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Abstract. In this paper, we present an open-source Python framework,
called satqubolib. This framework aims to provide all necessary tools
for solving (MAX)-3SAT problems on quantum hardware systems via
Quadratic Unconstrained Binary Optimization (QUBO). Our framework
solves two major issues when solving (MAX)-3SAT instances in the con-
text of quantum computing. Firstly, a common way of solving satisfiabil-
ity instances with quantum methods is, to transform these instances into
instances of QUBO, as QUBO is the input format for quantum anneal-
ers and the Quantum Approximate Optimization Algorithm (QAOA)
on quantum gate systems. Studies have shown, that the choice of this
transformation can significantly impact the solution quality of quantum
hardware systems. Thus, our framework provides thousands of usable
QUBO transformations for satisfiability problems. Doing so also enables
practitioners from any domain to immediately explore and use quantum
techniques as a potential solver for their domain-specific problems, as
long as they can be encoded as satisfiability problems. As a second contri-
bution, we created a dataset of 6000 practically hard and satisfiable SAT
instances that are also small enough to be solved with current quantum(-
hybrid) methods. This dataset enables meaningful benchmarking of new
quantum, quantum-hybrid, and classical methods for solving satisfiabil-
ity problems.

Keywords: 3-satisfiability · Optimization · QUBO transformation ·
Software framework

1 Introduction

Satisfiability problems play a central role in computer science. They have been
among the first problems for which NP-completeness has been shown [9] and
are often used to prove a given problem’s hardness. Besides their use in theo-
retical computer science, they lie at the heart of many real-world application
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domains, like circuit design and verification [20], error diagnosis in software sys-
tems [16], planning [25], configuration planning in wireless sensor networks [10],
scheduling [5], solving problems in social networks [23], dependency resolution
(e.g. in package managers of many operating systems) [2] and many more.
For some domains, leveraging the advanced capabilities of contemporary SAT
solvers, which are programs designed to solve satisfiability problems, proves to
be an efficient, cost-effective, and maintainable approach for solving domain-
specific problems. This is achieved by reformulating these domain-specific prob-
lems into satisfiability problems and then applying a modern SAT solver for
resolution [13,17,24].

Despite significant research efforts over several decades, the satisfiability
problem remains intractable. Thus, finding better methods of solving this prob-
lem is still an ongoing field of research. New methods of solving satisfiability
problems employ AI techniques, such as artificial neuronal networks, to assist
established methods in searching for correct solutions or creating new SAT
solvers. Our paper primarily concerns solving satisfiability problems through
quantum computing, which has gained much attention in the last decade.

With quantum computers’ increased availability and capabilities in recent
years, quantum computing has evolved from a mere theoretical domain to a field
of practical interest. The proof that specific algorithms for quantum computers,
like Shor’s algorithm [27], theoretically provide exponential speedup for a clas-
sically intractable problem fuels the interest of researchers of different domains
to find quantum algorithms for their domain-specific problems. However, some
significant obstacles must be overcome to yield the full potential that theoretical
findings in quantum computing promise. While many of these obstacles con-
cern the physical manufacturing of quantum computers and their components,
we only focus on software and application development challenges for quantum
computers.

The first challenge related to the application of quantum computing we
want to address is the input format of quantum computers and algorithms. An
established practical method of solving satisfiability problems on quantum hard-
ware includes transforming a satisfiability problem into an instance of Quadratic
Unconstrained Binary Optimization (QUBO). These transformations are often
highly technical, while software implementations are often unavailable. Further-
more, studies have shown that the choice of a transformation from a satisfi-
ability instance to a QUBO instance can impact the solution quality signifi-
cantly [18,31]. To leverage the full capabilities of currently available quantum
hardware, it is thus insufficient to implement an arbitrary transformation from
satisfiability problems to instances of QUBO. Several different transformations
should be implemented and compared to get the best results. Practitioners of a
non-quantum field thus need to read, understand, and implement several QUBO
transformation methods only to be able to employ quantum methods to solve
their domain-specific problems. Another challenge concerns the benchmarking
of quantum and quantum-hybrid algorithms. Quantum hardware has been too
small in the past decade to meaningfully compare its outputs to that of classical
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solvers. However, this slowly begins to change. The main benefit of quantum
computers is the potential to solve problem instances that currently cannot be
solved efficiently by available classical methods. Thus, to receive a meaningful
estimation of the capabilities of quantum and quantum-hybrid methods, they
should be benchmarked on a set of problem instances that are hard for classical
solvers. However, due to the limited size of current quantum computers, often,
there is no dataset consisting of problem instances that are practically hard
to solve for currently available classical solvers while also being small enough
to be able to be solved on currently available quantum hardware using quan-
tum or quantum-hybrid methods. To address these challenges, we present an
open-source Python framework called satqubolib. The main contributions of
satqubolib are:

1. Ready to use Python implementations for thousands of transformations from
satisfiability instances to instances of QUBO.

2. A dataset consisting of 6000 practically hard-to-solve satisfiability instances,
which are also small enough to be solved on currently available quantum
hardware through quantum or quantum-hybrid methods.

3. Implementation of two methods to quickly create practically hard-to-solve
satisfiability instances of arbitrary sizes.

4. Example implementations for closely related questions (like a direct compar-
ison of quantum-based SAT solvers vs. state-of-the-artclassical SAT solvers).

The main goals of our framework are to facilitate the use of QUBO-based quan-
tum methods for practitioners of quantum and non-quantum domains alike and
to increase the reproducibility of studies concerned with solving satisfiability
problems through quantum computing.

The remainder of this paper is structured as follows. Section 2 introduces
the necessary foundations of satisfiability and QUBO problems. In Sect. 3, we
provide an overview of related work. Section 4 describes our framework’s core
architecture and most important usage scenarios. In Sect. 5, we conclude the
paper and state future work.

2 Foundations

In this chapter, we will introduce the necessary definitions that are used through-
out the remainder of this paper.

2.1 Satisfiability Problems

Satisfiability problems are concerned with the satisfiability of Boolean formulae.
Thus, we will first define a Boolean formula:

Definition 1 (Boolean formula [3]). Let x1, ..., xn be Boolean variables. A
Boolean formula consists of the variables x1, ..., xn and the logical operators
AND(∧), OR(∨), NOT(¬). Let z ∈ {0, 1}n be a vector of Boolean values. We
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identify the value 1 as TRUE and the value 0 as FALSE. The vector z is also
called an assignment, as it assigns truth values to the Boolean variables x1, ..., xn

as follows: xi = zi, where zi is the i − th component of z. If φ is a Boolean for-
mula, and z ∈ {0, 1}n is an assignment, then φ(z) is the evaluation of φ when
the variable xi is assigned the Boolean value zi. If there exists a z ∈ {0, 1}n, such
that φ(z) is TRUE, we call φ satisfiable. Otherwise, we call φ unsatisfiable [3].

Satisfiability problems are often given in conjunctive normal form, which we
will define next:

Definition 2 (Conjunctive Normal Form [3]). A Boolean formula over variables
x1, ..., xn is in Conjunctive Normal Form (CNF) if it is of the following structure:

∧

i

( ∨

j

yij
)

Each yij is either a variable xk or its negation ¬xk. The yij are called the literals
of the formula. The terms (∨jyij ) are called the clauses of the formula. A kCNF
is a CNF formula, in which all clauses contain at most k literals. [3]

Given a Boolean formula φ in kCNF, the satisfiability problem is the task of
determining whether kCNF is satisfiable or not. This problem was one of the
first problems for which NP-completeness has been shown. [9]. In this paper, we
will especially consider 3CNF problems, which we will refer to as 3sat problems.

Solving satisfiability problems on a quantum annealer or through special algo-
rithms on quantum gate systems requires a transformation to an optimization
problem (see Subsect. 2.2)). Thus in these cases, we are solving a generalization
of the satisfiability problem, the MAX-SAT problem. In the MAX-SAT problem,
we are given a Boolean formula φ consisting of m clauses. The task is to find
an assignment of truth values to the variables of φ such that as many clauses
as possible are satisfied. Finding an assignment in the MAX-SAT problem that
satisfies m clauses is thus equivalent to solving the corresponding satisfiability
problem (i.e., determining whether φ is satisfiable). MAX-SAT is thus also NP-
hard. Throughout this paper, we will call instances of satisfiability problems
(SAT and MAX-SAT alike) satisfiability instances or SAT instances

2.2 Quadratic Unconstrained Binary Optimization (QUBO)

To solve satisfiability problems on a quantum annealer or a quantum gate com-
puter using the quantum approximate optimization algorithm, they must be
transformed into an instance of QUBO first.

A QUBO instance is defined as follows: [12]:

minimize H(x) = xTQx =
n∑

i

Qiixi +
∑

i<j

Qijxixj (1)

The n-dimensional vector x = (x1, x2, ..., xn) ∈ {0, 1}n represents an assignment
of Boolean values to the Boolean variables xi (for 1 ≤ i ≤ n). Furthermore,
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Q ∈ R
n × R

n is a n × n-dimensional upper triangular matrix of constants,
which is often also called the QUBO matrix [12]. To solve this problem, a vector
x = (x1, x2, ..., xn) ∈ {0, 1}n needs to be found, such that H(x) = xTQx is
minimal. This problem is NP-hard [12].

3 Related Work

As the field of solving satisfiability problems is already several decades old, a lot
of helpful tools for solving these problems and benchmarking new solvers have
been created. In this section, we will briefly mention the most important ones.

The first of these tools is SATLIB [14], which provides a collection of satisfia-
bility problems of different types (for example, randomly generated instances or
satisfiability instances that stem from graph coloring instances) that can be used
to benchmark solvers. However, SATLIB was published in 2000, and according
to the project’s homepage [14], it has not been updated for over 20 years. We
have solved all benchmark problems within the library to assess the difficulty
of the provided instances with today’s SAT solvers and modern hardware. We
found that apart from a few instances that reached a self-imposed timeout of
6 h (i.e., the instances have not been solved within 6 h), all other instances were
solved mostly within milliseconds, with some exceptions taking several seconds
to a few minutes.

Another resource for finding possibly hard satisfiability instances that can be
used for benchmarking is the annual SAT Competition [4]. At this competition,
SAT solvers are benchmarked with regard to their capability of solving a set
of pre-selected potentially hard-to-solve satisfiability instances within a certain
amount of time. Although some of these instances are really hard (i.e., it can
take several days to weeks to solve with state-of-the-artSAT solvers on state-of-
the-artCPUs), these instances can get very large (i.e., several hundred thousand
to millions of clauses). As current quantum hardware only has a limited amount
of qubits available, satisfiability instances that consist of more than a couple of
hundred clauses cannot be solved directly on these devices. However, the goal
of our framework is to provide satisfiability instances that are challenging to
state-of-the-artSAT solvers but can also be solved using quantum or quantum-
hybrid methods on currently (or nearly) available quantum hardware. Thus, as
part of our framework, we provide practically hard instances of different sizes
(i.e., number of clauses) that can already be solved on currently available quan-
tum hardware directly (depending on the method) or by using quantum-hybrid
methods.

PySAT [15] is an open-source Python toolkit that provides many helpful
features, like utility functions for manipulating formulas or creating encodings
for pseudo-Boolean constraints into conjunctive normal form (CNF). The easy
access to some of the state-of-the-art SAT solvers it provides is especially helpful.
Our framework, however, is completely different from PySAT. We do not imple-
ment similar features that PySAT has already implemented but rather offer new
and additional features that are concerned with the transformation of satisfia-
bility instances into instances of QUBO, which is not in the scope of PySAT.
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However, we will use PySAT in our examples package to demonstrate how to
use state-of-the-art SAT solvers to create benchmark comparisons.

Finally, there is the Python framework PyQUBO [30], whose goal is to aid in
the construction of QUBO formulations from given objective functions. It strives
to create concepts that make it easy to read and write Python code concerning
formulating QUBO problems and efficiently solving combinatorial optimization
problems. PyQUBO can be seen as a helpful tool for developing a solution (espe-
cially for quantum annealing) for several classes of combinatorial optimization
problems. However, because of the breadth of possible applications it offers, it
sacrifices depth (i.e., PyQUBO cannot provide every possible QUBO transfor-
mation for every possible combinatorial optimization problem). Regarding solv-
ing satisfiability problems, PyQUBO offers a (singular) method to transform
satisfiability problems into instances of QUBO. However, as shown by recent
studies [18,31], it does not suffice to use an arbitrary method of transforming a
given satisfiability instance to an instance of QUBO. One should instead evaluate
multiple different methods of performing this transformation, as the results can
change up to orders of magnitude just by changing the QUBO transformation.
Thus, more than PyQUBO’s provided functionality concerning the transforma-
tion of satisfiability problems to instances of QUBO is required for researchers or
practitioners who want to leverage the full capabilities of quantum technologies
to solve instances of satisfiability problems specifically.

4 Satqubolib: Creating and Benchmarking (Max-)3SAT
Instances

This section explains the core architecture and functionalities of satqubolib.
An overview of our framework’s modules, packages, and features can be seen in
Fig. 1. The framework is available via github1 or as a pip package2. As shown in
Fig. 1, the dataset of practically hard SAT instances (used to develop and bench-
mark QUBO transformations and quantum and quantum-hybrid algorithms),
as well as the examples Python package, are only available via GitHub and
not part of the pip package. We decided to separate the dataset from the pip
installation, as the dataset will take up much space as it grows. Additionally,
we decided to include several convenience implementations (e.g., for using SAT
solvers via PySAT [15], metaheuristics like simulated annealing and tabu search)
that require additional dependencies that are not needed for the core functional-
ities of satqubolib. Thus, we split the framework’s core functionality from the
benchmarking data and the complementary examples. In the following chapters,
we will now demonstrate core usages. As we cannot present or explain every
usage scenario, the examples package contains additional code examples and
comments explaining the relevant concepts.

1 https://github.com/ZielinskiSebastian/satqubolib/.
2 pip install satqubolib

https://github.com/ZielinskiSebastian/satqubolib/
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Fig. 1. Core architecture of the satquoblib’s Python framework

4.1 Handling SAT Instances: The Satqubolib.formula Module

When using our framework to solve problems, at first, a 3sat instance is needed.
The python class satquoblib.formula.CNF within the satquoblib.formula
module is the class representing a satisfiability instance in satquoblib. There
are two possibilities for creating a CNF instance. The following listing shows these
methods in line 2 and line 3.

1 from satqubolib.formula import CNF

2 my_formula = CNF([[1,2,3], [-2,-5,7]]

3 my_formula = CNF.from_file("/path/to/file/")

The first method, shown in line 2 of the above listing, is to represent the 3sat
instance (x1∨x2∨x3)∧(¬x2∨¬x5∨x7), as a list of lists [[1,2,3], [-2,-5,7]],
where each of the inner lists represents a clause. The second method of creating
a CNF instance, shown in line 3 of the above listing, is to load it directly from a
file, in which the formula is specified in the .dimacs file format [1]. The .dimacs
file format [1] is the standard format for representing instances of satisfiability
problems in CNF form.

Besides the above-shown functionality, the CNF object contains several more
convenience functions (e.g., to load metadata of the dataset we created for the
framework). These usages and explanations can be found in the corresponding
examples module (see Subsect. 4.5).

4.2 Creating SAT QUBOs: The Satqubolib.transformations Module

The satqubolib.transformations module contains all methods for transform-
ing satisfiability instances to instances of QUBO. These transformations create
QUBO instances Q that differ in several aspects, like the dimension of Q, the
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density of Q (i.e., the number of non-zero elements in Q), and the energy spec-
trum. It has been shown in multiple studies ( [18,31]) that the choice of a 3sat-
to-QUBO transformations can significantly impact the solution quality when
solving these instances on quantum annealing hardware. Thus, our framework
aims to provide implementations of state-of-the-art QUBO transformations for
satisfiability problems.

One of the first 3sat-to-QUBO transformations often used in scientific publi-
cations is the transformation by Choi [8]. Because this transformation was one of
the first mappings from 3sat to QUBO, it was also included in the seminal paper
by Lucas [19]. Due to its widespread use in many publications of the past decade
and to better understand this paper, we want to explain this transformation in
more detail.

Choi’s Transformation [8] is based on a well known reduction from 3sat
to the maximum independent set (MIS) problem. Let G = (V,E) be an empty
graph and φ = C1∧ ...∧Cm be a 3sat formula consisting of m clauses C1, ..., Cm

over n Boolean variables x1, ..., xn. We now expand G as follows:

1. Let yi,j be the literal at position i of clause j of φ. For each literal we add a
new vertex to V . We name this vertex according to the literals they represent,
i.e., the vertex corresponding to literal yi,j is called vertex vi,j .

2. Let yi,j and yk,j be two literals of the same clause, then we add an edge
(vi,j , vk,j) to E.

3. Let yi,j and yk,l be two literals representing the same binary variable xz but
with different signs (i.e. yi,j = ¬yk,l) then we add an edge (vi,j , vk,l) to E.

Solving MIS on G will now also represent a solution to the 3sat problem for
formula φ. This transformation results in a QUBO matrix of dimension 3m×3m.

Since the proposal of Choi’s transformation, several new QUBO transfor-
mations for satisfiability problems have been proposed, e.g. [7,18,21,22,29]. We
have explicitly implemented the transformations that result in QUBO matrices
of dimension larger than (n+m)× (n+m). With regard to the transformations
that lead to QUBO matrices of dimension (n+m)×(n+m), we only implemented
transformations explicitly, if we have found studies using these transformations
for practical benchmarking (or comparing). We want to highlight the use of the
word explicitly here. An explicit implementation in our framework is provided by
a dedicated class. There exist many thousand of (n + m) × (n + m)-dimensional
transformations. Creating an individual class for all of these transformations
is infeasible. However, a method theoretically able to automatically create all
(n + m) × (n + m)-dimensional transformations from satisfiability problems to
instances of QUBO has been published recently. This method is called the Pat-
tern QUBO method [32]. By implementing this method, our framework provides
ready-to-use access to all of these (n+m)×(n+m)-dimensional transformations
through a unified interface. Furthermore, satqubolib comes with a functional-
ity that can create explicit implementations (i.e., dedicated standalone classes)
for all of the transformations the Pattern QUBO method created. Because a
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deeper understanding of this method is vital for efficiently using our framework,
we explain the Pattern QUBO method in depth and demonstrate how to use it.

The Pattern QUBO approach was introduced in [32]. It is a meta method
capable of automatically identifying thousands of different QUBO transforma-
tions for satisfiability problems. QUBO matrices created by this method are all
of the dimension (n + m) × (n + m), where n is the number of variables and
m is the number of clauses of a given 3sat instance. This method can be seen
as a generalization of existing QUBO transformations for the 3sat problem.
Manually created QUBO transformations (like the methods proposed by Chan-
cellor [7], or Nüßlein [22]) follow some custom logic to finally arrive at a QUBO
representation of a given 3sat instance. However, all of these methods have in
common that 1) all satisfying solutions for the 3sat instance correspond to the
minimum in the created QUBO optimization problem corresponding to the 3sat
instance, and 2) all non-satisfying solutions do not correspond to the minimum
of the QUBO optimization problem. As it turns out, it is possible to exploit this
property (solutions to a given 3sat instance corresponds to optimal energy in the
corresponding QUBO instance) to create new 3sat-to-QUBO transformations
automatically. Thus, this method provides an easy way to create and use pre-
viously published, but also to create and use thousands of previously unknown
3sat-to-QUBO transformations, without the need to understand all the different
logical deductions for these transformations, let alone the effort to implement all
of them. By implementing the Pattern QUBO method, our framework provides:

1. Thousands of different ready-to-use (n + m) × (n + m)-dimensional QUBO
transformations.

2. Implicit implementations of all existing (n+m)×(n+m)-dimensional QUBO
transformations that result from superimposing clause QUBOs (like in the
transformations by Nüßlein [22] and Chancellor [7].

Figure 2 shows an illustration of the general idea behind the Pattern QUBO
method.

To transform an instance φ of 3sat, consisting of m clauses, to an instance
of QUBO, one first starts by sorting the variables of each clause, such that
negated variables are always at the end of the clause. This does not change the
formula or the difficulty of solving the formula, but it reduces the effort of finding
transformations from a clause to QUBO, as only four possible clause types are
remaining:

Type 0 - no negations: (a ∨ b ∨ c)
Type 1 - one negation: (a ∨ b ∨ ¬c)
Type 2 - two negations: (a ∨ ¬b ∨ ¬c)
Type 3 - three negations: (¬a ∨ ¬b ∨ ¬c)
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Fig. 2. Schematic representation of the Pattern QUBO method presented in [32]. Each
clause of a given 3sat formula φ gets transformed to a QUBO instance representing this
clause. Each QUBO matrix one receives by transforming a clause of the 3sat instance
to an instance of QUBO is called a clause QUBO. All m of these clause QUBOs get
combined into a single QUBO instance representing the formula φ.

As a next step, the Pattern QUBO method searches automatically for ways to
transform each of these four prototype clauses (type 0 through type 3) to an
instance of QUBO. For each of the 4 clauses, the search method starts with
an empty (4 × 4)-dimensional QUBO matrix. The search method can insert a
pre-determined set of values specified by the user into the QUBO matrix during
its search process. As the search method is an exhaustive search, the running
time of this method scales exponentially with the size of the set of values the
algorithm is allowed to use. Using a small set, like {-1, 0, 1}, the search method
only needs a few seconds to create 6 pattern QUBOs for clauses of type 0, 7
pattern QUBOs for clauses of type 1, 6 pattern QUBOs for clauses of type 2 and
8 pattern QUBOs for clauses of type 3.

We want to emphasize the following key takeaway of the Pattern QUBO
method to fully make use of the benefits of its implementation in our frame-
work: The Pattern QUBO method finds multiple ways to transform a clause of
a given type (type 0 through type 3) to instances of QUBO (6 ways for clauses
of type 0, 7 for clauses of type 1, 6 for clauses of type 2 and 8 for clauses of type
3 ). However, we only need one of these pattern QUBOs per clause type. Thus,
any 4-tuple (t0, t1, t2, t3), where ti is a pattern QUBO for a clause of type i, can
be seen as a valid transformation for a 3sat instance to an instance of QUBO.
Thus, in the above case, we have 2016 = 6 · 7 · 6 · 8 valid transformations from
3sat instances to instances of QUBO. Choosing different combinations of trans-
formations (t0, t1, t2, t3) from clauses to instances of QUBO leads to different
(up to isomorphism) 3sat-to-QUBO transformations with different properties.
These properties have been empirically shown to influence the solution quality
of current quantum annealing up to an order of magnitude [31]. Therefore, we
encourage a user of this framework to try to combine different transformations
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from clauses to instances of QUBO, to create different 3sat-to-QUBO transfor-
mations in order to get the most benefit in practical and research applications
(i.e., by empirically finding a transformation that is particularly beneficial for
the given problems at hand).

We now demonstrate how to use the satqubolib.transformations module.
The first use case is using an explicitly implemented QUBO transformation, like
Choi’s transformation, for a given 3sat instance. This can be done as follows:

1 from satqubolib.formula import CNF

2 from satqubolib.transformations import ChoiSAT

3 my_formula = CNF([[1,2,3], [-2,-5,7]]

4 choi_model = ChoiSAT(my_formula)

5 choi_model.create_qubo ()

6 qubo = choi_model.qubo

7 choi_model.print_qubo ()

8 # suppose a QUBO solver gave the following solution:

9 solution = {0: 0, 1: 0, 2: 0, 3: 1, 4: 0, 5: 0}

10 output = choi_model.is_solution(solution)

11 # output in this case is a tuple: (False , 1)

We first created a satquoblib.formula.CNF object (line 3) in the listing above,
as described in Subsect. 4.1. Then a satqubolib.transformations.ChoiSAT
object, which implements Choi’s transformation [8], is created in line 4. To create
the QUBO matrix resulting from Choi’s transformation applied to the formula
we initialized the ChoiSAT object with, the create_qubo() function is called
in line 5. The created QUBO is saved in the qubo variable of the choi_model
object, which can be accessed as shown in line 6. For convenience, we provide
every transformation within the satqubolib.transformations module with a
visualization method called print_qubo() to inspect the created QUBO matrix.
An example of the usage of this method is shown in line 7. As a next step, the
created QUBO matrix is used as an input for a QUBO solver, like D-Wave’s
quantum annealing hardware, the QAOA algorithm on quantum gate computers,
or classical heuristical methods like simulated annealing or tabu search. The
output of these solvers are usually Python dictionaries of the form:

{variable_1: value , ..., variable_n: value }.

To check whether a solution given by a QUBO solver does indeed solve the
given 3sat instance, all QUBO transformations in our framework provide the
method is_solution(solution_dictionary). This method returns a tuple of
the form (boolean, integer). The boolean indicates whether the solution is indeed
a solution for the given 3sat instance. The integer represents the number of
satisfied clauses.

We now demonstrate how to use the Pattern QUBO method.

1 from satqubolib.transformations import PatternQUBOFinder

2 from transformations import PatternQUBONM

3 from satqubolib.formula import CNF

4 my_formula = CNF([[1,2,3], [-2,-5,7]]

5 pqf = PatternQUBOFinder (8)
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6 clause_qubos = pqf.find ({1,0,-1})

7 new_transformation = PatternQUBONM(my_formula)

8 new_transformation.add_clause_qubos (clause_qubos [0][0] ,

clause_qubos [1][0] , clause_qubos [2][0] , clause_qubos

[3][0])

9 new_transformation.create_qubo ()

10 new_transformation.export("/path/to/file")

First, an object of satqubolib.transformations.PatternQUBOFinder must be
created (line 5 of the above listing). The parameter value 8 in the constructor of
the PatternQUBOFinder object in line 5 of the above listing denotes the number
of parallel processes the Pattern QUBO search algorithm will use. As this search
procedure is an exhaustive search, parallelizing the search is highly beneficial. To
search for Pattern QUBOs for all clause types, the find(allowed_values: set)
function of the pqf object is called (line 6 of the above listing). As explained
previously, the allowed_values parameter of the find(allowed_values: set)
function in line 6 of the above listing is the set of values the Pattern QUBO
method is allowed to use (i.e., the Pattern QUBO method will examine all pos-
sible QUBO matrices that only consists of the values 1, 0 and -1). After the
search for Pattern QUBO matrices is completed, a new 3sat-to-QUBO trans-
formation can be created. This is done in line 7 of the above listing. At this
point, the transformation is not yet functional. To make this transformation a
fully working 3sat-to-QUBO transformation, one pattern QUBO for each clause
type (clause type 0 through clause type 3) has to be added to the transforma-
tion. This is done in line 8 of the above listing. After this step is completed, the
transformation can create a QUBO matrix representing the given satisfiability
instance.

Finally, we would like to highlight a unique functionality of this implemen-
tation, shown in line 10 of the above listing. Each concrete instantiation of an
object of type satqubolib.transformations.PatternQUBONM, where the four
clause QUBOs have already been added (see line 8 of the above listing), can be
exported to a standalone file. That is, if one finds a Pattern QUBO transforma-
tion that works particularly well for the given type of 3sat instances, it can be
exported to a file such that it does not require satqubolib as a dependency but
instead works as a standalone implementation of a QUBO transformation.

4.3 Generating Hard SAT Instances: The Satqubolib.generators
Module

In the satqubolib.generators module, we implemented methods that enable
a user of satqubolib to create satisfiability instances of arbitrary parame-
terization (i.e., an arbitrary number of clauses and variables). Using different
parameters for these algorithms will create instances that empirically vary in
difficulty (i.e., choosing significantly more variables than clauses almost always
results in trivially solvable SAT instances). We used the same methods to cre-
ate the dataset of practically hard 3sat instances that satqubolib provides.
The algorithm implementations are provided through the classes BalancedSAT
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and NoTriangleSAT in the satqubolib.generators module. The former is an
implementation of the method provided by Spence [28] while the latter is an
implementation of the method provided by Escamocher et al. [11]. The follow-
ing listing shows how to use the Balanced SAT method to create new 3sat
instances.

1 from satquoblib.generators import BalancedSAT

2
3 balanced_generator = BalancedSAT (3, 10, 20)

4 # generate () returns an object of type satqubolib.formula.

CNF

5 cnf = balanced_generator.generate ()

The first parameter (the number 3) of the constructor of the BalancedSAT object
in line 3 of the above listing denotes the number of variables in each clause. In
this case, each clause consists of precisely three variables. The second parameter
(the number 10) refers to how many variables the satisfiability instance pos-
sesses. The last parameter (the number 20) denotes the number of clauses of the
satisfiability instance. It is known that to create hard satisfiability instances, the
number of variables and the number of clauses of a satisfiability instance need
to be in a certain ratio [26]. This ratio is different for each method of creating
satisfiability instances. To create hard instances, the ratio of clauses to variables
was experimentally determined to be around 3.6 (that is, 3.6 times more clauses
than variables) for the Balanced SAT [28] method. For the No Triangle SAT
method, this ratio seems to be around 4.1 (that is 4.1 more times more clauses
than variables) [11]. However, not every instance with this clauses-to-variables
ratio is also hard to solve. A modern SAT solver (like Kissat3.1.0 [6]) could be
used to determine practical hardness. Suppose a modern SAT solver takes more
than a few minutes to solve an instance. This instance is potentially interesting
for a benchmark with a quantum, quantum-hybrid, or classical QUBO solver.
For the creation of the dataset that is part of satqubolib, we found that using
a clause-to-variable ratio of approximately 0.3 - 0.5 below the above-mentioned
empirically determined hardness ratio yields the best results for creating hard
satisfiable instances that take less than multiple hours to solve with Kissat3.1.0.

4.4 Benchmark Dataset of Practically Hard Satisfiability Instances

The goal of the dataset included in satqubolib is to enable the following pursuits
meaningfully:

1. Benchmarking SAT solvers
2. Benchmarking quantum, quantum-hybrid, and classical QUBO solvers
3. Provide data input for creating non-trivial QUBOs

We will now first explain how we created our dataset before we explain how this
dataset enables the endeavors mentioned above.
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Our dataset consists of 6000 practically hard, satisfiable SAT instances simul-
taneously small enough to be solved with current quantum hardware using quan-
tum or quantum-hybrid methods. The 2023 SAT Competition defines satisfiabil-
ity instances as hard if the Minisat SAT solver cannot solve an instance within
one minute on an AMD Ryzen 7 Pro 3700U CPU and 16GB RAM [4]. However,
as the solving process is stopped after one minute, it is unclear how long it would
take to solve this instance. The instance could be solved within the next minute
or within a time frame of many hours. Furthermore, as the solving process is
stopped, it is unclear whether the instance is satisfiable or not. For our dataset,
we considered SAT instances as practically hard if they are satisfiable and if the
Kissat3.1.0 SAT [6] solver needs more than 10 min to solve the instance on an
AMD Ryzen Threadripper PRO 5965WX 4.5 GHz CPU. We decided to use the
Kissat SAT solver instead of the Minisat SAT solver, as the Kissat SAT solver
is currently among the best-performing SAT solvers.

Out of the 6000 instances our dataset comprises, 3000 were created ran-
domly using the Balanced SAT method [28], while the other 3000 were created
using the No Triangle SAT method [11]. As mentioned earlier in this section,
we aim to create small and hard SAT instances. We found that utilizing the
Balanced SAT and No Triangle SAT methods, generating satisfiability instances
with fewer than 600 clauses proves exceedingly challenging. This difficulty arises
from the advanced capabilities of modern SAT solvers and CPUs. Regardless of
the algorithm parameterization, a majority of the created instances are solved
within seconds. Creating practically hard instances between 600 and 800 clauses
with these methods is generally possible but computationally very expensive, as
formulas are often either solved within a few minutes or take many hours to be
solved (i.e., by trying to create formulas in that range, we often hit a self-imposed
solver timeout of 6 h, without a result of the SAT solver). Hence, we started our
dataset with instances that consist of 800 clauses. We created 1000 instances for
each of the SAT instance sizes 800 clauses, 900 clauses, and 1000 clauses using
the Balanced SAT method and repeated this procedure for the No Triangle SAT
method. The problem-solving time distribution, for the 3000 instances created
with the Balanced SAT method is shown in Fig. 3.

The y-axis of Fig. 3 shows the solution time in seconds. Note that the y-
axis is log-scaled. The x-axis displays the instance sizes given by the number
of clauses a SAT instance possesses. The least time the Kissat3.1.0 SAT solver
needed to solve any of the 3000 SAT instances was slightly above 10 min, while
the most time the solver needed to solve a SAT instance was 5 h and 30 min.
This information is part of a metadata header that every SAT instance of our
dataset possesses. The full header is shown in the following listing:

1 c Solution 1 -2 3

2 c Time 600

3 c Solver Kissat3 .1.0

4 c CPU AMD_Ryzen_Threadripper_PRO_5965WX_4 .5_GHZ

As is convention in the Dimacs file format, each line of the above listing starts
with the letter c, which signals any potential solver that this line is a comment
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Fig. 3. Problem-solving time distribution for SAT instances created with the Balanced
SAT method. Each boxplot consists of the solution times, measured in seconds, of 1000
SAT instances of a fixed instance size (800 clauses, 900 clauses, and 1000 clauses). Note
that the y-axis is log-scaled.

and can be skipped. The first information each SAT instance contains is its
solution. In line 1 of the above listing, the example solution 1 -2 3 is the short
version of x1 = True, x2 = False, x3 = True. Line 2 of the above listing states
the exact time needed to solve this instance using the SAT solver shown in line 3
of the above listing with the CPU shown in line 4 of the above listing.

Because of the construction of our dataset, we enable multiple pursuits. First,
we enable meaningful benchmarking of new quantum and quantum-hybrid algo-
rithms for QUBO-based solving of SAT instances. QUBO-based SAT solvers,
including quantum and quantum-hybrid methods, belong to a class of SAT
solvers called incomplete solvers. These types of solvers, often including heuris-
tic methods, ideally return a correct answer if the SAT instance is satisfiable.
However, if these solvers do not return a correct answer, it does not imme-
diately follow that the given SAT instances are indeed not satisfiable. In this
case, the solver may not have found a correct solution yet. Thus, by provid-
ing a dataset of only satisfiable instances alongside a satisfying solution for this
instance, QUBO-based SAT solvers can be benchmarked by their ability to find
answers to solvable problems. Furthermore, our instances are not only challeng-
ing for state-of-the-artSAT solvers but also rather small, allowing these instances
to be solved by purely quantum or quantum-hybrid methods on currently avail-
able hardware. Note that depending on the chosen hardware system and method
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of modeling SAT instances as instances of QUBO, a pure quantum method might
not be possible right now. However, because of the small size of the provided
SAT instances, quantum hardware available in the near future should be able to
solve these SAT instances by employing pure quantum methods.

As these instances are also challenging for state-of-the-artclassical SAT
solvers, this dataset can also be used to benchmark new classical methods of
solving satisfiability problems.

Finally, we will aid the development of new QUBO solvers. Hard QUBO
instances are needed to benchmark the capabilities of QUBO solvers. Using our
dataset of hard SAT instances and applying the 3sat-to-QUBO transformations
provided by our framework to these instances, potentially hard-to-solve (but in
any case interesting) QUBO instances can be created. We assume these QUBO
instances to be hard, as they represent SAT instances that cannot be efficiently
solved using state-of-the-artSAT solvers. If a QUBO solver could solve these
QUBO instances efficiently, this QUBO solver would be the preferred method of
solving the corresponding SAT instances.

4.5 The Satqubolib.examples Package

We demonstrated the most important usage scenario for each of the mod-
ules satqubolib provides. However, these explanations do not span the
whole range of implemented functionalities. Therefore, satqubolib pro-
vides the examples package: satqubolib.examples. This package con-
tains one module for each of satqubolib’s base modules (e.g., there
is satqubolib.examples.formula, satqubolib.examples.transformations
and satqubolib.examples.generators) providing documented examples for
various usage scenarios of the respective module. Furthermore, we included con-
venience functions and usage scenarios, such as using a SAT solver provided by
PySAT, to test whether the satisfiability instances created by our generators
module are hard and satisfiable.

4.6 Framework Maintenance and Community Involvement

By implementing several known 3sat-to-QUBO transformations and the Pattern
QUBO method, our framework provides thousands of QUBO transformations.
However, there probably exist interesting 3sat-to-QUBO transformations that
we still need to implement. To increase the reproducibility of scientific studies
and the range of possible applications, we encourage contributing to satqubolib
by providing implementations of QUBO models via pull requests in the frame-
work’s GitHub2, or by hinting us of their existence. We also plan to keep our
dataset up to date. As quantum computers’ computational capabilities grow, we
plan to add new, more challenging-to-solve instances to the benchmark dataset
to reflect this change. Therefore, we also encourage submissions of new prac-
tically hard satisfiability instances that are at the same time small enough to

2 (https://github.com/ZielinskiSebastian/satqubolib).

https://github.com/ZielinskiSebastian/satqubolib
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be solved by currently available quantum hardware (either directly or through
quantum-hybrid methods). The contributed satisfiability instances do not need
to be created via the Balanced SAT or No Triangle SAT methods.

5 Conclusion

Satisfiability problems are ubiquitous in practical computer science. For many
domains (like planning, dependency resolution, and more), transforming a
domain-specific problem into an instance of a satisfiability problem is an effec-
tive and maintainable method of solving these problems due to the capabilities
of modern SAT solvers. In this paper, we presented satqubolib, an open-source
Python framework that facilitates scientific publications’ reproducibility and the
use, development, and benchmarking of QUBO-based quantum and quantum-
hybrid methods for solving satisfiability problems. Our framework thus also
bridges the gap between quantum (optimization) technologies and researchers or
practitioners of these related domains by providing easy-to-use mappings from
resulting satisfiability instances to instances of QUBO, which is the input model
for several different quantum methods (like quantum annealing or the QAOA
algorithm on quantum gate systems).

By implementing several well-known and widespread transformations from
satisfiability problems to instances of QUBO and the Pattern QUBO method,
our framework provides thousands of ready-to-use 3sat-to-QUBO transforma-
tions. As part of the framework, we also created a dataset containing 6000 prac-
tically hard and satisfiable 3sat instances of different sizes using the Balanced
SAT and the No Triangle SAT methods to enable meaningful benchmarking of
newly developed quantum and quantum hybrid methods. Each formula within
the dataset possesses a metadata header that contains the solution of this for-
mula, the solution time, the processor, and the SAT solver that was used to
solve the formula. Finally, we also enable the user to create custom satisfiability
instances of arbitrary sizes (and hardness) by implementing and providing the
Balanced SAT and No Triangle SAT methods. We hope that satqubolib will
help to bridge the gap between application domains, in which SAT solvers are a
vital part of the solution process, and quantum technologies.

In the future, we plan to include further structurally different satisfiability
instances (of equal hardness and size) to enable broader benchmarking of quan-
tum and quantum-hybrid methods and, thus, to identify possibly interesting
domains for applying these methods. Furthermore, we want to include harder
satisfiability instances of equal size that take even longer (i.e., multiple days),
where we do not know whether these instances are satisfiable or not. As the
capabilities of modern SAT solvers and hardware systems grow, we will contin-
ually update the instance sizes (i.e., the number of clauses of the satisfiability
instances) within our dataset to ensure that the dataset remains a viable resource
for benchmarking. Finally, we plan to keep track of future publications on trans-
formations from satisfiability problems to instances of QUBO and will provide
them in our framework.
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