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Improved Generalization in Semi-Supervised
Learning: A Survey of Theoretical Results

Alexander Mey and Marco Loog

Abstract—Semi-supervised learning is the learning setting in which we have both labeled and unlabeled data at our disposal.

This survey covers theoretical results for this setting and maps out the benefits of unlabeled data in classification and regression tasks.

Most methods that use unlabeled data rely on certain assumptions about the data distribution. When those assumptions are not met,

including unlabeled data may actually decrease performance. For all practical purposes, it is therefore instructive to have an

understanding of the underlying theory and the possible learning behavior that comes with it. This survey gathers results about the

possible gains one can achieve when using semi-supervised learning as well as results about the limits of such methods. Specifically,

it aims to answer the following questions: what are, in terms of improving supervised methods, the limits of semi-supervised learning?

What are the assumptions of different methods? What can we achieve if the assumptions are true? As, indeed, the precise

assumptions made are of the essence, this is where the survey’s particular attention goes out to.

Index Terms—Semi-supervised learning, learning theory, improvement guarantees, assumptions

Ç

1 INTRODUCTION

FOR many applications, gathering unlabeled data is faster
and cheaper than gathering labeled data. The goal of semi-

supervised learning (SSL) is to combine both anddesign classifi-
cation and regression rules that outperform schemes only based
on labeled data. SSL does come, however, with an inherent risk:
including unlabeled data can also degrade performance [1], [2].
Studying and understanding SSL from a theoretical point of
view allows one to formulate the necessary assumptions, the
expected improvements, and the limitations of the different
methods. Based on such understanding, one can formulate rec-
ommendations for using SSL with the aim of avoiding any
decrease in performance as good as possible. Our review pro-
vides this theoretical viewpoint, offering a much-needed com-
plement to claims that there are no performance guarantees
(see, for instance, [3, page 380]).We study the relevant, theoreti-
cal papers in detail, present their main findings, and point out
connections. Next to theoretical guarantees of some specific
learners,we also cover the theoretical limits of SSL.

1.1 Common Assumptions

Much in this survey revolves around making precise what
assumptions underliewhich results. Foregoing such precision
for now, this subsection introduces the most common ones
and sketches their relation. Conceptually, most assumptions
restrict how the data may be labeled, given a specific domain
distribution. This concept will often reappear in this survey,
Section 2.1.6 in particular investigates the effectiveness of SSL
if such assumptions are notmade.

One of most used assumptions is the smoothness assump-
tion [4, Section 1.2]. It roughly states that two input points
that are close together, have a high likelihood to share the
same output. The important word is close. One could call
two points close, when their Euclidean distance is small,
but one can think of more sophisticated ways to define
closeness. One way is through the cluster assumption. The
idea is that we can use the unlabeled data to find clusters
and call two points close if they are in the same cluster. Sec-
tion 5 formalizes this and shows the assumption to be very
strong, i.e., it enables exponentially fast learning.

Low-density separation can be seen as a specific instance of
the cluster assumption, but giving rise to different algo-
rithms. It states that the decision boundary should lie in a
region with low density. Indeed, if we define clusters as
regions of high density and would like to separate those,
the decision boundary should automatically be in a low-
density region. Again, the unlabeled data helps, as we can
actually identify the low-density regions as, for example,
formalized through the transductive support vector
machine [5], [6].

The manifold assumption is related to the above concepts,
but has led to confusion as there are two alternative defini-
tions. The first is best explained with a quote from [7]: “We
will assume that if two points x1; x2 2 X are close in the
intrinsic geometry of P ðXÞ, then the conditional distribu-
tions P ðyjx1Þ and P ðyjx2Þ are similar.” The manifold refers to
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this intrinsic geometry of P ðXÞ. Importantly, note that this is
the same as the cluster assumption, the cluster is formalized
as themanifold geometry given byP ðXÞ. An alternative defi-
nition has, for example, been given in [4, Section 1.2.3]: “The
(high-dimensional) data lie (roughly) on a low dimensional
manifold.” Note that this definition does not not restrict how
one may label the data, given the domain distribution.
Although a low-dimensional manifold can help to avoid the
curse of dimensionality, Section 2.1.5 reveals that such
knowledge does not bring any additional advantage regard-
ing worst-case performance rates, also called minimax rates.
If not stated otherwise, the first definition is used.

There are but few assumptions that really diverge
from the above concepts. A notable exception is the
multi-view assumption, which essentially states that one
can split the feature space into two subspaces with each
subspace being sufficient to solve the learning problem.
Section 4.2 covers one formalization and explains the
intuition of how this assumption can help the learning
process.

What all of those assumptions have in common is that it
is unclear if we can effectively verify them, or if for success-
ful semi-supervised learning they have to be known to hold
in advance, see also Section 7.4.

1.2 Outline

Section 2 discusses results on the limits of SSL, which typ-
ically arise form specific assumptions about the model or
the data generation process. As opposed to provably lim-
ited improvements, this same section presents three set-
tings where the improvements of SSL are unlimited, i.e.,
where a semi-supervised learner can learn the problem,
while no supervised learner (SL) can. Section 3 investi-
gates what is possible with some specific methods that
exploit unlabeled data without making further assump-
tions on the data distribution. Section 4 treats semi-super-
vised learners that make weak assumptions on the data
distribution, in the sense that the resulting learner cannot
get a learning rate faster than 1ffiffi

n
p , with n the number of

labeled samples.1 Here, improvements are given by a con-
stant. Section 5 then discusses learners that use strong
assumptions, providing converge exponentially fast to
the best classifier in a given class, i.e., the learning rate is
of the order e�n. This section also argues that there is not
necessarily a principled qualitative difference in weak
and strong assumptions, but rather a subtle quantitative
difference. Subsequently, Section 6 presents results in the
transductive setting where one is only interested in the
labels of the unlabeled data available. The same section
present a line of research that aims to construct semi-
supervised learners that are never worse than their super-
vised counterparts. Finally, Section 7 discusses the overall
results and conclude with what we see as the current
challenges in the field. Next to that, it reconsiders what it
means to use assumptions and the problems that come
with it. This final section also makes note of the absence
of deep learning from this review. Before turning to

Section 2, the next subsection briefly introduces the for-
mal learning framework that is assumed in most of the
remainder.

1.3 The Learning Framework

We typically present results, describing the performance of
semi-supervised learners, in the language of PAC-learning.2

Unless specified otherwise, we consider a standard statisti-
cal learning setting: we are given a feature space X and an
output space Y, together with an unknown distribution P
on X � Y. With slight abuse of notation, we write P ðXÞ and
P ðY Þ for the marginal distributions on X and Y. Similar
conventions are used for conditional distributions.

We consider the setting in which we have observed a
labeled n-sample Sn ¼ ððx1; y1Þ; . . . ; ðxn; ynÞÞ and an unla-
beled m-sample Um ¼ ðxnþ1; . . . ; xnþmÞ, where each ðxi; yiÞ
for 1 � i � n and each xj for nþ 1 � j � nþm is identically
and independently distributed according to P . One then
chooses a hypothesis class H, where each h 2 H is a map-
ping h : X ! Y; and a loss function l : Y � Y ! R: A (semi)-
supervised learner B is a map that receives as input the
labeled (and unlabeled) sample Sn, Um and maps to hypoth-
esis h, so BðSn; UmÞ 2 H. A strictly supervised learner
receives an empty second input. Unless specified otherwise,
we assume for classification that Y ¼ f�1;þ1g and the loss
is the 0-1 loss: lðy; ŷÞ ¼ Ify6¼ŷg: For the regression task, we
assume that Y ¼ R and consider the standard squared loss:
lðy; ŷÞ ¼ ðy� ŷÞ2: Based on the n labeled and m unlabeled
samples, the aim is to find an h 2 H such that the risk RðhÞ :
¼ EX;Y ½lðhðXÞ; Y Þ� is small.

Whenever we have any quantity A that depends on the
distribution P , we write Â for an empirically estimated ver-
sion of A. For example, given a labeled sample Sn, we write
R̂ðhÞ ¼ 1

n

Pn
i¼1 lðhðxiÞ; yiÞ for the empirical risk of h 2 H

measured on Sn. It should be clear from the context on
which sample we measure the loss.

Finally we denote bymð� � �Þ andmSSLð� � �Þ the supervised
and semi-supervised sample complexity, as defined in the
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2022.3198175.

2 POSSIBILITIES AND IMPOSSIBILITIES

In SSL, we want to use information about the distribution
on X to improve learning. It is not directly clear, however,
that this information is useful at all. Various works formal-
ize the idea of using unlabeled data and subsequently inves-
tigate situations where unlabeled data cannot help or where
it, in fact, can. This section follows the same division
between impossibility (Section 2.1) and possibility (Sec-
tion 2.2). The latter presents three specific settings where
unlabeled data can, in fact, give unlimited improvement, i.e,
no supervised learner can PAC-learn in the situation consid-
ered, whereas some semi-supervised learner can.

1. The learning rate is the rate at which a learner converges to the best
classifier in a given class. Without further assumptions, the standard
rate of the order 1ffiffi

n
p follows from classic learning results [5], [8], [9].

2. PAC-learning stands for Probably Approximately Correct-learning.
This framework studies how far a trained classifier is off from the best
classifier in a class given a certain amount of labeled data. Good intro-
ductions to this framework can be found in [8] and [9]. For complete-
ness, Definition 1 introduces the notion of sample complexity. PAC-
learnable means that the sample complexity is always finite.
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We note that the negative results often assert an indepen-
dence between the posterior probability P ðY jXÞ and the
marginal distribution P ðXÞ. This does, however, not
directly mean that unlabeled data is useless, as we are usu-
ally not only interested in P ðY jXÞ but in the complete risk
EX;Y ½lðhðXÞ; Y Þ� of a classifier h, which does depend on
P ðXÞ [10, Subsection 5.1.2]. Sections 3.1 and 3.2, for exam-
ple, present works that show risk improvements even when
P ðY jXÞ and P ðXÞ are independent.

2.1 Impossibility Results

The results covered in this subsection show, in different set-
tings, that semi-supervised learning is inherently impossi-
ble. While the titles in the following section indicate the
setting that renders semi-supervised learning impossible,
we often reference later sections that explicitly exclude this
setting to generate positive results. Next to this, this section
presents results that demonstrate the limits of semi-super-
vised learning methods when no particular assumptions
about the data distribution are made (cf. Section 1.1).

2.1.1 Due to Data Generation Process

Ref. [11] looks at a simple data generation model and inves-
tigates how prior information about the data distribution
changes our posterior belief about the model if the prior
information is included in a Bayesian fashion. To use the
Bayesian approach, the data is assumed to be generated in
the following manner. Firstly, the distribution P comes
from a model class with parameters m and u. Subsequently,
values m � Pm and u � Pu are sampled independently after
which the data is generated by gathering samples x �
P ðXjmÞ with corresponding labels y � P ðY jX; uÞ, see also
Fig. 1.

The goal is to infer u from a finite labeled sample Sn ¼
ðxi; yiÞ1�i�n. It can be easily shown that P ðujSnÞ is indepen-
dent of any finite unlabeled sample and m itself. In other
words: unlabeled information does not change the posterior
belief about u given the labeled data Sn. A possible solution
is to assume a dependency between m and u. This exact
approach was chosen in [12, Example 1] to create a setting
where knowledge of the marginal distribution can indeed
help. In their example, the marginal distribution completely
determines the Bayes classifier. Therefore, a semi-super-
vised learner exists that always has zero risk, while any
supervised learner has the standard learning rate of 1ffiffi

n
p .

Alternatively, we can also think about settings where the
data generation process from Fig. 1 is reversed: first sample
a label y, and then sample a feature x from a marginal distri-
bution associated to y, a setup we cover in Section 5.1.

2.1.2 Due to Model Assumptions

Ref. [13] investigates when unlabeled data should change
our posterior belief about a model. In comparison to [11], no
data generation assumptions are made, but rather assump-
tions about the model that is used. The author looks at solu-
tions derived from the expected squared loss between this
given model and the true desired label output. Splitting the
joint distribution P ðX;Y juÞ of the model considered as
P ðX;Y juÞ ¼ P ðY jX; u1; u2ÞP ðXju2; u3Þ, the conclusion is
reached that unlabeled data can be discarded if u2, the
shared parameter between the label and marginal distribu-
tion, is empty.

Conversely, the effectiveness of methods like expectation
maximization [14] or the provable improvements of the
method from Section 6.2.2 stem from the fact that some gen-
erative models cannot be decomposed in the above way.
Given, for example, data that is distributed as two Gaussian
distributions, where each distribution corresponds to a
class. This means that u ¼ fq;m1;m2;S1;S2g, with mi and Si

(i 2 f1; 2g) the class means and covariance matrices, and q 2
½0; 1� the class prior of, say, class 1. Here both P ðY jX; uÞ and
P ðXjuÞ depend on the class means and covariances.

Earlier work, [15], distinguishes the same type of models,
but the impossibility is about the asymptotic efficiency of
semi-supervised classifiers. Specifically, it considers the fol-
lowing two joint probabilities, which both provide genera-
tive models: parametric: P ðX;Y jaÞ ¼ P ðXjaÞP ðY jX;aÞ;
semi-parametric: P ðX;Y jaÞ ¼ P ðXÞP ðY jX;aÞ. The author
shows that the Fisher information IðâÞunlab + lab of an
maximum likelihood estimator (MLE) â that takes labeled
and unlabeled data into account can be decomposed as
IðâÞunlab +lab ¼ IðâÞunlab þ IðâÞlab. So, as long as unla-
beled data is available, the Fisher information of the semi-
supervised learner is larger compared to the supervised
learner, as the latter equals IðâÞlab. It follows that the semi-
supervised learner is asymptotically more efficient, although
not necessarily strictly. In the parametric case, IðâÞunlab ¼ 0
and the semi-supervised and supervised estimator have the
same asymptotic behavior. The primary difference to the
previous subsection is that now we have an impossibility of
gain in Fisher information, rather than one of Bayes
updating.

2.1.3 Because of Causal Direction

Ref. [16] analyzes a functional causal model, such as the one
in Fig. 2. Different learning scenarios are considered under
the assumption that the label is the cause C and the feature
is the effect E and vice versa. This model introduces an
asymmetry in cause and effect, since it leads to the fact that
P ðCÞ and P ðEjCÞ are independent, while P ðEÞ and P ðCjEÞ
are not. Assuming thatX is the cause of the label Y , the pre-
diction P ðY jXÞ is independent of newly gained information

Fig. 1. Data generation process used in [11].

Fig. 2. Simple functional causal model [16]. The effect E is caused by C
given a deterministic mapping %. E and C are influenced by noise varia-
blesNE andNC , respectively.
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about P ðXÞ. This independence vanishes, if we assume that
the label Y is caused by X. This excludes the possibility to
improve the posterior prediction P ðY jXÞ with the help of
unlabeled data. However, as mentioned in the beginning of
Section 2, the unlabeled data may still help to reduce the
risk, as the risk always depends on P ðXÞ.

2.1.4 To Always Outperform Supervised Learner

Inspired by a successful approach for a generative linear dis-
criminant model from [17] (see Section 6.2.2), [18] investi-
gates a similar approach to find semi-supervised solutions
for discriminative models that are never worse than their
supervised counterparts. Discriminative models are consid-
ered that use a monotonously decreasing loss function,
while the setting is transductive, i.e., interest is in the perfor-
mance of the model on the unlabeled data Um only. (Sec-
tion 6 discusses this setting in more detail.) The work
essentially shows that, under some mild conditions, there is
always a labeling of the unseen data Um such that a semi-
supervised learner performs worse on Um than the super-
vised solution does. It is impossible, therefore, to guarantee
that the semi-supervised solution always outperforms the
supervised solution.

2.1.5 Only Knowing the Manifold

Ref. [19] shows that knowledge of the manifold alone,
without additional assumption, is not sufficient to out-
perform a purely supervised learner (cf. Section 1.1 the
second definition of manifold assumption). It works in a
regression setting and extends work in [20], which intro-
duces a supervised learner that performs regression on
an unknown manifold, to show that there is a supervised
learner that can adapt to the dimension of the manifold
and thus can achieve worst case rates, also called mini-
max rates, equivalent to a learner that directly works on
the lower dimensional manifold.

We note that [19] also shows that one can achieve essen-
tially faster rates by making a proper smoothness assump-
tion. A qualitatively very similar analysis of this is offered
in Section 5.4.

2.1.6 Not Making Additional Assumptions

Ben-David et al. [1] provide a series of investigations start-
ing from the conjecture that SSL is, in some sense, not possi-
ble without any additional distributional assumptions, such
as those from Section 1.1. They hypothesize that, a semi-
supervised learner cannot have essentially better sample
complexity bounds than an SL (see Definitions 1 and 2).
This setting is essentially different from the previous sub-
sections, as there are no further restrictions on the model or
the data generation process. In the following two subsec-
tions, we illustrate the precise idea of these conjectures.
Additionally, we clarify why they do not hold generally
and in which scenarios they are generally true. We start,
however, with the main contributions from [1].

The generic hypothesis is that the worst-case sample
complexity for any semi-supervised learner improves over
a supervised learner at most by a constant that only

depends on the hypothesis class. The first conjecture states
this for the realizable case.

Conjecture 1 ([1, Conjecture 4]). For any hypothesis class H,
there exists a constant cðHÞ such that for any domain distribu-
tionD on X it holds that

sup
h2H

mðH;Dh; �; dÞ � sup
h2H

cðHÞmSSLðH;Dh; �; dÞ; (1)

for � and d small enough. HereDh is the distribution on X � Y
with marginal distribution D and conditional distribution
DhðY ¼ hðxÞjX ¼ xÞ ¼ 1.

The second states the same for the agnostic case, i.e., we
can replaceDh with any arbitrary distribution P .

Conjecture 2 ([1, Conjecture 5]). For any hypothesis class H,
there exists a constant cðHÞ such that for any domain distribu-
tionD

sup
P2extðDÞ

mðH;P; �; dÞ � sup
P2extðDÞ

cðHÞmSSLðH;P; �; dÞ; (2)

for � and d small enough and where extðDÞ is the set of all dis-
tributions P on X � Y such that the marginal distribution ful-
fills P ðXÞ ¼ D.

In other words, the paper conjectures that if we are given
a fixed domain distribution, one can always find a labeling
function (h in the realizable and P ðY jXÞ in the agnostic
case) for it such that the sample complexity gap between SL
and SSL can only be a constant. The paper proves these con-
jectures for smooth distributions on the real line and thresh-
old functions in the realizable case and for threshold
functions and unions of intervals in the agnostic case.

We note that the sample complexity comparison is, by
construction, a worst case analysis. This means that in cases
where the target hypothesis behaves benign, we could still
get non-constant improvement. This is further explored in
Section 5. On another note, we can also ask the question
how good a constant improvement by itself can already be.
We elaborate on this in the discussion section.

Conjectures 1 and 2 are both not true in full generality,
which we will explain in the following subsections, but
slightly modified statements may be shown.

In the realizable case, [21] shows that Conjecture 1 is true
with a small alteration and when the hypothesis class has
finite VC-dimension: if H is even finite, the supervised
learner is allowed to be twice as inaccurate (note the 2� in
Inequality (3) below). If H is not finite but with finite VC-
dimension, we get an additional term of log ð1�Þ in Inequality
(4). [22] takes this idea a step further and shows that there is
a setting in which manifold regularization, which uses the
manifold assumption, obeys the limits stated by the conjec-
ture, even though in this case the domain distribution car-
ries information about the labeling function. Specifically,
[21] proves the following.

Theorem 1 ([21, Theorem 1]). Let H be a hypothesis class
such that it contains the constant zero and constant one func-
tion. Then for every domain distribution D and every h 2 H, if
H is finite, then
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mðH;Dh; 2�; dÞ � Oðln jHjÞmSSLðH;Dh; �; dÞ; (3)

ifH has finite VC-dimension, then

mðH;Dh; 2�; dÞ � OðVCðHÞÞlog 1

�

� �
mSSLðH;Dh; �; dÞ: (4)

Note that this statement holds for all Dh, so in particular
if we take the supremum over all h 2 H as in Conjecture 1.
Ref. [23] shows that if the hypothesis class H is given by the
projections over f0; 1gd, there is a set of domain distribu-
tions such that any supervised algorithm needs VðVCðHÞÞ
as many samples as the semi-supervised counterpart, which
has knowledge of the full domain distribution. So in partic-
ular Inequality (4) is tight up to logarithmic factors. This
actually shows that the constant improvement can be arbi-
trarily good, as we can increase the VC-dimension by
increasing the dimension [23, Proposition 4].

Regarding the agnostic case, Theorem 9 from [12] shows
Conjecture 2 with some small modifications and assump-
tions. Like Theorem 1 it assumes finite VC-dimension
together with further mild assumptions on the domain dis-
tribution D (while Conjecture 2 is formulated to hold for all
distributions D). Another difference is that they consider an
in-expectation and not a high-probability framework. The
intuition for that result is straightforward: if we allow all
labeling functions, i.e., consider the agnostic case, there is
no label information about the support of X that we did not
observe yet. Finding the labels for this part is equally slow
for supervised and semi-supervised learners.

In the case of a hypothesis class with infinite VC-dimen-
sion, however, both conjectures cease to hold, also for the
slightly altered formulations. This is the case because we
can start with a class that has infinite VC-dimension, and
thus cannot be learned by a supervised learner. A semi-
supervised learner, however, can restrict this class in a way
such that it has finite VC-dimension. We elaborate on this in
the next subsection where we collect three different setups
in which a semi-supervised learner can PAC-learn, while a
supervised learner cannot.3

2.1.7 Not Restricting Possible Labeling Functions

We end with a related negative result from Ref. [23], which
shows that if the domain X is finite and we allow all deter-
ministic labeling functions on it, no semi-supervised learner
can improve over a supervised learner that achieves 0 train-
ing error in the realizable PAC-learning framework, not
even by a constant. The supervised learner is, however, to
be allowed twice as inaccurate and twice as unsure, which
is respectively captured by the 2� and 2d below.

Theorem 2 ([23, Theorem 8]). Let X be a finite domain, and
let Hall ¼ f0; 1gX be the set of all deterministic binary labeling
functions on X . Let A be any supervised learner that achieves 0
training error, P a distribution over X and �; d 2 ð0; 1Þ. Then
mðA;Hall; P; 2�; 2dÞ � mSSLðHall; P; �; dÞ:

While the more general Theorem 1 states that a semi-
supervised can still be better by a constant depending on
the hypothesis class, we find that in this setting one even
loses this advantage. The idea of the result is similar to The-
orem 9 from [12], discussed above: if there is no restriction
on the labeling function it is difficult to learn the labels for
the unobserved support.

In the next subsection, we see that positive results are
still possible and present hypothesis classes on which semi-
supervised learners can be effective. Following the previous
result, it is not surprising, however, that those classes and
the domain distributions they may operate on are carefully
chosen.

2.2 On the Possibility of Semi-Supervised Learning

We consider three specific settings in which it can be shown
that a semi-supervised learner can learn, while a SL cannot.
We present the two works of [21] and [24], these aim to
answer Conjectures 1 and 2 covered in the previous subsec-
tion. They show that there is a hypothesis classH	 and a col-
lection of domain distributions D	 such that no supervised
learner can learn H	 uniformly over the distributions of D	,
while a semi-supervised learner that has access to the
domain distribution can learnH	. As a third, we present the
work of [25] as we think it provides the most insightful
example of how a shift from not learnable to learnable is
possible when going from SL to SSL, even though in there
we assume that the domain distribution restricts the possi-
ble labeling functions.

2.2.1 Proving the Realizable Case With a Discrete Set

Ref. [21] gives the first example that shows that Conjecture 1
does not hold in general. This is captured in the first theo-
rem to follow.

Theorem 3 ([21, Theorem 2]). There exists a hypothesis class
H	 and a family of domain distributions D	 such that for every
D 2 D	,

mSSLðH	; D; �; dÞ � O
1

�2
þ 1

�
log

1

�

� �� �

and, for all � < 1
2 and d < 1,

mðH	; �; dÞ ¼ sup
D2D	

mðH	; D; �; dÞ ¼ 1:

In order for the semi-supervised learner to be able to
PAC-learn for all D 2 D	, it needs knowledge of the full dis-
tribution D. (Although for each fixed D 2 D	, a finite
amount of unlabeled data suffices.) Since the supervised
learner can only collect labeled samples, it will never be
able to achieve this knowledge with a finite number of sam-
ples and thus has an infinite sample complexity.

Let us give some intuition for [21]’s example, which is
also at the basis of the other results in this subsection. The
setup is as follows. The domain X consists of all sequences

x ¼ ðx1; x2; . . . ; xlÞ

of arbitrary finite length l and xi 2 f0; 1g. The distributions
D 2 D	 on X are such that there is a sequence3. Here, PAC-learnability meansmðH; �; dÞ is finite for all �; d > 0.
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Dðxsð1Þ ¼ 1Þ > Dðxsð2Þ ¼ 1Þ > . . .;

where s is a random permutation of the indices of x, and the
distribution drops sufficiently quick in sðiÞ.4

The hypothesis class H	 contains all hypotheses hi with
hiðxÞ ¼ xi and the constant 0 hypothesis. Note that,
although the class has infinite VC-dimension, it still takes
some effort to show that no supervised learner can learn it
w.r.t. to all distributions in D	. After all, the VC-dimension
could be finite over D	. We want to sketch how the semi-
supervised learner can learn it. After fixing a D 2 D	 and
�; d > 0, we draw enough unlabeled samples to identify all
positions i 2 N such that xi is with a high probability 0. For
all those indices i we can remove hi from H	 as the constant
0 hypothesis is good enough for predicting accurately. One
then shows that the remaining hypotheses in H	 can be
learned from finitely many samples.

The foregoing example, like those that follow, are essen-
tially set up such that H and D have a certain link where
knowledge about D can actually give knowledge about H.
Note, however, that knowledge about D does not restrict
the set of possible labeling functions from H, but it helps to
identify which hypotheses can be safely ignored. Note also
that it is important that the admissible domain distributions
are restricted. If D	 would also include distributions that
essentially put equal weight on all positions i, there would
be no position xi which are with high probability 0 and we
thus could not remove the corresponding hypotheses.

2.2.2 Proving the Agnostic Case Using

Algebraic Varieties

Ref. [24] provides a different example of Theorem 3 for a
continuous space X , which may also be extended to the
agnostic case, and thus refuting Conjecture 2 in full general-
ity. Here the set of admissible distributions are given by
specific manifolds. As such, they use the second, alternative,
manifold assumption as given in Section 1.1.

Theorem 4 ([24, Theorem 5]). There exists a hypothesis class
Halg and a set of distributions Dalg such that, for every D 2
Dalg,

mSSLðHalg; D; �; dÞ <
2

�
log

2

d
; (5)

and the supervised sample complexity is infinite, i.e.,

sup
D2Dalg

mðHalg; D; �; dÞ ¼ 1: (6)

The hypothesis class Halg consists of all hypotheses that
have class label 1 on an algebraic set and 0 outside of that
set. This algebraic set can essentially be considered a mani-
fold of sorts. The hypotheses class is very rich and has infi-
nite VC-dimension. If, however, we restrict the set of
admissible domain distributions Dalg to be particular types
of algebraic sets, a semi-supervised learner with knowledge
of D 2 Dalg can learn efficiently. We can think of Dalg as the

set of distributions that have support on a finite combina-
tion of distinguishable algebraic sets V1; . . . ; Vk. Once we
know that the distribution has support on V1; . . . ; Vk, we
only have to figure out which of those algebraic sets have
label 1 and which have label 0. A semi-supervised learner
can thus reduce the class Halg by only considering the
hypotheses that have class label 1 on combinations from
V1; . . . ; Vk. Since the set of all possible combinations is finite,
a semi-supervised learner can learn them with a sample
complexity bounded by Inequality (5).

The extension to the agnostic case might appear prob-
lematic at first, because the semi-supervised algorithm
restricts the hypothesis set Halg. To guarantee PAC-learn-
ability, we need to know that the best predictor from Halg is
still in this restricted set. But this is indeed the case, because
the set of domain distributions Dalg was exactly created for
that to hold. To show this, assume that the distribution is
supported on one irreducible algebraic set V0. Our semi-
supervised learner can now choose to label it completely 1
or 0, where both options may lead to non-zero error. But
labeling it completely as either 1 or 0 is already ideal, as
using any algebraic set V1 2 Halg will by construction be
equal to V0 (which leads to label everything as 1) or has an
intersection of zero mass with V0 (which leads to labeling
almost everything as 0).

Interestingly, the findings above seems to contradict the
results from Section 2.1.5. [19] shows that a supervised
learner can also adapt to the underlying manifold. This dis-
crepancy is explained by the fact that [19] restricts the target
functions to be smooth, which presents the supervised
learner with a sufficiently easy problem. The work in this
section on the other hand confronts the supervised learner
with an impossible, meaning not PAC-learnable, task.

2.2.3 Enforcing Learnability With the

Manifold Assumption

Ref. [25] provides a third example in which a semi-super-
vised learner can effectively learn, while a supervised
learner cannot. The motivation for this, however, was inde-
pendent of [1] and meant as a general theoretical analysis of
the manifold learning framework as introduced in [7]. Also,
their results are in-expectation, while the previous papers
give PAC bounds, i.e., they hold with high probability. The
work relies on the manifold assumption, which limits the
possible labeling functions, and thus is not a counterexam-
ple to 1. We believe, however, that it is the most intuitive
setting to understand why a supervised learner cannot
learn, while a semi-supervised learner can.

Though the paper presents the example in an in-expecta-
tion framework, we alter the setup slightly and present it in
the PAC learning framework, which makes the comparison
to the previous sections easier.

The example starts by assuming that the admissible
domain distributions are given by the class of distributions
Pc that have support on embeddings of a circle in the
Euclidean plane (see Fig. 3). The hypothesis class Hc

4. Note that with xsðiÞ ¼ 1we mean the subset V 
 X with

V :¼ fx ¼ ðx1; x2; . . . ; xlÞ 2 XjxsðiÞ ¼ 1g:
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consists of all possible binary labelings of half circles, while
everything outside the circle is labeled as 1.5 The semi-
supervised learner that knows the specific embedding of
the circle only needs to find two thresholds on the given cir-
cle. This is a hypothesis class with a VC-dimension of 2,
which implies that the semi-supervised learner can learn
efficiently. In Fig. 4, we illustrate in a schematic way why
Hc has an infinite VC-dimension and thus cannot be learned
by any supervised learner.

3 LEARNING WITHOUT ASSUMPTIONS

As we have seen in the previous section, it can be difficult to
exploit unlabeled data not making additional assumptions.
In fact, we saw that in various of these situations one can
show that unlabeled data cannot help at all. As already
mentioned in the introduction of Section 2, this impossibil-
ity sometimes stems from the fact that we only consider
improvements of the estimate of the conditional probability
P ðY jXÞ. This section looks at the complete risk EX;Y ½lðh
ðXÞ; Y Þ�, a quantity which is always influenced by the mar-
ginal distribution P ðXÞ. Still, no additional assumptions
about the distribution P are considered and the theoretical
guarantees are weak accordingly.

Ref. [26] uses the unlabeled data to reweigh the labeled
points and show improvements in terms of asymptotic effi-
ciency. Interestingly, their result implies that strict improve-
ments are only possible under model miss-specification.
[27] employs the unlabeled data to determine the center of
the version space. The best possible improvements in the
learning rate as reported in that work are bounded by a fac-
tor of 2.

3.1 Reweighing Labeled Data by True Marginal

The work in [26] proposes a semi-supervised learner that
has full knowledge of the marginal distribution P ðXÞ in a
reweighing scheme, while X is assumed to be finite. [28]
extends this to non-discrete features spaces. [26] considers
models that directly estimate class probabilities pðyjx; uÞ,
measuring performance by the negative log-likelihood

lðx; yjuÞ ¼ � ln pðyjx; uÞ:

What is analyzed in the end is the asymptotic variance of
the model estimation, in which two models are compared:
the classical maximum log-likelihood estimate based on the
labeled data only, i.e.,

uSL ¼ argmin
u2Q

X
ðx;yÞ2Sn

lðx; yjuÞ; (7)

and a semi-supervised learner that also takes the marginal
P ðxÞ into account:

uSSL ¼ argmin
u2Q

X
ðx;yÞ2Sn

P ðxÞP
z2Xn

Ifx¼zg
lðx; yjuÞ: (8)

Note that the semi-supervised learner weighs each feature
with the true, instead of the empirical, distribution.

Theorem 5 ([26, Theorem 1]). Let

u	 2 argmin
u2Q

E½lðx; yjuÞ�

and define the following matrices

Hðu	Þ ¼ EX VY jX½rulðX; Y juÞjX�
� �

(9)

Iðu	Þ ¼ EX;Y rulðX; Y juÞrT
u lðX;Y juÞ

� �
(10)

Jðu	Þ ¼ EX;Y rT
u rulðX;Y juÞ

� �
; (11)

where VY jX is the variance over the conditional random vari-
able Y jX. Then uSL and uSSL are consistent and asymptotically
normal estimators of u	 with

ffiffiffi
n

p
ðuSL � u	Þ ! Nð0; J�1ðu	ÞIðu	ÞJ�1ðu	ÞÞ (12)ffiffiffi

n
p

ðuSSL � u	Þ ! Nð0; J�1ðu	ÞHðu	ÞJ�1ðu	ÞÞ (13)

and uSSL is asymptotically efficient, meaning that it achieves
asymptotically the smallest variance of any unbiased estimator.

Asking now when uSSL dominates uSL, we get the surpris-
ing answer that this actually happens when the model is
misspecified. It can certainly not happen, however, if the
model is well-specified. In the latter case—along with some
other regularity conditions, the MLE uSL is already asymp-
totically efficient. Moreover, we have that Hðu	Þ ¼ Jðu	Þ ¼
Iðu	Þ, which recovers the classical result that the MLE is
asymptotically normal with a covariance that equals the
inverse Fisher information matrix Iðu	Þ.

The paper examines, based on the logistic regression
model, when the difference between Iðu	Þ and Hðu	Þ is par-
ticularly big and shows that this is the case the more

Fig. 3. The shapes shown in (a) and (b) are two different embeddings of
a circle in the Euclidean plane. One half of the circle is labeled þ1, while
the other half is labeled as �1. Everything outside the circle is labeled
þ1.

Fig. 4. A schematic proof why the hypothesis set Hc has an infinite VC-
dimension. The embedded circle, its upper half assigning points to þ1
and its lower to �1, can label the seven points correctly.

5. The labeling outside of the circle is a formality to ensure that the
supervised learner makes predictions for the whole space, as the
learner does not a priori know in which part of the space the circle is
embedded.
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P ðY jXÞ is bounded away from 1=2, so in particular when
the Bayes error is small. Such requirement on P ðY jXÞ is
very similar to the Tsybakov-margin condition [29], which is
used in statistical learning to come to fast learning rates. In
Sections 5.1 and 5.2, similar assumptions are presented
based on which particular semi-supervised learners can
converge exponentially fast to the Bayes error.

3.2 The Center of Version Space

Ref. [27] introduces a method for bounding the risk by using
unlabeled data to collect information about the agreement
of two classifiers. A semi-supervised estimator is then
derived as the hypothesis that minimizes this bound. Unfor-
tunately, the idea only really works in the realizable case.
Although we do not get a new algorithm for the agnostic
case, the paper presents novel bounds for supervised meth-
ods that make use of the unlabeled data.

3.2.1 Realizable Case

The idea for the realizable case is to consider the version
space, i.e., the space that contains all hypotheses that have
no training error. The unlabeled data gives rise to a pseudo-
metric on this space by measuring the disagreement of its
hypotheses on this data. We are then going to take the
hypothesis that has the lowest worst-case disagreement to
all other hypothesis, amongst which must be the true
hypothesis, as we assume realizability. Let us now make
this more precise.

Given two hypotheses f; g 2 H we define the disagree-
ment pseudo-metric dðf; gÞ as

dðf; gÞ ¼ P ðfðXÞ 6¼ gðXÞÞ: (14)

This metric is specifically useful in the semi-supervised case
since is does not depend on labels. We can approximate it
using its empirical version

d̂ðf; gÞ ¼ 1

m

Xnþm

i¼n

IffðxiÞ¼gðxiÞg: (15)

The version space is defined as H0 ¼ fh 2 HjR̂ðhÞ ¼ 0g: If
h0 is the true hypothesis, then we know that h0 2 H0 and
one can show that RðhÞ ¼ dðh; h0Þ for all h 2 H. This, in
turn, gets us to the following bound.

RðhÞ ¼ dðh; h0Þ ¼ d̂ðh; h0Þ þ ðd̂� dÞðh; h0Þ
� sup

g2H0

d̂ðh; gÞ þ sup
g;g02H0

ðd̂� dÞðg; g0Þ

As Inequality (16) bounds the true risk of a hypothesis h, we
try to minimize this risk by choosing the hypothesis that
minimizes the right-hand side of Inequality (16). More spe-
cifically, we choose the semi-supervised estimator to be the
so-called empirical center of the version space:

hSSL ¼ arg inf
h2H0

sup
g2H0

d̂ðh; gÞ: (17)

With this we can of course only control the first term on
the right-hand side of Inequality (16). In a standard way, we
can bound the second term with concentration inequalities
derived from a Rademacher complexity for the space

G ¼ fx 7! IffðxÞ¼gðxÞgjf; g 2 H0g:

Ultimately, this leads us to the result that with probability at
least 1� d [27, Theorem 3]

RðhSSLÞ �

inf
h2H0

sup
g2H0

d̂ðh; gÞ þ empRadðGÞ þ 3ffiffiffi
2

p

ffiffiffiffiffiffiffi
ln 2

d

m

s
:

(18)

Note the two terms on the right-hand side of Inequality
(18) go to 0 for increasing m and that, in this case, we also
have that d̂ðf; gÞ ! dðg; gÞ. So, ignoring that we only have
finitely many samples, we can compare the semi-supervised
learner (17) to purely supervised solutions. Note that in the
realizable case a purely supervised method would also
choose a hypothesis in H0. As the supervised learner hSL

has no additional information, we can always find a target
hypothesis h	 such that

RðhSLÞ ¼ sup
g2H0

dðhSL; gÞ ¼ dðhSL; h	Þ:

So the best bound for any supervised learner hSL is given by

RðhSLÞ � sup
g2H0

dðf; gÞ:

The SSL bound (18), on the other hand, allows us to come to
the following bound:

RðhSSLÞ � inf
h2H0

sup
g2H0

dðh; gÞ;

which holds at least form going to infinity.
From a geometric viewpoint, supg2H0

dðhSL; gÞ is the diam-
eter of H0, while, infh2H0

supg2H0
dðh; gÞ is the radius. As the

difference between the radius and the diameter, with
respect to d, is at most 2, we find that the differences in the
SSL and SL risk bounds is at most a constant factor of 2.

3.2.2 Bounds for the General Case

In the agnostic case, we do not assume that the target
hypothesis is part of our hypothesis class. To still make use
of the considered disagreement pseudo-metric to come to
bounds, the author proposes the following general recipe.

The starting point is the observation that bounds for ran-
domized classifiers are generally tighter compared to their
deterministic counterparts [30], [31]. The idea is now to use
such a randomized classifier frand as a kind of anchor. This
anchor takes on a role similar to the target hypothesis in the
realizable case. To get a bound for a classifier f , we can use
the bound for the randomized classifier together with a
slack term that includes d̂ðfrand; fÞ. Depending on which
kind of randomized classifier we take, we obtain different
bounds. This includes for example PAC-Bayesian bounds
as well as bounds based on cross-validation and bagging
methods. The paper additionally derives an explicit cross-
validation bound, where the randomized classifier is given
by a uniform distribution over the classifiers obtained in the
multiple cross-validation rounds.
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4 LEARNING UNDER WEAK ASSUMPTIONS

In the previous two sections, we investigatedwhat is possible
for semi-supervised learners when we do not have any addi-
tional assumptions.Herewe investigatewhat can be achieved
assuming, what we refer to as, weak assumptions. With weak
assumptions we mean those that cannot essentially change
the learning rate ofOð 1ffiffi

n
p Þ, but rather give improvements by a

constant which may depend on the hypothesis class. In Sec-
tion 5, we investigate what we have to assume to actually
escape the 1ffiffi

n
p regime.

We first cover the work of [32], as it provides a rather
general framework that allows one to analyze the learning
guarantees for various semi-supervised learners. This initial
paper shows that semi-supervised learners that fall in this
framework learn by a constant faster then supervised learn-
ers, where the constant depends on the hypothesis class and
the semi-supervised learner considered. We then cover, in
more detail, the idea of co-training. It can be studied within
the framework of [32], but we present some additional
details of interest not fully captured by this framework. In
particular, we present the work in [33], that formulates the
assumption of co-training in an information theoretical
framework, which allows one to precisely quantify the bias-
variance trade-off.

4.1 A General Framework for Weak Assumptions

Ref. [32] offers an elegant way to formalize different
assumptions in a general framework. Many existing meth-
ods can be cast in this framework: transductive support vec-
tor machines [6], [34], multi-view assumptions [33], [35],
and transductive graph-based methods [36] are just some
examples. The idea is to introduce a function x that meas-
ures the compatibility between a hypothesis h and the mar-
ginal distribution P ðXÞ. For example, we can deem a
hypothesis h compatible with a marginal distribution P ðXÞ,
if its decision boundary goes through low-density regions,
encoding one assumption explained in Section 1.1.

Although x should connect the marginal distribution
P ðXÞ to the compatibility of a hypothesis h, it is much more
useful to define x for each point in the feature space individ-
ually. This way we can estimate x based on a finite unla-
beled sample, when we do not have access to the full
distribution P ðXÞ. Therefore x is a mapping

x : H � X ! ½0; 1�: (19)

The compatibility measure x then gives rise to the function

RunlðhÞ :¼ 1� EX�P ðXÞ½xðh;XÞ�; (20)

which we refer to as the unsupervised loss. The aim is to opti-
mize it in addition to the loss on the labeled sample.

Here, we focus on a single core theorem. The other
results in the paper are similar in flavor and mostly differ in
the realizability assumptions w.r.t. the unsupervised and
the supervised error made and the bounding techniques
employed. The paper presents bounds derived from uni-
form convergence as well as bounds based on covering
numbers. The theorem presented considers the double
agnostic case in which neither the labeled nor the unlabeled
loss have to be zero.

Theorem 6 ([32, Theorem 10]). Let

h	
t ¼ argmin

h2H
½RðhÞjRunlðhÞ � t�:

Then, given an unlabeled sample size of at least

64

�22
2max½VCðHÞ; VCðxðHÞÞ� ln 1

�2
þ ln

1

d

� �
;

we have that

mðhSSL; H; �; dÞ � 32

�2
VCðHðtþ 2�2ÞÞ þ ln

2

d

� �
; (21)

where hSSL is the hypothesis that minimizes R̂ðhSSLÞ subject to
R̂unlðhSSLÞ � tþ �, whileHðtÞ :¼ fh 2 HjRunlðhÞ � tg. Here
R̂ is the empirical risk measured with the sample Sn and R̂unl is
the empirical unlabeled risk measured on the sampleUm.

We note that the original paper uses (exponentiated)
annealed entropy, see [5], instead of VC-dimension to
measure complexity. To allow for an easier comparison to
other results and avoid additional notation, we express the
above theorem in terms of the standard VC-dimension.
The difference of the latter measure is that it is distribution
independent.

Let us briefly compare Theorem 6 to results from the pre-
vious section. In particular, let us consider Conjecture 1 and
the answers to this as found in Theorems 3 and 4. We know
that in the purely supervised case, we can achieve a similar
sample complexity as in Equation (21) by replacing
VCðHðtþ 2�2ÞÞ with VCðHÞ. As we know that the complex-
ity given by Equation (21) is tight up to some constants (see
also [8], Chapter 6), we know that the sample complexity
between a purely supervised learner and the semi-super-
vised learner as defined in this paper cannot differ by more
than Oð VCðHÞ

VCðHðtþ2�2ÞÞ. So the gap in the learning rates is indeed
given by a constant that only depends on the hypothesis
class as postulated by Conjecture 2. This constant can, how-
ever, be infinite if VCðHÞ is infinite but VCðHðtþ 2�2ÞÞ is
finite. It is exactly this type of example, as covered in Sec-
tion 2.2, that refutes the conjecture.

Theorem 6 quantifies, to some degree, the fundamental
bias-variance trade-off in SSL when we rely on additional
assumptions. Employing a semi-supervised compatibility
function, we reduce the variance of the training procedure
as we effectively restrict the original hypothesis space H. If
the compatibility function does not match the underlying
problem however, we bias the procedure away from good
solutions at the same time.

4.2 Assuming That the Feature Space can be Split

In multi-view learning, incidentally also referred to as co-
regularization or co-training, one assumes that the feature
space X can be decomposed as X ¼ X 1 � X2 and each par-
tial feature space X1;X2 is, in principle, enough to learn. In
the early work on co-training, [35] uses the idea in a web
page classification set. One part of the features, say X 1, is
given by the text on the web page itself, while the other one,
X2, is given by the anchor text of hyperlinks pointing to the
web page. The idea is that if both partial features spaces
have sufficient information about the correct label, we
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expect that a correct classifier predicts the same label given
any of the two partial features. We can thus discard classi-
fiers that disagree on the two views, and this disagreement
can be measured with unlabeled data.

There are multiple theoretical results that pertain to this
approach. It can, for example, be analyzed in the framework
of the previous subsection. Alternatively, [37] and [38] ana-
lyze a Rademacher complexity term under the multi-view
assumption, while [39] defines a kernel that directly includes
the assumption as a regularization term, and thus find a
RKHS where co-regularization automatically applies. Here,
we detail the approach of [33] as it ties in best with the other
results we present. In addition, [33]’s information theoretic
framework allows us to also analyze the penalty one suffers
if the assumption is not exactly true.

As above, we split the random variable X, which takes
values in X , into two: X ¼ ðX1; X2Þ. Now, the multi-view
assumption from [33] can be formalized as follows: let
IðA;BjCÞ be the mutual information between random vari-
ables A and B, conditioned on the random variable C. We
assume there exists an �info such that

IðY ;X2jX1Þ � �info (22)

and

IðY ;X1jX2Þ � �info: (23)

In words: once we know one set of features, the other does
not tell us much more about Y . Comparing this to co-train-
ing, we can see it as a relaxation: assuming that each view is
already sufficient to fully learn, corresponds to an �info that
equals 0. If, however, �info > 0, we cannot learn perfectly
from one view.

Subsequently, we assume that we have for each view X1

andX2 a corresponding hypothesis setH1 andH2. We carry
out predictions with pairs of hypotheses

ðf1; f2Þ 2 H1 �H2:

The paper uses the notion of compatibility functions, as gen-
erally defined through Equation (19). In particular, they
define the compatibility function

x : H :¼ H1 �H2 ! ½0; 1�

as

xðh1; h2; xÞ :¼ dðf1ðx1Þ; f2ðx2ÞÞ;

where d : Y � Y ! ½0; 1� is a specific pseudo-distance mea-
sure that fulfills a relaxed triangle inequality and x ¼
ðx1; x2Þ is a sample. In essence, the distance d measures how
much f1 and f2 agree on a sample x. For a given threshold
t 2 R we then find the best pair of hypotheses based on the
empirical risk minimization problem

min
ðh1;h2Þ2H

Xn
i¼1

lðh1ðx1
i Þ; yiÞ þ lðh2ðx2

i Þ; yiÞ (24)

with additional constraint R̂unlðh1; h2Þ � t.
The main theorem, which gives guarantees on the solu-

tion found by the procedure above, needs the following
notation. Let b	, b1

	 and b2
	 be the Bayes errors,

corresponding with the loss l, when learning from X1 �X2,
X1 andX2, respectively. Also set

�bayes ¼ maxfRðf1	 Þ � b1
	; Rðf2

	 Þ � b2
	g;

where fi	 is the best predictor from Hi. Finally, recalling the
definition of RunlðhÞ from Equation (20), define

ĤðtÞ ¼ fðh1; h2Þ 2 HjR̂unlðh1; h2Þ � tg:

Theorem 7 ([33, Theorem 2]). 6 Assuming the loss l is
bounded by 1, there exists a t 2 R (depending among others on
�info, �bayes, and m), such that, if we have a labeled sample of
size at least mðĤðtÞ; �; dÞ, it holds with probability at least 1�
d that

Rðĥ1Þ þRðĥ2Þ
2

� b	 þ �þ �bayes þ
ffiffiffiffiffiffiffiffi
�info

p
: (25)

We can see now that the information theoretic assump-
tion allows us to describe the bias introduced when switch-
ing from the full hypothesis set H to the restricted one ĤðtÞ.
In fact, this bias is given explicitly by

ffiffiffiffiffiffiffiffi
�info

p
.

5 LEARNING UNDER STRONG ASSUMPTIONS

In the previous chapter, we analyzed assumptions that only
could give improvements in terms of a multiplicative con-
stant. These did not allow us to come to semi-supervised
learners that improve beyond the general learning rate of
1ffiffi
n

p . Here, we analyze assumptions, cf. Section 1.1, that
enable us to escape this regime, even leading to exponen-
tially fast convergence in some cases.

To illustrate how such improvements are possible,
assume that one comes to a clustering based on all of the
data provided and assume that this clustering is correct, i.e.,
each cluster corresponds mainly to one class. Under this
assumption, we only need enough labeled data to identify
which cluster belongs to which class, and this can be done
exponentially fast. The work in the current section extends
this idea in various ways and answers the following ques-
tions. What if we have class overlap? What if there is noise
in the clusters? How can we go beyond classification and
deal with regression?

5.1 Assuming the Model is Identifiable

One of the classic analyses in semi-supervised learning
deals with identifiable mixture models and deals with a par-
ticular notion of sample complexity [40]. As it turns out, the
setting is quite restrictive but can, as such, give exponen-
tially fast convergence to the Bayes risk. The outcome is
very strong, considering that the results covered in the pre-
vious sections were essentially unable to improve upon the
standard convergence rate of 1ffiffi

n
p . Consider for instance

Inequality (21) after solving for �.
The first key assumption to actually obtain these results

lies in the data generation process. First, the label is drawn
with P ðy ¼ 1Þ ¼ h and P ðy ¼ 0Þ ¼ �h. Then a feature vector
is drawn according to a density fyðxÞ. Unlabeled data is

6. The theorem actually needs some additional regularity condi-
tions. These are not made explicit to aid in focusing on the main point.
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thus drawn from the mixture hf1 þ �hf2. The second key
assumption is that the class of mixture models is identifi-
able, i.e., we can infer the mixture model uniquely given
enough unlabeled data. After identifying the mixture, we
merely have to figure out how to label each part of the two
mixture components. Deciding between the remaining
alternatives can be done by a simple likelihood ratio test,
which converges exponentially fast to the Bayes risk in the
number of labeled samples n:

RðhÞ �min
h2H

RðhÞ

�exp n lnð2
ffiffiffiffiffiffiffi
m�m

p Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðxÞf2ðxÞdx

p
Þ þ oðnÞ

� � (26)

For the analysis it is necessary to assume that one has an
infinite amount of unlabeled data. The work is continued in
[41], where the authors consider cases where we already
have knowledge about the densities fy. [42] considers a sim-
ilar framework for the case where the marginal distribution
P ðxÞ is unknown, and instead assume that P ðxÞ can be well
estimated with a mixture of two spherical Gaussian
distributions.

The above work ties in with the impossibility result from
Section 2.1.1. Here, however, the data generating process is
reversed: the feature x depends on y and thus violates the
data generation of Fig. 1 from 2.1.1, which led to an impossi-
bility result.

5.2 Assuming Classes are Clustered and Separated

Reference [43] presents explicit bounds on the generaliza-
tion error using an alternative formulation of the cluster
assumption. The approach closely resembles the work
described in the previous subsection and, similarly, enables
exponentially fast convergence under semi-supervision.

The work’s initial, elementary setup is that we are given
a collection of pairwise disjoint clusters C1; C2; . . . for which
we assume that the optimal labeling function

x 7! sign

�
P ðY ¼ 1jX ¼ xÞ � 1

2

�

is constant on each cluster Ci. So the clusters have a label-
purity of some degree, which we can express as follows:

di ¼
Z
Ci

j2P ðY ¼ 1jX ¼ xÞ � 1jdP ðxÞ: (27)

The cluster Ci is called pure if and only if di ¼ 1.
Assuming now that we know the clusters, we let hSSL

n ðxÞ
be the majority voting classifier per cluster. More formally,
given a labeled sample Sn let Xþ

i :¼ fðx; yÞ 2 Snjx 2 Ci; y ¼
1g and similarly X�

i :¼ fðx; yÞ 2 Snjx 2 Ci; y ¼ �1g. Then
given a new data point x 2 Ci we set

hSSLðxÞ ¼
1 if jXþ

i j � jX�
i j

�1 if jXþ
i j < jX�

i j:

	
(28)

Note that this defines only a function on the clusters. The
paper argues, however, that unlabeled data cannot help
where no unlabeled data was observed. Consequently it
only analyses the possible gain from unlabeled data on the
clusters, avoiding the slow rates that we otherwise may

obtain as explained in the penultimate paragraph from Sec-
tion 2.1.6. Thus the excess risk of interest is restricted to the
set C :¼

S
Ci and so we consider the risk

ECðhÞ ¼
Z
C

j2P ðY ¼ 1jX ¼ xÞ � 1jIfhðxÞ6¼h	ðxÞgdP ðxÞ;

where h	 is the Bayes classifier. The following theorem
expresses the possible gain with respect to the expected
cluster excess risk.

Theorem 8 ([43, Theorem 3.1]). Let ðCiÞi2I be a collection of
sets with Ci 
 X for all i 2 I such that this collection fulfills
the above defined cluster assumption. Then the majority voting
classifier hSSL

n as defined above satisfies

ESn;Um ECðhSSL
n Þ

� �
� 2

X
i2I

die
�nd2

i
2 : (29)

That is, knowing the clusters, we recover the exponential
convergence in the labeled sample size as in Section 5.1.

The biggest effort of the paper goes into the definition of
clusters and the finite sample size estimation of such. The
derivations are rather extensive and, as in most of the
review, we limit ourselves here to a description of the
underlying intuition. To start with, one assumes that the
marginal distribution P ðXÞ allows for a density function
pðxÞ. One can then define the density level sets of X w.r.t. a
parameter � > 0 as Gð�Þ :¼ fx 2 X j pðxÞ � �g: For a fixed
� > 0, we think of a clustering essentially as path-con-
nected components of the density level sets Gð�Þ, where it is
ensured that pathological cases are excluded. Estimating
the set Gð�Þ with finitely many unlabeled samples adds a
slack term to Inequality (29) that drops polynomially in the
unlabeled sample size. Therefore, to ensure that we still can
learn exponentially fast, the number of unlabeled samples
has to grow exponentially with the number of labeled
samples.

Finally note that the previous analysis is not a PAC-anal-
ysis: the result in Inequality (29) is not over a worst case dis-
tribution. Performing such worst case analysis, we may for
a given n chose a distribution with di ¼

ffiffi
1
n

q
. Plugging this di

into Inequality (29), we observe that the exponential rate
actually turns into a slow rate (cf. Fig. 1 from [44] for a simi-
lar observation). One way to avoid this problem is to
assume that the posterior distribution P ðY jXÞ is bounded
away from 1

2 , which directly implies that we cannot chose di
as above. Consequently, one may wonder if the PAC-frame-
work isn’t overly pessimistic, which is a topic we return to
briefly in the discussion.

5.3 Classes Clustered but not Necessarily
Separated

Reference [45] propose yet another formalization of the clus-
ter assumption. More specifically, it is one that allows to dis-
tinguish cases where SSL does help and where not. This is
achieved by restricting the class of distributions P and then
investigating which of those distributions allow for success-
ful semi-supervised learning. The class P is constructed
such that the marginal distributions constitute of different
clusters that are at times easy to distinguish and in other
cases not. The marginal densities pðxÞ from P are given by
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mixtures of K densities pk. That is, pðxÞ ¼
PK

i¼1 akpkðxÞ with
ak > 0 and

PK
i¼1 ak ¼ 1 and each pk has support on a set

Ck 
 X which fulfills particular regularity conditions. We
refer to these sets Ck as clusters and each of these is
assumed to have its own smooth label distribution function
pkðyjxÞ. So with probability ak we draw from pkðxÞ and then
label x according to pkðyjxÞ. We further only consider distri-
butions that lead to clusters with margin, with our without
overlap, of at least g (see also Fig. 5), and denote the result-
ing class of distributions by PðgÞ.

The clusters are not the main interest, but rather what the
authors call the decision sets. To define a decision set, we
take Cc

k to be the complement of Ck and, in addition, define
C:c

k :¼ Ck. Now, a set D 
 X is called a decision set if it can
be written as D ¼

T
k2K C

ik
k with ik 2 fc;:cg for all k 2 K.

See Fig. 5b for an example. On the decision sets pðx; yÞ is
smooth as long as each pkðyjxÞ is smooth, while pðx; yÞ is not
necessarily smooth on each cluster, as it might exhibit jumps
at the borders. Consequently, knowing the decision sets,
one can use a semi-supervised learner that exploits the
smoothness assumption.

The main theorem answers the question whether one can
learn the decision sets from finitely many unlabeled points,
which is done with the help of a marginal density estimator
whose spacing is proportional to a parameter k0.

Theorem 9 ([45, Corollary 1]). Let EðhÞ ¼ RðhÞ �R	 be the
excess risk with respect to the Bayes classifier R	. Assume that
E is bounded by Emax and that there is a learner hD

n that has
knowledge of all decision sets D and, additionally, fulfills the
excess risk bound

sup
P2PðgÞ

EP ½EðhD
n Þ� � �2ðnÞ: (30)

Assume that jgj > 6
ffiffiffi
d

p
k0ððlnmÞ2

m Þ
1
d, then there exists an hSSL

n;m

such that

sup
P2PðgÞ

EP ½EðhSS
n;mÞ� � �2ðnÞþ

Emax
1

m
þ 2k0C

ffiffiffi
d

p
ðnþ 1Þ ðlnmÞ2

m

 !1
d

0
@

1
A; (31)

where C � 1 is a constant that depends on smoothness proper-
ties of the boundary of the decision sets.
We immediately note the following. If the learner hD

n that
knows the decision sets has a convergence rate of �2ðnÞ, it
follows from Inequality (31) that the unlabeled data needs
to increase with a rate of �2ð1nÞ to ensure that the semi-super-
vised learner has the same convergence rate as hD

n . For
example, if hD

n converges exponentially fast, we need expo-
nentially more unlabeled than labeled data, which corre-
sponds exactly to the finding in the previous subsection.

All in all, the intuition behind the theorem is fairly
straightforward. The bigger g, the less unlabeled samples
we need to estimate the decision sets D. Moreover, once we
know those sets, we can perform as well as hD

n . Now, to ana-
lyze if a semi-supervised learner that first learns the deci-
sion sets empirically has an advantage over all supervised
learners, we first find minimax lower bounds for all fully
supervised learners. We can then give upper bounds for a
specific semi-supervised learner and the conclusions follow
easily: for SSL to be useful, the parameter g and the number
of unlabeled samples should be such that the fully super-
vised learner cannot distinguish the decision sets, while the
semi-supervised learner can. As a consequence, g should
not be too big, because then the supervised learner can also
distinguish the decision sets. Of course, the unlabeled data
should not be too small, for then the semi-supervised
learner cannot distinguish the decision sets either.

To showcase specific differences between SSL and SL, the
authors assume that X ¼ ½0; 1�d and that the conditional

expectations EY�pkðY jX¼xÞ½Y jX ¼ x� are H€older-a smooth

functions in x. Depending on g, the paper presents cases
where SSL can be essentially faster than SL. In those cases,
the SL has an expected lower bound for the convergence
rate of n�1

d while the convergence rate of the semi-super-

vised learner is upper bounded by n� 2a
2aþd.

5.4 Smooth Regression Along a Manifold

As we elaborate on in the discussion section, an issue in SSL
is that most methods are based on assumptions on the full
distribution. The core problem is that we usually cannot
verify whether such assumptions hold or not. This is crucial
to know, since in case the assumption does not hold, it is
quite likely that we want to use a supervised learner
instead. The work of [46] is one of the few papers that
touches on this topic and introduces a semi-supervised
learner that depends on a parameter a, where a ¼ 0 recov-
ers a purely supervised learner. The paper then gives gener-
alization bounds for the semi-supervised learner when we
cross-validate a. As this work gives a formalization of the
manifold assumption and uses regression, while most
others deal with classification, we decided for a fairly
detailed presentation.

Fig. 5. The idea of (a) a positive and (b) a negative g-margin.
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The authors use a version of the manifold assumption, so
we enforce our estimated regression function hSSLðxÞ to
behave smoothly in high density regions. The density of the
marginal distribution P ðXÞ is measured with a smoothed
density function psðxÞ

psðxÞ :¼
Z

1

sd
K

jjx� ujj
s

� �
dP ðuÞ; (32)

where K is a symmetric kernel on Rd with compact support
and s > 0. Let Gðx1; x2Þ be the set of all continuous paths g :
½0; LðgÞ� ! Rd from x1 2 R to x2 2 R with unit speed and
where LðgÞ is the length of g. With this we can define a new
metric on Rd, i.e., the so-called a; s-exponential metric, that
depends on an a � 0 and the smoothed density psðxÞ:

Dðx1; x2Þ ¼ inf
g2G

Z LðgÞ

0

e�aps ðgðtÞÞdt: (33)

First, note that a ¼ 0 corresponds to the Euclidean distance.
Second, note that high values of psðxÞ on the path between
two points x1 and x2 lead to shorter distances between those
points in the new metric. This behavior gets of course more
emphasized with large a. If we assume that Q is another
kernel and we set QtðxÞ :¼ 1

td
Qðx

t
Þ we can define a semi-

supervised estimator as follows:

hSSLðxÞ :¼
Pn

i¼1 yiQtðD̂ðx; xiÞÞPn
i¼1 QtðD̂ðx; xiÞÞ

: (34)

The estimator is a nearest-neighbor regressor, where neigh-
bors are weighted according to their distance in terms of the
previously defined exponential metric. The manifold
assumption is employed by restricting the analysis to a class
of distributions, P ða; s; LÞ, which only contains distribu-
tions such the regression task is L-Lipschitz w.r.t. the
a; s-exponential metric.

The following theorems gives bounds on the squared risk
of hSSL under the assumption that supy2Yjyj ¼ M < 1.

Theorem 10 ([46, Theorem 4.1]). Assume we have an unla-
beled sample sizem large enough to ensure that that for all P 2
P ða; s; LÞ, P ðjjp̂s � ps jj � �mÞ � 1=m: Then

ESn;Um ½RðhSSLÞ� �

L2ðtea�mÞ2 þ 1

n
M2

�
2þ 1

e

�
N P;a;s



e�a�m

t

2

�
þ 4M2

m
: (35)

Here,N P;a;sð�Þ is the covering number of P in the exponen-
tial metric, i.e., the minimum number of closed balls in X of
size � (w.r.t. to the exponential metric) necessary to cover
the support of P ðXÞ (see also [8], Chapter 27). In the Euclid-
ean case, when a ¼ 0, we can bound N P;a;sð�Þ � ðC� Þ

d with
the help of a constant C. The covering number can be much
smaller when a > 0 and P ðXÞ is concentrated on a mani-
fold with dimension smaller than d.

The previous theorem may be difficult to grasp in full at
a first read and the paper offers, under some further regu-
larity conditions, a simplified corollary in addition.

Corollary 1 ([46, Corollary 4.2]). Assume that N P;a;sðdÞ �
ðC
d
Þ� for a certain range of d. Furthermore, assume that m is

large enough and that t decreases at an appropriate rate,
depending on n, a and �.7 Then for all P 2 Pða; s; LÞ the fol-
lowing inequality holds asymptotically and up to constants

ESn;Um ½RðhSSLÞ� � C

n

� � 2
2þ�

: (36)

Following this, the paper analyzes the additional penalty
one occurs by trying to find the best a. We start by discretiz-
ing the parameter space Q ¼ T �A� S such that u ¼
ðt;a; sÞ 2 Q and jQj ¼ J < 1. Assume now that we have,
in addition to the training sample Sn, also a validation set
V ¼ fðv1; z1Þ; . . . ; ðvn; znÞg, which, for convenience, is also of
size n. Let hSSL

u be the semi-supervised hypothesis trained
on Sn with parameters u. We then choose the final hypothe-
sis hSSL by optimizing for u on the validation set:

hSSL :¼ argmin
hSSL
u

Xn
i¼1

ðhSSL
u ðviÞ � ziÞ2: (37)

Theorem 11 ([46, Theorem 6.1]). Let EðhÞ :¼ RðhÞ �Rðh	Þ
be the excess risk, where h	 is the true regression function.
There exist constants8 0 < a < 1 and 0 < t < 15

38ðM2þs2Þ
such that

ESn;Um;V ½EðhSSLÞ�

� 1

1� a
min
u2Q

ESn;Um ½EðhSSL
u Þ� þ lnðnt4M2Þ þ tð1� aÞ

nt

� �
:

(38)

This result is particularly interesting since we can always
compare implicitly to the supervised solution, as long as we
include a ¼ 0 2 A. From Inequality (38) we see that the vali-
dation process introduces a penalty term of size OðlnðnÞn Þ.
This of course allows us to flexibly choose between the
semi-supervised and the supervised method.

In a final contribution, the authors identify a case where
the semi-supervised learning rate can be strictly better than
the supervised learning rate. The setting considered is
much like the one we have seen in Section 2.2. In particular,
they construct a set of distributions Pn, which depends on
the number of labeled samples, such that 1) the estimator
hSSLðxÞt;a;s , as defined in Equation (34), fulfills

sup
P2Pn

ESn ½Rðh:2SSLÞ� � C

n

� � 2
2þ�

;

under the assumption that m � 2
2

2þ�; and 2) for all purely
supervised estimators hSL we have that

sup
P2Pn

ESn ½hSL� � C

n

� � 2
d�1

:

To obtain essentially different learning rates, we need that
� < d� 3, which is the case if P is concentrated on a set
with dimension strictly less than d� 3 [46, Lemma 1]. Worth
noting is that the construction of Pn works by concentrating

7. This rate is specified in the actual paper.
8. It should be noted that these are not universal. They depend to

some degree on the problem at hand.
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the distributions more for larger n. If Pn does not concen-
trate, and remains smooth for bigger n, the labeled data is
already enough to approximate the marginal distribution.

This is similar to the work presented in Section 5.3, as
they also show that SSL can only work if the marginal distri-
bution P ðXÞ is not too easy to identify. We can also draw
parallels to the work presented in Section 2.2.3: if we would
restrict the domain distributions such that only smooth cir-
cle embeddings would be allowed, a supervised learner
could also learn efficiently as then a finite number of labeled
samples would be sufficient to learn the domain distribu-
tion uniformly.

6 LEARNING IN THE TRANSDUCTIVE SETTING

SSL methods use unlabeled data to try and find better
inductive classification rules, i.e., rules that apply to the
whole input domain X . Some works, however, consider
schemes where one only cares about the labels of the unla-
beled data specifically at hand. Such methods are often
referred to as transductive and have been argued to be an
essential step forward compared to inductive methods, in
particular by Vapnik (see, for instance, [5, Chapter 8] and [4,
Chapter 25]. While we review the most important theoreti-
cal results, a more detailed overview can be found in Chap-
ter 2 of [47]. In Section 6.1, we present learning bounds that
apply specifically to this transductive setting, though they
often arise as direct extensions to the supervised inductive
case. In Section 6.2, we present two papers that touch on the
topic of so-called safe semi-supervised learners9, where one
constructs semi-supervised learners that are never worse
than their supervised counterparts.

One essential difference, based on which two distinct
transductive settings can be identified, is the way the sam-
pling of the labeled and unlabeled data comes about.

Setting 1.

1) We start with a fixed set of points Xnþm ¼ fx1; . . . ;
xnþmg.

2) We reveal the labels Yn of a subset Xn 
 Xnþm,
which is uniformly selected at random. For nota-
tional convenience and without loss of generality,
we usually assume that Xn are the first n and Xm are
the lastm points ofXnþm.

3) Based on Sn ¼ ðXn; YnÞ andXm we aim to find a clas-
sifier h with good performance as given by RmðhÞ :¼Pnþm

i¼nþ1 lðhðxiÞ; yiÞ.
Setting 2.

1) We start with a fixed distribution P on X � Y.
2) We draw n i.i.d. samples according to P to obtain a

training set Sn. We draw an additional m i.i.d. sam-
ples according to P ðXÞ to obtain a test setXm.

3) Based on Sn ¼ ðXn; YnÞ and Xm we try to find a clas-
sifier h with good performance as specified by
ESn;Xm ½ 1m

Pnþm
i¼nþ1 lðhðxiÞ; yiÞ�:

The work we present here deals with Setting 1. This is
primarily out of convenience, but we note that one can
always transform bounds from Setting 1 to bounds in Set-
ting 2 [5, Theorem 8.1].

Note that in this subsection our test error is denoted by
RmðhÞ and the training error by RnðhÞ. This reflects that the
test set is of size m while the training set is of size n. We do
not use the hat notation here, as in the transductive setting,
we do not necessarily have an underlying distribution.

6.1 Transductive Learning Bounds

The study of transductive inference goes back at least to the
original work by Vapnik [48]. In this subsection, our pri-
mary source is [5] and we mainly consider the result found
as Equation (8.15) in Theorem 8.2 of that work.

Assume that we are given nþm samples and we take at
random n samples on which to train. We then want to esti-
mate the error on the remaining m samples. Vapnik shows
that a hypergeometric distribution describes the probability
that the observed error on the train and test set is larger
than �. Let �	 be the smallest � > 0 such that

P
jRmðhÞ �RnðhÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RnþmðhÞ
p > �

 !
� 1� d:

Using a uniform bound10 and substituting Rnþm ¼
m

nþmRm þ n
nþmRn one can derive the following result.

Theorem 12 ([5, Eq. (8.15)]). For all h 2 f�1; 1gnþm, the fol-
lowing inequality holds with a probability of 1� d:

RmðhÞ � RðhÞ

þ ð�	Þ2m
2ðmþ nÞ þ �	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðhÞ þ �	m

2ðmþ nÞ

� �2
s

: (39)

A core problem with this inequality is that the term �	 is
an implicit function of n;m; d and h and, as such, it is
unclear what the learning rates are that we can actually
achieve. The paper addressing this issue is covered next.

6.1.1 Bounds as a Direct Extension of Inductive Bounds

Ref. [49] finds explicit transductive bounds in a PAC-Bayes
framework. We present a bound from the paper that is
essentially a direct extension of a supervised inductive
bound from [50]. Their result considers a Gibbs classifier,
which we first introduce.

Let q be any distribution over the H. The Gibbs classifier
Gq classifies a new instance x 2 X with an h 2 H drawn
according to q. The risk of Gq over the set Sn is then

RnðGqÞ ¼ Eh�q

"
1

n

Xn
i¼1

lðhðxiÞ; yiÞ
#
:

Theorem 13 ([49, Theorem 17]). Let p be any (prior) distribu-
tion on H, which may depend on Snþm, and let d > 0. Then
for any randomly selected subset Sn 
 Snþm and for any distri-
bution q onH, it holds with probability at least 1� d that

9. Incidentally, this is a topic that is not covered in [47].
10. Note that in the transductive case we effectively can have only

finitely many different hypotheses.
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RmðGpÞ � RnðGpÞ þ
mþ n

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RnðGpÞðKLðqjjpÞ þ ln n

d
Þ

n� 1

r

þmþ n

m

2ðKLðqjjpÞ þ ln n
d
Þ

n� 1
: (40)

This theorem is indeed a direct extension of the inductive
supervised case as found under Equation (6) in [50]. The
only difference is that the term mþn

m is missing. Although
[51] shows that under certain conditions one can select the
prior p after having seen Sm, this is generally not allowed in
inductive PAC-Bayesian theory. In the transductive setting
this is allowed, however, as we only care about the perfor-
mance on the points from the set Snþm. In a way, this is the
same as learning with a fixed distribution when our fixed
distribution has only mass on finitely many points [52].

[49] exploits the previous observation by choosing a prior
p with a cluster method. More precisely, after observing the
dataset ðXnþmÞ one constructs c different clusterings on it.
Each clustering leads to multiple classifiers by assigning all
points in a cluster to the same class. One then puts a uni-
form prior p on those classifiers and we select a posterior
distribution q over the classifiers by minimizing Inequality
(40), and obtain the Gibbs classifier Gq.

Comparing this approach to the fully supervised (and
thus necessarily inductive) case, one should realize that the
possible performance improvements have the same flavor
as the improvements one can gain in semi-supervised learn-
ing with assumptions, as analyzed in Sections 4 and 5.
Using the clustering approach sketched above reduces the
penalty in Inequality (40), which is coming from KLðqjjpÞ.
In other words: we reduce the variance of the classifier.
Clearly, on the other hand, using a clustering approach
biases our solution and we get degraded performance com-
pared to a supervised solution if the clusterings have a high
impurity, i.e., clusters do not have clear majority classes.

6.1.2 Bounds Based on Stability

In [53], transductive bounds are explored under the
assumption of stability, i.e., the notion that the output of a
classifier does not change much if we perturb the input a
bit. The transductive bounds presented are an extension of
the inductive bounds that use the notion of uniform stability
(see [54]) and weak stability (see [55], [56]). We cover the sim-
pler transductive bound based on uniform stability and
explain the difference to weak stability.

Assume that htrans 2 H is a transductive learner. That is, a
hypothesis that we (deterministically) choose based on a
labeled set Sn and an unlabeled set Xm. Furthermore, define
Sij
n :¼ ðSn n fðxi; yiÞgÞ [ fðxj; yjÞg. So Sij

n is the set we obtain
when we replace in Sn the i-th example from the training
set with the j-th example from the test set. Similarly, define
Xij

m :¼ ðXm n fxjgÞ [ fxig. We say that htrans is b-uniformly
stable if for all choices Sn 
 Snþm and for all 1 � i; j � nþm
such that ðxi; yiÞ 2 Sn and xj 2 Xm it holds that

max
1�k�nþm

���htrans
ðSn;XmÞðxkÞ � htrans

ðSijn ;X
ij
mÞ
ðxkÞ

��� � b: (41)

In words: the transductive learner htrans is b-uniformly sta-
ble if the output changes less than b if we exchange two
points from the train and test set.

The bounds are formulated using a g-margin loss. With
g > 0, we define

lgðy1; y2Þ ¼ max


0;min



1; 1� y1y2

g

��
: (42)

Consequently, we can write RgðhÞ for the risk of h when
measured with the loss lg . Note that for g ! 0 the lg loss
converges to the 0-1 loss.

Theorem 14 ([53, Thereom 1]). Let htrans be a b-uniformly
stable transductive learner and g; d > 0. Then, with probabil-
ity of at least 1� d over all train and test partitions, we have
that

RmðhtransÞ � Rg
nðhtransÞ

þ 1

g
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn ln 1

d

mþ n

s0
@

1
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

m
þ 1

n

�
ln
1

d

s !
:

(43)

Note that b is depended on n and m and we expect that
the bigger our training set is, the less our algorithm changes
if we exchange two samples from the train and test set. The
transductive bounds based on Rademacher complexities,
reviewed in the next subsection, can achieve convergence
rates of 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

minðm;nÞ
p . To obtain the same rate with Inequality

(43), we need that b behaves as Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1n þ 1

mÞ 1
minðn;mÞ

q
Þ. This

stability rate can indeed be achieved for regularized RKHS
methods as demonstrated in [57] for laplacian normaliza-
tion for graph-based SSL.

6.1.3 Transductive Rademacher Complexities

Rademacher complexities are a well studied and established
tool for risk bounds in the inductive case [58]. [59] introduce
a transductive version of these quantities. While in the
inductive case, we have to chose our hypothesis class before
seeing any data, the transductive case allows us to chose the
hypothesis class H data-dependent. The definition of the
transductive Rademacher complexity of a hypothesis class
H closely follows the inductive case and is denoted by
tRadðHÞ. Utilizing the g-margin loss function (42) and the
corresponding empirical risk RgðhÞ, the paper shows then
that (Theorem 6) for all h 2 H, we have that with probability
of at least 1� d

RmðhÞ � Rg
nðhÞ þ

tRadðHÞ
g

þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðm;nÞ

p
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 lnð4eÞ
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
ln

�
1

d

s � !
:

This bound can be used to directly estimate the transductive
risk for transductive algorithms.

At a first glance, the inequality may seem somewhat sur-
prising considering that the labeled and unlabeled data
play an equivalent role in terms of convergence. While slow
convergence for n � m may be expected, one has to realize
that, in case m � n, the transductive risk has very high
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variance and therefore large intervals for high-confidence
estimations are obtained.

[60] makes different use of Rademacher complexities in
their derivation of risk bounds for a specific multi-class
algorithm. Their algorithm uses a given clustering based on
the full data to find a hypothesis which is in a certain way
compatible with the clusters obtained. The transductive
multi-class Rademacher complexities then make direct use
of this clustering. With this algorithm the authors show that
if we have K initial classes one can achieve a learning rate
in the order of ~Oð

ffiffiffiffi
K

p ffiffi
n

p þ K3=2ffiffiffi
m

p Þ (see [60], Corollary 4). Not sur-
prisingly, the learning rates are essentially the same as in
the binary transductive cases. We note, however, that the
analysis was done within Setting 2.

6.1.4 Bounds Based on Learning a Kernel

As a direct extension of the inductive case (see, for example,
[61]), [62] proposes to use the unlabeled data to learn a ker-
nel that is suitable for transductive learning. The idea is to
use a kernel method that allows to choose from a certain
class of kernels in order to optimize the objective function.
The presented PAC-bound shows that good (transductive)
performance is achieved with a good trade-off between the
complexity of the kernel class and the empirical error.

Their example kernel classes are designed as follows.
Given an initial set of kernels fK1; . . . ; Kkg, define

Kc :¼
(
K ¼

Xk
j¼1

mjKjjK< 0;mj 2 R; traceðKÞ � c

)
and

Kþ
c :¼

(
K ¼

Xk
j¼1

mjKjjK< 0;mj 2 R;mj � 0; traceðKÞ � c

)
:

Restricting the trace of the kernels allows us to bound later
the complexity of the following defined hypothesis set.

HK ¼
(
hðxjÞ :¼

X2n
j¼1

aiKijj

jK 2 K;a ¼ ða1; . . . ;a2nÞ 2 R2n;atKa � 1

g2

)
:

We now come to the paper’s claim, which is a bound on the
transductive risk when using the above hypothesis set. The
original formulation of the theorem is rather long and con-
tains some additional definitions and clarification as part of
it. In an attempt to make the presentation easier to access,
we formulate the core result as a theorem, which should
convey its basic structure and idea. Only afterwards, we
will provide the missing details of the theorem.

Theorem 15 ([62, Theorem 24]). For every g > 0, with prob-
ability at least 1� d over every training and test set of size n
(so m ¼ n), uniformly chosen from ðX;Y Þ, we have for every
h 2 HK:

RmðhÞ � R̂hinge
n ðhÞ þ 1ffiffiffi

n
p 4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log


 1
d

r �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðKÞ

ng2

s !
;

where R̂hingeðhÞ is the empirical hinge loss of h and compðKÞ
is a complexity measure of K.

This last measure of complexity, K, is defined as

compðKÞ ¼ Emax
K2K

stKs

with s being a vector of 2n Rademacher variables. For the
previously defined kernel classes Kc and Kþ

c , this complex-
ity measure can, in turn, be bounded by

Kc ¼ cE max
K2K

st K

traceK
s

� �
� cn;

and

Kþ
c � cmin k; n max

1�j�k

�j

traceðKjÞ

� �
:

In this last expression, �j is the largest eigenvalue ofKj.
Since m is taken to equal n, we find that the above bound

gives the same learning rate Oð 1ffiffiffiffiffiffiffiffi
mþn

p Þ as we also found in

Sections 6.1.2 and 6.1.3. We would, however, not expect that
the rate of Oð 1ffiffiffiffiffiffiffiffi

mþn
p Þ also holds for different choices of m and

n. We would rather expect to find Oð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðm;nÞ

p Þ, for the same

reason as in the previous subsection (high variance of test
risk for smallm).

On another note, we point out that the effect the unla-
beled data has on this procedure depends on the initial ker-
nel guesses fK1; . . . ; Kkg, but the choice of the kernels is
actually independent of the unlabeled data. The unlabeled
data may, however, inform the choice for the kernels as pro-
posed in [63] and [64]. In essence, these works construct ker-
nels that encode a manifold assumption by constraining the
kernels to be smooth with respect to a given graph-structure
of the unlabeled data.

6.2 Safe Transductive Learning

In the semi-supervised learning community, it is well
known that using a semi-supervised procedure comes with
a risk of performance degradation [2]. This problem leads
some authors to ask the question whether it is possible to
perform semi-supervised learning in a safe way: can one
guarantee that the semi-supervised learner is not worse
than its supervised counterpart. We note that, for risk
bounds, a smaller bound still does not guarantee improve-
ment, even if the underlying assumptions are correct.

We look specifically at the approaches from [65] and [17].
The results from both works are based on a minimax formu-
lation and show that, in certain settings, one can indeed get
to guarantee performance improvements by using SSL. The
analysis is done in transductive Setting 1, which means that
we have a training set Sn and a test setXm.

6.2.1 A Minimax Approach for SVMs

The baseline for the model proposed in [65] is the S3VM
[66], which takes the unlabeled data into account by finding
a large-margin solution. The proposed model S4VM finds a
few diverse proposal large-margin solutions, and then picks
amongst these by means of a minimax framework to hedge
against possible worst case scenarios. The idea is that, given
that we found a set of a few potential solutions Hp ¼
fh1; . . . ; hTg, we compare those solutions to hSVM and then
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choose the one with the biggest gain over hSVM within a
minimax framework.

Assume for now that we know the true labels Ym ¼
ðyn; . . . ; ynþmÞ of Xm. With this we can calculate the gain
and loss in performance when comparing the supervised
hSVM to any other classifier h:

gainðh; Ym; h
SVMÞ :¼

Xnþm

i¼n

IfhðxiÞ¼yigIfhSVM ðxiÞ6¼yig; (44)

lossðh; Ym; h
SVMÞ :¼

Xnþm

i¼n

IfhðxiÞ6¼yigIfhSVM ðxiÞ¼yig: (45)

Defining our objective to be the difference, i.e.,
Jðh; y; hSVMÞ ¼ gainðh; Ym; h

SVMÞ � lossðh; Ym; h
SVMÞ, we can

define a semi-supervised model hSSL as the maximizer of
this difference. The problem is, of course, that we actually
do not know the true labels. Therefore, let us assume a
worst-case scenario, which leads us to the following max-
min formulation:

hSSL ¼ argmax
h2Hp

min
Y2Yp

Jðh; Y; hSVMÞ: (46)

Here Yp ¼ fðhðu1Þ; . . . ; hðumÞÞjh 2 Hpg is the set of all possi-
ble labelings that we can achieve with Hp. To guarantee that
our semi-supervised learner is not worse than the super-
vised learner it is important to assume that the true labels
Ym are part of the set Yp, because only then we can guarantee
what follows.

Theorem 16 ([65, Theorem 1]). If Ym 2 Yp, the accuracy of
hSSL is never worse than the accuracy of hSVM , when perfor-
mance is measured on the unlabeled dataXm.

The crucial assumption is that Ym 2 Yp, which corre-
sponds in this case exactly to a low-density assumption.
This is because the set Yp contains possible labelings that
come from classifiers that fulfill the low density assumption.
One can imagine to use the same procedure also for differ-
ent assumptions as we can encode them through Yp, i.e, the
set of all labelings that we consider possible. While this
result still relies on some assumptions, [17] gives a case of
guaranteed assumption-free improvements. This, however,
comes at the cost of measuring improvement in terms of
likelihood, and not accuracy, as described in what follows.

6.2.2 A Minimax Approach for Generative Models

The technique taken from [17], also in the line of safe SSL
research, is, to our knowledge, the only approach to semi-
supervised learning that considers a completely assump-
tion-free setting. This comes at a cost, of course, which we
will expand on later.

The starting point is a family of probability density func-
tions pðx; yjuÞ on X � Y, where u 2 Q is a parametrization.
We then fix uSL to be the supervised maximum likelihood
estimator for the model pðx; yjuÞ, i.e.,

uSL ¼ argmin
u2Q

X
ðx;yÞ2Sn

ln pðx; yjuÞ

2
4

3
5:

Let us assume for now that we know the true conditional
probabilities p ¼ ðp1; . . . ; pmþnÞ 2 ½0; 1�mþn with pi ¼ pð1jxiÞ
for xi 2 Sn [Xm. Indeed knowing this, we would rather
optimize the expected log-likelihood of the model pðx; yjuÞ
evaluated on the complete dataset Xnþm ¼ fx1; . . . ; xnþmg.
This likelihood is given by

LðujXnþm; pÞ ¼ EY�p

X
x2Xnþm

ln pðx; Y juÞ
" #

: (47)

To be better than the supervised model uSL on the complete
(transductive) likelihood in Equation (47), we would like to
maximize the likelihood gain over it. In other words, we
want to find the u that maximizes the difference

Cðu; uSLjXnþm; pÞ ¼ LðujXnþm; pÞ � LðuSLjXnþm; pÞ: (48)

Clearly, we cannot maximize (48) directly, as we do not
know the true probabilities p. Take, however, pðyijxiÞ ¼ 1
for all labeled points ðxi; yiÞ 2 Sn and set pn ¼ ðpð1jx1Þ; . . . ;
pð1jxnÞÞ 2 f0; 1gn. For the unlabeled points Xm, we assume
worst case posteriors denoted by the m-vector pm, and con-
sider the following max-min formulation:

uSSL ¼ argmax
u2Q

min
pm2½0;1�m

Cðu; uSLjXnþm; ðpn; pmÞÞ: (49)

Note that the vector pm can be the true labels Ym of the unla-
beled data Xm. Now, CðuSSL; uSLjXnþm; ðpn; pmÞÞ � 0 for all
pm 2 ½0; 1�m, in particular if pm ¼ Ym, as we can always chose
uSSL ¼ uSL and so we have the following.

Theorem 17 ([17, Lemma 1]). Let uSSL be a solution found in
Equation (49), then LðuSLjXnþm; YnþmÞ � LðuSSLjXnþm;
YnþmÞ:

Subsequently, [17] shows that for some specific choices
for the model pðx; yjuÞ, the previous inequality is strict
almost surely, i.e., with probability 1 and we are guaranteed
that the transductive likelihood of our semi-supervised
model is larger than that of the supervised model. [67]
proofs similar results for the least squares classifier using
projection estimators.

An important difference between this work and the one
from the previous subsection is that here one employs a
generative model pðx; yÞ, while the SVM used in [65] is a
discriminative model that inherently optimizes the class
probability pðyjxÞ. The work in [18] (see also Section 2.1.4)
shows that, to some degree, it is actually necessary to use a
generative model as the semi-supervised estimator of Equa-
tion (49) coincides with the supervised estimator for a large
class of discriminative models. There are several explana-
tions why a joint model pðx; yÞ helps out in the situation.
The intuitive and obvious one is that the likelihood of this
model takes the marginal distribution P ðXÞ into account,
which is a quantity that can be measured in part from unla-
beled data.

One can imagine to use the minimax concept of this sec-
tion also in the framework explained in Section 4.1, which
uses any type of unlabeled loss. Note that the generative
model of this section can always be decomposed into a class
probability and a marginal distribution, which strongly
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resembles the decomposition into labeled and unlabeled
loss of Section 4.1.

7 DISCUSSION AND CONCLUSION

We comprehensively surveyed the theory that informs us
about the potential of semi-supervised learning for
improvements and the possible lack of it. Wrapping up, we
point out some issues that, we believe, get to the core of the
matter.

7.1 On the Limits of Assumption Free SSL

In Section 2, we reviewed work that analyzes the limits of
semi-supervised learning when no particular assumptions
about the distribution are made that a semi-supervised
learner can exploit. The most general formulation is cap-
tured in Conjectures 1 and 2. They essentially state that a
semi-supervised learner can beat all supervised learners by
at most a constant. We then cover work that shows that the
conjectures do actually not hold generally for hypothesis
spaces of infinite VC-dimension. They do hold for finite VC-
dimension spaces, but only under further relaxations.

7.2 How Good can Constant Improvement Be?

The question studied Section 2.1.6 is whether a semi-super-
vised learner can offer more than a constant improvement
in terms of sample complexity. It seems equally fair, how-
ever, to ask how good a constant improvement can be. It is
at least something that, certainly from a practical point of
view, could still be very beneficial. The answer can be
obtained through a thought experiment.

Assume that we have two classes given by two concen-
tric d-dimensional spheres. Even if we assume that we
have enough unlabeled data for a manifold regularization
scheme to identify the spheres, we know that manifold
regularization can only achieve constant improvement
[22]. The intuitive explanation is the same as for Theorem
9 from [12] as explained in Section 2.1.6: if we allow arbi-
trary noise levels on the spheres we can only learn with
same slow rate of any supervised learner, so we may only
get constant improvements.

This constant, however, can be arbitrarily large. If the
supervised classifier uses a hypothesis space H, we can
interpret manifold regularization as switching to a
restricted space ~H�. This space only contains hypotheses
that fulfill a manifold assumption, where the regularization
parameter � indicates to which degree this assumption is
enforced. [22] shows that the improvement of using mani-
fold regularization is at most VCðHÞ=VCð ~H�Þ. If we set �
high enough we can keep VCð ~H�Þ constant, while VCðHÞ
increases with the dimension d. This shows that the constant
improvement can be arbitrarily large. While this example
uses the manifold assumption, [23] gives an example, cf.
Section 2.1.6, with a semi-supervised learner that has full
knowledge of the domain distribution.

All in all, this shows that constant improvement can be
arbitrarily large under the right assumptions, e.g., the mani-
fold assumption, or full knowledge of the marginal distribu-
tion. An open problem that we identify is whether one can
also have arbitrarily high constants with limited unlabeled
and data without assumptions.

7.3 The Amount of Unlabeled Data We Need

In Section 2.2, we treated three settings in which a semi-
supervised learner can PAC-learn, while no supervised
learner can. For that, we need, in principle, an infinite
amount of unlabeled data. If a fixed finite amount of unla-
beled data would be enough to learn under any given distri-
bution P , we could just use the same strategy to learn in a
supervised way, as we can always chose to ignore the label
[12, Theorem 1]. The way the examples of Section 2.2 work
is that for each fixed P a finite, bur arbitrarily large, amount
of unlabeled data is sufficient. As a consequence, if we want
to learn over all possible distributions, we need an arbi-
trarily large, i.e., infinite, amount of unlabeled data.

The semi-supervised improvements which we presented
in Sections 3, 4 and 5, do not necessarily need an infinite
amount of unlabeled data, although this is sometimes
assumed for convenience. The difference is that, in those
settings, supervised learners are also able to PAC-learn, but
a semi-supervised learner is able to do this with fewer
labeled samples. In Sections 5.2 and 5.3, we saw two instan-
tiations of the cluster assumption where, to exploit them,
the amount of unlabeled data needs to increase exponen-
tially with the amount of labeled data. This is because the
error in finding the clusters decreases only polynomially in
the number of unlabeled points as shown in Inequality 31.

Having a finite amount of unlabeled data turns out to be
surprisingly restrictive. In the light of the previous results,
we believe that any limit on unlabeled data prevents us
from proving results that hold uniformly over all data dis-
tributions. Identifying settings where a such limited amount
leads to large (constant) improvements remains an open
and challenging problem. We note that a positive result
such as Theorem 3 is impossible with a fixed finite amount
of unlabeled data [12, Theorem 7]. One may thus wonder
what the strongest possible results are in the setting with a
fixed amount of unlabeled data.

7.4 Assumptions in Semi-Supervised Learning

In Sections 4 and 5, we investigated what a semi-supervised
learner can achieve once assumptions such as those from
Section 1.1 are made. Any such assumption is a link
between the domain distribution and the labeling function.
In particular, we assume that we can ignore certain labeling
functions after we have seen a specific domain distribution.
The cluster assumption, for example, would exclude label-
ing functions that do not assign the same label to points
belonging to the same cluster. The problem with this is that
we do not know if such assumptions do hold or not. Clearly,
one may be able to test the validity of certain assumption,
but we conjecture that testing for an assumption consumes
as many labeled points as learning directly a good classifica-
tion rule with a supervised learner. In other words, the test
would defy its purpose.

To make this claim a bit more precise, let us define an
assumption as a property of the distribution P on X � Y.
Let PA be a set of distributions on X � Y. We say that P ful-
fills assumption A if and only if P 2 PA. For example, PA

could only contain distributions such that the marginal dis-
tributions P ðXÞ have always support on clusters and each
cluster has a unique label. The important thing to note is

4764 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

Authorized licensed use limited to: TU Delft Library. Downloaded on March 24,2023 at 11:46:17 UTC from IEEE Xplore.  Restrictions apply. 



that assumption A is a property on P , so we need labeled
samples to test its validity. It is thus of interest to compare
the consumption of labeled data for reducing the uncer-
tainty about the assumption to the consumption of labeled
data for the convergence of the semi-supervised learner. We
might of course know a priori that the assumption is true
and do not need to test it, but what if not?

One of the few works that analyze this is reviewed in Sec-
tion 5.4. [46] shows that one can get essentially faster rates if
the assumption is true, but we pay a penalty of OðlnðnÞ=nÞ
if it is not true. [68] investigates how one can test for a prop-
erty in an active way, so when we can choose which sam-
ples we want to label. Analyzing the assumptions made of
different SSL methods this way could shed more light on
their applicability. The implications of this testing proce-
dure for semi-supervised learning are, at this point, a fur-
ther open research question. Of course, one could insist that
it is just not necessary to test whether an assumption is true
or not. Following Vapnik’s motto, we may want to avoid
any intermediate form of testing to decide if an assumption
is true or not, when, ultimately, we are merely interested in
whether the semi-supervised learner performs better or not.
Investigating whether semi-supervised learning is only pos-
sible with prior knowledge is thus an further interesting
open problem.

7.5 Weak Versus Strong Assumptions

Distinguishing between weak and strong assumptions can
be motivated through their (in)ability to improve the learn-
ing rate. Section 5 (particularly the discussion at the end of
Section 5.2) suggests that an improvement in learning rate
can only occur if we make assumptions about P ðY jXÞ.
Conversely, restricting the possible labeling functions may
not lead to more than constant improvements. To see this,
consider encoding the manifold assumption in the frame-
work of Section 4.1, which immediately restricts the possible
labelling functions, but [22] shows we can only get constant
improvements in that case. The difference is that, in the
framework of Section 4.1, one cannot infer enough about
P ðY jXÞ. That is, even if we know that the best solution is
one that separates two clusters, deciding which cluster
belongs to which class can still be of worst-case order 1ffiffi

n
p by

the same arguments as in Theorem 9 from [12].

7.6 SSL in Deep Learning

SSL has seen a resurgence in this era of deep learning,
where, in some settings, significant performance improve-
ments have been reported. The reader may wonder, there-
fore, why none of such works are covered in this survey.
The reason is that we present strict mathematical analyses
for possible improvements through SSL, something that
remains elusive in the deep learning literature. Neverthe-
less, we want to sketch here what has been done at the inter-
section of deep learning and SSL and how this relates to
topics covered in this survey.

The two paradigms that have been adopted for deep
learning models are entropy and consistency regularization.

The main idea of entropy regularization [69], [70] is that
we try to enforce low entropy predictions on the unlabeled
data, which is equivalent to the decision boundary being in

a low density region. In the deep learning community, this
idea became known as pseudo-labeling [70] and is effectively
a revival of self-learning, which was proposed in [71] as
early as 1968. [72] shows that this procedure minimizes
entropy and [73] demonstrates that this procedure may
actually close a sample-complexity gap between standard
and robust classification. The latter relies on a performance
metric designed to study classification under adversarial
attacks. As such, SLL may play a special role for deep mod-
els, which are known to be sensitive to adversarial attacks
[74], [75].

Consistency regularization [76], [77], [78] exploits the
idea that if we transform an unlabeled data point u in a
meaningful way into û, e.g., the slight rotation of an image,
then the predictions hðuÞ and hðûÞ should be similar. The
idea is thus to add a regularizer of the form dðhðuÞ; hðûÞÞ to
the loss term, where d is some sort of distance function. This
idea actually ties directly in with the results presented in
Section 4.1 and we suspect that similar performance guaran-
tees hold. It would be of interest to see how the complexity
of a neural network class shrinks under a consistency regu-
larization method. In an optimistic mood, one may even
hope that, in this way, one can generate non-vacuous per-
formance guarantees with classical statistical learning
theory.

7.7 Beyond PAC-Learnability

Arguably, the most general results of this survey are formu-
lated in the PAC-learning framework, as presented in Sec-
tions 2.1.6 and 2.2. An exciting new type of learning
framework was recently proposed in [44] and designated
universal learning. The difference between this and PAC-
learning is in essence the relationship between the error
bound and the distribution P over X � Y. In PAC-learnabil-
ity, any error bound has to hold uniformly over all distribu-
tions, i.e., it is the same bound for all distributions. In
universal learning, we can have constants in the bound that
depend on the distribution. This has some dramatic conse-
quences. In realizable PAC-learning, we either cannot learn
at all or we learn with a linear rate. In universal learning,
we have a trichotomy into linear, exponential, or arbitrarily
slow rates. That this may play an important role in the inter-
pretation of results can be seen through the analysis in Sec-
tion 5.2. For each fixed distribution one may show an
exponential learning rate, while a strict PAC-analysis leaves
us with a slow rate, at least without further assumptions.
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