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INTRODUCTION

1.1. MOTIVATION

Dysarthria is an encapsulating term for various motor speech disorders in which the
muscles that produce speech are weakened or damaged. It is often the by-effect of degen-
erative diseases such as Parkinson’s disease or amyotrophic lateral sclerosis (ALS), but
can also be caused by traumatic brain injuries or strokes. The reduced motor capabilities
of certain speech muscles results in speech that is slurred and less intelligible. Symptoms
include, but are not limited to, abnormal speech rate, hypernasality and dysphonia. The
effects become more pronounced as the severity increases [1].

Dysarthria can greatly reduce a person’s quality of life and independence [1]. Patients
suffering from dysarthria have often more difficulty communicating with other people.
Meanwhile, the use of automatic speech recognition (ASR) systems in our daily lives is
becoming more normalized. Virtual assistants operating on home devices or smartphones
are becoming more and more common. Assistive technologies, devices designed to
aid patients with disabilities, are starting to follow this trend as well of incorporating
automated speech recognition [2]. These systems could be helpful for dysarthric speech
patients that require additional aid.

The problem lies in the ability of current ASR systems to correctly interpret dysarthric
speech. In recent studies, the performance of state-of-the-art ASR systems trained on
healthy speech were measured against dysarthric speech samples. It became clear that
the performance of ASR systems on dysarthric speech is still lacking compared to typical
speech [3], [4].

Solving this issue is not straightforward. Training ASR systems with dysarthric speech
data is difficult, due to the scarcity of existing dysarthric speech data, and the difficulty of
procuring additional data [5]. Approval for recording sessions are hard to obtain and can
furthermore be difficult for the dysarthric speech patients to endure. Current state-of-
the-art ASR systems are often based on neural network-based acoustic models, thus they
require a large quantity of data to converge correctly. Training such models on dysarthric
speech data alone is often insufficient for dysarthric speech recognition [5].
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To overcome this issue, various solutions have been proposed. Some solutions pro-
pose certain training schemes such as multi-step adaptation using both healthy speech
data and dysarthric speech data to make ASR systems more robust to variations of speech
[5]. Other solutions propose data augmentation techniques, such as creating synthetic
dysarthric speech data by modifying healthy speech data [6]. A more recent approach
aims to make the dysarthric speech signal directly more intelligible using adversarial
learning techniques such as CycleGAN [7]. This is an approach that this thesis will explore
further.

Cycle-consistent generative adversarial network (CycleGAN) is a deep learning model
for mapping input data from the original domain to a target domain, and it was introduced
for unpaired image-to-image translation [8]. Recent studies [7], [9] have proposed using
CycleGAN-based models for converting dysarthric speech to healthy speech to improve
intelligibility for ASR systems. These studies have validated the performance of dysarthric-
to-healthy converted speech in terms of word error rate (WER) and phoneme error rate
(PER). The results are promising and indicate that the converted speech is more intelligible
for ASR systems than the original dysarthric speech.

The speech rate discrepancy between dysarthric speech and healthy speech is a point
of attention. Certain speech enhancement techniques can be applied to possibly improve
the performance of this method. One such technique is to apply time alignment using
dynamic time warping (DTW) during training, in addition to parallel data processing [9].
Another pre-processing technique to consider is audio time stretching. Time stretching
speeds up or slows down the audio without changing the pitch. Other more general
speech enhancement techniques such as (static) noise reduction will be considered as
well.

1.2. RESEARCH QUESTIONS

This thesis will approach the dysarthric speech recognition problem from a dysarthric-
to-normal speech conversion angle, with the aim to ‘enhance’ dysarthric speech to be
more intelligible. State-of-the-art solutions using CycleGAN-based models will be investi-
gated for dysarthric-to-normal speech conversion which utilizes speech encoding and
deep adversarial learning. Possible improvements for this approach will be investigated
as well, which can improve the intelligibility of a dysarthric speech signal further and
consequently improve ASR performance. The main research question will thus be:

* Can CycleGAN-based speech conversion be used to make dysarthric speech more
intelligible for ASR systems?

We break this question down into smaller research questions:

* RQ1: Does the use of CycleGAN-based speech conversion improve ASR perfor-
mance of converted dysarthric speech in terms of phoneme and word error rate?

* RQ2: Can the effectiveness of CycleGAN-based speech conversion further be im-
proved with parallel training and additional modification such as time alignment
using dynamic time warping?
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* RQ3: Does additional audio pre-processing such as denoising, time stretching and
loudness normalization improve the dysarthric speech signal such that it increases
ASR performance?

We will conduct experiments to find answers for our research questions. The basis of our
experimental design is a reproduction of [9]. In their work they trained a DiscoGAN model
using dysarthric speech data from the UASpeech corpus with the purpose of converting
dysarthric speech into typical speech. Afterwards, they measure the ASR performance in
terms of Phoneme Error Rate (PER). Our experiments will be similar in nature, but we will
instead use CycleGAN-based models to perform the speech conversion.

1.3. OUTLINE

This thesis is divided into several chapters, starting with necessary background knowledge
in Chapter 2. Next, we discuss our methodology in Chapter 3. In Chapter 4 we describe the
experiments that have been conducted and the results of these experiments. Afterwards,
we will discuss the results of the experiments in Chapter 5. The thesis will conclude its
findings in Chapter 6.






BACKGROUND

In this chapter we provide the requisite background knowledge for this thesis. We start
by explaining dysarthria in Section 2.1. We follow up with the knowledge needed to
understand CycleGAN by first introducing the concepts of deep (adversarial) learning in
Section 2.2 and Generative Adversarial Networks (GANs) in Section 2.3. We then introduce
CycleGAN in Section 2.4 and in Section 2.5 we dive deeper into the specific models used
in our experiments, namely CycleGAN-VC and MaskCycleGAN-VC. Finally, in Section 2.6
we present some relevant work and problems which are related to the problem at hand.
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2.1. DYSARTHRIA

Dysarthria refers to a group of motor speech disorders where muscular control over
certain speech muscles become lessened or completely absent. Dysarthria is caused by
neuromuscular damage which affect the central or peripheral nervous system. It can
affect all aspects of speech, such as respiration, phonation, articulation, nasal resonance,
prosody and fluency. The loss of muscular control leads to abnormal speech and a
reduction in speech intelligibility. Diseases that can cause dysarthria include, but are not
limited to, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), stroke and cerebral
palsy [1], [10].

A commonly used classification system classifies dysarthria according to which part
of the nervous system is implicated [1]. The part of the nervous system that has been
damaged in turn affects the symptoms and how certain aspects of speech are affected.
The major types of dysarthria with their characteristics are listed below [1], [10]:

* Flaccid — Associated with lower motor neurons lesions. Phonation suffers from
reduced loudness; voice is notably lower pitched. Articulation suffers from im-
precise consonants and hypernasality. Prosody suffers from slow speech rate and
monotonous speech.

* Spastic — Associated with upper motor neurons lesions. Phonation suffers notably
from strained or harsh voice quality; vocal loudness is reduced. Articulation suffers
from imprecise consonants and hypernasality. Prosody suffers from notably slower
speech rate and monotonous speech.

* Hypokinetic — Commonly associated with Parkinson’s disease. Phonation suffers
from breathy or harsh voice quality; vocal loudness is reduced. Articulation suffers
from imprecise consonants. Prosody suffers from monotonous speech, but speech
rate is normal or accelerated.

 Ataxic — Associated with cerebellar dysfunctions. Phonation suffers from fluctu-
ating voice quality; vocal pitch and loudness fluctuate. Articulation suffers from

imprecise and "explosive" sound production. Prosody suffers from slightly slower
speech rate.

There is furthermore a common way to categorize dysarthric speakers based on the
severity or speech intelligibility. A categorization was proposed by [11], where dysarthric
speakers can be divided into four groups:

* Low severity — Speech intelligibility rate of 76% or higher.

* Mid severity — Speech intelligibility rate between 51% and 75%.

 High severity — Speech intelligibility rate between 26% and 50%.

* Very High severity — Speech intelligibility rate of 25% or lower.
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2.2. DEEP AND ADVERSARIAL LEARNING

Deep learning is a branch of machine learning which uses neural networks, a network
which consists of multiple layers of interconnected perceptrons, for representation learn-
ing. Adversarial machine learning is a machine learning technique where models are fed
false or fake data in order to fool the model. While this technique is commonly used in an
attempt to break a model, it can also be used to train other generative models which aim
to fool a model. We will elaborate on this in follow-up sections.

2.3. GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) is a machine learning framework proposed by
[12]. Two neural networks, the generator G and the discriminator D, challenge each
other to a minimax game. In essence, the generator aims to minimize its own loss by
maximizing the loss of the discriminator. Thus, adversarial learning is used here to train a
generator by trying to fool the discriminator.

During training, the generator learns to estimate samples from the true data distri-
bution, while the discriminator estimates the probability that a sample came from the
training data or G. The generator G aims to minimize its loss by maximizing the proba-
bility of fooling the discriminator, while D aims to maximize the probability of correct
classification. This framework allows for unsupervised learning tasks.

When both G and D are differentiable multi-layer perceptrons (MLPs), they can
be trained simultaneously using backpropagation. The minimax loss is formulated as
follows:

minmax Vean (D, G) = Ex- gy 10§ (DGE] + Ez-p, 0 log (1 - DGEN].  (2.1)

In this loss function, x is drawn from the true data distribution pgat, and noise z is
sampled from a noise prior p,(z). The generator G takes z as input and produces a fake
sample, which the discriminator D will attempt to classify as fake or real. In a separate
term, the discriminator also takes x in an attempt to correctly classify it.

The minimax loss encapsulates the objectives of both the generator and the discrimi-
nator. The generator aims to minimize the expected value of log (1 — D(G(z))), the inverse
log probability of fake samples, by maximizing D(G(z)).

The discriminator aims to maximize the expected value oflog (D(x))+log (1 — D(G(z))),
by both maximizing log (D(x)), the log probability of real samples, and log (1 — D(G(z))),
the inverse log probability of fake samples. Note that this is essentially a binary cross-
entropy (BCE) loss.

In an ideal situation, the implicitly defined probability distribution pg of generator
G converges to the true data distribution pgata, with global optimum pg = pgaca [12]. In
practice, this criterion can not be reached; the generator G is only able to represent a
limited subset of all possible distributions. This also means that by default, GANs do not
have well defined stopping criteria. It requires human supervision to validate its results.

While the BCE loss is a natural choice for a two-class decision problem, it was found
that it leads to vanishing gradients during the training procedure. An improved loss
function was formulated by [13] when they introduced least squares GAN (LSGAN). This
loss function uses a least squares loss function for the discriminator objective instead of a
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BCE. They propose the use of least square loss functions to address this problem. The use
of LSGANs became widespread in practical implementations as it stabilizes training. The
modified loss function is defined as follows:

1 1
minmax Visan(D) = S Ex- pgyq ) (D)%) + Ee-pa [(D(G(2) = 04 (22

The objective of the generator is to minimize the expected value of (D(G(z)) — 1)?, the loss
for classifying fake data. The discriminator must be fooled by maximizing D(G(z)). The
discriminator aims to maximize the expected value of (D(x))? and (D(G(z) —1))2. The
term (D(x))2 represents the loss for classifying real data and (D(G(z) — 1))2 the loss for
classifying fake data.

2.4. CYCLEGAN

The idea of CycleGAN has its roots in the so-called style transfer problem, or image-
to-image translation problem. An example of such problem is transforming images of
paintings into lifelike photographs, or transforming a summer landscape into a winter
landscape. Solutions for this problem were restrained by the need for paired image
data. Such data is both hard to procure and impractical, thus the need for unpaired
image-to-image translation solutions arose.

Cycle-consistent adversarial networks were introduced for the purpose of unpaired
image-to-image translation [8] and became a staple solution. It is an extension of GAN in
which two generators and two discriminators are used, one generator and one discrim-
inator for each mapping direction. The generator takes images from one domain and
synthesizes images for the other domain. The discriminator will compute a probability
for the generated images belonging to the other domain.

Assume we have a domain X and a domain Y. We define the generators G to map
samples from X to Y and F to map samples from Y to X. This framework also produces
two discriminators Dx and Dy. Dx aims to distinguish between training samples from X
and samples produced by G. Similarly, Dy aims to distinguish between training samples
from domain Y and samples produced by F. This process is visualized in Figure 2.1.

e

| a | ¥ a
Dx Dy /F\\_/ | \_//\
v F | F

X /—\ Y ! X ( I Y X Y cycle-consistency
v cycle-consistency | __..\ > i —ﬂ.\ ----- b loss
F loss * O i @, _—/.

Figure 2.1: A diagram by [8] which visualizes the CycleGAN framework.

We define the GAN loss, which is also known as the adversarial loss, similarly as Equation
2.1:

e<gGAN((;) Dr Xr Y) = IEJ’diata(y) [log (D(y))] + [ExNPdata(x) [log (1 - D(G(x)))] . (23)
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Note that in Equation 2.1, noise z is sampled and used as input for G. In the adversarial
loss function, x is drawn from input domain X and used as input for G, and y is drawn
from output domain Y. Also note that in practical implementations, the LSGAN loss
defined in Equation 2.2 is often used over the minimax GAN loss.

In addition to the adversarial losses introduced by GANs, they introduce a cycle-
consistency loss for both mapping directions to encourage one-to-one mapping. The
intuition is to measure the similarity between a sample and the same sample mapped to
another domain and back to the original domain. Thus the cycle-consistency loss aims to
minimize the difference between a sample x € X and F(G(x)), and the difference between
asample y € Y and G(F(y)). The cycle-consistency loss is defined as follows:

Leyte G, F) = Ex-poa IFG@) = x11] + Eyepo  UGEW) =yl (2.4)

In the final loss function, an additional scaling factor Ay is used to increase or decrease
the importance of the cycle-consistency loss. The complete CycleGAN loss is then defined
as follows:

ZLcyaeaan(G, F, Dx, Dy, X, Y) = ZGan(G, Dy, X, Y) + Zan(F, Dx, Y, X) + Acycle Leycle (G, F)
(2.5)

The architecture of the generator consists of multiple convolutional layers and residual
blocks. The discriminator is implemented with a PatchGAN, a convolutional neural
network (CNN) that estimates its decision on local image patches [14].

2.5. CYCLEGAN-VC

CycleGAN has found application in the speech domain to address a range of problems. It
has most notably been applied for Voice Conversion (VC). The goal of voice conversion
is to convert the speech from a source speaker to that of a target speaker while keeping
the linguistic information intact. This method of voice conversion was first introduced
by [15], who named their framework CycleGAN-VC. It is a non-parallel voice conversion
method, meaning that it can be trained with unpaired or non-parallel speech data. With
non-parallel speech data, speech data of both domains are not paired by their linguistic
content. CycleGAN-VC converts speech by converting mel-cepstral coefficients (MCEPs).
The model has since then been iterated over several times with novel improvements. This
lead to CycleGAN-VC2 [16], CycleGAN-VC3 [17], and most recently, MaskCycleGAN-VC
[18].

In terms of architecture, CycleGAN-VC is configured to use CNNs with gated linear
units (GLUs) to better represent the sequential structure of speech. CycleGAN uses
CNNs with ReLU activation functions by default which are more suited for images. The
discriminator uses a more traditional CNN with a fully connected (FC) layer as the last
layer.

While the cycle-consistency loss constraints the structure of the mapping, on its own it
does not suffice for preserving linguistic information [15]. Therefore an identity-mapping
loss is used to better preserve linguistic information. This loss was recommended for the
original CycleGAN as well to preserve color composition between the input and output
images. The identity-mapping loss is added to the complete CycleGAN loss defined in
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Equation 2.5. Like the cycle-consistency loss, it is multiplied with a scaling factor 1iq to
decrease or increase the importance of this loss. The identity-mapping loss is defined as
follows using the symbols defined in the previous subsection:

Zid(G, F) =By ppaa i 1G(Y) = Yll1] + Exm pyoa (0 L1 F (X) — XI1]. (2.6)

For CycleGAN-VC2, [16] proposed a range of improvements to the original CycleGAN-VC
model. The most notable change is the introduction of two-step adversarial loss. This
loss is added to address the over-smoothing caused by the cycle-consistency loss. They
propose the use of additional discriminators D'y and D), for a second adversarial loss for
bidirectionally converted features. The loss is defined as follows:

LoaN, (G, E D', X) = Ex~ a9 108 (D' ()] + Exe . o llog (1 - D' (F(G@))].  (2.7)

The architecture was also modified to use a PatchGAN discriminator and the generator
architecture has been modified to use a mix of 2D and 1D convolutional layers.

CycleGAN-VC and CycleGAN-VC2 is limited in that it cannot be used to convert
mel-spectrograms, as it is unable to learn the time-frequency structures when given
these features. The harmonic structure of the output speech is compromised due to
this limitation. This led to the development of CycleGAN-VC3 and MaskCycleGAN-VC,
which are both extensions of CycleGAN-VC2. CycleGAN-VC3 uses an additional time-
frequency adaptive normalization (TFAN) module at the expense of an increased number
of parameters [17]. Increasing the number of parameters increases the computational
load and makes overfitting more likely. MaskCycleGAN-VC instead proposes a more novel
solution without having to increase the number of parameters significantly.

MaskCycleGAN-VC is the latest iteration of CycleGAN-VC proposed by [18]. They
propose a novel task which they call fill in frames (FIF), which is performed during
training. The idea of this task is to mask a part of the input mel-spectrogram, so that
the model can learn to synthesize what is missing using the surrounding (non-masked)
sections. This in turn allows the model to learn the time-frequency structures such that
output can be generated with proper harmonic structure.

The FIF procedure is illustrated in Figure 2.2. Given a source mel-spectrogram x € R?**
with ¢ the number of frames, and b the number of filter banks, an equally sized binary
mask m € RP*? is created. The mask contains a randomly selected temporal region which
is set to zero. The mask is applied element-wise on x to produce £. The generator G is
given a channel-wise concatenation of £ and m to produce y'.

¥y’ = G(concat(%, m)) (2.8)

The conditional information given by m allows the generator G to fill in the blanks. To
measure the cyclic loss with the input x, y’ must first be converted back to the original
domain using the generator F. The generator F is given a channel-wise concatenation of
¥ and an all-ones mask m’ of equal dimensions. This produces x":

x" = F(concat(y', m)) (2.9)
The cyclic loss can now be defined with an additional cycle-consistency-like loss:

chycle(G» F) = Ex~pyata (%), m~pata (m) (%" = xll1]. (2.10)
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This loss encourages G to fill in frames using information from surrounding frames. It
is a self-supervised process to learn the time-frequency structure in a mel-spectrogram.
Unlike CycleGAN-VC3 it does not increase the number of model parameters significantly.

Cycle-consistency loss

l Forward Inverse l
Missing frames conversion  Converted — conversion Reconstructed

Adversarial Second
loss adversarial
loss

m m/

Figure 2.2: A diagram by [18] which visualizes the FIF procedure.

2.6. RELEVANT WORK

We will now look at recent work which uses CycleGAN(-VC) or similar models to make
dysarthric or atypical speech more intelligible for ASR systems. These works directly
influenced our interest for this particular research direction.

2.6.1. DYSARTHRIC-TO-HEALTHY SPEECH CONVERSION

A dysarthric-to-healthy speech mapping solution using CycleGAN was proposed by [7]
to improve intelligibility of dysarthric speech. They use the CycleGAN model to map
mel-spectrograms of dysarthric speech to healthy speech. They interpreted the problem
as a style transfer problem, similarly to CycleGANs original problem.

Their CycleGAN implementation follows the same architecture as the original Cy-
cleGAN implementation by [8]. The CycleGAN model is trained with samples from a
Korean-speech database known as the Quality of Life Technology (QoLT) database,
which consists of 100 dysarthric speakers of various severities and 30 healthy control
speakers. A selection of 187 utterances are available for each speaker.

The waveforms of dysarthric and healthy speakers were first converted into mel-
spectrograms with an unknown vocoder. Afterwards the model was trained with parallel
training data. One hundred dysarthric utterances and 200 control utterances from the
QoLT database were converted using the model. The ASR performance in Word Error
Rate (WER) were measured with an open source speech recognition engine from Google.
The results of these experiments were promising, as a WER of 33.3% was measured for
converted dysarthric speech, while a WER of 67.7% was measured for dysarthric speech,
an improvement of 33.3%.
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Another work by [9] proposed the use of Discover GAN (DiscoGAN) with Mean Square
Error (MSE) regularization for improving the intelligibility of dysarthric speech. DiscoGAN
is similar to CycleGAN, differing mostly in the losses used. Instead of using a single cycle-
consistency loss, it uses two reconstruction losses for both mapping directions [19]. They
propose to train a MMSE DiscoGAN model for mapping MCEPs from dysarthric to healthy
speech. They also apply a time-alignment technique on the parallel training data. This is
done using Dynamic Time Warping (DTW).

In their experiments, they train and validate the model using the UASpeech corpus.
The UASpeech corpus is a parallel dysarthric speech dataset [11]. A subset of the speakers
were selected for training and testing. The MCEPs were first extracted using AHOCODER
from the dysarthric speech and control speech training sample. DTW was applied to align
the features and afterwards the model was trained to map the features from dysarthric
to healthy speech. They also trained a baseline mapping method using a deep neural
network (DNN) based architecture for later comparison.

An ASR was set up to measure the performance in Phoneme Error Rate (PER). The
converted speech of the DNN baseline model were measured and compared with the
converted speech produced by MMSE DiscoGAN as well as the baseline dysarthric speech.
The DiscoGAN model achieved on average a 22.59% relative decrease in PER for female
speakers, and a 6.25% relative decrease in PER for male speakers with respect to the
baseline dysarthric speech. The DiscoGAN model outperforms the DNN baseline model
with on average a 9.64% and 13.16% improvement in PER for female and male speakers
respectively. They conclude that a GAN-based method is efficient for dysarthric-to-
healthy speech conversion and preferable over DNN-based methods.

2.6.2. OTHER ATYPICAL SPEECH CONVERSION

We highlight some additional studies done in the domain of atypical-to-normal speech
conversion. We first look at whisper-to-normal speech solutions. These tackle the prob-
lem of converting soft spoken or whispered speech into normal speech. A CycleGAN-
based approach was proposed by [20]; in their work they compare the CycleGAN-based
method with a previously established DiscoGAN baseline. With objective measurements,
they found that the results are comparable to the baseline, and superior in terms of FO
prediction. In subjective evaluations, 55.75% preferred the CycleGAN-based method
over the baseline, and they concluded that the CycleGAN-based method yields more
natural-sounding converted speech.

Emotional voice conversion aims to change the emotional state of a given input
speech, while preserving the linguistic content and speaker identity. An example of this
problem is changing the speech of a female speaker from sad to happy. A CycleGAN-
based solution was proposed by [21]. CycleGAN is beneficial over previous methods as
it allows non-parallel voice conversion. Previous methods required parallel speech data
between different emotional states, which is impractical. Another key aspect of their
work is effective FO conversion using CycleGAN. This is done by first modelling the FO in
different temporal scales using wavelet transform and then converting these scales using
a separate CycleGAN model.



METHODOLOGY

In this chapter we present our methods that allows us to conduct experiments for our
research questions. In section 3.1, we first elaborate on the need for dysarthric speech
data for our experiments, and the requirements that the speech data has to fulfill. We
present the dysarthric speech dataset that we have chosen, and how we select a subset of
the data for training and testing.

In section 3.2 we present the CycleGAN implementations that we have chosen for our
experiments, according to the requirements of our research questions. Afterwards we
discuss the need for feature extraction and data pre-processing in section 3.3.

Evaluation is an important aspect of our experiments. The root of the issue is that
modern ASRs are not able to understand dysarthric speech. We aim to enhance the
dysarthric speech so that it becomes more intelligible for ASRs. We therefore require ASRs
that can emulate modern ASRs which are trained to recognize healthy speech. This will
help us to measure the performance of the CycleGAN-based method objectively using
measures such as word error rate and phoneme error rate. We delve deeper into this topic
in section 3.4.

13
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3.1. DATASET

We require dysarthric speech data to conduct our experiments. The speech dataset must
also be a parallel dataset, a dataset where dysarthric speech data is paired with healthy
speech data that has equivalent linguistic content. Parallel speech data is useful for the
evaluation our experiments. The ASR performance of different types of speech can only
be fairly compared if the linguistic content is equivalent. Parallel speech data will also be
necessary for RQ2, where we conduct experiments with models trained on parallel speech
data. As mentioned before, dysarthric speech data is scarce. Our choice of a publicly
available dysarthric speech dataset been restricted to two choices, the UASpeech corpus
[11] and the TORGO database [22].

The Universal Access Speech Technology Corpus, also known as UASpeech, was
introduced by [11]. This corpus contains dysarthric speech data of four female and 13
male dysarthric speakers. Each dysarthric speaker is paired with a healthy control speaker;
the control speaker provides the healthy equivalent of the dysarthric speech data. The
severity of the speakers range from high (6% speech intelligibility) to low (95% speech
intelligibility), and the utterances are carefully chosen to be phonetically balanced.

The TORGO database [22] is an English-speech dysarthric speech corpus. This corpus
contains recordings of non-words, short words and both restricted and unrestricted sen-
tences. Restricted sentences were carefully chosen by the authors according to certain
requirements. Unrestricted sentences are not limited by any specifications or require-
ments. A total of three female dysarthric speakers and five male dysarthric speakers are
available, and each dysarthric speaker is paired with a healthy control speaker. However,
the speech data are not paired according to their linguistic content.

A Dutch Dysarthric Speech Database was recently introduced [23]. At the early stages
of this project we considered applying our solutions on Dutch dysarthric speech. Having
access to the Dutch Dysarthric Speech Database would have greatly assisted us in this
endeavour. However, due to GDPR laws, we were unable to get access to the dataset and
thus unable to pursue this path any further.

There are pros and cons for both UASpeech and TORGO; both datasets organize their
recordings as easily accessible WAV files, which are arranged by speaker. The main benefit
of TORGO is that it also offers recordings of sentence-level utterances, while UASpeech
only provides recordings of single word utterances. However, UASpeech is a parallel
speech dataset and is clearly organized as such; in contrast, the TORGO database is by
and large organized in a non-parallel manner, meaning that paired speech data is missing
or not labeled as such. Each dysarthric speaker in the UASpeech corpus has a fixed
number of pre-labeled dysarthric speech recordings (bar data corruption) and the control
speakers provide an equal number of parallel healthy speech recordings.

In TORGO, each speaker provides a variable number of utterances. The recordings
are labeled by number, and a prompt file with the transcription is provided for each
recording. While each dysarthric speaker is paired with a control speaker, the recordings
are not paired according to its utterance; the recordings are labeled randomly, and no
correct pairing could be established between equally labeled recordings from a dysarthric-
control speaker pair. There is also an imbalance in the number of recordings between the
available speakers, as some speakers have more recording sessions and more recordings
available compared to other speakers.
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We use the UASpeech corpus for our experiments to reproduce the experiments con-
ducted by [9], and we do not conduct additional experiments with the TORGO database.
UASpeech allows us to compare evaluations between different types of speech, and also
allows us to perform parallel data experiments. This would not be possible with TORGO
due to its non-parallel file organization. Thus, we only focus on conducting experiments
with the UASpeech corpus.

3.1.1. DATA SELECTION

We select a subset of the speakers available in UASpeech to create a gender balanced
training set. For this we follow [9] by selecting four male speakers (M05, M08, M09 and
M10) and four female speakers (F02, FO3, F04 and F05). An overview of the selected
speakers and their speech intelligibility and dysarthria diagnosis is provided in Table 3.1.
A total of 765 utterances were recorded per speaker using a 7-channel microphone array.

Table 3.1: An overview of the selected speakers.

Speaker | Intelligbility Diagnosis
MO05 58% Spastic
MO8 93% Spastic
M09 86% Spastic
M10 93% Unknown
Fo2 29% Spastic
F03 6% Spastic
F04 62% Athetoid

F05 95% Spastic

Of the 765 utterances, 300 are unique utterances of uncommon words. The remaining 465
utterances can be divided in three repetition batches. Each batch consists of utterances
of 10 digits, the English alphabet, 19 computer commands and 100 common words, a
total of 155 utterances. Thus a total of 455 unique utterances are available per speaker,
which we will be used for training and testing. Of the seven available microphones, we
follow [9] and select only recordings of microphone number 3.

While a specific reason for the speaker and microphone selection was not provided
by [9], we can infer their reasoning after our own inspection and validation pass of the
corpus. We assume that due to the gender imbalance, the authors decided to compensate
this by only selecting four male speakers.

Missing and corrupted files might also be a reason why certain male speakers were
omitted from the selection. Despite the good overall quality of the dataset, we deduce that
the data for certain speakers are incomplete. In particular, recording files may be missing
for certain microphones and some files have been corrupted, providing no speech at all.
We have validated that the chosen male and female speakers in combination with the
selected microphone do not suffer from the previously mentioned issues.
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3.1.2. TRAINING SCHEME

Similar to [9], we will use a leave-one-out cross-validation scheme when training and
evaluating a model. This essentially means that we will train a separate model for every
speaker combination. With four speakers per gender, we have four combinations per
gender. If we take the male speakers as an example, one model will be trained with
speakers M05, M08 and M09, and evaluated with speaker M10. This means that every
model will be trained with 1365 utterances from three different speakers, and evaluated
with 455 utterances from the remaining speaker. Table 3.2 summarizes the test and
training speakers per model.

Table 3.2: An overview of every speaker combination for training and evaluation.

Test Speaker Training Speakers

MO05 M08, M09, M10
MO8 MO05, M09, M10
M09 MO05, M08, M10
M10 MO05, M08, M09
F02 F03, F04, F05
F03 F02, F04, F0O5
Fo4 F02, F03, F05
F05 F02, F03, F04

Training the conversion model requires source speech and target speech. We input
speech from the three dysarthric speakers (e.g. M05, M08 and M09) as source speech. As
mentioned before, each dysarthric speaker is paired with a healthy control speaker. These
control speakers are denoted by prepending the letter C to the speaker id (e.g. CMO05,
CMO08, CMO09 etc.). We input speech from the control speakers (e.g. CM05, CM08 and
CMO09) as the target speech. After training the model, we convert the dysarthric speech of
the test speaker (e.g. M10) using the trained conversion model. This example is visualized
in Figure 3.1.

Training
i Source Speech Target Speech E
i M05, MOS, CMO5, CMO8, i
| M09 CycleGAN CMO9 ;
Evaluation
i Input Speech Qutput Speech i
E Converted i
i M10 CycleGAN M0 :

Figure 3.1: A diagram that visualizes the training procedure with speakers M05, M08, M09 for training, and M10
for evaluation.
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3.2. MODEL AND ARCHITECTURE

Our research question focuses on the use of CycleGAN models for the purpose of dysarthric-
to-normal speech conversion. To find appropriate implementations for RQ1, we have
looked at CycleGAN implementations used for voice conversion; these implementations
are already adapted to handle speech and speech audio features. We have chosen two
implementations for our experiments.

The first model implementation is based on a PyTorch implementation of CycleGAN-
VC by [24]. CycleGAN-VC is the first iteration of a series of CycleGAN-VC models by
[15]. It represents a baseline CycleGAN model without any improvements or upgrades to
conduct our experiments with. This implementation also allows us to conduct experi-
ments specific for RQ2, where we apply modifications such as training with parallel data
and dynamic time warping. We will elaborate further on these modifications and the
CycleGAN-VC implementation itself in the next section.

The second model is a MaskCycleGAN-VC implementation by [25]. MaskCycleGAN-
VCis thelatest iteration of CycleGAN-VC [18]. This model has the latest improvements and
represents a state-of-the-art CycleGAN model for our experiments. This implementation
includes pre-processing pipelines which are meant for voice conversion datasets such as
VCC2018. We have modified the pipelines so that speech data from the UASpeech corpus
can be processed, while leaving everything else unaltered. Further details are provided in
Section 3.2.2.

3.2.1. CYCLEGAN-VC IMPLEMENTATION

The initial CycleGAN-VC implementation was first sanity-checked to validate that the it is
working as intended. We have tested the model by letting it perform its intended purpose
of voice conversion. Similar to [15], we tested the model using VCC2016 data [26]. We
converted source speaker SF1 to target speaker TF2 and compared the results with the
baseline samples from the CycleGAN-VC website [15].

We have also conducted some preliminary experiments by training the model with
a leave-one-out training scheme as described in Section 3.1.2. We have picked one
combination from Table 3.2 to test the training scheme that we have chosen for our main
experiments, and to validate that speech data from the UASpeech corpus can be used
with the implementation.

Following our validation of the model we haven chosen to change the default FO
conversion model. The FO conversion model takes care of transforming the fundamental
frequency during the mapping process. The main reason for changing the conversion
model is that conceptually, the default FO conversion model was intended for single
speaker conversion, while our training schemes require mapping speech sourced from
multiple speakers.

The default FO conversion model uses a logarithm Gaussian normalized transforma-
tion to map the F0. This method of transformation assumes the FO can be modeled with
a single Gaussian model, which does not hold up when multiple speakers are involved.
The use of the default FO conversion model in our preliminary experiments resulted in
either unnatural sounding speech or sonic artifacts.

The default FO conversion model has been replaced with a framework proposed by
[21], in which a separate CycleGAN model is used to map the fundamental frequency. Two
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Training

CWT B Lo CcWT
FO 10-Scale FO CycleGAN 10-Scale FO FO

Source Target
Speccn | WORLD WORLD Spesch

Sp MCEPs ChEEERY MCEPs Sp

Figure 3.2: A diagram by Zhou et al. which visualizes the proposed framework [21]. Note that the FO is first
decomposed into 10 scales using CWT.

separate CycleGAN models, one for MCEPs mapping and one for FO mapping, are trained
sequentially. In the work of [21], both models are inferred for the purpose of emotional
voice conversion.

We have validated this framework by running the preliminary experiment again using
the new F0O conversion model. Following a subjective evaluation we confirm that the
converted speech sounds more natural, and that sonic artifacts are absent.

TIME ALIGNMENT AND TWO-STEP ADVERSARIAL LOSS

For our experiments for RQ2 we look to modify the CycleGAN model to potentially
improve the baseline model performance. Firstly, we propose to add a time alignment
method to the training process of the CycleGAN-VC implementation. A time alignment
technique was also used by [9], but it remains unclear if this had a favorable impact on
the results. We would thus like to find out if this is the case.

A time alignment step would require the model to train with parallel data. We can
only time align a dysarthric recording and a control recording if they have the same
linguistic content. Since CycleGAN-VC is by default a non-parallel voice conversion
method, we have customized the implementation to allow parallel utterances as well. We
use Dynamic Time Warping (DTW) to implement time alignment as an optional step
during data loading. In our experiments we will compare the ASR performance between
models with parallel data setups with DTW and models with non-parallel data setups
without any time alignment.

Finally, we look into implementing a two-step adversarial loss for the CycleGAN-VC
implementation. The two-step adversarial loss is one of the improvements introduced for
CycleGAN-VC2 and aims to improve the model object and to mitigate the negative effect
of oversmoothing [16]. Two-step adversarial loss is thus also included in MaskCycleGAN-
VG, since it is an extension of CycleGAN-VC2. We have implemented two-step adversarial
loss into the CycleGAN-VC implementation, and we conduct experiments to compare the
performance of models with and without two-step adversarial loss.

3.2.2. MASKCYCLEGAN-VC IMPLEMENTATION

The MaskCycleGAN-VC implementation by [25] was taken as is. We did not perform
any additional modifications to the model parameters or framework. Changes were only
made to the pre-processing pipeline to adapt the UASpeech dataset for this model.

As with the CycleGAN-VC implementation, we performed sanity checks to ensure
the implementation works as intended. We use the VCC2018 dataset and convert source
speaker VCC2SF3 to target speaker VCC2TM1. We train the model and compare the
converted samples with samples from the MaskCycleGAN-VC website [18]. We did not
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find any inconsistencies after assessing the results. We thus proceeded with the given
implementation without modification.

3.2.3. MODEL CONFIGURATION
We set up our CycleGAN-VC model with a fixed set of hyper-parameters. The model
configuration is similar to the configuration proposed in [15]. The network is trained using
an Adam optimizer with §; = 0.5 and B2 = 0.999, with an initial learning rate of 0.0002
for the generator and 0.0001 for the discriminator. After 2 x 10° iterations, the learning
rates linearly decay over 2 x 10° iterations. Acycle = 10 and Ajq = 5 are set to regularize the
cycle-consistency loss Zcycle and the identity loss £iq. After 1 x 10* iterations, %q is set
to 0. A batch size of 1 is used during the training procedure, and a segment of 128 frames
is randomly selected from a training sample. The CycleGAN-VC model is trained for 1000
epochs

The MaskCycleGAN-VC model is by and large similarly configured as the CycleGAN-
VC model. However, the learning rates are set to decay after only 1 x 10* iterations.
For MaskCycleGAN-VC, 80-dimensional mel-spectrogram features are extracted and
precomputed using librosa [27]. Segments of only 64 frames are randomly selected from
the training samples. The MaskCycleGAN-VC model is trained for 300 epochs.
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3.3. DATA PRE-PROCESSING AND FEATURE EXTRACTION

To perform our experiments we require a way to extract the desired features from the
speech data and modify the speech data available to us. The former is important for
all our experiments, as the model only accepts certain features for training. The latter
is important to conduct experiments for RQ3, where speech data must be denoised or
time-stretched before features are extracted.

We have set up a pre-processing pipeline so that we can modify speech data and
extract features. This pipeline will extract for every 5 milliseconds: Mel-cepstral coeffi-
cients (MCEPs) of predetermined dimensions from the raw WAV files using the WORLD
vocoder [28], the logarithmic fundamental frequency (log Fp), and the aperiodicities (APs).
A recording will thus be decomposed into the following features: A vector of log Fy values,
avector of MCEP coefficients (also known as a frame; each frame represents a segment of
the total recording), and lastly a vector of APs.

We have set up a separate audio pre-processing pipeline to enable us to modify the
waveform so that we can for example apply denoising or time stretching before the feature
extraction is performed. For denoising we use a Python package called noisereduce [29].
However, the UASpeech corpus has already been denoised using the same noise reduction
algorithm, thus no additional denoising was performed '. The time stretching procedure
is given more attention in Section 3.3.1.

The next audio pre-processing step is related to loud clicking noises present in the
recordings, which occur at either the start or the end of a recording. Following this
discovery, we have added a pre-processing step which removes the first and last 200
milliseconds of recording. This solution removes most traces of the undesired clicking
noise.

Another point of attention is related to the training process of the model implemen-
tation. When a training sample is processed, a fixed-length segment of 128 frames is
randomly selected from the extracted frames. The selected frames are then fed into the
CycleGAN model. If 128 frames cannot be selected, the process will malfunction and
training cannot continue. For this reason we require recordings used for training to have
aminimum length. We have determined that a minimum length of one second suffices
to extract at least 128 frames. To ensure that each recording is long enough, we trim the
existing leading and trailing silences and zero-pad the remaining waveform to a 1 second
minimum duration in a pre-processing step.

No additional work is required for the MaskCycleGAN-VC model. The model imple-
mentation already contains a complete pre-processing pipeline that takes care of the nec-
essary feature extraction. However, instead of MCEPs, 80-dimensional mel-spectrogram
features are extracted and precomputed using librosa [27].

MCEP DIMENSIONALITY

We were interested in discovering the consequences of increasing the feature dimensional-
ity of MCEPs. The experiments performed by [9] used 40-dimensional MCEPs as features
[9]. CycleGAN-VC however uses 24-dimensional MCEPs by default [15]. The increase in

1 An earlier version of UASpeech corpus was considerably more noisy. This prompted us to implement a way to
denoise the recordings using noisereduce, which became unnecessary upon obtaining the latest version of
UASpeech.
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dimensionality can be beneficial for improving the perceived quality of the converted
speech. This is not without risk however, as increasing dimensionality increases the
complexity of the network and can thus negatively influence the models ability to learn.
This phenomenon is also known as the Curse of Dimensionality.

We have conducted preliminary experiments in which we train a model with 34-
dimensional MCEPs and 40-dimensional MCEPs, both models were trained for 1000
epochs. We noticed instability during training for both 34-dimensional MCEPs and 40-
dimensional MCEPs. In the end, the model was not able to converge and the resulting
converted speech samples were noisy and did not represent speech. Following this result
we have decided to leave the features as 24-dimensional MCEPs.

3.3.1. TIME STRETCHING

A common and often pronounced effect of severe dysarthria is an abnormal or reduced
rate of speech. This is a widespread occurrence for many types of dysarthria. The possible
intelligibility improvements of adjusting the speech rate of dysarthric speech is already
well known [30]. A more recent study [31] found that adjusting abnormal speech rate on
typical speech can improve performance on ASRs. CycleGAN-based voice conversion
does not change the speech rate of the converted speech which thus requires an separate
solution.

Since we will conduct experiments with both time-stretched speech and non-time-
stretched speech, we have added an optional audio pre-processing step where we can
adjust the speech rate of dysarthric speech utterance using audio time stretching. With
time stretching we can increase or decrease the speed or duration of a recording without
affecting the pitch.

The main idea is to adjust the speech rate of the dysarthric speaker based on the
speech rate of the paired control speaker (e.g. M05 is adjusted according to CM05). We
compute the speed-up ratio by dividing the duration of the dysarthric utterance by the
duration of the parallel healthy utterance. The duration of the dysarthric sample will be
decreased (or increased) by a factor of the speed-up ratio.

Time stretching is performed using a function available in librosa [27], a Python
package for music and audio analysis. In our experiments for RQ3 we will measure the
ASR performance of models that use time-stretched dysarthric speech data as input. The
ASR performance will then be compared with our other results.
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3.4. ASR SYSTEM

For objective evaluation of our experiments, we emulate ASR systems present in home
devices and smart phones, which are trained to recognize healthy English speech. With
these ASR systems we can measure the phoneme error rate (PER) or word error rate (WER)
of dysarthric speech, converted speech produced by CycleGAN models and healthy
control speech. This allows us to compare the performance metrics between the different
types of speech. The ASRs must be pre-trained with an English read speech corpus since
the UASpeech corpus is an English read speech corpus as well. The purpose of measuring
PER is for a more nuanced performance analysis, as improvements in intelligibility can
sometimes only occur in the phoneme-level rather than the word-level.

We use a pre-trained Kaldi ASR with the same specifications as the ASR used by [9]
for the purpose of phoneme recognition. The phoneme recognition system was trained
with the TIMIT dataset and uses a HMM acoustic model. The TIMIT corpus is an English
read speech corpus specifically designed for acoustic-phonetic studies [32]. The Kaldi
scoring system uses a tool called SCLITE to measure the PER. In order to measure the
PER, we require phonemic transcriptions of the UASpeech utterances. We have used a
Python package called g2p-en [33] to transcribe the word transcriptions of the utterances
into phonemic transcriptions.

3.4.1. PRELIMINARY WER EXPERIMENTS

To measure WER, we have used a pre-trained ESPNet ASR [34] trained with LibriSpeech.
An ESPNet-based ASR provide state-of-the-art performance and is easily accessible and
configurable using their Python API. LibriSpeech is an English-speech dataset comprised
of a collection of 1000 hours of audiobook data [35]. Due to sheer quantity of data it is
a popular choice for training English ASRs. Following preliminary experiments where
we measured the WER of converted speech of earlier preliminary experiments, we have
decided against using measuring WER for our main experiments.

We initially planned to perform and include experiments where we measure WER as
well, but we have since then reconsidered this idea after taking into account the context of
our experiments. The UASpeech corpus which we use in our experiments only provides
word-level utterances. This means the ASR cannot rely on contextual cues that could be
found in sentence-level utterances to decode the word utterance. It also means that the
ASR relies on, and is more prone to, cues on the phoneme-level. If the ASR is not able to
recognize a certain phoneme in a word utterance, it can cause the ASR to recognize it as a
completely different word. While WER measurements are more representative of the real
world problem, within the limitations of our experiments we believe that measuring WER
will not give us further insight into the problem that we are trying to dissect.



EXPERIMENTS AND RESULTS

To find answers for our research questions, we conduct various experiments. The basis of
our experimental design is a reproduction of [9]. In their work they trained a DiscoGAN
model using speech data from the UASpeech corpus with the purpose of converting
dysarthric speech into typical speech. Afterwards, they measure the ASR performance in
terms of Phoneme Error Rate (PER) using an ASR specified in Section 3.4.

As outlined in Section 3.3, four male speakers and four female speakers are selected
for training and testing. Separate models are trained for male and female speakers, and a
leave-one-out training scheme is used to train and evaluate a model. To evaluate a model,
the speech data of the test speaker is converted using the trained model, and the ASR
performance of the converted speech is measured and compared to the ASR performance
of dysarthric speech as well as the (healthy) control speech.

In order to find an answer for RQ1, we conduct a similar experiment as [9]. We substi-
tute the model with the models that we have outlined in Section 3.2, namely CycleGAN-VC
and MaskCycleGAN-VC. Using the selected speakers and training scheme, we train and
evaluate a total of eight models per gender.

To answer RQ2, we repeat the experiment while substituting the model with modified
CycleGAN-VC models. We will train four models per gender for the following modified
models:

* CycleGAN-VC with parallel data and DTW
* CycleGAN-VC with two-step adversarial loss
* CycleGAN-VC with parallel data, DTW and two-step adversarial loss

A total of 12 models per gender will be trained and evaluated. The exact modifications are
detailed in Section 3.2.

For RQ3, we will revisit all the models that we have trained so far. We first pre-process
the selected speech data to create time-stretched dysarthric speech for every speaker as
explained in Section 3.3.1. Afterward we will re-evaluate all 20 models per gender using
time-stretched dysarthric speech.

23
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4.1. RESULTS

4.1.1. BASELINE EXPERIMENTS

Our first experiment sets a baseline ASR performance for the control speech, the dysarthric
speech and the converted speech of the chosen models. The PER results for male speakers
are shown in Table 4.1 and the PER results for female speakers are shown in Table 4.2. The
PER results are shown for individual speakers separately and averaged over all speakers.
We also include the results of [9] for comparison. Note that empty cells refer to data that
was not given or specified by [9].

We have measured a lower average PER for the control speech than [9]. We similarly
measured a lower average PER for male dysarthric speakers than [9]. This is not the case
however for female dysarthric speakers, where we measured a small increase in PER
compared to [9].

The converted speech produced by CycleGAN-VC and MaskCycleGAN-VC does not
improve on the ASR performance of the dysarthric speech. An increase in average PER
relative to the average PER of dysarthric speech is observed for both genders. However,
MaskCycleGAN-VC does outperform CycleGAN-VC for both genders.

Table 4.1: The ASR performance in PER of male speakers. Bold highlights column-wise the best result.

MO05 M08 M09 M10 Average
Control 53.9% 48.2% 57.6% 55.6% 53.8%
Dysarthric 94% 64.1% 70% 68.8%  74.2%
CycleGAN-VC 106.8% 72.6% 76.6% 81.7% 84.4%
MaskCycleGAN-VC | 102.5% 73.8% 77.1% 67.3%  80.2%
Control by [9] - - - - 64.7%
Dysarthric by [9] - - - - 77.9%
DNN by [9] - - - - 82.9%
DiscoGAN by [9] - - - - 73.3%

Table 4.2: The ASR performance in PER of female speakers. Bold highlights column-wise the best result.

F02 F03 F04 F05 Average
Control 56.9% 61.6% 74.0% 53.1% 61.4%
Dysarthric 109% 89.8% 79.9% 85.9% 91.2%
CycleGAN-VC 122.6% 99.2% 91.4% 105.3% 104.7%
MaskCycleGAN-VC | 116.9% 96.3% 78.8% 89.9% 95.6%
Control by [9] - - - - 65.4%
Dysarthric by [9] - - - - 87.1%
DNN by [9] - - - - 75.7%
DiscoGAN by [9] - - - - 71.1%
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4.1.2. MODEL MODIFICATION EXPERIMENTS

We investigate the performance effects of the individual modifications. We label the
models with parallel data and DTW with ‘DTW’ in our results table. A model with a two-
step adversarial loss is labeled as ‘2-STEP’. We also highlight performance improvements
or deterioration with respect to the baseline model with green and red respectively. The
results of the experiments are shown in Table 4.3 and 4.4.

Overall, we observe that no modified model improves on the baseline dysarthric
speech performance. However, some modified models improve on the performance
of the baseline CycleGAN-VC model. For CycleGAN-VC with DTW, we measure a PER
decrease for speakers M05, M09 and M10. The average PER for male speakers decreases
relatively by 1.8%. For female speakers, we measure small improvements for FO2 and F03
and the average PER decreases relatively by 0.5%.

When two-step adversarial loss is introduced, we find small performance gains for
speakers M05, M09 and M10. Speaker M08 however degrades with a relative increase
in PER of 5.7%. This causes the average PER of CycleGAN-VC with two-step adversarial
loss to increase slightly with respect to the baseline model. We similarly measure small
performance gains for female speakers F04 and F05, and on average we measure a relative
PER decrease of 0.6%.

Introducing two-step adversarial loss together with DTW does not improve the ASR
performance for male speakers. We measure an increase in PER for every male speaker,
and the highest average PER overall. However, we measure the lowest average PER for
female speakers, with a relative PER decrease of 1.0%. This is caused by speaker FO3 and
F04 improving on the performance of CycleGAN-VC with two-step adversarial loss, and
speaker FO5 improving on the performance of the baseline model.

Table 4.3: The ASR performance in PER on modified CycleGAN-VC models trained with male speakers. ‘DTW’
denotes a model with a parallel data setup and DTW. ‘2-STEP’ denotes a model with two-step adversarial loss.
Green highlights performance improvements with respect to the baseline model, while red highlights
performance deterioration. Bold highlights column-wise the best result.

MO05 MO8 MO09 M10  Average
Dysarthric 94% 64.1% 70% 68.8% 74.2%
CycleGAN-VC 106.8% 72.6% 76.6% 81.7%  84.4%
CycleGAN-VC + DTW 103.6% 74.6% 752% 78.3%  82.9%
CycleGAN-VC + 2-STEP 105.7% 77.0% 76.5% 80.4%  84.9%
CycleGAN-VC + 2-STEP + DTW | 107.1% 75.8% 76.8% 83.2%  85.7%

Table 4.4: The ASR performance in PER on modified CycleGAN-VC models trained with female speakers. See
Table 4.3 for clarification.

Fo2 Fo3 Fo4 F05 Average
Dysarthric 109% 89.8% 79.9% 85.9% 91.2%
CycleGAN-VC 126.1% 101.5% 89.6% 103.2%  105.2%
CycleGAN-VC + DTW 122.6% 99.2% 91.4% 1053% 104.7%
CycleGAN-VC + 2-STEP 126.6% 103.3% 89.0% 99.0%  104.6%
CycleGAN-VC + 2-STEP + DTW | 127.2% 102.1% 86.6% 100.0% 104.1%
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4.1.3. TIME-STRETCHED SPEECH EXPERIMENTS

We measure the ASR performance of converted time-stretched speech for all our previ-
ously trained models. These results are labeled with ‘TS’. The results of these experiments
are shown in Table 4.5 for male speakers and Table 4.6 for female speakers.

For time-stretched dysarthric speech, we measure a decrease in the average PER for
both genders with respect to the baseline dysarthric speech. Speakers M05, F02, F03 and
F05 benefit the most from time stretching, and small performance gains were found for
speakers M10 and F04. The average PER decreases relatively by 19.8% for female speakers
and 5.5% for male speakers. This is similar to the 22.6% and 6.25% improvement found
for the DiscoGAN-based method by [9].

None of the CycleGAN-VC-based models improve on the ASR performance of time-
stretched dysarthric speech, but some modified models do improve on the performance
of the baseline model. Introducing DTW improves the performance of male speakers M05,
M09, M10 and female speakers F02 and F03. Introducing two-step adversarial loss results
in slight performance gains for male speakers M05 and M10, and female speakers F03
and F05. When both modifications are introduced we measure a slight PER decrease for
all female speakers with respect to the baseline model, and for male speakers we measure
a slight PER decrease for speaker M05 and M10.

The MaskCycleGAN-VC model shows on average a very similar ASR performance to
time-stretched dysarthric speech for both genders. It achieves the lowest PER for speakers
MO05, F02 and F04. For the remaining speakers we find that the PER is higher than the PER
of time-stretched dysarthric speech, but lower than the PER of CycleGAN-VC models.
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Table 4.5: The ASR performance in PER of all models trained with male speakers, evaluated with time-stretched
dysarthric speech. ‘DTW’ denotes a model with a parallel data setup and DTW. ‘2-STEP’ denotes a model with
two-step adversarial loss. ‘TS’ denotes time-stretched dysarthric speech data is used as input. Bold highlights
column-wise the best result. Green and red highlight positive and negative performance differences
respectively between the modified CycleGAN-VC model and the baseline model.

MO05 M08 M09 M10  Average
Dysarthric 94% 64.1% 70% 68.8% 74.2%
Dysarthric + TS 76.6% 68.9% 70.4% 65.4% 70.3%
CycleGAN-VC + TS 78.8% 733% 763% 77.1%  76.4%
CycleGAN-VC + DTW + TS 78.1% 74.4% 75.5% 74.6%  75.7%
CycleGAN-VC + 2-STEP + TS 78.7% 793% 77.8% 764%  78.1%
CycleGAN-VC + 2-STEP + DTW+ TS | 76.7% 75.6% 78.0% 76.4%  76.7%
MaskCycleGAN-VC + TS 69.2% 69.3% 75.0% 69.4%  70.7%

Table 4.6: The ASR performance in PER of all models trained with female speakers, evaluated with
time-stretched dysarthric speech. See Table 4.5 for further clarification.

F02 F03 F04 FO05  Average
Dysarthric 109% 89.8% 79.9% 85.9% 91.2%
Dysarthric + TS 81.8% 793% 755% 67.9% 76.1%
CycleGAN-VC + TS 83.5% 86.3% 80.9% 79.0% 82.4%
CycleGAN-VC + DTW + TS 81.2% 85.6% 84.2% 77.3%  82.0%
CycleGAN-VC + 2-STEP + TS 83.5% 85.7% 8l1.6% 77.8%  82.2%
CycleGAN-VC + 2-STEP + DTW + TS | 83.4% 85.8% 80.2% 78.8%  82.1%
MaskCycleGAN-VC + TS 75.4% 82.8% 73.9% 725%  76.2%







DISCUSSION

5.1. BASELINE EXPERIMENTS

We outline a complete overview of all our results in Table 5.1 for male speakers and Table
5.2 for female speakers. The PER results are shown for individual speakers separately
and averaged over all speakers. The results of [9] are also included in both tables for
comparison. Note that empty cells refer to data that was not given or specified by [9].

The first thing to note is that our average PER for the control speech is lower than the
average by [9]. This can be caused by a few factors. One such factor is the application of
a denoising algorithm to the UASpeech corpus, as described in section 3.1, which was
performed after the work by [9]. We have also manually removed noisy artifacts such as
clicking noises from the speech data.

This could also explain the improved dysarthric speech baseline for male speakers;
however, this improvement was not found for female dysarthric speakers. We suspect
that speakers with low speech intelligibility, such as speakers F02, FO3 and F04, are less
susceptible to improvements in the audio quality. Furthermore, our male dysarthric
speakers consists mostly of low severity cases with high speech intelligibility, with speaker
MO5 being an exception. We conclude that the improved audio quality of the UASpeech
corpus is beneficial for improving the ASR performance of speakers with high speech
intelligibility.

It seems that on first glance using CycleGAN-based speech conversion does not
directly improve the intelligibility of the converted speech in terms of PER. Both our
CycleGAN-VC model and MaskCycleGAN-VC model show less than stellar results. The PER
of converted speech often increases the PER instead of decreasing it which is especially
noticeable for CycleGAN-VC. In contrast, the work by [9] show on average a decrease in
PER for DiscoGAN-based converted speech.

There are multiple reasons why no improvements are observed. Because of our im-
proved baseline results, there might already be less room for improvement. Further
performance differences might be caused by differences in the experimental setup. A no-
table difference between our setup and [9] is the use of a different vocoder. We have used
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Table 5.1: A complete overview of the ASR performance in PER for all models trained and evaluated with male
speakers. The percentage between the parentheses indicates the speech intelligibility. ‘DTW’ denote a model
with a parallel data setup and DTW. ‘2-STEP’ denotes a model with second adversarial losses. ‘TS’ denotes
time-stretched dysarthric speech data is used as input. The results are separated into several blocks. Bold
highlights column-wise the best result within a block.

MO5 (58%) MO8 (93%) M09 (86%) MI10 (93%) Average
Control 53.9% 48.2% 57.6% 55.6% 53.8%
Dysarthric 94% 64.1% 70% 68.8% 74.2%
CycleGAN-VC 106.8% 72.6% 76.6% 81.7% 84.4%
CycleGAN-VC + DTW 103.6% 74.6% 75.2% 78.3% 82.9%
CycleGAN-VC + 2-STEP 105.7% 77.0% 76.5% 80.4% 84.9%
CycleGAN-VC + 2-STEP + DTW 107.1% 75.8% 76.8% 83.2% 85.7%
MaskCycleGAN-VC 102.5% 73.8% 77.1% 67.3% 80.2%
Dysarthric + TS 76.6% 68.9% 70.4% 65.4% 70.3%
CycleGAN-VC + TS 78.8% 73.3% 76.3% 77.1% 76.4%
CycleGAN-VC + DTW + TS 78.1% 74.4% 75.5% 74.6% 75.7%
CycleGAN-VC + 2-STEP + TS 78.7% 79.3% 77.8% 76.4% 78.1%
CycleGAN-VC + 2-STEP + DTW + TS 76.7% 75.6% 78.0% 76.4% 76.7%
MaskCycleGAN-VC + TS 69.2% 69.3% 75.0% 69.4% 70.7%
Control by [9] - - - - 64.7%
Dysarthric by [9] - - - - 77.9%
DNN by [9] - - - - 82.9%
DiscoGAN by [9] - - - - 73.3%

Table 5.2: A complete overview of the ASR performance in PER for all models trained and evaluated with female
speakers. See Table 5.1 for additional clarification.

F02 (29%) FO03 (6%) FO04 (62%) FO05(95%) Average
Control 56.9% 61.6% 74.0% 53.1% 61.4%
Dysarthric 109% 89.8% 79.9% 85.9% 91.2%
CycleGAN-VC 126.1% 101.5% 89.6% 103.2% 105.2%
CycleGAN-VC + DTW 122.6% 99.2% 91.4% 105.3% 104.7%
CycleGAN-VC + 2-STEP 126.6% 103.3% 89.0% 99.0% 104.6%
CycleGAN-VC + 2-STEP + DTW 127.2% 102.1% 86.6% 100.0% 104.1%
MaskCycleGAN-VC 116.9% 96.3% 78.8% 89.9% 95.6%
Dysarthric + TS 81.8% 79.3% 75.5% 67.9% 76.1%
CycleGAN-VC + TS 83.5% 86.3% 80.9% 79.0% 82.4%
CycleGAN-VC + DTW + TS 81.2% 85.6% 84.2% 77.3% 82.0%
CycleGAN-VC + 2-STEP + TS 83.5% 85.7% 81.6% 77.8% 82.2%
CycleGAN-VC + 2-STEP + DTW + TS 83.4% 85.8% 80.2% 78.8% 82.1%
MaskCycleGAN-VC + TS 75.4% 82.8% 73.9% 72.5% 76.2%
Control by [9] - - - - 65.4%
Dysarthric by [9] - - - - 87.1%
DNN by [9] - - - - 75.7%
DiscoGAN by [9] - - - - 71.1%
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the WORLD vocoder as proposed by [15] for CycleGAN-VC, while [9] used AHOCODER in
their experiments [36]. We did not investigate AHOCODER as it was not readily available
as a Python package, but we suspect that the different vocoder is a major factor for the
discrepancy in the results.

There is furthermore a minor difference between the models. While DiscoGAN used
by [9] is architecturally similar to CycleGAN, CycleGAN uses a single cycle-consistency
loss which sums the losses of both mapping directions, while DiscoGAN uses individual
reconstruction losses for both mapping directions. These losses are conceptually very
similar however, and we suspect that this cannot be the sole reason for the performance
differences.

When comparing the CycleGAN-VC model with the MaskCycleGAN-VC model, we
observe that the MaskCycleGAN-VC is a better performing model overall. It outperforms
the CycleGAN-VC model for both genders, but it is not able to surpass the average baseline
dysarthric speech performance. There are only two occurrences where the converted
speech of the MaskCycleGAN-VC decreased the PER slightly with respect to the baseline
dysarthric speech, with speakers M10 and F04. However, these performance gains are
negligible and there is no commonality between the speakers. Speakers M10 and F04 have
wildly different speech intelligibility (93% and 62% respectively) and also differ in the type
of diagnosed dysarthria. We thus conclude that converting speech using CycleGAN-based
models does not improve the ASR performance of dysarthric speech.

The differences between the models serves to highlight the reasons for MaskCycle GAN-
VC outperforming CycleGAN-VC. Firstly, the MaskCycleGAN-VC model converts mel-
spectrograms, instead of MCEPs; mel-spectrograms are high-dimensional representa-
tions of audio, while MCEPs are compressed representations of spectrograms. Mel-
spectrograms thus retain more information, which might be beneficial for the purpose of
speech conversion. Secondly, a MelGAN vocoder is used to synthesize speech using the
converted mel-spectrograms. The vocoder is responsible for converting features back into
speech, and can thus directly affect the audio quality of the converted speech. Depending
on the implementation, (noisy) artifacts can be introduced in the reconstructed audio.
This in turn can influence the ASR performance on converted speech.

Both [9] and [7] used higher dimensional features, in the form of 40-dimensional
mel-cepstral coefficients and wideband spectrograms respectively. We were not able to
push for higher dimensional features with CycleGAN-VC due to instability during training.
We conclude that the use of higher dimensional features will likely lead to better results.
Furthermore, the vocoder has likely a large impact on the quality of the converted speech.

5.2. MODEL MODIFICATION EXPERIMENTS
We found mixed results in our model modification experiments. The modified models
were not able to improve on the ASR performance of dysarthric speech; however, some
modifications did on average improve on the performance of the baseline CycleGAN-VC
model. This was observed with CycleGAN-VC with DTW for both genders, which was in
line with our expectations, but the overall performance differences between the models
are almost negligible.

The effects of introducing two-step adversarial loss with and without DTW were
mixed. Male speakers did on average not benefit from two-step adversarial loss, while
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small performance gains were on average found for female speakers. We found no
discernible pattern that would indicate why certain speakers benefit more from certain
improvements over others. Speaker F04 and F05 for example seem to benefit slightly from
the introduction of two-step adversarial loss, yet the speakers are very different in terms
of speech intelligibility and the diagnosed type of dysarthria.

The small performance fluctuations resulting from the various models and speakers
border on random, and seem to indicate that the chosen modifications did not have
a major effect on the quality of the converted speech. It is more probable that other
factors play a larger role in this. Two-step adversarial loss for example is also included in
MaskCycleGAN-VC, but it still manages to perform better than the modified CycleGAN-VC
models that we have tested. This points to another property of the model, such as the
vocoder, being the most likely culprit for the performance differences.

Overall, we conclude that the small performance gains can be had by introducing
parallel data and DTW to the model; however, the improvements are not enough to sur-
pass the baseline dysarthric speech performance. Introducing two-step adversarial loss
does generally not improve the performance of the CycleGAN-VC model. The seemingly
random and fluctuating ASR performance caused by the modifications indicates that
another factor, such as the vocoder, is most likely at play for the overall quality of the
converted speech.

5.3. TIME-STRETCHED SPEECH EXPERIMENTS

A quick glance over the results seem to indicate that time stretching speech seems ben-
eficial for improving ASR performance. First off, the average PER of time-stretched
dysarthric speech is reduced for both genders. We notice that the male speaker with the
lowest speech intelligibility, speaker M05, gained the biggest performance improvement.
The remaining male speakers (with low severity) do not benefit or benefit only a little
from time-stretched speech. This is likely because their rate of speech already match the
speech rate of the control speakers.

The performance gains are most pronounced for female speakers. We observe that all
female speakers benefit from time-stretched speech, and that it is notably effective for
the high severity cases of speakers FO2 and F03. The performance improvement found
for speaker F05 is rather surprising, considering the high speech intelligibility of 95%.
However, the speech rate of speaker FO05 is slightly higher than the speech rate of its
control speaker CF05, and it seems that slowing this speech down accordingly using time
stretching made it more intelligible for the ASR system.

The performance of time-stretched dysarthric speech on a (modified) CycleGAN-VC
model is consistent with our previous findings. The baseline model performance does
not surpass the performance of time-stretched dysarthric speech. The modified models
for female speakers seem to slightly improve on the performance of the baseline model,
but the gains are again negligible. The performance fluctuations between the various
speakers and model modifications are again seemingly random. Our conclusions on the
modified CycleGAN-VC models from the previous section remains unchanged.

The MaskCycleGAN-VC model shows for both genders a very similar ASR performance
to time-stretched dysarthric speech. It does this while also reducing the PER significantly
for certain speakers. These speakers are M05, FO2 and FO4. What is notable about these
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speakers is that they all suffer from severe cases of dysarthria, with 58%, 29% and 62%
speech intelligibility for M05, F02 and F04 respectively. However, it does not seem to be
effective for speakers with low severity dysarthria. Speaker F03 is also an exception to
this; speaker F03 is a very severe case of dysarthria with a speech intelligibility of only 6%.

Overall, we conclude that purely time stretching dysarthric speech is effective for
improving the ASR performance of dysarthric speech when the atypical speech rate of
dysarthric speech is pronounced. We also conclude that for mid to high severity cases,
where atypical speech rate heavily influences speech intelligibility, MaskCycleGAN-VC is
effective for further reducing the PER for time-stretched dysarthric speech. However, it
is not effective for further reducing the PER of dysarthric speakers with low or very high
severity dysarthria.






CONCLUSION

To investigate if CycleGAN-based methods can improve intelligibility for ASR systems, we
conducted three experiments. Firstly, we reproduced the experiments by [9] but instead
of using DiscoGAN, we use CycleGAN-VC and MaskCycleGAN-VC. Secondly, we trained
CycleGAN-VC with parallel data and DTW and introduced two-step adversarial loss and
measured the performance. Thirdly, we changed the speech rate of the dysarthric speech
data and converted it with our trained models. These experiments were set up to find
answers for the following research questions:

* RQI: Does the use of CycleGAN-based speech conversion improve ASR perfor-
mance of converted dysarthric speech in terms of phoneme and word error rate?

* RQ2: Can the effectiveness of CycleGAN-based speech conversion further be im-
proved with parallel training and additional modification such as time alignment
using dynamic time warping?

* RQ3: Does additional audio pre-processing such as denoising, time stretching and
loudness normalization improve the dysarthric speech signal such that it increases
ASR performance?

We now conclude our findings. Despite our best efforts to reproduce [9], we were not
able to achieve similar results. The (Mask)CycleGAN-VC models were unable to enhance
the dysarthric speech to be more intelligible for ASR systems on its own. Through our
experiments, we found several clues that points to the feature dimensionality and the
vocoder being the culprit. We also found however that increasing the speech rate of
dysarthric speech does make it more intelligible for ASR systems. Furthermore, using
MaskCycleGAN-VC we were able to further improve the intelligibility for speakers with
mid to high severity cases.

For RQ1 we conclude that depending on the model specifications, CycleGAN-based
speech conversion does not improve the performance of converted dysarthric speech
in terms of PER. Our CycleGAN-VC model using 24-dimensional MCEPs and a WORLD
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vocoder was not able to improve on the dysarthric speech baseline. The MaskCycleGAN-
VC model using 80-dimensional mel-spectrograms and a MelGAN vocoder performed
better than CycleGAN-VC overall. We found negligible PER improvements for a few
speakers with respect to the baseline, but on average it did not improve on the dysarthric
speech baseline.

We conclude for RQ2 that small improvements can be gained by training CycleGAN-
VC with parallel data and dynamic time warping. However, it does not improve with
respect to the dysarthric speech baseline. Adding second adversarial losses to the model
did not improve the ASR performance. Since two-step adversarial loss is included in
MaskCycleGAN-VC, we conclude that other factors such as the vocoder are likely the
reason for surpassing CycleGAN-VC in terms of ASR performance.

Lastly, we conclude for RQ3 that adjusting the speech rate of dysarthric speech using
time-stretching, improves the ASR performance. By increasing or decreasing the speech
rate of dysarthric speech data, we measured a relative improvement of 19.8% and 5.5%
for female and male speakers respectively. We also found that using MaskCycleGAN-VC
to convert time-stretched dysarthric speech further improved the performance for mid
to high severity dysarthric speakers; however, it did not improve the performance for
speakers with low and very high severity dysarthria.

For future work, we suggest investigating the use of different types of vocoders. We find
that the vocoder likely plays a major role in the quality of the converted speech. Further
work is needed to investigate the quality of synthesized converted dysarthric speech
from different vocoders. We also suggest looking into separate solutions for adjusting
the speech rate of dysarthric speech, for example using attention-based sequence-to-
sequence models [37]. The speech rate is also a major factor to make dysarthric speech
more intelligible for ASR systems. Using such solutions in combination with CycleGAN-
based speech conversion will likely lead to better results.
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