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Abstract. The presence of significant biases in real-time
radar quantitative precipitation estimations (QPEs) limits its
use in hydrometeorological forecasting systems. Here, we
introduce CARROTS (Climatology-based Adjustments for
Radar Rainfall in an OperaTional Setting), a set of fixed bias
reduction factors, which vary per grid cell and day of the
year. The factors are based on a historical set of 10 years of
5 min radar and reference rainfall data for the Netherlands.
CARROTS is both operationally available and independent
of real-time rain gauge availability and can thereby provide
an alternative to current QPE adjustment practice. In addi-
tion, it can be used as benchmark for QPE algorithm devel-
opment. We tested this method on the resulting rainfall es-
timates and discharge simulations for 12 Dutch catchments
and polders. We validated the results against the operational
mean field bias (MFB)-adjusted rainfall estimates and a ref-
erence dataset. This reference consists of the radar QPE, that
combines an hourly MFB adjustment and a daily spatial ad-
justment using observations from 32 automatic and 319 man-
ual rain gauges. Only the automatic gauges of this network
are available in real time for the MFB adjustment. The result-
ing climatological correction factors show clear spatial and
temporal patterns. Factors are higher away from the radars
and higher from December through March than in other sea-
sons, which is likely a result of sampling above the melting
layer during the winter months. The MFB-adjusted QPE out-
performs the CARROTS-corrected QPE when the country-
average rainfall estimates are compared to the reference.
However, annual rainfall sums from CARROTS are compa-

rable to the reference and outperform the MFB-adjusted rain-
fall estimates for catchments away from the radars, where
the MFB-adjusted QPE generally underestimates the rainfall
amounts. This difference is absent for catchments closer to
the radars. QPE underestimations are amplified when used in
the hydrological model simulations. Discharge simulations
using the QPE from CARROTS outperform those with the
MFB-adjusted product for all but one basin. Moreover, the
proposed factor derivation method is robust. It is hardly sen-
sitive to leaving individual years out of the historical set and
to the moving window length, given window sizes of more
than a week.

1 Introduction

Radar rainfall estimates are essential for hydrometeorologi-
cal forecasting systems. In these systems, the data are used
to force hydrological models (e.g., Borga, 2002; Thorndahl
et al., 2017), to initialize numerical weather prediction mod-
els (e.g., Haase et al., 2000; Rogers et al., 2000) or as in-
put data for rainfall nowcasting techniques (e.g., Ebert et al.,
2004; Wilson et al., 2010; Foresti et al., 2016; Heuvelink
et al., 2020; Imhoff et al., 2020a). A major disadvantage of
radar quantitative precipitation estimations (QPEs) are the
considerable biases with respect to the true rainfall, caused
by three main groups of errors: (1) sources of errors re-
lated to the reflectivity measurements, (2) sources of errors
in the conversion from reflectivity to rainfall rate and (3)
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spatiotemporal sampling errors (Austin, 1987; Joss and Lee,
1995; Creutin et al., 1997; Gabella et al., 2000; Sharif et al.,
2002; Uijlenhoet and Berne, 2008; Ochoa-Rodriguez et al.,
2019; Imhoff et al., 2020b). These biases can be amplified
when used in hydrological models (Borga, 2002; Borga et al.,
2006; Brauer et al., 2016). Hence, radar QPE requires cor-
rections before operational use in hydrometeorological (fore-
casting) models.

A large number of correction methods are already avail-
able. These methods range from corrections prior to the rain-
fall estimations, e.g., corrections for physical phenomena
such as ground clutter, attenuation, the vertical profile of
reflectivity (VPR) and variations in raindrop size distribu-
tion (e.g., Joss and Pittini, 1991; Germann and Joss, 2002;
Berenguer et al., 2006; Cho et al., 2006; Uijlenhoet and
Berne, 2008; Kirstetter et al., 2010; Qi et al., 2013; Hazen-
berg et al., 2013, 2014), to statistical post-processing steps
for bias removal in the radar QPE using rain gauge data.
These post-processing methods either merge rain gauge and
radar QPE from the same interval or base correction factors
on the total precipitation in both products over a past period,
such as a number of rainy days (e.g., 7 d in Park et al., 2019).
An often used method is the mean field bias (MFB) correc-
tion method, which determines a spatially averaged correc-
tion factor from the ratio between rain gauge observations
and the radar QPE of the superimposed grid cells at the lo-
cations of these gauges (Smith and Krajewski, 1991; Seo
et al., 1999). This method, which is used operationally in
the Netherlands and many other countries (Holleman, 2007;
Harrison et al., 2009; Thorndahl et al., 2014; Goudenhoofdt
and Delobbe, 2016), does not account for any spatial vari-
ability in the radar QPE bias, even though the bias is known
to increase with increasing distance from the radar (Koisti-
nen and Puhakka, 1981; Joss and Lee, 1995; Koistinen et al.,
1999; Gabella et al., 2000; Michelson and Koistinen, 2000;
Seo et al., 2000).

It is possible to account for this spatial variability with
geostatistical techniques (e.g., ordinary kriging, kriging with
external drift or co-kriging; Krajewski, 1987; Creutin et al.,
1988; Wackernagel, 2003; Schuurmans et al., 2007; Gouden-
hoofdt and Delobbe, 2009; Sideris et al., 2014) or Bayesian
merging methods (Todini, 2001). Although these methods
substantially improve the QPE in the spatial domain, all
gauge-based radar QPE adjustment methods are limited by
the timely availability of sufficient, and ideally quality-
controlled, rain gauge observations (for an overview of meth-
ods and their limitations, see Ochoa-Rodriguez et al., 2019).
The gauge networks operated by the Royal Netherlands Me-
teorological Institute (KNMI) are an example of this issue.
Although there is approximately one station per 100 km2,
only 32 out of 351 rain gauges operate automatically. The
remaining 319 manual rain gauges report just once a day.
Thus, only the automatic rain gauges are used for the MFB
adjustment that takes place every hour in real time (Holle-
man, 2007) and recently even every 5 min.

In addition, two potential operational (forecasting) issues
need to be considered when using these more advanced geo-
statistical and Bayesian merging methods: (1) the methods
are computationally expensive, especially methods such as
co-kriging and Bayesian merging that integrate radar and rain
gauges (Ochoa-Rodriguez et al., 2019), and (2) when the ad-
justment method changes the spatial structure of the origi-
nal radar rainfall fields (kriging and Bayesian methods), this
may impact the continuity of the rainfall fields over time and
thereby also the radar rainfall nowcasts (Ochoa-Rodriguez
et al., 2013; Na and Yoo, 2018). In the case that the nowcasts
suffer from errors due to these adjustments, adjustment meth-
ods should be applied to the nowcasts as a post-processing
step. To do this, the forecaster would need to estimate the fu-
ture (bias) correction factors (a method for this using MFB
adjustment is described in Seo et al., 1999) or simply assume
that the latest correction factors are exemplary for the coming
hours.

Hence, operational hydrometeorological forecasting calls
for a radar rainfall adjustment approach that (1) takes the
spatial variability in radar QPE errors into account and (2)
is available in real time so that it can be used operationally
for radar-based rainfall forecasts, such as nowcasting. Here,
we present CARROTS (Climatology-based Adjustments for
Radar Rainfall in an OperaTional Setting), a set of grid-
ded climatological adjustment factors for every day of the
year, based on a historical set of 10 years of 5 min radar
and reference rainfall data for the Netherlands. When suf-
ficient rain gauges are operationally available, which would
allow for a robust application of more advanced geostatisti-
cal and Bayesian merging methods, CARROTS can serve as
a benchmark for testing these and other more sophisticated
adjustment techniques.

2 Data and methods

2.1 Radar rainfall estimates

The archive (2009–2018) of radar rainfall composites in this
study originates from two C-band weather radars operated by
KNMI (Fig. 1). Between September 2016 and January 2017,
both radars were replaced by dual-polarization radars, and
the radar in De Bilt (“DB” in Fig. 1) was replaced by a new
one in Herwijnen (“H” in Fig. 1). The radar renewals and
relocation have had a limited impact on the QPE product,
mainly because the operational products are not yet (fully)
using the additional information from the dual-polarization
(Beekhuis and Holleman, 2008; Beekhuis and Mathijssen,
2018).

The radar product is Doppler-filtered for ground clut-
ter. This product is then used to construct horizontal cross-
sections at a nearly constant altitude of 1500 m, called
pseudo-constant plan position indicators (pseudo-CAPPIs).
Subsequently, range-weighted compositing is used to com-
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Figure 1. Overview of the basins in this study: (a) study area with the location of the three radars (green triangles) operated by KNMI and the
12 basins (orange polygons). The two grey circles indicate a range of 100 km around the radars in Den Helder (DH) and Herwijnen (H). The
other radar (DB) is the radar in De Bilt, which was used until January 2017 and replaced by the radar in Herwijnen. Note that the range used
in the composite was more than 100 km, but 100 km is often regarded as the distance up to which the radar QPE is expected to be reliable.
(b) Locations of the 32 automatic and 319 manual rain gauges currently operated by KNMI. Note that the number of rain gauges has slightly
changed from 2009 until present. (c) List of the basin names, sizes, number of gauges in the basin and hydrological models employed. The
numbers in the left column refer to the numbers in (a). The right column states the used model for these areas.

bine the reflectivities from both radars (Overeem et al.,
2009b). Since 2013, non-meteorological echoes have been
removed as an additional step with a cloud mask obtained
from satellite imagery. As a final step, rainfall rates are esti-
mated with a fixed Z–R relationship (Marshall et al., 1955):

Zh = 200R1.6. (1)

In this equation, Zh is the reflectivity at horizontal polar-
ization (mm6 m−3 but generally given in dBZ, according to
10× log10[Zh]), and R is the rainfall rate (mmh−1). The fi-
nal product is called the unadjusted radar QPE (RU) in this
study.

KNMI also provides adjusted radar rainfall products,
based on the aforementioned product, but adjusted with
quality-controlled observations from both 32 automatic
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Table 1. Statistics of Fig. 2. Indicated are the sample size, the slope
of a linear fit between the two rainfall products (RA and RU; the
dashed colored lines in Fig. 2) for all observations and the Pearson
correlation coefficient. This is indicated per season (DJF is winter,
MAM is spring, JJA is summer and SON is autumn) and for all
seasons together (Total).

Season Sample size Slope Pearson R2

correlation

DJF 902 0.35 0.90 0.81
MAM 920 0.48 0.89 0.79
JJA 920 0.50 0.89 0.79
SON 910 0.45 0.92 0.85
Total 3652 0.45 0.89 0.79

hourly and 319 manual daily rain gauges (Overeem et al.,
2009a, b, 2011; note that the number of rain gauges has
slightly changed from 2009 until present). The same 32 auto-
matic rain gauges are used for the MFB-adjustment method,
which will be introduced in Sect. 2.2.1. In contrast to the spa-
tially uniform hourly MFB adjustment, the observations from
the manual rain gauges are used for daily spatial adjustments,
based on distance-weighted interpolation of these observa-
tions (Barnes, 1964; Overeem et al., 2009b). See Sect. 2.2.3
for a more detailed description of this method.

This product is considered as a reference rainfall product
in the Netherlands, and it is therefore also regarded as the
reference here (referred to as RA in this study). The RA data
are not available in real time (available with a delay of 1 to
2 months because they only use quality-controlled and vali-
dated rain gauge observations), but they are archived and can
therefore be used for “offline” methods. Both RA and RU
have a 1 km2 spatial and 5 min temporal resolution.

The year 2008 is actually the first year in the KNMI
archive of both datasets, but it was left out of the analysis
here. RU for this year showed a significantly different behav-
ior than the other years, especially during the first half year in
which the product rarely underestimated and frequently even
overestimated the rainfall sums. The reason for this behavior
is not yet fully understood. KNMI (2009) reported that spring
was exceptionally dry in the north of the country and that the
months January and May were among the warmest on record.
On some days with overestimations, clear bright band effects
were visible in the radar mosaic, which may have contributed
to the systematic differences.

2.2 Bias correction factors

Figure 2 indicates the need for correction of the real-time
available radar rainfall product. RU systematically underesti-
mates the true rainfall amounts, averaged for the land surface
area of the Netherlands, by 55 %. This bias is not uniform
in space, as will be highlighted in Sect. 3, and in time with
higher underestimations during winter (on average 65 %)

Figure 2. The systematic discrepancy between the reference rain-
fall (RA) and the unadjusted radar QPE (RU). Shown are the daily
country-average rainfall sums based on 10 years (2009–2018), clas-
sified per season. The slope, Pearson correlation and sample size
per season are indicated in Table 1. The dashed colored lines are
a linear fit, forced through the origin, per season between RA and
RU.

than during the other seasons (50 %–55 %). In the follow-
ing two subsections, the operationally used MFB-adjustment
method and the CARROTS method proposed in this study
will be introduced.

2.2.1 Mean field bias adjustment

The mean field bias (MFB) adjustment method is the oper-
ational adjustment technique in the Netherlands, and it was
used in this study for comparison with the proposed clima-
tological bias reduction method (Sect. 2.2.2). This method
provides a spatially uniform multiplicative adjustment fac-
tor that is applied to RU. The adjustment factor (FMFB) was
calculated as (Holleman, 2007; Overeem et al., 2009b)

FMFB =

N∑
n=1

G(in,jn)

N∑
n=1

RU(in,jn)

, (2)

withG(in,jn) the hourly rainfall sum for gauge n at location
(in,jn) and RU(in,jn) the unadjusted hourly rainfall sum for
the corresponding radar grid cell. The calculation of FMFB
was only performed when both the rainfall sum of all rain
gauges together and the sum of all corresponding radar grid
cells were at least 1.0 mm. In all other cases, FMFB = 1.0.

Hydrol. Earth Syst. Sci., 25, 4061–4080, 2021 https://doi.org/10.5194/hess-25-4061-2021



R. Imhoff et al.: A climatological benchmark for operational radar rainfall bias reduction 4065

The MFB-adjustment factors were determined from the
1 h accumulations of both RU and the 32 automatic rain
gauges, as only the automatic gauges were operationally
available every hour (Holleman, 2007; Overeem et al.,
2009b). The adjustment factors at the temporal resolution of
the radar QPE (5 min) were assumed to equal the 1 h adjust-
ment factors for a given hour.

Moreover, this analysis took place with archived datasets,
which were validated and consisted of quality-controlled rain
gauge observations. It is noteworthy that the same quality
control is absent and that missing data occur in real time,
which can lead to deteriorating results when the MFB ad-
justment is applied in an operational test case.

2.2.2 CARROTS method

To derive the climatological bias correction factors for the
CARROTS method, both RU and RA were used for the years
2009–2018. The use of the reference data for this method
was possible because the CARROTS method did not require
a real-time availability of the data. The bias correction factors
were determined per grid cell in the radar domain according
to the following three steps:

1. For every day in the period 2009–2018, all 5 min rainfall
sums (both RU and RA) within a moving window of
31 d (the day of interest plus the 15 d before and after
it) were summed. The purpose of the moving window
was to smooth the systematic day-to-day variability of
the estimated rainfall in the 10-year data. Sections 2.4
and 3.4 describe a leave-one-year-out validation of the
method, and they describe the sensitivity of the method
to the moving window size.

2. For every day of the year, the 31 d sums around that day
were averaged over the 10 years. Thus, the value for,
e.g., 16 January consisted of the average 31 d sum for
the period 1 to 31 January over the 10 years. Leap years
are left out of this analysis due to the low number of
leap years in the studied period.

3. Finally, gridded climatological adjustment factors
(Fclim) were calculated per day of the year as

Fclim(i,j)=
RA(i,j)

RU(i,j)
, (3)

with RA(i,j) the reference rainfall sum and RU(i,j)

the unadjusted (operational) radar rainfall sum at grid
cell (i,j) for the 10 years.

2.2.3 Spatial adjustments for the reference product

The adjustment procedure to derive RA consists of three
steps: (1) mean field bias correction (one adjustment factor
for the whole country which varies per hour; see Sect. 2.2.1),
(2) derivation of a daily spatial adjustment factor per grid cell

and (3) spatial adjustment of the hourly or higher frequency
MFB-adjusted rainfall fields (step 1) using the spatial adjust-
ment from step 2.

A spatial adjustment factor (step 2) is derived per grid cell
as follows (for a more elaborate description, see Sect. 3 in
Overeem et al., 2009a, b):

FS(i,j)=

∑N
n=1wn(i,j) ·G(in,jn)∑N
n=1wn(i,j) ·RU (in,jn)

, (4)

with N the number of radar–gauge pairs, G(in,jn) the daily
rainfall sum for manual rain gauge n at location (in,jn) and
RU(in,jn) the unadjusted daily rainfall sum for the corre-
sponding radar grid cell. wn(i,j) is a weight for gauge n,
based on the following function:

wn(i,j)= e
−
d2
n(i,j)

σ2 . (5)

Here, d2
n(i,j) is the squared distance between gauge n and

the grid cell for which the factor is derived. σ determines the
smoothness of the adjustment factor field. It was set to 12 km
by Overeem et al. (2009a, b), based on the average gauge
spacing in the Netherlands.

Finally, to spatially adjust the hourly MFB-adjusted rain-
fall fields (step 3), two more steps are followed. First, the
hourly MFB-adjusted rainfall fields (see Sect. 2.2.1 for the
MFB-adjustment method) are accumulated to daily sums.
For each grid cell, a new adjustment field is then determined:

FMFBS(i,j)=
RS(i,j)

RMFB(i,j)
, (6)

with RS(i,j) the spatially adjusted daily sum for grid cell
(i,j) obtained using Eq. (4) and RMFB(i,j) the MFB-
adjusted daily sum for grid cell (i,j). Second, the 1 h or
higher frequency (5 min in this study) MFB-adjusted rainfall
fields are multiplied by the adjustment factor FMFBS(i,j).

2.3 Hydrometeorological application

Both bias adjustment methods were applied to the 10 years
(2009–2018) of RU. In order to provide a hydrometeorolog-
ical testbed, both the CARROTS and MFB-adjusted QPE
products (from here on referred to as RC and RMFB, respec-
tively) were validated against the reference rainfall. First, this
was done at country level. The estimated daily rainfall sums
for all grid cells within the land surface area of the Nether-
lands were compared to the reference in a similar way as
the comparison in Fig. 2. To subdivide these results per year
and season, an additional hourly rainfall sum validation was
performed as well. The results of this analysis can be found
in the Appendix, and the analysis was done as follows: for
every rainy hour (when the sum of at least one grid cell was
larger than 0.0 mm), we computed the root mean square error
(RMSE) by squaring the differences between the three QPE
products (RU, RC and RMFB) on the one hand and the ref-
erence on the other and taking the average of these squared
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differences over all grid cells within the land surface area of
the Netherlands. Subsequently, the RMSE was averaged over
all rainy hours in that season and year. Finally, the seasonal
mean RMSE was divided by the average hourly rainfall rate
for that season and year, resulting in the fractional standard
error (FSE) score. The FSE score was calculated for every
season in the 10 years to be able to compare the seasonal
performance of the hourly rainfall estimates of RU, RC and
RMFB.

Second, the annual rainfall sums for 12 basins (a combi-
nation of catchments and polders) in the Netherlands (Fig. 1)
were compared with the reference. In addition, RC and RMFB
were used as input for the rainfall-runoff models of the 12
basins. Most of the involved water authorities use these (low-
land) rainfall-runoff models either operationally or for re-
search purposes, often embedded in a Delft-FEWS system,
which is a data-integration platform used worldwide by many
hydrological forecasting agencies and water management or-
ganizations that brings data handling and model integration
together for operational forecasting (Werner et al., 2013). For
this reason, most models were already calibrated using inter-
polated rain gauge data or the RA product (e.g. Brauer et al.,
2014b; Sun et al., 2020). The calibration period was based
on the availability and quality of discharge observations for
that basin, but it was generally 1 to 2 years within the period
considered in this study (2009–2018). The WALRUS mod-
els for catchments Roggelsebeek and Dwarsdiep were not
calibrated prior to this study and were therefore calibrated
with the reference data (RA) for the periods 2013–2014
(Roggelsebeek) and 2016–2017 (Dwarsdiep). The choice for
these periods was based on discharge observation availability
and quality. The employed SOBEK RR(-CF) model (Stelling
and Duinmeijer, 2003; Stelling and Verwey, 2006; Prinsen
et al., 2010) is semi-distributed, and therefore we used sub-
catchment-averaged rainfall sums from the gridded radar
QPE. The four basins with a SOBEK model have the fol-
lowing number of sub-catchments: 7 for Gouwepolder, 1
for Beemster, 25 for Delfland and 23 for Linde. WALRUS
(Brauer et al., 2014a) is lumped, so the catchment-averaged
radar QPE was used as input. A more detailed description of
both rainfall-runoff models is outside the scope of this paper.
All 12 model setups were run with a 5 min time step for the
period 2009–2018.

The resulting discharge simulations were validated for the
same period and 5 min time step using the Kling–Gupta effi-
ciency (KGE) metric (Gupta et al., 2009):

KGE= 1−
√
(ρ− 1)2+ (α− 1)2+ (β − 1)2, (7)

with

α =
σs

σo
, (8)

β =
µs

µo
. (9)

Here, ρ is the Pearson correlation between observed and
simulated discharge, α the flow variability error between ob-
served and simulated discharge and β the bias between mean
simulated (µs) and mean observed (µo) discharge. σs and σo
are the standard deviations of the simulated and observed dis-
charge. The KGE metric ranges from −∞ to 1.0, with 1.0
representing a perfect agreement between observations and
simulations. In this study, the discharge simulated with RA
as input was regarded as the observation.

Note that this validation method was not a leave-one-out or
split-sample validation, as the full 10-year dataset was used
for RA and the CARROTS- and MFB-adjustment derivation,
and shorter periods in those 10 years were used for hydrolog-
ical model calibration. However, the sensitivity of the CAR-
ROTS factor was tested by leaving individual years out of the
derivation period (Sect. 2.4).

2.4 Sensitivity analysis

As mentioned in Sect. 2.2.2, the purpose of the 31 d moving
window in the factor derivation of CARROTS was to smooth
the day-to-day variability of rainfall. To test the sensitivity
of the method to the employed moving window size, the ad-
justment factors were re-derived for a range of moving win-
dow sizes (1 d, 1 week, 2 weeks, 6 weeks and 2 months).
The derived factors were then compared to the original fac-
tor in this study, which was based on a moving window size
of 31 d, and used to derive adjusted QPE products. Subse-
quently, these QPE products served as input for 1 of the 12
catchments, namely the WALRUS model for the Aa catch-
ment (Fig. 1), to test the effect on the simulated discharges
(see Sect. 3.4 and Fig. 8 for the results). The Aa catchment
was chosen because the unadjusted QPE product (RU) for
this catchment has one of the highest biases of the 12 studied
catchments (see Sect. 3 and Fig. 4).

Besides the moving window choice, the length of the radar
rainfall archive (10 years) was finite. To test whether or not
this archive length was sufficient for reaching a stable factor
derivation, individual years in the 10-year archive were left
out of the CARROTS method. Hence, the adjustment factors
were recalculated 10 times in a leave-one-year-out method,
applied toRU and used as input for the WALRUS simulations
for the Aa catchment. See Sect. 3.4 and Fig. 4 for the results.

3 Results

3.1 Seasonal and spatial variability

The adjustment factors from CARROTS present the spatial
variability in the radar QPE errors, with generally higher
adjustment factors towards the edges of the radar domain
(Fig. 3). This difference is most pronounced from December
through March, with factors in the south and east of the coun-
try more than 2 times higher than in the central and north-
western parts (Fig. 3a, b and l). Figure 3 demonstrates a clear
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annual cycle of the adjustment factors, with higher adjust-
ment factors from December through March than in the other
months. Figure 4a shows similar results for the catchment-
averaged adjustment factors, with factors ranging from 2.1
for the Beemster polder to 3.2 for the Hupsel Brook catch-
ment in January, whereas adjustment factors range from 1.3
for the Grote Waterleiding catchment to 1.6 for the Roggelse-
beek catchment in June.

An explanation for these higher adjustment factors from
December through March is that radar QPE often severely
underestimates the rainfall amounts for stratiform systems,
which regularly occur during the Dutch winter. This espe-
cially holds when the QPE is constructed from reflectivi-
ties sampled above the melting layer (Fabry et al., 1992;
Kitchen and Jackson, 1993; Germann and Joss, 2002; Bel-
lon et al., 2005; Hazenberg et al., 2013). This seems to be the
case here as well. A simple first-order estimation of the 0 ◦C
isotherm level, using a constant wet adiabatic lapse rate of
5.5 Kkm−1 with ground temperature data for all rainy hours
in the 10 years (Fig. 4b), indicates that the 1500 m pseudo-
CAPPI is generally above the 0 ◦C isotherm level from De-
cember through March. This coincides with the months with
higher adjustment factors (Fig. 4c) and could thus explain the
winter effect on the adjustment factors. This effect is presum-
ably even stronger further away from the radars because the
QPE product consists of samples at even higher altitudes than
1500 m for locations more than 120 km from the radars. Be-
sides, an additional dependency of the monthly factor on the
time of year that cannot be explained by temperature seems
to be present, with lower adjustment factors during spring
and early summer and higher factors for the subsequent pe-
riod (Fig. 4c).

3.2 Evaluation of the rainfall sums

The MFB-adjusted QPE (RMFB) significantly reduces the
systematic bias of RU (Fig. 2), from a 55 % underestimation
on average for the Netherlands to 10 % (Fig. 5a and Table 2).
However, the remaining bias in RMFB is generally caused by
a systematic underestimation of the reference rainfall. The
overall underestimation is less for RC (8 %, Fig. 5b) but re-
sults from estimation errors that are associated with either
under- or overestimates of the reference rainfall. The spread
in Fig. 5b is significantly wider than in Fig. 5a, indicating
that the country-wide QPE error of RC is often higher than
for RMFB. The yearly FSE in Table A1 clearly indicates this
too, with a systematically higher FSE for RC than for RMFB.

An advantage of the MFB adjustment is that it corrects for
the circumstances during that specific day and thus also for
instances with overestimations (Fig. 4a). On a country-wide
level, this is clearly advantageous, also compared to CAR-
ROTS (Fig. 5). The negative effect of the spatial uniformity
of the factor, however, becomes apparent in Fig. 6, which
compares the annual precipitation sums of the two adjusted
radar rainfall products with the reference and RU for the 12

basins. For all basins, both adjusted products manage to sig-
nificantly increase the QPE towards the reference. However,
for 9 out of 12 basins, RC outperforms RMFB (Fig. 6e). Ex-
ceptions are Beemster, Luntersebeek and Dwarsdiep, where
the performance of both products is similar. Differences be-
tween the performance of RC and RMFB become most ap-
parent for catchments that are located closer to the edges of
the radar domain. For instance, RMFB for the Aa and Regge
catchments, which are located in the far south and east of
the country, still underestimates the annual reference rain-
fall sums, with on average 20 % for the Aa (mean annual
RMFB is 610 mm, and mean annual RA = 761 mm) and 13 %
for the Regge (mean annual RMFB is 673 mm, and mean an-
nual RA = 776 mm), while this is on average only 5 % (both
under- and overestimations occur) for RC (Fig. 6b and c).

The MFB-adjusted QPE performs better for the Beemster
polder, Dwarsdiep polder (Fig. 6d) and Luntersebeek catch-
ment (Fig. 6a) due to their location in the radar mosaic. The
Luntersebeek catchment (central Netherlands, Fig. 1) is lo-
cated closer to both radars. There, RMFB generally performs
better and sometimes even overestimates the true rainfall,
which is consistent with Holleman (2007). The performance
of RMFB for the Dwarsdiep catchment is similar to its per-
formance for the Linde catchment (both in the north of the
country), but RC shows more variability in the error from
year to year for the Dwarsdiep catchment (Fig. 6d), leading
to a better relative performance of RMFB. The CARROTS
QPE tends to overestimate the rainfall amount of the three
aforementioned basins (Beemster, Dwarsdiep and Lunterse-
beek) for some years (e.g., by 16 % for the Luntersebeek in
2016). Overall, the performance of RC and RMFB is not that
different for these three basins, with on average just a lower
MAE for RMFB than for RC for the Luntersebeek catchment
and Dwarsdiep polder (Fig. 6e).

Summarizing, the CARROTS factors have a clear an-
nual cycle, with generally higher adjustment factors further
away from the radars (Sect. 3.1). On average for the Nether-
lands, the MFB-adjusted QPE outperforms the CARROTS-
corrected QPE. However, the spatial variability in the CAR-
ROTS factors, in contrast to the uniform MFB adjustment,
results in estimated annual rainfall sums for the 12 hydrolog-
ical basins that are generally closer to the reference (for 9 out
of 12 basins) than with the MFB-adjusted QPE, especially for
the east and south of the country. This effect is expected to
become more pronounced when the adjusted QPE products
are used for discharge simulations.

3.3 Effect on simulated discharges

The severe underestimations of RU have a considerable ef-
fect on the discharge simulations for the 12 basins (Fig. 7).
This leads to hardly any discharge response and thus nega-
tive KGE values for most basins as compared to discharge
simulations with the reference rainfall data. The effect is
most pronounced for the freely draining catchments in the
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Figure 3. Spatial variability of the CARROTS factors, as derived from the archived radar and reference data for the period 2009–2018.
Shown are monthly averages of the daily factors.

east and south of the country. These catchments are more
driven by groundwater flow than the polders in the west of
the country. Groundwater flow gets hardly replenished be-
cause of similar estimated annual evapotranspiration and RU
sums, resulting in baseflows that are too low. The polders, es-
pecially Delfland and Beemster, are an exception to this be-
cause they are less driven by groundwater-fed baseflow and
more by direct runoff from greenhouses or upward seepage
flows, which makes them more responsive to individual rain-

fall events, leading to higher KGE values (with RU as input)
compared to the other basins.

The model runs using RMFB as input significantly improve
the simulated discharges, compared to the runs with RU.
Nevertheless, the model runs still strongly underestimate the
simulated discharges compared to those from the reference
runs for the catchments in the south and east of the country
(Fig. 7a–f). This is particularly noticeable for the catchments
Reusel (KGE= 0.26) and Roggelsebeek (KGE= 0.04). The
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Figure 4. Seasonal dependency of the CARROTS factors and comparison with the operational MFB-adjustment factor. (a) Temporal vari-
ability of the climatological daily adjustment factors for the 12 basins (colors, catchment-averaged), the country-average (black line) and of
the country-wide hourly MFB factor for the (example) year 2018 (grey dots; some also fall outside the indicated range). (b) Estimate of the
height of the 0 ◦C isotherm at KNMI station De Bilt for all rainy hours in the 10-year period, based on a constant wet adiabatic lapse rate
of 5.5 Kkm−1. (c) Dependency of the monthly adjustment factor on the estimated 0 ◦C isotherm level for KNMI station De Bilt and the
superimposed grid cell of this station. Depending on the location in the radar composite, the minimum CARROTS factor can take place in a
different month but is always between April and June. Note that for this analysis, the adjustment factor was based on only the rainfall sums
within that month, the “effective adjustment factor” for that month, which roughly coincides with the factor for the 15th of the month in the
CARROTS method. The grey bars indicate the interquartile range (IQR) for that month, based on the spread in hourly 0 ◦C isotherm level
estimates (the horizontal bars) and the sensitivity to leaving out individual years in the 10-year period for the factor derivation (vertical bars).

spatial uniformity of the MFB factors is identified as the
cause of these effects because the MFB method can not cor-
rect for the sources of errors leading to the biased QPE in
space. This already led to clear underestimations in the an-
nual rainfall sums for these regions (Fig. 6).

The CARROTS QPE outperforms RMFB when this prod-
uct is used as input for the 12 rainfall-runoff models. This is
not exclusively the case for the six catchments in the east and
south of the country (Fig. 7a–f), but also for the other polder
and catchment areas. The exception to this is the Beem-
ster polder. The Beemster is mostly fed by upward seep-

age, leading to a more predictable baseflow for all models
runs. In addition, the catchment is located close to an auto-
matic weather station and is located between both operational
radars, which makes the MFB adjustment more beneficial for
this region. The difference in performance between the hy-
drological model simulations is small, with a KGE of 0.92
(using RC) versus 0.96 for RMFB, as compared to the refer-
ence run.
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Table 2. Statistics of Fig. 5. Indicated are the sample size, the Pearson correlation and the slope of a linear fit between the reference and the
two adjusted radar QPE products (RMFB and RC; the dashed colored lines in Fig. 5). This is indicated per season and for all seasons together
(Total).

Slope Pearson correlation R2

Season Sample size RMFB RC RMFB RC RMFB RC

DJF 902 0.87 0.95 0.99 0.92 0.98 0.85
MAM 920 0.90 0.86 0.99 0.92 0.98 0.85
JJA 920 0.92 0.90 0.99 0.91 0.98 0.83
SON 910 0.90 0.94 0.99 0.93 0.98 0.86
Total 3652 0.90 0.92 0.99 0.92 0.98 0.85

Figure 5. Comparison between the reference rainfall (RA) and the two adjusted radar QPE products: (a) RMFB and (b) RC. Shown are the
daily country-average rainfall sums based on 10 years (2009–2018), classified per season. The slope, Pearson correlation and sample size per
season are indicated in Table 2. The dashed colored lines are a linear fit, forced through the origin, per season between the reference and the
two QPE products.

3.4 Sensitivity analysis

The use of a different moving window size hardly influences
the CARROTS factors for moving window sizes of 2 weeks
or longer, but this does not hold for moving window sizes
of a day or, to a lesser extent, 1 week (Fig. 8a). The factor
derived with a moving window size of 1 d fluctuates heavily
from day to day. This suggests that the adjustment factor is
still quite sensitive to individual events in the 10-year period,
when a moving window size of 7 d or shorter is used. Moving
window sizes of more than a month (6 weeks and 2 months
were tested here) lead to similar CARROTS factors as with
a 1-month (31 d) moving window size but somewhat more
smoothed. A similar effect likely takes place for a seasonal
(3-month) moving window. For larger moving window sizes
(half a year to a year, for instance), we expect that the sea-

sonality in the factor is lost and that an average correction
factor remains.

In contrast to this, the differences between these six sets of
CARROTS factors (Fig. 8a) lead to minimal variations in the
simulated discharges for the Aa catchment when these fac-
tors are used to adjust the input QPE (Fig. 8b). Differences
in timing and magnitude (0.2–0.3 mmd−1) are visible dur-
ing peaks and recessions, for instance in early April. How-
ever, these are small compared to the differences between
the model runs with RC and RMFB (Fig. 7). However, the
use of a window size of 1 d or, to a lesser extent, of a week
clearly leads to more fluctuations in the CARROTS factor
(Fig. 8a) and can therefore influence the rainfall estimation
for individual events (and the factor will also be influenced
by these individual events). For quickly responding catch-
ments and urban catchments, this could still lead to different
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Figure 6. Effect of the adjustment factors on the catchment-averaged annual rainfall sums. (a–d) The results for a sample of four catchments
that are spread over the country (and thus the radar domain): (a) Luntersebeek, (b) Aa, (c) Regge and (d) Dwarsdiep. Shown are RA (grey),
the estimated rainfall sum after correction with the CARROTS factors (RC; green), the estimated rainfall sum after correction with the MFB-
adjustment factors (RMFB; dark blue) and the rainfall sum with the unadjusted radar rainfall estimates (RU; light blue). The distance between
the catchment center and the closest radar in the domain is given in the title of panels (a–d) (DH is Den Helder and DB is De Bilt). The radar
in Herwijnen, which replaced the radar in De Bilt in January 2017, is not included here because this radar was operational for the shortest
time in this analysis. (e) The mean absolute error of the annual precipitation sum between the QPE products and the reference rainfall sum
(RA). The vertical grey lines, per bar, indicate the IQR of the mean absolute error (MAE) based on the 10 years.

results. In conclusion, a 31 d smoothing of the climatological
adjustment factor is warranted.

In addition, leaving individual years out of the 10-year
archive has a limited impact on the CARROTS factors (see
also the vertical bars in Fig. 4c). Similar to the aforemen-
tioned results for the moving window size analysis, it leads to
hardly any variations in the simulated discharges for the Aa
catchment (not shown here). This suggests that the 10-year
archive length was sufficiently long for the factor derivation.

4 Discussion

In this study, we introduced the CARROTS method to derive
adjustment factors that reduce the bias in radar rainfall esti-
mates. We derived these factors using 10 years of 5 min radar
and reference rainfall data for the Netherlands. The method
and resulting QPE product outperformed the mean field bias
(MFB) adjustment that is used operationally in the Nether-
lands for catchments in the east and south of the country.
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Figure 7. Differences in simulated discharges for the 12 basins (a–l) as a result of the differences between rainfall estimates. The models
are run for the period 2009–2018 with the following rainfall products as input: the reference (RA; grey), the QPE corrected with the CAR-
ROTS factors (RC; green), the MFB-adjusted QPE (RMFB; dark blue) and the unadjusted radar rainfall estimates (RU; light blue). Only the
simulated discharges for 2015 are shown here for clarity; the KGE is based on all years.

When the QPE products were used as input for hydrological
model runs, the method outperformed the MFB-adjustment
method for all but one basin.

The main difference that distinguishes the CARROTS
method from the MFB adjustment is the presence of a high-
density network of (manual) rain gauges in the reference
dataset, a dataset that is not available in real time. This al-
lows for spatial adjustments. Overeem et al. (2009b) demon-
strate that this reference dataset mostly depends on the daily
spatial adjustments from the manual rain gauges, while the
higher frequency MFB adjustment based on the automatic
gauges plays a smaller role in the adjustments of this refer-

ence product. According to Saltikoff et al. (2019), at least
40 countries have an archive of historical radar data for a pe-
riod of 10 years or more. The proposed CARROTS method is
potentially valuable for these countries, especially when the
density of their network of automatic rain gauges is, similar
to the Netherlands, significantly smaller than the total net-
work of rain gauges. An additional advantage of the method
is the real-time availability of the correction factors, which is
independent of the timeliness of the rain gauge data.

MFB adjustment of radar rainfall fields is still the most fre-
quently applied adjustment method (Holleman, 2007; Harri-
son et al., 2009; Thorndahl et al., 2014; Goudenhoofdt and
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Figure 8. Sensitivity of the CARROTS factor derivation to the moving window size. (a) The adjustment factors for the Aa catchment for
six different moving window sizes. The moving window size of 31 d was used in the methodology of this study. (b) The effect of the six
moving window sizes in (a) on the simulated discharges for the Aa. Similar to Fig. 7, the CARROTS factors were derived, and discharge was
simulated for the full period (2009–2018), but only 2015 is shown here. The grey line indicates the observed discharge.

Delobbe, 2016). The results indicate that this choice may
be reconsidered for hydrological applications in the Nether-
lands, especially further away from the radar and in the
case that a country-wide or large-region adjustment factor
is applied. This could also hold for other regions, especially
mountainous regions, where the uniformity of the MFB-
adjustment factor is likely not sufficient to correct for all
orography-related errors (Borga et al., 2000; Gabella et al.,
2000; Anagnostou et al., 2010). More regionalized MFB ad-
justments are possible but depend on the density and avail-
ability of the automatic gauge stations.

However, the proposed CARROTS method has to be recal-
culated for every change in the radar setup, calibration, addi-
tional post-processing steps (e.g., VPR corrections; Hazen-
berg et al., 2013) or final composite generation algorithm.
For instance, including a new radar in the composite would

require a recalculation of the adjustment factors, thereby as-
suming the presence of an archive of the new composite
product. This could potentially limit the usefulness of the
proposed method. As mentioned in Sect. 2.1, the replacement
of both Dutch radars by dual-polarization radars in combina-
tion with the replacement of the radar at location De Bilt by
the location Herwijnen (Fig. 1) between September 2016 and
January 2017 only had a limited impact on the operational
products and thereby on the CARROTS derivation. The op-
erational products are not yet (fully) making use of the dual-
polarization potential. We expect that the factors will have
to be recalculated as soon as the additional information from
the dual-polarization radars is used to improve the products
or when, e.g., the German and Belgian radars close to the
Dutch border are added to the composite.

https://doi.org/10.5194/hess-25-4061-2021 Hydrol. Earth Syst. Sci., 25, 4061–4080, 2021



4074 R. Imhoff et al.: A climatological benchmark for operational radar rainfall bias reduction

That CARROTS is relatively insensitive to such minor
changes in the composite or the year-to-year variability of
rainfall is likely a result of the 10-year archive that has been
used. The sensitivity analysis in Sect. 3.4 has shown that
leaving individual years out of the archive hardly influences
the CARROTS factors. Nevertheless, based on the current
analysis, we cannot conclude what the minimum number of
years in the archive has to be to obtain stable CARROTS fac-
tors that are similar to the factors derived in this study. This
is a recommendation for future research. In the case of a new
radar QPE product, it is also recommended to recalculate the
archive (if possible), to make sure new CARROTS factors
can be derived.

Although the results are promising, this method is not ex-
pected and meant to outperform more advanced spatial QPE
adjustment methods, such as geostatistical and Bayesian
merging methods (for an overview of methods and their lim-
itations, see Ochoa-Rodriguez et al., 2019). A major advan-
tage of these methods is the real-time derivation of spatial
adjustment factors, in contrast to the proposed method in this
study, which was solely based on historical data. The MFB-
adjustment factors can also be derived in near real time but
are uniform in space, which can explain the worse perfor-
mance as compared to the proposed method in this study. A
possible disadvantage of these real-time methods (MFB, geo-
statistical and Bayesian merging) is the dependency on the
timely availability of rain gauge data, which is not the case
for CARROTS. Altogether, we consider the proposed clima-
tological radar rainfall adjustment method to be a benchmark
for the development and testing of operational radar QPE ad-
justment techniques.

Another possible option would be to combine the CAR-
ROTS method with the real-time application of the MFB ad-
justment; i.e., CARROTS is applied, and the resulting QPE
is then adjusted with real-time MFB-adjustment factors. This
would allow for real-time temporal corrections of the QPE,
without the need for a high density of rain gauges in real
time, while the corrections in space are based on the (histor-
ical) CARROTS factors.

As mentioned in the previous paragraph, the climatologi-
cal adjustment factor is not calculated for the current mete-
orological conditions and resulting QPE errors, which could
lead to considerable errors during extreme events. Nonethe-
less, this is also the case for the MFB-adjustment technique
(Schleiss et al., 2020). The absolute errors for the 10 high-
est daily sums in this study for the Aa and Hupsel Brook
catchments (one of the largest and the smallest catchment in
the study) are similar for the MFB and climatological ad-
justment methods, with on average a 20 % difference with
the reference (this would have been 50 % to 60 % without
corrections). In most of these events, both RC and RMFB un-
derestimated the true rainfall amount. However, for a small
number of these top 10 events, the QPE products overes-
timated the true rainfall amount. This occurred more fre-
quently with CARROTS (25 % of the cases) than with the

MFB adjustment (15 % of the cases). Note that for individ-
ual events in these 20 extremes, the errors can still reach 48 %
for the QPE adjusted with CARROTS and 64 % for the MFB-
adjusted QPE. A way to better correct for biases during ex-
treme events could be to derive either different Z–R relation-
ships, depending on the type of rainfall, or dBZ-dependent
correction factors, which could be derived in a similar way
to the CARROTS derivation method. Whether this works or
not for extreme events depends on the number of such events
in the available historical dataset.

Finally, the CARROTS factors were derived with the ref-
erence rainfall data for the Netherlands. The same data were
used as reference in this study. Although the use of the same
data as training and validation set is suboptimal, leaving out
individual years has had a limited impact on the estimated
adjustment factors and the resulting QPE and discharge sim-
ulations (see also the vertical bars in Fig. 4c). Note, however,
that in basins with a large number of manual rain gauges,
but where automatic rain gauges are not nearby, the CAR-
ROTS results will likely be closer to the reference than the
MFB-adjusted simulations. Although this is warranted for
the CARROTS method, it can partly explain why the method
works better for some catchments than others.

5 Conclusions

A known issue of radar quantitative precipitation estimations
(QPE) is the significant biases with respect to the true rain-
fall amounts. For this reason, radar QPE adjustments are
needed for operational use in hydrometeorological (forecast-
ing) models. Current QPE adjustment methods depend on the
timely availability of quality-controlled rain gauge observa-
tions from dense networks. This especially applies to meth-
ods that correct for the spatial variability in the QPE errors.
To overcome this issue and to provide a benchmark for fu-
ture QPE algorithm development, we have presented CAR-
ROTS (Climatology-based Adjustments for Radar Rainfall in
an OperaTional Setting), a set of gridded climatological ad-
justment factors for every day of the year. The factors were
based on a historical set of 10 years of 5 min radar rainfall
data and a reference dataset for the Netherlands. The clima-
tological adjustment factors were compared with the mean
field bias (MFB) adjustment factors, which are used opera-
tionally in the Netherlands. For the period 2009–2018, daily
and sub-daily rainfall estimates with both the MFB-adjusted
and CARROTS-adjusted QPE were validated against the ref-
erence rainfall for the land surface area of the Netherlands. In
order to provide a hydrometeorological testbed, the estimated
annual rainfall sums and the effect of the adjusted QPE prod-
ucts on simulated discharges with the rainfall-runoff models
for 12 Dutch basins were validated for both adjustment meth-
ods.

The CARROTS factors show clear spatial and temporal
patterns, with higher adjustment factors towards the edges of
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the radar domain. This is caused by larger QPE errors further
away from the radars. The factors are also higher from De-
cember through March than in other seasons. This is likely
a result of sampling above the melting layer during these
months, which causes higher underestimations in the unad-
justed radar rainfall product.

On average for the Netherlands, the MFB-adjusted QPE
outperforms the CARROTS-corrected QPE. Although the
MFB factors are based on the current over- or underestima-
tions in the QPE, the factor is spatially uniform and does not
correct for spatial errors. This directly impacts the adjusted
QPE when the QPE products are tested for the 12 Dutch
basins. The MFB-adjusted QPE leads to annual rainfall sums
that still underestimate those of the reference for the catch-
ments in the east and south of the country (towards the edge
of the radar domain). This bias is almost absent for the annual
rainfall sums after correction with the CARROTS factors (up
to 5 % over- and underestimation for the same catchments).
For basins closer to radars, this effect decreases, and both
adjustment methods perform well.

The effects of both adjustment methods on the QPE are
amplified when they are used as input for the rainfall-runoff
models of the 12 studied basins. The discharge simulations
with the CARROTS QPE outperform those using the MFB-
adjusted QPE for all but one basin. For hydrological applica-
tions in the Netherlands, these results indicate that the current
operational use of a country-wide MFB adjustment may be
reconsidered as it often performs worse than the proposed
climatological adjustment factor, which can be seen as the
minimum benchmark to outperform.

Despite the aforementioned results, the CARROTS
method has two main limitations: (1) for every change in the
radar setup, the radar calibration, post-processing algorithms
or the final composite generation method, the adjustment fac-
tors have to be recalculated; (2) the factor is not calculated for
the actual meteorological conditions and resulting QPE er-
rors, which could lead to considerable errors during extreme
events. Nonetheless, the latter is also the case for the MFB-
adjustment technique (Schleiss et al., 2020), even though the
MFB factors are derived in real time.

The main advantage of the introduced method is the con-
tinuous availability of spatially distributed adjustment fac-
tors, due to the independence of timely rain gauge observa-
tions. This is beneficial for operational use. In addition, the
CARROTS factors are shown to be robust, as the derivation
is not found to be sensitive to leaving out individual years or
to the moving window used, especially when this window is
longer than a week.

Finally, this method is not expected and meant to outper-
form more advanced spatial QPE adjustment methods (which
require data from dense rain gauge networks for robust appli-
cation), but it can serve as a benchmark for the development
and testing of more advanced operational radar QPE adjust-
ment techniques. QPE adjustment methods (including CAR-
ROTS) greatly benefit from a denser, frequently available
rain gauge network. From that perspective, crowd-sourced
personal weather stations have promise for improving radar
rainfall products, given their direct surface measurements
and dense networks (Vos et al., 2019). This also holds for rain
gauge observations from other governmental or third parties,
e.g., the water authorities in the Netherlands. Hence, we think
that this could further improve radar rainfall products in the
near future.
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Appendix A: Hourly evaluation of the rainfall sums

Table A1. Country-average fractional standard error (FSE) between
the hourly reference rainfall (RA) and the three QPE products (RU,
RMFB and RC) per year for the winter (DJF) and summer (JJA) sea-
sons. The FSE was only calculated for hours in which the country-
average rainfall rate was larger than 0.0 mmh−1.

FSE
Season Year Avg. rain rate RU RMFB RC

(mmh−1)

DJF 2009 0.32 1.10 0.49 0.74
2010 0.26 1.23 0.61 0.82
2011 0.38 1.12 0.50 0.73
2012 0.36 1.09 0.51 0.65
2013 0.30 1.04 0.56 0.90
2014 0.33 1.06 0.51 0.72
2015 0.34 1.04 0.51 0.84
2016 0.34 1.15 0.61 0.84
2017 0.37 0.56 0.32 0.44
2018 0.37 1.22 0.65 0.76

JJA 2009 0.33 1.18 0.80 1.08
2010 0.43 1.34 0.71 1.02
2011 0.37 1.31 0.78 1.03
2012 0.36 1.19 0.72 0.99
2013 0.36 1.34 0.86 1.20
2014 0.33 1.37 0.91 1.28
2015 0.44 1.24 0.69 1.08
2016 0.30 1.46 1.00 1.46
2017 0.37 1.29 0.76 1.09
2018 0.34 1.26 0.78 1.20

Table A1 shows the country-average FSE between RA and
the three QPE products for every year and the winter and
summer seasons. The method to calculate the FSE score is
described in Sect. 2.3.

Hydrol. Earth Syst. Sci., 25, 4061–4080, 2021 https://doi.org/10.5194/hess-25-4061-2021



R. Imhoff et al.: A climatological benchmark for operational radar rainfall bias reduction 4077

Data availability. The archived gauge-adjusted (refer-
ence) and unadjusted radar QPEs are available via https:
//dataplatform.knmi.nl/dataset/rad-nl25-rac-mfbs-em-5min-2-0
(Royal Netherlands Meteorological Institute, 2021) and
https://doi.org/10.4121/uuid:05a7abc4-8f74-43f4-b8b1-
7ed7f5629a01 (Overeem and Imhoff, 2020). The daily clima-
tological bias adjustment factors for the Netherlands can be
found at https://doi.org/10.4121/13573814 (Imhoff et al., 2021).
The parameter values used for WALRUS and SOBEK RR are
operationally used by the water authorities and should therefore
be requested via them. Interested readers are invited to contact
the authors about this. The color schemes used in Figs. 3 and 4
are described in Crameri (2018) and Crameri et al. (2020) and are
available via https://doi.org/10.5281/zenodo.4153113 (Crameri and
Shephard, 2020).

Supplement. The Supplement contains a visualization of the daily
spatial variability of the CARROTS factors. The supplement related
to this article is available online at: https://doi.org/10.5194/hess-25-
4061-2021-supplement.
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