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Abstract: Material-extrusion-based 3D printing with polylactic acid (PLA) has transformed the
production of lightweight lattice structures with a high strength-to-weight ratio for various industries.
While PLA offers advantages such as eco-friendliness, affordability, and printability, its mechanical
properties degrade due to environmental factors. This study investigated the impact resistance of
PLA lattice structures subjected to material degradation under room temperature, humidity, and
natural light exposure. Four lattice core types (auxetic, negative-to-positive (NTP) gradient in terms
of Poisson’s ratio, positive-to-negative (PTN) gradient in terms of Poisson’s ratio, and honeycomb)
were analyzed for variations in mechanical properties due to declines in yield stress and failure
strain. Mechanical testing and numerical simulations at various yield stress and failure strain levels
evaluated the degradation effect, using undegraded material as a reference. The results showed
that structures with a negative Poisson’s ratio exhibited superior resistance to local crushing despite
material weakening. Reducing the material’s brittleness (failure strain) had a greater impact on
impact response compared to reducing its yield stress. This study also revealed the potential of
gradient cores, which exhibited a balance between strength (maintaining similar peak force to auxetic
cores around 800 N) and energy absorption (up to 40% higher than auxetic cores) under moderate
degradation (yield strength and failure strain at 60% and 80% of reference values). These findings
suggest that gradient structures with varying Poisson’s ratios employing auxetic designs are valuable
choices for AM parts requiring both strength and resilience in variable environmental conditions.

Keywords: 3D printing; PLA degradation; material extrusion; low-velocity impact; sandwich panels

1. Introduction

Additive manufacturing (AM), particularly fused deposition modeling (FDM), has
revolutionized the design and production of intricate lattice structures. Before the ad-
vent of AM, these complex geometries presented significant challenges in design and
manufacturing [1]. Lattice structures offer a unique combination of advantageous prop-
erties, including a high strength-to-weight ratio, light weight, and the ability to tailor
microstructural characteristics for specific applications in mechanical engineering [2–6].

One particularly exciting class of lattice structures for use in sandwich panels is
auxetics [7]. These exotic and fascinating materials exhibit a counterintuitive property:
negative Poisson’s ratio. In contrast to conventional materials that contract laterally when
stretched, auxetics expand laterally under tensile loading [8]. This unique property makes
auxetic lattices highly valuable for various applications, particularly those requiring high
impact resistance and energy absorption [9], in biomedical engineering, vehicle components,
and sports equipment [10–12].

Among various 3D printing techniques, FDM has received significant research atten-
tion [13–15], particularly because of its potential to utilize sustainable materials. Polylactic
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acid (PLA), a bio-derived thermoplastic known for its biodegradability, biocompatibility,
mechanical strength, and ease of processing, serves as a compelling alternative to traditional
materials across various applications [16–18].

The combination of FDM and PLA (FDM/PLA) printing emerges as a promising
approach for producing porous and lattice structures due to FDM’s cost-effectiveness, ac-
cessibility, and design flexibility, and PLA’s eco-friendly nature and remarkable mechanical
properties [19].

However, understanding PLA’s long-term mechanical performance under environ-
mental effects is crucial for determining its suitability in various applications. Like many
polymeric materials, PLA is susceptible to degradation and the loss of mechanical properties
over time. Several factors contribute to PLA degradation, including thermal decomposition,
hydrolysis, photo-oxidation, and natural weathering [20,21].

These processes decrease PLA’s molecular weight, shorten polymer chains, and ulti-
mately weaken the overall structure, particularly in terms of strength, stiffness, and impact
resistance [22–25]. Moisture absorption is a critical concern for 3D printed PLA structures,
as water molecules break down the ester bonds of the polymer chain, accelerating degra-
dation [26] and increasing brittleness [27,28]. Porous PLA structures, with their increased
exposed surface area, are particularly prone to moisture absorption compared to solid PLA.
Additionally, temperature fluctuations exacerbate degradation, with higher temperatures
accelerating the process even at slower rates at room temperature [29,30].

Current research on PLA degradation often focuses on quasi-static properties under
controlled conditions. This approach neglects the complex interplay between real-world
environmental factors and the dynamic response of PLA porous structures, particularly
lattice structures employed in sandwich panels. These lightweight structures, primarily
designed for high energy absorption capability and impact resistance, are highly susceptible
to atmospheric degradation.

This study addresses the knowledge gap by investigating the time-dependent effects of
environmental factors on the quasi-static and particularly dynamic mechanical properties
of PLA-based lattice structures in sandwich panels. We assess degradation by testing the
bulk material mechanical properties of PLA at different aging stages (as-printed, 45 days,
90 days). Subsequently, we analyze the resulting impact behavior of sandwich panels
with varying core topologies (conventional honeycomb, auxetic, and cores with graded
Poisson’s ratio) subjected to simulated reductions in key material properties (yield strength,
failure strain) at different levels (20%, 40%, 60%). Understanding this degradation process
will ultimately inform the design of more durable and reliable PLA-based sandwich panels
for real-world impact scenarios.

2. Materials and Methods
2.1. Experimental Tests
2.1.1. Manufacturing

To produce sandwich panels, a widely used additive manufacturing technique FDM
was employed. Specimens with four distinct core geometries were 3D printed: conventional
honeycomb, auxetic, negative-to-positive (NTP) gradient, and positive-to-negative (PTN)
gradient (Figure 1). Three specimens were manufactured for each type of sandwich panel.
For the NTP gradient and PTN gradient core designs, the Poisson’s ratio of the core layers
transitioned from negative to positive and positive to negative, respectively, along the
thickness. This variation was achieved by manipulating the internal angle of the unit cells.
All sandwich panels were fabricated from PLA using a Creality Ender 3-Pro 3D printer and
possessed identical dimensions of 9 × 9 × 4.3 cm3.
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The testing employed standard dogbone specimens for tensile tests (dimensions pro-
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stress, and failure strain of PLA. To ensure consistent results and to replicate realistic ex-
posure scenarios, the specimens were kept under controlled environmental conditions 
throughout aging and testing. The temperature ranged from 5 to 15 °C, and relative hu-
midity was maintained around 70%. Direct sunlight exposure was avoided, resulting in a 
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diameter and 50 mm length was utilized. The impactor was positioned 60 cm above the 
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clamped boundary condition was used, and the weight of the cylindrical impactor and 
extra weights on it was 2.7 kg. The sandwich panels were tested after manufacturing, so 
the material was considered undegraded. 

Figure 1. The printed samples. From left to right: honeycomb, auxetic, NTP gradient, and PTN
gradient sandwich panels.

2.1.2. Tensile and Compression Tests

To assess how environmental exposure affects the mechanical properties of PLA, ten-
sile and compression tests (Figure 2) were performed on specimens aged for different
durations: as-printed, 45 days after production, and 90 days after production. These tests
aimed to quantify the influence of aging on two key material properties: failure strain and
yield strength. Both properties are crucial for a material’s ability to absorb energy and
resist deformation. Lower failure strain indicates a more brittle material with a reduced
capacity to absorb impact and redistribute stress, leading to a higher risk of sudden failure.
Additionally, brittle materials exhibit lower tolerance to external forces and environmental
degradation. Lower yield strength can also negatively impact structural response, even un-
der low-velocity impacts. A lower yield point can lead to increased deformation, localized
stress concentrations, and progressive damage accumulation over time.

Materials 2024, 17, x FOR PEER REVIEW 4 of 27 
 

 

  
(a) (b) 

Figure 2. Quasi-static tests: (a) tensile, (b) compressive setups. 

2.2. Numerical Modeling 
To investigate the effects of environmental exposure on 3D printed PLA sandwich 

panels under low-velocity impacts, numerical simulations were conducted. These simu-
lations explored a comprehensive range of material properties for all four core geometry 
types (honeycomb, auxetic, NTP gradient, and PTN gradient). Sixteen distinct combina-
tions of yield strength and failure strain were investigated. For each combination, the yield 
strength and failure strain of the PLA material were systematically adjusted within a de-
fined range (100%, 80%, 60%, and 40%) relative to the reference values obtained from 
quasi-static tests on as-fabricated specimens. This analysis aims to explore the degradation 
mechanisms affecting these key mechanical properties (failure strain and yield strength), 
allowing us to evaluate the impact of environmental exposure on the integrity and perfor-
mance of structures during low-velocity impacts. 

The finite element (FE) analysis comprised two stages: geometrical design and sub-
sequent simulations. The ANSYS APDL code was used for geometric design, and the LS-
DYNA 971 code was employed for the numerical simulations. 

To efficiently capture the in-plane behavior of the lattice structure, two-dimensional 
(2D) shell elements were used for the sandwich panel, while 3D solid elements were em-
ployed for the impactor, the additional weight, and the supporting plate. The core mate-
rial was assigned a bilinear isotropic material model (plastic kinematic model in LS-
DYNA) to capture its ability to undergo both elastic and plastic deformations. A simpler 
linear isotropic material model was chosen for the impactor, while both the added weight 
and supporting plate were modeled as rigid materials due to their negligible deformations 
during the impact event. 

A uniform element size of 3 mm  was employed to discretize both the sandwich 
panel and the added weight, while a finer element size of 1.5 mm was used for the im-
pactor. The support plate was assigned material properties identical to those of the added 
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Figure 2. Quasi-static tests: (a) tensile, (b) compressive setups.

The testing employed standard dogbone specimens for tensile tests (dimensions pro-
vided in the Online Supplementary Materials) and cylindrical specimens (with a diameter
of 12.7 mm and a height of 25.4 mm) for compression tests. A constant displacement rate
of 1mm/min was used for the tests, which involved measuring the elastic modulus, yield
stress, and failure strain of PLA. To ensure consistent results and to replicate realistic
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exposure scenarios, the specimens were kept under controlled environmental conditions
throughout aging and testing. The temperature ranged from 5 to 15 ◦C, and relative hu-
midity was maintained around 70%. Direct sunlight exposure was avoided, resulting in
a quite low UV index (<2). Notably, no environmental factor was extremely elevated or
decreased, and the environmental factors were maintained within real-world ranges.

2.1.3. Drop-Weight Impact Tests

Drop-weight impact testing was employed to validate the comprehensive numerical
results obtained in this study. A hemispherical-ended cylindrical impactor with a 16 mm
diameter and 50 mm length was utilized. The impactor was positioned 60 cm above the top
surface of each panel, resulting in an initial impact velocity of 3.43 m/s. A fully clamped
boundary condition was used, and the weight of the cylindrical impactor and extra weights
on it was 2.7 kg. The sandwich panels were tested after manufacturing, so the material was
considered undegraded.

2.2. Numerical Modeling

To investigate the effects of environmental exposure on 3D printed PLA sandwich pan-
els under low-velocity impacts, numerical simulations were conducted. These simulations
explored a comprehensive range of material properties for all four core geometry types
(honeycomb, auxetic, NTP gradient, and PTN gradient). Sixteen distinct combinations of
yield strength and failure strain were investigated. For each combination, the yield strength
and failure strain of the PLA material were systematically adjusted within a defined range
(100%, 80%, 60%, and 40%) relative to the reference values obtained from quasi-static tests
on as-fabricated specimens. This analysis aims to explore the degradation mechanisms
affecting these key mechanical properties (failure strain and yield strength), allowing us
to evaluate the impact of environmental exposure on the integrity and performance of
structures during low-velocity impacts.

The finite element (FE) analysis comprised two stages: geometrical design and sub-
sequent simulations. The ANSYS APDL code was used for geometric design, and the
LS-DYNA 971 code was employed for the numerical simulations.

To efficiently capture the in-plane behavior of the lattice structure, two-dimensional
(2D) shell elements were used for the sandwich panel, while 3D solid elements were
employed for the impactor, the additional weight, and the supporting plate. The core
material was assigned a bilinear isotropic material model (plastic kinematic model in LS-
DYNA) to capture its ability to undergo both elastic and plastic deformations. A simpler
linear isotropic material model was chosen for the impactor, while both the added weight
and supporting plate were modeled as rigid materials due to their negligible deformations
during the impact event.

A uniform element size of 3 mm was employed to discretize both the sandwich panel
and the added weight, while a finer element size of 1.5 mm was used for the impactor. The
support plate was assigned material properties identical to those of the added weight for
simplicity. The material properties for all components, which can be seen in Figure 3, are
detailed in Table 1.

The initial velocity was set to 3.43 m/s, mimicking the experiments. The implemented
contact types included node-to-surface contact for the interaction between the core and the
impactor and automatic general contact for the surfaces of the cell walls in the core.

To improve the accuracy of the results, hourglass control parameters were employed.
These parameters regulate hourglass energy. IHQ and QH were set to 2 and 0.14, respec-
tively. Additionally, Q1 and Q2 were set to 2 and 0.25 for bulk viscosity control. These
parameters were carefully chosen based on established practices to optimize the simulation
and enhance the results’ quality.
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Figure 3. Finite element model for the low-velocity impact test.

Table 1. Mechanical properties of the materials used.

PLA (Core) Steel (Impactor) Extra Weight

Mass (kg) 0.126 0.0863 2.99

Density (kg/m3) 1200 7800 10,610

Young’s modulus (GPa) 1.3 200 200

Poisson’s ratio 0.35 0.3 0.3

Yield strength (MPa) 37 - -

Tangent modulus (MPa) 0.79 - -

Failure strain 0.04 - -

3. Results
3.1. Changes in the Bulk Material Properties

As expected, tensile tests revealed a decrease in failure strain for PLA over time
(Figure 4a). Specimens tested 45 days after manufacturing exhibited a mean failure strain
of 0.036, a 5.3% reduction compared to the reference value of 0.038 measured for specimens
tested just after manufacturing. Both ultimate strength and yield strength followed a
similar trend, decreasing by 6.9% and 6%, respectively, reaching 39.3 MPa and 39 MPa
from their reference values of 42.2 MPa and 41.5 MPa for specimens tested 45 days after
printing. This trend became more pronounced for specimens tested after 90 days. Their
mean failure strain further declined to approximately 0.032, representing a substantial
16% decrease compared to the reference condition. The ultimate strength also exhibited a
significant decline, reaching close to 36.1 MPa, showcasing a 14.5% decrease relative to the
reference value.
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and 90 days after manufacturing.

Compared to compression, the aging process had a more significant impact on ten-
sile properties, especially on failure strain, which showed a steeper reduction over time
(Figure 4a). Notably, during the second 45 days of aging, there was an 11.1% reduction in
failure strain, approximately twice the reduction observed during the initial 45-day period.

While the walls of the sandwich structures primarily experienced tensile stress under
impact conditions (based on the observations in our numerical studies), the influence
of aging on compressive properties was also investigated. As illustrated in Figure 4b,
the yield strain remained relatively unaffected even after 90 days of aging, remaining at
approximately 0.057. However, the elastic modulus and consequently the yield strength
were more susceptible to degradation. The elastic modulus decreased from 1.6 GPa to
nearly 1.5 GPa, reflecting a 6.25% decline.

3.2. Drop-Weight Behavior of Undegraded PLA Sandwich Panels

To validate the FE model for predicting the impact behavior of PLA sandwich panels,
drop-weight impact tests (Figure 5) were conducted on the reference sandwich panels.
The results, including displacement–time and kinetic energy–time curves (Figure 6) of
the impactor penetrating the core, demonstrated good agreement between the FE model
and experiments.

3.3. Parametric Study

The influence of environmental exposure on the stress distribution within the struc-
tures was investigated through an analysis of von Mises stress (Figure 7). It was observed
that, in general, the structures exhibited comparable peak stress values, particularly during
the initial stages of impact, regardless of the core type design. Despite some variations in
the trends observed in the reference condition (e.g., auxetic showed a significant decline
compared to the other cores), it is worth noting that the influence of bulk material degrada-
tion stage in changing the levels of maximum von Mises stress was noticeably higher than
the effect of core geometry types.
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Figure 8. von Mises stress distribution for the auxetic structure made up of PLAs having yield
strengths and failure strains equal to (a) 100%, (b) 80%, (c) 60%, and (d) 40% of those in the as-printed
PLA at t = 7.5 ms, t = 15 ms, t = 22.5 ms, and t = 30 ms.

Cross-sectional views of the impacted region of the auxetic structure and the volume
fraction of the eroded elements in all structures are demonstrated in Figures 9 and 10,
respectively (see also the cross-sectional view of the impacted region of the honeycomb
structure in Figure A1 of Appendix A). These graphs provide valuable insights into the
damage form and extent sustained by the walls of these cellular structures. As expected, as
compared to honeycomb structures, the material was more concentrated in the vicinity of
the impact point in the case of the auxetic structures (compare Figures 9 and A1).
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Figure 10. Variation in eroded volume fraction with time for structures made up of PLA having
yield strengths and failure strains equal to 60%, 80%, and 100% of those in the as-printed PLA (black:
auxetic, red: honeycomb, blue: NTP gradient, green: PTN gradient).

Figure 10 illustrates a clear correlation between the level of wall rupture and the
degradation level. As the yield strength and failure strain decrease, the damage becomes
more pronounced. For example, in the undegraded condition, the fraction of eroded
elements was 0.007, 0.012, 0.01, and 0.0098 in auxetic, honeycomb, NTP gradient, and PTN
gradient structures, respectively. However, after a reduction in yield strength and failure
strain to 60% of their initial values, the noted fractions increased by 2.86, 2.1, 2.3, and
1.9 times, respectively, in the mentioned cores. Therefore, after weakening the failure strain
and yield stress by 40%, the PTN gradient structure showed the least amount of erosion,
while the honeycomb structure exhibited the highest. This highlights the superior damage
tolerance of structures incorporating cells with negative Poisson’s ratio. Additionally, it
showcases the benefits of using gradient structures in degradation-prone situations.

One of the primary applications of sandwich structures with cellular cores is energy
absorption during impacts. Therefore, comparing the energy absorption capability values
is a key aspect in evaluating their performance. Figure 11 presents the internal energy
absorbed by auxetic, NTP gradient, PTN gradient, and honeycomb cores under varying
yield stress and failure strain conditions. A key finding is that brittleness significantly
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reduced energy absorption across all core types. Structures with the highest employed yield
strength but a low failure strain (40%, indicating relative brittleness) exhibited an energy
absorption reduction even exceeding two-fold. This effect was more pronounced in honey-
comb structures, where the reduction reached a three-fold reduction compared to auxetic
structures (around a 1.5-fold reduction). Interestingly, there was a positive correlation
between impactor penetration depth and energy absorption, except for brittle conditions.
This implies that deeper penetration allowed for more energy dissipation throughout the
structures. Notably, in structures with non-brittle material (100% failure strain), the level
of yield stress had minimal impact on energy absorption. However, structures with lower
yield strength required a longer time to reach their peak internal energy.
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gradient, and (d) honeycomb core types having different levels of yield stress and failure strain for
core material (black: 100% σy, red: 80% σy, gray: 60% σy, blue: 40% σy).

Interestingly, under reference conditions (i.e., 100% yield stress and failure strain),
gradient structures exhibited enhanced energy absorption capabilities, exceeding 5 J
(Figure 11). This surpassed the values absorbed by both auxetic and honeycomb struc-
tures. As expected, honeycomb cores displayed the lowest energy absorption capacity
among all core types. See a more concise visualization of internal energy focusing solely
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on the highest and lowest failure strain levels in Figure S2 of the Online Supplementary
Materials.

Generally, the peak force on each force–displacement curve represents the core’s
resistance to the impact. A key finding is the significant influence of brittleness on peak
force, particularly in auxetic structures (Figure 12). Decreasing the failure strain at the
highest yield strength resulted in a more substantial reduction in peak force compared
to simply decreasing the yield stress while maintaining a high failure strain (100%). This
suggests that brittleness plays a more critical role than yield strength in determining peak
force value.

Materials 2024, 17, x FOR PEER REVIEW 13 of 27 
 

 

structures. As expected, honeycomb cores displayed the lowest energy absorption capac-
ity among all core types. See a more concise visualization of internal energy focusing 
solely on the highest and lowest failure strain levels in Figure S2 of the Online Supple-
mentary Materials. 

Generally, the peak force on each force–displacement curve represents the core’s re-
sistance to the impact. A key finding is the significant influence of brittleness on peak 
force, particularly in auxetic structures (Figure 12). Decreasing the failure strain at the 
highest yield strength resulted in a more substantial reduction in peak force compared to 
simply decreasing the yield stress while maintaining a high failure strain (100%). This 
suggests that brittleness plays a more critical role than yield strength in determining peak 
force value. 

 
(a) (b) 

  
(c) (d) 

Figure 12. Variation in contact force with impactor’s displacement for (a) auxetic, (b) NTP gradient, 
(c) PTN gradient, and (d) honeycomb core types with different yield strength and failure strain lev-
els (black: 100% 𝜎௬, red: 80% 𝜎௬, gray: 60% 𝜎௬, blue: 40% 𝜎௬). 

For the auxetic core, peak force decreased significantly when both failure strain and 
yield strength were reduced. For example, at the highest failure strain (100%), the peak 
force dropped from 1075 N to 900 N as yield strength decreased by 60% (Figure 12a). 
On the other hand, reducing failure strain from 100% to 40% at the highest yield strength 
(i.e., 𝜎௬௦ 100%) resulted in a more substantial drop (1075 N to 500 N). A similar analysis 
of other core types confirms that brittleness plays a more significant role in determining 
peak force (Figure 12). 

Figure 12. Variation in contact force with impactor’s displacement for (a) auxetic, (b) NTP gradient,
(c) PTN gradient, and (d) honeycomb core types with different yield strength and failure strain levels
(black: 100% σy, red: 80% σy, gray: 60% σy, blue: 40% σy).

For the auxetic core, peak force decreased significantly when both failure strain and
yield strength were reduced. For example, at the highest failure strain (100%), the peak
force dropped from 1075 N to 900 N as yield strength decreased by 60% (Figure 12a). On
the other hand, reducing failure strain from 100% to 40% at the highest yield strength
(i.e., σys 100%) resulted in a more substantial drop (1075 N to 500 N). A similar analysis of
other core types confirms that brittleness plays a more significant role in determining peak
force (Figure 12).
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For the same bulk material properties, the structures with pure auxetic cores (Figure 12a)
exhibited higher levels of peak force as compared to structures with pure honeycomb cores
(Figure 12d). However, the length of the plateau region in the structures with honeycomb
cores was higher than that of their auxetic counterparts, especially for constituent weaker
material (lower yield strength and failure strain). This makes gradient structures a more
logical choice when a structure needs to absorb energy while maintaining sufficient strength
over time.

Consider structures with bulk material properties at 60% and 80% of the reference
values for yield strength and failure strain, respectively. In this scenario, none of the
impactors hit the plate. The peak forces for the auxetic, NTP gradient, PTN gradient,
and honeycomb cores were 840 N, 682 N, 800 N, and 503 N, respectively. While the NTP
gradient core allowed slightly higher overall displacement (35 mm vs. 31 mm for auxetic),
the peak force resistance remained comparable (around 800 N vs. 840 N for auxetic).

On the other hand, the energy absorption curves in Figure 11 show that the final
energy absorption for the gradient cores (3.49 J–3.6 J) was higher than that in the auxetic
core (2.5 J) for this case. This example highlights the ability of gradient structures to
create a balance between energy absorption capability and deformation resistance for the
majority of structures with both intact and degraded bulk constituent materials. The force–
displacement curves corresponding only to the highest and lowest failure strain levels are
provided in Figure S3 of the Online Supplementary Materials.

Velocity–time curves (Figure 13) provide valuable insight into the residual velocity
of the impactor, obtained at the end of the curves, which serves as an indicator of energy
dissipation and absorption by the core. In structures with the highest level of failure strain
(i.e., where ε f is equal to the reference value), the return velocities ranged from −1 m/s
to −0.5 m/s for all core types except the auxetic structure with low yield strength (40%
and 80% of reference). In these two specific auxetic cases, the residual velocity magnitudes
surpassed 1 m/s (Figure 13a).
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Interestingly, across all structures, the residual velocity magnitude for structures
with 80% yield strength equaled or exceeded that of structures with 100% yield strength.
Nonetheless, decreasing yield strength to values lower than 80% usually led to lower
residual velocities. When examining the influence of brittleness, increasing the brittleness
usually led to lower levels of residual velocity. For structures with 100% yield strength,
decreasing the failure strain from 100% to 60% resulted in a change in residual velocity
from −0.93 m/s to −0.74 m/s, −1.03 m/s to −0.71 m/s, −0.94 m/s to −0.29 m/s, and
−0.73 m/s to −1.81 m/s in the auxetic, NTP gradient, PTN gradient, and honeycomb
structures, respectively. It must be noted that the abrupt decline in the velocity (for instance
at t = 16 ms in the auxetic structure and at t = 15 ms in the honeycomb structure) is related
to the impactor hitting the back support plate.

To compare the impact of the yield stress of the auxetic core on the displacement of the
impactor, we first consider structures with identical failure strains of 100%. The core with
the lowest yield strength exhibited a displacement of 27 mm, approximately 24% greater
than that of the strongest material (Figure 14a). For conventional honeycomb cores with the
same failure strain, the structure with the weakest yield strength had a displacement around
9 mm greater than the one with the highest yield strength. This difference represents a 36%
increase, larger than the change seen in auxetic cores (Figure 14d).

Auxetic structures generally exhibited lower maximum displacements compared to
their honeycomb counterparts (Figure 14a,d). The gradient structures are expected to
exhibit behaviors between those of auxetic and honeycomb structures. Interestingly, in
the undegraded structures, the maximum displacement of the gradient structures (25 mm
and 26.1 mm) was higher than those in the auxetic and honeycomb structures (21.8 mm
and 23.3 mm). Nonetheless, in the degraded structures, the maximum displacement of
the gradient structures fell between the values of the auxetic and honeycomb structures in
most cases.

As expected, lower yield stress resulted in increased maximum displacement. Re-
ducing the yield stress from 100% to 40% (with the failure strain remaining at the original
value) increased the maximum displacement by 23.4% (from 21.8 mm to 26.9 mm), 32%
(from 25 mm to 33 mm), 21.8% (from 26.1 mm to 31.8 mm), and 35.2% (from 23.3 mm to
31.5 mm) in the auxetic, NTP gradient, PTN gradient, and honeycomb structures, respec-
tively. Notably, for undegraded structures, the NTP gradient structure exhibited lower
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displacement compared to the PTN gradient structure at 40% and 60% yield stress, but the
opposite occurred at higher yield strengths.
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Decreasing the failure strain from 100% to 60% (with constant yield stress at its
reference value) resulted in significant displacement increases by 42.2% (from 21.8 mm
to 31 mm), 56% (from 25 mm to 39 mm), 71.3% (from 26.1 mm to 44.7 mm), and 95%
(from 23.3 mm to 45.4 mm) in the auxetic, NTP gradient, PTN gradient, and honeycomb
structures, respectively. This trend held true even for structures with an intermediate yield
stress of 60%. At a failure strain of 40%, the impactor penetrated the entire thickness of all
lattice structures, reaching the supporting plate (as shown in Figure 14).

Overall, failure strain had a more significant effect on displacement than yield stress.
This is further evidenced by the auxetic structure, where lowering the failure strain from
100% to 40% with the highest yield stress doubled the displacement, while reducing the
yield stress from 100% to 40% with the highest failure strain only decreased displacement
by 24% (Figure 14a).

Interestingly, the auxetic and gradient structures exhibited less susceptibility to degra-
dation compared to the conventional honeycomb structure. As shown in Figure 15, un-
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degraded gradient structures exhibited greater displacement than both auxetic and hon-
eycomb structures (the right side of Figure 15). Following degradation, the displacement
values of the gradient structures fell between those of the auxetic and honeycomb structures
(the left side of Figure 15). Therefore, incorporating both negative and positive cells inside
the lattice structure made the structure more resilient to the degradation of bulk material.

Materials 2024, 17, x FOR PEER REVIEW 17 of 27 
 

 

undegraded gradient structures exhibited greater displacement than both auxetic and 
honeycomb structures (the right side of Figure 15). Following degradation, the displace-
ment values of the gradient structures fell between those of the auxetic and honeycomb 
structures (the left side of Figure 15). Therefore, incorporating both negative and positive 
cells inside the lattice structure made the structure more resilient to the degradation of 
bulk material. 

 
Figure 15. Maximum impactor’s displacement per failure strain for yield strength of 100% (solid 
lines) and 80% (dashed-dotted lines) in all structures. 

4. Discussion 
4.1. Prevalence of PLA 3D Printed Products 

PLA is one of the most commonly used materials for production with the 3D printing 
method due to its affordability, ease of use, and environmental friendliness. In industries 
like medical implants, telecommunications, electronics, and aerospace, there is a growing 
trend towards the use of additive manufacturing methods like FDM for creating high-
quality parts. FDM offers advantages such as simplicity, rapid production, cost-effective-
ness due to reduced material consumption, and the ability to produce complex structures 
[31–33]. 

Combining 3D printing technology with the intrinsic characteristics of PLA has 
shown high potential for creating intricate biomedical devices based on computer designs 
that use patient-specific anatomical data [34]. Three-dimensional printing using PLA is 
used to create special devices, improve implants, and make better scaffolds for tissue en-
gineering, diagnostic tools, and delivering medicines [35,36]. In addition, the combination 
of PLA and FDM plays a vital role in the other areas of bioindustry. This is practical for 
creating lab equipment, teaching tools, surgical devices (fixation rods, plates, pins, screws, 
sutures, etc.), and agricultural instruments [37]. 

More widely, 3D printing of PLA, combined with other materials, results in compo-
sites vastly used in different industries, specifically aerospace and aviation fields. In these 
applications, PLA is used as a matrix. The advantage of this application is the final prod-
uct’s increased strength and modulus [38]. 

  

Figure 15. Maximum impactor’s displacement per failure strain for yield strength of 100% (solid
lines) and 80% (dashed-dotted lines) in all structures.

4. Discussion
4.1. Prevalence of PLA 3D Printed Products

PLA is one of the most commonly used materials for production with the 3D printing
method due to its affordability, ease of use, and environmental friendliness. In indus-
tries like medical implants, telecommunications, electronics, and aerospace, there is a
growing trend towards the use of additive manufacturing methods like FDM for creating
high-quality parts. FDM offers advantages such as simplicity, rapid production, cost-
effectiveness due to reduced material consumption, and the ability to produce complex
structures [31–33].

Combining 3D printing technology with the intrinsic characteristics of PLA has shown
high potential for creating intricate biomedical devices based on computer designs that
use patient-specific anatomical data [34]. Three-dimensional printing using PLA is used to
create special devices, improve implants, and make better scaffolds for tissue engineering,
diagnostic tools, and delivering medicines [35,36]. In addition, the combination of PLA
and FDM plays a vital role in the other areas of bioindustry. This is practical for creating
lab equipment, teaching tools, surgical devices (fixation rods, plates, pins, screws, sutures,
etc.), and agricultural instruments [37].

More widely, 3D printing of PLA, combined with other materials, results in composites
vastly used in different industries, specifically aerospace and aviation fields. In these
applications, PLA is used as a matrix. The advantage of this application is the final
product’s increased strength and modulus [38].

4.2. Degradation Causes and Degrees of Effect

The effect of time on the mechanical properties of PLA, particularly its stress–strain
curve, can depend on several factors, including the environmental conditions to which
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the material is exposed, such as exposure to UV light, moisture, other external factors,
and the rate of loading [20,21]. That is, over time, PLA can undergo various degradation
processes, such as hydrolysis, oxidation, and thermal degradation, all of which can cause
the molecular weight of PLA to change.

In a study, dogbone samples 3D printed from PLA were left for around a month in
an environment at 23 ◦C (room temperature). The resulting tensile stress–strain curves
revealed that the natural degradation of PLA caused a tensile failure strain reduction by
around 34% after 24 days [39]. This value was much greater than what was seen in our
study, which showed a decline in failure strain of 5.3% after 45 days. This difference can be
due to variations in material properties, environmental conditions, and experimental setups.
PLA filament density was 12% higher in our study, and temperature and UV radiation, due
to the weathering environment, were lower in our experiments, showcasing the significant
contribution of these factors to the degradation rate of PLA. Notably, the difference in
cross-head speed (50 mm/min in the mentioned study) might have also influenced the
results, potentially leading to overestimation. To reduce the sources of variability in the
results, it is recommended to prepare standardized procedures of degradation testing for
different industrial use cases and climates.

The reason why each environmental condition affects the mechanical behavior of PLA
is described in the following subsections.

4.2.1. Moisture

One of the most common factors that can affect the mechanical properties of PLA over
time is exposure to moisture. PLA is known to absorb moisture from the environment,
which can reduce its mechanical properties. Numerous studies have argued that moisture
can degrade PLA by breaking the ester bonds, reducing the material’s strength, stiffness,
and molecular weight [30,40–42]. This is because moisture breaks down the polymer chains
and reduces the intermolecular forces that hold the polymer together [43]. As a result,
the material becomes less resistant to deformation and stress, so it is likely to become
more brittle.

Moisture absorption can also affect the dimensional stability of PLA. As moisture is
absorbed, the material can swell, which changes its size and shape. This can be a concern
in applications where precise dimensional tolerances are critical. Therefore, it is essential to
store and handle PLA properly to prevent moisture absorption and ensure the material’s
optimal performance.

4.2.2. Temperature

Thermal degradation is another degradation process. PLA can slowly degrade even
under room temperature. In a study by Karamanlioglu, M., et al., when samples were kept
at room conditions of 20 ± 2 ◦C with 40 ± 10% relative humidity in the dark for four years,
their fracture strain and tensile strengths exhibited 82% and 34% loss, respectively [44]. PLA
can particularly undergo thermal degradation at high temperatures, causing the material
to break down and lose its mechanical properties. The thermal degradation of PLA can
lead to a reduction in its molecular weight. PLA’s strength decreases as the temperature
increases [45].

At low temperatures, PLA is rigid and brittle, and its stress–strain curve is similar
to that of a ceramic material. As the temperature increases, PLA undergoes a transition
towards softening and enhanced ductility, and its stress–strain curve begins to resemble
that of a typical thermoplastic material.

At high temperatures, the stress–strain curve of PLA can also exhibit a different shape,
with a more gradual transition from the elastic to plastic regions due to the increased
ductility of the material. This can lead to a lower ultimate strength, but a higher elongation
at break. Ductile polymers usually possess a well-defined yield point with a significant
strain, often around 5–10 percent, due to their semi-crystalline state. In contrast, most
amorphous and glassy polymers tend to be brittle and rupture at relatively low strain
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levels. However, these effects can be controlled by adding plasticizers or adjusting the
temperature [45].

4.2.3. UV Exposure

Another factor that can affect the mechanical properties of PLA over time is exposure
to UV light. UV light can break down the chemical bonds in PLA. To demonstrate the
effect of UV light exposure on the stress–strain curve of PLA, a tensile test on samples
exposed to different amounts of UV light was conducted in [46]. The sample exposed to
UV light exhibits lower strength and lower elongation at break compared to the unexposed
sample. This suggests that UV light exposure has caused some degradation of the material,
resulting in reduced mechanical performance [46].

It is worth noting that the degree of degradation observed in PLA due to UV light
exposure can depend on various factors, such as the intensity and duration of exposure,
the wavelength of the UV light, and the specific formulation of the PLA material.

In another work, after 24 h of exposure to UV-B irradiation, PLA tensile strength
and compression strength declined by 5.3% and 6.3%, respectively [47]. Furthermore, the
aging of PLA under sterilizing UV-C radiation was examined in [48]. Both tensile and
compressive tests were conducted and showed a 9.1% loss in tensile strength compared
to that in the control group. Necking strain also underwent a decline. In agreement
with tensile strength, compressive strength decreased by 13.1% after exposure. Although
the samples all revealed plastic behavior under compression, failure strain exhibited a
decrease [48].

In another work, 3D printed products were exposed to UVA-340 lamps, which are
good representatives of sunlight in the wavelength region between 365 nm and 295 nm, for
0, 5, 10, and 20 days [49]. Over a 20-day period, UV exposure caused the ultimate tensile
stress of the samples to decline from 26.5 MPa to 14.7 MPa.

4.2.4. Combined Effects of Moisture, Temperature, and UV Exposure

Understanding the interplay between environmental factors is crucial for predicting
PLA degradation, as the combined effects of moisture, temperature, and UV exposure can
significantly accelerate the process through complex interactions. Notably, the combination
of humidity and elevated temperatures drastically accelerates the hydrolysis of PLA’s ester
bonds [46]. For example, it has been shown that in a humid environment, an increase in
temperature accelerates hydrolysis, leading to a sharp degradation rate at 57 ◦C compared
to 23 ◦C, and it has been shown that a temperature increase beyond 69 ◦C has no additional
degradation effect due to PLA saturation [50]. Similarly, in combination, UV radiation,
generating free radicals in PLA, and temperature variations that increase the mobility of
these radicals and the interaction with water molecules in humidity exacerbate PLA thermal
and hydrolysis degradation more than either factor alone [51,52]. These combinations lead
to rapid chain scission and a significant decline in mechanical properties [53].

4.3. Degradation Impact on Other Materials and 3D Printing Techniques

The question that arises here is whether or not changing the material and 3D printing
technology can help mitigate the degradation of a manufactured part. In the following
subsections, we present an overview of the effect of different environmental factors on the
degradation of other materials or materials that are manufactured using other 3D printing
technologies. The environmental factors that will be described in the following can be
compared to the environmental factors mentioned for PLA in Section 4.2, and hence one can
choose the appropriate material and manufacturing technology based on their application
and environmental conditions.

4.3.1. FDM Method with Other Polymers

There are other polymers widely used as FDM filaments that can be highly affected by
environmental factors. The hygroscopic nature of nylons in 3D printing is also influenced



Materials 2024, 17, 3674 20 of 27

by temperature and humidity, with higher humidity leading to increased moisture absorp-
tion and noticeably reduced mechanical properties, in particular, yield strength, Young’s
modulus, and failure strain [54]. ABS (Acrylonitrile Butadiene Styrene) is a widely used
thermoplastic known for its high durability, and unlike nylons, it shows lower moisture
absorption even compared to PLA at room temperature [55]. ABS parts created through
injection molding may exhibit different properties compared to ABS parts created through
3D printing [56].

Speaking of strength, in a study monitoring the impact of UV radiation, high tem-
perature, high humidity, temperature fluctuations, and weather conditions on structures
made by FDM technology, several materials were considered: PLA, PETG (Polyethylene
Terephthalate Glycol), ABS, and ASA (Acrylonitrile Styrene Acrylate) [57]. Based on the ob-
servations in this study, in undegraded samples, PLA appears to have the highest ultimate
strength. However, unlike other materials, high simultaneous humidity and temperature
in a condensation chamber (100% humidity and temperature of 55 ◦C), temperature cycles
(temperature variation between −18 ◦C and 21 ◦C), and being in outdoor environmental
conditions (humidity from 30% to 97%, temperature from −5 ◦C to 10 ◦C, and solar radia-
tion minimum intensity of 120 Wm−2) adversely affected PLA. This polymer is also limited
in use at higher temperatures due to its softening temperature and reduced shape stability.
On the other hand, under condensation chamber conditions and temperature cycles, PETG
demonstrates higher tensile strength levels than PLA. In fact, the ultimate strength of PETG
even undergoes a slight increase under all tested factors. PETG also exhibits the highest
ductility among the materials tested. ABS, however, has the lowest tensile strength values,
which witness a slight degradation under all the above-mentioned environmental factors.
ASA material, despite having lower strengths compared to PLA and PETG, exhibits the
least variation in properties under individual environmental factors, making it a stable
option with higher hardness and resistance to higher temperatures than PETG when a
product is exposed to the mentioned conditions [57].

In general, PLA exhibits promising behavior due to its bio-inspired nature, and it is
widely used due to its recyclability or reusability. The biodegradability of PLA reduces
long-term waste, typical for 3D printed objects [58]. Similarly, novel materials such as
Polyhydroxyalkanoates (PHAs) and Polycaprolactone (PCL) demonstrate an acceptable
biodegradable nature [59]. In contrast, ABS, nylon, and ASA, as petroleum-based plastics,
cause large carbon footprints. ABS, while durable, emits significant amounts of toxic
fumes, such as styrene, during printing and requires proper ventilation. Its production
process is also more energy-intensive, contributing to its larger environmental inefficiency.
Therefore, ABS should be altered wherever applicable [60]. Although ABS, PETG, and
nylon can all be recycled under certain conditions [61], PETG shows a higher potential to be
recycled and produces fewer toxic fumes [62]. However, it is still petroleum-based and non-
biodegradable. PETG provides better environmental stability but lacks the biodegradability
of PLA, which is a sustainable choice for controlled conditions.

4.3.2. Other 3D Printing Methods

Degradation is not confined to the products made by FDM technology. As for the
degradation of SLA (Stereolithography) products, UV aging was conducted on three types
of resins (tough, flexible, and strong) in [63], all of which exhibited a decline in their
elongation at break, tensile, and impact strength, with a slight increase in Young’s modulus.
Therefore, prolonged exposure to UV for resins used in SLA makes them brittle [64].

The degradation of SLS printed products due to aging or reusing has been observed
to lead to a significant reduction in tensile strength, Young’s modulus, and elongation at
break. In a study [65] conducted on parts made from different semi-crystalline polymer
polyamide 12 (PA12) powders, the degradation process was assessed. For samples that
underwent reuse, there was a notable decline in tensile strength. Specifically, the first
sample type (where the powder was reused 10 times) exhibited a reduction from an initial
value of 35 MPa to 2 MPa, while the second sample type (where the powder was reused
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8 times) exhibited a decrease from 31.65 MPa to 20.45 MPa. Similar trends were observed
for Young’s modulus, where the first sample type’s value dropped from 2000 MPa to
300 MPa, and the second sample type’s value decreased from 1275.67 MPa to 1034.5 MPa.
Elongation at break also exhibited significant decreases for the reused samples. The first
sample type saw a decrease in elongation at break from an initial value of 5.3% to 0.2%,
while the second sample type exhibited a reduction from 6.24% to 4.55%. This comparative
analysis was conducted between new powders and powders that had been reused 10 and
8 times.

4.4. Prevention and Mitigation of PLA Degradation
4.4.1. Methods

As the significance of failure strain on the dynamic response of sandwich structures
made up of PLA was observed in this study, to enhance the behavior of structures under
impact loading, it is suggested to focus on improving the failure strain limit more than
the tensile strength. It has been shown the application of different thermal treatments
to PLA can considerably increase its ductility while having minimal impact on the ulti-
mate stress [41]. Annealing and temperature treatment together improve the mechanical
properties of PLA [66]. Adding small amounts of fillers and other materials to PLA can
increase tensile strength and failure strain in undegraded PLA, while also enhancing ma-
terial degradation/loss behavior after degradation. Nevertheless, they have conflicting
results for higher percentages of fillers. Therefore, the addition of fillers requires thorough
investigation before implementation [55].

In general, various strategies can lower PLA’s degradation rate in real-world applica-
tions, ranging from product design considerations to environmental protection measures.
Design adjustments, such as using thicker cross-sections in stress-prone areas [67] and
ensuring even stress distribution, can enhance product durability with minimal additional
costs. More specialized strategies include material modifications through thermal treat-
ments, additives, and, as mentioned before, fillers. Surface coatings and controlled storage
conditions further protect the product against environmental degradation.

Incorporating moisture barriers and co-polymerizing lactide with hydrophobic monomers
can significantly enhance the hydrolysis resistance of PLA [68,69]. Techniques such as dip-
coating with hydrophobic silica particles or using initiated chemical vapor deposition
(iCVD) to coat 3D printed PLA objects with hydrophobic polymers are highly effective.
Blending PLA with heat-resistant polymers such as polyhydroxybutyrate (PHB) or adding
heat stabilizers can mitigate temperature-related degradation. For instance, PLA/poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) composites exhibit 16% higher strength and 15 times
higher ductility compared to pure PLA [69].

Including UV absorbers in PLA formulations, such as diethyl ether extractives from
Phoebe zhennan wood [70], or applying UV-protective coatings, particularly sustainable
multifunctional bioderived ones, can protect the material from photodegradation [71].
A study showed that adding high content of 15 wt % cellulose nanocrystal-zinc oxide
(CNC-ZnO) hybrids to PLA can block around 85% and 96% of UV-A and UV-B effects,
respectively [72]. Furthermore, a coating prepared from chitosan (CS), tannic acid (TA),
and phytic acid (PA) (PA@TA-CS) could block around 99% of UV light [73].

Controlled storage conditions, with regular monitoring of variations in humidity,
temperature, and UV exposure, can also be very beneficial. A dry and UV-blocking environ-
ment with a stable, low temperature can significantly decrease the degradation rate [74]. It
has been shown that lactide degrades faster in a natural environment than in an argon-filled
glove box, emphasizing the importance of storage in a low-oxygen and low-moisture envi-
ronment for maintaining the quality of PLA [75]. This can be achieved using vacuum-sealed
bags with desiccators [76]. Additionally, according to another study, freezing PLA filaments
at −24 ◦C or lower can prevent aging for up to nine months, or potentially indefinitely,
without causing mechanical damage, using polyethylene terephthalate (PET) zip-bags,
making it a cost-effective, simple, and highly effective anti-aging procedure [29].
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4.4.2. Costs of Improvement Techniques

Each method’s cost-effectiveness should be evaluated based on specific application
requirements, and a trade-off between the cost and the importance of protection must be
considered. Simpler methods such as thermal treatments (e.g., annealing) [77] and the
addition of low-percentage fillers, such as natural fibers, to PLA are generally econom-
ical and recommended when PLA products are required to showcase durability under
environmental conditions [78]. This filler incorporation approach requires homogeneous
distribution [79]. Additionally, optimizing and maintaining environmental conditions in-
clude initial setup costs for the infrastructure. Despite this dependency on the application,
the basic initial steps to keep a dry, cool, and UV-protected environment, if applicable, are
considered low-cost with respect to their significance.

Surface coatings such as UV absorbers and moisture barriers vary in cost. Processes
such as all-dry iCVD efficiently reduce costs associated with the traditional solution-based
iCVD method [80]. On the other hand, maintaining transparency and mechanical strength
in UV-enhanced PLA can be costly [81].

Bio-based (e.g., lignin-based) materials used in coatings or additives generally offer
cost-effective alternatives across various material and surface modification methods [82].
However, blending PLA with other biopolymers can involve higher costs compared to
synthetic polymers, including biopolymers with reinforcing agents such as nanofillers and
active agents [83]. The choice of prevention method should therefore be tailored depending
on application conditions, and it can be based on one of the noted various degradation
mitigation approaches or a combination of them.

4.5. Applications

By thoroughly evaluating and monitoring the mechanical behavior of lattice and
porous designs within sandwich structures, particularly their impact response, engineers
gain insights into degradation mechanisms and predict their durability. This knowledge is
crucial for developing sandwich panels that maintain their energy absorption and strength
characteristics while ensuring their effectiveness in impact-exposed applications. Ulti-
mately, this research contributes to designing 3D printed structures that can withstand
varying environmental conditions and maintain their intended functionality and safety.

5. Conclusions

This study explored the detrimental effects of environmental factors on the mechanical
properties (yield strength and failure strain) of PLA and their influence on the low-velocity
impact response of sandwich structures with different lattice cores (auxetic, NTP gradient,
PTN gradient, and honeycomb). The research compared key aspects of sandwich panels
with four core types (auxetic, gradient negative-to-positive (NTP), gradient positive-to-
negative (PTN), and honeycomb) including impactor penetration depth, crushing area
extent, stress distribution, energy absorption, and force–displacement curves. Based on the
comparisons, the following key findings were observed for degraded sandwich panels:

• Auxetic structures exhibited higher resilience compared to honeycomb structures in
both degraded and undegraded conditions. Notably, the weakest auxetic core had
24% higher penetration compared to its strongest case, while the weakest honeycomb
core showed a 36% increase compared to its strongest version.

• Interestingly, reducing yield strength by 60% with constant failure strain had minimal
effect on energy absorption for all structures except auxetic ones.

• A 60% reduction in failure strain (more brittle material) caused a significant (around
50%) decrease in energy absorption across most core types, with honeycomb cores
experiencing the most significant drop (60% decrease). Auxetic structures showed a
smaller reduction in energy absorption (~35%) compared to other core types.

• Under moderate degradation (yield strength and failure strain at 60% and 80% of
reference values), the gradient cores maintained similar peak forces (around 800 N)
to the auxetic core (840 N) while exhibiting superior energy absorption (3.5 J vs. 2.5 J
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in auxetic). This suggests that gradient structures can balance strength and energy
absorption under degradation.

• Failure strain had a more significant influence on overall displacement compared to
yield strength for all core types.

• Despite potential nuances in deformation and penetration behavior that require further
investigation, gradient structures show promise for maintaining strength, superior
energy absorption, and potentially different modes of energy dissipation across several
degradation levels.
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lowest failure strain levels for core material (Black: 100% σy, Red: 80% σy, Gray: 60% σy, Blue: 40%
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(c) PTN gradient, and (d) honeycomb core types having different levels of yield stress with the
highest and lowest failure strain levels for core material (Black: 100% σy, Red: 80% σy, Gray: 60%
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