
An Unsupervised Approach
for False Alarm Filtering in

Rule-based NIDS

Magdalena Simidžioski

Te
ch

ni
sc

he
U
ni
ve

rs
ite

it
D
el
ft

An Unsupervised Approach for False
Alarm Filtering in Rule-based NIDS

by

Magdalena Simidžioski

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
Specialization: Cyber Security

at the Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science.

to be defended publicly on 26 June 2020

Thesis committee: Dr. Z. Erkin, TU Delft
Dr. C. Hernandez Ganan, TU Delft
Dr. P. Murukannaiah, TU Delft

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

I wish to thank my supervisor Dr. Carlos Hernandez Ganan for his support and
academic guidance during the entire process of writing my thesis. The construc-
tive feedback and various discussions were of tremendous help. I also wish to
thank MSc Mathew Vermeer for his input and critical feedback whenever I had
various questions and obstacles. I would like to thank Dr. Zekeriya Erkin and
Dr. Pradeep Murukannaiah for being part of the thesis committee.
I would like to thank Murat Kurtdaylar for giving me the chance to perform
research in a dynamic organisation. I would like to thank Peter van Eijk for
giving me the opportunity to collect and analyse the data that was needed for
this research. I would also like to thank my colleagues Johan Ruijgt, William
Beernink and Reinout Hoornweg for their assistance in both the technical and
academic matters of this process. Finally, I would like to thank my family and
friends for constantly supporting me during this challenging time.

Magdalena Simidžioski
Delft, June 2020

iii

Abstract

To detect malicious activities in a network, intrusion detection systems are used.
Even though these solutions are widely deployed for this purpose they have one
serious shortcoming which is the huge amount of false alarms that they are gen-
erating. Different measures are taken to tackle this problem such as manually
changing the settings of the intrusion detection systems. However, this is an
infeasible approach for organisations since a network is changing regularly and
specialists that have good knowledge of both the environment and the solution are
required.The existing unsupervised approaches cannot be implemented as fully
automated solutions because of the need to tune hyper-parameters. Additionally,
the implementation of the existing solutions is complicated since often multiple
models and the constant updating thereof is required which is a computationally
intensive process considering the selected algorithms. In this work, the possibil-
ities to reduce the false alarms in an automated manner are investigated. This
is done by applying unsupervised anomaly detection techniques on the resulting
alert data to distinguish regular alarms from high priority ones. Real alert data
is collected from a network of a large organisation and an additional synthetically
generated data set is used to evaluate the proposed approach. Four unsupervised
anomaly detection algorithms are chosen to model the regular alerts. These are
Local Outlier Factor (LOF), Isolation Forest (IF), Histogram-based Outlier Score
(HBOS) and Cluster-based Local Outlier Factor (CBLOF). We show that this ap-
proach can greatly reduce the false alarms in real environments. By adding noise
to the data we evaluate the performance of the models and propose a method
that can be used to determine when the model needs to be retrained. This is
done by deriving a metric that is used to trigger the system to automatically
retrain on the most recent historic data. This is necessary in order to make the
system automated and adaptable to changes in the network.

v

Contents

1 Introduction 1
1.1 Problem Statement. 3
1.2 Research Question . 4
1.3 Research Scope . 5
1.4 Contribution . 5
1.5 Result Summary . 6
1.6 Report Structure . 6

2 Preliminaries 8
2.1 Intrusion Detection Systems . 8

2.1.1 Anomaly-based IDS . 8
2.1.2 Rule-based IDS . 9
2.1.3 Snort . 9
2.1.4 Placement of IDS . 10

2.2 Data Encoding . 11
2.2.1 Label Encoding . 11
2.2.2 One-Hot Encoding. 12
2.2.3 Frequency Encoding . 12

2.3 Distance Metrics . 12
2.4 Unsupervised Anomaly Detection Techniques 13

2.4.1 Proximity-based. 14
2.4.2 Statistical-based . 17

2.5 Histogram-based Outlier Score . 17
2.5.1 Clustering-based . 19
2.5.2 Ensemble-based . 20

3 Literature Review 23
3.1 Background . 24
3.2 Knowledge-based Techniques . 25

3.2.1 Manual Labelling . 25
3.2.2 Correlation-based Labelling . 26

3.3 Data Mining Techniques . 28
3.4 Discussion . 30
3.5 Research Gap . 31
3.6 Conclusion . 32

vii

viii Contents

4 Methodology 33
4.1 Proposed Solution . 33
4.2 Feature Selection . 34

4.2.1 Pearson’s Chi-Square Test . 35
4.2.2 Mutual Information Score . 35

4.3 Selected Techniques . 35
4.4 Evaluation Criteria . 36

5 Data Exploration 39
5.1 Data Collection. 39

5.1.1 Tools . 40
5.1.2 Pre-processing . 41

5.2 Data Description . 42
5.2.1 Test 1 . 42
5.2.2 Test Set 2 . 43
5.2.3 Test Set 3 . 43

5.3 Data Analysis . 43
5.3.1 Rule Correlations. 44
5.3.2 Data Distribution . 44
5.3.3 Vulnerabilities. 47

5.4 Observations . 47
5.4.1 Observation 1: . 47
5.4.2 Observation 2: . 48
5.4.3 Observation 3: . 48
5.4.4 Observation 4: . 49

5.5 Examples . 49
5.5.1 Example 1 . 49
5.5.2 Example 2 . 50

5.6 Features Selection . 51

6 Results 53
6.1 Hyper-parameters of Models . 53
6.2 Threshold Selection . 53

6.2.1 LOF. 54
6.2.2 IF . 55
6.2.3 HBOS . 56
6.2.4 CBLOF. 57

6.3 Combining Results . 58
6.4 Evaluation of model . 64
6.5 Discussion . 69

7 Limitations and Future Work 73
7.1 Limitations . 73
7.2 Future Work . 74

Contents ix

8 Conclusion 76

Bibliography 87

1
Introduction

The importance of cyber security is increasing by the day with the major changes
that the world has seen in the last decade. It is not a matter of question anymore
whether IT systems are at risk of cyber attacks. The problem is so broad that it
affects every entity from critical infrastructures and state based actors to small
companies providing various services. The need for a fast development of cyber
defences is thus increasing in parallel with the continuous search and develop-
ment of exploits. Over the past decade the number of vulnerabilities has been
continuously increasing with the peak being 2019 until now and this number is
expected to grow in the next few years [44].

The worldwide spending on cyber security has been estimated to reach ap-
proximately $143 billion by 2022 [19]. Exploit frameworks are developed to ex-
ploit the most recently discovered vulnerabilities in systems while at the same
time vendors are searching for solutions to patch these vulnerabilities. It is un-
fortunately often the case that systems run outdated software and patches are
not installed on time. Public and private organisations face a common problem.
They need to defend their networks from all kinds of cyber threats but this has
proven to be a very challenging task. Various tools and frameworks have been
developed for this purpose that are widely used across the world. However, there
is a huge shortage of employees with proper education and understanding in this
field and often it is very difficult for organisations to understand their risks and
implement an appropriate and effective defence strategy. Additionally, the im-
balance between attackers and defenders is significant. For an attacker it takes
only a few clicks to use an already available exploit tool and break into a system
whereas for a defender it may take days or even months to properly configure and
maintain the network and the implemented defences. With all these challenges
in mind a simple approach could be of great value for organisations to prevent
or at least timely detect threats that are present in their networks and decrease
the probability of success for potential attackers. The approach should be cost-
effective and simple to implement and maintain in order to be applicable for a

1

2 1. Introduction

wider range of organisations.

Intrusion Detection Systems have a wide range of uses across this landscape.
Their first use was to help administrators monitor logs and audit trails of various
systems in order to detect anomalies or other unusual behaviour [6]. However,
it was soon found that this type of monitoring was not sufficient to discover all
potential threats that a system was facing. As a solution to this problem [15]
proposed the first intrusion detection system that could monitor both host and
network data, named Intrusion Detection Expert System (IDES). This system in-
corporates both rule-based and anomaly (statistical) based detection techniques.
This system is considered to be the basis for all intrusion detection systems that
have been developed ever since [29, 41, 50, 55, 60, 68, 74, 78].

As the role of intrusion detection systems is to detect intrusion in a network,
they are designed to capture and analyze huge amounts of network traffic and
host data. Because of the volume of the data and the context that is missing
it becomes very challenging to select only the real threats that are present in
the data. In reality these systems generate lots of false positive alerts, which
means that they label observed traffic as malicious when it is completely normal
or harmless to the monitored system. There is a large need for improving the
existing intrusion detection systems to be fast, more accurate and preventing at-
tacks rather than just detecting them afterwards.

Rule-based Intrusion Detection Systems are currently amongst the most widely
used threat intelligence tools by all kinds of organisations. Snort is the most
popular open-source IDS with over 5 million downloads which makes it the most
widely deployed IDS in the world [42]. Additionally many already known vulner-
abilities are still being frequently exploited. The Microsoft Security Intelligence
report states that the majority of the customers are victims of vulnerabilities
for which patches have been developed several years ago [59, 69]. Surveys show
that security patching is difficult and often decide not to apply the necessary
patches because of the functionality changes, incompatibilities with their appli-
cations and the fear of breaking the system [1, 32] This patching problem is also
the cause of approximately 18% of all detected network level vulnerabilities [17].
The Edgescan vulnerabilities statistics report [18] has found that the majority of
the components that were vulnerable had working exploits for already known vul-
nerabilities. Also default configurations and inappropriately configured systems
and components were amongst the most common causes of security incidents in
2018. The category that is mostly affected by these attacks and breaches are
the small and medium sized organisations, in 2019 43% of the total cyber attack
victims were SME’s. [77] Another very recent example (2019) are the Microsoft
’Gallium’ attacks [26]. These attacks were performed by using cheap hacking tools
where the hackers selected vulnerable servers and used already known exploits
against these servers to gain access.

1.1. Problem Statement 3

Rule-based NIDs have their shortcomings but remain very effective in detect-
ing attacks that are already known in cyberspace. Even though the biggest limi-
tation of these systems is their inability to detect zero days attacks, new rules are
added to these systems very rapidly. Zero days attacks are often exploited even
after patches have been released and in some cases these vulnerabilities cannot
be patched at all. Therefore, rule-based NIDS remain a useful component of the
cyber defences. Of course, to increase and have maximum protection, the ideal
solution would be to combine both anomaly based and rule based types of NIDS.
This research only focuses on rule based NIDS and the improvement thereof, thus
no claims are made that this solution is 100% security proof. Rule-based NIDS,
if deployed properly can be of great value to any organisation.

1.1. Problem Statement

Many organisations struggle with choosing and implementing the proper security
defences for their networks. Network monitoring is a basis for a good defence
strategy since it provides visibility in the network and is often the first place
where malicious traffic can be observed. Therefore, having solid network visibil-
ity is very important. There exist open-source solutions for this purpose which
can be deployed by organisations. However, there are several big challenges con-
cerning the effective deployment of a rule-based NIDS. The first and biggest
problem is the amount of false alarms. To prevent this several approaches have
been adopted. A common approach is tuning the NIDS manually. This action is
tightly related to the ever-changing monitored environment. Each alteration of
the NIDS configuration and rule set would require a reboot of the system and it is
often difficult to decide what to change in the configuration. The second problem
that arises is the dilemma about which rules to activate or deactivate since this
is very often dependent on the monitored environment thus context remains a
very important aspect. Not having relevant information to use for the evaluation
of malicious attempts makes it very difficult to distinguish high priority events
from irrelevant ones. Additionally, security experts are required to manage this
work and it is very time consuming.

Given the challenges at deploying an effective and successful intrusion detec-
tion system, this thesis aims at exploring techniques that can be used to develop
a system as a module to existing NIDS that is adjustable to the monitored en-
vironment to effectively reduce the false alarm rate. The main goal is thus to
prevent manual alterations to the NIDS and make the effective deployment of
the NIDS independent of human experts.

4 1. Introduction

1.2. Research Question
This research is exploratory and investigates a new approach for reducing the
false alarm rate in rule-based NIDS in an unsupervised setting. In order to do
this several unsupervised anomaly detection methods are explored and tested on
real data, their robustness to changes in the network is evaluated and a threshold
for automatic retraining is defined. The main research question is defined as
follows:

Main RQ: To what extent can existing rule-based NIDS be effectively
deployed by automating the process of false alarm filtering using un-
supervised anomaly detection techniques?

To answer this question, multiple sub questions are formulated that will target
the different components of this problem:

RQ1: What are the existing techniques for false alarm reduction in
rule-based NIDS?

This question is about exploring existing research and techniques related to false
alarm reduction in rule-based NIDS. In the scope of this question both knowledge-
based and data mining-based techniques will be reviewed and a research gap will
be identified.

RQ2: How effective are existing network intrusion detection systems
when deployed without any prior alterations to their settings?

This question is about exploring how effective the usage of these intrusion detec-
tion systems is and evaluating to what extent a NIDS is able to recognise only
relevant events in real world scenarios where often it is the case that there is
not enough human expertise or time available to constantly tune their settings.
In order to answer this question a NIDS will be set up in a real environment.
The NIDS will be used in a default setting and the output of the NIDS will be
analysed.

RQ3: Which unsupervised outlier detection techniques can be used
for filtering false alarms in rule-based NIDS?

This question concerns the unsupervised approach that is taken to reduce false
alarms. This is necessary since the model uses only the output of the NIDS
where the alerts are not labelled. To answer this question multiple unsupervised
machine learning algorithms will be explored and evaluated that are applied to
similar problems.

1.3. Research Scope 5

RQ4: How can the model be retrained in order to remain accurate
upon changes in the network ?

The last question concerns the application of the proposed solution in a pro-
duction environment. To answer this question the model will be tested on data
collected on a real network. To evaluate the robustness of the model noise will be
added to the data that mimics new processes and attribute values which would
make the NIDS generate more false alarms. A metric will be derived to indicate
at which point the models need to be retrained on more recent, representative
data to remain accurate.

1.3. Research Scope
This research focuses specifically on rule based intrusion detection systems. The
alerts that will be included for the implementation of the module are based on
rule-based alert output sets. Furthermore, for the exploration of environment
information only the CVE vulnerability database is consulted since most events
do either include a reference to the CVE database or have no reference at all.
Additional information about the network such as open ports, services and oper-
ating system information is also considered.
The data that is used represents only the traffic that is detected by the Snort
engine as possibly malicious. There are cases where the NIDS misses attacks be-
cause of evolved traffic patterns of known attacks. These cases are not considered
in this research since the goal is to filter the amount of alarms already detected
by the NIDS. For this shortcoming an anomaly detection engine can be used.
The research will be done in collaboration with an organisation which identity
will remain anonymous throughout the report. Since the monitored environment
is very specific to this organisation, some of the outcomes of this research can
be considered specific for this setting. However, an additional synthetic data set
is used to test the performance of the proposed method. The methodology of
extracting and using the various elements for the reduction of false positives can
be applied generally to any data set produced by a rule-based NIDS.

1.4. Contribution
The scientific contribution of this thesis is the proposal of a false alarm filtering
technique framed as an outlier detection problem. A novel approach is applied
to this problem by using outlier detection techniques to identify true alarms.
Also a proposal of a metric to indicate when the model(s) needs to be retrained
on more recent data is given. The exploration and evaluation of unsupervised
outlier detection techniques can be used to filter false alarms efficiently. This
research explores to what extent anomaly detection algorithms can be applied

6 1. Introduction

on rule-based intrusion detection systems and how these models can be made
adaptable to change in dynamic environments. Additionally, the effectiveness of
existing knowledge-based techniques is evaluated in a real network setting and a
comprehensive analysis is provided about the characteristics and main difficulties
with the use of rule-based NIDS. Experiments are conducted with these models
to evaluate how robust they are on changes and to derive indicators about the
thresholds for which these proposed models need to be retrained. The result of
this thesis is an automated prototype for false alarm filtering with a selection of
anomaly detection techniques and exploration of a a historical data range and
recommendations for model retraining. The contributions are listed below:

• Proposal of a novel method to filter false alarms framed as an outlier de-
tection problem independent of expert knowledge.

• An assessment of the extent to which knowledge-based approaches are use-
ful for reducing the false alarm rate in a real network.

• An assessment of the performance of the proposed method with a default
set of hyper-parameters in order to prevent manual adjustments

• An assessment of the applicability of this method including an evaluation
of the models trained on different ranges of historic data.

• Proposal of a metric to indicate when the model(s) needs to be retrained
on more recent data.

1.5. Result Summary
The main finding of this research is that the process of filtering false alarms using
anomaly detection systems can be an effective alternative to manual adjustments
or knowledge based filtering techniques. The method is tested on multiple data
sets and detects all true attacks while having a low false positive rate. Addition-
ally, the proposed model is shown to be robust to changes and an indicator for
retraining is defined. The main limitation of this approach is the lack of context.
Furthermore, the main cause of these remaining false positives is the similarity in
frequency values. The chosen models trained on the selected attributes are not
capable of fully distinguishing true from false alarms.

1.6. Report Structure
In this chapter the motivation and problem statement of this research were pro-
vided as well as the proposed solutions, the scope and the contribution of this
research. The following chapter covers the theory and concepts that should be
known to understand the rest of the paper. The third chapter covers a review of

1.6. Report Structure 7

selected works that has been performed on this research topic. In this chapter the
most relevant works and their limitations are summarised. Chapter four covers
the methodology that is followed during this research. This chapter provides a
description of the proposed solution including the feature and algorithm selection
and evaluation methods. In Chapter five a description of the data is provided
including the main observations. This chapter also covers the different test sets
that are used for evaluation. In Chapter six the main results are presented and
discussed. In Chapter seven the main limitations are stated and ideas for future
research are proposed. In Chapter eight the research questions are answered and
the main conclusion of this work is provided.

2
Preliminaries

In this chapter background knowledge is presented that is directly related to the
studied problem. The different intrusion detection systems are described includ-
ing SNORT, the NIDS that is used during this research. The encoding techniques,
distance metric and unsupervised algorithms are also described.

2.1. Intrusion Detection Systems
Intrusion detection mechanisms are a broadly studied topic within network and
cyber security. Many different techniques are developed for this purpose. The two
main categories based on the technique that is used are rule-based and Anomaly-
based intrusion detection. Another categorisation of intrusion detection mecha-
nisms can be made based on the place where the system resides. The two main
categories are Network-based (NIDS) and Host-based (HIDS) Intrusion Detection
Systems. There also exists techniques which deploy both of these and are known
as Hybrid or Combined (CIDS) intrusion detection systems.

For the purpose of this research, we will study the alerts generated by a rule-
based NIDS which resides on the Network. In this report we will refer to this
system as NIDS. The NIDS that will be used is an open source NIDS called
Snort[42]. This NIDS was firstly chosen because it is open source and its rule-
database gets updated frequently by multiple sources. Furthermore, it is easy to
set-up and have it running very quickly.

2.1.1. Anomaly-based IDS

An anomaly based IDS is a system that tries to identify malicious traffic in
a continuous stream by learning a model that defines what normal behaviour
looks like in the monitored system and alerting on any traffic that deviates from
this learned normal behaviour. These systems are capable of detecting zero-
day attacks which is one of their strongest points. There exist many different

8

2.1. Intrusion Detection Systems 9

algorithms that are used for this purpose like neural networks or data mining
techniques. Generally, these types of IDS produce a lot of false positives and
need continuous adjustments of their thresholds to be effectively deployed.

2.1.2. Rule-based IDS

A rule-based IDS is a system that tries to identify malicious traffic in a continuous
stream by matching payloads to predefined rules. The system looks at packet
bytes and sequences and matches these to rules of known malicious activity.
These systems are thus capable of detecting all known attacks that are contained
in their rule set. It is very important to update these rule set very frequently for
better detection. These systems are also known to produce many false positives
when not configured properly. This means again setting rule thresholds, enabling
and disabling rules according to the environment and regularly adjusting the
settings for an effective deployment.

2.1.3. Snort

The rule-based Intrusion Detection System that will be studied during this re-
search is Snort [42]. It will be setup to monitor network traffic. This NIDS detects
attacks by protocol analysis and content matching. It has been widely employed
as a NIDS and has a very rich rule base, which is frequently updated for newly
emerging attacks and rules. It has multiple modes and can be used as either an
intrusion detection system (IDS) or an intrusion prevention system (IPS). The
main difference between these two modes is that IDS only analyses the traffic,
generates alerts and logs them, whereas an IPS does all this and additionally it
attempts to block the detected malicious packets.

Figure 2.1: Snort Rule

Snort has a separate rule base for each network protocol. The rule-sets in
the current snort deployment are classified in 34 different attack classes. Each
attack class is supposed to group together events or attacks of a similar type.

Figure 2.2: Snort Architecture

Packet Decoder

Snort relies on an external module used for packet capturing. This module is
called libpcap [66]. The packets that are capture are in raw format and need to be

10 2. Preliminaries

processed. Therefore they are passed on to the packet decoder module. Snort uses
raw packet data to also analyze the protocol header information. This module
is used to decode specific protocol elements of all network layers and translate
these to a custom data structure such that they can be further processed by the
preprocessor module.

Preprocessor

The preprocessor module can either be used to preprocess packets before they
are passed to the detection engine to be matched with rules or it can be used to
detect suspicious activity in the raw headers of the traffic. This is often done by
setting thresholds on the values observed in the fields of the header.

Detection Engine

The detection engine takes the preprocessed data and matches each packet against
its database of active rules. If a match is found, the IDS acts upon this by, for
example, making an alert of the packet and the rule that was a match. Otherwise,
no action is taken and the packet is considered benign.

Output Module

The output module is the module that generates alerts or other types of logs
about the events detected in the previous module. This module outputs the
logs in a readable format which can be parsed and used in various monitoring
solutions.

2.1.4. Placement of IDS

The placement of the IDS is typically divided into two categories which are net-
work and host-based placement.

Host Based IDS

A host based IDS (HIDS) is a system that monitors the data generated by internal
processes of the host that it resides on. This could be anything from a PC to a
Firewall. The IDS can either be anomaly or rule based. Some popular examples
of host-based IDS are OSSEC and Wazuh.

Network Based IDS

A network based IDS (NIDS) is a system that monitors the network that it is
placed in. It acts as a passive detection engine or an active detection engine
with abilities to block traffic when considered malicious. The IDS can either
be anomaly or rule based. Popular examples of Network-based IDS are Snort,
Suricata and Zeek.

2.2. Data Encoding 11

2.2. Data Encoding
The data that is used in this project is an alert set produced by a rule-based IDS.
The format of the data consists of a set of only categorical variables. More details
about the data set can be found in 5. Many algorithms for data exploration and
anomaly detection are directly applicable to numeric data, but this is unfortu-
nately not the case for categorical data. Therefore we consider several encoding
methods through which we can get a numeric data set that gives a good repre-
sentation of the underlying data structure and correlation amongst the different
variables.

2.2.1. Label Encoding

Label Encoding is a technique of encoding categorical variables by mapping them
to numeric values. Each column consisting of a set of distinct items is mapped
to a corresponding number and this operation is performed on all categorical
columns in the data set. An example of how this encoding works is the following:

Country City Temperature Precipitation Wind
Netherlands Amsterdam 10 20 26
France Paris 13 60 32
Netherlands Delft 11 70 23
Germany Berlin 8 40 30
England London 10 50 31

Table 2.1: Temperature data example with a mix of categorical and numeric variables.

Country City Temperature Precipitation Wind
1 1 10 20 26
2 2 13 60 32
1 3 11 70 23
3 4 8 40 30
4 5 10 50 31

Table 2.2: Label Encoding of Temperature data

After using the label encoder the results shown in table 2.2 are obtained.
However, based on the numeric values that were assigned to the categories by
applying this encoding method it seems as if the categories can be measured.
This could lead to a bad performance of machine learning algorithms since a
false notion of distance is considered between such categories when in reality
these variables have nothing in common.

12 2. Preliminaries

2.2.2. One-Hot Encoding

An alternative way of encoding categorical variables is by one-hot encoding them.
This method creates a vector that has the length of each unique category present
in the data. This vector is then filled with ones in the cells if a category appears in
the record and zeros in the remaining cells. Using the above mentioned example,
the result using the one-hot encoding method is the following:

This type of encoding represents the data better. However, the main issue
here is the number of unique values which may be very high resulting in a too
large vector to fit into memory and another issue are the new variables that may
appear in the data which can not be predicted beforehand.

2.2.3. Frequency Encoding

Frequency encoding is a way of encoding categorical variables such that each cat-
egory is replaced with a numeric value representing it’s relative frequency in the
data set. This method applied to the example above results in the following:

Country City Temperature Precipitation Wind
2/5 1/5 10 20 26
1/5 1/5 13 60 32
2/5 1/5 11 70 23
1/5 1/5 8 40 30
1/5 1/5 10 50 31

Table 2.4: Frequency encoding of Temperature data.

Now each value is encoded with its relative frequency indicating the presence
of the specific value in the data. This implicitly captures some behaviour of the
sensor, since values with higher frequencies are more likely to be benign.

2.3. Distance Metrics
To be able to measure the difference between the different points in our data set
we need to choose an appropriate distance metric. There are several distance
metrics used in machine learning which are used to quantify differences between
points. Most of these metrics are designed for numeric variables, but there are
similarity measures that are also applicable for categorical data and binary vec-
tors. Since the format of the data is only numeric, the euclidean distance is used
as a default by the unsupervised methods. Other distance metrics may also be
suitable but are not explored because of time limitations.

2.4. Unsupervised Anomaly Detection Techniques 13

Euclidean Distance

Euclidean distance is a simple calculation of the distance between two points in
a vector space. This distance represents a straight line that connects the two
points in space. To calculate this distance the following formula is used:

𝑑 (�⃗�, �⃗�) = ||𝑥𝑥𝑥 −𝑦𝑦𝑦|| = √
፧

∑
።ኻ
(𝑥። − 𝑦።)ኼ (2.1)

This formula is used to calculate the distance between to vectors. In this
project, we use this formula to calculate the distance of a point to its respective
centroid which is part of the clustering phase. The distance is also used to find
anomalies, i.e points that lie in low density regions by calculating the distance of
each point to its nearest neighbours.

To illustrate how this works in a 2-dimensional space, the distance can be
calculated using the Pythagorean Theorem as shown in 2.3. A simple example of
calculating euclidean distance in a 3-dimensional space on the vector �⃗� = (3, 4, 4)
and �⃗� = (1, −2, 1) is the following:

𝑑 (�⃗�, �⃗�) = √(3 − 1)ኼ + (4 − (−2))ኼ + (4 − 1)ኼ = √2ኼ + 6ኼ + 3ኼ = √4 + 36 + 9 =
√49 = 7

Figure 2.3: Euclidean distance example

2.4. Unsupervised Anomaly Detection Techniques
In many real world scenarios the data that is available to work with is very imbal-
anced. Meaning that the majority of points in the data are benign. To find the

14 2. Preliminaries

instances in the data that are anomalous various techniques have been developed.
These can generally be split into two categories which are supervised and unsu-
pervised anomaly detection techniques. The supervised techniques are dependent
on labels in the data such that these models can learn what is considered anoma-
lous whereas the unsupervised techniques are based on the assumption that the
anomalous points will deviate from the majority.

2.4.1. Proximity-based

Density-based techniques calculate the local density of a data point based on the
number of neighbouring data points that are located within a specific distance of
that point. Based on the values that are obtained for the local densities, an ’out-
lier’ score is assigned [3]. These techniques have an advantage over other anomaly
detection techniques because they are able to detect anomalies that are missed
by most of the other techniques [81] by considering the local environment of the
data point instead of focusing on the global outliers. However, these density-
based techniques also have several disadvantages. One of the main disadvantages
is that these techniques are very complex and computationally expensive [84].
Another issue is choosing the right value for the measures that are used for these
calculations [81].

Local Outlier Factor

The local outlier factor algorithm [12] is based upon the assumption that a nor-
mal point lies in a dense region, meaning it is surrounded with many neighbours,
whereas an anomalous point lies in a low density region with none, or only a few
neighbours.

LOF isolates the points to a certain degree from their neighbour points and
focuses more on the local environment of the point instead of the global distri-
bution. This could be very beneficial for finding the local outliers since the data
is not anomaly free and if the local environment of the point is not considered,
some of the anomalies in the initial data might be counted as inliers instead.
LOF is suitable for detecting local outlier in a data set with different density re-
gions since these outliers are considered anomalous only when compared to their
direct neighbours. LOF calculates the local density ratio only based on these
direct neighbours and does not require any assumption of the global distribution
of the data set. The disadvantages of LOF are that it is highly dependent on the
predefined outlier measure parameters and that it might become very computa-
tionally expensive with a large data set since the distance between each point is
calculated. It also is difficult to apply this method to streams since the defined
outlier metrics cannot be updated accordingly.
The algorithm computes the k-nearest neighbours for each point in the space and
then compares the density of each point with the density of all other points. In

2.4. Unsupervised Anomaly Detection Techniques 15

this algorithm the k-distance is used to measure the distance from a point to it’s
kth neighbour. For example, if k = 5, the k-distance is equal to the distance of
a point to it’s 5th neighbour. After the k-distance is computed for each point,
the algorithm computes the reachability distance. This is calculated with the
following formula:

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑎, 𝑏) = 𝑚𝑎𝑥(𝑘𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎, 𝑏)) (2.2)

The reachability distance is needed to calculate the local reachability density
which is defined as the inverse of the average reachability distances for each point:

𝑙𝑟𝑑(𝑎) = 𝑘
∑ ፧∈፩፨።፧፭፬𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑎, 𝑛)

(2.3)

To find anomalies another score is calculated that makes use of the local reach-
ability density score. This is called the local outlier factor and is calculated with
the following formula:

𝑙𝑜𝑓(𝑎) =
∑ ፧ ∈ 𝑝𝑜𝑖𝑛𝑡𝑠

፥፫፝(፧)
፥፫፝(ፚ)

𝑘 (2.4)

Defined as the average of the local reachability densities of the points, this
score is used to decide whether a point is anomalous or not. Points with a score
greater than 1 (LOF > 1) are considered anomalies, whereas all other points
whose score is equal or smaller than 1 (LOF <= 1) are considered normal.

𝑝ኻ = (1, 2), 𝑝ኼ = (3, 6), 𝑝ኽ = (3, 7), 𝑝ኾ = (15, 10)

The distance for each pair of points is calculated:

𝑑(𝑝1, 𝑝2) = 4.472, 𝑑(𝑝1, 𝑝3) = 5.385, 𝑑(𝑝1, 𝑝4) = 16.12, 𝑑(𝑝2, 𝑝3) = 1,
𝑑(𝑝2, 𝑝4) = 12.65, 𝑑(𝑝3, 𝑝4) = 12.37

In the case where k = 2 the algorithm finds the 2፧፝-nearest neighbour for each
point based on the calculated distance:

𝑘𝑛𝑛(𝑝ኻ) = 𝑝ኽ, 𝑘𝑛𝑛(𝑝ኼ) = 𝑝ኻ , 𝑘𝑛𝑛(𝑝ኽ) = 𝑝ኻ, 𝑘𝑛𝑛(𝑝ኾ) = 𝑝ኼ

16 2. Preliminaries

Figure 2.4: Point A represents a normal point surrounded by many neighbours whereas point
B represents an anomalous, deviating point located in a low density region. Point B is also
called a global outlier. Point C is a local outlier.

The sets of 2-nearest neighbours for each point are the following:

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑝1) = 𝑝2, 𝑝3
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑝2) = 𝑝1, 𝑝3
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑝3) = 𝑝1, 𝑝2
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑝4) = 𝑝2, 𝑝3

The reachability distance for each of its two neighbours is then the distance used
to calculate the local reachability distance. This is calculated for p1 as follows:

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1, 𝑝2) = 𝑚𝑎𝑥(4.472, 5.385) = 5.385
𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1, 𝑝3) = 𝑚𝑎𝑥(5.385, 5.385) = 5.385

𝑙𝑟𝑑(𝑝1) = ኼ
(.ኽዂዄ.ኽዂ) =

ኼ
ኻኺ. = 0.18

the reachability distances for the other points are the following:

𝑙𝑟𝑑(𝑝2) = ኼ
.ኾኼ = 0.36 , 𝑙𝑟𝑑(𝑝3) = ኼ

ኻኺ. = 0.18, 𝑙𝑟𝑑(𝑝4) = ኼ
ኼ.ኽ = 0.07

Finally, the local outlier factor for each point is the following:

2.5. Histogram-based Outlier Score 17

𝑙𝑜𝑓(𝑝1) = ኺ.ዀዀዄኺ.ዀዀ
ኼ∗ኺ.ኽኽ = 1.5

𝑙𝑜𝑓(𝑝2) = ኺ.ኽኽዄኺ.ዀዀ
ኼ∗ኺ.ዀዀ = 0.5

𝑙𝑜𝑓(𝑝3) = ኺ.ኻዂዄኺ.ኽዀ
ኼ∗ኺ.ኻዂ = 1.5

𝑙𝑜𝑓(𝑝4) = ኺ.ኽዀዄኺ.ኻዂ
ኼ∗ኺ.ኺ = 3.85

The points p2 has a LOF < 1 and is considered normal within this set of
points. The points p1 and p3 have a slightly higher score than 1 and are con-
sidered anomalous. However, point p4 has the highest score, namely 3.85. This
point differs a lot from the other three points. In this case, it makes sense to
consider only point p4 as a true outlier.

2.4.2. Statistical-based

Statistical-based techniques use the distribution of a model for the detection of
anomalies. The statistical-based techniques can be classified into parametric tech-
niques which have a certain assumption about the distribution of the model and
define the parameters based on this distribution and non-parametric techniques
which do not know the distribution of the model [81]. The parametric techniques
use the Gaussian and Regression Model for the detection of anomalies in a data
set while the non-parametric techniques mainly use Kernel Density Estimation
(KDE) techniques for this purpose. The advantages of using statistical-based
techniques is that these techniques are relatively easy to design and they are very
fast compared to other anomaly detection techniques such as LOF and cluster-
ing. Additionally, the anomaly scores are paired with probability scores which
be used as an additional validation metric [84]. Specifically for Histogram-based
methods the main disadvantage is that they are unable to capture relationships
between the different dimension in the data and rely on the assumption that the
data has an underlying distribution [81].

2.5. Histogram-based Outlier Score
The Histogram Based Outlier Score (HBOS) is a statistical based anomaly de-
tection technique [24]. This technique has a linear time complexity 𝒪(𝑛) for a
static fixed bin width and a 𝒪(𝑛 ∗ 𝑙𝑜𝑔𝑛) complexity for a dynamic bin width.
This techniques models the feature densities using histograms with a bin width
that can be both static or dynamic dependent on the scenario that it is used for.
The created models are subsequently used for the calculation of an anomaly score
for each data point. The HBOS algorithm constructs an uni-variate histogram
for every feature. This algorithm can work with both categorical and numerical
features. If the features are categorical, a frequency is calculated based on the

18 2. Preliminaries

counts of each feature category and if the features are numerical static or dynamic
bin width histograms are used. For the static bin width histogram, k equal bins
are used where the density is determined based on the frequency of points that
belong to one bin. The dynamic bin widths are determined by sequential values
with a fixed amount of ፍ፤ that are placed into one bin. The number of bins, 𝑘, is
often chosen as the square root of the total number of data points 𝑁, so 𝑘 = √𝑁.
The HBOS for every data point 𝑝 can be calculated with the following formula:

𝐻𝐵𝑂𝑆(𝑝) =
፝

∑
።ኺ

log(1
ℎ𝑖𝑠𝑡።(𝑝)

) (2.5)

where 𝑘 represents the number of bins, 𝑁 represents the number of data points
and 𝑑 represents the dimension. All histograms are normalised in a way so that
a maximum value of 1 for the height of each histogram is obtained.

The advantage of HBOS is that it does not require labelling of the data, is
effective in detecting global outliers and is very fast and efficient which makes
it easier to apply this technique to larger data sets [23, 24, 49, 87]. Also since
this technique assigns outlier scores it is easier to estimate how reliable the pre-
dictions are. However, this technique does not perform well for the detection of
local outliers [24] and it is difficult to get context from the obtained results [87].

Figure 2.5: Example of Histogram Based Outlier Score

An example of how an anomalous instance would be found by HBOS is the
following: The first bin in the range [10, 20] has a height of 13. The score for
each point in this bin is thus computed as log(1/13) = -1.1139. The score for the

2.5. Histogram-based Outlier Score 19

histogram in range [70-80] would be equal to log(1/2) = -0.30102. This score is
closer to 0 and thus these points are considered more anomalous than the points
in bin [10-20]. For each attribute included in the training phase a histogram is
build and the final score for a point is computed as the sum of each attribute
score. Higher scores represent more abnormal points that would be assigned to
bins with a low density.

2.5.1. Clustering-based

Clustering-based anomaly detection techniques divide the data points into clus-
ters of a certain size where two data points in the same clusters are more similar
to each other while two data points of different clusters have significantly different
characteristics [84]. The points that have the largest distance from the clusters
or do not belong to any cluster are considered anomalies. Clustering-based tech-
niques can be classified in several categories, namely, Density-based, Partitioning,
Hierarchical and Grid-based techniques [81]. The advantages of clustering-based
techniques is that they do not require apriori knowledge in order to be applied
to detect anomalies in stream data since new points are assigned to the pre-
computed clusters. These techniques are also easily scalable and adaptable to
different types of data. The disadvantage of these techniques is that the they
are sensitive to outliers and that the cluster characteristics such as the number
of clusters and distance metric should be pre-defined. These parameters highly
dependent on the type of data that is being clustered. Another disadvantage is
that these techniques can be very costly and time consuming when applied to
large and very complex data sets [81].

Cluster-based Local Outlier Factor

The Cluster Based Local Outlier Factor (CBLOF) [28] is a technique that assigns
an outlier factor to each data point which is determined by the distance of the
data point to the nearest neighbouring clusters and the size of its own cluster.
In order to assign these factors, the data points are first divided into clusters.
A similarity function is computed for every tuple and a data point is added to
the cluster with the highest similarity value. The complexity of this techniques
is 𝒪(𝑛). The cluster-based outlier factor for a point 𝑡 can be calculated with the
following formula:

𝐶𝐵𝐿𝑂𝐹(𝑡) = {|𝐶
∗
። | min(distance (𝑡, 𝐶፣)), where t ∈ 𝐶። , 𝐶። ∈ SC and 𝐶፣ ∈ 𝐿𝐶 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑏

|𝐶∗። | min(distance (𝑡, 𝐶፣)), where t ∈ 𝐶። 𝑎𝑛𝑑 𝐶። ∈ LC
(2.6)

where 𝐶። and 𝐶፣ represent clusters, SC = 𝐶። , | 𝑗 > 𝑏 represents set with small
clusters and LC = 𝐶። , | 𝑗 ≥ 𝑏 represent the set with large clusters and 𝑏 is the

20 2. Preliminaries

Figure 2.6: Example of CBLOF Score Calculation

boundary of these clusters.
The advantages of using CBLOF for outlier detection are that this technique
has a linear complexity which makes it perform fast computations and is easily
scalable for large data sets [28].

Because point A is clustered in a small cluster, the score for this point is com-
puted as 𝑠𝑐𝑜𝑟𝑒ፀ = min(D1, D2). Where D1 and D2 are the respective distances
from the point to the cluster centres of the two large clusters. The score for point
B, which is part of a large cluster, is computed as the score from the point to its
own cluster’s centre. So the score for point B is 𝑆𝑐𝑜𝑟𝑒ፁ = 𝐷3.

2.5.2. Ensemble-based

Ensemble-based anomaly detection techniques combine several different algo-
rithms into one and use the advantages of all techniques to increase the accuracy
and performance [81]. The ensemble-based techniques can be categorised into
sequential ensemble techniques, independent ensemble-techniques, data-centred
ensemble techniques and model-centred ensemble techniques [2, 9]. The main
advantage of these methods is their robustness to noise in the data which makes
them suitable for analysing dynamic and changing data. These models are also
suitable for high-dimensional data because of their efficiency in computing outlier
scores. The disadvantages of these methods are the difficulty of selecting suitable
hyper-parameters and interpreting and evaluating the obtained anomaly scores

2.5. Histogram-based Outlier Score 21

is also challenging [71, 81].

Isolation Forest

Isolation Forest [39] is an anomaly detection algorithm designed to detect outliers
in high dimensional data. This algorithm does not make assumptions about the
distribution of the data and does not require the data to be normally distributed.
Additionally, it does not require any labels to detect anomalies and therefore, it
is a suitable choice for this purpose.

The Isolation Forest algorithm is very suitable and effective for detecting
anomalies in high dimensional data with lots of irrelevant features and noise which
has a small number of anomalies or no anomalies at all, since it the majority of
these anomalies will be very close to the root of the tree. This algorithm also
performs well on normal unbiased data which does not have a lot of noise, is
non-parametric which makes it suitable for unsupervised anomaly detection [3]
and it is computationally efficient. With using Isolation Forest algorithm even
the few true positives that are present will be found. However, this technique is
effective in detecting local outliers [13].

The algorithm partitions the domain space. These partitions are created
totally at random by selecting a feature and then creating a split value between
the minimum and maximum value of the feature The algorithm keeps creating
partitions until all data points are isolated. This is done by creating random
decision trees. The score for each point in then calculated based on the length of
the path needed to isolate that point as shown in 2.7.

Figure 2.7: Example of Isolating a normal point (A) and isolating an anomalous point (B)

22 2. Preliminaries

𝑠(𝑥, 𝑛) = 2ዅ
ᐼ(ᑙ(ᑩ))
ᑔ(ᑟ) (2.7)

The anomaly score for one point is calculated by taking the average anomaly
scores across all trees for that point. A score closer to 1 indicates that this is
an anomaly. A score much smaller than 0.5 indicates that this is a normal ob-
servation. If all scores are around 0.5 then the data doesn’t contain any obvious
anomalies. An anomalous point would have a short path to travel to its root.

The decision tree is constructed such that first one feature is chosen and is
split based on the min and max value observed. In these splits the next feature is
split in the same manner until all features are passed. For anomalous instances,
these paths will be close to the minimal length since they would have unique and
few splits. For normal instances these splits would be larger than the minimum
path length because the splits. Isolation Forest might work better with one-hot-
encoding because the uniqueness of observed values within a feature is preserved,
whereas with frequency encoding the feature is seen as a continuous variable and
the uniqueness of some observed instances is lost.

3
Literature Review

In this section the reader will find an extensive literature review on the problem
of false alarm reduction in IDS. There are multiple categories in which all the
works can be divided. Additionally, there are many different techniques used by
authors including a broad range of machine learning techniques for the purpose of
clustering and classification of alerts or to find the root cause, sketch a baseline of
normal behaviour and correlate data from multiple sources to verify the nature of
the generated alerts. In this report, selected works will be presented that sketch
how intrusion detection systems have been developed and improved over time.

The different techniques can be categorised in multiple ways, starting from
misuse-based systems and anomaly-based systems. The former detect attacks by
means of analysing the captured packets and comparing them to a set of prede-
fined rules. The latter detect attacks by learning a model of normal behaviour
for the monitored system, and reporting on any event that fall out this normal
baseline behaviour. Unfortunately both types of IDS suffer from high amounts
of false alarms due to various reasons such as the dynamically changing envi-
ronment and zero-day attacks. Due to these problems researchers have explored
the improvement of IDS extensively and have developed different techniques that
could reduce the high ratio of false alarms and make these systems more accurate
and effective.

One general categorisation of the proposed improvements would be techniques
based on external knowledge sources and data mining techniques that infer the
needed knowledge from the alerts or network traffic without consulting external
information sources. This categorisation is however very general, since many
works combine techniques from both categories. Another possible categorisation
would be based on the place where the IDS is altered. This can be before deploy-
ment by updating the rule set or configuration of the IDS or after deployment,
filtering the alerts that are already generated by the IDS. Although there are

23

24 3. Literature Review

again hybrid systems, the majority of works perform operations only at one place.

The general state of the research conducted for the problem of false alarms
in IDS is that the majority of works focus on the alert log and try to filter out
the irrelevant alerts based on correlation and classification techniques. Recently,
more advanced and hybrid techniques were studied and developed. There is a
smaller subset of works that put focus on solving the problem before the IDS is
deployed, to have the IDS only generate the most relevant alerts.

3.1. Background
One of the first studies that explored and introduced intrusion detection systems
was [6]. This work is the starting point of active exploration and development of
the more advanced intrusion detection systems that we know today. From this
work we can already acknowledge the problems that the cyber security commu-
nity is facing with intrusion detection systems. And one very significant problem
is the tremendous false alarm rate. This problem is also addressed in [7]. In
this study statistical analysis is performed to the false alarm problem and the
phenomenon that is explored is called ’base-rate fallacy’. The authors explain
the problem of base-rate fallacy as the probability that even if all true positives
are identified correctly, there will be a significant amount of false positives left
to investigate. They conclude that the factor limiting the performance of an IDS
is to suppress alarms, rather then the ability to truly detect intrusions. This is a
very important finding as it sets the base for deployment of intrusion detection
systems by laying the focus on the minimisation of false alarm rates in order to
have an effective IDS.

[70] evaluate Snort’s performance on the DARPA data set and on real net-
work traffic collected from a private network in 40 days which they refer to as
their private data set. The alert log is manually analysed with the help of a spe-
cialist who labelled the alerts as either true or false positives and the BASE tool.
The authors found that the initial scale of false alarms generated by SNORT is
huge. They conclude that most of the alerts (96%) generated are either false
alarms or irrelevant positives (irrelevant to the network where the traffic is col-
lected and analysed). They selected several rules that generated the most of the
false alarms and modified these rules using techniques such as rule modification,
event suppression and event threshold. They conclude that these techniques can
significantly decrease the false alarm rate, however, there is a chance of missing
or ignoring significant alerts. Their conclusion is that this manual process of ad-
justing the NIDS rules is not efficient and there is a need for an automated alert
verification system that is not reliable on human participation. They also state
that an intelligent system is needed which finds a relation between the generated
alerts and a possible attack scenario.

3.2. Knowledge-based Techniques 25

3.2. Knowledge-based Techniques
In this section several works related to knowledge based techniques will be re-
viewed. The knowledge based techniques can be divided into manual labelling
and labelling based on correlation. For each of these categories relevant works
will be explored.

3.2.1. Manual Labelling

A series of relevant works which focus on the reduction of false alarms are [51–
53]. The author explores the development of an adaptive learning system for
alert classification named ALAC. The author uses a data set of alerts which are
all manually labelled by experienced security experts as true or false positives.
This information is then provided to a classifier which trains on the historical
labelled data and predicts new records as either true or false. The implemented
system works in two modes, either as a recommender system which analysts use
to manually filter the alerts or an automatic alert filtering system based on the
predicted labels. Furthermore, the author extends the ALAC system with an ad-
ditional module that is an adjustment of the alert clustering system ClaraTy [34].

Another take on the problem was presented by [34] who investigates how to
reduce the number of false positives by analysing the root causes of alerts. The
author proposes a system that analyses a set of alerts to identify their root cause
and concludes that only a few root causes account for over 90% of the total
amount of alerts. The author also observes that these root causes are repeat-
ing and thus the ultimate solution for reducing the number of alarms is totally
removing the root causes in the case these are benign. Therefore, the author
introduces a two-step paradigm where the first step consists of identifying the
root causes and classifying them as either benign or malicious, and the second
step consist of removing the benign root causes.

[63] describe a two-phase alert classification system with the purpose to give
insightful information and help analysts to identify possible false positives. The
first phase of their method consists of collecting and grouping alerts into ”meta-
alerts”. These ”meta-alerts” are then verified with a database holding information
about the assets of the monitored environment. Furthermore, the authors also
perform alert generalisation through root cause analysis [34] in order to further
reduce the generated alerts. The second phase of the system consists of manually
labelling the alerts and sending them to a classifier to learn a model. This clas-
sifier is then used on newly generated alerts and labels them as either true or false.

26 3. Literature Review

[30] highlight that one of the main reason for a high rate of false alarms in
IDSs is that most of them are deployed with their default set of rules and config-
uration. the authors aim to overcome this problem by creating a threat profile of
the network and correlating the produced alarms by means of neural networks.
An important observation is the fact that there is always only a limited set of
vulnerabilities that can be exploited in a network. To tackle this, the authors
make an ’enhanced entity relationship’ (EER) where the network context and
threat profile are presented including the relationship between all the elements.
For constructing a threat profile, multiple vulnerability scanners are used and
processed. The network context consists of all devices that are present on the
network. The final solution takes the information produces by the EER and the
set of alarms generated by the IDS and classifies these with neural network to
produce a final set of ’effective’ alarms.

3.2.2. Correlation-based Labelling

[36, 75] proposed a method for the reduction of false alarms using active alert ver-
ification. The authors emphasise the problem that the cyber security community
is facing with standardisation in terms of known vulnerabilities and the absence
of a common alert format that would be used by different intrusion detection
systems. They also emphasise the problem of firewalls and intrusion detection
systems being run with in their default setting, without adjusting them to the
environment they are placed in. The authors propose an active alert verification
method that is integrated as a Snort module and makes use of the Nessus[67]
vulnerability scanner to provide the IDS with contextual information about the
monitored network. When an alert is generated by the Snort IDS, the Nessus
vulnerability scanner is activated and scans the affected host. If the host is found
vulnerable the generated alert is kept as a possible true positive, otherwise the
alert is labelled as false and not considered in the further analysis. The authors
have tested this setup on one Linux and one Windows host and conclude that
there is indeed a significant reduction in the number of false positives. The limi-
tation here is that the evaluation is based only upon two hosts with synthetically
generated attacks and it remains a question whether this system would work in
a real environment. Furthermore, the authors don’t describe how the Nessus
output is correlated with the Snort alerts.

[10] introduce APHRODITE, an anomaly based architecture for false positive
reduction. The authors hypothesise that the main reason for the high amount of
false positives is the lack of correlation between input and output traffic. This ar-
chitecture is meant to work with both misuse-based and anomaly-based intrusion
detection systems. The main idea of this system is to apply machine learning on
the output traffic of the monitored network to detect anomalies, and correlate
these with the alerts generated by the IDS on the input traffic in the network.

3.2. Knowledge-based Techniques 27

The system is evaluated with SNORT[42] (misuse-based) and POSEIDON[11]
(anomaly-based) NIDS. They claim to reach a reduction of false positives be-
tween 50% and 100%. The main drawback that this technique has is that is
needs to be trained on a good data set set full of representative samples such
that it classifies the alerts correctly.

[61] perform a sequential analysis on the patterns in order to extract the rele-
vant information from the alert sequences and use a multi-layer decision tree for
the identification of the relevant patterns. The alerts are ordered in sequences
based on their timestamp. The sequences are first analyses by experts to deter-
mine their nature. A window of a predefined size is chosen to divide the ordered
alerts in episodes and these episodes are rated. The episodes that have the high-
est rating are considered as most critical and have to be evaluated.

In [46] the authors propose a two-step model for the effective reduction of
false alarms by taking into account the network context. This model consists of
firstly verifying the alerts from the IDS with the vulnerability assessment data
(EVA) obtained from the network. The second component filters the alerts that
are deemed unnecessary i.e. the network is not found vulnerable to those. Again,
there is no specification about how the EVA data is obtained and correlated with
the generated alerts and how effective this approach is.

[31] develop an algorithm for attack recognition and correlation. They use
vulnerability scans, network topology and intrusion detection logs to correlate
and cluster the identified alerts into attack scenarios, where each new incoming
alert either belongs to some of the identified attack paths (clusters) or is saved
as a new cluster. The authors use the CVSS score provided for each CVE_ID.
This is a huge limitation since many of the generated alerts and many of the
discovered vulnerabilities don’t have a CVE_ID and thus this makes it impossi-
ble to compute any probability for these events. This paper also focuses on the
detection of intentional attacks by correlating multiple steps (alerts).

[62] develop a game-theory based engine that correlates the present vulnera-
bilities in the network with the IDS alarms that are generated. This system uses
firstly, multiple vulnerability scanners to scan the network and create a threat
profile consisting of multiple vulnerability sets that model one or more vulner-
abilities found. The authors then assign to each vulnerability set a weight that
models the severity of the included vulnerabilities. the authors apply a game-
theory approach to construct a ’sensible vulnerability set’ (SVS) that consists of
vulnerability subsets with high weights. Firstly, the IDS alarms are correlated to
the set of identified vulnerabilities in order to find and filter only the potential
True Positives (TP). After this step, the TPs are correlated with the constructed
SVS to further reduce the number of potential TP. The authors evaluate this

28 3. Literature Review

system of the DARPA data set and on a private data set.

In [80] The authors propose a system that correlates NIDS and HIDS alerts to
generate a more specified and prioritised list of alarms by using machine learning
algorithms. The system is automated and reduces the false alarm rate success-
fully. They identify the main limitations of current IDSs as the high rate of false
alarms, separate HIDS and NIDS with no correlation between them, rule-based
machine learning techniques, a lack of integrated vulnerability management and
the high costs of implementation, especially for small/medium-sized organisa-
tions. The authors explain their approach in detail and claim that the false
negative rate is successfully reduced, however this approach is only tested on the
DARPA 1998 data set. It is not validated and tested in a real network environ-
ment.

[40] also propose a novel algorithm for the efficient and effective correlation
of alerts. The authors take the alert log as input to the algorithm and cluster the
alarms based on similarity. Before this step, the algorithm tries to capture the
characteristics that distinguish true alerts and false positives. The last step of the
algorithm is linking alerts for a multi-step attack scenario and finding the root
cause. Furthermore, the authors propose a method for constructing the attack
path from an alert up to its root cause based on an attack association method.
Experiments with these algorithms result in a simpler alert set and a reduction
of false positives.

[56] find rule-based intrusion detection systems having a high false positive
rate. To combat this problem they have developed a machine learning based
plug-in for Snort, to analyse the produced alerts. They used an optimised SVM
with the firefly algorithm as the machine learning method to classify the results
achieving a false alarm rate of 8.6% and a false negative rate of 2.2%.

3.3. Data Mining Techniques
The idea of classifying alerts to learn normal behaviour is explored in [72] where a
method for reducing the number of false alarms in IDS is proposed. This is done
by training a machine learning algorithm on the alerts generated by the IDS to
distinguish between normal behaviour of the sensor and only alert on deviations
from this. If the sensor generated alerts for one type of traffic constantly, this will
be considered normal behaviour and these alerts will be labelled and filtered as
false alarms. The authors conclude that deviations from the ’normal’ behaviour
of a sensor are very good indicators of actual attacks.

The limitation to this model is that it is solely based on the rule and no other
variables are included in determining the normal behaviour. This model is based

3.3. Data Mining Techniques 29

on the assumption that the sequences of rules generated by a single sensor are
frequent, meaning alerts are generated in the exact same order as learned by
the model. The proposed model does not consider new rules or changes in the
environment and is not effective in the detection of sudden significant changes or
sudden bursts.

[79] use an auto-regressive model to assess regularities between the alters and
the normal behaviour of the system. The auto-regressive Kalman filters are used
for the re-estimation of the weights while previous observations are used to create
a model for the normal behaviour based on the weighted sum of these observa-
tions. Anomalies are considered the differences between the observations and the
predictions of the model. Because the last n observations are used, the model is
somewhat able to adapt to changes in the environment. However, the limitation
to this model is again that the prediction is based on data received in the last
20 minutes and this model is also computationally intensive. The model is based
upon the frequencies of observed rules meaning that each signal is unique to one
rule so multiple models are needed to monitor this behaviour. Additionally, the
parameters are selected differently for each signal/model which makes it difficult
to apply large it scale in an automated manner.

[54] have presented an approach for classifying alters based on frequent pat-
tern analysis. They use the source and destination hosts as main indicators of
regular traffic and construct patterns based on the connectivity between the se-
lected variables. They introduce the concept of stable patterns which represent
patters that do not change frequently and update the pattern tree incrementally
in a 15-minute interval. The downside of this approach is that it is time sensitive
meaning that the frequent pattern updates may cause inconsistency in the model
and the time needed to construct a stable pattern tree takes about two weeks if
there are no major changes. Additionally, the goal of this work is to reveal be-
havioural patterns of malicious behaviour within the network thus it is assumed
that all alerts that are generated by the NIDS are correct.

In [73] the authors also proposes an alert classifier based on frequent item-
set analysis. Frequent episodes are mined from slices of alerts. Once this is
done the classifier is used real-time by classifying each alert that is generated
as either important alerts or irrelevant, frequently occurring alerts. An alert is
modelled as a tuple consisting of the timestamp, source, destination and alert
id. The main drawback of this approach is that it only filters alerts that occur
very frequently over a longer period of time. Also, in order to avoid the issues
of over-generalisation and miss-classifying unusual and intensive short-term ma-
licious network activity, the authors implement additional steps which increase
the computational costs.

30 3. Literature Review

3.4. Discussion

What we can infer from the literature review is that there are many proposed
solutions for tackling the problem of high false alarm rates. The first observa-
tion is that it is not specified how these techniques can be actually applied in
real networks [38, 80]. Additionally, even when detailed information is provided,
this is often complicated and cannot be simply integrated with an exiting NIDS
because additional resources are required such as databases to lookup external
knowledge [62, 73]. These alarm filters are assumed to work on NIDSs as part of
bigger monitoring solutions (SIEM) that collect data from many different sources.
Specifically about the inclusion of environmental context in the NIDS, there are
several useful techniques developed [25, 36, 47] but not sufficiently described and
evaluated in terms of effectiveness in real networks. The majority of techniques
is only evaluated on synthetically generated data sets [38, 70, 80] and not in a
setting with real network data. The techniques that rely on external knowledge
are often limited by too generic rules and variables which makes the correlation
of the different environment variables not straightforward [36, 45, 75]. Since
this is the basis of many proposed systems where supervised or semi-supervised
techniques are used that rely on the quality of the labelled data, the effective-
ness of the model is directly affected by these limitations [80]. Of the proposed
techniques that do not rely on external knowledge, sequential pattern mining
techniques are applied such as Hidden Markov Models. These techniques rely
on the correct choice of a window size to capture truly regular and repeating
patterns. The biggest limitation with these models is that they are based upon
the assumption that certain values will often appear in an initially observed order
and small changes would change the regular sequence and decrease the accuracy
of these models. Furthermore, in large networks this method can be computa-
tionally expensive and large models are more expensive but may be required to
better fit the data. Association Rule Learning is also applied to this problem,
however, this approach is focused on the most frequently occurring alerts but
this is not sufficient to model all false positives since there are multiple groups
of ’regular’ alerts with different frequencies. Additionally, the computational
complexity and memory requirements for this approach can also be considered a
limitation, especially if the model needs to be retrained often and enriched with
more relations. Often, large databases of rules are constructed which can grow
exponentially and are expensive to search through [72, 73]. A common limitation
in all the proposed works that is not considered is the frequency with which the
gathered information about the environment should be updated and the quality
of the data. None of the reviewed studies consider how robust their models are
to noise nor the frequency of re-training and updating of the proposed models to
correspond to the dynamic changes of the environment and/or how this would
affect their applicability in production networks.

3.5. Research Gap 31

3.5. Research Gap
The state-of-the art studies have experimented with and developed several ma-
chine learning approaches to reduce the false positive rate. However, these works
rely either on labelling based on external knowledge sources or on unsupervised
approaches that are computationally expensive and require parameter tuning
specific to the environment. Furthermore, the effectiveness of existing solutions
is often based on synthetic data and scenarios or on private data sets that are
not described in more detail. Most solutions are not evaluated in large dynamic
networks in terms of their applicability and integration with existing NIDS de-
ployments. The automation of false alarm minimisation in rule-based NIDS needs
to be independent of the quality of external sources and needs to be robust to
changes in the environment. To make the false alarm filtering process automated,
the need for hyper-parameter tuning needs to be minimised or eliminated. The
possibility to filter false alarms in an automated and adaptable way needs to be
further explored as to evaluate to what extend it can be made applicable for
corporate networks. Since unsupervised outlier detection techniques have been
successfully used in various big data analysis problems such as credit card fraud
detection or detection of deviating software logs, this technique may also be ef-
fective in detecting true alarms in intrusion detection systems as these are only
a minority of the total event set. The research gaps are summarised in the list
below:

1. The applicability of knowledge-based techniques and the extend to which it
is possible to reduce false alarms based on these techniques in real networks
is unsufficiently covered.

2. The unsupervised approaches that operate solely on the alert data are still
dependent on tweaking parameters, thus still require manual adjustments.

3. There is no analysis or evaluation of the proposed techniques in terms of
handling new data, retraining the model on new data and how this will
affect the applicability in a production environment.

This thesis addresses the above mentioned gaps. Firstly, novel algorithms
are applied to this problem with a lower computational complexity. This is an
important factor to take into account in the training and retraining phase. Also
for the possibility to constantly update the models in an online setting, even
though this is out of scope for this work. Second, the issue of manually tweaking
of the parameters is addressed such that the solution can operate in an automated
manner. The need of manual adjustments to the parameters is eliminated by
choosing to use the default parameters of the algorithms. The only parameter
that needs to be chosen is the contamination factor for which recommended ranges
are given resulting from the experiments. Lastly the performance of the used

32 3. Literature Review

algorithms is evaluated and an indication of when the method should be re-
trained is given. Since the model retrains itself only when necessary it reduces
the overall computational cost and there is no overhead during the real time alert
generation. Furthermore, since the chosen models are linearly scalable to the
analysed data, these could be also successfully applied in an online manner.

3.6. Conclusion
In this chapter the most important works done on the improvement of NIDS accu-
racy and effectiveness were reviewed. The techniques that have been researched
and developed largely include some sort of machine learning element. Machine
learning has been used for pre-processing, post-processing, real-time clustering
and correlating of alerts with each other, as well as with other logs and knowl-
edge sources. The conclusion that can be drawn from this review is that there
exist techniques that could potentially improve the NIDS effectiveness and accu-
racy. However, most of the techniques are developed and tested on artificial data
sets such as the DARPA data set which is proven not representative enough or
on private datasets which are not described, thus the general application of the
proposed approaches is questionable. Furthermore, since many models rely on a
predefined baseline behaviour or network settings obtained from external sources
they are sensitive to changes in the environment. Therefore the adaptability of
the models needs to be maintained throughout the whole lifetime in which the
NIDS is active. To be able to do this there is a need for an approach that allows
for automatic adjustments.

4
Methodology

The goal of this research is to develop a solution for the reduction of false alarms
in network intrusion detection systems which works effectively for various net-
works. To accomplish this a proof of concept solution is designed which learns
the behaviour of a sensor and outputs anomalous alerts as true positives. This is
divided in three main stages where the first stage is analysing the data and defin-
ing the most important features that are descriptive of the sensor behaviour. The
second stage is the implementation of the anomaly detection pipeline and finally
the last stage is the evaluation of the implemented prototype. In this section the
different steps that are taken are described. These include the implementation
of the model with all its components, the selected features and selected unsu-
pervised anomaly detection techniques as well as the metrics that are used to
evaluate the performance.

4.1. Proposed Solution
To answer whether unsupervised techniques can be effectively used for filtering
false alarms from intrusion detection systems a model is designed which is capa-
ble of recognizing outliers in the alert set and outputs anomalous alerts as true
positives. To develop this model several machine learning techniques are used
which filter out all irrelevant or low priority events that are generated by the
NIDS resulting in a small set of events for further manual investigation.

The NIDS alerts component represents the alert data obtained directly from
the intrusion detection system that is in place. This data is further used by
the system to filter out the false alarms. The second component represents the
pre-processing part of the model where the alert data is read and parsed. The
feature extraction model selects and encodes the features for each alert which are
then passed on to the selected algorithms. In the training phase the algorithms
are trained on a pre-selected amount of historical data. The trained models are

33

34 4. Methodology

Figure 4.1: Prototype

then used on new alert data to filter false alarms. The prototype has a feedback
loop that is used to trigger the model to retrain its algorithms on the most recent
data available. The trigger for retraining is based on the ratio between the input
and output size of the alert sets. When the output set is larger than a predefined
threshold computed as a fraction of the input size of alert data, the model needs
to be retrained.

All the components are implemented in Python. For the chosen unsupervised
algorithms the implementations from the Sklearn and PYOD libraries are used
[14, 85]. The trained models are then saved and used for the classification of
new alert data. The new data follows the same pre-processing steps with the
difference that the encoding is done based on the pre-calculated frequencies as
derived from the training data. For values that are not encountered before, a
default value of 0 is assigned which means that these instances get the lowest
frequency value.

4.2. Feature Selection
In this section the selection of features is explained. The selection of features to
consider for the detection of malicious behaviour can be done by using several
methods such as filter based methods which include relevance and redundancy
analysis, wrapper based methods that try all possible combinations of features
and embedded methods that have already built-in algorithms for selecting the
most suitable set of features [65, 83, 86]. Since the attacks in the data are known
beforehand and labelled for evaluation purposes we can leverage this information
to select a subset of features that will minimise the complexity and computa-
tion power of the model while maximising its performance in terms of correct
classification. This is done with methods that compute the dependence between
each feature and the target variable. The metrics that are used are the Pearson’s
Chi-Square Test and the Mutual Information Score[82].

4.3. Selected Techniques 35

4.2.1. Pearson’s Chi-Square Test

Pearson’s Chi-Square Test is a metric that measures whether the difference be-
tween two variables is by chance or not. The degree of freedom used for this test
is 𝑑𝑓 = (𝑟—1) ∗ (𝑐—1) where r is the number of rows and c is the number of
columns that the data set contains and the 𝑝-value indicates the significance level
of the obtained results from the test. The Pearson Chi-Square test is calculated
with the following formula:

𝑋ኼ = (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)ኼ
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (4.1)

4.2.2. Mutual Information Score

Mutual Information measures the amount of information that can be obtained
about one variable by observing another variable. It uses the joint probability
density function of the two columns and determines how similar the joint dis-
tribution is to the marginal distribution of each column respectively. A higher
score means a higher degree of relatedness between two columns. The formula is
defined as:

𝐼(𝑋; 𝑌) = ∫
ፗ
∫
ፘ
𝑝(𝑥, 𝑦)log 𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)𝑑𝑥𝑑𝑦 (4.2)

4.3. Selected Techniques
Anomaly detection is a method of identifying instances in the data that do not
conform with the observed general or normal behaviour. There are various tech-
niques developed for this purpose. The majority of them are based on numeric
data for which anomalies are found by observing statistics of specific groups.
These techniques are categorised in statistical-based techniques, distance-based
techniques, density-based techniques, clustering-based techniques, graph-based
techniques, tree-based techniques, ensemble-based techniques and learning-based
techniques [81]. In the cyber security domain unsupervised machine learning
techniques begin to be used more frequently [22]. The main advantage of these
techniques is that they do not require large amounts of labelled data as opposed
to supervised machine learning techniques. Also, these techniques are able to
classify novel instances in the data which have not been observed before. This is
important in network intrusion detection since the monitored environments are
dynamic.

36 4. Methodology

Multiple different techniques are chosen for filtering false alarms since each
of these techniques is designed with different underlying assumptions. This can
give more insights into the characteristics of true attacks and the scores of the
different techniques can be combined for improved results. Additionally, it is
difficult to decide upfront which algorithm would perform better based on the
data. The techniques are chosen based on previous research where it has been
shown that these techniques have a very good performance for outlier detection
problems [3, 16, 33, 37, 48]. The techniques that are selected belong to the
density-based, statistical-based, clustering-based and ensemble-based techniques.
The density-based techniques are suitable because these techniques do not have
to make assumptions about the underlying distribution of the data set and are
non-parametric [81, 84]. Specifically from the density-based techniques, the Lo-
cal Outlier Factor (LOF) [12] is chosen. From the ensemble-based techniques
the Isolation Forest (IF) [39] is chosen since it is applied in several cyber se-
curity problems with a successful outcome [35, 64]. This algorithm is suitable
for analysing large data sets since it is fast and can be implemented in a dis-
tributed setting [58]. From the clustering-based techniques Cluster-based Local
Outlier Factor (CBLOF) [28] is chosen. This technique is selected because it is
know to be very computationally efficient and accurate. Is has also been applied
to network security problems [4, 5]. From the statistical-based techniques the
Histogram-based Outlier Score (HBOS) [24] is chosen. This technique is shown
to be effective in finding global outliers in the data and is additionally very fast
and efficiently applicable to large data sets. It has also been applied to cyber se-
curity problems [43, 76] with promising results. The selected techniques are also
applied to streaming data for the detection of anomalies in the cyber security
domain [27].

4.4. Evaluation Criteria
Since the goal of this research is to find a feasible way of reducing false positives in
rule-based NIDS without thereby affecting the number of wrongly classified true
events, the main evaluation criteria will be the Recall which gives an indication
about the total correctly identified true events of the prototype and the False
Positive Rate (FPR) which represent the probability of false alarms. Furthermore,
we will also take into consideration the Precision, Specificity and False Negative
Rate. To calculate these measures we use the values obtained from the confusion
matrix.
The selected techniques will also be compared to the other proposed solution in
terms of the computational complexity of the applied algorithms. Even though
the proposed solution is trained offline and retrained only when necessary as
opposed to other solutions, the computational complexity will be included in the
evaluation. This is done because a possibility remains of updating the models
with new data in an online manner.

4.4. Evaluation Criteria 37

Confusion Matrix

A confusion matrix is a representation of the true labels in comparison with the
labels assigned as a result of a classification process. In this case a true positive
represents an accurately detected attack. A false positive represents a mistake
made by the intrusion detection system where an alarm is triggered by a benign
event.

Figure 4.2: Representation of a confusion matrix and the 4 categories that an instance can
belong to after classification.

Precision

The precision represents the subset of correctly classified instances in the set of
instances classified as anomalies by an algorithm.

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (4.3)

Recall

Recall represents the total correctly classified anomalous instances from the com-
plete set of anomalous instances present in the data.

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (4.4)

Specificity

The specificity metric is also known as the True Negative Rate (TNR) and rep-
resents the proportion of correctly classified negative instances from the total
negative instances present in the data.

Specificity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 (4.5)

False Positive Rate

The false positive rate represents the ratio of falsely classified normal instances
in comparison with the correctly classified normal instances. This metric is im-
portant for the evaluation of the method since the main goal is to automatically
reduce false positives.

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁 (4.6)

38 4. Methodology

False Negative Rate

The False Negative Rate (FNR) represents the proportion of wrongly classified
anomalies out of the total anomalies present in the data.

FNR = 𝐹𝑁
𝐹𝑁 + 𝑇𝑃 (4.7)

5
Data Exploration

In this chapter the process of data collection is explained as well as the the train
and test sets that are used and the methods used to process and analyse the
data. Additionally, knowledge-based techniques are evaluated to some extent by
collecting information about the environment in order to eliminate false positives.
Furthermore the initial findings and characteristics of the data are presented.
Two data sets used during this research are collected at an organisation which
will remain anonymous throughout this report. The data is stored only for the
duration of this project.

5.1. Data Collection
During this thesis we make use of an intrusion detection system to capture net-
work traffic and analyse the content. The experimental setup consists of an NIDS
installed on a server running a Linux distribution. The data is collected on a por-
tion of the network. The intercepted traffic is send to the NIDS through a SPAN
port which copies all the packets that it receives. The NIDS makes use of a packet
sniffing library that captures the incoming packets which are then preprocessed
and analyzed. The final output of the NIDS is collected and stored. The network
contains many different devices including desktops, laptops, printers and various
servers.

One NIDS sensor was used for the monitoring process. The NIDS sensor was
placed inside the network, behind the firewall. The reason for this setup is the
assumption that the firewall will block most of the unwanted traffic and thus the
NIDS will have less false positives and in general less alerts when placed behind
the firewall. Another important thing is the strategic placement of the NIDS
on the internal network [8]. A good practice is to place the NIDS where more
internal subnets come together. In this case the NIDS was placed such to receive
traffic from multiple subnets. The data that was collected is exclusively used for

39

40 5. Data Exploration

Figure 5.1: Network Topology

this research. A visualisation of the network setup that was used for the data
collection can be found in 5.1.

5.1.1. Tools

Multiple tools where used during the data collection and analysis process. These
are a network vulnerability scanner, a network intrusion detection system and a
visualisation tool that was used to view the alert set and other statistics of the
data. There are various tools that can perform these two activities. During this
research Nessus, SNORT, the ELK stack and Python were used. Nessus was used
for the vulnerability assessment, Snort as the main NIDS, the ELK stack which
stands short for Elasticsearch-Logstash-Kibana was used to store and visualise
the collected data and Python was used for the implementation and evaluation
tasks.

Snort

The chosen IDS for this task was Snort. This IDS is chosen based on positive
evaluations and comparisons to the other open source tools which are Suricata and
Zeek (Bro). Snort has a simple deployment and rich rule set which gets updated
frequently by the community. It is still one of the most used intrusion detection
systems for monitoring traffic on network level. During this thesis Snort was
deployed in its default mode receiving all the packets that passed the firewall as
well as all outbound requests that were either allowed or blocked by the firewall.
Table 5.1 shows a sample of the collected data representing the alerts that are
triggered by the IDS. The rule sets that were used are the available open-source
rule sets, namely, the Community rule set and the Emerging Threat rule set.

5.1. Data Collection 41

These rule sets are used without any alterations as well. They have a subset of
rules disabled per default based on feedback and observations that these rules
generate a lot of false positives in many environments. These settings are not
altered as well.
Class Prio Signature_id Src_ip Src_port Dst_ip Dst_port Protocol
attempted-recon 2 2101411 src_ip 60826 dst_ip 161 17
policy-violation 1 2009702 src_ip 50852 dst_ip 53 17
trojan-activity 1 2025719 src_ip 1133 dst_ip 445 6

Table 5.1: Example of alerts as output of Snort

Nessus

For creating a network mapping and scanning the network for potential vulner-
abilities, Nessus was used [67]. This tool can be characterised as a vulnerability
assessment tool which uses various methods to scan the network for existing vul-
nerabilities, hereby providing information about open ports, running services and
OS detection for the hosts in the scanned network. How the scan is being per-
formed can be specified through policies. A set of standard policies is available
for internal and external network scans. Nessus has a rich database of plugins
which are used by the scanner for discovering vulnerabilities. The program can
be used for host and service discovery options as well as port scans, malware
scans and web-application scans.

Plugin CVE CVSS Host Protocol Port Name
10223 CVE-1999-0632 None Host UDP 111 RPC portmapper Service Detection

78479 CVE-2014-3566 4.3 Host TCP 3269
SSLv3 Padding Oracle On
Downgraded Legacy Encryption
Vulnerability (POODLE)

83875 CVE-2015-4000 2.6 Host TCP 636 SSL/TLS Diffie-Hellman
Modulus <= 1024 Bits (Logjam)

97833 CVE-2017-0148 10 HOST TCP 445
MS17-010: Security Update for
Microsoft Windows SMB Server
(4013389) (ETERNALBLUE)

10940 None None Host TCP 3389 Windows Terminal Services Enabled
57608 None 5 Host TCP 445 SMB Signing not required

Table 5.2: Example of a Nessus Scan log file

5.1.2. Pre-processing

Several different data sources were used which have a different structure, therefore
separate scripts were developed to parse the data from each source. The scripts

42 5. Data Exploration

are programmed in Python because it provides a rich set of libraries needed for
reading and parsing network related data. Additionally, after the initial analysis,
benign exceptional cases in the data were excluded since this behaviour did not
represent the regular behaviour observed on the network. See figure 5.2.
From the considered encoding techniques the choice was to use the frequency
encoding technique since this is closest to the notion of representing the scale
and repetition that some classes and signatures show.

After parsing the data the sources were linked through common identifiers.
These identifiers represent the address of the host machines. The address is thus
chosen as the main identifier amongst the different data sets since it was the only
unique common variable. IP addresses are assigned through the use of NAT and
DHCP but the dynamic part is configured to be more static in the sense that
each IP address does not get reassigned to another host for at least 3 days of
inactivity. This covers the weekend when most employees are inactive.

5.2. Data Description

In this section a description of all data sets will be provided that are used during
this research for the analysis and evaluation. This includes information about
how the data is divided into a train and test set as well as a description of the
labelling process and the attack types that are present in each of the data sets.

5.2.1. Test 1

The training set consists of the first 3/4 and the test set consists of the remaining
1/4 of the total collected data that is analysed in the previous section. The data is
split sequentially, meaning, that the timestamp and order of occurrence of events
is preserved. The test set is composed of one full week. The attacks that are
present in this data set are a Heartbleed vulnerability exploit, alerts related to
Trojan infections and alerts related to the Sundown Exploit Kit. The labelling
process is done manually by inspecting alerts and verifying their cause for this
data set.
Test set 1 is modified for the purpose of evaluating the robustness of the model and
defining thresholds for the re-evaluation. Artificial entries are added in the test
that represent noise and changes in the network. For example, new IP addresses
are introduced which generate new types of traffic that is triggered by the NIDS.
These processes are benign in the network but may be seen as anomalies because
of the novel, infrequent values. With this type of traffic the goal is to test how
robust the models are and what a good indication is to retrain on new, more
recent data.

5.3. Data Analysis 43

5.2.2. Test Set 2

This data set was collected at a different point in time and on a different network
segment to test the validity of this approach. This network segment is from the
same network but consists of a different user group. The data was collected over
one day. 3 attacks were generated in the afternoon to have ground-truth data to
evaluate the prototype. All other observed traffic during this day is considered
regular. The data was sequentially split into a train and test set using the first
3/4 of the data for training and last 1/4 for testing. The training set is composed
of data observed until the beginning of the afternoon. The training set thus
consists of behaviour observed in the morning and partly afternoon. The test
set contains alerts generated by the attacks performed in the afternoon. The
performed attacks are a port scan, an Internet Explorer 8 exploit and an Eternal
Blue exploit on a Windows Host. The labelling process is done manually, the
alerts that are labelled as true positives in the evaluation phase are the attacks
that were manually generated.

5.2.3. Test Set 3

The third data set was a synthetically generated data set with multiple labelled
attacks. This data set is a publicly available data set obtained from The Canadian
Institute for Cybersecurity [57]. The alerts are obtained by running through the
NIDS while preserving the original timestamps. The data consist of five full days
of network traffic generated to mimic a real network with various devices and
processes. These days span from Monday to Friday. The data was sequentially
split into 3/4 training set and 1/4 test set. The training set consists of the
traffic observed on Monday, Tuesday, Wednesday and partly Thursday. The
remaining traffic is used as a test set. The attacks that were observed on Tuesday,
Wednesday and Thursday are removed from the train set such that the data is
representative of regular non malicious traffic. The attacks that remain in the
test set on Friday are multiple port scans and OS detection probes, a Brute Force
attack, a DOS attack, a Windows exploit with Metasploit, an infiltration attack
and a Botnet attack. For this data set the attacks are also known and the alerts
are labelled manually based on this information. These labels are not used by
the models in the training phase but only for the evaluation of the prototype.

5.3. Data Analysis
In this section the collected data is visually presented. The initial observations
and findings are also included. Although several test data sets are used in this
research, the data distribution and characteristics of the first test data set are
considered to be representative for feature selection and machine learning algo-
rithm selection in real environments. The total amount of alerts collected over a
time of approximately 4 weeks was 2,059,759. The alerts were collected in the pe-

44 5. Data Exploration

riod between July 11th - August 5th. A visual representation can be found in 5.2.

Figure 5.2: The total amount of alerts over time that were generated during the data collection
period. The peak at the beginning was a benign, but exceptional process and is not included
for further analysis.

From the figure it is clear that during the working week (Monday to Fri-
day) there is a significantly larger amount of alerts generated than during the
weekends. This indicates that the alert magnitude is somewhat correlated to the
number of people that are using a device on the network during the working
week. What this behaviour also indicates is that the NIDS probably labels many
benign user actions and automated processes as malicious. Another observation
is the repeating distribution of the data. Except for the first day of logging the
rest of the days are consistently remaining between a certain interval of alerts
per day. Weekends are always below the 1,000 alerts and the rest of the days are
always below 150,000 alerts per day.

5.3.1. Rule Correlations

Multiple pairs of rules were observed to be highly correlated. These are shown in
Appendix 8. The high correlation of these rule can be used to combine alerts that
represent the same event. With this knowledge the number of generated alerts
per event can be reduced by merging two alerts is one super-alert that contains
both rules if the alert is generated from the same source to the same destination
in a predefined time interval. Or this problem could be addressed beforehand
by experts that design the rule sets to eliminate duplicate rules or rules that are
likely to be generated by the same event.

5.3.2. Data Distribution

In 5.3 the hourly distribution of alerts is presented from days between Monday
and Friday over a period of three weeks. The distribution of alerts is very differ-
ent between 08:00 AM - 15:00 PM and 15:00 PM - 07:00 AM. In the latter case
the total alert count per hour doesn’t exceed 1,000 whereas in the former case it
can get up to 20,000 alerts per hour. From this we can already see a clear base
behaviour of the network. This behaviour can even be further dissected when
looking at the alerts on hourly level. The working days have a clear distinction

5.3. Data Analysis 45

between active (working) and inactive hours which are shown in 5.3. Further-
more, we looked at the distribution of occurrences of rules during a day. This
can be seen in 5.6. There is a similar distribution amongst the different days,
however sometimes we see slight deviations which are not necessarily indicative
of malicious or abnormal behaviour. It is clear that the sensor shows a regular
behaviour on the network on an daily basis. This insight can be used to capture
the regular behaviour of the network through the sensor.
The second example is from Saturday and Sunday. During these days the ma-
jority of employees are free. Therefore only little to no activity is expected on
the network during the weekend. The distribution of alerts can be found in 5.4.
Furthermore an assumption is made that these rules are triggered by automated
processes that are very normal in this environment because of the constant pat-
terns that are observed.

46
5.D

ata
E
xploration

Figure 5.3: This figure represents the alert distribution during the working week, from Monday to Friday. Most of the alerts are generated between
08:00h and 15:00h. Each day is slightly different in terms of frequencies of generated alerts. These differences are due to processes that are not
necessarily automated or employees that work on different days.

Figure 5.4: This figure represents the alert distribution during the working week, from Monday to Friday. Most of the alerts are generated between
08:00h and 15:00h. Each day is slightly different in terms of frequencies of generated alerts. These differences are due to processes that are not
necessarily automated or employees that work on different days.

5.4. Observations 47

5.3.3. Vulnerabilities

In 5.5 statistics are shown about the percentage of references present in the alert
set and the vulnerability set. Since the vulnerability set is an important in-
formation source for obtaining context it is necessary that this source contains
sufficiently rich information to label alerts as true or false.

To link an alert to a vulnerability there is a need of a common identifier. In
this particular case the main identifier is the destination host. Furthermore, an
additional variable is needed that provides information over the actual vulnera-
bility that is found on a host. Such information is also needed from the alert,
where it is called a reference to a vulnerability. The most common example of
such a reference is a CVE_ID which is a unique enumeration for a discovered
vulnerability. The vulnerability scanner also links certain findings to CVE_IDs
or other vulnerability databases such as Exploit-DB[21].

The percentage of vulnerabilities found in the network that have a reference
to a CVE_ID or other database is only around 5.5%. The vulnerability references
obtained from the generated alerts are also very minimal around 7%. What is
a more limiting factor is that the references from the vulnerability set and the
ones from the alert set have no matching entry. Meaning, there is no case where
an alert with CVE_ID is generated against a particular host, and at the same
time the scanner actually identified the host to be vulnerable to this particular
vulnerability that has been enumerated with the same CVE_ID. This method
is proposed and tested by multiple authors as reviewed in Chapter 3.1 but the
effectiveness of this method seems not to be evaluated sufficiently.

5.4. Observations
The main observations and characteristics obtained from the data analysis are
listed in this section.

5.4.1. Observation 1:

Looking at the network behaviour on a daily level enables us to distinguish be-
tween the days which have a lot of user activities and the weekends where these
activities are significantly lower. This is important because the traffic observed in
these two categories shows significant differences in observed patterns and alert
magnitude.

• During the working week days the distribution of alerts is centred mostly
between 08:00 and 16:00. The alerts generated during the active hours of
the day (08:00 to 16:00) show some peaks and dips but in general have a
consistent distribution. The alerts generated during the inactive hours of

48 5. Data Exploration

Figure 5.5: Statistics of the vulnerability references included in the data that is used during
this research. The first bar represents the total alert set of active rules used during the data
collection. The second bar represents all the references that were included in the obtained
output of the NIDS (alerts). The third bar represents the references included in the vulnerability
scan performed on the monitored network.

the day are almost constant.

• On weekends the distribution of alerts is almost constant throughout each
day. On Sundays it is slightly higher than on Saturdays and also more
deviating. The cause for these differences can be irregular working times
of employees on weekends from different locations. The sensor behaviour
during the weekends is clearly distinctive from the rest of the week.

5.4.2. Observation 2:

Several pairs of rules were shown to have highly correlated behaviour. This may
be an indication of rules triggered on the same event and causing even more
noise in the data. As a prepossessing step these rules could be merged so the
volume of alerts will be reduced. This will not be done in this research since
these correlation patterns might be too specific for this data set. Additionally,
the repetitive behaviour is encoded with the relative frequencies of the alerts and
these cases should be filtered by the model.

5.4.3. Observation 3:

Correlating the alerts with context information obtained through network and
vulnerability scans is very limited. In specific cases this method might be very

5.5. Examples 49

useful, but in general this kind of correlation does not result in a clear indication
of whether the alert is true or false.

• The scenarios where these scans are useful are scenarios where the gener-
ated alerts and the target host have the same vulnerability reference, or
meta data obtained from the alert can be linked with sufficient information
obtained about the host to assess whether the attack poses a risk for the
target host.

• The scenarios where these scans are not useful are scenarios where the alert
doesn’t have any specific vulnerability and matches on a very generic con-
tent pattern and where the targeted host has also no specific vulnerabilities,
or the targeted host is located somewhere on the external network.

5.4.4. Observation 4:

In general, a sub-group of rules is regularly observed throughout the whole period.
The repeating rules represent false positives in this case. The regularity with
which rules are observed differs. Rules that are observed very regularly will have
high relative frequencies, whereas rules that are observed only periodically will
have lower relative frequencies.

• True positive alerts are generally absent from a benign set of alerts. There-
fore, when represented as frequencies, these instances would get a frequency
value of 0. The same holds for other attributes such as IP addresses or ports
that have not been intercepted before. Filtering out only the high frequent
alerts would still leave a large subset of false positives.

• There exist different groups of regular behaviour within the sensor repre-
sented by different frequencies. Clustering the alerts into these groups could
reveal malicious behaviour.

5.5. Examples
Two examples are provided to shown in which cases the external knowledge does
not help identifying whether an alert is a false positive and in which cases is might
still be useful.

5.5.1. Example 1

Here a case is presented which shows how much noise the NIDS actually produces.
In 5.6 the total rules generated during that day are shown. In 5.7 a manually
filtered set is presented where true positive alerts are visible. In the first figure
it is nearly impossible to spot the Trojan alert since it is only a small dot in the
data. After filtering the noise we can clearly see more unusual behaviour.

50 5. Data Exploration

Figure 5.6: Representation of the magnitude if events per unique rule.

Figure 5.7: Representation of a true positive alert with a low frequency.

5.5.2. Example 2

The list of consecutive alerts shown in table 5.3 is selected and investigated. This
behaviour could possibly represents an attack. When examining the network
information obtained from the destination host 5.4 we can see there is no specific
vulnerability found by the scanner (no CVE reference). The only information that
we can extract from the network scanner is that the host is a SQL server. Knowing
this information increases the probability that these alerts are indeed true but it
is still no clear indication. This is an example of how context information can be
useful when available.

Signature Class Dest
ET SCAN Suspicious inbound to Oracle SQL port 1521 bad-unknown H

GPL SQL service_name buffer overflow attempt attempted-user H
GPL SQL user name buffer overflow attempt attempted-user H

Table 5.3: Alerts indicating a buffer overflow attack.

In both cases the context information is useful, after the event has been iden-

5.6. Features Selection 51

Vulnerability CVE CVSS Protocol Port Host
Ping the remote host None None TCP 0 H

Traceroute Info None None UDP 0 H
Oracle Database Service tnslsnr

Remote Version Disclosure None None TCP 1521 H

Nessus SYN Scanner None None TCP 1521 H
Oracle Database Detection None None TCP 1521 H

OS Identification None None TCP 0 H

Table 5.4: Vulnerability Scan results associated to the destination host as specified in the buffer
overflow alerts.

tified as possibly anomalous. When only relying on the context information these
alerts would have been assigned the same probabilities as some repeating rules
which clearly are ’regular’. Improving the accuracy of the NIDS based on con-
textual information about the network is challenging and very limited. It can
be better used as an additional check then as the main method for filtering false
alarms.

There are mainly two situations which can be distinguished clearly from the
initial data analysis. The scenarios where an alert matches a specific vulnera-
bility based on the packet content that is captured is the first scenario and the
scenarios in which an alert is too generic to have a vulnerability identifier. In
the former case, this information is specifically useful for the elimination of false
positives when the target host is (not) vulnerable to that attack because of its
configuration. In the latter case, no final decision can be made about the nature
of an alert. As most information can be linked only through the name of the
alert, we can only conclude whether the alert has a probability of being true
when the host has indeed open ports and running services that could potentially
be exploited. However, relying solely on this information does not bring us much
further than before since the majority of alerts would still need to be analysed
manually.

Since we have observed a repetitive behaviour on the sensor, we can leverage
this information in combination with the contextual information to improve the
NIDS accuracy. By creating a model of regular alerts a lot noise will be filtered
out and the remaining alerts can then be additionally cross-checked with the
contextual information to be further reduced.

5.6. Features Selection
The data set that is used for this research contains the following basic set of
features: signature_id, class, src_ip, dst_ip, src_port, dst_port, ip_protocol,

52 5. Data Exploration

priority. These features provide information about traffic that is detected in the
network. The combination of a selected subset of features may be indicative of
anomalous behaviour. Based on the results of the calculated correlation between
the features and target variable shown in Figure 5.8 and 5.9 only a subset of
features was chosen. The data set was reduced by dropping features that did not
provide additional information about the behaviour of the sensor.

In Figure 5.8 the results of the test as calculated on the training data are
shown. These scores are calculated for each feature and the target variable which
in this case is the label that indicates whether an alert is a true or false positive.
A higher score means a higher dependence between the variables.

Figure 5.8: Chi Square Test between the features and target variable

In Figure 5.9 the mutual information score for each variable with the target
variable is shown. As in the previous case a higher score means a higher depen-
dence between the variables. From the results of both methods that are applied,
it can be observed that the destination address, destination port and signature
are the features with the highest scores. This indicates that these are the most
relevant features.

Figure 5.9: Mutual Information Test between the features and target variable

6
Results

In this chapter the results of all applied methods during this research are pre-
sented and discussed. The proposed method is tested on two additional data sets.
One data set which is collected on the same network and one artificial data set.
The anomaly detection methods that are applied are the Local Outlier Factor,
Isolation Forest, Cluster-based Local Outlier Factor and Histogram-based Outlier
Score.

6.1. Hyper-parameters of Models
Each model is different and requires a different set of hyper-parameters to be
defined before usage. The hyper-parameters for each model are different and
these are specified in Section 6.2. The main reason to choose default values is the
wide range of possibilities that need to be tested and compared. The optimum set
of parameters is likely to be different for each setup and this means that manual
tweaking of the parameters will be necessary. Since the goal of this research
is to develop an automated model and avoid manual adjustments, the hyper-
parameters are chosen as the default values with a motivation provided by the
authors of the algorithms that in most cases the algorithms will perform well with
these settings.

6.2. Threshold Selection
In this section the result obtained for a set of thresholds is presented for each
model. The default contamination value for all considered algorithms is 0.1. The
threshold is also called the contamination factor and represents the proportion of
outliers in the data set. This value is used to define the threshold for the outlier
scores computed by the different methods. This threshold can be set as a float
value in the range [0, 0.5]. The reason to consider several different thresholds

53

54 6. Results

to evaluate is related to the proportion of true positives within the data which
can be lower than the provided contamination factor. This could result in a
better accuracy of the model. Furthermore, there can be cases where many alerts
are generated as a result of a port scans, for these cases the proportion of true
positives in the data would probably be higher than the default factor. In these
experiments the thresholds that are used are increasing with 0.05 such that the
range of possible thresholds is evaluated sufficiently. Additionally, the confusion
matrix of each model with the optimal parameters is shown for each tested data
set.

6.2.1. LOF

Local Outlier Factor
parameters contamination n_neighbours metric leaf_size algorithm

values threshold 10 euclidean 30 auto

Table 6.1: Default set of hyper-parameters for Local Outlier Factor

Of the range of thresholds with which this algorithm was tested, all thresholds
perform equally well. This technique did not improve its results with a higher
threshold and this pattern is repeated through all the tested data sets. The num-
ber of false positives is low. However, in two out of three data sets, this method
failed to identify all the important alerts. This indicates that the algorithm fails
to correctly distinguish the true positive points based on the calculated scores.
In the second data set all true events are correctly identified. This could be due
to the data that consists of only one day of traffic and may be fitted better.
But even for this case the false positive rate is not improved by setting different
thresholds.

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
0.05 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.1 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.15 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.2 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.25 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.3 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.35 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.4 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.45 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870
0.5 0.1047 0.0385 0.0551 0.8952 0.0 0.0048 0.1398 1.0 0.0129 0.0878 0.4135 0.9870

Table 6.2: Threshold selection for LOF

6.2. Threshold Selection 55

Figure 6.1: Results of the anomaly detection with LOF

6.2.2. IF

Isolation Forest
parameters contamination n_estimators max_samples max_features

values threshold 100 100 1.0

Table 6.3: Default set of parameters for Isolation Forest

The Isolation Forest algorithm performs well in all three data sets. The best
threshold for this method slightly varies amongst the different data sets but falls
in the range between [0.05, 0.1].

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
0.05 0.0 0.0551 0.0436 1.0 0.0 0.2846 0.0027 1.0 0.5549 0.0939 0.2291 0.4450
0.1 0.0 0.0951 0.0257 1.0 0.0 0.2846 0.0027 1.0 0.0 0.1640 0.2766 1.0
0.15 0.0 0.1555 0.0159 1.0 0.0 0.2846 0.0027 1.0 0.0 0.1642 0.2764 1.0
0.2 0.0 0.2012 0.0123 1.0 0.0 0.2846 0.0027 1.0 0.0 0.9468 0.0621 1.0
0.25 0.0 0.2049 0.0121 1.0 0.0 0.1028 0.0075 1.0 0.0 0.9607 0.0613 1.0
0.3 0.0 0.2995 0.0083 1.0 0.0 0.1028 0.0075 1.0 0.0 1.0 0.0590 1.0
0.35 0.0 0.3335 0.0074 1.0 0.0 0.1028 0.0075 1.0 0.0 1.0 0.0590 1.0
0.4 0.0 0.3873 0.0064 1.0 0.0 0.0615 0.0125 1.0 0.0 1.0 0.0590 1.0
0.45 0.0 0.4255 0.0058 1.0 0.0 0.0607 0.0126 1.0 0.0 1.0 0.0590 1.0
0.5 0.0 0.4632 0.0054 1.0 0.0 0.0603 0.0127 1.0 0.0 1.0 0.0590 1.0

Table 6.4: Threshold selection for IF

The Isolation Forest Algorithm tends to compute similar scores for the anoma-
lous and some of the benign instances based on the similar frequency values that
these instances have for the same attributes. In this particular case, the destina-
tion IP and destination port attributes share similar values and since these are
the majority the high frequency value of the signature is suppressed and therefore
the score is more anomalous and gets wrongly classified by this algorithm. The
weak point here is that even though the signature has been observed before and

56 6. Results

Figure 6.2: Results of the clustering and anomaly detection with IF

represents regular behaviour, because of the novelty of the destination address
and destination port the alert gets wrongly classified. There is a subset of points
which get a high anomaly score assigned by this algorithm. The common pat-
tern here is that 2 out of the three features are very infrequent (destination port
and destination address) but the destination port has a high frequency value. A
different selection of features or a more balanced set of attributes might mitigate
these false positives.

6.2.3. HBOS

Histogram based Outlier Detection
parameters contamination n_bins alpha toll

values threshold sqrt(n) 0.1 0.1

Table 6.5: Default set of hyper-parameters for Histogram based Outlier Score

The Histogram-based outlier scores technique also shows satisfying results, all
true positives are found for all three data sets. Again the best threshold in each
case varies a bit. For the first two data sets which represent alert data collected on
a real network, the optimal threshold lies in the range between [0.05, 0.1]. For the
synthetically generated data set this threshold is higher, namely, 0.2 of the total
size. Therefore, the false positives are also higher for this case. An explanation
for this difference could be the underlying distribution of the different events in
the data which may be very variable for the last data set.

Since the score for each point is computed as the sum of logs of inverse. The
selection of buckets is an important parameter here. If the buckets are not well
defined true positive points can end up in buckets of normal points. There-
fore this method assigns similar scores to totally different points in the data set.

6.2. Threshold Selection 57

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
0.05 0.0034 0.0528 0.0453 0.9965 0.0 0.2846 0.0027 1.0 0.4450 0.0807 0.3012 0.5549
0.1 0.0 0.0964 0.0254 1.0 0.0 0.2846 0.0027 1.0 0.4450 0.1171 0.2291 0.5549
0.15 0.0 0.1337 0.0184 1.0 0.0 0.2846 0.0027 1.0 0.0258 0.1968 0.2369 0.9741
0.2 0.0 0.1742 0.0142 1.0 0.0 0.2846 0.0027 1.0 0.0 0.2186 0.2230 1.0
0.25 0.0 0.2095 0.0118 1.0 0.0 0.1028 0.0075 1.0 0.0 0.2186 0.2230 1.0
0.3 0.0 0.2323 0.0107 1.0 0.0 0.1028 0.0075 1.0 0.0 1.0 0.0590 1.0
0.35 0.0 0.2712 0.0091 1.0 0.0 0.1028 0.0075 1.0 0.0 1.0 0.0590 1.0
0.4 0.0 0.2712 0.0091 1.0 0.0 0.0615 0.0125 1.0 0.0 1.0 0.0590 1.0
0.45 0.0 0.3605 0.0069 1.0 0.0 0.0607 0.0126 1.0 0.0 1.0 0.0590 1.0
0.5 0.0 0.4359 0.0057 1.0 0.0 0.0576 0.0133 1.0 0.0 1.0 0.0590 1.0

Table 6.6: Threshold selection for HBOS

Figure 6.3: Results of the anomaly detection with HBOS

The true anomalies have similar scores with regular patterns where the three at-
tributes have lower frequencies caused by periodical but benign events. Since the
algorithm considers the frequency as a continuous variable the frequency 0.00004
and 0.4 may both end up in bins with similar densities while representing two
totally different events. Ideally, the true positive points would be all categorised
in buckets with low densities and the benign points in bins with high densities.

6.2.4. CBLOF

Cluster Based Local Outlier Factor
parameters contamination n_clusters alpha beta

values threshold 8 0.9 5

Table 6.7: Default set of hyper-parameters for Cluster-based Local Outlier Factor

The Clustering-based Local Outlier Factor technique performs slightly worse
than the previous two techniques. All true positive instances are found by this
technique but at the cost of more false positives. The optimal threshold, for all
three data sets, lies in the range between [0.05, 0.1].

58 6. Results

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
0.05 0.9965 0.0455 0.0001 0.0034 0.0 0.0497 0.0154 1.0 0.5549 0.0807 0.2569 0.4450
0.1 0.9965 0.1085 0.0008 0.0034 0.0 0.0607 0.0126 1.0 0.0 0.1943 0.2441 1.0
0.15 0.0 0.1731 0.0143 1.0 0.0 0.0615 0.0125 1.0 0.0 0.1943 0.2441 1.0
0.2 0.0 0.2012 0.0123 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1943 0.2441 1.0
0.25 0.0 0.2029 0.0122 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1943 0.2441 1.0
0.3 0.0 0.2110 0.0117 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1943 0.2441 1.0
0.35 0.0 0.3118 0.0080 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1943 0.2441 1.0
0.4 0.0 0.3835 0.0065 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1943 0.2441 1.0
0.45 0.0 0.4091 0.0061 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1943 0.2441 1.0
0.5 0.0 0.4677 0.0053 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1943 0.2441 1.0

Table 6.8: Threshold selection for CBLOF

Figure 6.4: Results of the anomaly detection with CBLOF

This algorithm assigns all anomalous points to the same cluster. However,
this cluster also contains other more rare events and regular events that happen
periodically, but with small frequencies compared to several events that repeat-
edly trigger the NIDS. The rest of the clusters are composed with at least one of
the attributes having a high value. Here the main issue for the false positives is
that a subset of normal points with similar attributes is grouped in the smallest
cluster. Therefore, the scores for these points are calculated as the distance to the
closest large cluster centre. Scores for small clusters are assigned as the minimum
distance to one of the large clusters centres. Scores for a large cluster are assigned
as the distance of the point to the center of the cluster the point is assigned to.
Because the subset of anomalous instances have very infrequent values but are a
minority class within the total data points and are therefore assigned to a large
cluster that hosts more minority groups with different values but more similar
than the other clusters. The algorithm is not capable of building good clusters
to distinguish the low frequency events.

6.3. Combining Results
From Figure 6.5 we can see that all 4 methods have an overlap just 1.1% of
anomalous labelled instances. This means that the overlapping anomalous in-

6.3. Combining Results 59

stances that are wrongly classified by all four algorithms differ. Since the goal is
to reduce the number of false positives it makes sense to combine the methods in
order to normalise the anomaly scores of the miss-classified points.

Figure 6.5: The percentage of overlapping instances labelled as anomalous for each tested
method against the total number of data points.

It seems that all three methods suffer from the inability to distinguish low
frequent alerts from non-observed before alerts. This subset of alerts represent
the remaining false positives after the methods are combined. The other false
positive points are reduced by combining these methods since the scores for some
false positives are normalised. The LOF algorithm has the lowest non-overlapping
anomalous instances as shown in Figure 6.5. Additionally, LOF did not find all
true anomalies in the data with all tested thresholds. When combining with the
other methods it may lead to additional false negatives. Since one of the require-
ments of the prototype is the detection of all true attacks the LOF method is not
further explored.

Several approaches are considered to combine scores of different anomaly de-
tection methods in order to obtain a better performance. These are the mean,
median, weighted average score or a majority vote on the classification results.
Simple non-parametric measures are shown to be effective in practice [20]. There-
fore, the combined score is calculated as the average score of the different meth-
ods.

60 6. Results

𝑆𝑐𝑜𝑟𝑒ፈፅዅፇፁፎፒ =
𝑆𝑐𝑜𝑟𝑒ፈፅ + 𝑆𝑐𝑜𝑟𝑒ፇፁፎፒ

2 (6.1)

𝑆𝑐𝑜𝑟𝑒ፈፅዅፂፁፋፎፅ =
𝑆𝑐𝑜𝑟𝑒ፈፅ + 𝑆𝑐𝑜𝑟𝑒ፂፁፋፎፅ

2 (6.2)

𝑆𝑐𝑜𝑟𝑒ፇፁፎፒዅፂፁፋፎፅ =
𝑆𝑐𝑜𝑟𝑒ፇፁፎፒ + 𝑆𝑐𝑜𝑟𝑒ፂፁፋፎፅ

2 (6.3)

𝑆𝑐𝑜𝑟𝑒ፈፅዅፇፁፎፒዅፂፁፋፎፅ =
𝑆𝑐𝑜𝑟𝑒ፈፅ + 𝑆𝑐𝑜𝑟𝑒ፇፁፎፒ + 𝑆𝑐𝑜𝑟𝑒ፂፁፋፎፅ

3 (6.4)

Since the scores are scaled in the range [0, 1] this range of values will be used
to determine whether a point is anomalous or not. In general, for all combinations
a score between 0.4 and 0.8 was sufficient to detect all true positives. The results
obtained from each combination are shown in the following sections.

IF+HBOS

The combination of an ensemble and statistical based technique does not show
significant improvements in comparison to the ensemble based techniques as stan-
dalone. According to the results shown in 6.9 the best score for this combination
lies in the range [0.5, 0.8].

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
1 1.0 0.0 nan 0.0 1.0 0.0 nan 0.0 1.0 0.0 nan 0.0
0.9 1.0 0.0 nan 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0 nan 0.0
0.8 1.0 0.0031 0.0 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0 nan 0.0
0.7 1.0 0.0209 0.1072 1.0 0.0 0.0116 0.0628 1.0 0.3673 0.0618 0.3908 0.6326
0.6 0.9965 0.0270 0.0851 1.0 0.0 0.0355 0.0214 1.0 0.0258 0.1515 0.2875 0.9741
0.5 0.0 0.0893 0.0273 1.0 0.0 0.0602 0.0127 1.0 0.0 0.1619 0.2792 1.0
0.4 0.0 0.2104 0.0118 1.0 0.0 0.0607 0.0126 1.0 0.0 0.1856 0.2526 1.0
0.3 0.0 0.3253 0.0076 1.0 0.0 0.1028 0.0075 1.0 0.0 0.2124 0.2280 1.0
0.2 0.0 0.5535 0.0045 1.0 0.0 0.1028 0.0075 1.0 0.0 0.2186 0.2230 1.0
0.1 0.0 0.6873 0.0036 0.0052 0.0 0.2846 0.0027 1.0 0.0 1.0 0.0590 1.0

Table 6.9: Results of applying the IF-HBOS combination on the test set with a range of different
thresholds

6.3. Combining Results 61

Figure 6.6: IF - HBOS - Confusion Matrices

First, the results obtained from this combination are compared with the
results obtained from the HBOS method. For the first data set the improvement
is around 1% less false positives. For the second data set the false positives are
higher with approximately 1%. For the third data set the results are better and
the false positives are reduced with around 5% which is a significant difference.
In comparison to the results obtained from the IF method, the first data set has
a reduction of around 1%. The results obtained for the second and third data
set remain almost unchanged. The HBOS method performs better as standalone
on the second data set. When combined with the IF method, the false positives
slightly rise. However, in the first and third data sets the results are improved.
The conclusion from these results is that the IF method has a positive effect on
the scores of HBOS, but the other way around HBOS has no significant effects
on the scores of the false positive instances as assigned by the IF method.

IF+CBLOF

The combination of these two techniques also does not show very significant
improvements considering the individual performance of the combined methods.
The best threshold values fall in the range [0.4, 0.7]. Again, each data set has
a different optimal threshold. In the case of the first data set all true positives
are found with a maximum threshold of 0.4. Whereas in the second data set
this threshold can be set to 0.7. The third data set the threshold is even lower,
namely, 0.3. The improvement of this combination is not very significant.

Comparing the results from this combination with the results of both meth-
ods individually we see for the first case that the number of false positives in-
creases. This is due to the higher amount of false positives generated by the
CBLOF method which has a poor performance. In the second and third data
set the results are slightly improved. From these results it seems that these two
method do not complement each other well in terms of anomaly scores.

62 6. Results

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
1 1.0 0.0 nan 0.0 1.0 0.0 nan 0.0 1.0 0.0 nan 0.0
0.9 1.0 0.0052 0.0 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0643 0.0 0.0
0.8 0.9965 0.0088 0.0009 0.0034 0.35 0.0101 0.0476 0.65 0.8033 0.0939 0.1161 0.1966
0.7 0.9965 0.0465 0.0001 0.0034 0.0 0.0353 0.0215 1.0 0.5549 0.0940 0.2290 0.4450
0.6 0.9965 0.0650 0.0001 0.0034 0.0 0.0369 0.0206 1.0 0.5549 0.0940 0.2290 0.4450
0.5 0.9965 0.0984 0.0008 0.0034 0.0 0.0497 0.0154 1.0 0.5549 0.0940 0.2290 0.4450
0.4 0.0 0.1632 0.0151 1.0 0.0 0.0497 0.0154 1.0 0.5549 0.0940 0.2290 0.4450
0.3 0.0 0.1996 0.0124 1.0 0.0 0.0607 0.0126 1.0 0.0 0.1380 0.3125 1.0
0.2 0.0 0.5234 0.0047 1.0 0.0 0.1028 0.0075 1.0 0.0 0.1499 0.2950 1.0
0.1 0.0 0.6245 0.0040 1.0 0.0 0.1028 0.0075 1.0 0.0 0.9598 0.0613 1.0

Table 6.10: Threshold selection for IF-CBLOF

Figure 6.7: IF-CBLOF-Confusion Matrices

HBOS+CBLOF

The results obtained from combining the HBOS and CBLOF methods do reduce
the false positives significantly in the first two data sets. The best threshold
for this combination can be set to a value in the range [0.4, 0.7]. Even though
the optimal threshold for the first data set is 0.4, the false positives are reduced
with more than 2% compared to the previous combinations and the HBOS and
CBLOF results individually. The same holds for the second data set. In the
case of the synthetic data set the results are better than HBOS and CBLOF
considered individually. However, these are not better than the results of the
IF-CBLOF combination or solely the IF method.

The results of this combination are better than both methods considered
separately. The false positives in the first case decrease with almost 10%. For
the artificial data set the improvement is not very significant. This may be due
to the representation of regular alerts which in this data set is deviating a lot.
The events that are flagged as malicious based on their frequency scores may be
part of an anomalous cluster according to the CBLOF algorithms and since they
get a high anomaly score from that method their overall score is not normalised
enough.

6.3. Combining Results 63

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
1 1.0 0.0 nan 0.0 1.0 0.0 nan 0.0 1.0 0.0 nan 0.0
0.9 1.0 0.0 nan 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0 nan 0.0
0.8 1.0 0.0 nan 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0 nan 0.0
0.7 1.0 0.0001 0.0 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0427 0.0 0.0
0.6 0.9965 0.0097 0.0008 0.0034 0.0 0.0343 0.0221 1.0 0.5808 0.0940 0.2186 0.4191
0.5 0.9965 0.0434 0.0002 0.0034 0.0 0.0365 0.0209 1.0 0.5549 0.0956 0.2260 0.4450
0.4 0.0 0.0888 0.0275 1.0 0.0 0.0369 0.0206 1.0 0.0 0.1696 0.2699 1.0
0.3 0.0 0.1894 0.0131 1.0 0.0 0.0497 0.0154 1.0 0.0 0.2186 0.2230 1.0
0.2 0.0 0.3902 0.0064 1.0 0.0 0.0497 0.0154 1.0 0.0 0.2186 0.2230 1.0
0.1 0.0 0.5318 0.0047 1.0 0.0 0.0607 0.0126 1.0 0.0 0.2186 0.2230 1.0

Table 6.11: Threshold selection for HBOS-CBLOF

Figure 6.8: HBOS-CBLOF Confustion Matrices

IF+HBOS+CBLOF

The combination of all three selected methods shows the best results in compar-
ison to all other evaluated methods. The optimal threshold for this combination
again lies in the range [0.4 - 0.7]. The first data sets has a remaining false positive
set of only around 5.5% of the total alerts. For the second data set the remaining
false positives are also greatly reduced to a total of 3.7% as well as for the third
data set where the remaining false positives are around 5%.

Test Set 1 Test Set 2 Test Set 3
Threshold FNR FPR Precision Recall FNR FPR Precision Recall FNR FPR Precision Recall
1 1.0 0.0 0.0 0.0 1.0 0.0 nan 0.0 1.0 0.0 0.0 0.0
0.9 1.0 0.0 0.0 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0 0.0 0.0
0.8 1.0 0.0 0.0 0.0 0.35 0.0101 0.0476 0.65 1.0 0.0036 0.0 0.0
0.7 0.9965 0.0023 0.0036 0.0034 0.0 0.0116 0.0628 1.0 0.5808 0.0939 0.2187 0.4191
0.6 0.9965 0.0172 0.0005 0.0034 0.0 0.0365 0.0209 1.0 0.5549 0.0940 0.2290 0.4450
0.5 0.0 0.0543 0.0442 1.0 0.0 0.0369 0.0206 1.0 0.5019 0.1011 0.2360 0.4980
0.4 0.0 0.0940 0.0260 1.0 0.0 0.0497 0.0154 1.0 0.0 0.1566 0.2860 1.0
0.3 0.0 0.2497 0.0099 1.0 0.0 0.0607 0.0126 1.0 0.0 0.1748 0.2641 1.0
0.2 0.0 0.3349 0.0074 1.0 0.0 0.1028 0.0075 1.0 0.0 0.2186 0.2230 1.0
0.1 0.0 0.5535 0.0045 1.0 0.0 0.1028 0.0075 1.0 0.0 0.2186 0.2230 1.0

Table 6.12: Threshold selection for Combined Method

64 6. Results

Figure 6.9: Results of the clustering and anomaly detection Combined Scores

The results obtained from this method outperform the rest of the evaluated
methods. The conclusion that we can draw from these results is that all three
methods are contributing to the normalisation of the scores for the false posi-
tives. Each method is complementing the other two and the false positives are
normalised significantly by combining all three methods together. The remain-
ing false positives represents events that have very similar values for the chosen
attributes as the true positives.

6.4. Evaluation of model
The results of the models presented in the previous section are promising. How-
ever, for these models to be applicable in real production environments they need
to be robust and adaptable to changes in these environments. Often this is not
taken into consideration when evaluating machine learning models and therefore
it is unclear to what extent many of the proposed solutions can be used.

Historic data for retraining

An important aspect to take into consideration is the minimal historic data that
needs to be stored for training the models. In this evaluation only the first
data set will be used since it contains data spanning over approximately 4 weeks
of alerts generated from real network traffic. In the previous evaluation of the
methods, the training size for this data set was 3/4 of the total size. At this set-
ting the models showed a very good performance. However, environments may
change more frequently. In order to determine the optimal amount of historical
data needed for training accurate models several experiments are conducted with
different time ranges and combinations of days (weekend and weekdays) in both
the train and test data sets.

According to the results that are obtained from this experiment as shown
in Figure 6.13, the optimal amount of data that needs to be considered for re-
training the models is data collected from the 7 previous days. Training on only

6.4. Evaluation of model 65

one workday and predicting on one workday already shows good results. However,
from the traffic patterns that have been observed in the different days during a
week it can be seen that these have minor differences between them. Retraining
the model on 1 day of historical data might not be representative enough for the
following days. These cases are denoted with the letters A and B in the table.
Additionally, when the data is trained only on a day from the weekend the perfor-
mance for filtering false alarms during the working week significantly decreases.
In the table these are the cases denoted with K, L, M and N in Table 6.13. An
example would be the case when there is a major change in the environment on
a Monday morning and the model is set to retrain on the last day of observed
traffic. The model would be retrained on traffic from the previous Sunday and
this would cause a bad performance triggering the model to retrain again until
its performance has sufficiently increased. The optimal choice based on the good
performance and the discussed points is therefore to retrain on data of the last 7
days such that traffic observed during all days of the week will be included. In
Table 6.13 these are the cases denoted with Q and R.

66
6.R

esults
Table 6.13: The table shows experiments with the prototype on test set 1. The performance of the prototype is tested on different values for
the training phase to establish an indication of what the minimum historical data and the type of day should be for an effective model. The
percentages represent the remaining amount of data received as input by the prototype. The last column (ALL) represents the combined score of
all three techniques (HBOS, CBLOF and IF).

Case Train Test Input Size Output as % of Input
#Days Type #Days Type HBOS CBLOF IF (IF-HBOS) (IF-CBLOF) (HBOS-CBLOF) ALL

A 1 Workday 1 Workday 47896 23.9% 25.0% 11.3% 8.0% 37.0% 14.9% 9.4%
B 1 Workday 1 Weekend 7008 60.9% 62.1% 1.38% 1.96% 62.6% 60.6& 2.71%
C 2 Workday 1 Workday 47896 20.6% 6.09% 11.2% 5.51% 9.82% 3.40% 3.84%
D 2 Workday 1 Weekend 7008 38.1% 1.38% 2.73% 10.1% 0.64% 19.4% 1.81%
E 3 Workday 1 Workday 47896 20.4% 6.09% 11.8% 4.77% 10.1% 2.23% 1.87%
F 3 Workday 1 Weekend 7008 38.1% 1.38% 2.73% 2.31% 0.64% 6.17% 1.72%
G 4 Workday 1 Workday 47896 20.1% 7.59% 11.7% 5.80% 7.37% 2.65% 3.50%
H 4 Workday 1 Weekend 7008 38.1% 1.38% 2.73% 23.8% 0.64% 9.74% 1.72%
I 5 Workday 1 Workday 47896 19.7% 6.80% 11.3% 7.39% 13.11% 6.66% 4.71%
J 5 Workday 1 Weekend 7008 38.12% 1.55% 1.99% 2.31% 1.55% 3.22% 1.96%
K 1 Weekend 1 Workday 47896 73.6% 87.2% 87.2% 71.3% 75.1% 25.8% 27.82%
L 1 Weekend 1 Weekend 7008 37.9% 24.7% 24.7% 21.0% 21.4% 18.1% 19.5%
M 2 Weekend 1 Workday 47896 73.2% 74.6% 85.7% 69.3% 73.0% 23.5% 32.3%
N 2 Weekend 1 Weekend 7008 29.7% 15.9% 11.4% 9.2% 3.65% 2.63% 3.22%
O 2 Both 1 Workday 47896 23.0% 18.9% 10.2% 9.58% 34.4% 6.81% 7.10%
P 2 Both 1 Weekend 7008 37.3% 4.56% 2.73% 23.8% 6.43% 19.6% 1.99%
Q 7 Both 1 Workday 47896 19.7% 9.82% 10.2% 3.69% 9.70% 3.20% 3.08%
R 7 Both 1 Weekend 7008 38.1% 1.38% 2.73% 6.42% 0.64% 1.79% 1.54%

6.4. Evaluation of model 67

Model robustness and retraining

For the model to remain effective it needs to be retrained after some time. The
frequency for retraining is difficult to set up front since the changes in large net-
works are often unpredictable. Therefore it is important to define a measure
that will trigger the model to retrain itself whenever its effectiveness decreases
as a result to new traffic patterns. To do this in a dynamic way the threshold
needs to be computed dynamically as well. From the previous experiments it is
decided that 7 days of historic data are enough for an accurate model and that
the combination of all three models has the best performance overall. Therefore,
the following experiments will be conducted with these settings. In these experi-
ments the data is considered on a daily basis.

To evaluate how robust the chosen model is, noise is added to the data sequen-
tially increasing between 1% and 100% of the total input size which represents
the total number of alerts produced by the NIDS. Since the model is unsuper-
vised and has no contextual information about the environment this can be done
using the input and output size of the set of alerts. When the size of the filtered
alert set reaches a predefined threshold compared to the size of the total alerts
produced by the NIDS, this might be an indication that the model needs to be
retrained. The way that the model knows when to retrain is by computing the
threshold with the following formula where A_Output represents the size of the
filtered alert set and A_Input represents the size of the original alert set:

𝐴ፎ፮፭፩፮፭ >= 𝐴ፈ፧፩፮፭ ∗ 𝑡 (6.5)

From the Table 6.14 the optimal threshold should be set at most at 10%.
This way the model will still perform reasonably well with a low false positive
rate and include novel knowledge only when this threshold is passed. This thresh-
old is chosen by taking into consideration the specificity and recall values. The
specificity is an indicator of the false alarms that are correctly filtered by the al-
gorithm which in both cases drops below 0.9 when this threshold is passed. The
recall value indicates whether all malicious cases are detected correctly and this
remains 1.0 regardless of the threshold.

With this threshold the model should not miss any true positives and still
reduce the number of false positives significantly. This threshold range is chosen
based on the results of the previous models. The limitation to this approach is
the case where the new traffic is malicious traffic but of a large proportion, for
example from a DDoS attempt or an aggressive scan. In this case, the possibility
exists that the model will be retrained on the malicious examples and wrongly
classify them as benign, if these are not filtered by the algorithm (false negatives).
Another option could be to consider the size of the alert set observed over a longer
time for a more robust range of values.

68
6.R

esults
Table 6.14: In this figure a subset of the data is selected which represents one Workday. Noise is added sequentially in proportion to the size of
the data to evaluate how robust the model is. The models are trained on one full week (7 days) including both workdays and weekends. The
scores of the combination IF+ HBOS + CBLOF are shown in the table.

Noise % Input Size % of Input FNR FPR Precision Recall Specificity
None 47896 3% 0.0 0.0268 0.1326 1.0 0.9732
1% 48374 3.7% 0.0 0.0340 0.1068 1.0 0.9660
10% 52685 9.8% 0.0 0.0955 0.0376 1.0 0.9045
20% 57475 15.% 0.0 0.1509 0.0221 1.0 0.9045
30% 62264 18% 0.0 0.1781 0.0174 1.0 0.8219
50% 71844 24% 0.0 0.2475 0.0109 1.0 0.7525
70% 81423 30% 0.0 0.3004 0.0079 1.0 0.6996
100% 95792 6% 0.0 0.3626 0.0056 1.0 0.6374

Table 6.15: In this figure a subset of the data is selected which represents one day of a Weekend. Noise is added sequentially in proportion to the
size of the data to evaluate how robust the model is. The models are trained on one full week (7 days) including both workdays and weekends.
The precision in this case is 0 because there are no attacks present in this subset of data.

Noise % Input Size % of Total FNR FPR Precision Recall Specificity
None 7008 1.5% nan 0.0154 nan 1.0 0.9846
1% 7078 9.5% nan 0.0190 nan 1.0 0.9810
10% 7708 8.7% nan 0.0874 nan 1.0 0.9126
20% 8409 14% nan 0.1493 nan 1.0 0.8507
30% 9110 19% nan 0.1927 nan 1.0 0.8073
50% 10512 26% nan 0.2642 nan 1.0 0.7358
70% 11913 33% nan 0.3316 nan 1.0 0.6684
100% 14016 47% nan 0.4031 nan 1.0 0.5969

6.5. Discussion 69

6.5. Discussion

From the results obtained by analysing the causes and possibilities to reduce false
alarms a few conclusions can be drawn. Firstly, manually deactivating rules can
be very complicated and may still not provide satisfactory results. The activation
and deactivation of rules needs to be constantly assessed and regularly adapted
to changes that may occur in the environment. Additionally, the remaining set
will probably contain a significant amount of remaining false alarms. Since this
approach is rather vague and time consuming, it increases the risk of missing im-
portant events and taking into consideration that the amount of remaining false
alarms is still of significant size, this approach is not considered to be effective.

From the results obtained by applying the unsupervised approach to alarms
collected on a real dynamic network several important observations are made.
The first observation obtained from the results of the data analysis and feature
selection methods is that the majority of false alarms can be represented by a set
of attributes. These are the signature, destination port and destination address
of the alert. The next important finding resulting from the experiments is that
by setting a suitable threshold all true positives are correctly identified. However,
not all events are represented sufficiently. As discussed in Section 6.3 this is due
to the similar values shared with some of the true alarm’s attributes. In some
cases, even when the values are not very similar the algorithms compute similar
scores for these points for which an explanation could be the rare combination of
attribute values.

Furthermore, this approach is tested on multiple data sets. Two collected on
a real network and one artificially generated data set. A general observation for
all the attempted methods is that these did not perform equally well on the real
and artificial data sets. This may be due to the fact that the attributes are chosen
based on the real data and because the artificial data set fails to mimic regular
network behaviour sufficiently. Even in this case, by setting a sufficiently large
threshold, all anomalous events were detected. The LOF algorithm has failed
to correctly identify the true alarms. Even with different threshold settings this
method computed similar scores for the anomalous points. For both data sets,
the combination of all three anomaly detection methods does find all known true
positives in the data. The false positives are reduced with at least 90% of the
total false alarms generated by the NIDS. A general conclusion that can be drawn
from these results is that overall the combination of all 3 algorithms has the best
performance. However, the standalone performance of Isolation Forest is also
close in performance for all three data sets.
When examining the results obtained from the experiments with different train-
ing data settings the Isolation Forest and HBOS methods both have a very good
performance in all considered cases. The Recall of these methods is always 100%

70 6. Results

while the Specificity varies per case. This is not the case for the CBLOF method.
As shown in the Figure 3 this method fails to correctly cluster the anomalous
points leading to missing true positives alarms when not trained on sufficiently
rich data. The performance for the different combinations varied per case where
the performance of the CBLOF method negatively influenced the overall perfor-
mance of these combinations.

Based on these findings the most optimal amount of training data should
contain alert patterns observed during the whole week. In this scenario, when
trained on 7 days, the combination of all three methods had the best results with
a Recall of 100% and Specificity above 97%. Additionally, the applied algorithms
are computationally efficient and in this scenario the calculation of scores is done
in seconds. It is therefore a realistic option for this method to be applied in
parallel with an intrusion detection system in a stream-like scenario where the
model would be updated in real-time with newly observed regular events. This is
a point for further research. The remaining alerts that are not filtered out by this
method are events with frequencies close to 0. In these cases the infrequent at-
tribute is usually the destination IP. As explained in the previous sections there
are multiple reasons that these specific alarms might be depicted wrongly by
the chosen attributes such as new destination addresses assigned through DHCP
which could potentially be mitigated by a different encoding.

The main difference between the proposed unsupervised methods and the
method proposed in this thesis is in the approach that is taken to tackle the
problem. The reviewed works try to build profiles of normal sensor behaviour
based on time dependent techniques such as Markov Chains and time-series anal-
ysis while only considering one variable which is the rule that has triggered the
event [72, 79]. In the case of the time-series analysis the solution is framed as
uni-variate problems where for each rule a new model needs to be trained and
maintained. In the case of the sequential pattern mining technique only a devi-
ating sequence of consecutive signatures is considered as worth investigating. In
our case, the model is the same for all events and can handle multivariate data
which makes it possible to take into consideration multiple attributes of an alert
that could be indicators of true/false alarms such as the source and destination
address. The association rule mining technique [73] has the possibility to con-
sider multiple attributes and is therefore more similar to our approach. The main
difference here is the complexity of the method and historic data needed to train
accurate models. An accurate model needs a minimum of 30 days of alert data
and two separate classifiers trained on different time spans in order to capture
the frequency patterns of more events. Additionally, the model consists of several
different phases where each phase requires a set of parameters to be set such as
the minimum support, number of clusters and threshold. Since there is a time
constraint for an item to be considered frequent, these steps need to be repeated

6.5. Discussion 71

very frequently which makes the computational cost high. In our case, all ex-
periments are conducted with a default set of parameters and the model needs
only to be retrained when an increase of alerts occurs. This is an indication of a
change in the network to which the model needs to be adjusted.

72
6.R

esults
Table 6.16: This table compares the method proposed in this thesis with other similar works. The main characteristics of the works are included
in the table for comparison. The accuracy of the various works is not included since this is difficult to compare because of the different data sets
and environment settings that are used.

Finding The Needle:
Suppression of False

Alarms in Large
Intrusion Detection

Data Sets [72]

Network IDS
Alert Classification

with Frequent Itemset
Mining and

Data Clustering [73]

Processing Intrusion
Detection Alert
Aggregates with

Time Series
Modelling [79]

An Unsupervised
Approach for

False Alarm Filtering
in Rule-based

NIDS

Technique Hidden Markov Models Frequent Itemset Mining Timeseries Analysis Outlier Detection
(IF/CBLOF/HBOS)

Cost 𝒪(𝑘ኼ𝑛) 𝒪(𝑛ኼ) 𝒪(𝑛ኼ) 𝒪(𝑛), 𝒪(𝑛), 𝒪(𝑛)
Dataset Private Private Private Artificial/Private

Data Description No Partially Yes Yes
Pre-configured

NIDS Yes Yes Not specified No

Dataset Size 30 Days 8 Weeks 43 Days 4 Weeks, 5 Days,
1 Day

New alarms in
testset No Not specified Not specified Yes

Historical Data 5 Days 2 Weeks & 30 Days 20 Minutes 7 Days
Number of models

per sensor 1 2 # Unique rules 1

Dimension One Multiple One Multiple
Number of

parameters to choose 2 8 4 1

Updating Not specified Every 24 h Every 20 min Upon trigger

7
Limitations and Future Work

In this chapter some notes on the limitations of this approach will be stated as
well as ideas for further research on this topic.

7.1. Limitations
The main limitation of this system is that it cannot differentiate between false
positives and true attacks during the training phase. In the case that there will be
true positives present in the training phase this behaviour will be learned as reg-
ular. This is certainly a big limitation in the case where an infiltrator is already
present in the network for a longer period of time and periodically generates the
same types of traffic. These regular malicious alarms will be considered benign
and may be filtered out and remain undetected.

The second limitation of this system is the inability to distinguish successful
attacks from unsuccessfully attempts. The unsupervised approach is based on the
frequencies of the features that are chosen. Therefore, context is not taken into
consideration which in some cases might be important in order to distinguish a
true positive from a false alarm. To take context into consideration, an additional
filter can be applied on the output of this prototype using a knowledge-based ap-
proach. However, the linking of alerts and contextual information is shown to
be very challenging. From the attempts made to correlate vulnerabilities with
the NIDS output we have seen that the results are unsatisfactory, meaning the
false positive rate remains very high and that even some true positives might be
labelled with low priority or discarded with this approach. The other issue with
this approach is the mismatch between the rules that have references to existing
vulnerabilities and the output of a vulnerability scanner, referencing the detected
vulnerabilities. In both cases, the majority of data that is produced is not refer-
enced with any type of vulnerability. Considering additional information about
the network such open ports, operating systems and running services also did not

73

74 7. Limitations and Future Work

provide satisfactory results.

From the results that are obtained using this systems there still remains a
small subset of alerts of false alarms. These are alerts that are infrequent and
deviating and therefore are considered as anomalies by the chosen algorithms.
This is a limitation since events that are benign but rare will also be flagged as
anomalous and are required to be further investigated by analysts. This approach
is thus good at filtering false positives that are generated as a result of benign
and regularly repeating processes of the monitored environment but fails to filter
out rare false positive events.

The generalizability of the results is limited by the environment in which the
NIDS is placed and the type of data that is being captured by the NIDS. The
data that is used during the experiments is not generalizable to all corporate
networks. However, it is very likely that the data used here will be similar to
data sets from other corporate networks where the majority of traffic by the
employees and by automated processes that is captured by the NIDS represents
benign events. Since the proposed method is tested on both real network data
and synthetically generated network data, where each case depicts a different
network environment it can be applicable for similar networks to these. However,
the extent to which this method would be generally applicable to any network
needs to be further evaluated with different data sets depicting various network
environments. The results could be affected by some configuration choices such
as the frequency with which the internal addresses get reassigned or the ratio
between true and false positives that the NIDS generates.

In this work the data that is used represents the output of a rule-based network
intrusion detection system. To reduce the false alarms, only the standard set of
attributes of an alert set are used. Therefore, the method that is applied is
generalizable to any network with any rule-based intrusion detection systems to
perform the filtering operations on the produced alert set.

7.2. Future Work
The system developed during this research shown promising results for the auto-
matic filtering of false alarms. There are however some limitations as discussed
in the previous section. Some ideas for improvement or further development of
the system are discussed in this section.

Another possibility is to train separate model for a workday and a weekend.
This could increase performance and accuracy overall since there are signatures
observed during the weekend that are normal, but are not present during the
workdays and thus have a lower frequency. If this is considered separately, then
the ratio between the different expected signatures on a weekend and on a work-
day would be represented better. From the experiments conducted on the col-

7.2. Future Work 75

lected data this did not result in significant changes to the effectiveness of the
model, however, in different environment it might make a difference.

In future work, this method may be applied to different networks to evaluate
its applicability better. The proposed model can also be tested in a streaming
scenario where the algorithm will be updated with new benign events in (near)
real-time.

A different set of features might improve the results. New features can be con-
structed that give more information about the different relationships that certain
values have to further reduce the false positives by better representing the rare
but benign events. For example the number of unique ports per unique IP address
or the relative frequencies of unique connections between source and destination
addresses and the relative frequencies of unique signature and destination IP/-
Port pairs might better represent these rare events. Also, the IP addresses can
be encoded differently to better represent to which (sub)network they belong to.

8
Conclusion

The goal of this research was to explore the possibilities of false alarm filtering in
an automated manner. In order to do this real network data was analysed and
unsupervised methods were applied. The main intuition behind this approach
is that the majority of alerts generated by intrusion detection systems are false
positives. In such a set of alerts, since the real attacks only form a small subset
of the total data, these can be distinguished from the majority of points by
their deviating attribute values. Four different unsupervised anomaly detection
algorithms were chosen for this task. The performance of the chosen algorithms
is evaluated and these are then combined together to further reduce the number
of false positives. Experiments are conducted with different combinations of data
for the training phase in order to select an optimal amount of historical data that
needs to be stored for retraining the model. Furthermore, the robustness of the
proposed approach is tested by adding noise to the data to set a suitable threshold
for automatically retraining the system when the number of false alarms increases
due to changes in the monitored environment. The main research question and
sub-questions as defined in Chapter 1 are answered below.

RQ1: What are the existing techniques for false alarm reduction in
rule-based NIDS?

To answer this question a literature review is conducted where the different meth-
ods that are proposed to tackle this problem are explored. Different techniques
and elements that are used in the proposed solutions are reviewed. The majority
of works propose a system that used external knowledge obtained mainly from
the monitored environment in order to correlate this to the generated alerts. The
goal of these approaches is to deduct which alerts are certain false positives by
analysing whether the affected hosts are vulnerable to the attack that triggered
the alert. The main elements used in these approaches are the vulnerability
data obtained from the network and additional information such as open ports,

76

77

services and operating systems. Furthermore, some approaches additionally con-
struct possible attack scenarios from the collected data. The subset of works
which use data mining techniques to reduce the false alarms generally use the
signature of the alert as main attribute or a combination of the signature, source
address, destination address and timestamp of the alert. The main limitation to
these works is the challenge to integrate these solutions into a production envi-
ronment. This is a challenge since these works rely on selecting a suitable set of
hyper-parameters that will work in that specific environment and are computa-
tionally intensive because of the underlying algorithms that are applied and the
frequency with which they are updated.

RQ2: How effective are existing network intrusion detection systems
when deployed without any prior alterations to their settings?

To answer this question a NIDS was set up with default settings and public rules
were used with their default settings as well. The NIDS monitored traffic from a
portion of a network based in a large and dynamic organisation. The data used
to answer this question is the resulting alert set. The alerts were analysed and
the true positives were labelled for the purpose of evaluating the effectiveness
of this setup. The false positives produced by the NIDS in its default setting
were approximately 98% of the total alert set as collected over 4 weeks. With
this information the answer to this question is that intrusion detection systems
are not very effective when not set up properly and continuously tweaked to the
monitored environment. For organisations that do not have sufficient time and
resources to do this, setting up a custom NIDS solution is a challenging task.
Tuning the NIDS configuration requires detailed knowledge of the environment
and needs to be constantly adapted to changes that affect the results.

RQ3: Which unsupervised outlier detection techniques can be used
for filtering false alarms in rule-based NIDS?

To answer this question several unsupervised anomaly detection algorithms were
chosen. Four different techniques were selected for the experiments in order to
assess which of these algorithms has the best performance. The algorithms were
selected based on recommendations in literature and the application of these al-
gorithms for detecting anomalies in network and other log data. The selected
algorithms are Local Outlier Factor, Isolation Forest, Histogram-based Outlier
Score and Cluster-based Local Outlier Factor. The algorithms were applied with
their default hyper-parameter values in order to assess whether it is possible to
avoid manual adjustments to these parameters based on the environment. The
only parameter that was evaluated on a range of values was the contamination
threshold because of the different portions of true alarms that may be triggered
in a network which might vary per environment. The Local Outlier Factor al-
gorithm was the only algorithm that failed to detect all relevant cases. The

78 8. Conclusion

Cluster-based Local Outlier Factor detected only a subset of the true alarms in
the experiments with different amounts of historic data. This method was more
sensitive to the composition of the training data. The Histogram-based Outlier
Score and Isolation Forest methods performed well as both standalone methods
and in the combined cases. The overall best performing standalone algorithms
was Isolation Forest. The remaining false positive alarms remained low through
all experiments.

RQ4: How can the model be retrained in order to remain accurate
upon changes in the network ?

To answer this question several experiments were conducted on the collected data.
The first set of experiments was aimed to define the optimal amount of historical
data needed to train accurate models. The second set of experiments was aimed
to assess when the model needs to be retrained because of new patterns and
derive a threshold which triggers the model to retrain. Firstly, The amount of
historical data needed to train accurate model is set to 7 days. From the different
scenarios we see that this model performs well even with a smaller training set,
but the choice to include all 7 days is made in order to not miss regular traffic
patterns that are specific to a single day. Secondly, a metric is derived to act as a
trigger for the system to retrain its algorithms based on the most recent available
data. The metric is derived by adding noise that mimics new traffic patterns and
evaluating its performance in terms of correctly identified true and false alarms.
By adding more noise sequentially, it is evident that the amount of false alarms
also increases. The daily original alert size is compared to the filtered alert size
to measure whether the model filters out the majority of alerts. When a certain
threshold is crossed the models knows it needs to retrain on more recent data.

Main RQ:To what extent can existing rule-based NIDS be effectively
deployed by automating the process of false alarm filtering using un-
supervised anomaly detection techniques?

From the evaluated unsupervised anomaly detection techniques it can be con-
cluded that the number of false alarms can be greatly reduced in a fully automated
manner. The proposed methodology has potential to be successfully applied in
production environments, hereby not requiring any manual alterations to the
NIDS. The selected anomaly detection techniques are at most linear in terms of
complexity and when combined reduce the false alarms with more than 90%. The
requirement of retraining the models on more recent and representative data can
also be effectively automated by measuring the set of filtered alarms as opposed
to the total alarms generated by the NIDS. The main shortcoming of this method
is the lack of contextual information. This information may be of importance for
the analysts to analyse the remaining alerts. Additionally, since the filtering is
based on the frequencies of the attributes it may not be straightforward to ex-

79

plain why something is classified as regular or deviating. There is a remaining
subset of false positives which this method is not able to filter out. The reason
for this are the similar attribute values shared with the malicious events. These
issues may be tackled with a different selection of features or a different encoding.

In conclusion, this approach has a good potential of being used in real pro-
duction environments by a range of different user groups since it operates in an
unsupervised and automated manner. However, the shortcomings need to be
taken into consideration and further explored. Additionally, this method needs
to be evaluated on more data sets collected in real environments and ideally
tested in a production environment where batches of alerts will be filtered in a
streaming like scenario.

Appendix A

Figure 1: Results with Isolation Forest for cases A to R

Figure 2: Results with HBOS for cases A to R

80

81

Figure 3: Results with CBLOF for cases A to R

Figure 4: Results with IF-HBOS for cases A to R

82 8. Conclusion

Figure 5: Results with IF-CBLOF for cases A to R

Figure 6: Results with HBOS-CBLOF for cases A to R

83

Figure 7: Results with All methods combined for cases A to R

Appendix B

Figure 8: Signature Correlations

Figure 9: Signature Correlations

84

Appendix C

85

86 8. Conclusion

Figure 14: Correlation Matrix between the attributes of the alert data.

Bibliography

[1] 0Patch. Security patching is hard. https://0patch.com/files/
SecurityPatchingIsHard_2017.pdf, 2017.

[2] Charu C Aggarwal. Outlier ensembles: position paper. ACM SIGKDD
Explorations Newsletter, 14(2):49–58, 2013. doi: 10.1145/2481244.
2481252.

[3] Charu C Aggarwal. Outlier analysis. In Data mining, pages 237–263.
Springer, 2015. doi: 10.1007/978-3-319-47578-3.

[4] M. Ahmed and A. N. Mahmood. Network traffic analysis based on collective
anomaly detection. In 2014 9th IEEE Conference on Industrial Electronics
and Applications, pages 1141–1146, June 2014. doi: 10.1109/ICIEA.
2014.6931337.

[5] Mohiuddin Ahmed and Abdun Naser Mahmood. Novel approach for net-
work traffic pattern analysis using clustering-based collective anomaly de-
tection. Annals of Data Science, 2(1):111–130, 2015. doi: 10.1007/
s40745-015-0035-y.

[6] James P Anderson. Computer security threat monitoring and surveillance.
Anderson Co., Fort Washington, PA, 1980.

[7] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detec-
tion. ACM Transactions on Information and System Security (TISSEC), 3
(3):186–205, 2000.

[8] Longe Olumide Babatope, Lawal Babatunde, and Ibitola Ayobami. Strategic
sensor placement for intrusion detection in network-based ids. International
Journal of Intelligent Systems and Applications, 6(2):61, 2014.

[9] Luis Basora, Xavier Olive, and Thomas Dubot. Recent advances in anomaly
detection methods applied to aviation. Aerospace, 6(11):117, 2019. doi:
10.3390/aerospace6110117.

[10] Damiano Bolzoni and Sandro Etalle. Aphrodite: An anomaly-based archi-
tecture for false positive reduction. arXiv preprint cs/0604026, 2006.

[11] Damiano Bolzoni, Sandro Etalle, and Pieter Hartel. Poseidon: a 2-tier
anomaly-based network intrusion detection system. In Fourth IEEE In-
ternational Workshop on Information Assurance (IWIA’06), pages 10–pp.
IEEE, 2006.

87

https://0patch.com/files/SecurityPatchingIsHard_2017.pdf
https://0patch.com/files/SecurityPatchingIsHard_2017.pdf

88 Bibliography

[12] Markus Breunig, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. Lof:
Identifying density-based local outliers. volume 29, pages 93–104, 06 2000.
doi: 10.1145/342009.335388.

[13] Zhangyu Cheng, Chengming Zou, and Jianwei Dong. Outlier detection using
isolation forest and local outlier factor. In Proceedings of the Conference on
Research in Adaptive and Convergent Systems, pages 161–168, 2019. doi:
10.1145/3338840.3355641.

[14] David Cournapeau. A set of python modules for machine learning and data
mining. URL https://pypi.org/project/sklearn/.

[15] Dorothy E Denning. An intrusion-detection model. IEEE Transactions on
software engineering, (2):222–232, 1987.

[16] Rémi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane Zouaoui.
A comparative evaluation of outlier detection algorithms: Experiments
and analyses. Pattern Recognition, 74:406–421, 2018. doi: 10.1016/j.
patcog.2017.09.037.

[17] Edgescan. Vulnerability statistics report. https://www.edgescan.com/
wp-content/uploads/2018/05/edgescan-stats-report-2018.pdf,
2018.

[18] Edgescan. Vulnerability statistics report. https://
www.edgescan.com/wp-content/uploads/2019/02/
edgescan-Vulnerability-Stats-Report-2019.pdf, 2019.

[19] Christian Canales Sid Deshpande Elizabeth Kim, Ruggero Contu. Forecast:
Information security, worldwide, 2016-2022. https://www.gartner.com/
en/documents/3875867, 2020.

[20] Hans-Peter Kriegel Peer Kröger Erich and Schubert Arthur Zimek. Inter-
preting and unifying outlier scores. In 11th SIAM International Conference
on Data Mining (SDM), Mesa, AZ, 2011. doi: 10.1.1.232.2719.

[21] Exploit Database. Offensive security’s exploit database archive. https:
//www.exploit-db.com/.

[22] Filipe Falcão, Tommaso Zoppi, Caio Barbosa Viera Silva, Anderson Santos,
Baldoino Fonseca, Andrea Ceccarelli, and Andrea Bondavalli. Quantitative
comparison of unsupervised anomaly detection algorithms for intrusion de-
tection. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, pages 318–327, 2019. doi: 10.1145/3297280.3297314.

[23] Eric Falk, Ramino Camino, Radu State, and Vijay K Gurbani. On
non-parametric models for detecting outages in the mobile network. In

https://pypi.org/project/sklearn/
https://www.edgescan.com/wp-content/uploads/2018/05/edgescan-stats-report-2018.pdf
https://www.edgescan.com/wp-content/uploads/2018/05/edgescan-stats-report-2018.pdf
https://www.edgescan.com/wp-content/uploads/2019/02/edgescan-Vulnerability-Stats-Report-2019.pdf
https://www.edgescan.com/wp-content/uploads/2019/02/edgescan-Vulnerability-Stats-Report-2019.pdf
https://www.edgescan.com/wp-content/uploads/2019/02/edgescan-Vulnerability-Stats-Report-2019.pdf
https://www.gartner.com/en/documents/3875867
https://www.gartner.com/en/documents/3875867
https://www.exploit-db.com/
https://www.exploit-db.com/

Bibliography 89

2017 IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment (IM), pages 1139–1142. IEEE, 2017. doi: 10.23919/INM.2017.
7987448.

[24] Markus Goldstein and Andreas Dengel. Histogram-based outlier score
(hbos): A fast unsupervised anomaly detection algorithm. KI-2012: Poster
and Demo Track, pages 59–63, 2012.

[25] Fatma Hachmi, Khadouja Boujenfa, and Mohamed Limam. Enhancing the
accuracy of intrusion detection systems by reducing the rates of false pos-
itives and false negatives through multi-objective optimization. Journal of
Network and Systems Management, 27:93–120, 2018.

[26] Black Hat Ethical Hacking. Microsoft warns this
hacking group is targeting vulnerable web servers.
https://www.blackhatethicalhacking.com/news/
microsoft-warns-this-hacking-group-is-targeting-vulnerable-web-servers/,
2020.

[27] Ayush Hariharan, Ankit Gupta, and Trisha Pal. CAMLPAD: cybersecu-
rity autonomous machine learning platform for anomaly detection. CoRR,
abs/1907.10442, 2019.

[28] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based
local outliers. Pattern Recognition Letters, 24(9-10):1641–1650, 2003. doi:
10.1016/S0167-8655(03)00003-5.

[29] L Todd Heberlein, Gihan V Dias, Karl N Levitt, Biswanath Mukherjee, Jeff
Wood, and David Wolber. A network security monitor. In Proceedings. 1990
IEEE Computer Society Symposium on Research in Security and Privacy,
pages 296–304. IEEE, 1990. doi: 10.1109/RISP.1990.63859.

[30] Neminath Hubballi, Santosh Biswas, and Sukumar Nandi. Network specific
false alarm reduction in intrusion detection system. Security and Commu-
nication Networks, 4(11):1339–1349, 2011.

[31] Qiu Hui and Wang Kun. Real-time network attack intention recognition
algorithm. International Journal of Security and Its Applications, 10(4):
51–62, 2016.

[32] Ponemon Institute. Costs and consequences of gaps in vul-
nerability response. https://www.servicenow.com/lpayr/
ponemon-vulnerability-survey.html, 2018.

[33] Omar Iraqi and Hanan El Bakkali. Application-level unsupervised outlier-
based intrusion detection and prevention. Security and Communication Net-
works, 2019, 2019. doi: 10.1155/2019/8368473.

https://www.blackhatethicalhacking.com/news/microsoft-warns-this-hacking-group-is-targeting-vulnerable-web-servers/
https://www.blackhatethicalhacking.com/news/microsoft-warns-this-hacking-group-is-targeting-vulnerable-web-servers/
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html

90 Bibliography

[34] Klaus Julisch. Using root cause analysis to handle intrusion detection alarms.
PhD thesis, Universität Dortmund, 2003.

[35] Dimitar Karev, Christopher McCubbin, and Ruslan Vaulin. Cyber threat
hunting through the use of an isolation forest. In Proceedings of the 18th
International Conference on Computer Systems and Technologies, CompSys-
Tech’17, page 163–170, New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450352345. doi: 10.1145/3134302.3134319.
URL https://doi.org/10.1145/3134302.3134319.

[36] Christopher Kruegel, William Robertson, and Giovanni Vigna. Using alert
verification to identify successful intrusion attempts. Praxis der Informa-
tionsverarbeitung und Kommunikation, 27(4):219–227, 2004.

[37] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep
Srivastava. A comparative study of anomaly detection schemes in net-
work intrusion detection. In Proceedings of the 2003 SIAM international
conference on data mining, pages 25–36. SIAM, 2003. doi: 10.1137/1.
9781611972733.3.

[38] Wenke Lee and Salvatore J Stolfo. A framework for constructing features and
models for intrusion detection systems. ACM transactions on Information
and system security (TiSSEC), 3(4):227–261, 2000.

[39] Fei Tony Liu, Kai Ting, and Zhi-Hua Zhou. Isolation forest. pages 413 –
422, 01 2009. doi: 10.1109/ICDM.2008.17.

[40] Jianyi Liu, Sida Li, and Ru Zhang. Algorithm of reducing the false positives
in ids based on correlation analysis. In IOP Conference Series: Materials
Science and Engineering, volume 322, page 062016. IOP Publishing, 2018.

[41] Teresa Lunt. Detecting intruders in computer systems. In Proceedings of
the 1993 conference on auditing and computer technology, volume 61, 1993.

[42] Martin Roesch. Network intrusion detection prevention system. https:
//www.snort.org/.

[43] Jaap Mooij et al. A generic approach for detecting security anomalies in isp
infrastructures. 2017.

[44] National Institute of Standards and Technology. Cvss severity distribu-
tion over time. https://nvd.nist.gov/vuln-metrics/visualizations/
cvss-severity-distribution-over-time, 2020.

[45] Subramanian Neelakantan and Shrisha Rao. A threat-aware signature based
intrusion-detection approach for obtaining network-specific useful alarms.
In 2008 The Third International Conference on Internet Monitoring and
Protection, pages 80–85. IEEE, 2008.

https://doi.org/10.1145/3134302.3134319
https://www.snort.org/
https://www.snort.org/
https://nvd.nist.gov/vuln-metrics/visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/vuln-metrics/visualizations/cvss-severity-distribution-over-time

Bibliography 91

[46] Humphrey Waita Njogu, Luo Jiawei, and Jane Nduta Kiere. Network specific
vulnerability based alert reduction approach. Security and Communication
Networks, 6(1):15–27, 2013.

[47] Humphrey Waita Njogu, Luo Jiawei, Jane Nduta Kiere, and Damien Hanyur-
wimfura. A comprehensive vulnerability based alert management approach
for large networks. Future Generation Computer Systems, 29(1):27–45, 2013.

[48] Tadashi Ogino. Evaluation of machine learning method for intrusion de-
tection system on jubatus. International Journal of Machine Learning and
Computing, 5(2):137, 2015. doi: 10.7763/IJMLC.2015.V5.497.

[49] Nerijus Paulauskas and Algirdas Baskys. Application of histogram-based
outlier scores to detect computer network anomalies. Electronics, 8(11):
1251, 2019. doi: 10.3390/electronics8111251.

[50] Vern Paxson. Bro: a system for detecting network intruders in real-
time. Computer networks, 31(23-24):2435–2463, 1999. doi: 10.1016/
S1389-1286(99)00112-7.

[51] Tadeusz Pietraszek. Using adaptive alert classification to reduce false posi-
tives in intrusion detection. In International Workshop on Recent Advances
in Intrusion Detection, pages 102–124. Springer, 2004.

[52] Tadeusz Pietraszek. Alert classification to reduce false positives in intrusion
detection. PhD thesis, Citeseer, 2006.

[53] Tadeusz Pietraszek and Axel Tanner. Data mining and machine learning—
towards reducing false positives in intrusion detection. Information security
technical report, 10(3):169–183, 2005.

[54] Reza Sadoddin and Ali A Ghorbani. An incremental frequent struc-
ture mining framework for real-time alert correlation. computers &
security, 28(3-4):153–173, 2009. doi: 10.1016/j.cose.2008.11.
010Getrightsandcontent.

[55] Michael M Sebring. Expert systems in intrusion detection: A case study. In
Proc. 11th National Computer Security Conference, Baltimore, Maryland,
Oct. 1988, pages 74–81, 1988.

[56] Syed Ali Raza Shah and Biju Issac. Performance comparison of intrusion de-
tection systems and application of machine learning to snort system. Future
Generation Computer Systems, 80:157–170, 2018.

[57] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward
generating a new intrusion detection dataset and intrusion traffic character-
ization. In ICISSP, pages 108–116, 2018.

92 Bibliography

[58] Md Amran Siddiqui, Jack W Stokes, Christian Seifert, Evan Argyle, Robert
McCann, Joshua Neil, and Justin Carroll. Detecting cyber attacks using
anomaly detection with explanations and expert feedback. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 2872–2876. IEEE, 2019. doi: 10.1109/ICASSP.
2019.8683212.

[59] Skybox Security. Vulnerability and threat trends. https:
//lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_
Report_Vulnerability_and_Threat_Trends_2019.pdf, 2019.

[60] Stephen E Smaha. Haystack: An intrusion detection system. In [Proceedings
1988] Fourth Aerospace Computer Security Applications, pages 37–44. IEEE,
1988. doi: 10.1109/ACSAC.1988.113412.

[61] Mahboobeh Soleimani and Ali A Ghorbani. Critical episode mining in in-
trusion detection alerts. In 6th Annual Communication Networks and Ser-
vices Research Conference (cnsr 2008), pages 157–164. IEEE, 2008. doi:
10.1109/CNSR.2008.62.

[62] Basant Subba, Santosh Biswas, and Sushanta Karmakar. False alarm reduc-
tion in signature-based ids: game theory approach. Security and Communi-
cation Networks, 9(18):4863–4881, 2016.

[63] T Subbulakshmi, George Mathew, and S Mercy Shalinie. Real time classifi-
cation and clustering of ids alerts using machine learning algorithms. Inter-
national journal of Artificial & Application, 1(1):20, 2010.

[64] Li Sun, Steven Versteeg, Serdar Boztas, and Asha Rao. Detecting anomalous
user behavior using an extended isolation forest algorithm: An enterprise
case study, 2016.

[65] N. N. R. R. Suri, M. N. Murty, and G. Athithan. Unsupervised feature
selection for outlier detection in categorical data using mutual information.
In 2012 12th International Conference on Hybrid Intelligent Systems (HIS),
pages 253–258, Dec 2012. doi: 10.1109/HIS.2012.6421343.

[66] Tcpdump Group. Tcpdump/libpcap public repository. https://www.
tcpdump.org/.

[67] Tenable®. Nessus. https://www.tenable.com/products/nessus.

[68] Henry S Teng, Kaihu Chen, and Stephen C Lu. Adaptive real-time anomaly
detection using inductively generated sequential patterns. In Proceedings.
1990 IEEE Computer Society Symposium on Research in Security and Pri-
vacy, pages 278–284. IEEE, 1990. doi: 10.1109/RISP.1990.63857.

https://lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_Report_Vulnerability_and_Threat_Trends_2019.pdf
https://lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_Report_Vulnerability_and_Threat_Trends_2019.pdf
https://lp.skyboxsecurity.com/rs/440-MPQ-510/images/Skybox_Report_Vulnerability_and_Threat_Trends_2019.pdf
https://www.tcpdump.org/
https://www.tcpdump.org/
https://www.tenable.com/products/nessus

Bibliography 93

[69] Tim Rains. Microsoft security intelligence report volume 20.
https://www.microsoft.com/security/blog/2016/05/05/
microsoft-security-intelligence-report-volume-20-is-now-available/,
2020.

[70] Gina C Tjhai, Maria Papadaki, SM Furnell, and Nathan L Clarke. In-
vestigating the problem of ids false alarms: An experimental study using
snort. In IFIP International Information Security Conference, pages 253–
267. Springer, 2008.

[71] An Trung Tran. Network anomaly detection. Future Internet (FI) and
Innovative Internet Technologies and Mobile Communication (IITM) Fo-
cal Topic: Advanced Persistent Threats, 55, 2017. doi: 10.2313/
NET-2017-09-1_08.

[72] James J Treinen and Ramakrishna Thurimella. Finding the needle: Sup-
pression of false alarms in large intrusion detection data sets. In 2009 Inter-
national Conference on Computational Science and Engineering, volume 2,
pages 237–244. IEEE, 2009.

[73] Risto Vaarandi. Real-time classification of ids alerts with data mining tech-
niques. In MILCOM 2009-2009 IEEE Military Communications Conference,
pages 1–7. IEEE, 2009.

[74] Hank S Vaccaro and Gunar E Liepins. Detection of anomalous computer
session activity. In Proceedings. 1989 IEEE Symposium on Security and Pri-
vacy, pages 280–289. IEEE, 1989. doi: 10.1109/SECPRI.1989.36302.

[75] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel, and Richard A Kem-
merer. Comprehensive approach to intrusion detection alert correlation.
IEEE Transactions on dependable and secure computing, 1(3):146–169,
2004.

[76] Félix Iglesias Vázquez, Robert Annessi, and Tanja Zseby. Analytic study
of features for the detection of covert timing channels in networktraf-
fic. Journal of Cyber Security and Mobility, 6(3):225–270, 2017. doi:
10.13052/jcsm2245-1439.632.

[77] Verizon Enterprise. Data breach investigations report. https:
//enterprise.verizon.com/resources/reports/dbir/2019/
summary-of-findings/, 2019. Online, Accessed 30 May 2020.

[78] Eduardo Viegas, Altair O Santin, Andre Franca, Ricardo Jasinski, Volnei A
Pedroni, and Luiz S Oliveira. Towards an energy-efficient anomaly-based
intrusion detection engine for embedded systems. IEEE Transactions on
Computers, 66(1):163–177, 2016. doi: 10.1109/TC.2016.2560839.

https://www.microsoft.com/security/blog/2016/05/05/microsoft-security-intelligence-report-volume-20-is-now-available/
https://www.microsoft.com/security/blog/2016/05/05/microsoft-security-intelligence-report-volume-20-is-now-available/
https://enterprise.verizon.com/resources/reports/dbir/2019/summary-of-findings/
https://enterprise.verizon.com/resources/reports/dbir/2019/summary-of-findings/
https://enterprise.verizon.com/resources/reports/dbir/2019/summary-of-findings/

94 Bibliography

[79] Jouni Viinikka, Hervé Debar, Ludovic Mé, Anssi Lehikoinen, and Mika Tar-
vainen. Processing intrusion detection alert aggregates with time series mod-
eling. Information Fusion, 10(4):312–324, 2009. doi: 10.1016/j.inffus.
2009.01.003.

[80] DWYO Waidyarathna, WVAC Nayantha, WMTC Wijesinghe, and
Kavinga Yapa Abeywardena. Intrusion detection system with correlation
engine and vulnerability assessment. INTERNATIONAL JOURNAL OF
ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 9(9):365–
370, 2018.

[81] Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. Progress
in outlier detection techniques: A survey. IEEE Access, 7:107964–108000,
2019. doi: 10.1109/ACCESS.2019.2932769.

[82] Yiming Yang and Jan O Pedersen. A comparative study on feature selection
in text categorization. In Icml, volume 97, page 35, 1997.

[83] Lei Yu and Huan Liu. Efficient feature selection via analysis of relevance
and redundancy. Journal of machine learning research, 5(Oct):1205–1224,
2004.

[84] Ji Zhang. Advancements of outlier detection: A survey. ICST Transactions
on Scalable Information Systems, 13(1):1–26, 2013. doi: 10.4108/trans.
sis.2013.01-03.e2.

[85] Yue Zhao. A python toolbox for scalable outlier detection (anomaly detec-
tion). https://pypi.org/project/pyod/.

[86] Z. Zhen, H. Wang, L. Han, and Z. Shi. Categorical document frequency based
feature selection for text categorization. In 2011 International Conference of
Information Technology, Computer Engineering and Management Sciences,
volume 2, pages 65–68, Sep. 2011. doi: 10.1109/ICM.2011.365.

[87] Tommaso Zoppi, Andrea Ceccarelli, and Andrea Bondavalli. On algorithms
selection for unsupervised anomaly detection. In 2018 IEEE 23rd Pacific
Rim International Symposium on Dependable Computing (PRDC), pages
279–288. IEEE, 2018. doi: 10.1109/PRDC.2018.00050.

https://pypi.org/project/pyod/

	Introduction
	Problem Statement
	Research Question
	Research Scope
	Contribution
	Result Summary
	Report Structure

	Preliminaries
	Intrusion Detection Systems
	Anomaly-based IDS
	Rule-based IDS
	Snort
	Placement of IDS

	Data Encoding
	Label Encoding
	One-Hot Encoding
	Frequency Encoding

	Distance Metrics
	Unsupervised Anomaly Detection Techniques
	Proximity-based
	Statistical-based

	Histogram-based Outlier Score
	Clustering-based
	Ensemble-based

	Literature Review
	Background
	Knowledge-based Techniques
	Manual Labelling
	Correlation-based Labelling

	Data Mining Techniques
	Discussion
	Research Gap
	Conclusion

	Methodology
	Proposed Solution
	Feature Selection
	Pearson's Chi-Square Test
	Mutual Information Score

	Selected Techniques
	Evaluation Criteria

	Data Exploration
	Data Collection
	Tools
	Pre-processing

	Data Description
	Test 1
	Test Set 2
	Test Set 3

	Data Analysis
	Rule Correlations
	Data Distribution
	Vulnerabilities

	Observations
	Observation 1:
	Observation 2:
	Observation 3:
	Observation 4:

	Examples
	Example 1
	Example 2

	Features Selection

	Results
	Hyper-parameters of Models
	Threshold Selection
	LOF
	IF
	HBOS
	CBLOF

	Combining Results
	Evaluation of model
	Discussion

	Limitations and Future Work
	Limitations
	Future Work

	Conclusion
	Bibliography

