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ENABLING LARGE-SCALE PROBABILISTIC SEIZURE DETECTION WITH A
TENSOR-NETWORK KALMAN FILTER FOR LS-SVM

S.J.S. de Rooij1∗, K. Batselier2, B. Hunyadi1

Delft University of Technology
1Circuits and Systems, 2Delft Center for Systems and Control

ABSTRACT
Recent advancements in wearable EEG devices have high-
lighted the importance of accurate seizure detection algo-
rithms, yet the ever-increasing size of the generated datasets
poses a significant challenge to existing seizure detection
methods based on kernel machines. Typically, this problem is
mitigated by significantly undersampling the majority class,
but in practice, these methods tend to suffer from too many
false alarms. Recent works have proposed tensor networks to
enable large-scale classification with kernel machines. In this
paper, we explore the use of a probabilistic tensor method, the
tensor-network Kalman filter for LS-SVMs (TNKF-LSSVM),
for seizure detection, as we hypothesize that using more
data will improve the detection performance. We show that
the TNKF-LSSVM performs comparably to a regular LS-
SVM in detecting seizures when both are trained on the
same dataset. Additionally, the TNKF-LSSVM can provide
meaningful uncertainty quantification, and it is able to handle
large-scale datasets beyond the capabilities of the LS-SVM
(i.e., N > 105). However, for the presented model configu-
ration detection performance does not seem to improve with
more input data.

Index Terms— epilepsy, Kalman filter, tensor network,
SVM, seizure detection

1. INTRODUCTION

Epilepsy is a brain disorder characterized by abnormal brain
activity that can cause seizures, abnormal behaviour, sensa-
tions and, sometimes, loss of awareness [1]. It accounts for
a significant portion of the global disease burden, affecting
around 50 million people worldwide. For up to 70% of the
patients, antiepileptic drugs can provide adequate treatment,
meaning that the remaining 30% of patients continue to suffer
from seizures [1].

Recent work [2]–[4] has focused on the development of
wearable devices that can monitor patients in their daily life.
Such devices could make a tremendous difference in patients’
lives. They could allow for better diary keeping of when

∗Seline de Rooij, and thereby this work, is supported by the TU Delft AI
Labs program.

seizures occur, hence helping clinicians optimize treatment
strategies. Furthermore, they might even be able to warn a
patient when a seizure is about to occur.

For all that to be possible, however, an accurate seizure
detection method is necessary. A state-of-the-art seizure de-
tection method for one such device is based on a least-square
support vector machine (LS-SVM) with an RBF kernel, using
a collection of time, frequency and entropy-based features [2].
A drawback of LS-SVMs, however, is that they do not scale
well with the input data size in terms of memory requirements
(O

(
N2

)
) and computational complexity (O

(
N3

)
). The au-

thors of [2] dealt with this by using only 24 hours of data
to train the model, and by heavily undersampling the non-
seizure data. This, however, removes a lot of useful infor-
mation from the data. Furthermore, it does not make the de-
tector robust to day-to-day changes in brain dynamics, when
recent research has shown that seizures can exhibit a multi-
day rhythm [5].

We hypothesize that taking all the data into account can
make the detector more robust and reduce the false alarm rate,
by including more non-seizure examples. One approach to be
able to use more data would be to use a deep learning method.
Recently, there certainly has been a lot of focus on the devel-
opment of deep learning methods for seizure detection [6]–
[8]. However, these algorithms are typically computationally
expensive [9] and prone to overfitting [10]. Notably, kernel
machines such as SVMs and Gaussian processes, which have
fewer hyperparameters, have been shown to perform just as
well if not better than neural networks [11], [12].

Therefore, the current work aims to enable large-scale
seizure detection by using a tensor-network Kalman filter
to solve the least-square system of the LS-SVM (TNKF-
LSSVM), a classification method developed by the authors
of [13]. Using a Kalman filter means that the classification
method becomes probabilistic and allows for the calculation
of an uncertainty bound. Incorporating uncertainty quan-
tification can help to assess the reliability of predictions
which would be useful for the clinical implementation of the
method. The current work will focus especially on which
adaptations need to be made to the TNKF-LSSVM algorithm
in order to make it work for imbalanced data, which is typical
in seizure detection.
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1.1. Notation

The following notation conventions will be used. Vectors,
matrices and tensors are denoted by boldface lowercase let-
ters (e.g. a), boldface uppercase letters (e.g. A) and boldface
Euler script letters (e.g. A), respectively. Scalars are denoted
by italic letters. The mean of a variable is denoted by an over-
line.

2. TNKF-LSSVM

In this section, we will explain how the TNKF-LSSVM algo-
rithm [13] works. This is done by first giving some necessary
background information on LS-SVMs (Section 2.1) and ten-
sors (Section 2.2).

2.1. LS-SVM

The least-square support vector machine (LS-SVM) was de-
veloped in 1999 by Suykens & Vandewalle [14]. It is an adap-
tation of the support vector machine classifier [15], where in-
stead of using inequality constraints in the primal optimiza-
tion function, equality constraints are used. In the dual, this
ultimately leads to solving a linear least-square system. We
will merely provide the reader with this dual problem formu-
lation, for a detailed derivation please refer to [14], [16] .

For a given training set, {xk, yk}Nk=1, where xk ∈ RF are
the features and yk ∈ {−1, 1} the corresponding labels, the
dual LS-SVM formulation is given by (1), and the predictor
by (2), [

0 yT

y Ω+ I /γ

] [
b
α

]
=

[
0
1

]
(1)

ŷ(x′) = sign

[
N∑

k=1

αkykK(x′,xk) + b

]
, (2)

where Ω(i, j) = yiyjK(xi,xj) = yiyjφ(xi)
Tφ(xj) is the

kernel matrix, α ∈ RN are the dual variables, b the bias, and
γ is a regularization parameter.

Due to the kernel matrix, a feature mapping is intro-
duced, mapping the features to a multidimensional space,
K(xi,xj) = φ(xi)

Tφ(xj), such that φ(·) : RF → RFh .
This allows the SVM to perform nonlinear classification. The
feature mapping is typically expressed by a kernel function.
In this paper, we use the RBF kernel:
K(xi,xj) = exp

(
−∥xi−xj∥2

2

2σ2

)
.

2.2. Tensors and tensor-trains

Tensors are multidimensional arrays. A d-way or d-dimensional
tensor has d indices. A matrix is a 2-way tensor and a vector
is a 1-way tensor. The number of entries in a tensor grows
exponentially in d. Therefore, high dimensional problems
cannot be handled efficiently by standard numerical methods,
as operations and memory usage grow exponentially as well.

Thus, an efficient representation of a tensor is often
needed to work with these problems. One such represen-
tation, and the one used in this work, is the tensor-train
decomposition (TT) [17]. In the tensor-train decomposition a
d-way tensor A ∈ RI1×I2×···×Id is decomposed into d auxil-
iary three-dimensional tensors A(i) ∈ RRi×Ii×Ri+1 (for i =
1 . . . d), where Ri are called the ranks of the TT, such that,
A(i1, . . . , id)=

∑
r0,...,rd

A(1)(r0, i1, r1) · · · A(d)(rd−1, id, rd).

A tensor is decomposed into a TT by a sequential SVD al-
gorithm (TT-SVD) [17]. Truncating these sequential SVDs
leads to significant compression of the original tensor.

The tensor-train decomposition can not only be used
to decompose large tensors but also to efficiently represent
large vectors and matrices. For vectors, this is done by re-
shaping the vector a ∈ RI into a multidimensional tensor
A ∈ RI1×I2×···×Id , such that

∏d
i Ii = I , and then decom-

posing the resulting tensor into a TT.
A matrix B ∈ RI×J can be decomposed in an analogous

manner. The matrix is reshaped into B ∈ RI1×J1×···×Id×Jd ,
such that

∏d
i Ii = I and

∏d
i Ji = J . This tensor is

then decomposed into a Tensor-Train matrix (TTm) which
has, in contrast to a TT, four-dimensional cores, B(n) ∈
RRn×In×Jn×Rn+1 . As this allows one to still perform matrix
and vector products while in TT format [17], [18].

The compression ratio that can be achieved by a tensor-
train is the largest when the sizes of the modes of the result-
ing tensor are as small as possible. This process of obtaining
a tensor with small mode sizes is typically called quantiza-
tion and the corresponding tensor-train is typically called a
quantized tensor-train (QTT).

2.3. Tensor-Network Kalman Filter approach

Instead of solving the least-square problem (1) directly, in
the TNKF-LSSVM, this system is solved row-by-row using
a Kalman filter [13].

Let C =

[
0 yT

y Ω+ I /γ

]
, z =

[
b
α

]
and u =

[
0
1

]
, and

suppose the residuals have a zero-mean Gaussian distribution
r ∼ N (0, σ2

r I), then (1) can be written as (3).
C z + r = u (3)

This system can be solved optimally row-by-row with a
Kalman filter.

z[k + 1] = z[k] + q[k]

u[k] = c[k] z[k] + r[k].
(4)

Here, [k] denotes the k-th row of C and u , and the k-th up-
date of z ∼ N (z,P ). The variable q[k] ∼ N (0,Q[k]) is in-
troduced to allow for a forgetting factor, to give less weight to
samples far in the past (Q[k] = (1− λ−1)P [k], λ ∈ (0, 1]).

The predictions and their variance can be computed by,
ŷ(x′) = sign ( [1 ω′] z) (5)

σ2
ŷ = [1 ω′]P [1 ω′]

T
+ σ2

r , (6)
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Fig. 1. Memory requirements of the LS-SVM and TNKF-
LSSVM classifier plotted against the number of data points.

where ω′(k) = ykK(x′,xk) for k = 1 ... N and ω′ ∈ R1×N .
For large datasets where N > 105, constructing the

covariance matrix P ∈ RN+1×N+1 becomes unfeasible.
Therefore, the TNKF-LSSVM algorithm uses TTs and TTm’s
to decompose the Kalman filter variables (c[k], z[k] and
P [k]), making it possible to apply the algorithm to large-
scale data. Figure 1 showcases the memory efficiency gain
obtained by using the TT(m)’s. The memory usage of LS-
SVM and TNKF-LSSVM is displayed against increasing N ,
with a maximum TT-rank of 40 and a feature vector length of
F = 360 (which corresponds to the current application).

3. SEIZURE DETECTION

3.1. Dataset

In this paper, we use EEG data from the Temple University
Hospital Seizure Corpus (TUSZ), version 1.5.2 [19]. To date,
this is the largest publicly available seizure dataset. It consists
of ∼ 3.87×106 seconds of annotated EEG recordings, around
2.66 × 105 s of which contain seizures. The recordings are
from 674 different patients and contain 10 different seizure
types. The TUSZ dataset is divided into three separate sets
for training, validation and testing: ‘train’, ‘dev’ and ‘eval’.

3.2. Preprocessing

First, the common electrodes among all the EEG recordings
were selected, and a temporal central parasagittal (TCP) mon-
tage was applied to each recording. Furthermore, all record-
ings were resampled to a sampling frequency of 250 Hz. All
channels were then filtered using a bandpass filter (0.3-50
Hz). After the filtering, the data was divided into segments of
2 s with 1 s overlap between segments. Segments with a root
mean square (RMS) amplitude higher than 150 µV or lower
than 11 µV were discarded from the training set, to remove
high amplitude noise and background EEG.

3.3. Feature extraction

Features were extracted from the segments for each channel.
The list of the used features is presented in Table 1. These
features were taken from literature [2], [20]. The features in
the high-frequency (HF) band were extracted before applying
the bandpass filter. After extraction, the features were sorted
to remove the spatial information and make it suitable for
patient-independent classification [21]. Furthermore, all the
features were normalized using standard scaling: x = x−x

σx
.

Table 1. Extracted features [2], [20].

Time
domain

1-3. number of zero crossings, maxima
and minima
4. Skewness
5. Kurtosis
6. RMS amplitude

Frequency
domain

7. Total power
8. Peak frequency
9-18. Mean and normalized power in fre-
quency bands: δ (1-3 Hz), θ (4-8 Hz), α
(9-13 Hz), β (14-20 Hz), HF (40-80 Hz).

3.4. Additional processing steps for the TNKF-LSSVM

As mentioned in section 2.2, the compression ratio achieved
by tensor-trains is most efficient when the mode sizes of the
quantized tensor are as small as possible. In this case it means
that it should hold that N + 1 =

∏
i ñi, where ni is ‘small’

and N is equal to the dataset size (+1 is for the bias).
Furthermore, when two TT(m)’s are added or multiplied,

the ranks of the TT(m)’s also add up or multiply [17]. This
can ultimately lead to an exponential increase in the size of
the TT(m)’s. To prevent this, the ranks can be truncated back
down using the TT rounding algorithm [17]. Because of this
rounding, the TNKF-LSSVM algorithm is no longer permu-
tation independent. It also makes the TNKF-LSSVM clas-
sifier more vulnerable to a class imbalance than the regular
LS-SVM.

To deal with all of these issues we add the following pro-
cessing steps to the training stage:

1. Get a new value Ñ ≤ N such that Ñ + 1 =
∏

i ñi,
where ∀i : ñi ≤ 7.

2. Randomly select Ñ− = ⌈Ñ/2⌉ non-seizure and Ñ+ =

⌊Ñ/2⌋ seizure data points. If Ñ+ > N+ use an over-
sampling technique such as SMOTE [22].

3. Randomly permute the order of the training data and
alternate the seizure and non-seizure data points. This
way, there should be a non-seizure data point at every
uneven row index and a seizure data point at every even
row index. This step is very important, as without it we
found that the performance of the classifier remains at
chance level.

3.5. Postprocessing

To improve the detection rate and reduce false positives a
moving average filter, with a memory of 10 segments, was
applied to the classifier output. Furthermore, neighbouring
seizure events less than 90 seconds apart were ‘stitched’ to-
gether. And seizure events with a duration shorter than 25
seconds were classified as non-seizure [2], [23].
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Table 2. Results of the classifiers on the ‘eval’ set. Between
brackets the ±σ bounds are provided (−σ,+σ).

Metric LS-
SVM

TNKF-LSSVM
small sample

TNKF-LSSVM
large sample

Sensitivity 68.4 71.2 (69.8, 72.4) 63.6 (0.4, 100)
Precision 40.6 46.2 (46.6, 46.0) 37.8 (100, 39.1)
F1 score 0.509 0.561 (.559, .563) 0.475 (.008, .562)
FP/24h 80.1 66.3 (63.9, 67.9) 83.5 (0, 124.7)

3.6. Hyperparameter selection and algorithm evaluation

The hyperparameters for the TNKF-LSSVM were selected
using gridsearches on the validation set (‘dev’). To evaluate
the performance of the seizure detectors, we used the follow-
ing performance metrics: sensitivity, precision, F1 score and
false positive rate per 24 hours. These metrics were computed
after the post-processing step using the any-overlap scoring
algorithm to determine when a correct detection occurs [24].

Additionally, we plot the ROC curve of the classifiers,
based on the classified segments (before post-processing), and
show their AUC.

4. RESULTS

The performance of the TNKF-LSSVM algorithm was com-
pared to that of the LS-SVM algorithm. However, since the
LS-SVM classifier is not able to handle the entire dataset, the
training dataset is first undersampled such that Ñ = 104 and
Ñ+ = Ñ−. The LS-SVMlab software package was used
for the LS-SVM classifier, using the tunelssvm function
to tune the hyperparameters [16].

To be able to compare the performance of the two classi-
fiers the TNKF-LSSVM was first trained on the same sample
as the LS-SVM. After that, we trained the model on a larger
sample (Ñ = 2.6×105) to see if performance would improve
when using more data. The used hyperparameters can be
found along with the code on: github.com/sderooij/
tnkf_lssvm_seizure_detect.

Table 2 shows the performance of both seizure detectors
when applied to the ‘eval’ set. And in Figure 2 the corre-
sponding ROC curve of both classifiers is shown. For the
TNKF-LSSVM the results for the ±1σ bounds (the 68% con-
fidence interval) are included. These bounds were computed
by adding or subtracting σ (Equation 6) from the classifiers’
output, prior to using the sign function. The performance is
then evaluated again for these modified outputs.

5. DISCUSSION & CONCLUSIONS

From the results, it is clear that when trained on the same
training set, the TNKF-LSSVM has similar results to the reg-
ular LS-SVM. It even seems to be outperforming the LS-
SVM. This could be due to the tensor-trains’ ability to remove

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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LS-SVM (AUC = 0.797)
TNKF small sample (AUC = 0.811)
TNKF large sample (AUC = 0.760)

Fig. 2. ROC curve of TNKF-LSSVM and LS-SVM. The
dashed and dotted lines show the −σ and +σ results resp.

redundant, and perhaps noisy, information from the model,
thus acting as a regularizer. Though, it also might simply be
the case that we were able to find a more optimal set of hy-
perparameters for the TNKF-LSSVM than the LS-SVM.

The confidence bounds of the TNKF-LSSVM for this
smaller sample, which overlap with the nominal curve in
the ROC, correlate with the relatively accurate predictions.
Whereas we see that when the TNKF-LSSVM is trained on
the larger sample, not only does the performance decline,
but the uncertainty bound becomes considerably larger. The
incorporation of this uncertainty quantification could pro-
vide added value in clinical implementation. Because if the
bounds grow significantly, it may be an indication that the
trained model is no longer fitting the incoming data well,
signifying a need to retrain the model. Additionally, it may
lead to the development of novel post-processing strategies.

Increasing the size of the training data set did not lead to
improved performance. Thus, we may conclude that our orig-
inal hypothesis was false and that adding more data does not
improve the detection rate and reduce the false positive rate.
Suggesting a better sampling strategy may be more crucial.

However, another likely possibility is that this is simply
a consequence of using the TT(m)’s since the truncations be-
come more ‘severe’ when more data is used. This is perhaps
best exemplified by the fact that we had to approximate the
covariance matrix P by a rank one TTm in order to ensure
that it remains positive definite. It’s possible that at some
point this approximation becomes invalid, causing the algo-
rithm to generate worse predictions, which indicates a pos-
sible lack of convergence. This could account for the large
confidence bounds. A topic for future research could thus be
to study the convergence conditions of the TNKF algorithm,
to ensure convergence even for low-rank TT(m)’s.

Concludingly we may state that the TNKF-LSSVM can
match, or even beat, the LS-SVM’s performance when both
are trained on the same data, while also providing an uncer-
tainty bound. However, being able to train on more data does
not improve its performance.
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