter-
mined by the minimum vertex cover of the bipartite graph where samples 𝑖, 𝑗 with different
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Algorithm 6 Robust relabeling decision tree
Input: dataset 𝑋 (𝑛 samples, 𝑚 features), labels 𝑦, tree leaves 𝐿
1: 𝐿← {𝑖 ∣ 𝑦𝑖 = 0} ⊳ (𝑛)
2: 𝑅← {𝑖 ∣ 𝑦𝑖 = 1} ⊳ (𝑛)
3: 𝐸 ← {(𝑢,𝑣) ∣ 𝑢 ∈ 𝐿,𝑣 ∈ 𝑅, 𝑆(𝑢)

𝐿 ∩ 𝑆(𝑣)
𝐿 ≠ ∅} ⊳ (𝑛𝑚|𝐿|+𝑛2|𝐿|)

4: 𝑀 ← MAXIMUM_MATCHING(𝐿,𝑅,𝐸) ⊳ (𝑛2.5)
5: 𝐶 ← KŐNIG’S_THEOREM(𝑀,𝐿,𝑅,𝐸) ⊳ (𝑛)
6: for 𝑡 ∈ 𝐿 do ⊳ (𝑛|𝐿|)
7: if {𝑖 ∈ 𝐿 ∣ 𝑡 ∈  𝑆(𝑖)

𝐿 } ≠ ∅ then
8: 𝑐𝑡 ← 0
9: else

10: 𝑐𝑡 ← 1
11: end if
12: end for

labels 𝑦𝑖 ≠ 𝑦𝑗 are represented by vertices that share an edge when their perturbations can
reach any same leaf ( 𝑆(𝑖)

𝐿 ∩ 𝑆(𝑗)
𝐿 ≠ ∅).

Proof. For a sample 𝑖 to be correctly classified by a decision tree  , all leaves  𝑆(𝑖)
𝐿 reach-

able by adversarial perturbations applied to 𝑋𝑖 need to predict the correct label, i.e. ∀𝑡 ∈
 𝑆(𝑖)
𝐿 , 𝑐𝑡 = 𝑦𝑖 (otherwise an adversarial example exists). Given two samples 𝑖, 𝑗 with differ-

ent labels 𝑦𝑖 ≠ 𝑦𝑗 and overlapping sets of reachable leaves by perturbations  𝑆(𝑖)
𝐿 ∩ 𝑆(𝑗)

𝐿 ≠∅
these samples cannot be correctly robustly predicted as there exists a leaf 𝑡 that is in both
sets  𝑆(𝑖)

𝐿 and  𝑆(𝑗)
𝐿 and that misclassifies one of the samples. Create the bipartite graph

𝐺 = (𝐿,𝑅,𝐸)where 𝐿= {𝑖 ∣ 𝑦𝑖 = 0}, 𝑅 = {𝑖 ∣ 𝑦𝑖 = 1} and 𝐸 = {(𝑢,𝑣) ∣ 𝑢 ∈ 𝐿,𝑣 ∈ 𝑅, 𝑆(𝑢)
𝐿 ∩ 𝑆(𝑣)

𝐿 ≠∅}.
By removing the minimum vertex cover 𝐶 from 𝐺, we are left with the largest graph
𝐺′ = (𝐿 ⧵ 𝐶,𝑅 ⧵ 𝐶,∅) for which no edges remain. Since none of the remaining vertices
(representing samples) share an edge, we are able to set ∀𝑡 ∈  𝑆(𝑖)

𝐿 ,∀𝑖 ∈ (𝐿′ ∪𝑅′) ∶ 𝑐𝑡 = 𝑦𝑖, so
all remaining samples get correctly robustly classified. Since 𝐶 is of minimum cardinality,
the induced relabeling maximizes the adversarial accuracy.

Where a naive relabeling algorithm would take exponential time to enumerate all 2|𝐿 |
labelings, the above relabeling procedure runs in polynomial time in terms of the dataset
size (𝑛×𝑚 matrix) and the number of leaves |𝐿|. When building the graph 𝐺 the runtime
is dominated by computing the edges which takes (𝑛𝑚|𝐿|+𝑛2|𝐿|) time. This is because
we first build a mapping for each sample 𝑖 to their reachable leaves  𝑆

𝐿 (𝑖) in(𝑛𝑚|𝐿|) time,
then compute samples that reach any same leaf in(𝑛2|𝐿|) time. Given the bipartite graph
𝐺 we use the Hopcroft-Karp algorithm [22] to compute a maximum matching in (𝑛2.5)
time and convert this in linear time into a minimum vertex cover using Kőnig’s theorem.
Combining all steps, robust relabeling runs in worst-case (𝑛𝑚|𝐿|+𝑛2|𝐿|+𝑛2.5) time.

6.3.1 Robust Relabeling as Splitting Criterion
While the robust relabeling procedure described before provides an intuitive use case as
a post-processing step for decision tree learners, we can also use it to select splits during
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Figure 6.2: Runtime of robust relabeling and relabeling criterion trees on samples of the Wine dataset. While
decision tree relabeling runs within seconds, relabeling ensembles takes longer due to the number of trees and
the increase in tree size. The runtime for relabeling criterion trees quickly increases with the number of samples.
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Table 6.1: Summary of datasets used. Features are scaled to [0,1], so the 𝐿∞ perturbation radius 𝜖 represents a
fraction of each feature’s range.

Dataset 𝜖 Samples Features Majority class
Banknote-authentication .05 1,372 4 .56
Breast-cancer-diagnostic .05 569 30 .63
Breast-cancer .1 683 9 .65
Connectionist-bench-sonar .05 208 60 .53
Ionosphere .05 351 34 .64
Parkinsons .05 195 22 .75
Pima-Indians-diabetes .01 768 8 .65
Qsar-biodegradation .05 1,055 41 .66
Spectf-heart .005 349 44 .73
Wine .025 6,497 11 .63

learning. In greedy decision tree learning, the learner finds a locally optimal split, parti-
tions the samples into a left and right set (including perturbed samples), and continues this
process recursively. While this approach finds an optimal split for the top decision node,
the detrimental effect of choosing splits greedily increases with the depth of the tree. We
will use the robust relabeling procedure to try to reduce the impact of greedily perturbing
samples. To do this, we can consider all samples each time we score a split and use the
cardinality of the maximum matching 𝑀 as a splitting criterion. By choosing splits that
minimize this criterion, we are then directly optimizing the adversarial accuracy of the
decision tree. The pseudo-code for this algorithm is given in the appendix². We will refer
to this method as relabeling criterion trees.

6.3.2 Runtime Comparison
We compare the runtimes of robust relabeling and relabeling criterion trees on different
sample sizes of the Wine dataset in Figure 6.2. Robust relabeling decision trees runs in
a matter of seconds since the number of trees is small. In tree ensembles with 100 trees
to relabel and many more leaves, the runtime quickly increases. We find that relabeling
criterion trees take more than an hour to train on 2000 samples, and training on larger
sample sizes quickly becomes infeasible.

In this work all experiments ran without parallelism on a laptop with 16GB of RAM
and a 2 GHz Quad-Core Intel Core i5 CPU. All results in this chapter took approximately a
day to compute, this is including robustness verification with combinatorial optimization
solvers. Particularly robust relabeling criterion trees and robustness verification of tree
ensembles for the wine dataset require much runtime. Without robust relabeling criterion
trees and wine robustness verification the runtime is approximately 2 hours.

²https://github.com/tudelft-cda-lab/robust-relabeling

https://openml.org/search?type=data&status=active&id=1462
https://openml.org/search?type=data&status=active&id=1510
https://openml.org/search?type=data&status=active&id=15
https://openml.org/search?type=data&status=active&id=40
https://openml.org/search?type=data&status=active&id=59
https://openml.org/search?type=data&status=active&id=1488
https://openml.org/search?type=data&status=active&id=42608
https://openml.org/search?type=data&status=active&id=1494
https://openml.org/search?type=data&status=active&id=337
https://openml.org/search?type=data&status=active&id=287
https://github.com/tudelft-cda-lab/robust-relabeling
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Table 6.2: Mean adversarial accuracy scores of decision trees of depth 5 on 5-fold cross validation. GROOT trees
with robust relabeling and relabeling criterion trees score best against adversarial attacks. However, GROOT
with relabeling runs orders of magnitude faster.

dataset tree tree
relabeled GROOT GROOT

relabeled
relabeling
criterion

Banknote .734 ± .077 .823 ± .035 .794 ± .049 .824 ± .038 .811 ± .049

Breast-cancer .874 ± .013 .903 ± .025 .912 ± .035 .922 ± .012 .925 ± .013

Breast-cancer-d .617 ± .158 .810 ± .026 .835 ± .013 .847 ± .014 .851 ± .038

Sonar .482 ± .140 .573 ± .073 .601 ± .048 .606 ± .048 .582 ± .070

Ionosphere .689 ± .071 .792 ± .045 .892 ± .030 .889 ± .028 .895 ± .028

Parkinsons .513 ± .139 .759 ± .126 .749 ± .071 .790 ± .058 .795 ± .075

Diabetes .708 ± .009 .712 ± .025 .677 ± .053 .712 ± .025 .710 ± .032

Qsar-bio. .292 ± .060 .661 ± .004 .704 ± .029 .736 ± .050 .686 ± .014

Spectf-heart .840 ± .041 .840 ± .041 .831 ± .044 .831 ± .044 .768 ± .016

Wine .526 ± .027 .610 ± .047 .618 ± .043 .618 ± .052 timeout

Table 6.3: Mean adversarial accuracy scores of decision tree ensembles on 5-fold cross validation. GROOT
trees with robust relabeling score best against adversarial attacks, relabeled regular trees perform on average
similarly to robust GROOT trees that did not use relabeling.

dataset boosting forest GROOT
forest

boosting
relabeled

forest
relabeled

GROOT
forest rel.

Banknote .786 ± .072 .846 ± .032 .851 ± .037 .822 ± .052 .849 ± .039 .862 ± .039

Breast-cancer .873 ± .027 .908 ± .020 .946 ± .017 .937 ± .020 .930 ± .011 .952 ± .017

Breast-cancer-d .606 ± .070 .745 ± .035 .805 ± .025 .821 ± .019 .842 ± .022 .847 ± .021

Sonar .438 ± .089 .389 ± .051 .510 ± .069 .616 ± .076 .582 ± .034 .577 ± .048

Ionosphere .635 ± .163 .812 ± .037 .903 ± .018 .815 ± .010 .872 ± .017 .912 ± .021

Parkinsons .492 ± .177 .508 ± .170 .728 ± .092 .759 ± .126 .749 ± .021 .826 ± .066

Diabetes .596 ± .043 .668 ± .049 .703 ± .052 .697 ± .032 .729 ± .036 .730 ± .047

Qsar-bio. .078 ± .025 .173 ± .015 .648 ± .046 .663 ± .002 .663 ± .002 .781 ± .026

Spectf-heart .863 ± .034 .891 ± .028 .888 ± .023 .877 ± .037 .897 ± .025 .894 ± .029

Wine .202 ± .044 .184 ± .050 .384 ± .051 .494 ± .081 .482 ± .090 .606 ± .038
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Table 6.4: Comparison of adversarial accuracy scores for adversarial pruning [15] and robust relabeling (ours).
Adversarial pruning does not take into account that the learner can select non-robust splits where relabeling
effectively removes such splits thus producing more robust models.

Decision tree Gradient boosting Random forest
dataset Pruning Relabeling Pruning Relabeling Pruning Relabeling
Banknote .718 ± .060 .823 ± .035 .809 ± .053 .822 ± .052 .855 ± .032 .849 ± .039

Breast-cancer .867 ± .016 .903 ± .025 .868 ± .031 .937 ± .020 .906 ± .016 .930 ± .011

Breast-cancer-d .617 ± .158 .810 ± .026 .619 ± .081 .821 ± .019 .749 ± .035 .842 ± .022

Sonar .482 ± .140 .573 ± .073 .438 ± .089 .616 ± .076 .389 ± .051 .582 ± .034

Ionosphere .689 ± .071 .792 ± .045 .635 ± .163 .815 ± .010 .812 ± .037 .872 ± .017

Parkinsons .513 ± .139 .759 ± .126 .492 ± .177 .759 ± .126 .508 ± .170 .749 ± .021

Diabetes .708 ± .009 .712 ± .025 .596 ± .043 .697 ± .032 .668 ± .049 .729 ± .036

Qsar-bio. .262 ± .052 .661 ± .004 .149 ± .024 .663 ± .002 .183 ± .010 .663 ± .002

Spectf-heart .840 ± .041 .840 ± .041 .863 ± .034 .877 ± .037 .891 ± .028 .897 ± .025

Wine .562 ± .030 .610 ± .047 .212 ± .094 .494 ± .081 .240 ± .047 .482 ± .090
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6.4 Improving Robustness
To investigate the effect of robust relabeling on adversarial robustness, we compare perfor-
mance on 10 datasets with a fixed perturbation radius for each dataset. We used datasets
from the UCI Machine Learning Repository [18] retrieved through OpenML [23]. All
datasets, their properties and perturbation radii 𝜖 are listed in Table 6.1. We pre-process
each dataset by scaling the features to the range [0,1]. This way, we can interpret 𝜖 as rep-
resenting a fraction of each feature’s range. We compare robust relabeling to regular deci-
sion trees and ensembles trained with Scikit-learn [24], robust decision trees trained with
GROOT [12] and adversarial pruning [15]. All adversarial accuracy scores were computed
with optimal adversarial attacks using the GROOT toolbox³. For single trees, computing
optimal adversarial attacks is done by enumerating all the leaves and for tree ensembles
by solving the Mixed-Integer Linear Programming formulation by Kantchelian et al. [8]
using GUROBI 9.1 [25].

6.4.1 Decision Trees
Decision trees have the desirable property that they are interpretable when constrained
to be small enough. What exactly is the number of leaves that allow a decision tree to be
interpretable is not well defined. In this work, we decide to train single trees up to a depth
of 5 which enforces a maximum number of leaves of 25 = 32. In Table 6.2 we compare the
performance of regular, robust GROOT [12] trees and relabeling criterion trees defined in
Section 6.3.1. We score the regular and GROOT trees before and after relabeling but we
skip this step for relabeling criterion trees as this does not affect the learned tree.

Robust relabeling improves the performance of regular and GROOT trees significantly
on most datasets and never reduces the mean adversarial accuracy. Relabeling criterion
trees and relabeled GROOT trees performed similarly on average but relabeled GROOT
trees run orders of magnitude faster.

6.4.2 Decision Tree Ensembles
For tasks that do not require model interpretability, it is a popular choice to ensemble mul-
tiple decision trees to create stronger models. We experiment with the robust relabeling
of random forests, GROOT random forests and gradient boosting ensembles, all limited
to 100 decision trees. For the gradient boosting ensembles we limit the trees to a depth of
5 to prevent overfitting. This is not required for random forests where one purposefully
ensembles low bias, high variance models [17], i.e., unconstrained decision trees. We did
not compare to random forests trained with the robust relabeling criterion as this was
computationally infeasible. The adversarial accuracy scores before and after robust rela-
beling are presented in Table 6.3. On the Wine dataset we only used 100 test samples to
limit the runtime.

Robust relabeling increases the mean adversarial accuracy over 5-fold cross-validation
on all datasets and models. On average, the GROOT random forests with robust relabeling
performed best. Clearly, the combination of robust splits and robust labeling is better than
regular splits and robust labeling. Additionally we find that relabeled GROOT forests
(Table 6.3) outperform relabeled GROOT trees (Table 6.2) on many datasets. This is in

³https://github.com/tudelft-cda-lab/GROOT

https://github.com/tudelft-cda-lab/GROOT
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Table 6.5: Comparison of regular accuracy scores before and after applying robust relabeling. Since robustness
is generally at odds with accuracy robust relabeling loses out on accuracy in about 2 out of 3 cases. However, in
some cases robustness actually improves accuracy as a type of regularization.

Decision tree Gradient boosting Random forest
dataset Before After Before After Before After
Banknote .967 ± .022 .948 ± .036 .991 ± .007 .941 ± .038 .994 ± .005 .956 ± .020

Breast-cancer .969 ± .014 .958 ± .019 .962 ± .008 .965 ± .009 .968 ± .008 .969 ± .003

Breast-cancer-d .930 ± .034 .912 ± .032 .917 ± .036 .931 ± .024 .954 ± .017 .947 ± .028

Sonar .740 ± .058 .716 ± .054 .731 ± .044 .740 ± .046 .803 ± .031 .755 ± .054

Ionosphere .883 ± .034 .857 ± .047 .906 ± .041 .863 ± .022 .926 ± .026 .932 ± .033

Parkinsons .872 ± .065 .851 ± .071 .867 ± .071 .851 ± .071 .913 ± .082 .759 ± .014

Diabetes .737 ± .026 .738 ± .034 .742 ± .026 .719 ± .028 .769 ± .039 .768 ± .040

Qsar-bio. .819 ± .042 .661 ± .004 .872 ± .023 .663 ± .002 .868 ± .023 .663 ± .002

Spectf-heart .840 ± .041 .840 ± .041 .871 ± .028 .880 ± .033 .897 ± .025 .897 ± .025

Wine .696 ± .048 .686 ± .047 .774 ± .024 .494 ± .081 .786 ± .019 .498 ± .080

contrast with the original GROOT paper [12]. In that paper, large values were used for 𝜖
that did not allow for the models to achieve significant improvements over predicting the
majority class.

6.4.3 Adversarial Pruning

Adversarial pruning [15] is a technique that implicitly prunesmodels by removing samples
from the training dataset that are not well separated (𝐷⧵𝐶). This intuitively makes models
more robust as the models then explicitly ignore samples that will make the models more
susceptible to adversarial attacks. Using decision tree learning algorithms as-is on this
dataset (𝐷 ⧵𝐶), without taking robustness into account, still provides models that suffer
from adversarial examples. In Table 6.4 we compare the adversarial robustness of models
trained with adversarial pruning and robust relabeling. We notice that on many datasets,
adversarial pruning only removes a small number of samples which results in models that
are similar to the fragile models produced by regular decision tree learning algorithms.

6.4.4 Accuracy Robustness Trade-off

Since we optimize robustness by enforcing samples to be correctly classified in a region
around each sample, there can be a cost in regular accuracy. In Table 6.5 we compare
the accuracy of regular models with and without robust relabeling. We find that indeed
robust relabeling reduces regular accuracy in approximately two out of three cases that
we tested. However, there are also instances where accuracy actually improves, such as in
the case of gradient boosting on the breast cancer datasets. We expect that robustification
has a helpful regularization effect in these situations.
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6.5 Regularizing Decision Trees
Robust relabeling regularizes decision trees and tree ensembles by changing the leaf labels
to maximize adversarial robustness. To understand the regularization effect we first visu-
alize models before and after robust relabeling on toy datasets. Additionally, we contrast
the regularization effect of robust relabeling with Cost Complexity Pruning. We show that
while both methods can improve test accuracy, robust relabeling favors robustness while
Cost Complexity Pruning favors regular accuracy.

6.5.1 Toy Datasets
To understand the effects of robust relabeling we generate three two-dimensional datasets
and visualize the decision regions before and after relabeling. In Figure 6.3 we train de-
cision trees, random forests and gradient boosting with 5% label noise and adversarial
attacks within an 𝐿∞ radius of 𝜖 = 0.05. All features are scaled to the range [0,1] therefore
𝜖 represents 5% of each feature’s range. The boosted and single decision trees were limited
to a depth of 5.

In all types of models we see that there are small regions with a wrong prediction in
areas where the model predicts the correct label. For instance, in the normal decision tree
trained on ‘moons’, we see a slim orange leaf in the region that is otherwise predicted as
blue. This severely reduces the robustness of the model against adversarial attacks since
nearby samples can be perturbed into those regions. Robust relabeling effectively removes
these leaves from the models to improve adversarial robustness. Although the effect of
regularization of decision trees is hard to quantify, we intuitively see that the relabeled
models are more consistent in their predictions. We expect this property to also improve
the explainability of the models by methods such as counterfactual explanations [26].

6.5.2 Comparison with Cost Complexity Pruning
Cost Complexity Pruning is a method that reduces the size of decision trees to improve
their generalization capabilities. This method iteratively merges leaves that have a lower
increase in predictive performance than some user-defined threshold 𝛼. In Figure 6.4 we
compare the effects of Cost Complexity Pruning and robust relabeling on the Diabetes
dataset. Here, we trained decision trees without size constraints and varied the hyperpa-
rameters 𝛼 and 𝜖 then measured accuracy before and after adversarial attacks.

While the effectiveness of cost complexity pruning and robust relabeling varies be-
tween datasets we find that generally both methods can increase test accuracy compared
to the baseline model. However, cost complexity pruning achieved better accuracy scores
on average while robust relabeling achieved better adversarial accuracy scores. Clearly,
there is a difference between regularization for generalization and adversarial robustness.
Such a trade-off between accuracy and robustness has been widely described in the liter-
ature [27, 28].
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Figure 6.3: Decision regions of tree models before and after robust relabeling. Robust relabeling effectively
removes fragile regions resulting in visually simpler models.
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Figure 6.4: Test scores on the Diabetes dataset when varying the hyperparameters of cost complexity pruning
and robust relabeling. Both improve upon unpruned trees (𝛼 = 𝜖 = 0), but cost complexity pruning performs
better at regular accuracy while robust relabeling enhances adversarial accuracy.
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6.6 Conclusions
In this work, we studied relabeling as a method to improve the adversarial robustness of
decision trees and their ensembles. As training optimal robust decision trees is expensive
and training heuristic robust trees inexact, we propose a polynomial-time post-learning
algorithm to overcome these problems: robust relabeling. Our results show that robust
relabeling significantly improves the robustness of regular and robust tree models. Ro-
bustly relabeling models trained with the state-of-the-art robust tree heuristic GROOT
further improved the performance. While we can also use the robust relabeling method
during the tree learning procedure this took up to hours of runtime and produced decision
trees that were approximately as robust as relabeled GROOT trees.

We expect robust relabeling in combination with methods such as GROOT to become
important for training models that get deployed in adversarial contexts such as fraud or
malware detection. The result that finding an optimal robust labeling can be done in poly-
nomial time can help to further improve methods for optimal robust decision tree learning.
In future work, we will explore the regularity effects of robust models for instance for im-
proved counterfactual explanations.
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7
Poisoning Robust and
Differentially-Private

Decision Trees

Decision trees are interpretable models that are well-suited to non-linear learning problems.
Much work has been done on extending decision tree learning algorithms with differential
privacy, a system that guarantees the privacy of samples within the training data. However,
current state-of-the-art algorithms for this purpose sacrifice much utility for a small privacy
benefit, which makes them less likely to be used in practice. These solutions create random
decision nodes that reduce decision tree accuracy or spend an excessive share of the privacy
budget on labeling leaves. Moreover, many works do not support continuous features or leak
information about them. We propose a new method called PrivaTree based on histograms
that chooses good splits while consuming the privacy budget efficiently. The resulting trees
provide a better privacy-utility trade-off and accept mixed numerical and categorical data
without leaking information about numerical features. Finally, while it is notoriously hard
to give robustness guarantees against data poisoning attacks, we demonstrate bounds for the
expected accuracy and success rates of backdoor attacks against differentially-private learners.
By leveraging the better privacy-utility trade-off of PrivaTree we can train decision trees with
significantly better robustness against backdoor attacks compared to regular decision trees
and with meaningful theoretical guarantees. In this way, PrivaTree provides a secondary
incentive for adoption.



7

116 7 Poisoning Robust and Differentially-Private Decision Trees

7.1 Introduction
Machine learning has achieved widespread success with neural networks and ensemble
methods, but it is almost impossible for humans to understand the decisions such models
make [1]. Fortunately, much work has been done on training machine learning models
that are directly interpretable by humans [2]. Especially size-limited decision trees [3, 4]
are successful methods for their interpretability combined with their ability to predict
non-linear data.

While decision trees can offer interpretability, they reveal information about the data
they were trained on. This is a detrimental property when models are trained on private
data that contains sensitive information, such as in fraud detection and medical applica-
tions. Differentially-private [5] machine learning models solve this problem by introduc-
ing carefully crafted randomness into theway themodels are trained [6]. For differentially-
private decision trees, the entire model consisting of decision node splits and leaf labels
can be made public, and by extension, predictions made by the model. This is not only
useful for training interpretable private models, but decision trees are also vital primitives
for building ensembles [7–10] for tabular data. The key problem in training differentially-
private models is efficiently spending the privacy budget 𝜖 to achieve high utility. In this
work, we propose an algorithm for training decision trees with an improved privacy-utility
trade-off.

Many previous works have already proposed ways to generate differentially-private
decision trees, but they also have shortcomings. There are two main categories of algo-
rithms here. The first category [11–14] chooses splits completely at random and allocates
the entire privacy budget for labeling the leaves. The second category [15–18] extends
the greedy splitting procedure of regular decision trees, where splits are selected by op-
timizing a splitting criterion. These works guarantee differential privacy by incorporat-
ing noise into the splitting criterion while consuming a part of the user-defined privacy
budget. However, since these approaches require computing many scores to select good
decision nodes, an inefficient use of a mechanism results in consuming a large fraction of
the privacy budget. The remaining budget is spent on labeling leaves.

In this work, we propose a method called PrivaTree to train differentially-private de-
cision trees. PrivaTree uses the privacy budget more efficiently than previous work when
choosing splits by leveraging histograms and using the permute-and-flip mechanism. We
also propose a strategy for distributing the privacy budget that offers good performance
for both very small and large datasets. The result is a practical method for training private
trees with a significantly better utility for all privacy budgets. PrivaTree also prevents
leakage from the location of splits on numerical features, a property that some previ-
ous methods do not have. Moreover, we demonstrate how the ability to train accurate
differentially-private decision trees with small privacy budgets allows for performance
guarantees against data poisoning attacks in which an adversary manipulates the training
data. Our experiments on various tabular benchmark datasets demonstrate an improved
privacy-utility trade-off compared to other private trees. We also experimentally demon-
strate that PrivaTree offers stronger poisoning robustness guarantees than private logis-
tic regression [19], another interpretable method. Our experiments on the MNIST 0 vs
1 dataset show that, indeed, PrivaTrees with small privacy budgets resist a trigger-based
backdoor attack.



7.1 Introduction

7

117

10
3

10
2

10
1

10
0

10
1

0.76

0.78

0.80

0.82

0.84

te
st

 a
cc

ur
ac

y

Decision tree
DiffPrivLib

PrivaTree (ours)
BDPT

DPGDF
majority class

(a) adult dataset (45222 samples, 14 features)

10
3

10
2

10
1

10
0

10
1

0.50

0.55

0.60

0.65

te
st

 a
cc

ur
ac

y

Decision tree
DiffPrivLib

PrivaTree (ours)
BDPT

DPGDF
majority class

(b) compas-two-years (4966 samples, 11 features)

Figure 7.1: Mean accuracy scores of depth 4 trees when varying privacy budget 𝜖 from private to less private with
50 repetitions. For extremely small privacy budgets, DiffPrivLib performs best, but for higher budgets, PrivaTree
achieves a significantly higher accuracy.
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Figure 7.2: Training accuracy scores when varying the distribution of the privacy budget 𝜖 = 0.1 over different
parts of the PrivaTree algorithm with depth 3. Scores were averaged over 50 executions. On small datasets such
as vote, the best trees allocate more budget to the leaves, while large datasets such as pol benefit from more
budget for splitting.
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7.2 Improvingdifferentially privatedecision trees:
PrivaTree

In this section, we present PrivaTree, which is an algorithm for training differentially-
private decision trees with high utility. PrivaTree incorporates three techniques to im-
prove performance:

• Histograms to limit the number of splits to consider for each decision node.

• A better distribution of privacy budget based on a bound for labeling leaves accu-
rately.

• The permute-and-flip mechanism instead of the exponential mechanism for leaf la-
beling and node splitting.

Additionally, PrivaTree pre-processes numerical features into binswhich enables it to train
on both numerical and categorical features. PrivaTree assumes that the range of numerical
features, the set of categorical values, the set of class labels, and the dataset size are publicly
known. In our experiments, we compute these values based on the complete datasets. We
provide pseudocode in Algorithm 7, which we describe in more detail in the rest of this
section.

7.2.1 Scoring splits using histograms
Classification tree learning algorithms such as CART create decision nodes by recursively
choosing a split among all feature values that minimizes theweighted Gini impurity. Previ-
ous differentially-private decision trees used similar approaches but often leak information
about numerical feature values. Friedman and Schuster [18] show how to split numerical
features using the continuous exponential mechanism privately, but this requires more
privacy budget because each feature needs to be considered separately. Another work,
BDPT, permits some leakage, providing a weaker form of privacy by averaging every 5
numerical feature values, and then splitting using the exponential mechanism.

Numerical features To find high-quality splits while protecting feature value informa-
tion and efficiently using the privacy budget, we use histograms. Splitting according to his-
tograms has been a successful progression in decision tree learning for gradient boosting
ensembles [9, 10] where it is used for its runtime efficiency. Instead, we rely on them be-
cause they reduce the number of threshold values considered for splitting which improves
node selection at limited privacy budget. Specifically, we compute the Gini impurity for
every threshold value between the bins of all features and use the permute-and-flip mech-
anism with to choose the one that privately minimizes impurity. This results in decision
node rules of the kind ‘feature value ≤ threshold’. In the rest of this paper, we fix the num-
ber of bins for numerical features to 10. The global sensitivity of this operation is 1

2 as this
is the range of the Gini impurity, but the performance can be improved using smooth sen-
sitivity [20]. Therefore we first privately count the number of samples that reach the node
using the Geometric mechanism and budget 1

2𝜖node and then use the smooth sensitivity
1−( 𝑛

𝑛+1 )
2−( 1

𝑛+1 )
2 for the permute-and-flip mechanism with budget 1

2𝜖node.
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Categorical features Previous decision tree learning algorithms support categorical
features by only splitting one category at a time. While this method is sound, it often
requires deep trees tomake enough splits for categorical features to be useful, which harms
interpretability. In the PrivaTree algorithm, we find a partition of the categories instead.
Such rules are of the kind ‘categories 𝐿 go left, categories 𝑅 go right’. This is done by
fixing the order of the categories and finding a threshold somewhere in this sequence of
categories, similar to finding a split on numerical data.

7.2.2 Pre-processing by binning
Before the splitting procedure, PrivaTree must select the boundaries of the 10 bins of the
histograms for each numerical feature. A natural choice is to create equal-width bins of nu-
merical features based on the public knowledge of each feature’s range, but this approach
can have problems: features with long tails would cause data to be concentrated in a few
bins and result in a large loss of information. Instead, we also consider binning numerical
features using quantiles so that they evenly divide the samples over each bin. Since regu-
lar quantiles leak information about the dataset, we also implement differentially-private
quantiles. We use the jointexp algorithm [21] for this, which improves performance over
optimal statistical estimation techniques [22] when computing multiple quantiles on the
same data. This algorithm runs with privacy budget 𝜖quantile, divided over each feature us-
ing the sequential composition property we will define later. Categorical variables require
no preprocessing. Instead, we encode them as integers, and the split-finding operation
handles these values natively. In our results, we compare quantiles with equal-width bins
and suggest equal-width bins as a good baseline, as computing them does not consume
the privacy budget.

7.2.3 Leaf labeling according to majority votes
Once the PrivaTree algorithm has produced a series of decision nodes by recursively split-
ting and reaches the stopping criterion, the algorithm creates a leaf containing a prediction.
In the non-private setting, the prediction is usually chosen to be the majority of the class
labels of samples that reach that leaf to maximize accuracy. However, this leaks private
information. Previous works have used the Laplace or (smooth) exponential mechanisms,
but like modern implementations such as DiffPrivLib [13], we opt for the permute-and-
flip mechanism [23]. Permute-and-flip is proven to have an expected error that is at least
as good or better than that of the exponential mechanism and practically outperforms it.
To label a leaf, we count the number of samples of each class and apply permute-and-flip
with privacy budget 𝜖leaf, which we define later.

7.2.4 Distributing the privacy budget
The composability property of differential privacy allows modular algorithm design by
breaking up the algorithm into differentially-private primitives. However, it is generally
not obvious how to distribute the privacy budget 𝜖 over the primitives to maximize the
expected utility of the outcomes. Previous works have tried various heuristics, such as
distributing 𝜖 equally over each private operation or distributing epsilon 50-50 between
node and leaf operations. To understand the role of budget distribution in private tree
learning, we visualized the average training accuracy over 50 runs when varying budgets
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Algorithm 7 Train PrivaTree with 𝜖 differential privacy
Input: dataset 𝑋 (𝑛×𝑚), labels 𝑦, privacy budget 𝜖, maximum leaf error 𝑚𝑎𝑥 , maximum
depth 𝑑
1: 𝜖leaf = min( 𝜖2 , 𝜖

′
leaf), where 𝜖′leaf is computed with Equation 7.1

2: 𝜖node = (𝜖− 𝜖leaf) ⋅ 1𝑑
3: for numerical features 𝑗num do
4: bin values 𝑋𝑖,𝑗num into bins 𝐵𝑗num of equal width (determined with public feature

range)
5: end for
6: procedure FITTREE(𝑋 ′, 𝑦′, 𝑑′)
7: if 𝑑′ = 0 then
8: compute class counts 𝑁0,𝑁1, ...,𝑁𝐾 for all 𝐾 classes
9: return Leaf(𝑃𝐹 (⟨𝑁0,𝑁1, ...,𝑁𝐾 ⟩)) ⊳ with budget 𝜖leaf and sensitivity 1

10: else
11: create histograms ∀𝑗 , 𝑘,𝑏∈𝐵𝑗 ∶ 𝐻𝑗 ,𝑏,𝑘 ←∑𝑖[𝑋 ′

𝑖,𝑗=𝑏∧𝑦′𝑖=𝑘]
12: compute utilities with the negative Gini impurity 𝑢𝑗 ,𝑏 ← −GINI(𝐻𝑗 ,𝑏,0,𝐻𝑗 ,𝑏,1, ...)
13: count the number of samples that reach this node 𝑛 =𝐺𝑒𝑜𝑚(|𝑋 ′|) ⊳ with

budget 1
2𝜖node and sensitivity 1

14: choose split (𝑗∗, 𝑏∗) with 𝑃𝐹 ({𝑢𝑗 ,𝑏 ∶ ∀𝑗 , 𝑘}) ⊳ with budget 1
2𝜖node and

sensitivity 1−( 𝑛
𝑛+1 )

2−( 1
𝑛+1 )

2

15: partition 𝑋 ′ into (𝑋 left,𝑋 right), and 𝑦′ into (𝑦 left, 𝑦right) according to (𝑗∗, 𝑏∗)
16: left ← FITTREE(𝑋 left, 𝑦 left, 𝑑′−1), right ← FITTREE(𝑋 right, 𝑦right, 𝑑′−1)
17: return Node(𝑗∗, 𝑏∗,left,right)
18: end if
19: end procedure
20: return FITTREE(𝑋,𝑦,𝑑)

were spent on parts of the algorithm (quantile finding, node splitting, and leaf labeling) in
Figure 7.2. We find that when 𝜖 is large compared to the dataset size, it is best to spend
nearly all the budget on node operations. When 𝜖 is small compared to the dataset size,
spending the budget on leaf labeling is favorable, i.e., creating nearly random nodes and
accurately labeling the leaves. Computing quantiles usually requires too much budget to
be useful, so by default, we decide to split features into equal-width bins according to the
feature range (which is assumed to be public knowledge). For example, if ‘age’ is a feature
with values between 0 and 120 years, splitting it into 10 bins results in bins 0-12, 12-24,
and 106-120. By noticing that we can bound the expected error incurred by labeling leaves
for a given privacy budget, we propose a budget distribution scheme that scales well for
varying values of 𝜖. When the privacy budget is low compared to the dataset size, set
𝜖leaf = 𝜖

2 , i.e. half of the budget. When the budget is relatively high, set 𝜖leaf such that the
maximum expected error incurred by labeling 𝔼[(, �⃗� )] is at most equal to the user-
specified labeling error limit 𝑚𝑎𝑥 . Distribute the remaining budget 𝜖− 𝜖leaf over node
operations to improve algorithm utility for higher values of 𝜖. For all our results, we used𝑚𝑎𝑥 = 0.01 i.e., if possible, we only allow an extra accuracy loss of 1% due to leaf labeling
errors.
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Corollary 1. For 𝐾 classes, 𝑛 samples and depth 𝑑 trees, the amount of privacy budget
𝜖′leaf needed for labeling leaves with the permute-and-flip mechanism with expected error

𝔼[(𝑃𝐹 , �⃗� )] of at most 𝑚𝑎𝑥 is:

𝜖′leaf ≤
2𝑑max𝑝 2 log( 1𝑝 )(1−

1−(1−𝑝)𝐾
𝐾𝑝 )

𝑛 𝑚𝑎𝑥 , (7.1)

Proof. This result naturally follows from applying the worst-case error bound proved for𝑃𝐹 in the permute-and-flip paper [23]. A complete proof is given in the appendix¹.

Following the definition of 𝜖′leaf this results in the privacy budget being distributed as

𝜖leaf = min(
𝜖
2
, 𝜖′leaf) , (7.2)

𝜖node =
𝜖− 𝜖leaf

𝑑
. (7.3)

Next, we show that this budget distribution scheme actually provides differential pri-
vacy by showing that the composition of mechanisms spends privacy budget equal to 𝜖.

Theorem 7. PrivaTree, as described in Algorithm 7, provides 𝜖-differential privacy.

Proof. For numerical attributes in the training set 𝑋 , PrivaTree first computes bins using
public knowledge, which does not consume privacy budget. After that, the algorithm
recursively splits the root node, and since each split creates two distinct partitions of the
data, each data point is only used in 𝑑 nodes where 𝑑 is themaximum depth of the tree. The
amount of budget spent on node splitting is then 𝑑 ⋅𝜖node through sequential composition.
Finally, leaf labeling consumes 𝜖leaf of the privacy budget, and since each data point is only
used in a single leaf, this follows parallel composition (spending 𝜖leaf once). Combining
all the operations, we find that the amount of privacy budget spent is:

𝜖 = 𝑑 ⋅ 𝜖node+ 𝜖leaf

= 𝑑 ⋅
𝜖− 𝜖leaf

𝑑
+ 𝜖leaf

= 𝜖− 𝜖leaf+ 𝜖leaf
= 𝜖.

Therefore Algorithm 7 provides 𝜖-differential privacy.

7.3 Poisoning Robustness
When using machine learning trained on crowd-sourced data, such as in federated learn-
ing scenarios, or on potentiallymanipulated data one has to considermalicious user behav-
ior. One such threat is data poisoning, in which users insert 𝑥 data points into the training
dataset to confuse the classifier or introduce a backdoor. Many defenses have been pro-
posed, such as using learning behavior to ignore backdoor data [24] or post-processing

¹https://github.com/tudelft-cda-lab/PrivaTree

https://github.com/tudelft-cda-lab/PrivaTree
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based on adversarial robustness to remove backdoors [25], but such methods work heuris-
tically and offer no guarantees. We use the fact that 𝜖-differentially-private machine learn-
ing algorithms are limited in sensitivity to dataset changes to provide guarantees against
poisoning attacks. Ma et al. [26] introduce the attack cost 𝐽 (𝐷) = 𝔼[𝐶((𝐷))], i.e. the
expected value of a cost function 𝐶 that an attacker gets from models produced by  on
dataset 𝐷. They prove the following about the cost of attacks against differentially-private
learners:

Theorem 8. [26] Let  be an 𝜖-differentially-private learner. Let 𝐽 (�̃�) be the attack cost,
where �̃�⊖𝐷 ≤ 𝑥 (i.e. a dataset with 𝑥 poisoned samples compared to clean dataset 𝐷), then

𝐽 (�̃�) ≥ 𝑒−𝑥𝜖𝐽 (𝐷), (𝐶 ≥ 0) (7.4)
𝐽 (�̃�) ≥ 𝑒𝑥𝜖𝐽 (𝐷). (𝐶 ≤ 0) (7.5)

We will consider two scenarios with different attacker objectives and their associated
cost functions:

• An attacker adds or removes up to 𝑥 samples from a dataset in an attempt to maxi-
mally reduce the accuracy of a model learned from the dataset. The associated cost
function is the accuracy of the model, i.e. 𝐽Acc(�̃�) = 𝔼[Accuracy((�̃�))].

• An attacker adds 𝑥 copies of data points with a trigger pattern inserted into them
and the associated label is changed to a target label in an effort to create a backdoor.
The associated cost function is the Attack Success Rate (ASR), i.e. the percentage
of data points for which the predicted label can be flipped to the target label. Since
Theorem 8 assumes (without loss of generality) that the attacker minimizes 𝐽 , we
use the complement of the ASR as the cost, as the attacker wants to maximize ASR:
𝐽ASR(�̃�) = 𝔼[1−ASR((�̃�))].

These two settings lead to the following robustness guarantees that we empirically
evaluate in Section 4.5 for various private learners and datasets.

Corollary 2. Let be an 𝜖-differentially-private learner. Let 𝐽Acc(�̃�) =𝔼[Accuracy((�̃�))]
be the model’s expected accuracy on the poisoned dataset �̃�, where �̃� ∈ 𝐵(𝐷,𝑥) (i.e. a dataset
with 𝑥 poisoned samples), then

𝔼[Accuracy((�̃�))] ≥ 𝑒−𝑥𝜖 𝔼[Accuracy((𝐷))]

Proof. Since the accuracy score function is non-negative this follows directly from Equa-
tion 7.4:

𝐽 (�̃�) ≥ 𝑒−𝑥𝜖𝐽 (𝐷)

𝔼[Accuracy((�̃�))] ≥ 𝑒−𝑥𝜖 𝔼[Accuracy((𝐷))] .

Corollary 3. Let be an 𝜖-differentially-private learner. Let 𝐽ASR(�̃�) =𝔼[1−ASR((�̃�))]
be the expected backdoor attack success rate on the poisoned dataset �̃�, where �̃� ∈ 𝐵(𝐷,𝑥) (i.e.
a dataset with 𝑥 poisoned samples), then

𝔼[ASR((�̃�))] ≤ 1− 𝑒−𝑥𝜖 𝔼[1−ASR((𝐷))]
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Proof. Since 𝐽ASR is non-negative we derive the guarantee from Equation 7.4:

𝐽 (�̃�) ≥ 𝑒−𝑥𝜖𝐽 (𝐷)

𝔼[1−ASR((�̃�))] ≥ 𝑒−𝑥𝜖 𝔼[1−ASR((𝐷))]

𝔼[ASR((�̃�))]−𝔼[1] ≤ −𝑒−𝑥𝜖 𝔼[1−ASR((𝐷))]

𝔼[ASR((�̃�))] ≤ 1− 𝑒−𝑥𝜖 𝔼[1−ASR((𝐷))] .
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OpenML dataset decision tree BDPT PrivaTree* DPGDF DiffPrivLib PrivaTree
no privacy leaking numerical splits differential privacy

Numerical data
Bioresponse .711 ± .006 .508 ± .009 .553 ± .021 - .517 ± .008 .505 ± .003

Diabetes130US .606 ± .001 .515 ± .006 .556 ± .010 - .522 ± .009 .529 ± .011

Higgs .657 ± .001 timeout .646 ± .002 - .514 ± .004 .593 ± .003

MagicTelescope .781 ± .006 .500 ± .000 .687 ± .025 - .663 ± .038 .658 ± .025

MiniBooNE .871 ± .001 .500 ± .000 .806 ± .008 - .503 ± .001 .763 ± .011

bank-marketing .771 ± .005 .499 ± .000 .689 ± .019 - .560 ± .022 .555 ± .031

california .783 ± .002 .500 ± .000 .716 ± .014 - .593 ± .039 .708 ± .031

covertype .740 ± .001 .501 ± .001 .740 ± .002 - .531 ± .007 .728 ± .001

credit .748 ± .001 .500 ± .000 .689 ± .025 - .528 ± .010 .523 ± .014

default-of-credit. .704 ± .002 .500 ± .000 .593 ± .015 - .565 ± .030 .573 ± .028

electricity .734 ± .002 .500 ± .000 .728 ± .004 - .633 ± .020 .617 ± .011

eye_movements .574 ± .003 .500 ± .001 .517 ± .006 - .516 ± .006 .510 ± .005

heloc .704 ± .004 .526 ± .009 .605 ± .023 - .559 ± .020 .587 ± .027

house_16H .815 ± .004 .500 ± .000 .690 ± .019 - .533 ± .007 .593 ± .032

jannis .715 ± .002 .500 ± .000 .651 ± .007 - .530 ± .005 .633 ± .012

pol .929 ± .003 .538 ± .023 .663 ± .048 - .569 ± .032 .578 ± .042

Numerical & categorical data
albert .640 ± .002 .500 ± .000 .624 ± .003 .511 ± .005 .532 ± .018 .533 ± .016

compas-two-years .672 ± .006 .576 ± .021 .617 ± .016 .568 ± .006 .585 ± .012 .574 ± .012

covertype .756 ± .000 .606 ± .007 .745 ± .002 .535 ± .008 .545 ± .022 .744 ± .002

default-of-credit. .707 ± .004 .500 ± .000 .562 ± .013 .528 ± .005 .584 ± .026 .572 ± .033

electricity .732 ± .002 .516 ± .015 .726 ± .004 .517 ± .002 .539 ± .004 .616 ± .006

eye_movements .579 ± .001 .506 ± .006 .533 ± .009 .531 ± .007 .506 ± .004 .511 ± .012

road-safety .728 ± .001 .685 ± .001 .704 ± .002 .685 ± .001 .554 ± .032 .692 ± .004

UCI datasets (numerical & categorical)
adult .840 ± .001 .752 ± .000 .776 ± .014 .751 ± .000 .758 ± .005 .782 ± .012

breast-w .950 ± .007 .669 ± .028 .902 ± .013 - .921 ± .011 .887 ± .038

diabetes .734 ± .006 .622 ± .023 .611 ± .042 - .678 ± .018 .654 ± .008

mushroom .971 ± .001 .855 ± .043 .788 ± .035 .694 ± .045 .759 ± .022 .867 ± .036

nursery 1.000 ± .000 .998 ± .002 1.000 ± .000 .701 ± .017 .753 ± .063 1.000 ± .000

vote .944 ± .013 .647 ± .057 .857 ± .042 .596 ± .098 .854 ± .050 .749 ± .054

Total average .762 .572 .689 - .600 .649

Table 7.1: 5-fold cross-validated mean test accuracy and standard errors at 𝜖=0.1 for trees of depth 4. PrivaTree*
uses non-private quantiles, DPGDF only ran on categorical features. PrivaTree outperforms existing methods
on most datasets.
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guarantee
dataset method 𝜖 acc. 0.1% 0.5% 1%

Bioresponse PrivaTree .01 .495 .486 .435 .378
.1 .515 .421 .140 .035

diffprivlib LR .01 .509 .499 .447 .389
.1 .501 .411 .137 .034

Diabetes130US PrivaTree .01 .509 .291 .030 .002
.1 .543 .002 .000 .000

diffprivlib LR .01 .484 .276 .028 .002
.1 .506 .002 .000 .000

Higgs PrivaTree .01 .537 .000 .000 .000
.1 .596 .000 .000 .000

diffprivlib LR .01 .491 .000 .000 .000
.1 .596 .000 .000 .000

MagicTelescope PrivaTree .01 .585 .529 .344 .201
.1 .654 .241 .003 .000

diffprivlib LR .01 .566 .512 .333 .194
.1 .601 .221 .003 .000

MiniBooNE PrivaTree .01 .502 .281 .027 .001
.1 .763 .002 .000 .000

diffprivlib LR .01 .587 .328 .032 .002
.1 .608 .002 .000 .000

bank-marketing PrivaTree .01 .522 .482 .343 .225
.1 .650 .292 .010 .000

diffprivlib LR .01 .537 .496 .353 .232
.1 .484 .217 .007 .000

california PrivaTree .01 .533 .454 .235 .102
.1 .692 .140 .000 .000

diffprivlib LR .01 .517 .440 .228 .099
.1 .434 .088 .000 .000

covertype PrivaTree .01 .727 .008 .000 .000
.1 .731 .000 .000 .000

diffprivlib LR .01 .584 .006 .000 .000
.1 .615 .000 .000 .000

guarantee
dataset method 𝜖 acc. 0.1% 0.5% 1%

credit PrivaTree .01 .508 .446 .262 .134
.1 .529 .144 .001 .0

diffprivlib LR .01 .472 .415 .244 .125
.1 .471 .128 .001 .0

default-of-credit. PrivaTree .01 .523 .473 .308 .181
.1 .579 .213 .003 .0

diffprivlib LR .01 .507 .459 .299 .176
.1 .547 .201 .003 .0

electricity PrivaTree .01 .563 .417 .122 .026
.1 .611 .03 .0 .0

diffprivlib LR .01 .419 .31 .091 .019
.1 .528 .026 .0 .0

eye_movements PrivaTree .01 .507 .478 .376 .279
.1 .505 .277 .025 .001

diffprivlib LR .01 .487 .458 .361 .267
.1 .506 .278 .025 .001

heloc PrivaTree .01 .517 .478 .347 .232
.1 .570 .256 .01 .0

diffprivlib LR .01 .54 .498 .362 .243
.1 .538 .242 .01 .0

house_16H PrivaTree .01 .567 .513 .334 .194
.1 .581 .214 .003 .0

diffprivlib LR .01 .521 .472 .307 .179
.1 .553 .204 .003 .0

jannis PrivaTree .01 .538 .34 .054 .005
.1 .653 .007 .0 .0

diffprivlib LR .01 .51 .322 .051 .005
.1 .552 .006 .0 .0

pol PrivaTree .01 .545 .503 .365 .245
.1 .549 .247 .01 .0

diffprivlib LR .01 .535 .494 .359 .241
.1 .526 .236 .01 .0

Table 7.2: 5-fold cross-validated mean test accuracy and poisoning accuracy guarantee against a percentage of
poisoned samples on numerical datasets. Stronger privacy provides stronger poisoning robustness but comes at
the cost of clean dataset accuracy. PrivaTree outperforms private logistic regression on this benchmark.
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7.4 Results
Wecompare the performance of PrivaTreewith regular decision trees from Scikit-learn [27]
and 3 previousmethods for training private decision trees: DiffPrivLib [13], BDPT [20] and
DPGDF [28]. DiffPrivLib is a widely used Python library for differential privacy and imple-
ments several private machine learning models. Their decision tree implementation cre-
ates random decision nodes and uses all privacy budget to label leaves using the permute-
and-flip mechanism. Since DiffPrivLib and Scikit-learn do not natively support categorical
features, we encode them into integers. BDPT and DPGDF did not share their implemen-
tations, so we implemented these using primitives from DiffPrivLib. Since DPGDF only
supports categorical variables, we run experiments as in the work of Borhan [16] and re-
move numerical features. BDPT only heuristically protects numerical feature values, so
we compare it against PrivaTree*, a variant of PrivaTree in which we compute 10 bins
by computing quantiles non-privately. These quantiles still heuristically protect privacy
about the dataset’s individual feature values, and the experiment allows us to compare the
performance benefits of using quantiles instead of equal-width bins (PrivaTree).

We also compare the performance of PrivaTree on poisoning robustnesswith differentially-
private logistic regression and Deep Partition Aggregation (DPA). Previous works on poi-
soning robustness with differential privacy have used private logistic regression [19] as
a robust interpretable model. We use the implementation by DiffPrivLib [13], which per-
turbs the optimal model parameters. Before training, we center the data and normalize it
to unit variance, as this improves optimization. DPA trades interpretability and privacy for
strong poisoning robustness guarantees by ensembling many models trained on distinct
data subsets. We implement DPA with 1000 decision trees as tree-based models generally
work better than neural networks for tabular data [29]. All experiments ran on a computer
with 16GB of RAM and a 2 GHz Intel i5 processor with 4 cores.

7.4.1 Predictive performance
To compare PrivaTree to existingworks, we evaluated performance using twowell-known
benchmarks. First, we experimented on 6 datasets from the UCI repository [30] that previ-
ous works tested on. However, these datasets are often small (diabetes), too easy to predict
(nursery), or imbalanced (adult), which skews performance numbers. To complement this,
we therefore also run experiments on the tabular data benchmark [29]. These datasets
were chosen to be real-world, balanced, not too small, and not too simple. We removed
rows with missing values and computed the public feature ranges based on the datasets.
The categorical values are supplied by OpenML [31].

In Table 7.1, we present the accuracy scores on both benchmarks for trees of depth 4
computed with 5-fold stratified cross-validation at a privacy budget of 𝜖 = 0.1. Results for
other budgets are given in the appendix². Since all private algorithms are based on the stan-
dard greedy algorithm for decision trees, the goal is to score similarly to those non-private
trees. On almost all datasets PrivaTree outperforms BDPT, DPGDF, and DiffPrivLib or per-
forms similarly. On breast-w and vote, however, DiffPrivLib sometimes performs better.
This is because, on such small datasets, it is better to avoid spending the privacy budget on
good decision nodes and instead spend all the budget on labeling leaves correctly. On av-

²https://github.com/tudelft-cda-lab/PrivaTree

https://github.com/tudelft-cda-lab/PrivaTree
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Figure 7.3: Guaranteed accuracy when varying the number of poisoned samples to up to 1% of the dataset size
for trees of depth 4. A DPA ensemble of 1000 trees offers strong guarantees but is not interpretable, nor does it
maintain privacy. For differentially-private learners, there is a trade-off between clean accuracy and the quality
of the robustness guarantee.

erage, there is a 4% difference in accuracy score between PrivaTree using equal-width bins
and PrivaTree* using non-private quantiles. BDPT has previously only been tested on nu-
merical features with few unique values and fails to train accurate trees on the numerical
tabular benchmark. In Figure 7.1, we visualize the average accuracy over 50 runs when
varying the total privacy budget 𝜖 for depth 4 trees on the adult and compas-two-years
datasets. Again, when 𝜖 is small compared to the dataset size, DiffPrivLib outperforms the
other methods. However, when there is enough privacy budget to see value in choosing
better decision nodes, PrivaTree improves over the other methods. On average, PrivaTree
beats DiffPrivLib as when it wins, the score is significantly higher, while the score is only
slightly lower when PrivaTree loses.

7.4.2 Poisoning robustness guarantees for tabular data
Recall from Section 7.3 that differentially private learners offer guarantees on the loss
of accuracy incurred by attackers who poison the training dataset. In Figure 7.3, we vi-
sualized the guaranteed accuracy when varying the number of poisoned sampled in the
dataset from 0% to 1% of the original train set size. These guarantees were determined
by estimating the expected test accuracy with 50 random train-test splits and then com-
puting the guarantees with Corollary 2. For comparison, we visualize the guarantee for
DPA with an ensemble of 1000 depth 4 trees, but this method does not protect privacy
and is not interpretable. The strength of the poisoning robustness guarantee for private
learners is determined largely by the choice of 𝜖 and, to a lesser extent, the accuracy on
the clean dataset. Therefore, there is an important trade-off between clean data accuracy
and robustness guarantee.

Since previous works have considered the poisoning robustness guarantees of private
logistic regression as an interpretable model, we compare against this method in more
detail. In Table 7.2, we display the accuracy and guarantees at various poison levels for
private logistic regression and PrivaTree. We evaluated the models on numerical datasets
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Figure 7.4: An adversary injects zeros with a trigger pattern to create a backdoor for class 1. (left) Poisoned
sample of a 0 labeled as 1 with a trigger pattern in the bottom-right. (right)The attack success rate when varying
the number of poisoned samples in MNIST 0 vs 1 out of 11,200 train samples. 𝜖=0.01 offers a tighter bound than
𝜖=0.1, but in practice, both values defend well against the backdoor attack on this dataset.

as this will prevent differences in performance due to the way categorical features are
encoded for logistic regression and PrivaTree. Results on data with categorical features
can be found in the appendix³. It is clear that there is a trade-off between accuracy and
poison guarantee for both methods as guarantees at levels of 0.1% data poisoning are al-
ready always better when 𝜖 = 0.01, whereas test accuracy is always better when 𝜖 = 0.1.
PrivaTrees outperform private logistic regression at equal privacy levels as these com-
plex datasets likely contain non-linear patterns that are better captured by decision trees.
Therefore, in the future, one should consider private decision trees as an alternative to
private logistic regression when learning interpretable models with poisoning robustness
guarantees.

7.4.3 Backdoor robustness on MNIST
To demonstrate the effectiveness of differentially private decision tree learners at mitigat-
ing data poisoning attacks, we evaluated backdoor attacks on the MNIST 0 vs 1 dataset.
Specifically, we repeat the experiment from Badnets [32] in which the adversary adds a
fixed trigger pattern to the bottom right corner of the image in an attempt to force zeros to
be classified as ones. To achieve this, the adversary copies 𝑥 zeros, adds the trigger pattern
to these images, and adds the copies to the training set with label 1. An example of a zero
with a trigger pattern is shown in Figure 7.4. To measure the robustness of models against
the backdoor, we compute the Attack Success Rate (ASR), which is the percentage of test
samples with label 0 that are predicted as 1 when the trigger pattern is added. In Figure
7.4, we plot the ASR of a regular decision tree and PrivaTrees with privacy budgets 0.1 and
0.01 and their bounds computed with Corollary 3 against a varying number of poisoned
samples ranging between 0% to 1% of the dataset. All trees were trained on 50 train-test
splits and had a depth of 4. With only 0.01% of the train set poisoned, regular decision

³https://github.com/tudelft-cda-lab/PrivaTree

https://github.com/tudelft-cda-lab/PrivaTree
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trees already suffer from an ASR of almost 100%, whereas PrivaTrees, on average, stay at
an ASR of under 20% for the entire range. While the bound for 𝜖 = 0.01 is much tighter
than the bound for 𝜖 = 0.1, PrivaTree performs well in practice for both settings.

Strong privacy and robustness guarantees come at the cost of utility, i.e. clean dataset
accuracy. The test accuracy scores without poisoned samples for the models in Figure 7.4
were 99.6% for the regular decision tree, 95.1% for PrivaTree with 𝜖=0.1, and 77.7% for
PrivaTree with 𝜖=0.01.

7.5 Discussion
Some limitations can arise when applying PrivaTree to real-world scenarios. In our ex-
periments, we compared the performance of various differentially-private decision tree
learners on UCI data and the tabular data benchmark. While some UCI datasets are too
easy, the tabular benchmark [29] was specifically curated so that decision trees alone do
not easily score perfectly. For real use cases, data could be easier to classify. Also, while
our code supports multiclass classification these benchmarks contain only binary classifi-
cation tasks and so we have not evaluated models in this setting. It is worth noting that
in the multiclass case methods such as logistic regression need to train a separate model
for each class which hinders interpretability while decision trees still learn one tree.

As is typical, we assume that the range of numerical features, the set of possible cate-
gorical values, and the set of class labels are public knowledge. Additionally, we use the
number of samples in the training set to select an efficient value for 𝜖leaf which assumes
that we can publish information on the dataset size while some other works protect this
value. One mitigation is to use rough estimates of the dataset size, e.g. only the order of
magnitude.

Privacy and robustness in machine learning are important topics as models trained
on user data are continuously deployed in the world. Differential privacy is a promising
technique for this and we improve the performance of decision trees at high differential
privacy levels. However, we want to warn against over-optimism as differential privacy is
not a silver bullet for AI security. Engineers must take into account in which context mod-
els are deployed to decide what constitutes an acceptable privacy risk and must take into
account what attributes are not protected by our method. Regarding poisoning robust-
ness, it is also vital to understand the threat model that is being defended against to verify
that the robustness guarantees for differentially-private learners apply. We hope that im-
provements in the privacy-utility trade-off for interpretable learners, such as the ones we
propose, will increase the adoption of interpretable and private methods to improve the
trustworthiness of machine learning systems.

7.6 Conclusion
In this paper, we proposed a new algorithm for training differentially private decision
trees called PrivaTree. PrivaTree uses histograms with permute-and-flip for node selec-
tion, the permute-and-flipmechanism for leaf labeling, and amore efficient privacy budget
distribution method to improve the privacy-accuracy trade-off. Our experiments on two
benchmarks demonstrate that PrivaTree on average scores better than existing works at
a fixed privacy budget. Moreover, we investigated the poisoning robustness guarantees
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for differentially-private learners and also applied this to the setting of backdoor attacks.
On the MNIST 0 vs 1 task, differentially-private decision trees provide a fivefold reduc-
tion in attack success rate compared to decision trees trained without privacy. While our
work makes progress in privacy budget allocation to improve the privacy-utility trade-off,
follow-up work may further improve this trade-off in the very high privacy regime.
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8
Introduction to Decision

Trees for Sequential Decision
Making

When the predictions of machine learning models are used to make multiple sequential de-
cisions in an environment, we can no longer rely on supervised learning algorithms. Par-
ticularly, the effect of previous predictions on future predictions is difficult to deal with. A
popular model for such sequential decision-making problems is the Markov Decision Process
(MDP). In an MDP, an agent can sequentially take actions depending on information about
its current state, and the agent attempts to maximize the amount of reward received from the
environment. For example, one can model solving a maze as an MDP, where the agent gets
rewarded for escaping the maze. In this part, we consider learning algorithms for decision
tree policies, i.e., decision trees that can be used to determine a series of sequential actions
in uncertain environments. Decision tree policies allow users to interpret the behavior of an
agent exactly.
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8.1 Markov Decision Processes
Markov Decision Processes (MDPs) are useful for modeling non-deterministic optimiza-
tion problems in which multiple sequential decisions must be made. They model an agent
that is initialized in a certain state and can perform actions to traverse the state space
and earn rewards. The goal is for the agent to find what action to take in each state
to maximize the long-term sum of rewards. The model is formally specified by a tuple
⟨𝑆,𝐴,𝑃,𝑅,𝑝0⟩ with states 𝑆, actions 𝐴, transition probabilities 𝑃 ∶ 𝑆 ×𝑆 ×𝐴→ [0,1], reward
values 𝑅 ∶ 𝑆 × 𝑆 ×𝐴→ ℝ and initial probabilities 𝑝0 ∶ 𝑆 → [0,1]. When we solve an MDP,
we usually mean that we find a function 𝜋 ∶ 𝑆 → 𝐴, also called a policy, that maps states
to actions. In some MDPs, states are represented by a tuple of observations (features) that
hold information about the state.

8.1.1 Solving MDPs
When solving MDPs, we generally discount future rewards in each step by a user-defined
value of 0 < 𝛾 < 1 to ensure that the optimal policy will generate a finite return. The
most common approach for optimally solving MDPs is by using one of many dynamic
programming variants [1]. In this dissertation, we use value iteration when we need to
solve an MDP without limitations on the policy.

Value iteration finds a value 𝑉𝑠 for each state 𝑠 that holds the optimal expected dis-
counted return for taking optimal greedy actions starting from that state. These values
can be found by iteratively updating 𝑉𝑠 until the Bellman equation [2]

𝑉𝑠 =∑
𝑠′

𝑃(𝑠, 𝑠′, 𝑎)𝑅(𝑠, 𝑠′, 𝑎)+∑
𝑠′

𝛾𝑃(𝑠, 𝑠′, 𝑎)𝑉𝑠′

is approximately satisfied. The optimal policy is not directly modeled but after solving
one can find the optimal action 𝑎∗ in state 𝑠 by computing 𝑎∗ = argmax𝑎∑𝑠′ 𝛾𝑃(𝑠, 𝑠′, 𝑎)𝑉𝑠′ .
We will refer to this optimal solution found with value iteration as the unrestricted opti-
mal solution, as the computed policy can be arbitrarily complex. When solving MDPs,
there is always a deterministic policy that achieves the optimal expected return. How-
ever, when solving Partially Observable MDPs (POMDPs), in which the agent cannot de-
termine exactly the state that they are in, it is possible that the only optimal policy is
non-deterministic. Such a non-deterministic policy maps state observations to a probabil-
ity distribution over the actions.

8.2 Reinforcement Learning
Reinforcement learning is the problem of finding a policy that maximizes the expected
sum of rewards in an unknown Markov Decision Process (MDP) by repeatedly acting and
observing the outcomes. Algorithms that solve this problem without explicitly model-
ing the MDP are called model-free, and there are two main styles of learning algorithms:
Q-learning and policy gradient. In Q-learning, the agent attempts to learn the Q-value
function, which maps states and actions to a value representing how good it is to take the
action in the given state. In this work, we will compare to Deep Q-Networks [3], models
that solve reinforcement learning problems by approximating the Q-value function with
a neural network.
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Policy gradient style algorithms [4] directly optimize a policy thatmaps states to action
probabilities by running the policy in the environment, estimating the advantage of per-
forming its predicted actions, and updating the policy to do more or less of those actions
depending on the advantage scores. A major difference between Q-learning and policy
gradient methods is that Q-learning usually deviates from its current policy to learn Q-
values for the whole state space, while policy gradient methods only improve the policy
in states that are reached by that policy.

8.2.1 Proximal Policy Optimization
Proximal Policy Optimization (PPO) [5] is an established policy gradient style method for
reinforcement learning. The earliest policy gradient methods using function approxima-
tion [4] suffered from forgetting, where an update to the policy could change the policy
excessively and thereby dramatically reduce performance. Methods such as Trust Region
Policy Optimization (TRPO) [6] fixed this by constraining the Kullback–Leibler divergence
of the policy before and after an update, however, due to that constraint TRPO is com-
plex to implement. PPO prevents large policy updates by ‘clipping’ the objective values,
i.e. projecting values onto a fixed number range. This makes PPO significantly easier
to implement than TRPO. PPO maximizes the loss function 𝐿CLIP for the policy where
𝑟𝑡(𝜃) = 𝜋𝜃(𝑎𝑡 |𝑠𝑡 )

𝜋𝜃old (𝑎𝑡 |𝑠𝑡 )
is the ratio of probabilities 𝜋𝜃(𝑎𝑡 |𝑠𝑡) assigned to the taken action 𝑎𝑡 in state

𝑠𝑡 between the updated and old policy:

𝐿CLIP(𝜃) = 𝔼𝑡 [min(𝑟𝑡(𝜃)�̂�𝑡 ,clip(𝑟𝑡(𝜃),1− 𝜖,1+ 𝜖)�̂�𝑡)] . (8.1)

Here 𝜃 represents the model parameters, �̂�𝑡 the estimated advantage of environment in-
teraction at time 𝑡 and 𝜖 the clipping hyperparameter, which is typically set as 𝜖 = 0.2. By
taking the minimum of the clipped and unclipped terms, the agent is not rewarded for
changes to the action probabilities beyond a ratio of [1− 𝜖,1+ 𝜖]. To compute the advan-
tage estimates �̂�𝑡 , PPO uses Generalized Advantage Estimation [7] and uses a separate
neural network that estimates the value function by minimizing the squared error loss
between observed and predicted returns. The value loss is also often clipped to prevent
large updates. Often, one also adds a small term 𝑐𝐻 (𝜋(𝑠𝑡)) to the objective with 𝑐 = 0.01;
this stimulates exploration by promoting larger policy entropy.

8.2.2 Optimizing Decision Tree Policies
While there exists plenty of work optimizing decision trees for supervised targets, de-
cision tree optimization for reinforcement learning has been less explored even though
decision trees would offer better interpretability and verifiability properties than other
policies. Many popular reinforcement learning techniques that use function approxima-
tion in Q-learning or policy gradient style algorithms require models to be differentiable.
Such techniques are difficult to apply to inherently non-differentiable decision trees. In
this work, we consider the problem of learning a decision tree as a policy in reinforcement
learning settings. Other methods for interpretable or explainable methods for reinforce-
ment learning are discussed in [8, 9].

Some methods have been proposed before that relax or restrict the decision tree learn-
ing problem to allow gradient updates. Policy tree [10] is a method that uses linear models
as tree leaves together with a greedy splitting procedure to train decision tree policies with
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policy gradient techniques. While this algorithm trains well, the resulting tree model con-
sists of multiple different linear models in the leaves, which makes it difficult to interpret
the predictive behavior and can never backtrack once a decision node has been created.
Similarly, Conservative Q-Improvement [11] greedily expands a decision tree to improve
the Q-values, but the algorithm cannot update the tree structure multiple times. Differen-
tiable decision trees [12] relax the property that each branch node selects one feature, that
each leaf predicts a single action, and that only one branch is taken at a time, the resulting
‘soft’ decision tree is then optimizable with PPO. Although the soft decision tree can be
optimized, the model usually incurs a significant drop in performance when discretizing
into a ‘crisp’ decision tree. Paleja et al. [2022] improve this discretization error by using a
different relaxation technique, but to achieve small performant trees, the algorithm uses
linear functions in the leaves, which makes the models harder to interpret. Likmeta et
al. [2020] propose fixing the branching nodes of the decision tree by using expert knowl-
edge and optimizing the differentiable leaf values using gradient descent.

Iterative Bounding MDPs [15] is a method that extends known factored MDPs with
tree-building actions such that neural networks can be used to optimize them. Since this
method requires a specification of the complete MDP it cannot directly be applied to rein-
forcement learning. dtControl [16] converts controllers into decision trees for verification,
but the resulting trees are usually too large to be interpreted. To the best of our knowl-
edge, no published policy gradient-style algorithm can directly optimize ‘hard’ decision
trees for reinforcement learning.

8.2.3 Imitation Learning (VIPER)
Instead of directly optimizing a decision tree, one can also try to extract a decision tree
policy from amore complex teacher policy using imitation learning. These imitation learn-
ing algorithms turn reinforcement learning into a supervised learning problem for which
we have successful decision tree learning algorithms [17, 18]. DAGGER [19] (dataset ag-
gregation) is an algorithm that iteratively collects traces from the environment using its
current policy and trains a supervised model on the union of the current and previous
traces. Since DAGGER only uses information on the predicted action of the teacher pol-
icy, it ignores extra information on Q-values that modern Q-learning algorithms provide.
VIPER [20] focuses on learning decision trees and improves on DAGGER by including
Q-value information into the supervised learning objective. While VIPER generates sig-
nificantly smaller decision trees than DAGGER, we will show that these trees are not yet
optimal with respect to the trade-off in size and performance.
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9
Optimal Decision Tree

Policies for Markov Decision
Processes

Interpretability of reinforcement learning policies is essential for many real-world tasks, but
learning such interpretable policies is a hard problem. Particularly, rule-based policies such as
decision trees and rules lists are difficult to optimize due to their non-differentiability. While
existing techniques can learn verifiable decision tree policies, there is no guarantee that the
learners will generate a policy that performs optimally. In this work, we study the optimiza-
tion of size-limited decision trees for Markov Decision Processes (MPDs) and propose OMDTs:
Optimal MDP Decision Trees. Given a user-defined size limit and MDP formulation, OMDT
directly maximizes the expected discounted return for the decision tree using Mixed-Integer
Linear Programming. By training optimal tree policies for different MDPs, we empirically
study the optimality gap for existing imitation learning techniques and find that they per-
form sub-optimally. We show that this is due to an inherent shortcoming of imitation learning,
namely that complex policies cannot be represented using size-limited trees. In such cases, it
is better to directly optimize the tree for expected return. While there is generally a trade-off
between the performance and interpretability of machine learning models, we find that on
small MDPs, depth 3 OMDTs often perform close to optimally.

This chapter is based on  D. Vos and S. Verwer. Optimal Decision Tree Policies for Markov Decision Processes,
IJCAI 2023 [1].
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9.1 Introduction
Advances in reinforcement learning using function approximation have allowed us to train
powerful agents for complex problems such as the games of Go and Atari [2]. Policies
learned using function approximation often use neural networks, making them impossi-
ble for humans to understand. Therefore, reinforcement learning is severely limited for
applications that involve high-stakes decisions and require the user to trust the learned
policy.

Recent work has focused on explaining opaque models such as neural networks by
attributing prediction importance to the input features [3, 4]. However, these explanation
methods cannot capture the full complexity of their models, which canmislead users when
attempting to understand the predictions [5]. Concurrently, there has been much work on
interpretable machine learning in which the model learned is limited in complexity to the
extent that humans can understand the complete model. Particularly decision trees have
received much attention as they are simple models that are capable of modeling non-linear
behavior [6].

Decision trees are difficult to optimize as they are non-differentiable and discontinu-
ous. Previous works have used different strategies to overcome the hardness of optimizing
trees: using assumptions or relaxations to make the trees differentiable [7–9], reformulat-
ing theMDP into ameta-MDP that exclusivelymodels decision tree policies [10] or extract-
ing trees from a complex teacher [11]. While these methods are increasingly successful in
training performant trees they do not offer guarantees on this performance.

Our work takes a step towards bridging the gap between the fields of optimal decision
trees and reinforcement learning. Existing formulations for optimal decision trees assume
a fixed training set with independent samples. This cannot be used in a dynamic setting
where actions taken in one state influence the best actions in others. Instead, we formu-
late the problem of solving a Markov Decision Process (MDP) using a policy represented
by a size-limited decision tree (see Figure 9.1) in a single MILP. We link the predictions
of the decision tree policy to the state-action frequencies in the dual linear program for
solving MDPs. The dual allows us to reason over policies explicitly, which results in a
more efficient formulation. Our formulation for Optimal MDP Decision Trees, OMDTs,
optimizes a decision tree policy for a given MDP and a tree size limit. OMDT produces
increasingly performant policies as runtime progresses and eventually proves its policy’s
optimality under the size constraint.

Existing methods for training size-limited decision trees in reinforcement learning
such as VIPER [11] make use of imitation learning, where a student tries to learn from
a powerful teacher policy. We compare the performance of OMDT and VIPER on a vari-
ety of MDPs. Interestingly, we show that, when training interpretable size-limited trees,
imitation learning performs significantly worse as the capacity of the learned decision
tree is wasted on parts of the state space that are never reached by the policy. Moreover,
VIPER cannot prove optimality even if it identifies the optimal solution. Regarding the
performance-interpretability trade-off, we show that decision trees of 7 decision nodes
are enough to perform close to unrestricted optimal policies in 8 out of 13 environments.
Such trees are orders of magnitude smaller than size-unrestricted trees created bymethods
that replicate the unrestricted policy, such as dtcontrol [12].
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Figure 9.1: Depth 2 OMDT on the stochastic Frozenlake 4x4 environment. OMDT proves that no better depth 2
decision tree policy exists (discounted return 0.37 with 𝛾 = 0.99).

9.2 OMDT: Optimal MDP Decision Trees
We introduce OMDTs, optimal MDP decision trees, as a first step in bridging the gap
between optimal decision trees for supervised and reinforcement learning. OMDT is a
Mixed-Integer Linear Programming formulation that encodes the problem of identifying
a decision tree policy that achieves maximum discounted return given a user-definedMDP
and tree size limit. Our formulation can be solved using one of many available solvers, in
this work we use the state-of-the-art solver Gurobi¹.

Intuitively the OMDT formulation consists of two parts: a (dual) linear programming
formulation for solving MDPs and a set of constraints that limits the set of feasible policies
to decision trees. Figure 9.2 summarizes OMDT’s formulation in natural language. All the
notation used in OMDT is summarized in Table 9.1.

9.2.1 Constraints
It is well known that MDPs can be solved using linear programming, the standard linear
program is [13]:

min. ∑
𝑠
𝑝0(𝑠)𝑉𝑠

s.t. 𝑉𝑠 −∑
𝑠′

𝛾𝑃(𝑠, 𝑠′, 𝑎)𝑉𝑠′ ≥∑
𝑠′

𝑃(𝑠, 𝑠′, 𝑎)𝑅(𝑠, 𝑠′, 𝑎), ∀𝑠,𝑎

It is not easy to constrain the policy in this formulation because it reasons abstractly
over policies, i.e. by reasoning over the policy’s state values. To create a formulation for
decision tree policies, we resort to the standard dual program:

max. ∑
𝑠
∑
𝑎
𝑥𝑠,𝑎∑

𝑠′
𝑃(𝑠, 𝑠′, 𝑎)𝑅(𝑠, 𝑠′, 𝑎) (9.1)

s.t. ∑
𝑎
𝑥𝑠,𝑎−∑

𝑠′
∑
𝑎
𝛾𝑃(𝑠′, 𝑠, 𝑎)𝑥𝑠′ ,𝑎 = 𝑝0(𝑠), ∀𝑠 (9.2)

This program uses ameasure 𝑥𝑠,𝑎 of how often the agent takes action 𝑎 in state 𝑠. This al-
lows us to add efficient constraints that control the policy of the agent. Intuitively the pro-
¹https://www.gurobi.com/

https://www.gurobi.com/
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Figure 9.2: Overview of OMDT’s formulation. We maximize the discounted return in an MDP under the con-
straint that the policy is represented by a size-limited decision tree.

gram maximizes the rewards ∑𝑠′ 𝑃(𝑠, 𝑠′, 𝑎)𝑅(𝑠, 𝑠′, 𝑎) weighted by this 𝑥𝑠,𝑎. The constraints
enforce that the frequency by which a state is exited is equal to the frequency that the
agent is initialized in the state 𝑝0(𝑠) or returns to it following the discounted transition
probabilities 𝛾𝑃(𝑠, 𝑠′, 𝑎).

To enforce the policy to be a size-limited decision tree, we will later constrain the 𝑥𝑠,𝑎
values to only be non-zero when the agent is supposed to take action 𝑎 in state 𝑠 according
to a tree policy. We will first introduce the variables and constraints required to model the
decision tree constraints.

Modeling Decision Nodes
Our decision tree formulation is roughly based on OCT [14] and ROCT [15], MILP formu-
lations for optimal (OCT) and robust (ROCT) classification trees. In these formulations,
the shape of the decision tree is fixed. Like ROCT, we describe a decision node𝑚 by binary
threshold variables 𝑏𝑚,𝑗,𝑘 , indicating whether the 𝑘th threshold of feature 𝑗 is chosen.² Un-
like ROCT, we only allow one of these variables to be true among all features and possible

²In practice, the possible values for threshold 𝑘 depends on the chosen feature 𝑗 . We do not model this for the
convenience of notation.
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thresholds:
∑
𝑗
∑
𝑘
𝑏𝑚,𝑗,𝑘 = 1, ∀𝑚 (9.3)

We follow paths through the tree to map observations to leaves. In each node 𝑚 we
decide the direction 𝑑𝑠,𝑚 that the observation of state 𝑠 takes (left=0 or right=1 of the thresh-
old 𝑘). ROCT uses two variables per state-node pair to model directions 𝑑𝑠,𝑚 to account
for perturbations in the observations. Since we are optimizing for an MDP without uncer-
tainty in the observations, we only require one variable 𝑑𝑠,𝑚 per state-node pair.

We further improve over ROCT by determining 𝑑𝑠,𝑚 using only one constraint per
state-node pair instead of a separate constraint per state-node-feature triple. For this, we
pre-compute a function side(𝑠, 𝑗 , 𝑘) which indicates for each feature-threshold pair (𝑗 , 𝑘)
and every observation 𝑠 the side of 𝑘 that 𝑠 is on for feature 𝑗 (left=0 or right=1), i.e. whether
𝑋𝑠𝑗 > 𝑘 holds. This formulation is not limited to the predicates ‘≤’ or ‘>’, however, and can
be easily extended to other predicates in the pre-computation of side(𝑠, 𝑗 , 𝑘). The following
then forces the direction 𝑑𝑠,𝑚 to be equal to the direction of the indicated threshold:

𝑑𝑠,𝑚 =∑
𝑗
∑
𝑘

side(𝑠, 𝑗 , 𝑘) 𝑏𝑚,𝑗,𝑘 , ∀𝑠,𝑚 (9.4)

The variables 𝑑𝑠,𝑚 represent the direction of an observation’s path at a decision node.
Together, the 𝑑 variables allow us to follow an observation’s path through the tree, which
we use to identify the leaf that it reaches. Important in this formulation, compared to
existing binary encodings, is that it requires no big-M constraints to describe these paths.
This makes the relaxation stronger, and therefore, the solver gives much better bounds
than using the big-M style formulations from ROCT.

Modeling Policy Actions
Decision leaves only have one set of binary decision variables: 𝑐𝑡,𝑎 encoding whether or
not leaf 𝑡 predicts action 𝑎. We want each leaf to select exactly one action:

∑
𝑎
𝑐𝑡,𝑎 = 1, ∀𝑡 (9.5)

As mentioned before, we can follow an observation’s path through the tree by using their
𝑑𝑠,𝑚 path variables. One can linearize an implication of a conjunction of binary variables
as follows:

𝑥1 ∧𝑥2 ∧ ...∧𝑥𝑛 ⟹ 𝑦
≡ 𝑥1+𝑥2+ ...+𝑥𝑛−𝑛+1 ≤ 𝑦

If an observation reaches leaf 𝑡 and the leaf predicts action 𝑎, then we want to force the pol-
icy 𝜋𝑠,𝑎 to take that action in the associated state 𝑠. Using the aforementioned equivalence,
we add the constraint:

∑
𝑚∈𝐴𝑙(𝑡)

(1−𝑑𝑠,𝑚)+∑
𝑚∈𝐴𝑟 (𝑡)

𝑑𝑠,𝑚+ 𝑐𝑡,𝑎− |𝐴(𝑡)| ≤ 𝜋𝑠,𝑎, ∀𝑠,𝑎, 𝑡 (9.6)
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Name Kind Description
𝑏𝑚,𝑗,𝑘 bin. Tree uses feat. 𝑗 and threshold 𝑘 in node 𝑚
𝑐𝑡,𝑎 bin. Tree selects action 𝑎 in leaf 𝑡
𝑑𝑠,𝑚 bin. Observation of 𝑠 goes left / right in node 𝑚
𝜋𝑠,𝑎 bin. Policy takes action 𝑎 in state 𝑠
𝑥𝑠,𝑎 cont. Frequency of action 𝑎 taken in state 𝑠
𝑃(𝑠, 𝑠′, 𝑎) const. Probability of transition 𝑠→𝑠′ with action 𝑎
𝑅(𝑠, 𝑠′, 𝑎) const. Reward for transition 𝑠→𝑠′ with action 𝑎
𝑝0(𝑠) const. Probability of starting in state 𝑠
𝛾 const. Discount factor
𝑋𝑖𝑗 const. Feature 𝑗 ’s value of observation 𝑖
side(s,j,k) const. Side state 𝑠 is on for thresh. 𝑘 and feat. 𝑗
𝑎 ∈ 𝐴 set Set of actions in MDP
𝑠 ∈ 𝑆 set Set of states in MDP
𝑖=1..|𝑆| set Observation and state indices
𝑗 ∈ 𝐽 set Set of feature indices
𝑘 = 1..𝐾 set Indices of all possible feature thresholds
𝑚 ∈ 𝐷 set Set of decision nodes in the tree
𝑡 ∈ 𝐿 set Set of leaves in the tree
𝐴(𝑡) set Set of ancestors of leaf 𝑡
𝐴𝑙(𝑡) set ... that have 𝑡 in their left path
𝐴𝑟 (𝑡) set ... that have 𝑡 in their right path

Table 9.1: Summary of notation used in OMDT.

This constraint forces the agent to take the action indicated by the leaf. To prevent the
agent from taking other actions that were not indicated, we force it to only take a single
action in each state (giving a deterministic policy):

∑
𝑎
𝜋𝑠,𝑎 = 1, ∀𝑠 (9.7)

Now we have indicators 𝜋𝑠,𝑎 that mark what action is taken by the agent. To link this back
to the MDP linear programming formulation that we use to optimize the policy, we set the
𝑥𝑠,𝑎 variables. We need to set 𝑥𝑠,𝑎 = 0 if 𝜋𝑠,𝑎 = 0, else 𝑥𝑠,𝑎 should be unbounded. We encode
this using a big-M formulation:

𝑥𝑠,𝑎 ≤𝑀𝜋𝑠,𝑎, ∀𝑠,𝑎 (9.8)

𝑀 should be chosen as small as possible but larger or equal to the largest value that 𝑥𝑠,𝑎 can
take. We use the fact that we are optimizing the MDP using discount factor 𝛾 to compute
an upper bound on 𝑥𝑠,𝑎 and set 𝑀 = 1

1−𝛾 , proof is given in the appendix³.

³https://arxiv.org/abs/2301.13185

https://arxiv.org/abs/2301.13185
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9.2.2 Complete Formulation
The runtime of MILP solvers grows worst-case exponentially with respect to formulation
size, so it is important to limit the scale of the formulation. The number of variables in
our formulation grows with(|𝑆||𝐽 ||𝐷|+|𝐴||𝐿|+|𝑆||𝐴|)which follows from their indices in
Table 9.1. The number of constraints grows with the order(|𝑆||𝐷|+|𝑆||𝐴||𝐿|) as it is dom-
inated by the constraints that determine 𝑑𝑠,𝑚 at each node (Equation 9.4) and constraints
that force 𝜋𝑠,𝑎 according to the tree (Equation 9.6). We summarize OMDT below:

max ∑
𝑠
∑
𝑎
𝑥𝑠,𝑎∑

𝑠′
𝑃(𝑠, 𝑠′, 𝑎)𝑅(𝑠, 𝑠′, 𝑎) (9.1)

s.t.

∑
𝑎
𝑥𝑠,𝑎−∑

𝑠′
∑
𝑎
𝛾𝑃(𝑠′, 𝑠, 𝑎)𝑥𝑠′ ,𝑎 = 𝑝0(𝑠), ∀𝑠 (9.2)

∑
𝑗
∑
𝑘
𝑏𝑚,𝑗,𝑘 = 1, ∀𝑚 (9.3)

𝑑𝑠,𝑚 =∑
𝑗
∑
𝑘

side(𝑠, 𝑗 , 𝑘) 𝑏𝑚,𝑗,𝑘 , ∀𝑠,𝑚 (9.4)

∑
𝑎
𝑐𝑡,𝑎 = 1, ∀𝑡 (9.5)

∑
𝑚∈𝐴𝑙(𝑡)

(1−𝑑𝑠,𝑚)+∑
𝑚∈𝐴𝑟 (𝑡)

𝑑𝑠,𝑚+𝑐𝑡,𝑎−|𝐴(𝑡)| ≤ 𝜋𝑠,𝑎, ∀𝑠,𝑎, 𝑡 (9.6)

∑
𝑎
𝜋𝑠,𝑎 = 1, ∀𝑠 (9.7)

𝑥𝑠,𝑎 ≤𝑀𝜋𝑠,𝑎, ∀𝑠,𝑎 (9.8)

9.3 Results
We present experiments comparing the performance of OMDTs with VIPER and dtcon-
trol. Viper uses imitation learning to extract a size-limited decision tree from a teacher
policy, and dtcontrol learns an unrestricted tree that exactly copies the teacher’s behavior.
To provide a fair comparison we have trained VIPER and dtcontrol with an unrestricted
optimal teacher by first solving the MDP with value iteration and then extracting all Q
values, both methods ran with default parameters. We also implemented and ran experi-
ments on interpretable Differentiable Decision Trees [8] but excluded these models from
our analysis as they did not outperform a random policy. The full code for OMDT and our
experiments can be found on GitHub⁴. All of our experiments ran on a Linux machine
with 16 Intel Xeon CPU cores and 72 GB of RAM total and used Gurobi 10.0.0 with default
parameters. Each method ran on a single CPU core.

9.3.1 Environments
For comparison we implemented 13 environments based on well-known MDPs from the
literature, the sizes of these MDPs are given in Table 9.2. All MDPs were pre-processed

⁴https://github.com/tudelft-cda-lab/OMDT

https://github.com/tudelft-cda-lab/OMDT
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such that states that are unreachable from the initial states are removed. We briefly de-
scribe the environments below but refer to the appendix⁵ for complete descriptions.

In 3d_navigation, the agent controls a robot in a 5×5×5 world and attempts to reach
from start to finish, with each voxel having a chance tomake the robot disappear. blackjack
is a simplified version of the famous casino game where we assume an infinite-sized deck
and only the actions ‘skip’ or ‘hit’. frozenlake is a grid world where the agent attempts
to go from start to finish without falling into holes, actions are stochastic so the agent
will not always move in the intended direction (e.g. the action ‘up’ will only not send the
agent ‘down’). inventory management models a company that has to decide how many
items to order to maximize profit while minimizing cost. system_administrator refers to a
computer network where computers randomly crash, and an administrator has to decide
which computer to reboot. A crashed computer has an increased probability of crash-
ing a neighboring computer. tictactoe_vs_random is the well-known game of tic-tac-toe
when played against an opponent that makes random moves. In tiger_vs_antelope, the
agent attempts to catch an antelope that randomly jumps away from the tiger in a grid
world. traffic_intersection describes a perpendicular intersection where traffic flows in at
different rates, and the operator decides when to switch the traffic lights. xor is an MDP
constructed with states randomly distributed on a plain, the agent gets 1 reward for tak-
ing the action according to an XOR function and -1 for a mistake. The XOR problem is
notoriously difficult for greedy decision tree learning algorithms.

9.3.2 Performance-Interpretability Trade-off
It is often assumed that there is a trade-off in the performance and interpretability of ma-
chine learning models [16], since interpretable models necessarily lack complexity, but
this assumption is not always true [5]. We aim to answer whether the performance-
interpretability trade-off occurs in a variety of MDPs by training size-limited decision
trees and comparing their performance to the optimal solutions that were not restricted
in complexity. We visualize the normalized return of depth 3 OMDTs and unrestricted dt-
control trees in Figure 9.3. Returns were normalized such that 0 corresponds to a random
policy and 1 to an optimal one. Since small deterministic decision tree policies are limited
in the number of distinct actions, an optimal tree can perform worse than a random pol-
icy. Experiments were repeated 3 times, and runs were limited to 2 hours. We consider
an OMDT optimal when the relative gap between its objective and bound is proven to be
less than 0.01%.

While it is debatable what the precise size limits are for decision trees to be inter-
pretable [6], we use trees of depth 3, which implies that a tree has at most 8 leaves. Note
that this also limits the number of distinct actions in the policy to 8. We find that in all
environments, OMDTs of depth 3 improve on the performance of random policies, and
in 8 out of 13 environments, the policy gets close to optimal. Decision trees trained with
dtcontrol always achieve the optimal normalized return of 1 since they exactly mimic the
optimal policy. However, dtcontrol produces large trees that are not interpretable to hu-
mans. When run on 3d_navigation, for example, dtcontrol produces a tree of 68 decision
nodes, which is very complex for humans to understand. OMDT produces a tree of 7
decision nodes that perform equally well.

⁵https://arxiv.org/abs/2301.13185

https://arxiv.org/abs/2301.13185
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Figure 9.3: (top) Normalized return and bounds for OMDT trees of depth 3, optimal policies score 1 while uniform
randompolicies score 0. (bottom) Log of tree sizes for OMDT (maximumdepth 3) and dtcontrol. Dtcontrol always
produces an optimal policy but the trees are orders of magnitude larger than OMDT.

Overall, our results demonstrate that for small environments there is no performance-
interpretability trade-off: simple policies represented by size-limited trees perform approx-
imately as well as the unrestricted optimal policy.

9.3.3 Direct Optimization versus Imitation Learning
The above conclusion holds when the policy is learned to optimality under the constraint
that it has to be a small tree, e.g., using OMDT. Techniques such as VIPER enforce the
size constraint but aim to imitate the unrestricted optimal policy. We now show that this
comes at a cost when the unrestricted policy is too complex to be represented using a
small tree.

VIPER trains trees by imitating high Q values of the optimal policies, while OMDT di-
rectly maximizes expected return. In Table 9.2, we list the normalized return (0 for random
policies, 1 for optimal policies) for VIPER and OMDT with respectively 5 minutes and 2
hours of runtime. After 5minutes, OMDT improves performance over random policies but
often needs more time to improve over VIPER. After 2 hours OMDT’s policies win on 11
out of 13 environments. For instances with large state space such as tictactoe_vs_random,
OMDT needs more than 2 hours to improve over VIPER.

Shortcomings of Imitation Learning
Overall, given sufficient runtime, OMDT produces better policies than VIPER.This cannot
be easily solved by giving VIPER more runtime but is an inherent problem of imitation
learning. To illustrate this, we investigate the results on the frozenlake MDPs as Table 9.2
demonstrates that imitation learning can perform far from optimal in these environments.
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(c) VIPER (depth 3): 11% success

Figure 9.4: Paths taken on 10,000 Frozenlake_12x12 runs. The agent starts at (0, 0) and attempts to reach the goal
tile ‘G’ while avoiding holes. Actions are indicated by arrows and are somewhat stochastic, i.e. an action of ‘up’
will send the agent ‘left’, ‘up’, or ‘right’ (but never down) with equal probability. VIPER fails to produce a good
policy because it spends the capacity of its tree mimicking parts of the complex teacher policy that its simple
student policy will never reach. OMDT achieves a greater success rate by directly optimizing a simple policy.

In theory, imitation learning performs optimally in the limit [17], but this result re-
quires the student policy to be as expressive as the teacher policy. This is not the case for
size-limited decision trees. When VIPER learns a policy for frozenlake_12x12 it tries to
imitate a complex policy using a small tree that cannot represent all teacher policy actions.
This results in VIPER spending capacity of its decision tree on parts of the state space that
will never be reached under its student policy. In Figure 9.4, we visualize the paths that
the agents took on 10,000 runs and indicate the policies with arrows. VIPER creates leaves
that control action in the right section of the grid world (indicated in red). The optimal
teacher policy often visits this section, but the simple student does not. By directly opti-
mizing a decision tree policy using OMDT, the policy spends its capacity on parts of the
state space that it actually reaches. As a result, VIPER cannot prevent actions that send
its agent into holes on the left part of the grid world (indicated in red). OMDT actively
avoids these.

9.3.4 Runtime
Runtime for solving Mixed-Integer Linear Programming formulations scales worst-case
exponentially, which makes it important to understand how solvers operate on complex
formulations such as OMDT. We solved OMDTs for a depth of 3 for a maximum of 2
hours and reported the results in Table 9.2. The table compares the runtimes of VIPER
and solving OMDT to optimality. If the solver does not prove optimality within 2 hours,
we denote it as ‘timeout’. We also denote the number of possible decision tree policies
computed as: |𝐵 |possible splits × |𝐿||𝐴|. It estimates the number of possible decision tree
policies and shows that enumerating trees with brute force is intractable.

OMDT solves a simple environment such as Frozenlake 4x4 (16 states, 4 actions) to
optimality within 2 seconds, but runtime grows for larger environments such as inven-
tory management (101 states, 100 actions), which took an average of 2533 seconds. VIPER
needs roughly 2250 seconds of runtime for every MDP and runs significantly faster on
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some MDPs. This is because VIPER spends much time evaluating policies on the envi-
ronment, and some environments quickly reach terminal states, which results in short
episodes. While OMDT was able to prove optimality on only 7 out of 13 environments
within 2 hours, OMDT found good policies before this time on 12 out of 13 environments.
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9.4 Conclusion
We propose OMDT, a mixed-integer linear programming formulation for training optimal
size-limited decision trees for Markov Decision Processes. Our results show that for sim-
ple environments such as blackjack, we do not have to trade off interpretability for per-
formance: OMDTs of depth 3 achieve near-optimal performance. On Frozenlake 12x12,
OMDT outperforms VIPER by more than 100%.

OMDT sets a foundation for extending supervised optimal decision tree learning tech-
niques to the reinforcement learning setting. Still, OMDT requires a full specification of
the Markov Decision Process. Imitation learning techniques such as VIPER can instead
also learn from a simulation environment. Therefore, future work should focus on closing
the gap between the theoretical bound supplied by OMDT and the practical performance
achieved by algorithms that require only simulation access to optimize interpretable de-
cision tree policies in reinforcement learning. Additionally, future work can incorporate
factored MDPs into OMDT’s formulation to scale up to larger state spaces.
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10
DT-PPO: Interpretable

Proximal Policy Optimization
using Decision Trees

Reinforcement learning techniques leveraging deep learning have made tremendous progress
in the past years, however, their extreme complexity prevents practitioners from understand-
ing their behavior. Decision trees have gained increased attention in supervised learning for
their inherent interpretability, enabling modelers to understand the exact prediction process
after learning. This paper considers the problem of optimizing interpretable decision tree
policies in reinforcement learning settings. Previous works have relaxed the tree structure,
restricted to optimizing only tree leaves, or applied imitation learning techniques to approx-
imately copy the behavior of a neural network policy with a decision tree. We propose an
algorithm that directly optimizes the complete decision tree using policy gradients. Our tech-
nique uses established decision tree heuristics for regression to perform proximal policy opti-
mization, a successful policy gradient method for neural networks. Although our proposed
technique tends to converge to a local optimum, we empirically show that iterating over sev-
eral random seeds leads to a competitive algorithm for optimizing decision tree policies in
reinforcement learning.
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10.1 Introduction
In recent years many successful neural network-based techniques have been proposed for
reinforcement learning. However, due to the size and structure of these models, the result-
ing policies cannot be precisely interpreted which limits their use in real-life applications.
Decision trees are a popular type of model in supervised learning as they can be directly
interpreted [1] and efficiently learned with heuristics [2, 3]. Using decision trees as rein-
forcement learning policies is therefore a promising research direction, but unfortunately,
decision trees are difficult to optimize for reinforcement learning because they are not
differentiable.

Some methods have been proposed for optimizing decision tree policies by working
around their non-differentiability but they come with their caveats. VIPER [4] first trains
a Deep Q-Network [5] and then extracts a decision tree from the neural network using imi-
tation learning. While this often results in performant decision trees, it is time-consuming
and relies on a good teacher model. Iterative bounding MDPs [6] and OMDT [7] require
knowledge of the complete Markov Decision Process underlying the environment which
means that they cannot solve most reinforcement learning problems. In another line of
work, the non-differentiable parts of decision tree models have been relaxed [8, 9] or re-
stricted [10] to enable gradient-based optimization. These relaxations or restrictions are
later removed to obtain a crisp decision tree, which can perform much worse than its soft
(non-crisp) counterpart. Existing methods that learn trees with a crisp structure [11, 12]
do so using a greedy splitting procedure that can never update the tree structure again
once creating a branch node, making it hard to recover from mistakes.

We propose the method DT-PPO which directly optimizes complete decision tree poli-
cies using Proximal Policy Optimization (PPO), a high-level overview of the method is
given in Figure 10.1. PPO is a policy gradient style method that has gained widespread
attention for its strong performance combined with its relative simplicity. We formulate
an iterative method based on regression tree learning heuristics that can incrementally
improve decision trees for a differentiable loss function. This method then allows us to
use the gradient-based PPO algorithm for optimizing decision tree policies without imi-
tation learning or altering the model class. We evaluate DT-PPO on several control tasks
and discrete MDPs and compare the performance to the state-of-the-art method VIPER.
DT-PPO with three random restarts performs competitively with VIPER and sometimes
outperforms a neural network-based method. To the best of our knowledge, our proposed
method is the first that is capable of optimizing arbitrary differentiable loss functions for
decision trees. The extensible DT-PPO algorithm sets a foundation for future work in
decision tree policy optimization.
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Figure 10.1: High-level overview of the DT-PPO algorithm. The tree is initialized as a single leaf with equal
probability for each action and iteratively refined by optimizing the Proximal Policy Optimization clip loss with
regression tree heuristics on batches of environment experience. In the end, we round the leaf values to obtain
an interpretable deterministic policy.
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initialized with large random targets ( (0,25)). By applying gradient updates to the targets, we can optimize
differentiable losses such as the log loss for classification.
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Algorithm 8 DT-PPO: Decision Tree Proximal Policy Optimization
1: Initialize 𝜋 as a single leaf that takes any of the 𝑛 actions with equal probability: 𝜋(𝑠) =

( 1
𝑛 ,

1
𝑛 , ...,

1
𝑛) , ∀𝑠

2: while not reached stopping criterion do
3: Run policy 𝜋 in the environment for 𝑡 = 1...𝑇 timesteps collecting observations 𝑠𝑡 ,

actions 𝑎𝑡 , and rewards 𝑅𝑡
4: Compute the𝐺𝐴𝐸(𝜆) advantage estimates �̂�𝑡 = 𝑅𝑡(𝜆)−𝑉𝜃(𝑠𝑡) using lambda returns

and value function network
5: if 10th policy iteration then
6: 𝜋0 = 𝜋
7: for 𝑖 = 1,2, ...𝑁 do
8: Define at time 𝑡 the log action probabilities as 𝑙𝑡 = log(𝜋𝑖−1(𝑠𝑡)+10−8)
9: Define 𝐿DT(𝑙) = 𝔼𝑡 [min(𝑟𝑡�̂�𝑡 ,clip(𝑟𝑡 ,1−𝜖,1+𝜖)�̂�𝑡)+ 𝑐𝐻 (𝜎(𝑙𝑡))], 𝑟𝑡 =

𝜎(𝑙𝑡 )𝑎𝑡
𝜋(𝑎𝑡 |𝑠𝑡 )

and 𝜎 the softmax function
10: Fit regression tree 𝜋𝑖 on observations 𝑠𝑡 with targets 𝑌𝑡 = 𝜎 (𝑙𝑡 + 𝜂∇𝐿DT(𝑙𝑡))
11: end for
12: Choose 𝜋 as the 𝜋𝑖 with largest batch 𝐿DT value
13: else
14: Optimize 𝐿DT with respect to decision tree leaf values, for 𝑁 steps of gradient

ascent
15: end if
16: Optimize 𝐿VALUE with respect to neural network parameters 𝜃, for 𝐾 batches of

size 𝐵 using Adam
17: end while
18: Make the policy 𝜋 deterministic by rounding each leaf’s value to its argmax
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10.2 DT-PPO: Decision Tree Proximal Policy Opti-
mization

In this section, we describe DT-PPO: an algorithm for optimizing decision tree policies in
reinforcement learning settings. DT-PPO is based on Proximal Policy Optimization, a pop-
ular policy gradient-based technique for optimizing reinforcement learning policies repre-
sented by neural networks. Previous works have usually not applied gradient-based algo-
rithms to decision trees as decision trees are not differentiable. We propose a method that
makes incremental improvements to a decision tree policy without requiring the model
to be differentiable, allowing us to use the policy gradient information during optimiza-
tion. We first explain our technique for incremental updates using regression tree learning
heuristics followed by an explanation of how this technique is used inside the PPO algo-
rithm.

10.2.1 Incremental Regression Tree Improvement
A major challenge in decision tree optimization is that each decision node splits on a sin-
gle feature and uses a hard threshold that sends samples to the left or right subtree. This
property makes the prediction space discontinuous and also has the effect that changing a
single decision node can lead to a very large change in predictions. Due to these issues, ex-
isting algorithms for incremental decision tree-based learning usually resort to ensembles
which comes at the cost of interpretability. For example, gradient boosting [13, 14] gradu-
ally reduces the loss by iteratively adding decision trees to its ensemble. These trees com-
pensate for the loss of the preceding trees in the ensemble by predicting pseudo-residuals
based on the gradient of the loss. We take inspiration from gradient boosting and pro-
pose an effective yet surprisingly simple method that optimizes a single decision tree for
a differentiable loss function.

The main idea is to leverage regression tree learning heuristics to iteratively optimize
regression trees on a sufficiently large batch of samples 𝑋 for a differentiable loss function
𝐿. By updating the targets of the learner according to the gradient of the loss in each
iteration we can use gradient information while not having to differentiate through the
decision tree. Define the loss as a function 𝐿 ∶ → ℝ mapping a set of model predictions
to a value to be minimized. Our method works as follows:

1. initialize a decision tree 0 ∶  →  that maps samples 𝑥 ∈ 𝑋 to (arbitrary) predic-
tions 𝑌0,

2. use a regression tree learner to find a tree 𝑖 aiming to predict 𝑖 ≈ 𝑌𝑖−1− 𝜂∇𝐿(𝑌𝑖−1),
with learning rate 𝜂,

3. repeat step 2 for 𝑁 iterations and return the best performing tree argmin𝑖(𝐿(𝑌𝑖)).

Like gradient boosting this method iteratively reduces the pseudo-residuals but instead
of adding a tree to the ensemble, the new tree predicts the aggregated prediction of the
ensemble with the pseudo-residuals subtracted from the targets. While this method does
not guarantee an improvement of the loss value in every step we find that it works well
in practice.
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Figure 10.3: Discounted returns and policy entropy values during the DT-PPO learning process for 3 different
random seeds, annotated with the final undiscounted return after rounding the non-deterministic policies. Al-
though DT-PPO sometimes finds a bad local optimum varying the random seed helps. Entropy reduces over
time with better policies converging to a deterministic policy more quickly.

We visualize the optimization behavior of incremental regression tree improvement
for depth 5 trees on a simple supervised learning task in Figure 10.2. In this example, the
tree is supposed to classify two moon-shaped distributions by minimizing the log loss. 0
is trained on large random targets sampled from a normal distribution  (0,25) and then
iteratively improved for 1000 iterations using regression tree learners that minimize the
squared error loss. We can see that both the tree structure changes over the iterations and
the leaf values are updated to predict 0 or 1 with increased confidence. The final model1000 accurately classifies the dataset.

10.2.2 Proximal Policy Optimization
To perform Proximal Policy Optimization with decision trees we replace the neural net-
work policy with a multi-output regression tree that predicts a probability for each action
in each leaf. We then perform gradient updates with the method outlined in the previous
section. The algorithm’s pseudocode is given in Algorithm 8. An important requirement
for this method is that the batch size is large enough to capture sufficient information
about the tree of the previous iteration to not forget too much about the new tree. This is
in contrast to neural network optimization where information of previous batches is con-
tained in the model parameters and approximately persisted by limiting the magnitude of
parameter updates. Therefore in our experiments, we collect batches of 𝑇 = 50000 steps
of experience similar to methods such as TRPO [15]. This number may be reduced when
training smaller trees.

Aside from the batch size we make some other changes to the PPO algorithm to im-
prove learning using decision trees. Instead of applying the incremental regression tree
improvement procedure in every iteration we only perform this operation once every 10
steps. During the iterations in between we only update leaf values. We noticed that this
offers a speedup as it is not necessary for the tree structure to change at every step. In
DT-PPO we train regression trees that directly predict probabilities and we use softmax
functions to make sure that these probabilities sum to one after gradient updates. It is also
possible to predict logits with the regression trees and only use a softmax function when
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computing probabilities. We chose against this approach as predicting logits can result
in multiple leaves with different logit values representing the same probabilities since the
softmax function is invariant to constant shifts.

As mentioned in the previous section, incremental regression tree improvement does
not guarantee an improvement therefore we check the loss values before and after the
procedure, and if loss does not improve we instead only update leaf values. We also only
keep the tree with the best batch loss after tree improvement and after terminating the
whole PPO algorithm. In the rest of this paper, we limit the number of iterations to 1000
and stop the optimization process early when the mean policy entropy reaches 0.01 times
the number of actions. The remaining tree learning hyperparameters are as follows: 𝜂 =
0.1, 𝜖 = 0.2, 𝛾 = 0.99, 𝜆 = 0.95,𝑁 = 100. To optimize decision trees with PPO, we replace
the policy neural network with a decision tree but still use a neural network for the value
function (the critic), as this approximator is only used to improve the optimization process
and does not affect the interpretability of the policy model. We update the parameters 𝜃
of the value function in every iteration. This update minimizes PPO’s clipped value loss
with the Adam optimizer for 50 batches of 200 samples:

𝐿VALUE(𝜃) = max((𝑉𝜃(𝑠𝑡)−𝑉𝑡)2, 𝑉𝜃old(𝑠𝑡 )+ clip(𝑉𝜃(𝑠𝑡)−𝑉𝜃old(𝑠𝑡),−𝜖,𝜖)−𝑉𝑡)2), (10.1)

where 𝑉𝑡 is the return at timestep 𝑡. For our experiments, we use a standard neural network
with 2 layers of 64 neurons, tanh activation functions, and a learning rate of 2.5e-4.

Controlling Policy Entropy
Since we want to find a deterministic policy, as this improves interpretability, we need to
carefully control the entropy of the policy during the learning procedure. When entropy
remains too high at the end of training, the quality of the policy can drop tremendously
when the probabilities in the leaves are rounded to make the policy deterministic. How-
ever, when entropy becomes low too quickly, the agent does not explore enough since
PPO’s exploration relies on the policy’s randomness. To control the policy entropy we
add the term 𝑐𝐻 (𝜋(𝑠𝑡)) (or 𝑐𝐻 (𝜎(𝑙𝑡)) in terms of logits 𝑙𝑡 ) to the objective just like in regu-
lar PPO, but instead of fixing 𝑐 to a value such as 0.01 we linearly reduce it over time. We
initialize 𝑐 = 0.01 in our experiments and reduce it by 0.01 every 100 iterations.

The final algorithm DT-PPO is still similar to PPO and differs mostly in the following
ways:

• It uses a decision tree as the policy instead of a neural network, and updates it with
incremental regression tree improvement (every 10th iteration).

• It uses larger batches to avoid losing information in the incremental regression tree
improvement step.

• It reduces the entropy parameter 𝑐 over time to reach a deterministic final policy.
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10.3 Results
We compare DT-PPO’s ability to optimize interpretable tree policies with VIPER [4], a
method based on imitating a Q-learning teacher such as a Deep Q-Network [5]. To main-
tain interpretability we limit the trees to a depth of 4 and to understand the cost of inter-
pretability we also compare against neural network-based PPO [16] and DQN. We imple-
mented DT-PPO in JAX [17] and the reinforcement learning environments in Gymnax [18].
See our code¹ and appendix² for more details.

10.3.1 Learning Behavior
First, to understand the learning behavior of DT-PPO we visualize the batch discounted
returns and policy entropy during optimization for Frozenlake, CartPole, and Pendulum in
Figure 10.3. Optimization was stopped after 1000 iterations or when the entropy was close
to zero and the best run was highlighted. DT-PPO converges to a poor local optimum in
one of the Frozenlake and Pendulum runs (green). To resolve this problemwe run DT-PPO
three times and keep the best model after learning.

Since we are interested in finding deterministic policies we round the leaf probabilities
after learning, which can also affect policy quality. For example, in the Pendulum environ-
ment, the blue run achieves a better score than the orange run after rounding while the
visualized returns of the non-deterministic policies showed the opposite behavior. This
is a property resulting from the simplicity of heavily regularized models such as decision
trees. By using a model class that does not have the expressivity to use the complete in-
formation from the observations, an MDP implicitly becomes a partially observable MDP
(POMDP). While in MDPs there is always an optimal deterministic policy [19], there are
POMDPs for which the optimal policies are non-deterministic, therefore, in general, we
expect to see a reduction in performance when rounding non-deterministic interpretable
policies. In general, we find that most training runs converge to a low entropy and that
strong policies usually converge faster.

10.3.2 Performance Comparison
Next, we compare the algorithms on a variety of environments including the MDPs imple-
mented by OMDT [7], a set of gymnax environments including control tasks, and cartpole
swingup [20]: a more challenging cartpole variant. All environments use discrete action
spaces. OMDT cannot handle environments with continuous observations and unknown
or large MDPs, we therefore did not directly compare to this method. Since our primary
focus is on policy quality and not sample efficiency we train the neural network methods
DQN and PPO for 10 million total timesteps. VIPER uses the DQN to extract a decision
tree using additional environment rollouts which, when assuming rollouts of 1000 steps,
results in VIPER using approximately 4.7 million additional environment samples. DT-
PPO uses batches of 50,000 samples and therefore 5 million samples for each 100 itera-
tions. In Table 10.1 we list the mean returns that the different methods achieved in the
environments.

¹https://github.com/tudelft-cda-lab/DTPO
²https://arxiv.org/abs/2408.11632

https://github.com/tudelft-cda-lab/DTPO
https://arxiv.org/abs/2408.11632
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WhenVIPERmanages to find a good policy for an environment it often performs better
than DT-PPO but the scores are usually close. Since VIPER relies on the DQN to optimize
its policy, the method fails in environments such as Navigation3D and TigerVsAntelope
where DQN converges to a suboptimal policy. Q-learning and policy gradient techniques
often excel in different types of environments as can be seen in the results of the neural
network policies. Therefore DT-PPO can be useful when Q-learning techniques fail to
achieve good performance.

Learned Policies
To further understand the difference between VIPER and DT-PPO we visualized the best
learned trees for Acrobot-v1 and CartPole-v1 in Figure 10.4. Although all four trees per-
form well in the environments, the trees trained with DT-PPO use noticeably different
features, and in these environments, the DT-PPO trees are smaller. We find that DT-PPO
trees often contain many leaves with the same action prediction at the end of training.
Such leaves are pruned at the final rounding step to produce a smaller tree. Even though
all trees were allowed to train to a depth of 4, permitting a size of 24 −1 = 15 nodes, Ta-
ble 10.1 shows that many trees are significantly smaller after pruning. While this results
in trees that are easily interpretable it means that VIPER sometimes makes better use of its
allowed capacity to achieve a higher return. In environments where this happens, users
can allow a larger tree depth for DT-PPO and rely on pruning to provide sufficient size
reduction for interpretability.
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Figure 10.4: Final decision trees optimized with DT-PPO and VIPER and their undiscounted returns. While
the resulting trees score similarly they can be quite different: the trees use different features to arrive at their
predictions. The DT-PPO trees converged to multiple leaves containing the same prediction which allowed for
many of them to be pruned away after training.
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10.4 Discussion
We presented DT-PPO, a method that can directly optimize decision tree policies for rein-
forcement learning. By leveraging a method based on regression tree learning heuristics
to update trees with gradient information we were able to apply proximal policy optimiza-
tion to decision trees. The resulting policies are small enough to be human-interpreted
and performed competitively compared to existing algorithms that extract decision trees
from neural network policies. Our experiments on classic control tasks and discrete MDPs
demonstrate that small decision trees can sometimes perform as well as neural networks.

Although DT-PPO performed well in our benchmark there are still limitations to be
addressed. While neural networks can efficiently incrementally learn from batches of data
by performing weight updates with a small learning rate, our decision trees require a large
batch size to function. This is becausewe re-learn a tree in each iterationwhichmeans that,
to not forget previous experience, the batch of experience must be large enough to hold
the information of the previous tree. We noticed that our method worked well for batches
of 50000 samples which we efficiently collect using optimized Gymnax environments but
which can be problematic in situations where sample efficiency is important. Like most
function approximation-based algorithms for reinforcement learning, DT-PPO finds a lo-
cal optimum. Due to the limited capacity of decision trees, these local optima sometimes
score significantly worse than the global optimumwhichmeans DT-PPO requires multiple
restarts to reliably find a strong policy. Mechanisms that memorize and replay previous
experience could help to improve DT-PPO’s sample efficiency and bymemorizingmultiple
policies the reliance on random restarts could be reduced.

Our method provides a promising way to use gradient information inside of non-
differentiable learners such as decision trees. Future work might apply this idea to dif-
ferent loss functions in reinforcement or supervised learning that were previously hard to
optimize. We also aim to leverage the fact that policy gradient techniques such as DT-PPO
can be adapted for environments with continuous action spaces with relative ease (com-
pared to Q-learning algorithms). Lastly, recent works have proposed efficient methods for
decision tree controller verification. We plan to use DT-PPO to train decision tree policies
for new tasks and verify their safety properties for controllers that are currently optimized
as hard-to-verify neural networks.
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11
Discussion

In this dissertation, we considered the problem of optimizing decision trees for hard-to-
optimize tasks. To answer the question ‘How to learn robust decision trees?’ in Part I,
we developed algorithms for fast and optimal robust optimization and also worked on de-
cision trees robust to data poisoning. In Part II we answered the question ‘How to learn
decision trees as policies for sequential decision problems’ by proposing an exact algo-
rithm for decision tree policy optimization in Markov Decision Processes, and developed
a reinforcement learning method for decision trees. We will not repeat the conclusions to
the research questions as these are contained in each chapter. Instead, what follows is a
list of unexpected results, a discussion of general considerations and a statement on the
limitations of this dissertation.

11.1 Unexpected Results
• Early comparisons (e.g. Chapter 4) of tree ensemble adversarial robustness showed
that many robust ensembles performed similarly. However, it turns out that many
comparisons were evaluated with a perturbation size that was either too small, re-
sulting in all models trivially providing robustness, or too large, resulting in models
not being able to perform better than random guessing. There are clear differences
when choosing the perturbation size carefully to disallow trivial solutions (Chap-
ter 5).

• The adversarial robustness of gradient boosting ensembles can typically be verified
orders of magnitude faster than the robustness of random forests when the ensem-
bles have the same number of trees. This is because random forests train deep deci-
sion trees that continue splitting until no further splits improve performance, while
gradient boosted trees are typically limited to a small size. Although the ensembles
have the same number of trees, the number of total leaf nodes differs by orders of
magnitude.

• Simply training regular random forests and relabeling their trees for robustness
leads to similar robustness as the specialized method GROOT. This is especially
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useful as robust relabeling can be easily done for perturbations other than those
bounded by an 𝐿∞ ball of fixed radius.

• In rare occasions, training differentially private decision trees, on average, improved
test accuracy over non-private decision trees. This is because adding a small amount
of noise can produce a helpful regularization effect, but is counter intuitive as there
is typically a clear trade-off between privacy and performance.

• Simple (small) deterministic decision tree policies can be remarkably effective and
still produce non-trivial behavior by using the environment’s non-determinism. For
instance, in the Frozenlake game (Chapter 9), decision tree policies often run the
agent directly into a wall to use the randomness of the environment to move the
agent along that wall.

• By performing gradient updates only to determine the desired outputs of a deci-
sion tree and training with regression tree heuristics, it is possible to optimize deci-
sion trees using gradient-based methods like Proximal Policy Optimization. Large
batches of data can hold enough information on the previous policy to prevent ex-
cessive changes without relying on making small changes to the model parameters.

11.2 Considerations and Takeaways
There are some questions and problems that regularly arise when optimizing decision
trees. We discuss the important considerations below.

Optimal or Heuristic In this dissertation, we have proposed both optimal and heuris-
tic methods for learning decision trees. The advantages of optimal methods are two-
fold: they perform as well or better than heuristic methods and are provably optimal,
i.e., they prove no performance improvement can be made. However, optimal methods
often take orders of magnitude longer to run, and their time complexities scale exponen-
tially, whereas heuristics often scale polynomially. This means that in practice, one must
consider whether it is worth it to pay the price in runtime for the limited performance
gain that optimal methods achieve and this will depend on the use case.

A common misconception is treating the optimality guarantee of optimal decision
trees to mean optimal at testing time. It is important to interpret the guarantee cor-
rectly: given a model size constraint and the specified feature set, the optimal decision
tree achieves the best possible loss on the training data. This means that test scores of
other decision trees can actually be better than the optimal tree, for instance, when the
size of the decision tree is increased, when new engineered features are included, or when
the test set is generalized to better. This should be taken into account when applying
optimal decision trees in practice.

Robust or Non-Robust Part I of this dissertation studies the problem of optimizing
robust decision trees. The most common algorithms that are used in practice do not take
robustness into account which makes them susceptible to small changes in the dataset.
This can be problematic when data is collected from noisy samples for example. Partic-
ularly, one should consider whether deployed machine learning models are susceptible
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to malicious user inputs since such adversarial examples can be directly prevented with
robust models. While robustness can be an important property and can be used as a tool
to prevent overfitting, there are costs associated with robust optimization: the resulting
solutions often sacrifice some predictive performance for robustness and the models take
longer to train. In practice, it should be considered whether the extra costs of robust
optimization are worth it.

Transparency or Performance Single decision tree models are popular due to their
interpretability and verifiability properties, but there is a trade-off between transparency
and performance. Some use cases require more expressive models than size-limited deci-
sion trees to achieve acceptable performance. For example, the language modeling tasks
performed by programs such as ChatGPT are naturally more difficult and require more
complex models than those required for balancing a pole on a cart (Chapter 10). Therefore
when necessary, one should resort to models like neural networks to trade transparency
for performance. However, much of the machine learning literature exclusively consid-
ers opaque neural networks and never investigates whether a more transparent model
can also solve the task. When applying machine learning, one should consider evaluating
various models and choose the most transparent model that performs satisfactorily.

Defining Uncertainty Every robust optimization problem requires a definition of the
uncertainty set. Unfortunately, it can be difficult in practice to define the right uncer-
tainty set to robustify against. In some situations, one can make reasonable estimates; for
example, if a feature comes from a sensor value with a known uncertainty, one might use
that value, or when robustness is used as a regularization tool, the uncertainty size can
be tuned based on a validation set. However, in other situations, it can be impossible to
know the exact uncertainty. For example, it can be unknown by what extent features are
likely to change. Whenever robust optimization is applied in practice, one must consider
how the uncertainty set can be reasonably defined.

Reinforcement Learning or Incorporating Knowledge In the field of reinforcement
learning, the default assumption is that information such as action and observation spaces
are known, but not the transition probabilities and the reward function. However, when
formulating reinforcement learning problems, we often have intricate knowledge of the
environments since we typically implement them as interactive simulators ourselves. This
brings up the question of whether we should also include this kind of information in the
learning algorithms. For example, in Chapter 9, solving the tic-tac-toe problem the way
it was given required a deep decision tree. However, if one included their knowledge of
rotational symmetries in the environment, the game would be easier to solve and would
require a smaller decision tree. Similarly, superhuman reinforcement learning chess bots
rely on Monte Carlo Tree Search which uses knowledge of the chess rules. Without this
search step, the model is still good (about 2500 ELO) but not superhuman¹. In practice,
one should consider including knowledge about the problem in their learning methods
instead of applying pure reinforcement learning where the environment is assumed to be
purely an unknown oracle.
¹https://lichess.org/@/LazyBot

https://lichess.org/@/LazyBot
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Numerical or Non-Numerical Data Many machine learning algorithms are designed
to work on inputs that are represented by a fixed-size vector with numerical values. In
such vector spaces, the algorithms often rely on distance norms computed between the
input vectors as a proxy for (dis)similarity. For example, an imperceptible change for an
adversarial example is typically defined by a ball with a small radius placed around the
original data point. The problem with these approaches is that they do not work when the
data is not numerical.

Categorical features are common in tabular data, which is often used for decision trees.
Distances computed on naive encodings of categorical features do not provide valid dis-
tances. Even when working only with numerical data, features typically have different
data scales, preventing useful distance computation. Even worse, when training on identi-
cally scaled numerical features in high dimensions, intuitions about distance and convexity
also no longer apply. For example, the probability for a data point to lie within the convex
hull of previous data points approaches zero when the dimension increases. Therefore, it
is important to consider the heterogeneity in feature types and lack of useful distances
when designing algorithms for real-world tabular data problems.

11.3 Limitations
The conclusions that can be drawn from the research in this dissertation are limited in
some cases. We discuss these limitations below.

Testing on Public Benchmark Datasets Machine learning is always based on data.
Unfortunately, datasets often contain private information or hold competitive value, which
makes organizations hesitant to share them. This means that in our experimentation, we
were limited in the kinds of data on which we could test our proposed methods. Through-
out this dissertation, we have used publicly available benchmarks from the UCI machine
learning repository and OpenML. Therefore it is possible that not all results extend to
private datasets with different properties.

Unrealistic Uncertainty Sets As discussed before, choosing the correct uncertainty set
to robustify against is a very difficult problem. In Chapter 4, we used a fixed perturbation
radius for every dataset, some of which turned out to be too large and, therefore, led to
trivial models that predict the same class all the time being learned. In Chapters 5 and
6, we used a bound on adversarial accuracy to choose 3 different perturbation sizes per
dataset. These perturbation sizes led to the algorithms learning non-trivial models but are
still not necessarily realistic. Therefore it is unclear how well our results generalize to
uncertainty sets for real use cases.

SimpleMarkovDecisionProcesses Whenwe evaluated decision tree policies in Part II,
we did so on two sets of benchmarks: control tasks from the Gymnasium library and dis-
crete MDPs that we implemented based on the literature. Both of these benchmarks con-
tained relatively simple tasks, meaning that small decision trees were sufficient to perform
well in the majority of the environments. There are environments outside of our evalu-
ation that are, by design, too complex to solve with small decision trees. For example, a
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problem that requires 20 different actions to be taken for a good policy requires a decision
tree with at least 20 leaf nodes. Therefore our results do not necessarily extend to larger,
more complex environments.

Size-Constrained Decision Trees Throughout this dissertation, we have considered
single decision tree models with the goal of interpretability in mind. This means that the
decision trees were limited to a depth of 3, 4, or 5 and not trained to be any larger. This
enables humans to interpret the models as they consist of at most 8, 16, or 32 leaf nodes. In
some use cases, however, a decision tree is not required to be directly human-interpretable,
but it is sufficient for the policy to be machine-verifiable. In practice this means that one
might want to apply our algorithms to train trees of significantly larger depths in those
cases. We have not evaluated the performance of decision trees in this range.

Predicate Types In this dissertation, we have limited ourselves to binary decision trees
with mainly one kind of predicate: ‘feature value ≤ threshold.’ We have also used separate
kinds of predicates for categorical features. In practice, it can be useful to use non-binary
decision trees with categorical variables, e.g., by splitting a feature with 3 possible values
into 3 subtrees. While different kinds of predicates can be encoded into binary datasets
through pre-processing and natively learned with our proposed approaches, we cannot
directly learn non-binary decision trees.

11.4 Future Work
Robustness to Uncertainty Sets OtherThan 𝐿∞ Balls While plenty of work has been
done on learning robust decision trees against 𝐿∞ norm-bounded perturbations, fewmeth-
ods exist for other perturbation sets. Our work on robust relabeling provides a general
method that works for other distance norms, but it does not optimize the complete tree.
Future work might develop algorithms that flexibly learn robust decision trees against
various perturbation sets. Moreover, the uncertainty sets considered in the field of adver-
sarial examples are pessimistic and assume every sample can be changed independently.
More research into methods for training distributionally-robust decision trees can prove
useful in settings where perturbations behave more stochastic than adversarial. Other re-
search could study how to specify the uncertainty set, for example, by using data-driven
approaches for estimating uncertainty.

Scaling Optimal Trees Learning optimal decision trees is notoriously slow. Optimal
decision trees for classification have been sped up tremendously using, for instance, dy-
namic programming techniques. Such techniques cannot directly be applied to robust op-
timization and sequential decision-making problems however. Future work may look into
adaptions of dynamic programming techniques to train optimal decision trees for robust-
ness and sequential decision-making. Another approach would be to improve the time for
good sub-optimal solutions to be returned by integer programming solvers, for example
by including better heuristics for decision tree learning within the search algorithm.
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Optimal Differentially-Private Trees Differential privacy is a promising technique
for protecting user privacy as it provides guarantees that hold even after post-processing.
Progress in the field has resulted in methods that achieve the best possible solution on
average for any specified level of privacy. For example, when counting the number of
elements in a set and privately releasing these counts, we know exactly howmuch noise to
add from the Geometric distribution to satisfy the privacy guarantee while maximizing the
accuracy of the noisy output. Future work might investigate methods that approach this
property for decision tree learning. Current methods for differentially-private decision
trees optimize trees greedily and add noise to each operation. Greedy trees do not allow for
an approximation guarantee. A method akin to optimal trees in the differentially private
setting can improve the practicality of decision trees in the high privacy regime.

Decision Trees Beyond Interpretability As mentioned in the limitations, our focus is
on interpretablemodels when training single decision trees. Thismeans that decision trees
were limited in size to be easier for humans to understand. However, in some practical
applications, humans do not have to understand every detail of the model and can instead
use computers to verify important properties of the models. In that setting, it is possible to
train larger trees that express more complex relationships and thus aremore performant in
complex tasks. For interpretability, we have also avoided including linear relations inside
our decision trees, for example, in the way that this is done in oblique decision trees.
However, we expect linear relations to be useful when expressing policies, especially in
control tasks such as those found in reinforcement learning. Therefore future work can
consider training deeper trees with more complex parts as long as these trees remain
tractably verifiable.



11.4 Future Work 179





181

Glossary

3SAT 3 Boolean Satisfiability, the NP-complete Boolean Satisfiability problem for clauses
with three literals.

ASR Attack Success Rate, a metric used in data poisoning attacks that measures how
often an attack such as implementing a backdoor succeeds.

BDPT Building aDifferentially Private Tree, a greedy algorithm for learning differentially
private decision trees.

CART Classification and Regression Trees, a popular greedy algorithm for training deci-
sion trees.

CNF Conjunctive Normal Form, a way to express Boolean Formulas as a conjunction
(‘and’ operations) over disjunctions (‘or’ operations).

CP Constraint Programming, a principle for solving satisfiability problems on a set of
(restrictive) constraints.

DNF Disjunctive Normal Form, a way to express Boolean Formulas as a disjunction (‘or’
operations) over conjunctions (‘and’ operations).

DP Dynamic Programming, a high-level technique for speeding up algorithms by using
the ‘optimal substructure’ property that exists in certain problems.

DP Differential Privacy, a technique used to provide user data privacy by adding random-
ized noise inside of an algorithm.

DPA Deep Partition Aggregation, a method for defending against data poisoning attacks
by creating an ensemble of models all trained on disjoint subsets of the data.

DPGDF Differentially Private Greedy Decision Forest, a greedy algorithm for learning
differentially private decision trees.

DQN Deep Q-Network, a Q-learning-based approach of training neural networks for re-
inforcement learning.

DT Decision Tree, a hierarchical model for making predictions based on informative fea-
tures.

EM Exponential Mechanism, a mechanism for differential privacy for selecting a solution
with high utility from a set of candidates.
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GAE Generalized Advantage Estimation, a method used in reinforcement learning to es-
timate how much better it was to take an action in a certain state compared to what
was expected.

GBDT Gradient Boosted Decision Trees, an ensemble model combining many small re-
gression trees into a single stronger predictor.

GROOT Growing Robust Trees, a fast method that we propose to train robust decision
trees against box-shaped adversaries.

ILP Integer Linear Program, an optimization problem with a linear objective and set of
linear constraints, defined for integer variables.

LLM Large Language Model, a high-level term often used for large pre-trained trans-
former models used for language modeling.

LP Linear Program, an optimization problem with a linear objective and set of linear
constraints, defined for rational variables.

LSU Linear SAT-UNSAT, an anytime exact algorithm for solving MAX-SAT problems.

MaxSAT MaximumBoolean Satisfiability, the optimization version of SAT, find a solution
that maximizes the number of satisfied clauses.

MDP Markov Decision Process, a model for sequential decision making problems.

MILP Mixed Integer Linear Program, an optimization problemwith a linear objective and
set of linear constraints, defined for a mix of rational and integer variables.

OMDT Optimal MDP Decision Tree, a method that we propose to train optimal decision
tree policies for known discrete Markov Decision Processes.

PF Permute-and-Flip Mechanism, a mechanism for differential privacy for selecting a so-
lution with high utility from a set of candidates.

PPO Proximal Policy Optimization, a modern policy gradient-based technique for opti-
mizing reinforcement learning agents.

RC2 Relaxable Cardinality Constraints, an exact algorithm for solving MAX-SAT prob-
lems.

RF Random Forest, an ensemble model combining many deep decision trees into a single
stronger predictor.

ROCT Robust Optimal Classification Trees, a method that we propose to train optimal
robust decision trees against adversarial examples modeled with a box-shaped at-
tacker.
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SAT Boolean Satisfiability, an NP-complete problem that asks for a satisfying assignment
to a Boolean formula in Conjunctive Normal Form.

TREANT Training Evasion-Aware Decision Trees, an algorithm for training robust deci-
sion trees against adversaries described by a set of perturbation rules.

UNSAT Unsatisfiable, a term often used in SAT solving to refer to a Boolean formula that
is proven never to be true.

VIPER Verifiability via Iterative Policy ExtRaction, an algorithm based on imitation learn-
ing for distilling complex Q-learners into verifiable models such as decision trees.
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