
GENERALIZE: A framework for evolving searching constraints for
domain-specific languages in program synthesis

L.G. Kroes
Supervisor(s): Dr. S. Dumančić
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Abstract
In this paper, we propose a method for elicit-
ing constraints for arbitrary Domain-Specific Lan-
guages (DSL) in Program Synthesis search. We ar-
gue that we can successfully predict constraints us-
ing a form of attribute-based induction. We also
provide a novel approach to constraint verification
using genetic algorithms to optimize desired re-
sults. We implement our approach into GENER-
ALIZE, a novel algorithm for reducing DSL size.
GENERALIZE is tested and compared against the
default Brute algorithm using 2 different program
synthesis domains, robot planning and pixel art.
These experiments show that GENERALIZE does
not improve performance if good objective func-
tions are available, because of a tendency to get
stuck in local heuristic minima. It can increase per-
formance if no such function is available.

1 Introduction
Program synthesis is the automatic generation of software
from some specification. While various methods of program
synthesis exist it can often be framed as a search problem
over the space of possible programs. Using program synthe-
sis can help people without programming experience to au-
tomate tasks, and it can help programmers to define program
behaviour instead of program implementation.

The issue with program synthesis is that finding correct
programs is often costly. The size of the search space of pos-
sible programs grows exponentially in regards to the program
size [1]. Significantly reducing the size of the search space
can therefore drastically increase search speed of existing al-
gorithms.

Program synthesis solutions are often framed within the
context of a Domain-Specific Language (DSL), a set of func-
tional atoms that encode relevant actions for the specific prob-
lem type. In this work, we will propose a system to reduce the
effective size of such DSLs by learning constraints from bi-
nary relations between member functions. By applying these
constraints we attempt to restrict the size of the solution space
of possible programs.

Programming by Example (PBE) [1] is a sub-field within
program synthesis that defines the intent of the program us-
ing example input-output pairs. Within this paper, we will
be working primarily with the Brute [2] search algorithm.
Brute is a PBE synthesizer that uses an example-dependent
loss function, also called an objective function, to evaluate
partial programs. This means that unsuccessfully partial pro-
grams can be rated on how close they are to the expected solu-
tion. This technique makes it possible to learn programs up to
20 times larger than previous high-performance methods [2].

Other works have been done regarding constraints in pro-
gram synthesis. Previous works have relied on the concept
of observational equality reduction [3, 4], which is computed
during the run-time of the synthesis algorithm. Other con-
straint systems designed for Inductive Logic Programming
synthesizers [5] use the concept of entailment (whether a pro-

gram provides the correct solution for some example) to re-
move partial programs that are either too general or too spe-
cific [6]. Since all these systems compute constraints during
program search, there is a lack of generality concerning the
search algorithm used and important information is lost after
a solution is found.

To address these problems, we propose GENERALIZE,
our novel method for pre-processing and deriving candidate
constraints from DSLs. GENERALIZE finds function pairs
where function-ordering does not matter, or function pairs
that invert each other. From this it derives constraints on what
potential solutions can look like. This approach allows us to
significantly reduce the domain size before run-time.

The main goal of this paper is to explain the workings of
the GENERALIZE system. Its main goals are to:

• Generate constraints for arbitrary problem domains as
opposed to arbitrary problem instances

• Provide an optimal constraint allocation for arbitrary
search conditions

• Apply these constraints in a computationally feasible
manner

Our main insight is that candidate constraints can be deter-
mined observationally. Using a genetic algorithm a constraint
assignment can be made that provides a complete and near-
optimal system.

In this paper, we provide the following contributions: A
short overview of previous works (Section 2), a motivating
example for our work (Section 3), GENERALIZE: a novel al-
gorithm for determining constraints for arbitrary DSLs, that
uses a set of training examples to determine constraints (Sec-
tion 4), a benchmark of GENERALIZE using different syn-
thesis search algorithms and settings (Section 5). After this
there is a conclusion with inspiration for future work (section
6). The last section focuses on ethical issues with AI, and
reproducability of this work.

2 Related work
Program Synthesis: As mentioned in the introduction pro-
gram synthesis is the problem of finding (or ”synthesizing”)
a function based on some specification. To further specify
this problem three elements are needed in the problem speci-
fication; The grammar G which specifies what a solution can
look like; The search method S which specifies in what way
we look through the space of possible solutions; and finally
the intent specification P , which determines how we validate
whether a program satisfies the intended specification.

Observational equality reduction: Observational equality
reduction is a general method for reducing the size of the
problem domain. [3, 4] It theorizes that two programs P and
Q can be considered equivalent if they evaluate to the same
output as any continuation from that state will be the same.

While Observational equality reduction has been shown
to significantly reduce search time in synthesis [3], the size
of the pruned space only increases as more of the problem
space is uncovered. Furthermore, pruning can only be
considered after program evaluation, while the static nature



of GENERALIZE means that the ways a state can be reached
are limited from the start of program search.

Generalizations and Specialisations: Another method
of pruning the search space is using generalizations and
specialisations. This method uses mathematical subsumption
relations between various candidate solutions to determine
whether a possible program is either more general than a
program that is already too general or more restrictive than a
program that’s already too specialised [6]. This same method
is also used by Padmanabuhni [7] in the constraint elicitation
process, where generalizations and specialisations are used
to synthesize constraints for constraint satisfaction problems.

Unfortunately this is only a valid method in the context
of Logic Programming, where functions are formulated
as logical clauses. In our problem setting functions are
formulated as mathematical functions and therefore this
method cannot be applied.

Learning constraints: In previous work in the area of
learning constraints, a framework for eliciting constraints
using an inductive method in the context of Explicit Con-
straint Satisfaction Problem (ECSP) is provided [7]. To
apply this in our context, some background knowledge about
constraints in the DSL is needed. While GENERALIZE is
effective at synthesizing this background knowledge, more
specialised generalization methods could be derived from the
mathematical properties of the derived constraints.

Genetic Algorithms: Genetic algorithms (GAs) are a
subset of evolutionary algorithms that take inspiration from
natural processes (mostly for efficient function optimiza-
tion) [8]. GAs specifically take their inspiration from the way
genes are passed around in nature, to determine a stochastic
process for optimizing arbitrary functions [9]. GAs generally
have a population of chromosomes, that encode some arbi-
trary entry of the solution space. Within these chromosomes,
different genes encode the state of different features within
the search space.

GAs use a fitness function to determine the ”reproduction
chance” of an individual chromosome. The genetic algorithm
then takes one or two of these chromosomes to produce ”off-
spring”: chromosomes that inherit some properties from their
parents. this offspring also has a chance to randomly mutate
some of its values. finally, this new generation is evaluated
and the process repeats until some finishing condition is met.

In this paper GAs will be used for computing the optimal
constraint allocation to optimize search in a specific domain.
GAs are used in this case not neccessarily because of the size
of the search space, but because the computational cost of
evaluating a single candidate-solution is very high. The effi-
cient search nature of GAs is therefore needed.

3 Motivating example
To illustrate both the need and the functionality of GENER-
ALIZE it is convenient to consider an example application as
thought experiment.

Suppose that there is a robot that can move around on a

Figure 1: The ultimate goal of program synthesis: finding a se-
quence of functions to transform some input to some output state

Figure 2: The ultimate goal of GENERALIZE: finding sequences
that have no added benefit in program search

board as in figure 1. This robot can move up, down, left and
right. This robot can also pick up and drop off a ball. Now
imagine that we set the end goal for this robot to pick up a
ball, and drop it off at some drop off point. The goal of GEN-
ERALIZE would be to achieve this goal in as little steps as
possible, and to designate as many possible paths as infeasi-
ble before executing any moves.

The main question GENERALIZE has to answer, is what
options, or sequences of moves, we can remove from the
space of possible move sequences without sacrificing the abil-
ity to get to any arbitrary state on the board. There are 2 such
properties that we can easily identify in this example, and
they are displayed in figure 2. For the symmetry property it
is obviously irrelevant in which order the robot executes the
moves right and up, as long as both functions are executed the
robot will end up in the same problem state. The same goes
for reflections; if the robot first moves right and then left, the
robot will end up in the exact same state as it started. There-
fore this is also a sequence that can arbitrarily be avoided in
any good solution.

But why is it relevant to move a robot along an imaginary
board? The honest answer of course is that this is irrelevant.
The process of finding functions that map inputs to outputs,
as performed in this thought experiment, is a very important
issue to solve. With this functionality we can theoretically
create any arbitrary function that transforms inputs to out-
puts. Imagine the possibilities in active areas of research in
computer science, like classification and other machine learn-
ing or data wrangling.

4 Methodology
In this section, we will discuss our contribution to the prob-
lem of program synthesis. First we will discuss the mathe-
matical framework of our constraint system. We will discuss
the mathematical properties we are looking for, and the con-
straints we can derive from them, as well as combining these
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Token Grammar:
start := sequence
sequence := token | token sequence
token := control | invented
invented := trans | trans trans
control :=

if (bool) (invented) (invented) |
while (bool) (invented) |
while-then (bool) (invented) (invented)

trans := Domain-specific
bool := Domain-specific

Figure 3: Description of the program synthesis grammar

simpler constraints into more powerful variants, and finally
we will discuss how we apply these constraints in a program
synthesis setting. After this we consider how to generate a set
of candidate constraints using observational techniques. Fi-
nally a system is proposed for automatic constraint validation
and optimization.

4.1 tokens and environments: a brief introduction
to our synthesis framework

Program synthesis can be done in various ways, using vari-
ous different methods. The specific method can have a large
impact on how the program functions as a whole, and more
importantly, what constraints can be applied within the pro-
gram.

The main component of program synthesis is the solution
grammar; the way a potential solution is represented. Within
our framework there are two important parts to this represen-
tation: the way the problem state is encoded (environments)
and the way the solution is encoded (tokens). An example of
an environment can be seen in figure 1, where two instances
of an environment are shown graphically. Figure 1 also shows
instances of tokens, encapsulating the various possible ac-
tions discussed in section 3. Lastly figure 1 hints at the use of
higher level control tokens, like if and while. The complete
grammar is presented in figure 3. From this we can derive
and enumerate a space of all possible solutions that we can
then search using Brute [2].

Finally we can evaluate programs found by the search algo-
rithm using some intent specification mechanism. In our case
intent is specified using a set of input-ouput environments,
where the intent is to find a program that maps all inputs to
all outputs. This evaluation is done using an objective func-
tion, which not only checks whether the input is mapped to
the correct output, but also how far off from the right solution
the program is.

The final concept of importance within our framework is
how tokens are modelled. Tokens are seen as a function of
environment → environment. They transform the state
of the environment into another state where the token is exe-
cuted. Within our framework, transitive tokens are stateless.
They will always produce the same effect on any input state.

4.2 Relational constraints in program synthesis
To show how to derive constraints for just the transitive to-
kens, consider figure 2. Two cases are shown from which
these constraints can be derived. If two functions inverse each
other (Defintion 1), it is logical not to avoid solutions that put
those two functions in sequence. Secondly we have functions
where order does not matter (Definition 2).

If we want to reduce the size of the search space, it makes
sense to only allow for one possible sequence of functions to
achieve a state, so therefore it is reasonable to only allow one
symmetry: Either first go up and then right, or first right and
then go up. Only one of these sequences is necessary to keep
a complete system.

Definition 1 (reflective tokens): Tokens that inverse
each other: t1, t2 s.t. t1(t2(e)) = e

Definition 2 (independent tokens): Tokens where or-
dering does not matter: t1, t2 s.t. (t1(t2(e)) = t2(t1(e))
(independence)

These properties are practical because from them we can
derive the following constraints:

Definition 3 (complete constraint): Constraint such that iff
t1 and t2 are inversions of each other, disallow t1 after t2 and
t2 after t1.

Definition 4 (partial constraint): Constraint such that
iff t1 and t2 are independent of each other, either disallow t1
after t2 or disallow t2 after t1.

4.3 Deriving higher dimension constraints
These constraints by themselves are not very effective at re-
ducing the size of the search space, as each constraint only
sporadically decreases the amount of possible tokens to be
added. The real reduction factor is achieved by grouping bi-
nary constraints into higher-arity constraints concerning mul-
tiple tokens.

To provide a framework for deducing these higher-arity
constraints we can consider the case of the robot domain, and
it’s movement tokens. One can independently verify that, as
long as no invalid transition is enacted, the ordering of a se-
ries of movement tokens does not matter because all these
tokens are independent of each other. As a consequence of
the definition of the independence property Theorem 1 holds,
as any ordering can be rewritten to some main ordering of
tokens (for a more formal proof, see appendix A).

Theorem 1. If we have a set of tokens T=t1, t2 .. tn where
each token is independent of all other tokens, any chain of
tokens C where holds ∀ti ∈ C, ti ∈ T can be arbitrarily
permuted without changing the outcome of the function.

Since any ordering of a set of independent tokens is equiva-
lent, reducing the problem size comes down to implementing
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an ordering constraint only allowing a single permutation to
occur within the search problem.

Theorem 1 also has consequences for the complete identity
constraints. Since any permutation of independent tokens is
equal, if an inversion property were to hold between two of
these tokens as well, that means that in some permutations
these tokens would be next to each other. According to the
definition of the identity property, the entire sequence can be
rewritten by excluding these two tokens.
Theorem 2. If we have a set of tokens T=t1, t2 .. tn where
each token is independent of all other tokens, and a chain of
tokens C where holds ∀ ti, tj ∈ C, ti, tj ∈ T . Consider two
arbitrary tokens tp, tq ∈ T, tp, tq ∈ C invert each other. In
this case shorter equivalent sequence C* of C can be con-
structed by removing pairs of tp, tq tokens.

As a consequence of theorem 2 it is obvious that in a
sequence of only movement tokens, if both move left and
move right tokens appear, a shorter equivalent sequence can
be by removing move left and move right pairs, as these can-
cel each other out.

4.4 Applying constraints
A final issue with this constraint system is that due to library
token invention we are not dealing with just transitive tokens.
Modern synthesis systems invent larger and more complex li-
brary tokens [2] to increase synthesis speed using if and while
statements. This is a problem because for some parts of the
functionality of GENERALIZE it is necessary that the func-
tional output is the same for every environment. This does
not rhyme with the nature of conditional logic introduced by
if and while statements.

Constraints as state machines
To provide some insight into the nature of the problem at
hand, it is useful to reason about it analogous to a state ma-
chine (SM) that takes as input a program sequence, and out-
puts a set of constrained tokens. Consider the two constraints
presented as state machines presented in figures 4 and 5, de-
rived from the property graphs shown in figures 7 and 8. In
these two figures we encode the output of tokens to be con-
strained in the current state. Each token encountered in the
input program sequence corresponds with taking the edge la-
belled with that note in the SM. If no such edge exists that
means that the sequence is invalid and should have been con-
strained.

To explain why this model works for the constraints let us
first point out some patterns in the two SMs.

First of all both SMs contain a ”reset” edge, activated by
tokens that are not independent of all other tokens. It is obvi-
ous from theorems 1 and 2 that tokens for which no indepen-
dence relation holds break up the possibilities of constraining
tokens and therefore reset the tokens to be constrained.

Secondly, all states in the state machines only have one
specific token leading to them. For the complete constraints
this makes sense as after going right once, the goal is to never
allow going left until some non-independent token is used.
For the partial constraints this is a method for ensuring that
symmetries are all sequenced in one specific way. In this
case: first all rights, then all lefts, then all downs, then all

Figure 4: Partial constraint {right, left, down, up} modelled as state-
machine

Figure 5: Complete constraint {right, left} within {right, left, down,
up}-clique modelled as state-machine

ups. Note that partial constraints do not care about the be-
haviour of complete constraints, and therefore have no issue
with placing a right after a left.

Generalizing to complex tokens
Now we have derived a method for applying constraints in
a simple context where no control or invented tokens ex-
ist. However as figure 5 already suggests, these constraints
need to be applied in those contexts as well. To this end
we will provide a method for applying partial- and complete
constraints to if-tokens, and discuss how this generalizes to
while- and while-then-tokens.

Calculating the constraint state for if-tokens can be done
by running the SM on both branches of the statement in par-
allel. After this is calculated we can then combine these state
machine’s by choosing the least-permissive state as end state.

The least permissive state for a partial constraint is obvi-
ous. It is simply the state out of both branches that constraints
the largest amount of tokens. For complete constraints the
least permissive state is calculated as follows: the {left}- and
{right}-state are both less permissive than the {}-state, how-
ever if one branch is in the {left} state and the other in the
{right} state the states are combined to the {left, right} state
blocking both lefts and rights.

Figure 6: Transitions in a while-token
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Figure 7: Modelling independence property relations between to-
kens as a graph problem for functions in the robot domain

Figure 8: Modelling independence property relations between to-
kens as a graph problem for functions in the robot domain

For while tokens the same method can be applied. To this
end we need to cover every possible transition-sequence in
figure 6 once for every constraint state. This means we need
to compute two constraint SMs in parallel. One that takes
the transition from A to C directly, skipping the while loop
entirely, and one that takes the transition from A to B, from
B to B and then from B to C, effectively looping twice. This
method covers all possible transitions within the token. A
similar method can be constructed for the while-then token

Using this method a set of constraint state pre-conditions
can be calculated for each token. We have a method for
transforming the constraint state for a token in constant time,
which means that we can check a sequence of tokens for va-
lidity in linear time. Since partial solutions are explored more
than once, we can bring this down to expected constant time
using memoization techniques for partial programs.

4.5 Generating the constraint space
Our approach for generating the space of possible constraints
consists out of 3 stages. First GENERALIZE generates all bi-
nary properties that could possibly hold for a given DSL. Then
GENERALIZE tests this set of properties against a set of test
Environments to see which properties hold observationally.
Finally GENERALIZE derives associated constraints from
these properties, and abstracts these constraints to higher ari-
ties using combination rules derived from theorem 2 and 1.

The first step of the GENERALIZE algorithm generates a
set of all candidate binary properties P ∗. The second step
then uses a set of test environments E∗ to select the set of
properties that hold observationally for those environments.

A key realisation is that not all possible properties can be
evaluated using this method. One example of such a prop-
erty is found in the robot domain: an independence property
between Left and Grab.

These functions can only be performed in one specific or-
der (if any) for all input environments. If the robot is on top
of the ball it can only grab and then move left. If the robot
is to the right of the ball, it can only move left and then grab.
There exists no environment where both execution orderings
are possible. This property is therefore considered absurd

Theorem 3. a candidate property p∗ is absurd in relation to
a set of test environments E∗ iff
∄ e ∈ E∗ s.t.
p ∗ .holdsFor(e) = True or p ∗ .holdsFor(e) = False.

The concept of absurdity is of some importance when prun-
ing the constraint space. There are many combinations of
properties that are infeasible to test as they can never be
meaningfully executed in a problem instance.

The last part of the constraint space generation is combin-
ing constraints to higher-arities, When considering the conse-
quences of theorem 1, one can observe that if the constraints
are modelled as edges in a graph as done in figure 7, where
the tokens they apply to are seen as nodes. Finding the largest
possible groups of tokens that have an independence relation-
ship becomes an instance of the clique problem which we can
use available methods to solve for [10]. These same cliques
can be used to propagate complete constraints that fall within
those groups as well (figure 7).

4.6 Evolving the optimal constraint allocation
In this section we will further elaborate on the use of ge-
netic programming within GENERALIZE. First we will dis-
cuss why the constraint generation procedure as discussed in
the previous section is not enough to provide an adequate
constraint system. Then we will discuss how GENERALIZE
implements a genetic algorithm to search over the provided
constraint space.

Why further optimization is needed
Even though using carefully selected test environments to de-
termine the constraints to be used within GENERALIZE can
be sufficient to discern a correct constraint-set, especially for
extensive or opaque domains it is harder to determine whether
all properties are derived by the algorithm are valid. To au-
tomate the issue of constraint-set verification, GENERALIZE
employs a genetic algorithm to search over the space of pos-
sible constraints and find the optimal allocation.

The use of the genetic algorithm has the added benefit that
it optimizes the form of constraints for the problem set at
hand. If e.g. the ordering of a partial-constraint matters to
the performance of a synthesis algorithm the genetic algo-
rithm can also be employed to find the optimal ordering of
this partial constraint.

A last benefit of using a genetic algorithm is the fact that
properties that do theoretically hold but do not improve the
performance of the synthesis algorithm are also detected and
removed from the final constraint set. This is because in eval-
uation the genetic algorithm only considers the performance
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of the synthesis algorithm, not the actual validity of these
properties.

Chromosomes and mapping function
The genetic algorithm used within GENERALIZE is of a
rather simple design. The constraints derived in generating
the constraint space are encoded using an integer. For com-
plete constraints these genes can take either a 0 (disabled) or 1
(enabled). For partial constraints these genes can take either 0
(disabled), 1 (permutation 1) or 2 (permutation 2). Only after
a selection is made in the genetic algorithm the higher order
constraints are derived.

Constraint cliques as described before are only determined
after a selection has been made. This means that the genetic
algorithm does not inherently have control over the token or-
der of these higher-arity constraints. In order to provide this
control some mapping should be made so that the state of
higer-arity constraints can be controlled by the algorithm.

Since the amount of permutations in a partial constraint are
a product series in nature (

∏n
k=0 k where n is the constraint

size), and the amount of constraints within a clique are a sum
series in nature (

∑n
k=0 k) a function needs to be designed to

map the product-series to the sum-series.
This function has only one prerequisite: all possible per-

mutations of the higher-order constraint should be mappable
from the binary constraints. To this end we created a definite
ordering of constraints, and created a binary string from the
first k partial constraints where 1 mapped to 0, and 2 mapped
to 1. In this case k was the amount of tokens in the higher or-
der constraint. If this binary string resulted in a higher result
than the number of permutations available our implementa-
tion rounds down to the highest possible value in the permu-
tation list.

Crossover and mutation
The crossover method used in the selection algorithm was
a form of uniform crossover, where every gene of a chro-
mosome is randomly inherited from either parent with 50%
chance for either parent. This crossover operator was cho-
sen because there are no placement dependencies between
different genes in the chromosome. The mutation method
is also simple in design. Every gene in every chromosome
has a chance p to mutate in every generation of the genetic
algorithm. this chance p, in the algorithm defined as the
mutation chance is configurable at the start of running the
genetic algorithm.

fitness
Within the genetic algorithm fitness is calculated as follows:
a test set of problems is ran using a small training set of syn-
thesis problems. The actual fitness of the algorithm is then
calculated as follows:

fitness =
1√

dmax · davg · savg
∗ 100− fitnessnormal

Here d is the distance produced by the objective func-
tion, and s is the average run time of the algorithm and
fitnessnormal is the fitness of the algorithm without any
constraints enabled. This is done for two reason: in order

to make sure that any constraints or constraints set that are
worse than no constraints are not included.

5 Experimental Set-up and Results
Before evaluating the results of the GENERALIZE algorithm
we will first discuss the data and settings used to test the set-
up in various circumstances. We will first discuss the datasets
we used both taken from [2]. After this we will discuss the
set-ups we will be using to test GENERALIZE, and finally we
will show some graphs with the outcomes of GENERALIZE.

5.1 Verification data
Robot domain: The first domain we will be using is a set
of problems where a robot on an nxn grid needs to navigate
towards a ball located on the board, grab it, and drop it at
some goal location. To that end, there are various actions that
the robot can undertake: The robot can move up, down, left
and right on the board, and the robot can grab and drop the
ball. There is also some information about the robot’s loca-
tion made available to itself: namely, whether the robot is
at the top, bottom, left or right of the board, along with their
logical inverse. The domain contains multiple tasks, each task
entailing only one example. That means that the synthesiser
can find hardcoded solutions instead of solutions that gener-
alize to similar problems.

Pixel domain: The second domain provided for verifi-
cation is the pixel domain. This problem domain concerns
writing out certain patterns on an nxn-grid. To this end,
the program synthesizer has a pointer located on the grid.
The synthesizer can move this pointer up, down, left and
right, and can draw on any location on the board. The state
information made available to the synthesizer is similar to
that of the robot domain. This problem domain also only has
tasks containing singular examples, which causes the same
possible issues as discussed with the robot domain.

5.2 Experiment set-up:
For the experiment we have a set-up where we will be
running Brute using the three testing domains as de-
scribed before with 3 different objective functions specific
to the domain. The 3 objective functions for each domain are:

Robot Domain: Greedy distance metric (manhatten
distance between current and desired robot and ball position
+ whether the robot is holding the ball) (G), optimized step
amount (absolute amount of steps needed to go to the desired
state) (O), entailment (whether a state and the desired state
are equal) (E)
Pixel Domain: Hamming distance (hamming distance
between drawn pixels) (G), Hamming + movement distance
(hamming distance + movement distance between pixels)
(O), entailment (whether a state and the desired state are
equal) (E)

We will run the GENERALIZE algorithm in 2 stages us-
ing each combination of these settings on a small training set.
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First we will train the genetic algorithm on a test set of 10
problems, with a timeout of 0.1s and mutation rate of 0.1 to
promote local search. The bias factor was disabled for both
domains when using the ”O” objective function as no con-
straint allocation performed better then no constraints. After
training is complete we will then verify the generated con-
straints by running the constrained- and normal search algo-
rithm on a large test set of 90 problems for the robot and pixel
domain with a variety of time-out settings (0.1, 0.5, 1, 10).

5.3 Results

As seen in figures 10 and 9 a variety of constraint allocations
were computed, and the form of that constraint allocation is
in many ways reliant on both the objective function used and
the domain.

Generated constraints:

The robot domain with entailment (E) includes almost all
available constraints, excluding only a partial constraint be-
tween right and down, and a complete constraint between
grab and drop. With the Greedy distance function (G) only a
small subset of constraints were chosen, interestingly enough
stopping the robot from going left or right after going up. For
the optimzed steps (O) all constraints were included. This is
remarkable as in verification the unconstrained algorithm was
vastly superior to the constrained algorithm.

The pixel domain with entailment (E) includes a smaller
set of constraints. with Hamming distance (G) all constraints
available were applied. With hamming + movement distance
(O) as function again a large subset of constraints were ap-
plied.

In general the constraint set for both domains with entail-
ment are random in nature. For neither domains any of the
training problems were solved in the evolution process, so
the eventual allocation was decided by the total run time of
the problems in which many induced randomness factors ex-
ist.

For the ”G” distance function for the pixel domain the ge-
netic algorithm had a clear preference for chromosomes with
more constraints. For the robot domain however the chromo-
somes with only a few constraints performed best in general.

for the ”O” distance functions no chromosome performed
better than no constraints in training as well as evaluation.
Because of this the bias factor in the fitness function was
disabled in testing. Chromosomes with only a few con-
straints still performed worse than chromosomes with many
constraints causing the algorithm to find a local minimum
with many enabled constraints.

Figure 9: A graph representation of the evolved constraints for the
robot domain for various objective functions

Figure 10: A graph representation of the evolved constraints for the
pixel domain for various objective functions

Evaluation results:
The summarized results of evaluation of the constrained

and normal system is shown in figures 11 and 12. The
data shows a big overall decrease in performance when us-
ing GENERALIZE with ”O” functions, with an almost 70%
decrease in accuracy for hard problems in the robot domain
and a slight increase performance is shown in the robot do-
main with Entailment with 15% more . Domains with ”G”
heuristics perform on average slightly worse.

These results seem to indicate that something is wrong with
the approach taken in this paper. To understand this consider
the visual in figure 13. Of the 4 partial programs shown only
1 of those programs is still able to get to the goal in the con-
strained system. In the final version of GENERALIZE no way
of checking whether the end goal is still achievable is imple-
mented. Because the heuristic value of the partial program
(located in the upper right corner of the squares) is still high
while no actual solution can be achieved. Brute is spend-
ing large amounts of time searching local optima. This also
explains why this problem is not encountered in entailment
domains, as those local optima do not exist.
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Figure 11: problem solving accuracy data for various domains and
settings using a timeout of 10 seconds

Figure 12: Objective distance data for various domains and settings
using a timeout of 10 seconds

Figure 13: A visual representation of how the robot is constrained,
with any solution ending up on the other sides of the blue (partial
constraints) or red (complete constraints) lines being unable to get
to the final solutions.

6 Conclusion
To summarize our contributions: In this paper we have shown
some possible constraints to be applied in a program synthe-
sis context (4.2), provided a method for generating higher or-
der constraints from a set of smaller constraints (4.3), shown
that these constraints can also be applied in a more complex
context (4.4), shown a method for learning these constraints
using a small training set (4.5) and finally we have automated
validation of the learned constraints using a genetic algorithm
(4.6). The results of this work have been evaluated in section
5.

From our results we can conclude that arbitrarily reducing
the search space does not work. In general the constraints
should cause the search algorithm to find more successful
than unsuccessful programs when compared to the uncon-
strained system, and sadly GENERALIZE has achieved the
opposite in this setting.

This does not mean GENERALIZE has no merit at all. The
results achieved on the entailment domain, do signify some
measure of speed up. If a constraint aware heuristic could be
used in brute or if a method for calculating whether a program
still has a continuance to a solution (completely removing the
red and blue zones in figure 13) speed improvements could
still be substantial.

The constraint system itself does limit expres-
sive power to some extent. Consider the function
WhileThen (NotAtBottom) (Down) (Up) which
moves the robot down to the bottom of the board and then
moves up one row. This is a very expressive method of
getting to the second to last row. With complete constraints
enabled between Down and Up however, this function will
always be constrained causing a loss in expressivity.

Using GENERALIZE with a different constraint elicitation
method could also have a vast impact on performance. The
reason the results are negative is mainly because the underly-
ing constraint system decreases performance. If a constraint
elicitation technique were to be used that provides more ef-
fective constraints results could improve.

GENERALIZE might also perform better with search meth-
ods less prone to stalling on local minima. More research
could be done on GENERALIZE with probabilistic methods
like MCTS or Genetic Programming. Some care should be
taken however in how the constraints are implemented in
these probabilistic search procedures.

A last method for increasing the observed performance is
by better tailoring genetic training problems and -settings to
fit the specific domain. No chromosome in either entailment
domains were able to solve a single training example. In con-
trast almost all chromosomes in the robot domain with ”O”
function were able to solve all training examples. If more
diverse tasks and a longer search time was possible in train-
ing, problems with reaching local minima could potentially
be signalled in training instead of only in validation.

7 Responsible Research
Within this paper the best possible effort was made that re-
sults were reproducible and verifiable and that the work was
ethical. For the sake of reproducibility and verifiability we
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will first discuss the research code used and the dataset pro-
duced by it. After this we will briefly touch on the subject of
ethical application of AI.

7.1 Reproducibility and Verifiability
All code used for this paper can be found on github1. For
generating the dataset used for validation, CMain.py was ran.
This file takes 3 arguments as input. First a designation for
the search algorithm, then P, R or S for running the pixel,
robot or string domain respectively. For the last argument G,
O or E designates with which objective function the domain
should be ran with.

Trials within our program synthesis framework are not
completely deterministic. The fact that a time-out was used
means that the accuracy is influenced both by hardware and
circumstance. In order to still verify that the data summarised
in this paper is represented accurately the entire dataset used
is included on the github page.

The dataset was generated on the DelftBlue Supercom-
puter [11]. Both training and verification happened on an
Intel XEON E5-6248R 24C 3.0GHz processer with 4GB of
RAM. Each combination of domain and objective function
ran on their own processor.

7.2 Ethics and AI
Program synthesis is a subfield of AI. AI provides many very
powerful techniques and opportunities to solve large prob-
lems if done correctly. AI also provides many ways of making
problems worse if used improperly. When applying any Ar-
tificial Intelligence techniques, using GENERALIZE or else,
proper validation should be done before and while applying
it to situations that affect people. Just like people, AI is in
no way infallible and systems should always be in place to
correct faulty decisions discovered after the fact.
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Appendix A: Proof of theorem 1
Proof. 1. Let 2 arbitrary functions f and g be independent

s.t. f(g(x)) = g(f(x))

2. Observe that any function f is independent of itself as
f(f(x)) = f(f(x))

3. Consider a set of functions F = f1, f2 . . . fn s.t.
f1 . . . fn are all independent of each other.

4. Consider an application chain C∗ = f1(f2(..(fn(x)))

5. To prove: Any permutation of the application chain C∗
will produce the same result, and is therefore equivalent

6. Proof by construction: Without loss of generality take
an arbitrary permutation of C∗ C = fi1(fi2..fin(x)).

7. Take the function in C corresponding to f1. If it is ap-
plied as the last function in C move to the next function,
else let fj denote the function applied after f1.

8. Since f1 and fj are independent we can rewrite it as
applying fj first and then f1 (line 1) thus constructing
C’ with one inversion.

9. Keep doing this until f1 is the last function applied, thus
giving C ′ = f1(fi1(fi2..fin(x)))

10. Do the same for f2 until f2 is the second to last function
applied.

11. Keep doing this until every function is in the same posi-
tion as in C*

12. Since we can construct C* from an arbitrary permutation
C any permutation C of C* is equivalent to C*.
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