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a b s t r a c t 

Background and Objective : Numerical simulations of blood flow are a valuable tool to investigate the 

pathophysiology of ascending thoratic aortic aneurysms (ATAA). To accurately reproduce in vivo hemo- 

dynamics, computational fluid dynamics (CFD) models must employ realistic inflow boundary conditions 

(BCs). However, the limited availability of in vivo velocity measurements, still makes researchers resort to 

idealized BCs. The aim of this study was to generate and thoroughly characterize a large dataset of syn- 

thetic 4D aortic velocity profiles sampled on a 2D cross-section along the ascending aorta with features 

similar to clinical cohorts of patients with ATAA. 

Methods : Time-resolved 3D phase contrast magnetic resonance (4D flow MRI) scans of 30 subjects with 

ATAA were processed through in-house code to extract anatomically consistent cross-sectional planes 

along the ascending aorta, ensuring spatial alignment among all planes and interpolating all velocity 

fields to a reference configuration. Velocity profiles of the clinical cohort were extensively characterized 

by computing flow morphology descriptors of both spatial and temporal features. By exploiting principal 

component analysis (PCA), a statistical shape model (SSM) of 4D aortic velocity profiles was built and a 

dataset of 437 synthetic cases with realistic properties was generated. 

Results : Comparison between clinical and synthetic datasets showed that the synthetic data presented 

similar characteristics as the clinical population in terms of key morphological parameters. The average 

velocity profile qualitatively resembled a parabolic-shaped profile, but was quantitatively characterized 

by more complex flow patterns which an idealized profile would not replicate. Statistically significant 

correlations were found between PCA principal modes of variation and flow descriptors. 

Conclusions : We built a data-driven generative model of 4D aortic inlet velocity profiles, suitable to be 

used in computational studies of blood flow. The proposed software system also allows to map any of 

the generated velocity profiles to the inlet plane of any virtual subject given its coordinate set. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Thoracic aortic aneurysm (TAA) is a life-threatening condition 

nvolving an abnormal dilatation of the aortic wall [1] . An accurate 

ssessment of blood flow plays an essential role in clinical diagno- 
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is, risk stratification and treatment planning of TAA [2–4] . Compu- 

ational fluid dynamics (CFD) is a well established tool to quantify 

emodynamics [5,6] through in silico trials [7,8] . To achieve a high 

evel of fidelity, CFD models need to account for patient-specific 

oundary conditions (BCs). When choosing inflow BCs, prescribing 

atient-specific data in the form of 3-directional velocity profiles 

llows to obtain significantly more accurate results compared to 

sing idealized profiles, as amply shown by several recent stud- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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V  
es that make use of velocity information extracted from phase- 

ontrast magnetic resonance imaging (PC-MRI) [9–12] . Nonethe- 

ess, the limited availability of in vivo velocity measurements, still 

akes researchers resort to idealized BCs. Moreover, such lack of 

linical data represents an obstacle for setting up population-based 

n silico trials and for building datasets for training machine learn- 

ng (ML) models. Generative models can be used to overcome this 

imitation by creating larger data-driven synthetic datasets [13] . In 

articular, statistical shape models (SSMs) have been adopted in 

he cardiovascular field [14,15] . SSMs are data-driven approaches 

or assessing shape variability and creating large virtual cohorts 

rom clinical ones. An SSM is typically based on principal compo- 

ent analysis (PCA) and describes the shape probability distribu- 

ion of the input data by a mean shape and modes of shape vari-

tions [16] . Several studies have effectively applied SSMs to study 

AA geometry [17–19] . Nonetheless, aortic hemodynamics, which 

ave been shown to play a key role in pathophysiology of this dis- 

ase [6,20,21] , have not received the same attention. An exception 

s the work of Catalano et al. , who exploited SSMs to build an at-

as of aortic hemodynamics in subjects with by bicuspid (BAV) and 

ricuspid (TAV) aortic valve [2] . However, the authors imposed an 

dealized parabolic velocity profile as inlet BC for their CFD mod- 

ls. Despite revealing important insights on BAV vs. TAV biomark- 

rs, the study is hampered by the use of such simplified inlet BCs, 

hich significantly affect the computed aortic blood flow, espe- 

ially in regions that are close to the inlet, namely the ascending 

orta [11,12,22] . 

Motivated by the need for boosting the impact and the fidelity 

f numerical studies involving ascending TAA (ATAA) hemodynam- 

cs, the present work leverages SSMs to pursue three specific aims. 

e provide: i) a quantitative and detailed characterization of a 

epresentative 4D ATAA inlet velocity profile as a valid alternative 

o idealized inlet BCs for numerical simulations; ii) a synthetic vir- 

ual cohort of 4D ATAA inlet velocity profiles with features that 

re consistent with those of real ATAA inlet profiles and potentially 

arge enough to allow for ML approaches to be used; iii) insights 

nto both spatial and temporal hemodynamic features of ATAA ve- 

ocity fields in the ascending aorta. 

. Methods 

.1. Image data 

Thoracic 4D flow MRI scans of 30 subjects with ATAA ac- 

uired between 2017 and 2019 were retrospectively retrieved. Our 

ataset included fully deintentified images provided by Weill Cor- 

ell Medicine, (NY, USA) and Hammersmith Hospital (London, 

nited Kingdom). None of the subjects in our cohort were BAV- 

ffected. Respiratory com pensated 4D flow acquisitions were per- 

ormed with the following settings: spatial resolution (voxel size) 

.4 – 2.0 mm (range), field of view = 360 mm, flip angle = 

5 ◦, VENC = 150 – 200 cm/s (range), time resolution 20 – 28 

rames/cardiac cycle (range). Data usage was approved by the Weill 

ornell Medicine Institutional Review Board (New York, NY, USA) 

nd by the Health Research Authority (HRA) (17/NI/0160) in the 

K and was sponsored by the Imperial College London Joint Re- 

earch and Compliance Office, as defined under the sponsorship 

equirements of the Research Governance Framework (2005). The 

articipants provided their written informed consent to participate 

n this study. 

.2. Data preprocessing 

4D flow MRI data were preprocessed using in-house Python 

ode and following the workflow presented in Fig. 1 . No correc- 

ion for eddy currents was applied, based on the high VENC values 
2 
et in the acquisitions and on the dimensions and position of the 

scending aorta within the scanner [23] . Visual assessment of the 

easured velocity data was performed to verify that no aliasing 

as present. For each patient, a 3D binary mask of the aorta was 

xtracted from PC-MR angiography (PC-MRA) images using semi- 

utomatic tools available in the open source software ITK-SNAP 

24] . Aortic centerlines were extracted using the vascular model- 

ng toolkit (VMTK) [25] . To guarantee consistency of inlet plane lo- 

ation among all ATAA subjects, inlet planes were defined with re- 

pect to a commonly used anatomical landmark represented by the 

ifurcation of the pulmonary artery (PA) [26] . Briefly, the PA bifur- 

ation point ( P B ) was identified from the PC-MRA images (in green 

n Fig. 2 ). Then, the point ( P BAo ) on the aortic centerline with the

ame axial (foot-head) coordinate of P B was identified (pink sphere 

n Fig. 2 ). An inlet point ( P in ) was extracted 30 mm upstream of

 BAo along the centerline curvilinear abscissa; the inlet plane was 

efined as the plane passing through P in and locally perpendic- 

lar to the centerline. Being aware of the inter-variability among 

atient-specific geometries, this methodology was preferred rather 

han extracting the inlet plane at the sino-tubular junction (STJ). 

n fact, the limited space-resolution of 4D flow MRI does not al- 

ow to locate the STJ as clearly as in, e.g., computed tomogra- 

hy (CT) images. A triangulated mesh of the selected plane within 

he aortic lumen was generated; 4D flow velocity data were then 

robed at inlet plane nodal locations. For the generic subject in- 

exed by j, we defined the inlet plane nodal coordinates as ˜ �( j) = 

 ̃

 ξ
( j) 

1 , . . . , ̃  ξ
( j) 

τ , . . . , ̃  ξ
( j) 

T ( j) ] T , and the corresponding measured veloc- 

ty vector field as ˜ V ( j) = [ ̃ v ( j) 
1 

, . . . , ̃  v ( j) 
τ , . . . , ̃  v ( j) 

T ( j) 
] T , with 

˜ ξ
( j) 

τ , ̃  v ( j) 
τ ∈

 

N ( j) ×3 and where T ( j) and N 

( j) are the number of frames in the 

ardiac cycle of subject j and the number of probed nodal loca- 

ions on the inlet plane, respectively; therefore, in general, the di- 

ensions of ˜ �( j) and 

˜ V ( j) vary among subjects. 

.3. Statistical shape modeling of inlet velocity profiles 

Alignment Consistent spatial orientation among the extracted 

nlet velocity profiles was ensured through two steps: first, each 

nlet plane was centered at the origin by applying the translation 

 

( j) to transform the nodal coordinates ˜ ξ
( j) 

τ into ˜ x 
( j) 
τ = 

˜ ξ
( j) 

τ + T ( j) . 

econd, two consecutive rigid rotations were applied to the trans- 

ated coordinates ˜ x ( j) 
τ and to the corresponding velocities ˜ v ( j) 

τ . The 

rst rotation ( R 1 ∈ R 

3 ×3 ) transformed 

˜ x ( j) 
τ and the corresponding 

elocity profile ˜ v ( j) 
τ to ˆ x 

( j) 
τ = R 

( j) 
1 

˜ x ( j) 
τ and 

ˆ v ( j) 
τ = R 

( j) 
1 

˜ v ( j) 
τ , respec- 

ively, so to make the inlet plane containing ˆ x 
( j) 
τ normal to the 

-axis. The second rigid rotation ( R 2 ∈ R 

3 ×3 ) transformed 

ˆ x 
( j) 
τ and 

ˆ 
 

( j) 
τ to x 

( j) 
τ = R 

( j) 
2 

ˆ x 
( j) 
τ and v ( j) 

τ = R 

( j) 
2 

ˆ v ( j) 
τ , and it ensured that the x -

xis was aligned with the right-to-left direction of the subject. 

Resampling After alignment, each velocity profile v ( j) 
τ was 

apped onto a reference disk with unit radius using linear radial 

asis functions, effectively enabling the resampling of each veloc- 

ty profile at N = 1071 fixed spatial locations uniformly distributed 

ver the reference disk ( Fig. 3 a and b). For points of the refer-

nce disk that did not fall within the original plane (as it would 

appen for non-circular cross-sections) zero velocity vectors were 

et, limiting alterations from the original flow rate. Each veloc- 

ty profile time sequence was temporally interpolated to a refer- 

nce temporal interval t ∈ [0 , 1] discretized in T = 20 frames, us-

ng cubic polynomials. Finally, for the generic subject j, the spa- 

iotemporally aligned and resampled velocity profiles are defined 

s: V 

( j) = [ v 
( j) 
1 

, . . . , v 
( j) 
t , . . . , v 

( j) 
T 

] T , with v 
( j) 
t ∈ R 

N×3 . 

Principal component analysis The 30 aligned 4D velocity profiles 

ere rearranged into column vectors and assembled into a matrix 

 = [ V 

(1) , . . . , V 

( j) , . . . , V 

(30) ] , with V ∈ R 

P×J where J is the number
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Fig. 1. Schematic representation of the adopted workflow. All 4D flow acquisitions go through a preprocessing pipeline for the extraction of velocity profiles. The SSM 

process consists in a common alignment and spatiotemporal resampling of the profiles and then a combination of PCA modes to generate new ones. Only the profiles that 

meet specific acceptance criteria are included in the final dataset. 

Fig. 2. Method for ascending aortic plane selection. The pulmonary artery bifurcation point ( P B , green) is selected from the PC-MRA images. The corresponding point on the 

aortic centerline ( P BAo ) is identified (pink, bottom right), and the selected plane (red, bottom right) is chosen at a 30 mm arc length upstream along the centerline and locally 

normal to the centerline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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f subjects (30) and P = 3 × N × T . Matrix V was used as input for

 PCA. Standard PCA begins by computing the mean velocity profile 

efined as: 

¯
 = 

1 

J 

J ∑ 

j=1 

V 

( j) , (1) 

nd by assembling the covariance matrix C , given by: 

 = 

1 

J 

J ∑ 

j=1 

(V 

( j) − V̄ )(V 

( j) − V̄ T

 ) . (2) 

he eigenvalues and eigenvectors of C were sorted in descending 

rder to obtain a sequence of eigenvectors that progressively maxi- 

ize the explained variance. The first 18 eigenvectors were consid- 

red since their cumulative variance was ≥ 90% . Each mode repre- 

ents a shape direction of variation from the mean velocity profile 

hat is representative of data variability. 

Shape sampling Starting from the mean shape V̄ , the SSM can be 

uilt, and a synthetic 4D profile U can be generated by adding to V̄
3

 shape variation, i.e., a linear combination of the selected modes 

17] as: 

 = V̄ + 

M ∑ 

m =1 

b (m ) 
√ 

λ(m ) a 

(m ) (3) 

here M denotes the number of selected modes, a 

(m ) is the eigen- 

ector of C associated to the m -th selected mode, and λ(m ) is 

he corresponding eigenvalue. New profile shapes can be sam- 

led from the SSM by using a set of coefficients, or weights, 

 = [ b (1) , . . . , b (m ) , . . . , b (M) ] . In particular, to study the shape vari-

tions captured by a specific mode, one can sample shapes by 

onsidering only the selected mode and varying the coefficient 

 

(m ) . 

A uniform sampling technique for the first 18 modes of varia- 

ion of the PCA was used to generate the virtual dataset of inlet 

elocity profiles: 

 

(m ) ∼ U(−1 . 5 , 1 . 5) . (4) 
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Fig. 3. a) Representation of an inlet plane coordinate set from a representative sub- 

ject in the clinical cohort (red), as obtained upon rigid roto-translation, and of the 

corresponding point set in the fixed disk domain (green). b) A velocity profile from 

the clinical cohort (top), resampled to the fixed reference disk using RBF (bottom). 

c) Exemplification of the computed flow descriptors. FDI (top): area top15% is high- 

lighted in black; FJA (middle): angle between plane normal (black) and mean veloc- 

ity direction (magenta); SFD (bottom): ratio between the normal component (black) 

and in-plane component (cyan) of the mean velocity vector (magenta). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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.4. Flow morphology descriptors 

To quantitatively characterize inlet velocity profiles belonging 

o the clinical cohort and to the synthetic one, several descriptors 

f flow morphology were computed, both at systolic peak and as 

ime-averaged quantities: positive peak velocity (PPV), flow disper- 

ion index (FDI), flow jet angle (FJA), secondary flow degree (SFD), 

nd retrograde flow index (RFI). Representations of FDI, FJA and 

FD is included in Fig. 3 c. For a generic profile v ( j) 
t consisting of 

odal velocity vectors v ( j) 
t,n , with n = 1 , . . . , N, flow descriptors were

omputed as follows. 

Flow dispersion (FDI) was calculated to determine whether 

flow displayed a broad or peaked in-plane distribution. FDI 

was computed as the ratio between the area of the region 

characterized by the top 15% of peak velocity magnitudes 

( area top15% ) and the inlet area [11] : 

F DI = 

area top15% 

area 
× 100% , (5) 

Accordingly, the higher the FDI value the more homoge- 

neous the velocity profile; the lower the FDI value the 

sharper the velocity profile. 

Flow jet angle (FJA) represents the angle formed by the mean 

velocity direction (jet direction v mean ) and the unit vector or- 

thogonal to the inlet surface n : 

F JA = arccos ( v mean · n ) , (6) 

FJA quantifies the skewness of the inlet flow towards aor- 

tic walls. An FJA value of 0 ◦ represents a mean jet direction 

perpendicular to the inlet plane. 

Secondary flow degree (SFD) is computed as the ratio between 

the mean in-plane (radial) velocity magnitude v ‖ and the 

mean axial velocity magnitude (through-plane velocity) v ⊥ 
as: 

SF D = 

|| v ‖ || 
|| v ⊥ || , (7) 
4

Retrograde flow index (RFI) was calculated as the fraction of 

negative area under the curve of the flow rate time-course 

over the whole area under the curve [27] : 

RF I = 

∣∣∣∫ T 0 Q r dt 

∣∣∣∣∣∣∫ T 0 Q a dt 

∣∣∣ + 

∣∣∣∫ T 0 Q r dt 

∣∣∣
× 100% , (8) 

where Q r and Q a are the total retrograde and antegrade flow 

rate, respectively. A higher RFI value implies an increasing 

flow direction inversion during the cardiac cycle. 

.5. Acceptance criteria 

To avoid generation of unrealistic velocity profiles and restrict 

he synthetic population only to plausible cases acceptance criteria 

ere introduced. Such criteria were based on the flow features of 

he clinical profiles. Specifically, intervals of acceptance I d were de- 

ned based on the statistical distributions of the flow descriptors 

efined in Section 2.4 and computed as: 

 d = 

[ 
μd − 2 

√ 

λd 

] 
∪ 

[ 
μd + 2 

√ 

λd 

] 
(9) 

here μd denotes the mean value of the considered flow descrip- 

or d: 

d = 

1 

J 

∑ 

j 

1 

T 

∑ 

t 

d ( j) 
t , (10) 

nd 

√ 

λd its standard deviation. Flow descriptors were extracted 

rom the synthetic velocity profiles; those synthetic profiles char- 

cterized by at least one parameter falling outside the acceptance 

ntervals were automatically rejected. 

.6. Statistical analysis 

To assess statistical differences between the clinical and syn- 

hetic sets, comparisons were made using unpaired t-tests for nor- 

ally distributed variables and MannWhitney U tests for non- 

ormally distributed data. Data normality was determined using 

he ShapiroWilk test. 

Pearson’s correlation coefficients were calculated to assess cor- 

elations between shape modes and flow descriptors. p -values 

 0.05 were considered statistically significant. 

. Results 

.1. Statistical shape model analysis 

Characterization of the clinical cohort For the original cohort, the 

ean 4D profile V̄ was obtained and characterized in terms of 

ow descriptors. Time-averaged descriptors for the mean profile 

f the clinical cohort were: P P V = 0 . 42 m/s , F DI = 13 . 34% , F JA =
 . 42 ◦ and SF D = 7 . 57 . Values at peak systole (PS) were: P P V =
 . 47 m/s , F DI = 12 . 8% , F JA = 13 ◦, SF D = 0 . 23 ; while RF I = 2% . V̄

orientated as in Fig. 4 b) can be visualized at three key time points

hrough the cardiac cycle: early systole (ES), PS and late systole 

LS) ( Fig. 4 c); colormaps visualizations were generated using the 

arp by vector filter available in the open-source Python library 

yvista . 

Generation of the synthetic inlet velocity profiles The sampling of 

he SSM through the process described in Section 2.3 led to gener- 

te 500 synthetic 4D profiles. Out of these, the acceptance criteria 

ed to accepting 437 velocity profiles that constituted the final syn- 

hetic cohort. 

Comparison of synthetic vs. clinical velocity profiles Synthetic 

nd clinical inlet velocity profiles were compared based on time- 
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Fig. 4. a. Individual and cumulative variance associated with each principal component. b. Orientation of the displayed planes and profiles in with respect to the subject in 

2D and 3D. c. Mean velocity profile ( ̄V ) colored by velocity magnitude in 2D (top row) and 3D (bottom row) at early systole (ES), peak systole (PS) and late systole (LS). 

d. 2D and 3D visualizations of velocity profiles deformed towards minimum and maximum for the first 4 modes and colored by velocity magnitude; color scale shown in 

panel b. 

Fig. 5. Box plots showing distributions of time-averaged flow descriptors for real and synthetic cohorts. Similar medians and ranges were observed. No significant differences 

( p ≥ 0 . 05 ) were found except for PPV ( p = . 040 ). Whiskers indicate 1.5 interquartile ranges; diamonds highlight outliers. 
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veraged flow descriptors shown in Table 1 and Fig. 5 . No sta- 

istically significant differences were found between the two co- 

orts, except for PPV ( p = . 040 ). Nonetheless, PPV mean val-

es only differed by 0 . 03 m/s and similar standard deviations 

ere observed (0.12 and 0.08 for clinical and synthetic cohorts, 

espectively). 
5 
.2. Associations of velocity profile modes with flow morphology 

escriptors 

The devised SSM was exploited to analyze the modes of vari- 

tion and assess their correlation with flow morphological fea- 

ures. By containing the majority of statistical information, the first 
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Table 1 

Comparison of time-averaged flow descriptors between real and synthetic 

cohorts. Normally distributed variables are expressed as mean ± stan- 

dard deviation; non-normally distributed variables are expressed as me- 

dian [min, max]. † indicates statistical significance p ≤ 0 . 05 . 

Descriptor Clinical cohort Synthetic cohort p value 

PPV [m/s] 0 . 59 ± 0 . 12 0 . 56 ± 0 . 08 0 . 040 † 

FDI [%] 10 . 36[5 . 78 , 18 . 53] 9 . 72[6 . 30 , 16 . 11] 0.187 

FJA [ ◦] 66 . 77[27 . 94 , 106 . 29] 68 . 74[30 . 09 , 101 . 60] 0.929 

SFD [-] 3 . 84[0 . 62 , 20 . 45] 2 . 85[0 . 65 , 15 . 72] 0.190 

RFI [%] 4 . 11[0 . 00 , 32 . 10] 5 . 86[0 . 00 , 27 . 74] 0.728 
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our modes were responsible for approximately 45% of the total 

ataset variability ( Fig. 4 a). For the first four modes, the obtained 

xtreme shape variations are visualized in Fig. 4 d. Although it is 

ot straightforward to associate each mode of variation with a spe- 

ific flow feature, it can be hypothesized that the first PCA modes 

re related to some physically meaningful characteristic of the pro- 

le. In practice, the potential physical meaning of each mode was 

ssessed by evaluating Eq. 3 taking into account only one mode 

t a time and choosing a set of 10 evenly spaced coefficients 

 

(m ) ∈ [ −3 , 3] as described in [2] . The flow morphology descrip-

ors introduced in Section 2.4 , were computed for each generated 

rofile as b (m ) was gradually increased. For simplicity, correlations 

ith spatial and temporal flow features were analyzed separately. 

orrelations with spatial features were computed at PS. 

Modes correlation with spatial features at peak systole Correlation 

esults at PS are reported in Table 2 . Mode 1 seemed related to the

patial heterogeneity of velocity magnitude and FDI, with larger 

igh velocity regions observed when b (1) = 3 . This was confirmed 

y the statistically significant positive correlations of mode 1 with 

PV ( r = 0 . 94 , p < . 0 0 01 ) and FDI ( r = 0 . 99 , p < . 0 0 01 ). Overall,

ith increasing b (1) , PPV, FDI, SFD, and FJA increased, indicating 

 tendency of the profile to be less aligned with the plane nor- 

al. Similar trends were obtained for velocity profiles generated 

y varying b (2) , which appeared related to overall flow rate to- 

ether with the size of the region with intermediate velocity as it 

an be visualized by the less pronounced jet for b (2) = −3 in Fig. 4 .

ith increasing b (2) , PPV, SFD, and FJA significantly increased ( r = 

 . 86 , p = . 001 ; r > 0 . 99 , p < . 0 0 01 ; r > 0 . 99 , p < . 0 0 01 , respec-

ively). No statistically significant correlation was found between 

ode 2 and FDI ( r = −0 . 14 , p = . 702 ). Profiles corresponding to
Table 2 

PCA modes correlations with velocity profile flow descriptors at pea

p < . 05 indicates statistical significance. 

b (m ) 

-3.00 -2.33 -1.67 -1.00 -0.33 0.33 

Mode 1 

PPV [m/s] 1.34 1.35 1.37 1.39 1.42 1.52 

FDI [%] 7.42 8.09 8.86 9.83 11.78 14.01

FJA [ ◦] 9.48 11.54 13.08 14.25 12.61 13.44

SFD [-] 0.16 0.20 0.23 0.25 0.22 0.23 

Mode 2 

PPV [m/s] 1.53 1.40 1.31 1.28 1.38 1.56 

FDI [%] 8.93 9.86 11.63 14.66 13.76 12.02

FJA [ ◦] 7.56 8.82 10.06 11.27 12.47 13.64

SFD [-] 0.13 0.15 0.17 0.20 0.22 0.24 

Mode 3 

PPV [m/s] 2.03 1.83 1.65 1.53 1.49 1.46 

FDI [%] 12.40 14.16 15.33 15.25 13.38 12.40

FJA [ ◦] 12.86 12.79 12.78 12.82 12.95 13.19

SFD [-] 0.22 0.22 0.22 0.22 0.23 0.23 

Mode 4 

PPV [m/s] 1.66 1.58 1.51 1.49 1.47 1.47 

FDI [%] 11.60 11.50 11.43 12.21 12.31 13.14

FJA [ ◦] 41.68 35.70 28.65 21.83 15.74 10.66

SFD [-] 0.89 0.71 0.54 0.40 0.28 0.18 

6 
 

(3) = −3 showed a more spatially concentrated velocity jet than 

rofiles sampled at b (3) = 3 . Quantitatively, this was reflected in 

ncreasing SFD ( r = 0 . 88 , p = . 001 ) and FJA ( r = 0 . 88 , p = . 001 ) and

n decreasing PPV ( r = −0 . 67 , p = . 032 ) as b (3) increased. No cor-

elation was found between mode 3. Finally, profiles generated by 

arying b (4) showed differences in the shape of the high velocity 

egion and in jet orientation. Specifically, with increasing b (4) , FJA 

 r = −0 . 91 , p < . 0 0 01 ) and SFD ( r = −0 . 90 , p < . 0 0 01 ) decreased

hile FDI increased ( r = 0 . 96 , p < . 0 0 01 ). No correlation was found

etween mode 4 and PPV ( r = −0 . 27 , p = . 458 ). 

Modes correlation with temporal features For each of the first 

our modes, the flow rates computed on the 10 evenly spaced coef- 

cients b (m ) ∈ [ −3 , 3] were analyzed ( Fig. 6 ). Profiles corresponding

o mode 1 showed the largest variation in peak flow rate, ranging 

rom 0.62 for b (1) = −3 to 2.37 for b (1) = 3 , and the largest tem-

oral shift ( �t = 0 . 096 ). Furthermore, a negative linear correlation 

as found between b (1) and RFI ( r = −0 . 87 , p = . 001 ), with larger

ortions of retrograde flow corresponding to lower values of b (1) . 

 similar trend was observed for mode 4, whose associated flow 

ate peaks increased with increasing b (4) , but within a narrower 

ange ([0.90, 1.76]) and with a smaller temporal shift ( �t = 0 . 04 ).

n the other hand, an opposite trend was found for mode 3, with 

igher flow rates for decreasing b (3) , and with negligible temporal 

hifts. Flow rates associated to profiles generated by varying b (2) 

ll showed similar flow rate curves over time. 

. Discussion 

The lack of patient-specific information on in vivo flow fea- 

ures has led to the widespread use of simplified inlet velocity 

rofile BCs when setting up CFD models. However, this assump- 

ion can significantly impact results, particularly when modeling 

he ascending aorta [9–11] . The present work addressed the issue 

f scarcity of patient-specific hemodynamic data by proposing a 

alid alternative to idealized inlet velocity profiles. In particular, 

e focused on cases of ATAA. The first key achievement of the 

resent work was exploiting SSM to generate a dataset of 437 syn- 

hetic velocity profiles starting from a clinical cohort of 30 ATAA 

ubjects. The proposed methodology allowed to create aortic inlet 

elocity fields that presented similar spatiotemporal characteristics 

s compared to real ATAA patients, and that are suitable to be pre- 

cribed as inlet BC for CFD simulations. We found an average ve- 
k systole. Results of Pearson correlation analyses are reported. 

r p

1.00 1.67 2.33 3.00 

1.62 1.73 1.87 2.03 0.94 < 0 . 0 0 01 

 15.92 17.53 18.70 19.59 0.99 < 0 . 0 0 01 

 14.09 14.61 15.02 15.36 0.88 0.001 

0.25 0.26 0.26 0.27 0.88 0.001 

1.76 1.96 2.16 2.37 0.86 0.001 

 11.01 10.30 9.78 9.54 -0.14 0.702 

 14.78 15.91 17.01 18.09 > 0.99 < 0 . 0 0 01 

0.26 0.28 0.30 0.32 > 0.99 < 0 . 0 0 01 

1.43 1.43 1.51 1.64 -0.67 0.032 

 12.75 13.45 12.94 11.29 -0.52 0.122 

 13.56 14.09 14.82 15.78 0.88 0.001 

0.24 0.25 0.26 0.28 0.88 0.001 

1.47 1.50 1.54 1.60 -0.27 0.458 

 14.12 15.09 16.08 16.52 0.96 < 0 . 0 0 01 

 7.13 6.26 7.90 10.40 -0.91 < 0 . 0 0 01 

0.12 0.10 0.13 0.18 -0.90 < 0 . 0 0 01 
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Fig. 6. Plots of normalized flow rates over time computed for the first four modes by varying their corresponding coefficient b (m ) . Mean flow rate over time corresponding 

to V̄ is shown in red for all subplots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ocity profile V̄ that qualitatively resembled a 3D paraboloid-like 

hape ( Fig. 4 c). This finding suggests that imposing an idealized 

arabolic profile as inflow BC of an ATAA CFD model is the best 

hoice in the absence of patient-specific flow data. Similar findings 

ere reported by [11] , who also suggested that a parabolic profile 

s a reasonable choice when patient-specific data are missing and 

n case of TAV. Nonetheless, our V̄ was characterized by F JA = 13 

and SF D = 0 . 23 at PS, whereas a perfectly symmetric and cen-

ered paraboloid would have null F JA and SF D values. In particular, 

he velocity jet was directed toward the right side of the subject, 

.e., the extrados of the ascending aorta. As recognized by [11] and 

onfirmed by additional studies ( [10,12] ), including in-plane veloc- 

ty components significantly affects flow dynamics predictions in 

he ascending aorta. Therefore, for an accurate assessment of ATAA 

emodynamics, the mean profile proposed in this study represents 

 better baseline choice for inlet BC specification in CFD simula- 

ions. 

Our SSM was also sampled to generate new realistic 4D pro- 

les; the individual variance associated to the first mode was equal 

o ≈ 13% , whereas the first four modes accounted for ≈ 45% of cu- 

ulative variance ( Fig. 4 a). Thamsen et al. [18] built an SSM of

ortic coarctation anatomy and found that the first mode covered 

3.7% of the total variation, while the first three modes were re- 

ponsible for its 70%. The authors also built an SSM of inlet vector 

elds based on 4D flow MRI data, but did not provide full insights 
7 
nto profile variability and only considered PS, limiting their anal- 

sis to steady conditions. Our results indicate substantially lower 

ndividual mode explained variance. Such discrepancy can be at- 

ributed mainly to the fact that we dealt with 3D velocity vectors 

hat change over time, which represent considerably more com- 

lex, higher dimensional features as compared to 3D positions de- 

cribing static geometries. 

The second key achievement of this study was providing in- 

ights into the hemodynamic features that are responsible for the 

ost significant variations of ascending aorta spatiotemporal ve- 

ocity profiles. Although it was not possible to find a one to one 

orrespondence between shape modes and flow descriptors, we 

ere able to demonstrate that the first four modes can be related 

o a unique combinations of spatial flow morphology descriptors 

 Table 2 and Fig. 4 ). A more straightforward interpretation of PCA 

odes has been reported in studies dealing with aortic anatomy 

15,19] . In our results, an overlapping of feature contributions to 

CA modes is likely due to the complexity and high dimension- 

lity of our 4D velocity vector fields that makes our data signif- 

cantly more heterogeneous. Nonetheless, it is interesting to note 

hat mode 1 was clearly linked to a temporal feature: flow rate 

ver time ( Fig. 6 ). Spatially, this resulted in a positive correla- 

ion between b (1) and systolic P P V ( r = 0 . 94 , p < . 0 0 01 ) and F DI

 r = 0 . 99 , p < . 0 0 01 ), which both contribute to increase net flow

ate. Therefore, when exploiting the proposed SSM, users that wish 



S. Saitta, L. Maga, C. Armour et al. Computer Methods and Programs in Biomedicine 233 (2023) 107468 

t

a

t

p

s

t

s

f

a

o

a

i

o

(

l

i

c

m

d

d

5

o

u

p

s

i

o

c

c

s

D

fi

G

o

fl

h

D

c

A

R

(

C

a

i

a

m

R

 

[  

 

[

[
 

[

[  

[

[

[  

[  

[

o investigate the impact of specific flow features will be able to 

djust mode weights to generate profiles with the desired charac- 

eristics. 

Limitations It is important to address the limitations of the 

resent study. First, a clinical cohort size of 30 subjects limits the 

tatistical power of our conclusions. This downside is related to 

he retrospective nature of the study and to the choice of con- 

idering only subjects with TAV and ATAA. Future studies could 

ocus on analyzing aortic velocity profiles in BAV patients, which 

re known to display considerably different flow features [11] . Sec- 

nd, our choice of plane positioning may result in slightly different 

natomical locations among subjects. Having an additional imag- 

ng modality, such as CT or MRA, aligned with 4D flow images, 

ne could select a plane at the level of the sino-tubular junction 

STJ). In general, the low quality of 4D flow images does not al- 

ow to detect the STJ with certainty, whereas the chosen anatom- 

cal landmark (bifurcation of the pulmonary artery) was always 

learly visible in our flow-encoded images. Finally, PCA is funda- 

entally a linear transformation. Non-linear approaches based on 

eep learning could potentially increase the effectiveness of data- 

riven hemodynamic features extraction [28] . 

. Conclusions 

In this work we built the first data-driven generative model 

f time-dependent 3D aortic inlet velocity profiles, suitable to be 

sed in numerical simulations of blood flow. With the aim of ex- 

editing the development of future in silico analyses, the proposed 

oftware system also allows to map any of the generated veloc- 

ty profiles to the inlet plane of any virtual subject given its co- 

rdinate set. The present work thus sets a new standard for the 

omputational bioengineering community, allowing to replace the 

ommon practice of prescribing idealized inflow BC in numerical 

imulations of blood flow with more realistic conditions. 

ata availability and usability 

We provide the generated synthetic cohort of 4D velocity pro- 

les ready to be used for time-dependent CFD simulations with a 

ithub repository also containing the necessary scripts to replicate 

ur study. The code can be found at: https://github.com/saitta-s/ 

ow4D and all synthetic velocity profiles can be downloaded from 

ttps://doi.org/10.5281/zenodo.7236143 . 
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