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ABSTRACT

This paper investigates the potential of reducing greenhouse gas

emissions in data centers by intelligently scheduling batch pro-

cessing jobs. A carbon-aware scheduler, S.C.A.L.E (Scheduler

for Carbon-Aware Load Execution), was developed and applied to

a resource-intensive data processing pipeline at ING. The sched-

uler optimizes the use of green energy hours, times with higher

renewable energy availability, and lower carbon emissions. The

S.C.A.L.E comprises three modules for predicting task running

times, forecasting renewable energy generation and electricity grid

demand, and interacting with the processing pipeline. Our evalua-

tion shows an expected reduction in greenhouse gas emissions of

around 20% when using the carbon-aware scheduler. The sched-

uler’s e�ectiveness varies depending on the season and the expected

arrival time of the batched input data. Despite its limitations, the

scheduler demonstrates the feasibility and bene�ts of implementing

a carbon-aware scheduler in resource-intensive processing pipeline.
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1 INTRODUCTION

The global climate change crisis and the associated phenomenon

of global warming have taken center stage in recent years as an

existential challenge facing humanity. The consequences of global

warming are already noticeable. For example, recent studies show

that it harms crop production, threatening food security world-

wide [11, 15]. Global warming has been signi�cantly in�uenced

by increased greenhouse gas emissions caused by human activi-

ties [20]. This includes the carbon emissions generated by Internet
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services, which account for a substantial portion of the overall emis-

sions and are forecasted to only increase over time [5, 10]. These

services operate through large data centers, making data centers a

considerable contributor to carbon emissions and global warming.

A study conducted in 2010 revealed that data centers already

emitted as much CO2 as the entire country of Argentina due to

their high energy consumption [6]. In 2016, the world’s data centers

used more than 416.2 tWh [2], which was higher than the total

consumption of Britain at that time of around 300 tWh. The energy

consumption and associated CO2 emissions by data centers have

only grown in recent years [2, 18, 19] and are expected to rise to 974

tWh in 2030 [1]. As such, a growing interest has been in reducing

carbon emissions, including from data centers [10].

In addition to their high carbon emissions, data centers are gener-

ally ine�cient and underutilized [6]. Server utilization rates within

data centers barely exceed 6%, while facility utilization hovers

around 50%. This ine�ciency increases the environmental impact

of data centers and highlights the need for improvements.

Society relies on these servers, and it is unrealistic to remove

them from our daily lives. In this work, we explore the possibility of

mitigating the environmental impact of these servers. We leverage

the fact that most servers do not need to operate continuously,

allowing tasks to be scheduled throughout the day. Additionally, we

consider the variable environmental impact of energy production,

which changes throughout the day. For instance, energy is greener

at noon when the sun is shining compared to the night when solar

panels are not producing any energy.

This contribution focuses on a speci�c type of load in data cen-

ters: batch processing compute jobs. These compute jobs are char-

acterized by their lack of strict requirements regarding the timing

of their execution. In other words, they have a temporally �exible

element, meaning their processing can be delayed to a later time of

the day without causing issues for the system and without inter-

rupting business as usual. A compute job consists of any processing

step that does resource-intensive data processing. In this context,

the resources refer to CPU and memory usage, which in turn have

a direct correlation to electricity consumption [4, 13].

There is an opportunity to intelligently schedule computing jobs

to reduce the amount of greenhouse gasses emitted, provided these

jobs have temporal �exibility. It becomes possible to optimize their

energy consumption and reduce carbon emissions by leveraging

the �exibility of compute jobs, the variability of greenhouse gasses

emitted depending on the time, and the general under-utilization

of data centers. The optimization can be done by scheduling these

compute jobs to times at which the carbon load of the energy

grid is low. Intelligently scheduling and redistributing compute

jobs can align the demand for computing resources with periods

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Correlations between generations and emissions

for the electricity systems of (A) Bangladesh and (B) New

Zealand in 2015 [8].

of low-carbon energy generation, thereby minimizing the overall

environmental impact of data centers.

The optimization will work best in areas in which there is an

abundance of green energy generation available. The variability of

greenhouse gas emissions per mWh is much lower when there is

little green energy generation in an area. This is shown in Figure 1

from [8], which shows two plots of greenhouse gas emissions per

generated MWh from two di�erent countries. Figure 1 B shows

emissions per MWh in New Zealand, which has much more green

energy generation available compared to Bangladesh shown in Fig-

ure 1 A. The optimization aims to utilize the variability of emissions

per MWh as shown in Figure 1 B.

This contribution explores the possibility of creating and imple-

menting a carbon-aware scheduler to minimize the carbon load of

a real-world resource-intensive data processing pipeline at ING in

the trade and communications surveillance squad. ING is a large

multinational banking corporation headquartered in Amsterdam.

It o�ers various �nancial services, including retail and commer-

cial banking, and has a signi�cant presence in many countries.

The trade and communications surveillance squad manages a data

processing pipeline within ING that runs on the ING data centers.

In summary, the contributions of this paper are:

• An open source implementation of S.C.A.L.E: a CO2-aware

Scheduler for OpenShift and Docker. 1

1https://github.com/Fastjur/S.C.A.L.E./

Figure 2: The overview of the implementation of the carbon-

aware scheduler at ING.

• An empirical evaluation of S.C.A.L.E e�ectiveness on open

source data.

2 S.C.A.L.E: CARBON-AWARE SCHEDULER

This section presents, S.C.A.L.E, the carbon-aware scheduler that

we designed. Figure 2 shows an overview of the scheduler. In the

middle, the scheduler is shown. It gathers data from various sources,

such as the ENTSO-E Transparency Platform and historical runs of

the system. It combines these data points to create a schedule aiming

to reduce the system’s carbon emissions. Once it has determined

a schedule, it communicates this to the container orchestration

platform, which in turn starts up pods to process at the right times.

Each part of this system is described in this section

S.C.A.L.E. is designed to work on container application plat-

forms such as OpenShift. OpenShift is built on top of Kubernetes

and provides features and functionality for building, deploying, and

managing containerized applications. It provides S.C.A.L.E. the

ability to create a schedule and process compute jobs at optimal

times, by scaling deployments for those compute jobs.

2.1 Task Load Prediction

The initial step in determining a schedule involves predicting the

execution time of incoming tasks. This step is required, �rst, to

ensure that deadline constraints are not violated when scheduling

tasks, and second, to facilitate shifting of task processing to periods

of low carbon intensity.

Execution time prediction is achieved by analyzing the historical

data of previous task execution. We collect two types: foreknown

properties of tasks that can be determined prior to scheduling or

processing such as input �le size and task type, and metrics related

to task processing such as start and end times of tasks and used

system resources. We also collect data related to the system, such

as allocated (virtual-)CPUs, allocated memory, and the number of

concurrent jobs allowed.

In the case of the ING system, the task type and the �le size

of the accompanying �le are considered. From this, the scheduler

calculates the processing speed in B/s for every previous task. The

metric can be adapted depending on the type of task.
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Figure 3: Renewable generation predictions per season in

2022 per time of day in The Netherlands

Based on this data, the scheduler can compute the median ex-

ecution time of the previous execution based on the �le size. The

expected processing time of an incoming �le is then calculated by

dividing the task �le size by the median processing speed:

expected_duration =

task.file.file_size

median_processing_speed
(1)

A time-based sliding window approach is also used to adapt the

prediction based on recent executions and discard historical data

that could have been collected from an outdated system. In the

ING system, a 30-day window is considered a tradeo� between the

accuracy of the prediction and adaptation to system changes.

2.2 Gathering Data on Energy Generation

The second component of the CO2-aware scheduler is to acquire

information regarding energy generation and more speci�cally

the proportion of green energy production in the next hours. The

variability in renewable energy generation o�ers the opportunity

to optimize the execution pipeline and therefore reduce the CO2

emission. Figure 3 shows the average renewable energy generation

in the Netherlands by the time of day for every season in 2022. The

�gure shows that, on average, the amount of renewable energy

generation is highest between 12:00 and 14:00, depending on the

season. Although renewable energy peaks around noon on average

due to solar generation, other sources should be considered. Figure 4

displays the energy generation statistics in the Netherlands on

November 13th, 2023. These graphs show that wind energy should

also be taken into consideration when scheduling tasks on a day-

to-day basis, as the peak production of renewable energy occurred

around midnight on November 13th, 2023.

Therefore, the naive expectation of executing the tasks around

noon is not su�cient. The scheduler has to dynamically adapt de-

pending on the forecast of the day. Moreover, it is important to take

into consideration the usage of the grid, i.e., scheduling tasks at 7

pm when all household are running their appliances is not optimal

even if a lot of wind energy is produced. Therefore, the scheduler

should take into account the peak of green energy as well as the

Figure 4: Renewable energy generation predictions in the

Netherlands for November 13th, 2023, with an increase of

wind energy. The total amount of renewable energy available

does not peak during noon but at night.

expected load on the electricity grid. This combination may provide

better options throughout the day, at which the total renewable

generation is slightly lower, but the predicted demand is signi�-

cantly lower. To that end, the scheduler calculates a “renewable

energy percentage”, using both the renewable energy generation

predictions and the predicted demand on the electricity grid. The

renewable energy percentage is the main source of information

the scheduler uses for determining periods of low-carbon-intensive

energy generation.

The renewable energy percentage is calculated by summing the

renewable energy predictions for solar and wind and dividing them

by the forecasted demand.

renewable energy percentage =

solar + wind

grid demand
(2)

Figure 5 shows the renewable energy percentages over the time

of day and per season. At the top left, the forecasted renewable en-

ergy generation is plotted. The top right shows the forecasted load

in The Netherlands. The combination of these values is then plotted

in the bottom graph. As can be seen, on average, renewable energy

generation is highest around noon every day, and the forecasted

demand is lowest at these times. Therefore, it is expected that the

energy generation will be, on average, the cleanest around noon in

terms of gCO2-eq per generated kWh. Those �gures con�rm that

there is an opportunity to schedule processes for optimizing carbon

emissions.

S.C.A.L.E relies on a ‘transparency platform’ provided by ENT-

SO-E. This platform provides API access to electricity generation,

transportation, and consumption information for the European

market. ENTSO-E provides a forecast of energy production for

the next 24 hours. S.C.A.L.E utilizes this information for the

scheduling and adapts its schedule for the conditions of the day.

2.3 Scheduling

The tactic of the scheduler aims to predict the highest renewable

energy percentage in the next 24 hours. Once it has determined the

optimal time, the scheduling methodology is simple; it aims to pro-

cess all tasks symmetrically around this point. In other words, tasks

are batched together as one processing job to be processed symmet-

rically around this peak in low-carbon-intensive energy generation.

To do so, it predicts a processing time for all tasks and sums these

times up. Once this has been calculated, the scheduler knows the

expected total running time of the tasks to be processed. Using this

information, it can determine when the set of tasks should start to
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Figure 5: Average renewable energy percentage forecasts for

the four seasons in 2022, based on the predicted renewable

energy generation and grid demand in The Netherlands.

process to maximize the usage of low-carbon-intensive energy. The

following paragraphs describe the contributions from the red box,

shown in the middle and bottom right parts of Figure 2.

Additionally, the scheduler takes concurrent processing into

account. A maximum concurrency setting is con�gurable in the

system; the scheduler considers this value when predicting the total

running time of a batch of tasks. The purpose of adding concurrency

is to maximize the utility of low-carbon-intensive energy.

Figure 6 shows this concept visually. It plots the average renew-

able percentage over the time of day in summer. As can be seen, the

peak in renewable energy percentage is at 14:00; the scheduler aims

to process tasks symmetrically around this time. Assume for this

scenario that the scheduler has predicted the total task running time

to take 4 hours without any concurrency. If the scheduler would

get this as input, it would start processing at 12:00, as it expects to

�nish around 16:00. However, if the maximum concurrency is set

to 4, the scheduler expects the running time to be approximately

1 hour. Therefore, it would delay processing until 13:30, with an

expected end time of around 14:30. From this �gure, it should be

clear that adding concurrency maximizes the utility of renewable

energy generation, on average.

Concurrent processing is implemented by the scheduler using

horizontal scaling. Horizontal scaling refers to a method of increas-

ing the capacity of a system by adding more instances of the same

type of resource. In this case, by adding more processing pods. Con-

versely, vertical scaling increases the capacity of existing resources

by allocating more resources to them. Vertical scaling could be im-

plemented in this context by allocating more CPU time or memory

to one pod.

To prevent deadline incursions when scheduling �les, the con-

cept of a ‘latest feasible starting time’ is introduced. The scheduler

calculates the ‘latest feasible starting time’ based on the task’s pre-

dicted running time and its deadline, ensuring that every task is

processed within the given deadline. When scheduling a set of

new tasks, the scheduler collects all the corresponding �les and

Figure 6: Example of scheduling decisions without and with

concurrency, based on the average renewable energy percent-

age in the summer of 2022.

puts them into a single queue. The tasks within the queue are then

prioritized based on their latest feasible starting times.

2.4 Scaling and Resource Metrics Collection in
OpenShift

To integrate the system at ING, the scheduler has been integrated

into the OpenShift system. OpenShift is used to scale up and down

the cluster as well as collect the used system resources. This is

handled by directly interfacing with the OpenShift API. This API

provides direct access to the OpenShift environment, given that

the correct rights are assigned to the pod. Interfacing with the

OpenShift API is handled in the scheduler/scheduling_app/

openshift package.

The scheduling pod needs to be assigned certain rights, named

roles in OpenShift, to be able to interface with the API. These rights

are assigned bymeans of a ServiceAccount2. A ServiceAccount

can be granted certain Roles by means of a RoleBinding and is

de�ned in a yaml con�guration �le.

Similarly, gathering metrics on CPU and memory consumption

by pods can be implemented by calling the OpenShift metrics API3.

Again, the scheduling pod needs to be assigned certain rights by

means of a ServiceAccount. Managing metrics measurements

and querying them is fully managed by OpenShift and therefore

requires little work to implement for the carbon-aware scheduler.

This API exposes endpoints that allow the scheduler to retrieve

CPU and memory percentages for every pod it manages.

With the ServiceAccount de�nition, the scheduler is able to

perform its primary duties. It can scale up and down deployments

in the OpenShift environment to start and stop processing pods,

and it can call the OpenShift metrics endpoint to query all metrics

for all the pods in the same namespace.

2.5 Energy Consumption Calculation for Pods

Finally, to be able to calculate the greenhouse gas emissions of the

pipeline, data on kWh consumption is required for every processing

2https://docs.openshift.com/container-platform/4.14/authentication/understanding-
and-creating-service-accounts.html
3https://docs.openshift.com/container-platform/4.14/monitoring/managing-
metrics.html
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pod. Once the total kWh consumption for a pod is known, it can be

converted into carbon emissions. CPU and memory usage directly

in�uence the electricity consumption of pods and are therefore

used for the calculation of a pod’s kWh consumption.

The process of acquiring kWh measurements requires two main

parts. First of all, for every pod that is started, metrics are col-

lected on its CPU and memory consumption. Secondly, an ING

tool converts these metrics into the expected kWh consumption.

This is encapsulated in the package found in the repository at

scheduler/energy_calculator. The process is explained in the

next few paragraphs and describes the parts shown in the purple

box at the bottom of Figure 2.

OpenShift keeps track of CPU and memory consumption statis-

tics for every pod in the system and provides this data to external

tools using an API. The scheduler must interface with this met-

rics API to gather the CPU and memory consumption statistics of

pods. It requires certain rights to be able to do this, as explained

in the previous section. A conversion to kWh consumption can be

performed based on these metrics.

The conversion to kWh uses an ING-provided tool. This tool

converts CPU and memory percentage measurements to kWh con-

sumption. It determines the expected energy consumption based

on measurements within the ING private cloud data centers. In

other words, based on real-world measurements in the ING data

centers, it is able to calculate kWh consumption based on CPU and

memory statistics. The tool is con�gurable based on platform and

hardware con�guration. It takes into account the average mini-

mum and maximum watts consumed by a platform, along with the

speci�c hardware con�guration on which the pods run.

3 EVALUATION

We presented the implementation of our CO2-aware task sched-

uler. This section presents the methodology, results, and evaluation

of our contribution. During this evaluation, we will answer the

following research questions:

RQ1 To what extent can task load be predicted regarding running

times? In this �rst research question, we evaluate the e�ec-

tiveness of our approach to predict the required execution

time for a task.

RQ2 How can predictions on solar and wind energy generation,

as well as energy consumption, be utilized for implementing

a carbon-aware scheduler? In this second research question,

we evaluate the e�ectiveness of our approach to schedule

tasks while aiming to reduce the amount of CO2 produced

during the execution. To do so, we �rst evaluate the identi�-

cation of the low carbon intensity period, then we measure

the amount of reduction in carbon emissions achieved by

using a carbon-aware scheduler.

RQ3 Is there any overhead introduced by implementing a carbon-

aware scheduler? In the �nal research question, we explore

the impact of the overhead introduced by S.C.A.L.E.

3.1 Methodology

To evaluate our approach, we replicate the ING system in a stan-

dalone distributed system. The goal of the replicated system is to

provide a sandboxed environment where the experiments can be

executed and to provide a replication package for the contribution.

To do so, we implemented S.C.A.L.E as an open-source project

that is compatible with OpenShift as well as Docker.4 We also rely

on open-access data for the evaluation instead of using ING propri-

etary data. The implemented platform is presented Section 3.1.1 and

the data used for this evaluation is presented in Section 3.1.2. This

e�ort has been made to improve the generalization of the approach

and the replication of this contribution.

3.1.1 Processing Pipeline. For the sake of the evaluation, we recre-

ated the ING processing Pipeline that ING uses to analyze internal

Bloomberg Chat data. Figure 7 presents the ING pipeline and our

evaluation pipeline. It shows that the data �ows similarly through

both pipelines. The pipeline follows the following steps:

(1) The �rst step consists of moving �les from the pending bucket

to the processing bucket. The original pipeline performs a

data integrity check that is not required for the evaluation.

(2) The second step decompresses the bucket of �les into the pro-

cessing bucket. The input �le is an encrypted tar.gz �le and

the resulting output is multiple decompressed �les uploaded

to the processing bucket. The original pipeline also decrypts

the input bucket before decompressing it.

(3) The last step di�ers slightly from the original pipeline which

transforms the Bloomberg Chat from the XML �les to a propri-

etary format used by the ING conversation analyzer. For this

evaluation, this step performs sentiment analysis on the chat

to simulate the ING conversation analyzer

3.1.2 Dataset. In this section, we present the input that we used

for the evaluation. We did not use the data-sensitive input �le used

by ING, but we replaced it with similar data. We chose a Twitch

chat dataset [9]. This dataset is a collection of chat logs of 2,162

Twitch streams by 52 streamers, ranging from April 24th, 2018, to

June 24th, 2018. It was chosen because it contains textual chat logs

in which multiple people are conversing with each other. Therefore,

it accurately represents one of the signi�cant types of input data

used by the ING system. Additionally, it contains chat logs over

a long period of time, thereby providing a large variance in the

number of chat logs per day.

This data is then transformed to match the ING input �le. More

speci�cally, we group the conversations per day and split the big

Twitch chat into multiple �les to simulate daily conversation. Fi-

nally, we compressed the resulting �les. The resulting dataset con-

tains 468 conversations spread over 3 months.

3.1.3 Data collection. To evaluate our scheduler, we executed the

evaluation pipeline on the dataset that we previously presented.

During the execution, we collect all metrics required for our sched-

uler to work such as the starting and end time of each task as well

as the CPU and memory usage.

Additionally, We also converted the kWh used to perform our

evaluation to CO2. We used Electricity Maps [12], which provides

data on the environmental impact of energy generation in a speci�c

region at a given time. The degree of cleanliness in electricity gen-

eration indicates the amount of greenhouse gases emitted per kWh

4https://github.com/Fastjur/S.C.A.L.E./
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(a) trade and communications surveillance pipeline.

(b) Synthetic pipeline.

Figure 7: The ING processing pipeline to analyze Bloomberg

Chat compared to the evaluation pipeline.

of electricity generated and consumed. This metric is quanti�ed in

gCO2-eq/kWh. The platform factors in various greenhouse gases,

converting their emissions to an equivalent CO2 value based on

their global warming impact over a 100-year period.

The calculation of gCO2-eq/kWh on Electricity Maps includes

a Life-Cycle Analysis that assesses the environmental impact of

a product or process throughout its entire life cycle, from raw

material extraction to production, distribution, use, and disposal.

In the context of electricity generation, this means considering

emissions not only from the direct combustion of fuels during

electricity production but also from activities such as fuel extraction,

transportation, and plant construction. For example, it considers

the extraction of metals like iron for manufacturing steel used in

windmills, as well as the anticipated greenhouse gas emissions

associated with the construction and dismantling of the windmill.

The data provided by Electricity Maps contains gCO2-eq/kWh

emissions per hour for 2021 and 2022 in The Netherlands. For

this evaluation, we use season averages for electricity generation

statistics and carbon intensity instead of real-time data. There are

two main reasons for this. Firstly, it is the purpose of the tests to

estimate the expected reduction of CO2 emissions throughout the

four seasons of the year. The weather at the time of conducting

the tests should not impact the results. Secondly, it allows for a

predictable input to the scheduler. This allows for testing the system

with and without the scheduler, using the same input into the

scheduler regarding electricity generation statistics. The averages

of renewable energy generation statistics, such as predicted wind

and solar generation, are based on data by ENTSO-E. Section 2.2

Figure 8: Boxplot shows the percentage of test errors over

time, it is divided into 10 equally sized bins. The bottom plot

shows the error percentage of all tests over time. Tests are

ordered by starting time from.

provides an explanation of how this data is gathered and shows the

averages per season in 2022.

To determine the average emissions per kWh generation in The

Netherlands, the data from Electricity Maps [12] is used. This is a

platform that provides predictions on gCO2-eq/kWh emissions, as

well as historical emissions per kWh for a certain bidding zone or

country. The latter data was used to calculate the average emissions

per season per time of day in The Netherlands.

3.2 RQ1. Execution Time Prediction

In this �rst research question, we evaluate the accuracy of our

approach to predict the execution time. The accuracy of the pre-

dictions is calculated by determining the di�erence between the

expected duration prediction and the actual duration.

A total of 468 tasks were processed by the system, where every

task contained one synthetic test �le as described in Section 3.1.2.

Of those tasks, 467 were completed successfully. The maximum

concurrency during this test was set to 1; i.e., at all times, only one

task containing one synthetic test �le was processed at a time.

Figure 8 shows the evaluation of the processing speed predic-

tions over time. The top graph displays the tests grouped into 10

bins. Every bin, therefore, contains 46-47 tests grouped together

based on their starting time. From left to right, the graph shows

the performance of the predictions over time, with the �rst bin

containing the oldest tests and the last bin containing the most

recent tests. The y-axis shows the percentage error of the predic-

tions. The bottom graph shows a plot of the percentage errors of

the tests as a line, also ordered by their starting times from left to

right. The most recent tests have more historical data available to

them and, therefore, take more tasks into account when calculating

the expected processing speed.

The graphs in Figure 8 show that the scheduler’s predictions

improve over time as more tasks have been processed by the system.

The �rst few tests heavily overestimate and underestimate the
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running times of new tasks, explaining the very jittery lines for the

�rst few tests. After roughly 100 tests, the system starts to converge

to a lower error rate. Eventually, the system accurately predicts

tasks with an error percentage between 5 and 10%, a 5 to 10% error

results in an error of 12 to 24 minutes if the expected running time

of a day’s tasks is 4 hours.

Table 1 shows the data from the �rst 12 tests that were per-

formed. Tests 5 to 8 overestimated the running times up to 2540%

but quickly subdued back to a much smaller percentage error from

row 9 onwards. The source of these overestimations can be found in

the bottom table when looking at the File size (KiB) column.

When starting test number 5, the scheduler only had information

from tests 1 through 4 available to determine the median processing

speed. As can be seen, tests 1-4 contained much smaller �les as

input. Tests 1-4 had a processing speed between 939 and 2.064 B/s,

whereas tests 5-9 had a higher processing speed of 35.000 B/s.

This can be explained by the overhead of starting up a container

for every step in the processing pipeline. For example, the third

step performs some natural language processing on the chat data.

For this step, the ‘Natural Language Toolkit’ Python package needs

to download some datasets into the container. For every step, this

happens once when the pod starts up before processing all �les

of that test. This adds some overhead to the test, as it needs to

download this tooling into the docker container before being able

to process all the chats of that task. This overhead reduces the pro-

cessing speed of tests with very small input �les, as the preparation

steps of the task require more time proportionally than the actual

processing compared to tests with larger input �les. However, as

can be seen in the bottom table, over time, the mean and median

processing speeds actually recover to normal values. Therefore, the

median processing speed will take into consideration the processing

speeds of large as well as small input �les.

Answer to RQ1. the prediction errors settle down to between

5 and 10%. Therefore, the scheduler will have a prediction error

of 12 to 24 minutes if a day’s batch of tasks requires 4 hours of

processing time. This is an acceptable margin of error.

Therefore, it can be concluded that a task’s running time can

be predicted accurately, given enough historical data has been

processed by the system.

3.3 RQ2. Scheduler E�ectivneness

In this research question, we evaluate the amount of reduction in

CO2 emissions that our scheduler can achieve. An extensive full-

system test was set up to evaluate the scheduler’s performance,

which will be explained in this section.

All the gathered synthetic data was processed by the system

whilst measuring container kWh consumption to determine the

expected reduction in greenhouse gas emissions. The di�erences in

greenhouse gas emissions can be calculated using the season aver-

ages of gCO2-eq/kWh emissions per consumed kWh. Section 3.1.2

explains the creation of the synthetic data used in this test.

The system also calculated the consumed kWh for every pod. To

do so, for every pod that is started, a separate thread is started by the

scheduler, polling the docker API for CPU and memory consump-

tion statistics. The total kWh consumption can be calculated for

every pod from the CPU and memory consumption statistics using

the same methodology as explained in Section 2.5. These values are

calculated roughly every second and are saved separately to the �le

system after the test has been performed. The kWh measurements

are also aggregated in the Metric class for every synthetic input

�le. In other words, the kWh measurements from every container

that performed processing on the arriving synthetic source �le, as

well as any containers that processed any derived �les from that

source �le are aggregated into a single metric.

It is essential to save the individual kWh measurements for

each container, not just aggregates per metric. The main reason is

that long-running tasks may take hours to process. Therefore, the

expected gCO2-eq/kWh emissions may vary throughout the pro-

cessing time of that task. Two scenarios are simulated to evaluate

the expected reduction in greenhouse gas emissions by implement-

ing the carbon-aware scheduler. The �rst scenario represents a

system before the scheduler optimizes it, and the second scenario

represents a system that uses the scheduler.

The �rst scenario is one in which the �les arrive randomly

throughout the day, with a uniform probability for every time

of the day. In this scenario, a task is immediately processed upon

arrival, as is the case in the real ING system. A uniform probability

for the arrival times is chosen in this scenario to reduce the in�u-

ence of arrival times on the expected reduction in emissions. The

arrival time of input data has a signi�cant impact when comparing

situations with and without the scheduler.

The second scenario chooses the optimal time of the day to

“schedule” the processing of a task, and it simulates as if the sched-

uler delayed the execution of the task to this time. The optimal time

of the day is the point at which the gCO2-eq/kWh emissions are

lowest. Utilizing this optimal value in this test provides an upper

bound on the expected reductions by the carbon-aware scheduler

and simulates a best-case scenario of implementing it. Both simula-

tions are performed for every season of the year, using the season

averages of gCO2-eq/kWh emissions in 2021. For both scenarios,

cumulative emissions are calculated and ordered by the test date.

Figure 9 summarizes the results for this research question. It

shows a side-by-side comparison of the cumulative gCO2-eq emis-

sions by the system in both scenarios. The left graph shows the

scenario without the carbon-aware scheduler, and the right graph

shows the scenario using the scheduler. The x-axis displays the

synthetic tasks, ordered by their date. The y-axis displays the cu-

mulative gCO2-eq emissions for both scenarios. The graphs show

no discernable di�erences between seasons. It also shows that the

system using the carbon-aware scheduler performs better than the

system without it in terms of greenhouse gas emissions.

Table 2 presents the cumulative gCO2-eq emissions for both

scenarios, for all seasons. The CO2-aware scheduler is able to save

around 20% emissions compared to the scenario in which �les arrive

randomly throughout the day.

Answer to RQ2. The results of this research question show

that S.C.A.L.E is able to reduce the reduction production of

greenhouse gasses by around 20% by intelligently scheduling

the tasks. The reduction varies depending on the season, the

reduction is the highest in summer, when there is a larger dif-

ference in renewable energy generation throughout the day.
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Table 1: Data from �rst 12 tests of the test to determine if the processing speed converges.

File size Processing speeds Durations

# Proc. speed Error (KiB) Mean Median Prediction Actual Error

1 2.064 106% 27,2 2.064 2.064 00:00:27.862000 00:00:13.498787 106%

2 1.511 27% 19,6 1.787 1.787 00:00:09.704282 00:00:13.258699 -27%

3 939 47% 12,3 1.505 1.511 00:00:07.049457 00:00:13.420734 -47%

4 1.360 10% 17,7 1.468 1.435 00:00:12.020205 00:00:13.354103 -10%

5 37.892 2540% 1305,9 8.753 1.511 00:15:31.698940 00:00:35.290904 2540%

6 36.890 2342% 1272,3 13.443 1.787 00:14:22.433027 00:00:35.317646 2342%

7 35.219 1870% 1214,7 16.554 2.064 00:11:35.915645 00:00:35.317486 1870%

8 34.833 1588% 1218,8 18.838 18.449 00:10:04.647016 00:00:35.828439 1588%

9 34.224 86% 995,7 20.548 34.224 00:00:55.264734 00:00:29.790370 86%

10 30.855 -10% 943,1 21.579 32.540 00:00:28.216634 00:00:31.297615 -10%

11 33.069 2% 991,0 22.623 33.069 00:00:31.185316 00:00:30.686416 2%

12 30.692 -7% 909,2 23.296 31.962 00:00:28.154662 00:00:30.334998 -7%

Figure 9: Comparison of cumulative gCO2-eq emissions with

and without the carbon-aware scheduler. The x-axis displays

the synthetic tasks, ordered by their date. The y-axis displays

the cumulative emissions.

Table 2: Comparison of cumulative gCO2-eq emissions for

the system with and without the carbon-aware scheduler.

Season
Scheduler (gCO2-eq) Di�erence %
Without With

Spring 442.76 346.91 -95.85 -21.65

Summer 435.06 350.15 -84.91 -19.52

Fall 464.43 353.92 -110.51 -23.79

Winter 443.25 364.41 -78.84 -17.79

3.4 RQ3. Scheduler Overhead

In this �nal research question, we discuss the potential overhead

that this approach could bring to the system. We identify two po-

tential overheads. The �rst overhead to consider is that of the

scheduling algorithm itself. However, the scheduling decisions are

very simple. Therefore, the added overhead by the scheduler is

negligent. The scheduler takes less than a second to determine

the optimal schedule for a full day’s worth of tasks to process; it

is, therefore, inconsequential to the overall processing time and

resource consumption.

Secondly, the overhead introduced by parallel processing should

be considered. Whenever any system introduces parallel processing

or multi-threading, there is an overhead associated with it. The

Figure 10: Comparison of cumulative gCO2-eq emissions.

The left graph shows the scenario without the carbon-aware

scheduler and without concurrency. The right graph shows

the scenario using the scheduler and using a maximum con-

currency of 4. The x-axis contains the tasks, ordered by their

date. The y-axis displays the cumulative emissions.

source of this overhead depends on the system and the process-

ing done. For example, there needs to be communication between

di�erent parts of the system to ensure synchronization of the pro-

cessing and prevent deadlocks. At some point, the overhead added

by parallel processing will outweigh the bene�ts of the parallel

processing itself.

We performed the evaluation of RQ2 using the concurrency of

4 tasks executed in parallel. Figure 10 shows the results of this

experiment. The left graph shows the scenario without the carbon-

aware scheduler and without concurrency. The right graph shows

the scenario using the scheduler and using a maximum concurrency

of 4. The x-axis displays the synthetic tasks, ordered by their date.

The y-axis displays the cumulative gCO2-eq emissions for both

scenarios. This is performed for every season, using the season

averages of gCO2-eq/kWh emissions in 2021. For both scenarios,

cumulative emissions are calculated and ordered by the test date.

Table 3 presenters the cumulative gCO2-eq for both scenarios, for

all seasons. The table shows that the added kWh introduced by the

overhead of processing tasks concurrently outweighs the bene�t of

scheduling tasks concurrently in this scenario. The system emitted

more greenhouse gasses for all seasons except during fall. In fall,

there is a very light reduction but only about half a percent.
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Table 3: Comparison of total emissions without and with the

carbon-aware scheduler and without and with concurrency.

Season
Scheduler (gCO2-eq) Di�erence %
Without With

Spring 442.76 452.38 +9.62 +2.17

Summer 435.06 456.61 +21.55 +4.95

Fall 464.43 461.52 -2.91 -0.63

Winter 443.25 475.19 +31.95 +7.21

However, it should be noted that the tipping point of this is

in�uenced by task size and system speci�cations. In the synthetic

scenario, processing tasks concurrently does not add any signi�cant

gain, as the tasks only run for a maximum of 10 minutes. Therefore,

the added gain by processing in roughly a quarter of the time is very

small. However, as task sizes start to increase, the expected gain

will increase, as the scheduler is then able to run more tasks at peak

times of renewable energy availability. The tipping point should

be determined experimentally for every system that introduces a

carbon-aware scheduler.

Answer to RQ3. The results of this research question show that

the scheduling algorithm itself is very lightweight and, therefore,

does not add any meaningful resource consumption. However,

an overhead is expected when adding concurrent processing of

tasks. It is shown that, at some point, the overhead outweighed

the bene�ts of implementing concurrency and a carbon-aware

scheduler but this observation is highly dependent on the task

and the system. Therefore, each system and task set should

experimentally determine this tipping point.

4 RELATED WORK

In this section, we review prior research and works related to the

development of a carbon-aware scheduler, grouping them by topic.

4.1 Global Warming, Carbon Emissions and
Impact of Internet Services

This group delves into the broader environmental context surround-

ing global warming, carbon emissions, and the consequential im-

pact of internet services. Studies in this category, such as those

examining the environmental consequences of electricity gener-

ation and estimating global energy use of ICT networks, provide

essential insights into the environmental footprint of information

and communication technologies and data centers.

4.1.1 Climate Change and Greenhouse Gas Emission Sources. The

issue of global warming and carbon emissions has gained signi�cant

attention in recent years. Yoro and Daramola [20] discuss CO2

emission sources, global warming, and climate change, focusing on

environmental impacts. They provide insights into the impact of

various industries and sectors, including coal-�red power plants

and fossil fuels. Raza et al. [15] provide a review of the impact

of climate change on agriculture, showing the adverse e�ects on

crop adaptation and global food security. These works o�er an

understanding of the environmental impact of CO2 emissions and

are crucial for showing the relevance of the work in this paper and

other carbon-aware computing approaches.

4.1.2 Data Center Power Consumption. Brown et al. [3] present

a report to Congress on server and data center energy e�ciency.

The report discusses the energy consumption of data centers and

provides recommendations for improving energy e�ciency in these

facilities. Their work highlights the importance of reducing carbon

emissions from internet services.

Kaplan et al. [6] state the signi�cant impact of data centers on

carbon emissions, and thus, to that extent, the impact of services ran

on them. The work shows that data centers are largely ine�cient

and underutilized. Their work provides insights into the strategies

and technologies that can be employed to enhance the energy

e�ciency of data centers. It also shows that there is a large margin

to work with regarding the maximum utilization of data centers.

This margin can be used to postpone batch compute jobs to later

times when the carbon load is lower, as apparently the capacity to

do that exists in data centers.

Jones [5], Andrae [1] and Dayarathna et al. [4] addresses the

energy consumption of data centers and the modeling thereof. They

emphasize their signi�cant environmental and �nancial costs. The

articles highlight the need for increased e�ciency and account-

ability in data centers to address the growing concerns related to

energy consumption and environmental impact.

Katal et al. [7] provide a survey on software technologies for

enhancing energy e�ciency in cloud computing data centers. The

study discusses software-based approaches at the virtualization, op-

erating system, and application levels, aiming to reduce the energy

consumption of data centers and address environmental concerns.

Radovanovic et al. [13] delve into accurately mapping data center

resource usage to power consumption for Google data centers.

They prove that there is a strong link between CPU and memory

consumption in data centers and expected power consumption.

4.2 Green Energy and Carbon Emission
Variability

Focused on the variability of green energy and carbon emissions,

this group explores strategies for managing data center power e�-

ciently and enhancing energy e�ciency in cloud computing. The

studies within this category contribute to the understanding of how

green computing and renewable energy usage can be optimized to

reduce the carbon footprint associated with information and com-

munication technologies. The variability of green energy sources

and their impact on carbon emissions is an important consideration

in the transition towards a more sustainable energy system.

Khan [8] conducts a temporal carbon intensity analysis compar-

ing renewable and fossil fuel-dominated electricity systems. The

study reveals the temporal variability of carbon intensity, explores

the interaction between electricity generation and emissions, and

identi�es peak carbon-intensive hours. In other words, the study

investigates the carbon intensity of di�erent electricity generation

sources over time. It highlights the signi�cant di�erences in carbon

intensity at di�erent hours and shows the importance of renewable

energy integration in reducing carbon emissions.
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Thind et al. [17] explore the environmental consequences of

electricity generation. The study, focused on the Midcontinent In-

dependent System Operator (MISO) region, reveals temporal trends

in emission factors. They analyze the carbon intensity of di�erent

electricity generation methods by hour, day, month, and year. This

provides valuable information for understanding the environmental

impact of electricity consumption at di�erent times throughout the

day, generated by di�erent sources. This work is relevant because

it provides a basis for understanding varying greenhouse gas emis-

sions at di�erent times throughout the day, which is the basis of

the carbon-aware scheduler in this paper.

4.3 Other Carbon-Aware Scheduler

This group contains diverse works displaying carbon-aware so-

lutions beyond scheduling, including approaches to data center

energy e�ciency and the potential of smart grids. The studies high-

light frameworks and strategies for optimizing energy consumption

and carbon e�ciency in various contexts, o�ering insights for de-

veloping a carbon-aware scheduler.

Radovanović et al. [14] present a system focussed on minimiz-

ing the electricity-based carbon footprint of Google data centers.

By leveraging analytical pipelines, day-ahead demand prediction

models, and risk-aware optimization, the system generates carbon-

aware Virtual Capacity Curves. The study demonstrates e�ective

limitations on hourly capacity during carbon-intensive periods,

contributing to a more sustainable operation of data centers. It

serves as a basis for the ideas implemented in this paper.

Smale et al. [16] explore the shifts in goals concerning domestic

energy uses in the context of smart grid transitions. The study ana-

lyzes how smart grids can be implemented to ensure that electricity

grids can handle increased demands. Additionally, they argue that

renewable energy consumption can be balanced more e�ectively

by implementing smart grids. A carbon-aware scheduling system,

which is the subject of this paper, can be a part of such a smart grid.

In the context of internet services, Le et al. [10] propose an

approach to capping the brown energy consumption of internet ser-

vices, emphasizing the importance of renewable energy usage. They

address the issue of reducing carbon emissions from data centers

and internet infrastructure. Their approach focuses on reducing

the carbon footprint of internet services by leveraging renewable

energy sources and optimizing the allocation of workloads across

data centers in di�erent geographical regions.

5 THREATS TO VALIDITY

The use of synthetic data as a stand-in for real ING system data

represents a potential threat to the validity of this work. Despite

e�orts to mimic the real data, di�erences in data structure, type,

and processing steps between the synthetic and real systems could

impact the results. The synthetic data, extracted from Twitch chat

logs, di�ers in content and size from the real system data, which

comes from various sources such as email and direct messaging

apps. Additionally, the processing steps in the synthetic system,

though representative of text processing steps in the ING system,

are not an exact match. Despite these di�erences, the synthetic

system is considered a good representation of the ING system, and

the results are assumed to indicate results in the real system.

The conversion from CPU and memory statistics to kWh con-

sumption is based on an ING-provided tool designed for the ING

private cloud. However, the tests were not performed on the ING

private cloud but on containers in a docker environment. This dis-

crepancy will result in a di�erence between actual and expected

kWh consumption. However, it is not considered a signi�cant threat,

as the study aims to show a relative di�erence in emissions between

scenarios with and without the carbon-aware scheduler. Both sce-

narios use the same methodology for calculating kWh consumption,

so any error should a�ect both scenarios similarly.

The potential for unnoticed mistakes or bugs in the code of the

carbon-aware scheduler or in the simulation of the ING pipeline is

another concern. These could impact the scheduler’s performance

and in�uence the evaluation outcomes. Although e�orts were made

to test and validate the code, it is important to acknowledge that

potential issues in the code may a�ect the presented results.

6 CONCLUSION

This paper aims to explore the potential of reducing greenhouse gas

emissions by intelligently scheduling batch processing jobs, thus

decreasing the environmental impact of data centers. A carbon-

aware scheduler, S.C.A.L.E (Scheduler for Carbon-Aware Load

Execution), was developed to optimize a resource-intensive data

processing pipeline at ING, one of the larger consumers of the ING

private cloud.

S.C.A.L.E reduces emissions by scheduling resource-intensive

processing jobs during green energy hours, leveraging the vari-

ability of renewable energy production. It uses 24-hour forecasts

on solar and wind generation and grid load to determine optimal

scheduling times, aiming to maximize the use of renewable energy.

The scheduler comprises three modules, one for predicting task

running times based on previous runs, another for providing pre-

dictions regarding renewable energy generation and electricity grid

demand, and the third for interacting with the processing pipeline.

The accuracy of the scheduler’s predictions was validated, show-

ing that it can predict task running times with an acceptable error

margin of 5 to 10%, and accurately determine periods of low-carbon-

intensive energy generation.

The e�ectiveness of the scheduler varies depending on the season

and the expected arrival time of the batched input data. It was found

that the scheduler reduces carbon emissions in all seasons, but the

expected reduction varies depending on the input data’s arrival and

processing times. During our experiment, we show that S.C.A.L.E

reduces the carbon footprint by around 20%.

In conclusion, S.C.A.L.E has demonstrated the feasibility and

bene�ts of implementing a carbon-aware scheduler to reduce green-

house gas emissions in resource-intensive data processing pipelines.

ING will continue developing and generalizing the scheduler to

provide it as a service in its cluster.

DATA AVAILABILITY

S.C.A.L.E and the results of the experiment are available at https:

//github.com/Fastjur/S.C.A.L.E./.
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