
Delft Center for Systems and Control

Formal Synthesis of Optimal
Neural Network Controllers

Jonathan Klein Schiphorst

M
as

te
ro

fS
cie

nc
e

Th
es

is

Formal Synthesis of Optimal Neural
Network Controllers

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Jonathan Klein Schiphorst

March 26, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Stability, safety and optimality are often sought-after properties in the field of controller
synthesis. In the last century, linear control theory has matured to a level where scalable
algorithms are widely available that are able to synthesize controllers with stability and
optimality guarantee. However, the synthesis of safe controllers largely remains an open
question. Furthermore, when nonlinear systems are considered, these methods often result
in sub-optimal performance, or fail to provide a stabilizing solution at all. Current nonlinear
controller synthesis methods typically lack stability, safety and/or optimality guarantee, or
require computationally expensive online optimization. This thesis presents a novel method
that is able to overcome these limitations.

The presented controller synthesis method combines techniques from Approximate Dynamic
Programming (ADP), Lyapunov theory and barrier theory, to synthesize an optimal controller
in the form of a Neural Network (NN). Alongside the controller a second NN is deployed,
which is trained to serve as a certificate function to provide stability and/or safety guaran-
tee. To assure the correctness of the procedure, Satisfiability Modulo Theory (SMT) and
Counterexample-Guided Inductive Synthesis (CEGIS) are utilized.

We subject the method to a number of case studies, through which the versatility of the
method is demonstrated. We show the method is able to work with linear and nonlinear sys-
tems, as well as systems with input and state constraints. Furthermore, we show the method
yields controllers that are able to outperform linear controllers in terms of cost minimization.

Master of Science Thesis Jonathan Klein Schiphorst

ii

Jonathan Klein Schiphorst Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Motivation . 1
1-2 Related work . 2

1-2-1 Nomenclature . 2
1-2-2 Formal controller synthesis . 2
1-2-3 Optimal controller synthesis . 4

1-3 Research goal & approach . 6
1-4 Contributions beyond the State of the Art . 6
1-5 Thesis outline . 7

2 Preliminaries and Problem Statement 9
2-1 Conditions for stability, safety and optimality . 9
2-2 Neural networks . 12

2-2-1 Fundamentals . 12
2-2-2 Training . 12
2-2-3 Neural network verification . 13

2-3 Problem statement . 15

3 Methodology 17
3-1 Formal Neural Policy Iteration . 18

3-1-1 Initialization . 18
3-1-2 Neural Policy Evaluation . 19
3-1-3 Neural Policy Improvement . 21
3-1-4 System verification . 22
3-1-5 Stopping conditions . 23

3-2 Software implementation of FNPI . 24

Master of Science Thesis Jonathan Klein Schiphorst

iv Table of Contents

4 Results 25
4-1 Verification of the procedure with linear systems 25

4-1-1 Derivation of the Linear Quadratic Regulator 25
4-1-2 Double integrator . 26
4-1-3 Conclusion . 26

4-2 Scalability of the method . 27
4-2-1 Value network scaling . 27
4-2-2 Policy network scaling . 28
4-2-3 Single layer scaling . 28
4-2-4 Higher-dimensional systems . 29
4-2-5 Conclusion . 29

4-3 State & input constraints . 30
4-3-1 Input constraints . 30
4-3-2 State constraints via cost function shaping 31
4-3-3 Using the value function as a barrier function. 34
4-3-4 Conclusion . 34

4-4 Nonlinear systems . 35
4-4-1 Dubins car . 35
4-4-2 Duffing oscillator . 36
4-4-3 Inverted pendulum . 38
4-4-4 Analysis & comparison . 39
4-4-5 Conclusion . 42

4-5 Summary & discussion . 42

5 Conclusion 45
5-1 Conclusion . 45
5-2 Future work . 47

A Prototype tool FNPI 49

B Verification times 53

Glossary 65
List of Acronyms . 65
List of Symbols . 65

Jonathan Klein Schiphorst Master of Science Thesis

List of Figures

2-1 Left: output of the Rectified Linear Unit (ReLU) and Sigmoid Linear Unit (SiLU)
activation function, Right: derivative of the ReLU and SiLU activation function . 13

3-1 Block diagram of Formal Neural Policy Iteration. 18
3-2 Schematic view of Formal Neural Policy Iteration. 24

4-1 Evolution of the controller gains over 7 iterations. 27
4-2 Output of value network J(x) . 27
4-3 Verification times for various value network topologies. 28
4-4 Verification times for various policy network topologies. 28
4-5 Verification times for single hidden layer policy and value networks. 29
4-6 Verification times for various system dimensions. 29
4-7 Constrained policy for the double integrator . 30
4-8 Value function for the double integrator with constrained policy. 30
4-9 Shape of cost function `Tot. 32
4-10 Trajectories of the double integrator subject to the initial linear policy, the resulting

policy after one iteration and after three iterations. 32
4-11 Shape of cost function `Tot. 33
4-12 Trajectories of the double integrator subject to the initial linear policy, the resulting

policy after one iteration and after two iterations. 33
4-13 Left: level sets of the value function for the velocity constraint example, after three

iterations of the procedure. Right: level sets of the value function of the linear
policy. 34

4-14 Left: level sets of the value function for the specific region constraint example,
after two iterations of the procedure. Right: level sets of the value function of the
linear policy. 35

4-15 The policies for Dubins car at initialization, after one iteration and after two iter-
ations of the method. 36

Master of Science Thesis Jonathan Klein Schiphorst

vi List of Figures

4-16 Schematic view of Dubins car. 36
4-17 Trajectories of Dubins car, subject to the initial linear policy, the resulting policy

after one iteration and after two iterations. 36
4-18 The policies for the Duffing oscillator at initialization, after one iteration and after

two iterations of the method. 37
4-19 Trajectories of the Duffing oscillator, subject to the initial linear policy and the

resulting policy after two iterations. 37
4-20 The resulting policies for the inverted pendulum after one, two and three iterations

of the method. 38
4-21 Trajectories of the inverted pendulum subject to the initial linear policy, the result-

ing policy after one iteration and after three iterations. 39

A-1 Class diagram of Formal Neural Policy Iteration (FNPI) 49

Jonathan Klein Schiphorst Master of Science Thesis

List of Tables

1-1 Comparison of the controller synthesis methods in literature. 6
1-2 An overview of formal neural certificate synthesis approaches 7

2-1 An overview of verification methods for neural networks 15

4-1 Cost comparison between the initial policy and the optimized policy for 10 trajec-
tories of the double integrator with velocity constraint. 31

4-2 Cost comparison between the initial policy and the optimized policy for 10 trajec-
tories of the double integrator with specific region constraint. 33

4-3 Synthesis times and number of iterations for Dubins car, the Duffing oscillator and
the inverted pendulum. 40

4-4 Cost comparison between the initial policy and the optimized policy for 24 trajec-
tories of Dubins car, the Duffing oscillator and the inverted pendulum. 41

B-1 Verification times of neural certificates with various topologies for a linear system
with two states. 54

B-2 Verification times of neural certificates with neural policies with various topologies
for a linear system with two states. 54

Master of Science Thesis Jonathan Klein Schiphorst

viii List of Tables

Jonathan Klein Schiphorst Master of Science Thesis

Acknowledgements

Almost exactly one year ago, I caught a last-minute flight back to the Netherlands. Due to
the forthcoming pandemic, I had to quit my internship and leave Zürich after only two of the
intended six months. One week later, as the world came to a stop, I was fortunate enough to
be able to start writing this thesis.

I would like to thank my supervisor Dr. Ir. Manuel Mazo for setting me up with a thesis
project on such short notice, and for his guidance throughout the project. I sincerely enjoyed
your laid back, yet punctual style of running your lab.

I would like to thank my daily supervisor Dr. Ir. Cees Verdier for his extensive supervision
and his dedication as a supervisor. During our weekly meetings you pointed me in the right
direction when needed and your attention to detail has helped me bring this thesis together.

I want to thank Eva, my roommates, my friends from S&C and from Utrecht for making the
best of the situation and enjoying the little things in life with me.

Lastly, I want to thank my brother, my sister and my parents for checking in on my every
once in a while, when I forget to update them with my current activities and whereabouts,
and for reminding me to make haste slowly.

Rotterdam, Jonathan Klein Schiphorst
March 26, 2021

Master of Science Thesis Jonathan Klein Schiphorst

x Acknowledgements

Jonathan Klein Schiphorst Master of Science Thesis

Festina lente.

Chapter 1

Introduction

1-1 Motivation

In the field of controller synthesis, stability and safety are often sought-after control specifi-
cations. A typical stability requirement for dynamical systems is asymptotic stability, which
implies that the states of the considered system will eventually converge to a goal state or
prescribed trajectory. Safety denotes that a certain set of unsafe states will never be visited.
Stability and safety are qualitative specifications which the system either satisfies or violates.
Formal methods [1] can be deployed to guarantee these qualitative specifications hold. A
quantitative control specification is optimality, which requires the controller to minimize a
certain cost along the trajectories of the system.

For linear systems, there exist numerous systematic procedures for automatic controller syn-
thesis. In particular, the Linear-Quadratic Regulator (LQR) [2] is a design methodology to
synthesize feedback controllers that not only stabilize the system, but are also optimal with
respect to a quadratic cost function. For nonlinear systems, however, the controller synthesis
methods do not share the same level of maturity as for linear systems. It has been argued
that, due to the large diversity of nonlinear phenomena, developing a single design method-
ology that can handle all nonlinear models would result in overly conservative controllers, or
might even be infeasible [3].

However, in recent years different control methods, e.g. Model Predictive Control (MPC) [4],
Approximate Dynamic Programming (ADP) [5] and Reinforcement Learning (RL) [6], have
proven themselves successful at finding optimal controllers for nonlinear systems. In particu-
lar, the combination of RL and Neural Networks (NNs), called deep RL, has shown notable
successes in e.g. classical control problems [7], robot locomotion [8] and quadrotor control [9].
The effectiveness of the obtained controllers is mostly tested in simulation or through real
world deployment. Providing stability or safety guarantees for controllers obtained by RL
is often not considered and remains largely an open question. MPC approaches do address
stability and safety guarantees, but require computationally expensive online optimization,
which can be prohibitive in practical applications [10].

Master of Science Thesis Jonathan Klein Schiphorst

2 Introduction

This leads to the goal of this thesis: to design an automatic controller synthesis procedure
for continuous-time nonlinear systems that produces near-optimal controllers with stability
and safety guarantees, which does not require expensive online computation. The presented
approach is based on ADP, Lyapunov and barrier theory, and utilizes the approximation
capabilities of NNs. To assure the correctness of the procedure, Satisfiability Modulo Theory
(SMT) and CEGIS are utilized. The method produces optimal NN controllers that verifiably
stabilize the system, while avoiding unsafe states.

1-2 Related work

The goal of this thesis is to design an automatic controller synthesis procedure for continuous-
time nonlinear systems that produces (near-)optimal controllers with stability and safety
guarantees, which does not require expensive online computation. First, the nomenclature
used in this thesis will be defined. Thereafter, we give a concise overview of the strengths and
weaknesses of formal controller synthesis methods. The methods are categorized into three
main paradigms: abstraction and simulation, optimization, and certificates. Next, optimal
control methods and their efforts to provide stability and safety guarantees are discussed.

1-2-1 Nomenclature

This work addresses topics from both control theory and reinforcement learning, which have
independently discovered similar concepts. Consequently, both fields have developed different
terms for identical subjects. In this section we define the terminology to avoid confusion.

This thesis follows the naming convention of [6], where techniques for approximately solving
optimal control problems where the model is known are labeled ADP, whereas model-free
approaches are called RL. Solving such problems results in a control law, which is a mathe-
matical formula used by the controller to determine the input. Policy is an alternative to this
term, which we will use interchangeably.

The notion of optimality is always defined with respect to a certain cost function, or reward
function in RL. Cost and reward are effectively antonyms, as reward is equal to negative cost.
The goal of RL is to maximize the expected cumulative future rewards (also called value),
while the goal of optimal control is to minimize the expected cumulative future cost, also
known as cost-to-go. In this work, the terms cost and value will be used.

1-2-2 Formal controller synthesis

Abstraction and simulation Let us first consider the abstraction and simulation approach,
in which infinite systems are abstracted to finite systems, such as a symbolic model [11]
[12]. If an abstraction has been found, controller synthesis and verification can be done on
the finite system, for which there exist efficient and mathematically sound methods [13].
When abstracting an infinite system into a finite equivalent, the state and action spaces are
partitioned. Software tools exist that are able to create abstractions and synthesize correct-
by-design controllers for nonlinear or hybrid systems. The controllers are able to enforce

Jonathan Klein Schiphorst Master of Science Thesis

1-2 Related work 3

specifications described in Linear Temporal Logic (LTL) [14]. Examples of such tools are
SCOTS [15], PESSOA [16] and CoSyMa [17].
The strength of this approach is the fact that it can handle a large variety of system types, such
as linear, nonlinear and hybrid systems. Also the expressiveness of LTL allows for complex
controller design. However, due to the necessity of discretization, these methods suffer from
the curse of dimensionality and therefore do not scale well for high-dimensional systems.
To improve scalability, one could use multiscale discretization [18] [19], decomposition the
main system into subsystems [20] [21], or use a discretization-free approach [22]. Another
limiting factor is the size of the resulting controllers, which are stored in look-up tables, such
as binary decision diagrams or sparse matrices. The size of these controllers can prohibit
the deployment of these controllers in limited memory environments, such as an embedded
system. Attempts have been made to reduce the size of the controllers by using piece-wise
linear functions [23], and symbolic regression [24].

Optimization Signal Temporal Logic (STL) and optimization are central concepts to meth-
ods in the second paradigm. STL [25] allows for an assessment of the robustness of satisfaction
of a logic formula. The assessment is captured in the magnitude and sign of an STL score. A
positive score indicates satisfaction, a negative score indicates violation, and the magnitude
indicates to which extent the logic formula is satisfied or violated. Cost functions that capture
the intended controller behaviour and the STL score can be combined into an optimization
problem, which can be solved by standard optimization solvers [1]. If the solver returns a posi-
tive score, the result is a trajectory that satisfies the STL formula. This effectively synthesizes
open-loop controllers that are correct, robust, and have a certain level of optimality.
There are several ways to construct an optimization problem for formal controller synthesis.
When dealing with discrete-time systems, STL formulas that are linear in state and input
can be translated into mixed-integer linear constraints [26], posing the trajectory optimization
problem as a mixed-integer linear program [27–31] or mixed-integer quadratic program [32].
A technique to encode STL specifications as mixed-integer constrains is provided in [33]. In
[34, 35] the optimal control law was found by calculating the gradient of the STL score and
utilizing gradient descent techniques. A third approach is to use SMT solvers for temporal
logic control [36]. SMT solvers are tools that are able to check whether first-order logic
formulae are satisfied [37]. In [38], SMT solvers and convex optimization techniques are
combined in a method called satisfiability modulo convex optimization.
The techniques discussed above are called trajectory optimization, which is an open-loop
control strategy. Attempts to obtain formal closed-loop controllers include [39] [40], which
consider an MPC approach. The main drawback of MPC methods is that they require
computationally demanding online optimization [1].

Certificates Methods in the certificates paradigm deploy so-called certificate functions, which
existence implies certain control specifications for autonomous systems, such as stability and
safety. Aleksandr Lyapunov proved for nonlinear systems that the existence of a positive
definite function decreasing along the trajectories of the system is a sufficient condition for
exponential stability [41]. Such functions became known as Lyapunov functions.
Lyapunov stability does not guarantee that the trajectories of a system will not visit certain
(bad) states, before eventually converging to the equilibrium. To address this, set invariance

Master of Science Thesis Jonathan Klein Schiphorst

4 Introduction

theory was used to provide conditions for safety, i.e. any trajectory starting inside an invariant
set will never reach the complement of the set [42]. More recently barrier certificates were
introduced as a tool to formally prove safety of nonlinear and hybrid systems [43] [44], which
independently rediscovered the conditions from [42]. Analogous to Lyapunov stability, one
can prove safety of a system by finding a barrier function which renders a certain safe set
invariant.

Synthesizing Lyapunov and barrier functions is not trivial and traditionally requires expert
knowledge, hence the need for automated procedures to obtain such functions. Early ap-
proaches were focused on Semidefinite Programming (SDP) and Sum-of-Squares (SOS) de-
composition [45], which are able to find polynomial Lyapunov functions for polynomial sys-
tems. The main drawback of this approach is that it is restricted to fixed-degree polynomial
functions. As shown in [46], global asymptotical stability of a polynomial system does not
imply the existence of a polynomial Lyapunov function. Furthermore, SDPs are known to
have numerical sensitivity issues, which makes it harder to find solutions that fully satisfy
the Lyapunov conditions [47]. The SOS method scales to modest dimensions (10-15 states
[48]), but attempts are made to make the method scale better by leveraging the sparsity of
the underlying SDP [49] or by exploiting the problem properties to eliminate the Lagrange
multipliers [50] in the optimization problem.

To go beyond the limitations of SOS methods, a promising approach is Counterexample-
Guided Inductive Synthesis (CEGIS) [51] in conjunction with NNs. A candidate certificate in
the form of a NN is iteratively refined using counterexamples, i.e. states where the certificate
conditions are not satisfied. This framework is used to synthesize Lyapunov functions for
nonlinear systems [52] and piecewise linear systems [53], and to synthesize barrier functions
[54].

CEGIS is used to synthesize controllers in [55], which considers nonlinear continuous-time
systems. A Lyapunov certificate in the form of a NN for is synthesized alongside a linear policy.
The certificate network is trained using stochastic gradient decent to iteratively minimize a
cost function called Lyapunov risk, which measures the degree of violation of the Lyapunov
conditions. The Lyapunov conditions are then verified using an SMT solver. The solver will
either confirm that the conditions hold, or produces a counterexample, which is added to
the training set for the next iteration of learning. The policy gains are adjusted to obtain
the largest region of attraction possible. The policies are, however, restricted to be linear,
which limits the possibility for complex controller design. The method of [55] is expanded in
[56], where neural networks are utilized to represent both Lyapunov and barrier certificates,
as well as the policy. In their experiments, however, the policies are restricted to be linear.
Neural policies are synthesized in [57] with safety guarantee. Experiments show the ability to
synthesize stabilizing controllers as well, but the system was not formally verified to adhere
to the Lyapunov conditions. Other formal synthesis approaches utilize the CEGIS method in
conjunction with linear matrix inequalities [58] or genetic programming [59].

1-2-3 Optimal controller synthesis

The field of optimal control is concerned with synthesizing controllers that minimize a cost
function over a (possibly infinite) horizon along the trajectories of a system. Central to optimal
control methods are so-called value functions, which describe the expected cumulative future

Jonathan Klein Schiphorst Master of Science Thesis

1-2 Related work 5

cost as a function of the system states. We distinguish two categories of optimal controller
synthesis methods. Methods in the first category use the value function implicitly, whereas
methods in the second category deploy an explicit value function.

Implicit value function The Pontryagin’s Maximum Principle (PMP) is a necessary condi-
tion for an open-loop control strategy to evolve the states of the system along the optimal
trajectory between two states [60]. As this condition is not sufficient, the solutions obtained
by PMP methods are candidate optimal solutions [61] and need extra verification related to
their existence [62].

An alternative method is MPC, where a sequence of cost minimizing control actions is com-
puted over a finite horizon by solving an optimization problem at each sampling instant. The
value function is therefore calculated implicitly. After the first control action of the sequence
is deployed, the state is sampled again and the process repeats. State and input constraints
can be enforced by utilizing a model of the system to predict the future states over the finite
horizon. In order to guarantee infinite horizon stability, a terminal cost term can be added
to the optimization problem to ensure the cost of the finite horizon optimal control problem
is an upper bound on the infinite horizon cost [10]. The need for computationally expensive
online optimization originally made MPC only applicable to systems which allow low sam-
pling rates, e.g. systems in the process industry [63]. Although computation power became
more accessible in recent years, proving MPC successful in e.g. robotics [64] and autonomous
driving [65], the computational burden of the method is still a major drawback.

Explicit value function A sufficient condition for optimality involves an explicit value func-
tion in the form of a partial differential equation called the Hamilton-Jacobi-Bellman (HJB)
equation [66]. Finding the optimal control law requires the solution of the HJB equation. For
linear systems with quadratic cost, the solution of HJB equation reduces to the Continuous
Algebraic Riccati Equation (CARE). The CARE can be solved analytically, resulting in
the LQR solution [2]. For nonlinear systems, however, solving the HJB equation analyti-
cally is generally more difficult. ADP approaches circumvent this difficulty, by utilizing a
function approximator to represent the solution of the HJB equation, from which a near-
optimal closed-loop controller can be derived. A class of techniques called Generalized Policy
Iteration (GPI) [67] is able to jointly improve the controller and value function, until they
reach their respective optimal solution. If the exact solution of the optimal value function is
known, the resulting policy is inherently stable, as the optimal value function serves as a Lya-
punov function if the cost function is undiscounted and positive definite [68]. However, due
to approximation, the obtained value function is most likely sub-optimal, possibly breaking
the stability guarantee. Therefore, additional verification is needed to verify the Lyapunov
conditions.

Optimal controller synthesis methods exist methods for systems with model uncertainties,
such as H∞ [69], or when knowledge of the model is completely absent, such as Q-learning
[70], Actor-Critic [71], and Proximal Policy Optimization [72]. In this work we will not
further consider these methods, as we assume the system dynamics are fully known and
deterministic.

Master of Science Thesis Jonathan Klein Schiphorst

6 Introduction

1-3 Research goal & approach

Table 1-1: Comparison of the controller synthesis methods in literature.

Method Advantages Limitations

Abstraction-based – LTL allows for rich controller specifications – Curse of dimensionality
– Look-up table controller

Optimization-based – Inherent optimality guarantee – Online computational cost

Certificate-based – Suitable for continuous-time systems – Optimality not considered

MPC – Allows for constraints – Challenging to provide guarantees
– Online computational cost

ADP – Closed-loop controllers
– Suitable for continuous-time systems

– Solving HJB analytically often not possible
– Approximation breaks stability guarantee

An overview of the advantages and limitations of the main controller synthesis methods
discussed in Section 1-2 is given in Table 1-1. The reviewed methods are limited by least one
of the following aspects: the resulting controllers

1. lack stability and/or safety guarantee,

2. are not optimal,

3. require expensive online computation,

The goal of this thesis is to propose a novel method that overcomes these limitations. The
research goal is formalized as follows:

Research goal. Design an automatic controller synthesis procedure for continuous-time non-
linear systems that produces (near-)optimal controllers with stability and safety guarantees
that does not require expensive online computation.

Given the research goal, certificate-based methods show a number of distinct advantages com-
pared to other approaches. First, certificate-based methods do not require online optimiza-
tion, as they allow for offline synthesis of closed-form controllers. Furthermore, certificate
methods are capable of dealing with continuous-time systems. However, certificate-based
methods do not consider optimality. Conversely, ADP approaches yield optimal controllers,
but lack formal guarantee of safety and stability. We therefore propose a method that com-
bines ADP with Lyapunov and barrier theory to synthesize controllers that are safe, stable
and optimal. A NN is utilized to approximate the value function, which concurrently serves
as the Lyapunov and barrier function. To assure the correctness of the procedure, SMT and
CEGIS are utilized.

1-4 Contributions beyond the State of the Art

The contributions of this thesis are best described in comparison to other formal neural con-
troller synthesis methods for continuous-time systems that utilize NNs in conjunction with

Jonathan Klein Schiphorst Master of Science Thesis

1-5 Thesis outline 7

Table 1-2: An overview of formal neural certificate synthesis approaches

Category Paper Systems Certificate Verification Policy Optimality

Verification [52] Nonlinear Lyapunov SMT × ×
[54] Hybrid Barrier SMT × ×
[53] Piecewise linear Lyapunov MILP × ×

Synthesis [55] Nonlinear Lyapunov SMT linear ×
[56] Nonlinear Lyapunov & barrier Lipschitz nonlinear ×
[57] Nonlinear Barrier SMT nonlinear ×

SMT solvers. We divide the approaches in literature into two categories: verification and syn-
thesis. Methods in the verification category [52–54] solely focus on the certification of safety
and stability for systems with a given controller, by training a Lyapunov or barrier function,
respectively. The methods utilize SMT or Mixed-Integer Linear Programming (MILP) for
verification.

In contrast, methods in the synthesis category do allow for controller synthesis. [55] synthesizes
Lyapunov certificates for nonlinear continuous-time systems and a linear policy which obtains
the largest region of attraction possible. The policies are, however, restricted to be linear,
which limits the possibility for complex controller design. The method of [55] is expanded in
[56], where neural networks are utilized to represent both Lyapunov and barrier certificates,
as well as the policy. In their experiments, however, the policies are restricted to be linear.
Neural policies are synthesized in [57] with safety guarantee. Experiments show the ability to
synthesize stabilizing controllers as well, but the system was not formally verified to adhere
to the Lyapunov conditions. Furthermore, optimality is not considered during controller
synthesis. The above described methods are summarized in Table 1-2.

Our method is able to synthesize optimal neural controllers for continuous-time nonlinear
systems, with formal stability guarantee. We take an ADP approach to synthesize a value
function in the form of a NN, which serves a Lyapunov function for stability certification,
verified by an SMT solver. By imposing an extra condition on the Lie derivative of the
network, the value network simultaneously functions as approximate HJB equation, which is
subsequently used to improve the policy in a process called Formal Neural Policy Iteration
(FNPI).

1-5 Thesis outline

The outline of the remainder of this thesis is as follows. The preliminary theory used in this
thesis is given in Chapter 2. Conditions for stability, safety and optimality, as well as an
introduction to and formal verification of NNs are discussed. This chapter concludes with
the problem statement. In Chapter 3, the developed formal controller synthesis method is
presented. The method is subjected to a number of case studies, which are evaluated and
discussed in Chapter 4. This thesis is concluded with an overall conclusion and suggestions
for future work in Chapter 5.

Master of Science Thesis Jonathan Klein Schiphorst

8 Introduction

Jonathan Klein Schiphorst Master of Science Thesis

Chapter 2

Preliminaries and Problem Statement

In this chapter the preliminary theory used in this thesis is covered. Stability, safety and
optimality certification is adressed in Section 2-1, which involves finding a certificate func-
tion satisfying specific conditions. In this work, the certificate functions will be represented
by Neural Networks (NNs). Therefore, we cover the fundamentals of NNs and methods to
verify relevant properties of NNs in Section 2-2. This chapter is concluded with the problem
statement in Section 2-3.

2-1 Conditions for stability, safety and optimality

We address the synthesis of optimal controllers for n-dimensional continuous-time dynamical
systems, described by

ẋ(t) = f(x(t),u(t)), x(0) = x0, (2-1)

where x(t) ∈ X ⊆ Rn denotes the state vector, u(t) ∈ U ⊆ Rm denotes the input vector, and
f : X × U → Rn is a Lipschitz-continuous vector field. X and U define the state space and
input space of the system, respectively. The input is determined by the policy

u(t) = π(x(t)), (2-2)

which is a mapping from state to input, π : X → U ⊆ Rm. Combining Equations (2-1) and
(2-2) results in a closed-loop system, given by ẋ(t) = f(x(t), π(x(t))).

The certification of stability, safety and optimality of a dynamical system involves finding
a certificate function satisfying certain conditions on both the function itself and its time
derivative, which is equal to the Lie derivative with respect to vector field f .

Definition 1 (Lie derivative). The Lie derivative of a continuously differentiable scalar func-
tion G : X → R, with respect to an n-dimensional vector field f , is defined as

Ġ(x) = ∇G(x) · f(x) =
n∑
i=1

∂G

∂xi

dxi
dt

Master of Science Thesis Jonathan Klein Schiphorst

10 Preliminaries and Problem Statement

First, let us consider stability. A system is stable if the trajectories of the system stay
bounded. Asymptotic stability guarantees all solutions that start out near the equilibrium
point will eventually converge to the equilibrium.

Definition 2 (Asymptotic stability [73]). Consider the system in (2-1) defined over domain
D ∈ Rn, which contains the origin, and f(0) = 0. The equilibrium point x = 0 of (2-1) is
stable if for each ε > 0 there exists a δ(ε) > 0, such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀t ≥ t0.

The system is asymptotically stable if the equilibrium is stable and, for some δ > 0,

‖x(t0)‖ < δ =⇒ lim
t→∞
‖x(t)‖ = 0.

Aleksandr Lyapunov proved for nonlinear systems that the existence of a positive definite
function decreasing along the solution trajectories is a sufficient condition for asymptotic
stability [41].

Theorem 1 (Lyapunov function for stability certification [73]). Consider the system in (2-1)
and domain of interest D ⊆ Rn, which contains the origin, and f(0) = 0. If there exists a
continuously differentiable function V : X → R that satisfies

V (0) = 0, V (x) > 0 ∀x ∈ {D | x 6= 0}, V̇ (x) ≤ 0 ∀x ∈ D, (2-3)

then the origin is stable. Moreover, if

V (0) = 0, V (x) > 0 ∀x ∈ {D | x 6= 0}, V̇ (x) < 0 ∀x ∈ D\{0}, (2-4)

then V is a Lyapunov function and the system is asymptotically stable at the origin.

Intuitively, a Lyapunov function maps the system states x into energy-like values which, by
the conditions of (2-4), decrease over time along the system trajectories and are bounded from
below. Lyapunov stability does not guarantee that the trajectories of a system will not visit
certain (bad) states. A solution of an asymptotically stable system may arbitrarily diverge
from the equilibrium point before eventually converging to the equilibrium. To address this,
set invariance theory was used to provide conditions that prove safety, i.e. any trajectory
starting inside an invariant set will never reach the complement of the set [42].

Theorem 2 (Barrier function for safety certification [43]). Consider the system in (2-1),
initial set X0 and unsafe set Xu. If there exists a continuously differentiable function B :
X → R, that satisfies

B(x) ≤ 0 ∀x ∈ X0, B(x) > 0 ∀x ∈ Xu, Ḃ(x) ≤ 0 ∀x ∈ {x ∈ D | B(x) = 0}, (2-5)

then B is a Barrier function and the system is safe, i.e. all trajectories starting in X0 will
never reach Xu.

Stability and safety are qualitative specifications which the system either satisfies or violates.
A quantitative specification for dynamical systems is optimality, which requires the control

Jonathan Klein Schiphorst Master of Science Thesis

2-1 Conditions for stability, safety and optimality 11

law to minimize the total cost over a certain period of time, defined by
∫ T

0 e−ρt`(x, π(x))dt.
In order to assess whether a policy is optimal, a so-called value function

Jπ(x) =
∫ T

0
e−ρt`(x, π(x))dt, (2-6)

is introduced, which defines for each state the discounted additive cost over horizon T . In
this work, we consider the undiscounted (ρ = 0) infinite horizon (T → ∞) case. The value
function corresponding to the optimal policy π∗(x), is a solution to the Hamilton-Jacobi-
Bellman (HJB) equation, which is a sufficient condition for optimality.

Theorem 3 (Value function for optimality certification [66]). Consider the system in (2-1)
and the infinite-horizon additive cost, defined by value function J(x(t)) =

∫∞
0 `(x(t), π(x(t)))dt.

Suppose J(x(t)) is a solution to the HJB equation, i.e. J is continuously differentiable in x(t)
and the following holds

0 = min
u∈U

[
`(x(t),u(t)) + J̇(x(t),u(t))

]
, ∀x ∈ X. (2-7)

Suppose also that π∗(x) attains the minimum in equation (2-7) for all x. Further assume that
the control input trajectory, u∗(t) = π∗(x(t)) along any solution is piecewise continuous as a
function of t, and that there exists at least one equilibrium, xe, with f(xe, π∗(xe)) = 0 and
J(xe) = 0. Then J is equal to the optimal value function, J(x) = J∗(x) for all x, and the
control trajectories u∗(t) are optimal.

The conditions of Theorem 2-4, 2-5 and 2-7 give sufficient conditions for stability, safety
and optimality, respectively. These specifications can be realized by synthesizing multiple
certificate functions, or by combining specifications into one certificate function. In this
work, we synthesize the value function J(x(t)) to serve as a candidate Lyapunov function.
To this end, we pose the following conditions on the cost function and on the policy:

π(0) = 0, (2-8a)
`(x, π(x)) > 0, ∀x 6= 0, (2-8b)
`(0, π(0)) = 0. (2-8c)

If these conditions are met, J(x(t)) complies with the conditions from 2-4 and therefore
guarantees stability.

Combining stability and safety into one certificate function is less trivial, as the conditions in
Equation (2-3) and (2-5) are conflicting. In order to achieve safety, one has to synthesize a
barrier function which is negative for all initial states and positive for all unsafe states, whereas
for safety the Lyapunov function is strictly positive everywhere except at the equilibrium
point. Stability and safety certificates are successfully combined in [74] by taking the weighted
sum of two independently designed certificate functions, and [75] provides conditions for a
single function to serve as a Lyapunov and barrier function.

Master of Science Thesis Jonathan Klein Schiphorst

12 Preliminaries and Problem Statement

2-2 Neural networks

Neural Networks (NNs) are widely used in numerous fields of machine learning, popular due to
their expressive power and flexibility. NNs with at least one hidden layer and non-polynomial
activation function are universal function approximators, which can, given enough parameters,
approximate any function and its derivatives to arbitrary precision [76, 77]. Because of this
property, NNs are suitable to serve as certificate functions. In this section we cover the
fundamentals of NNs and how they are trained. Subsequently, we will discuss how to verify
certain properties of NNs to be able to formally serve as certificate functions.

2-2-1 Fundamentals

Consider an n-layer NN that represents a function y = f(x) with input x ∈ Dx ⊆ Rk0 and
output y ∈ Dy ⊆ Rkn , with k0 and kn the input and output dimension, respectively. Each
layer i in f is a function fi : Rki−1 → Rki which maps its input zi−1 of dimension ki−1 to the
output zi with dimension ki:

zi = fi (zi−1) = σi (Wizi−1 + bi) , (2-9)

where zi−1 first undergoes a linear transformation ẑi := Wizi−1 + bi, parameterized by
weight matrix Wi and bias vector bi ∈ Rki . Note that z0 = x and zn = y. Subsequently,
ẑi undergoes an element-wise activation function σi : Rki → Rki . When stacking the layers
together, one ends up with the full representation of the NN function:

f = fn ◦ fn−1 ◦ · · · ◦ f1, (2-10)

where ◦ denotes function composition. Examples of popular activation functions are the
Rectified Linear Unit (ReLU), sigmoid and tanh. However, to be able to use a NN
as certificate function, it should be continuously differentiable, which the ReLU activation
function is not. We therefore consider the Sigmoid Linear Unit (SiLU) activation function
[78], which is a smooth approximation of the ReLU activation function, defined by SiLU(x) =

x

1 + e−x
. The output of the ReLU and SiLU activation functions and their derivative are shown

in Figure 2-1.

2-2-2 Training

The parameters of the weight matrices and bias vectors of each layer are lumped into the
parameter vector θ. To obtain the desired network parameters, the network is subjected to
a learning process called training. A popular training method is back-propagation [79] in
conjunction with a gradient based optimization method [80]. During this process, a perfor-
mance criterion of the networks outputs, captured in a so-called loss function L(f(x)), is to
be minimized. This is done by calculating the partial derivatives of the loss function with
respect to the network parameters, i.e. ∇θL(f(x)). The partial derivatives are efficiently
calculated by a technique called automatic differentiation [81], in which the partial derivative
is propagated backwards through the network.

Jonathan Klein Schiphorst Master of Science Thesis

2-2 Neural networks 13

6 4 2 0 2 4 6
x

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

(x
)

Output of activation functions
SiLU(x)
ReLU(x)

6 4 2 0 2 4 6
x

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

d dx
(x

)

Derivative activation functions
d
dx SiLU(x)
d
dx ReLU(x)

Figure 2-1: Left: output of the ReLU and SiLU activation function, Right: derivative of the
ReLU and SiLU activation function

Subsequently, the network parameters are updated in the direction of the negative gradient.
A widely used optimization step is gradient descent

θk+1 = θk − λ∇θL(f(x)),

where λ denotes the learning rate. Other update rules can be used, such as Adam [82] or
AdaGrad [83], which can result in faster convergence.

2-2-3 Neural network verification

Because of the black-box nature of NNs, it is hard to guarantee certain input-output properties.
NNs trained on large sets of data may still output incorrect results in unseen environments
and are prone to adversarial attacks [84]. To use a NN as a certificate function, one needs a
verification method, that is able to verify whether certain input-output relationships of the
network hold, i.e. the following assertion:

x ∈ X ⇒ y = f(x) ∈ Y, (2-11)

where X ⊆ Dx is a set of inputs and Y ⊆ Dy is a set of outputs.

In the context of formal controller synthesis, important properties of the verification tech-
niques are soundness and completeness [85]. In order for a technique to be sound it has to
be correct when claiming the assertion holds. Completeness requires that the solver never
returns unknown and it has to be correct when declaring the assertion is violated.

When using a NN as a certificate function, one has to check whether the certificate conditions
(e.g. of Equation (2-3), (2-5) or (2-7)) hold. These conditions can be captured in an assertion
like the one in Equation (2-11). Techniques that achieve this are categorized into three groups:
primal optimization, dual optimization and symbolic analysis.

In primal optimization, the structure of the network is encoded as constraints to an optimiza-
tion problem. Due to the piecewise linearity of ReLU activation functions, a network with
ReLU activation functions can be encoded as a set of mixed integer linear constraints, which
turns the optimization problem into a Mixed-Integer Linear Programming (MILP) problem

Master of Science Thesis Jonathan Klein Schiphorst

14 Preliminaries and Problem Statement

[86]. Methods that use this approach are NSVerify [87] and MIPVerify [88], which are both
complete. Both methods produce counterexamples for which the assertion is violated. In
addition, MIPVerify also returns the maximum allowable disturbance for states to stay in the
allowable output set Y.

The methods ILP [89] and Reluplex [90] transform networks with ReLU activation functions
into a set of linear constraints, and use Linear Programming (LP) techniques, such as the
simplex method, to find the maximum allowable disturbance. In addition Reluplex performs
tree search in the function space, which makes it a complete approach. In the ILP method,
the network is linearized at a reference point, which makes this method incomplete, as it
only considers one linear segment of the network. Sherlock [91] combines a series of MILP
feasibility problems alternating with local search steps. Sherlock is not a complete method.

Instead of encoding the structure of the network as constraints, one could also consider dual
optimization. The objective in dual optimization correspond to the constraints in primal
optimization, which makes the objective more complicated, but the overall problem might
be easier to solve. Constructing the dual problem from the primal problem often involves
relaxation methods such as Lagrangian relaxation, which makes these approaches incomplete
[85]. Efforts in this category include Duality [92], ConvDual [93] and Certify [94]. Duality
can handle any type of activation function and Certify allows activation functions that are
differentiable everywhere except for countably many points. ConvDual only handles the ReLU
activation function.

To verify the Lyapunov conditions of Equation (2-3), one could also unroll the NN into a
symbolic expression, as is done in [55]. Subsequently, Satisfiability Modulo Theory (SMT)
solvers can be used to verify that the assertions hold or return counterexamples, which could
be used in a Counterexample-Guided Inductive Synthesis (CEGIS) scheme. For an overview
of the theory and recent advancements of SMT solvers, one can refer to [37]. Popular SMT
solvers are Z3 [95], which handles NNs with polynomial activation functions, and dReal [96],
which is able to reason over transcendental functions.

Instead of verifying the certificate conditions throughout a continuous subset, one could also
verify a finite set of points and exploit the Lipschitz constant of the certificate function, to
extend the verification to an infinite set [97].

The different verification methods discussed in this section, the type of activation functions the
methods allow, the verification approach and whether the method is complete are summarized
in Table 2-1.

Jonathan Klein Schiphorst Master of Science Thesis

2-3 Problem statement 15

Table 2-1: An overview of verification methods for neural networks

Category Method name Activation Approach Completeness

Primal optimization NSVerify [87] ReLU Naive MILP Yes
MIPVerify [88] ReLU and Max MILP with bounds Yes
ILP [89] ReLU Iterative LP No
Reluplex [90] ReLU Simplex Yes
Sherlock [91] ReLU Local and global search No

Dual optimization Duality [92] ReLU Lagrangian relaxation No
ConvDual [93] ReLU Convex relaxation No
Certify [94] Differentiable Semidefinite relaxation No

Symbolic analysis SMT-based [55] Differentiable NN as symbolic expression No
Sampling-based [97] Lipschitz continuous Lipschitz method No

2-3 Problem statement

In this section we define the framework for the to be designed controller synthesis procedure,
based on the reviewed preliminaries of Section 2-1. The research goal states that the synthesis
procedure should produce controllers that are (near-)optimal and have stability and safety
guarantee. We split the research goal into two sub-goals:

Problem 1 (Optimal stability). Provided with a cost function, synthesize a controller with
formal guarantee of stability, that minimizes the the infinite horizon additive cost.

Problem 2 (Safe and optimal stability). Provided with a cost function, synthesize a controller
with formal guarantee of stability and safety, that minimizes the the infinite horizon additive
cost.

To compare the performance of our controllers with controllers from related literature, we
introduce a third problem:

Problem 3 (Cost minimization). Provided with a cost function, the synthesized controller
should attain a lower infinite horizon additive cost than a linear controller, where the linear
controller is an Linear-Quadratic Regulator (LQR) controller for the linearized system.

To meet these requirements, we utilize certificate functions to guarantee stability and safety.
We develop a synthesis procedure based on Approximate Dynamic Programming (ADP), in
which two NNs are trained to serve as policy and as certificate function. By complying with
the conditions from Equations (2-8), the NN serves as a value function, as well as a Lyapunov
function. To assure the correctness of the procedure, the conditions from Theorem 1 will be
checked by one of the techniques from Section 2-2-3.

Master of Science Thesis Jonathan Klein Schiphorst

16 Preliminaries and Problem Statement

Jonathan Klein Schiphorst Master of Science Thesis

Chapter 3

Methodology

In this chapter, we detail the methodology used to tackle Problem 1, 2 and 3. To this
end, we present a framework based on deep generalized policy iteration [67], called Formal
Neural Policy Iteration (FNPI). The method yields two Neural Networks (NNs), a policy
network, which stabilizes the system and minimizes cost, and a value network, which serves
as a Lyapunov function that provides stability guarantee.

The procedure is provided with a dynamical system, a domain of interest, a cost function,
network topologies, an initial policy and a stopping condition. Subsequently the synthesis
procedure will occur, which consists of four routines: initialization, neural policy evaluation,
neural policy improvement, and system verification.

First, during initialization, the policy network is trained to approximate the initial policy.
Thereafter, the procedure alternates between neural policy evaluation, during which the value
network is trained to represent the value function for the current policy, and neural policy
improvement, in which the policy network is optimized with respect to the value function.
Before the procedure is allowed to switch between these routines, a system verification step will
occur, which guarantees stability of the controller throughout the procedure. The procedure
terminates when a stopping condition has been met. A visual representation of how these
routines interact is given in Figure 3-1.

This chapter is further organized as follows. First, we describe the four routines in detail,
starting with initialization in Section 3-1-1. Next, neural policy evaluation is described in
Section 3-1-2, neural policy improvement is described in Section 3-1-3 and system verification
is covered in Section 3-1-4. Potential stopping conditions are discussed in Section 3-1-5. We
have implemented the procedure described in this chapter in a prototype tool called FNPI,
which is discussed in Section 3-2.

Master of Science Thesis Jonathan Klein Schiphorst

18 Methodology

Jω0 , πθ0

Terminate

NeuralPolicyImprovement
Improve π

Yes

No

No

SC?

Yes

No Yes

Dynamical system
Domain

Cost function
Topologies

Initial policy
Stopping condition

Initialization
Initialize policy network

CE?

CE?

SystemVerification
Check certificate conditions

SystemVerification
Check certificate conditions

NeuralPolicyEvaluation
Approximate Jπ

Figure 3-1: Block diagram of Formal Neural Policy Iteration. CE denotes counter-example. SC
denotes stopping condition.

3-1 Formal Neural Policy Iteration

3-1-1 Initialization

Upon initialization, the following entities are to be provided to the procedure:

1. A dynamical system.

2. A domain of interest.

3. A cost function.

4. The topologies of the policy and value networks.

5. An initial admissible policy.

6. A stopping condition.

Potential stopping conditions will be discussed in Section 3-1-5. The other entities and the
conditions they have to abide by will be discussed hereafter.

Jonathan Klein Schiphorst Master of Science Thesis

3-1 Formal Neural Policy Iteration 19

Let us consider nonlinear continuous-time dynamical systems of the form

ẋ(t) = f(x(t),u(t)), x(0) = x0, (3-1)

where x(t) ∈ X ⊆ Rn denotes the state vector, u(t) ∈ U ⊆ Rm denotes the input vector, and
f : X × U → Rn is a Lipschitz-continuous vector field. X and U define the state space and
input space of the system, respectively. Domain of interest D ⊂ Rn is a compact set that
contains the origin of the system. We assume the plant is stabilizable on D at the origin.
That is, there exists an admissible policy π(x(t)), where u(t) = π(x(t)). such that the system
is asymptotically stable on D [67].

Definition 3 (Admissible policy [98]). A control policy π(x(t)) = u(t) is defined as admissible
with respect to (3-2) on D, denoted by π(x(t)) ∈ Ψ(D), if π(x(t)) is continuous on D,
π(0) = 0, π(x(t)) stabilizes (3-1) on D, and ∀x0 ∈ D, J(x0) is finite.

Furthermore, consider cost function `(x(t),u(t)). In order to make the value network serve
as a Lyapunov function, the cost function should have the following properties:

`(x(t), π(x(t))) > 0, ∀x 6= 0, `(0, π(0)) = 0.

Lastly, a network topology comprises the amount of layers, the amount of nodes per layer,
the activation function per layer and the learning rate α of the network. The output of
the value network Jω and policy network πθ are defined by parameter vectors ω and θ,
respectively. Once these entities are provided to the procedure, the initial admissible policy
will be approximated by the policy network, which we denote by πθ0 . In our work, we use the
Linear-Quadratic Regulator (LQR) of the linearized system around the origin, unless stated
otherwise. Afterwards, the method transitions to the neural policy evaluation routine.

3-1-2 Neural Policy Evaluation

In the neural policy evaluation step, the value network is trained to approximate the value
function with respect to the current policy and cost function, i.e

Jω(x(t)) ≈
∫ ∞
t

`(x(t), πθ(x(t)))dt. (3-2)

In order to make this improper integral converge, the evaluated policy needs to be admissible.

The differential equivalent of Equation (3-2) is the associated Hamiltonian of the system
[66,67,98]

H

(
x(t), πθ(x(t)), ∂Jω(x(t))

∂x

)
= `(x(t), πθ(x(t))) + ∂Jω(x(t))

∂x
f(x(t), πθ(x(t))), (3-3)

for which the following holds if equipped with an admissible policy

H

(
x(t), πθ(x(t)), ∂Jω(x(t))

∂x

)
= 0, Jω(0) = 0. (3-4)

This provides us with a method to train a the value network Jω to represent the value function.

Master of Science Thesis Jonathan Klein Schiphorst

20 Methodology

Specifically, we define value loss as the mean squared error between the Lie derivative of the
value network over vector field f and the cost function [67]:

Lv = 1
N

∑
xi∈X

(
`(xi, πθ(xi)) + ∂Jω(xi)

∂x
f(xi, πθ(xi))

)2
, (3-5)

where X denotes a set of samples of the state vector in D and N = |X |. To be able to
use the value network as a Lyapunov function, it is necessary that the Lie derivative over
vector field f is strictly smaller than zero everywhere except at the equilibrium point. The
value loss defined in Equation (3-5) does not explicitly account for this, therefore we define
an additional loss term, called certificate loss

Lc = 1
N

∑
xi∈X

max
(

0, ∂Jω(xi)
∂x

f(xi, πθ(xi))
)
, (3-6)

which penalises samples that violate the third condition of Equation (2-4). The NN parame-
ters are updated to minimize the weighted sum of the two loss terms described above:

LTot = βvLv + βcLc, (3-7)

where βv and βc are scaling terms to put emphasis on the loss terms. How these scaling terms
are determined is further explained in Section 3-1-4.

Pseudocode for the neural policy evaluation routine is given in Algorithm 1. To ensure
compliance with the first condition of Equation (2-4), i.e. Jω(0) = 0, we translate the value
network at each iteration, by removing the offset from the bias term of the last layer of the
network. This is denoted by the MoveOriginToZero() function in Algorithm 1. The routine
runs until a certain StoppingCondition has been satisfied. This could be when a maximum
number of iterations has occurred, or when LTot falls below a certain threshold.

Algorithm 1 Neural policy evaluation
1: procedure NeuralPolicyEvaluation(Jω, α, β, π, `,X)
2: N ← |X |
3: k ← 0
4: while not StoppingCondition do . e.g. max number of iterations
5: Lvk ← 1

N

∑N
i=1(`(xi, π(xi)) + ∂J

ωk
(xi)

∂x f(xi, π(xi)))2

6: Lck ← 1
N

∑N
i=1(max(0, ∂Jωk (xi)

∂x f(xi, π(xi)))
7: LTotk ← βvLvk + βcLck

8: ωk+1 ← ωk − α∇ωkLTotk . Update weights with preferred optimizer
9: MoveOriginToZero()

10: k ← k + 1
11: end while
12: end procedure

Jonathan Klein Schiphorst Master of Science Thesis

3-1 Formal Neural Policy Iteration 21

3-1-3 Neural Policy Improvement

The next step in the process is to improve the policy with respect to the current value function
in a routine called policy improvement. This is done by making the policy greedy, i.e. making
the policy minimize the current Hamiltonian

πθ(x(t)) = arg min
u

(
`(x(t),u(t)) + ∂Jω(x(t))

∂x
f(x(t),u(t))

)
. (3-8)

For input affine control systems of the form ẋ(t) = f(x(t)) + g(x(t))u(t) subject to a cost
function that is quadratic in the input, i.e. `(x(t),u(t)) = `1(x(t)) + u(t)>Ru(t), with R
symmetric and positive definite, the Hamilton-Jacobi-Bellman (HJB) equation takes the form

0 = min
u∈U

[
`1(x(t)) + u(t)>Ru(t) + ∂J(x(t))

∂x
[f(x(t)) + g(x(t))u(t)]

]
, (3-9)

which is quadratic in u(t). Therefore, the closed-form solution for the minimizing u(t) can
be obtained by taking the partial derivative with respect to u(t) and setting it equal to zero
[99], obtaining

0 = 2u(t)>R+ ∂J(x(t))
∂x

g(x(t)) (3-10)

=⇒ u∗(t) = −1
2R
−1g>(x(t))∂J

>(x(t))
∂x

(3-11)

However, using the result from Equation (3-11) will result in long verification times, as the
expression involves the partial derivative of J . Therefore, we approximate the optimal policy
with a NN, called the policy network, with the goal to obtain a more compact representation of
the optimal policy. The policy network parameters are updated by standard NN optimization
algorithms, to minimize the policy loss, defined as

Lp = 1
N

∑
xi∈X

(
`(xi, πθ(xi)) + ∂Jω(xi)

∂x
f(xi, πθ(xi))

)
, (3-12)

where X denotes a set of samples of the state vector in D and N = |X |. To ensure the policy
remains stabilizing during this routine, we add the same certificate loss of Equation (3-6) to
obtain the total loss term

LTot = βpLp + βcLc, (3-13)

where βp and βc are scaling terms to put emphasis on the loss terms. How these scaling terms
are determined is further explained in Section 3-1-4.

Pseudocode for the policy improvement procedure is given in Algorithm 2. To ensure compli-
ance with the condition of Equation (2-8a), i.e. π(0) = 0, we translate the policy network at
each iteration, by removing the offset from the bias term of the last layer of the network. This
is denoted by the MoveOriginToZero() function in Algorithm 2. The routine runs until a
certain StoppingCondition has been satisfied. Possible stopping conditions are a maximum
number of iterations has occurred, or when LTot decreases less than a certain threshold during
an update step.

Master of Science Thesis Jonathan Klein Schiphorst

22 Methodology

Algorithm 2 Neural policy improvement
1: procedure NeuralPolicyImprovement(J, α, β, πθ, `,X)
2: N ← |X |
3: k ← 0
4: while not StoppingCondition do . e.g. max number of iterations
5: Lpk ← 1

N

∑N
i=1(`(xi, πθk(xi)) + ∂J(xi)

∂x f(xi, πθk(xi)))
6: Lck ← 1

N

∑N
i=1(max(0, ∂J(xi)

∂x f(xi, πθk(xi)))
7: LTotk ← βpLpk + βcLck

8: θk+1 ← θk − α∇θkLTotk . Update weights with preferred optimizer
9: MoveOriginToZero()

10: k ← k + 1
11: end while
12: end procedure

3-1-4 System verification

In the system verification step, a Satisfiability Modulo Theory (SMT) solver is utilized to find
a state x that violates the certificate conditions of Equation (2-4) on domain of interest D.
An SMT solver is a tool to formally verifying first order logic formulae. Given such a formula,
the solver returns a point where the formula is satisfied, or unsat if no such point exists.
The solver can be used to verify the certificate conditions of Equation (2-4), by constructing
a first-order logic formula that expresses the negation of the these conditions. If the SMT
solver finds a state for which the logic formula is satisfied, the certificate conditions do not
hold and the state is considered a counter-example. If no such state can be found, the solver
returns unsat and the certificate function is guaranteed to adhere to the conditions.
In this work we use SMT solver dReal [96], which is able to reason over transcendental
functions. dReal is a δ-complete solver, which entails that when it returns an unsat decision
it will always be correct, but a sat decision comes with a δ-error bound. In practice this
might result in incorrect counter-examples, which can become problematic around the origin,
where the certificate function is close to zero. We therefore omit a small region with radius ε
around the origin to circumvent this complication.
The conditions for stability in Equation (2-4) are captured in the following first-order logic
formulae:

ΦL1(x) := ∀x ∈ D\
{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

x2
i ≤ ε

}
, V (x) > 0, (3-14a)

ΦL2(x) := ∀x ∈ D\
{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

x2
i ≤ ε

}
, V̇ (x) < 0. (3-14b)

Notice that the first condition of Equation (2-4), i.e. V (0) = 0, is not explicitly verified, as
the origin of the certificate network is translated to zero to ensure this property.

Jonathan Klein Schiphorst Master of Science Thesis

3-1 Formal Neural Policy Iteration 23

The conditions involving the Lie derivative of the certificate function are significantly more
costly than the conditions on the certificate function itself. In order to reduce the total
verification time, we prioritise the conditions of 3-14, such that the conditions on the Lie
derivative are only checked if the other condition is deemed unsat, similar to [54].

To this end, the weights, biases and activation functions of the policy network and value
network are used to represent the networks as symbolic expressions. The Lie derivative of the
value network over vector field f is constructed by taking the partial derivative and calculating
the dot product with the system dynamics. The symbolic expression of the policy network is
inserted into the system dynamics to create a single expression that solely depends on x.

Subsequently, dReal will check ΦL1 and ΦL2 . If the solver returns unsat, the method is
allowed to transition to the next routine. If a counter-example is found, the previous routine
was unsuccessful and has to be further elaborated. In this case, the counter-example will be
added to the training set and βc from Equation (3-7) will be increased to put more emphasis
on the certificate loss.

The method also allows for verification of barrier functions. The conditions for safety in
Equation (2-5) are captured in the following first-order logic formulae:

ΦB1(x) := ∀x ∈ X0, B(x) < 0, (3-15a)
ΦB3(x) := ∀x ∈ Xu, B(x) > 0, (3-15b)
ΦB3(x) := ∀x ∈ {x ∈ D | B(x) = 0} , Ḃ(x) < 0, (3-15c)

with initial set X0 ∈ D and unsafe set Xu ∈ D.

3-1-5 Stopping conditions

The system verification steps in FNPI ensure the policy remains stabilizing throughout the
process. Therefore, the process can be terminated any time a system verification step is suc-
cessfully completed. Figure 3-2 schematically illustrates how the routines of FNPI interact
in the ideal case. Because the process alternates between neural policy evaluation and neural
policy improvement, the value function and policy will be jointly driven towards their respec-
tive optimum. If the optimum has been attained, the conditions from Theorem 3 are met,
i.e.

`(x(t), π(x(t))) + J̇(x(t), π(x(t))) = 0, ∀x ∈ D.

If the process is terminated too early, the policy will likely be far from its optimum. On
the other hand, if the process runs for a large number of iterations, the synthesis time might
become intractable. We therefore propose the following stopping conditions, which the user
can adapt to its needs.

1. Maximum number of iterations. The user defines the amount of iterations after which
the process will terminate. If the user is not satisfied with the controller performance,
additional iterations can be performed.

2. Maximum synthesis time. The user defines the maximum amount of time the synthesis
procedure can consume. The procedure will return the last verified policy.

Master of Science Thesis Jonathan Klein Schiphorst

24 Methodology

Jω0 , πθ0

π = greed
y(J)

J = J π

Jω∗ , πθ∗N
P
E

N
P
E

N
P
E

N
P
I

N
P
I

N
P
I

Figure 3-2: Schematic view of Formal Neural Policy Iteration. NPE denotes neural policy evalu-
ation, NPI denotes neural policy improvement and the black circles indicate a system verification
step.

3. Policy improvement threshold. If during the neural policy improvement step the policy
loss of Equation (3-12) fails to fall below a user defined threshold, the policy will be
sufficiently close the the optimum and the process can therefore be terminated after a
final system verification step.

3-2 Software implementation of FNPI

The methodology discussed in this chapter has been implemented in a prototype tool called
FNPI. The learning of the network parameters is done with deep learning framework PyTorch
[100]. PyTorch’s dynamic computation graph allows for fast computation of the loss functions
defined in Equations (3-5), (3-6) and (3-12), which involve calculating the Lie derivative of
the network. The verification of the certificate conditions of Equations (2-4) and (2-5) is
done with SMT solver dReal. dReal’s delta-completeness allows for verification of nonlinear
inequalities over the reals, therefore permitting the use of nonlinear activation functions in
the networks.

The tool is available at: github.com/JonathanKLSCH/formal-neural-controller-synthesis. More
details on the structure of the tool is given in Appendix A.

Jonathan Klein Schiphorst Master of Science Thesis

Chapter 4

Results

In this chapter we subject the discussed procedure to various systems. First, in Section 4-1,
a linear system with quadratic cost is considered, to demonstrate that the method is able
to converge to the analytical solution. Section 4-2 presents a scalability study of verification
times with respect to the size of the certificate networks. In Section 4-3-2, we consider systems
with input and state constraints. Case studies on nonlinear plants are described in Section
4-4. Finally, the results are summarized and discussed in Section 4-5.

All experiments are performed on a laptop workstation running MacOS Big Sur 11.2.1, with
a 2 GHz Quad-Core Intel Core i7 processor and 8 GB 1600 MHz DDR3 RAM.

4-1 Verification of the procedure with linear systems

To verify the correctness of the synthesis method, we test the method on linear systems with
quadratic cost. There exists an analytical solution of the value function and policy, provided
by Linear-Quadratic Regulator (LQR) theory [2]. We show for the double integrator that,
after seven iterations, the method has converged to the analytical solution.

4-1-1 Derivation of the Linear Quadratic Regulator

Consider a system with linear dynamics ẋ = Ax + Bu and a quadratic cost function of the
form `(x, u) = x>Qx + u>Ru with symmetric matrices Q and R, which are positive semi-
definite and positive definite, respectively. Assuming the optimal value function takes the
form J∗(x) = x>Sx, the Hamilton-Jacobi-Bellman (HJB) equation takes the form

0 = min
u

[
x>Qx+ u>Ru+ 2x>SAx+ 2x>SBu

]
, (4-1)

Master of Science Thesis Jonathan Klein Schiphorst

26 Results

which is quadratic in u. The minimum of the function can be found by taking the partial
derivative with respect to u and setting it equal to zero

∂

∂u

[
x>Qx+ u>Ru+ 2x>SAx+ 2x>SBu

]
= 2u>R+ 2x>SB = 0 (4-2)

=⇒ u∗ = −R−1B>S︸ ︷︷ ︸
K

x (4-3)

Substituting u∗ back into 4-1 results in the Continuous Algebraic Riccati Equation (CARE),
which can be used to compute S:

0 = x>
[
Q− SBR−1B>S + SA+A>S

]
x. (4-4)

4-1-2 Double integrator

Consider a two-dimensional system with linear dynamics

ẋ =
[
0 1
0 0

]
x+

[
0
1

]
u (4-5)

and quadratic cost function `(x, u) = x>Qx + u>Ru with matrices Q =
[
1 0
0 1

]
and R = 1.

We consider domain of interest D = 0.1 ≤
√
x2

1 + x2
2 ≤ 3

The analytical solution of the optimal value function and optimal policy are, respectively,

J∗(x) = x>
[√

3 1
1
√

3

]
x, π∗(x) = −

[
1
√

3
]
x. (4-6)

For our method, we use a single-layer linear network without bias for the policy, i.e. π(x) =
−
[
k1 k2

]
x, initialized at K =

[
0.5 0.5

]
. The value function is approximated by a 2-5-1

value network J(x), with a quadratic activation function σ(x) = x2 for the middle layer and
linear activation function for the final layer.
After 7 iterations the controller gains are within 1e−4 of the analytical solution and the mean
squared error between J∗(x) and J(x) over 2601 samples, uniformly distributed between
x1 ∈ [−3, 3] and x2 ∈ [−3, 3], is 4e−4. Figure 4-1 shows the evolution of the controller gains
over 7 iterations. Figure 4-2 shows the output of J(x).
Next, the value network and policy network are passed on to the Verifier, which first trans-
forms the networks into their symbolic counterpart. Finally, the first-order logic formula of
Equation (3-14) is evaluated, for which dReal returned unsat. Therefore, the policy stabilizes
the system on D, as J(x) serves as a Lyapunov function.

4-1-3 Conclusion

In this section, we verified the correctness of the synthesis procedure, by showing the method
is able to converge to the analytical solution of the policy and the value function. Furthermore,
Satisfiability Modulo Theory (SMT) slover dReal confirms that the Lyapunov conditions hold
for the value network, therefore the value network is a Lyapunov function and formally verifies
stability.

Jonathan Klein Schiphorst Master of Science Thesis

4-2 Scalability of the method 27

1 2 3 4 5 6 7
Iteration

0.5

1.0

1.5

2.0

2.5

Ga
in

s

k *
1

k *
2

k1
k2

Figure 4-1: Evolution of the controller
gains over 7 iterations.

x1

3
2

1
0

1
2

3

x 2

3
2

1
0

1
2

3

J(x
)

0

10

20

30

40

Figure 4-2: Output of value network J(x)

4-2 Scalability of the method

In the previous section, we verified the correctness of the synthesis procedure, by demonstrat-
ing that the method is able to converge to the analytical solution and that the value function
can serve as a Lyapunov function. In the case study, we used relatively small networks for the
policy and the value function. For more intricate systems, such as systems with input and
state constraints or nonlinear systems, we need Neural Networks (NNs) that can sufficiently
approximate the value function and the policy. The expressiveness of NNs increases as the
amount of layers and nodes per layer increases, but the verification time increases as well.

To get a grasp on how the verification times scale with various network topologies, we syn-
thesized Lyapunov functions for a two-dimensional linear plant with one input. The value
and policy networks consist of one, two or three hidden layers with 4 to 100 nodes per layer.
The activation functions are restricted to be smooth, therefore Quadratic, Tanh and Sigmoid
Linear Unit (SiLU) activation functions are used. The policy network is initialized to approx-
imate the LQR solution. Thereafter, we synthesize Lyapunov functions for linear systems
with two states with one input, two states with two inputs, three states with one input and
finally four states with one input.

4-2-1 Value network scaling

Figure 4-3 depicts the verification times with various value network topologies for a two-
dimensional system. The policy is linear and the gains are initialized at the optimal solution,
where after the value network was trained until convergence. We can conclude that the
verification times of single hidden layer value networks grows approximately linear for all
activation functions, while the verification times two and three layer value networks grows
exponentially, regardless of the activation function.

Master of Science Thesis Jonathan Klein Schiphorst

28 Results

0 20 40 60 80 100
Nodes per layer

10 2

10 1

100

101

102

103

Ve
rif

ica
tio

n
tim

e
[s

]

1-layer Quadratic
2-layer Quadratic
3-layer Quadratic
1-layer Tanh
2-layer Tanh
3-layer Tanh
1-layer SiLU
2-layer SiLU
3-layer SiLU

Figure 4-3: Verification times for various value network topologies. × denotes that topology
was the maximum amount of nodes possible before the verification time limit was reached.

4-2-2 Policy network scaling

We conduct a similar experiment for the verification times of the system with various policy
network topologies. The value network is a 2− 20− 20− 1 network with quadratic activation
function for the hidden layers and linear activation for the final layer. The results are plotted
on log scale in Figure 4-4. We conclude that the verification times scale better compared to
when the value network is scaled, which can be explained by the fact that the value networks
Lie derivative has to be evaluated. However, verification times for two and three hidden layer
policy networks also grows exponentially.

0 20 40 60 80 100
Nodes per layer

100

101

102

103

Ve
rif

ica
tio

n
tim

e
[s

]

1-layer Quadratic
2-layer Quadratic
3-layer Quadratic
1-layer Tanh
2-layer Tanh
3-layer Tanh
1-layer SiLU
2-layer SiLU
3-layer SiLU

Figure 4-4: Verification times for various policy network topologies. × denotes that topology
was the maximum amount of nodes possible before the verification time limit was reached.

4-2-3 Single layer scaling

The scaling experiments from the previous paragraphs show, for both the value network and
policy network, linear scaling for single hidden layer networks and exponential scaling for two
and three hidden layer networks. Motivated by these results and the fact that a network
with sufficient nodes in a single hidden layer with non-polynomial activation function is a

Jonathan Klein Schiphorst Master of Science Thesis

4-2 Scalability of the method 29

0 200 400 600 800 1000
Nodes in the hidden layer of the policy and value networks

10 1

100

101

Ve
rif

ica
tio

n
tim

e
[s

]

1-layer SiLU

Figure 4-5: Verification times for sin-
gle hidden layer policy and value net-
works.

0 20 40 60 80 100
Nodes in the hidden layer of the policy and value networks

10 1

100

101

102

103

Ve
rif

ica
tio

n
tim

e
[s

]

2-states 1-input
2-states 2-input
3-states 1-input

Figure 4-6: Verification times for var-
ious system dimensions. × denotes the
topology was the maximum amount of
nodes possible before the verification
time limit was reached.

universal function approximator [76, 77], we evaluate how the verification times scale when
using a single layer network with SiLU activation for both the policy as the value function.
The results are shown in Figure 4-5, which shows approximately linear scaling up to 1000
nodes.

4-2-4 Higher-dimensional systems

The experiments in the Sections 4-2-1, 4-2-2 and 4-2-3 were conducted on a two-dimensional
linear system with one input. Networks with a single hidden layer with SiLU activation
function were found to have good function approximation capabilities while having a short
verification time. In this section we investigate how the verification times scale with other
system dimensions when using single hidden layer networks with SiLU activation functions
for both the policy and value network.

The systems considered are linear with two states with one input, two states with two inputs,
three states with one input and finally four states with one input. The results are plotted in
Figure 4-6. It becomes apparent that the amount of inputs has little effect on the verification
time, as the verification times for systems with two states and one or two inputs is of the
same order of magnitude. The amount of states, however, does affect the verification time
significantly, as the verification times for a system with three states and one input is three
orders of magnitude higher, compared to a system with two states and one input. Further-
more, we were unable to verify a four dimensional system with one input, as the verification
time limit was reached for all network topologies.

4-2-5 Conclusion

From the results from Sections 4-2-1 and 4-2-3, we conclude that the use of single hidden layer
networks with non-polynomial activation functions is sufficient for the function approximation
capabilities of the network, and beneficial to the verification time. This is in contrast to [54],
where they use deep networks (up to 10 layers) with linear and polynomial activation functions
over adjacent layers.

Master of Science Thesis Jonathan Klein Schiphorst

30 Results

4-3 State & input constraints

In the previous sections we demonstrated that, for linear systems with quadratic cost, the
method is able to converge to the analytical solution and the value network serves as a
Lyapunov function. Furthermore, we concluded that single hidden layer networks make the
best trade-off between approximation capabilities and verification time.

In this section we demonstrate the flexibility of the synthesis framework, by showing we can
use input constraints and cost function shaping to achieve more complex control specifications.

4-3-1 Input constraints

In order to enforce input constraints, we can append the policy network with an extra layer
with bounded activation function, such as HardTanh(x) = c ·max(−1,min(1, x)), where pos-
itive constant c is the weight parameter of the layer. By setting the bias and weight of the
final layer to zero and c, respectively, and freezing the parameters thereafter, the outputs
remain constraint to [−c, c] throughout the synthesis procedure.

We take the double integrator of Equation (4-5), a 2 − 300 − 1 − 1 policy network with
SiLU − Linear − HardTanh activation and a 2 − 300 − 1 value network with SiLU − Linear
activation. The policy network is initialized at the LQR solution, but truncated at [−2, 2].
We perform a neural policy evaluation step, to train the value network, which is subsequently
verified to serve as a Lyapunov function. The output of the policy network and the value
network are depicted in Figure 4-7 and Figure 4-8, respectively.

x1

6
4

2
0

2
4

6

x 2

6
4

2
0

2
4

6

(x
)

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

Figure 4-7: Constrained policy for the dou-
ble integrator

x1

6
4

2
0

2
4

6

x 2

6
4

2
0

2
4

6

J(x
)

0
20
40
60
80
100
120
140
160

Figure 4-8: Value function for the double
integrator with constrained policy.

Jonathan Klein Schiphorst Master of Science Thesis

4-3 State & input constraints 31

4-3-2 State constraints via cost function shaping

In the policy evaluation step of Section 3-1-2, the value network is trained to match its Lie
derivative with the negative cost function, i.e. ∂J(x(t))

∂x f(x(t),u(t)) ≈ −`(x(t),u(t)). The
cost function can, therefore, be used as a design tool to synthesize controllers with certain
specifications. The cost function is not restricted to be linear, but can consist of multiple
terms, as long as the cost function and the policy comply with the conditions from Equation
(2-8).

In the next two examples we show we can shape the cost function such that the synthesized
controllers avoid certain regions of the state space. Furthermore, we show that for one exam-
ple, the value function can serve as a barrier certificate, in order to give safety guarantees.

Velocity constraint Consider the double integrator system from Equation (4-5). The control
objective is to stabilize the system at the origin, while avoiding |x2| > 3. To this end, the
cost function, depicted in Figure 4-9, is a combination of quadratic cost `1 and an exponential
function `2, defined by

`1(x, u) = x>Qx+ u>Ru, (4-7)

`2(x) =
(
x2
b

)8
, (4-8)

`Tot(x, u) = `1(x, u) + `2(x), (4-9)

with Q =
[
1 0
0 0.001

]
, R = 0.01 and b = 0.97. For the policy and the value function, we use

two 2 − 500 − 1 NNs with learning rate α = 0.01, SiLU activation functions for the hidden
layer and a linear activation function for the last layer. For the initial policy, we use linear
controller obtained by calculating the LQR gains, using `1 only.

The procedure performed three iterations. Figure 4-10 shows the trajectories for various
starting conditions of the double integrator, subject to the initial policy and the improved
policy after one and three iterations. The improved controllers are able to avoid states where
|x2| > 3, while remaining stabilizing. Moreover, all trajectories attain a lower additive cost
compared to the initial policy, as detailed in Table 4-1.

Table 4-1: Cost comparison between the initial policy and the optimized policy for 10 trajectories
of the double integrator with velocity constraint.

Trajectory 1 2 3 4 5 6 7 8 9 10

Initial policy 2.77× 106 4.66× 105 4.67× 104 1.86× 103 1.90× 101 1.90× 101 1.86× 103 4.67× 104 4.66× 105 2.77× 106

3rd iteration 111.31 45.06 20.72 8.80 2.21 2.28 9.37 24.97 83.43 360.03

Difference 2.77× 106 4.66× 105 4.67× 104 1.85× 103 1.68× 101 1.67× 101 1.85× 103 4.67× 104 4.66× 105 2.77× 106

Master of Science Thesis Jonathan Klein Schiphorst

32 Results

x1

4
2

0
2

4

x 2

3
2

1
0

1
2

3

To
t

2000

4000

6000

8000

10000

12000

Figure 4-9: Shape of cost function `T ot.

4 2 0 2 4
x1

8

6

4

2

0

2

4

6

8

x 2

Initial controller
1st iteration
3rd iteration

Figure 4-10: Trajectories of the double in-
tegrator subject to the initial linear policy,
the resulting policy after one iteration and
after three iterations. The color of the ×
marks denotes which policy attains the low-
est additive cost for that trajectory.

Specific region constraint Consider again the double integrator system from Equation (4-5).
The cost function, depicted in Figure 4-11, is a combination of quadratic cost `1 and a two-
dimensional Gaussian function `2, defined by

`1(x, u) = x>Qx+ u>Ru, (4-10)

`2(x) = P · exp
(
−(x1 − c1)2 + (x2 − c2)2

2σ2

)
, (4-11)

`Tot(x, u) = `1(x, u) + `2(x), (4-12)

with Q =
[
1 0
0 1

]
, R = 1, P = 180, σ = 0.4 and [c1, c2] = [2.4,−1.7]. For the policy and the

value function, we use two 2−200−200−1 NNs with learning rate α = 0.01, SiLU activation
functions for the hidden layers and a linear activation function for the last layer. For the
initial policy, we use linear controller obtained by calculating the LQR gains, using `1 only.

The procedure performed two iterations. Figure 4-12 shows the trajectories for various start-
ing conditions of the double integrator subject to the initial policy and the improved policy
after one and two iterations. The improved controllers are able to avoid the region of states
where the effect of `2 is significant. As detailed in Table 4-2, trajectories 6−10 attain a lower
additive cost when subject to the optimized policies. For trajectories 1 − 5, however, the
linear controller attains a lower additive cost. As the effect of `2 is negligible for trajectories
1 − 5, and the linear policy is optimal with respect to `1, deviations from these trajectories
will be sub-optimal. Furthermore, the NN used for this experiment is too large to be verified
by dReal in reasonable time.

Jonathan Klein Schiphorst Master of Science Thesis

4-3 State & input constraints 33

Table 4-2: Cost comparison between the initial policy and the optimized policy for 10 trajectories
of the double integrator with specific region constraint.

Trajectory 1 2 3 4 5 6 7 8 9 10

Initial policy 4.33× 10−1 1.73 3.93 8.24 2.44× 101 6.65× 101 1.12× 102 1.33× 102 1.38× 102 1.38× 102

2nd iteration 7.58× 10−1 3.01 6.10 1.34× 101 2.58× 101 4.48× 101 6.37× 101 7.82× 101 8.75× 101 6.73× 101

Difference −3.25× 10−1 −1.28 −2.16 −5.11 −1.30 2.16× 101 4.79× 101 5.47× 101 5.03× 101 7.04× 101

x1

4
2

0
2

4

x 2

4
2

0
2

4

To
t

50

100

150

200

Figure 4-11: Shape of cost function `T ot.

1 0 1 2 3 4 5
x1

5

4

3

2

1

0

1

x 2

Initial controller
1st iteration
2nd iteration

Figure 4-12: Trajectories of the double in-
tegrator subject to the initial linear policy,
the resulting policy after one iteration and
after two iterations. The color of the ×
marks denotes which policy attains the low-
est additive cost for that trajectory.

Master of Science Thesis Jonathan Klein Schiphorst

34 Results

4-3-3 Using the value function as a barrier function.

In this section, we investigate the possibility of using the value function as a barrier function
for safety certification. The value network can be translated, by adding the offset to the bias
term of the last layer of the network. Hereby, a certain level set of the value network can
be translated to zero, rendering the interior of that level set negative and the exterior of the
level set positive. Since the Lie derivative of the value network is strictly negative everywhere
except at the origin, the conditions from Theorem 2 are met and the value function serves as
a barrier function. Therefore, all trajectories starting in the interior of the level set will never
reach the exterior of the level set.
Figure 4-13 and 4-14 show the level sets of the value functions from the examples of the
previous section. The level sets in red are fully contained in the safe region of the respective
experiments. One can conclude from Figure 4-13, that, for the velocity constraint problem,
the procedure adapts the level set to the safe region to a certain extent. Moreover, the level
set is significantly larger than the level set of the value function of the initial policy. However,
for the specific region constraint problem, the level set does not exclude the constraint region.
Although the trajectories in Figure 4-12 are able to avoid the constraint region, the value
function in this experiment does not have the adequate shape to serve as a barrier function
and therefore the system and policy are not verifiably safe.

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Figure 4-13: Left: level sets of the value function for the velocity constraint example, after three
iterations of the procedure. Right: level sets of the value function of the linear policy.

4-3-4 Conclusion

In this section, we demonstrated the versatility of the method, by showing it is able to enforce
input constraints and state constraints in specific cases. Input constraints are realized by
appending the policy network with an extra layer with bounded activation function. State
constraints can be enforced by designing the cost function in such a way that the value function
can serve as a barrier function. However, in the specific region constraint example, we were
not able to successfully utilize the value function as a barrier function. More constructive
methods to design the cost function are needed in this regard.

Jonathan Klein Schiphorst Master of Science Thesis

4-4 Nonlinear systems 35

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2
Figure 4-14: Left: level sets of the value function for the specific region constraint example,
after two iterations of the procedure. Right: level sets of the value function of the linear policy.

4-4 Nonlinear systems

In this section we test the method on three nonlinear systems. First, Dubins car from [101]
is considered. Next, the Duffing oscillator from [57] is examined. Finally, we test the method
on the inverted pendulum from [55].

4-4-1 Dubins car

In this example, the control objective is to steer a car with constant velocity to track a
reference trajectory, which is a straight line along the x-axis in this case. As depicted in
Figure 4-16, the states of the system are the distance error de, which is the absolute distance
between the car and the reference trajectory, and the angle error θe between the heading of
the car and the reference trajectory. The equations of motion of Dubins car are described by[

ḋe
θ̇e

]
=
[
v · sin(θe)

0

]
+
[

0
−1

]
u, (4-13)

with velocity v = 1. We use a quadratic cost function `(x, u) = x>Qx + u>Ru, with Q =[
1 0
0 1

]
and R = 1. For the policy and the value function, we use two 2 − 200 − 1 NNs with

learning rate α = 0.01, SiLU activation functions for the hidden layer and a linear activation
function for the last layer. We consider domain of interest D = 0.2 ≤

√
x2

1 + x2
2 ≤ 5

During initialization, the policy network is trained to approximate the LQR solution of the
linearized system (K =

[
−1 −

√
3
]
), after which two iterations of the procedure occur.

Figure 4-15 shows the initial policy and the optimized policies after each iteration.

Figure 4-17 shows several trajectories of the system when it is controlled by the initial policy,
the optimized policy after one iteration and the optimized policy after two iterations. Com-
pared to the initial policy, the optimized policy after two iterations attains a lower additive

Master of Science Thesis Jonathan Klein Schiphorst

36 Results

de

4
2

0
2

4 e
4

2
0

2
4

0

10
5
0
5
10

Initial policy

de

4
2

0
2

4 e
4

2
0

2
4

1

10.0
7.5
5.0
2.5

0.0
2.5
5.0
7.5

1st iteration

de

4
2

0
2

4 e
4

2
0

2
4

2

6
4
2

0
2
4
6

2nd iteration

Figure 4-15: The policies for Dubins car at initialization, after one iteration and after two
iterations of the method.

de

θe

y

x

Figure 4-16: Schematic view of Dubins car.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
de

6

4

2

0

2

4

6

e

Initial controller
1st iteration
2nd iteration

Figure 4-17: Trajectories of Dubins car,
subject to the initial linear policy, the re-
sulting policy after one iteration and after
two iterations. The color of the × marks
denotes which policy attains the lowest ad-
ditive cost for that trajectory

cost for 16 out of 24 trajectories. Furthermore, the optimized policies are able to stabilize
the system for all starting conditions, unlike the initial policy. An overview of synthesis times
and a detailed cost comparison of the trajectories are given and further discussed in Section
4-4-4.

4-4-2 Duffing oscillator

The Duffing oscillator is a nonlinear second-order differential equation, used as an approximate
model of many physical systems [102]. In this example, the control objective is to drive the
trajectories of the system to the origin. We consider the forced and damped version of the
Duffing oscillator, which results in the following equations of motion:[

ẋ
ẏ

]
=
[

y
−0.6y − x− x3

]
+
[
0
1

]
u. (4-14)

Jonathan Klein Schiphorst Master of Science Thesis

4-4 Nonlinear systems 37

x

6
4

2
0

2
4

6
y

6
4

2
0

2
4

6
0

40
30
20
10
0
10
20
30
40

Initial policy

x

6
4

2
0

2
4

6
y

6
4

2
0

2
4

6

1

20
15
10
5

0
5
10
15
20

1st iteration

x

6
4

2
0

2
4

6
y

6
4

2
0

2
4

6

2

20
15
10
5

0
5
10
15
20

2nd iteration

Figure 4-18: The policies for the Duffing oscillator at initialization, after one iteration and after
two iterations of the method.

We use a quadratic cost function `(x, u) = x>Qx+u>Ru, with Q =
[
2 0
0 1

]
and R = 0.1. For

the policy and the value function, we use two 2 − 300 − 1 NNs with learning rate α = 0.01,
SiLU activation functions for the hidden layer and a linear activation function for the last
layer. We consider domain of interest D = 0.2 ≤

√
x2

1 + x2
2 ≤ 6.

During initialization, the policy network is trained to approximate the LQR solution of the
linearized system (K =

[
3.58 3.59

]
), after which two iterations of the procedure occur.

Figure 4-18 shows the initial policy and the optimized policies after each iteration.
Figure 4-19 shows several trajectories of the system when it is controlled by the initial policy
and the optimized policy after two iterations. The optimized policy after two iterations attains
a lower additive cost for 10 trajectories, compared to the initial policy, but a higher additive
cost for the other 14. An overview of synthesis times and a detailed cost comparison of the
trajectories are given and further discussed in Section 4-4-4.

4 3 2 1 0 1 2 3 4
x

4

3

2

1

0

1

2

3

4

y

Initial controller
2nd iteration

Figure 4-19: Trajectories of the Duffing oscillator, subject to the initial linear policy and the
resulting policy after two iterations. The color of the × marks denotes which policy attains the
lowest additive cost for that trajectory

Master of Science Thesis Jonathan Klein Schiphorst

38 Results

4-4-3 Inverted pendulum

The inverted pendulum consists of a massless rod that is on one end attached to a pivot point
and on the other end attached to a mass. The control input applies a torque at the pivot
point. Friction is present in the system, which is proportional to the angular velocity. The
control objective is to stabilize the inverted pendulum in the upright position. The equations
of motion of the inverted pendulum are described by[

ẋ1
ẋ2

]
=

 x2
mLg · sin(x1)− bx2

mL2

+
[
0
1

]
u, (4-15)

where mass m = 0.15, rod length L = 0.5, gravitational constant g = 9.81 and friction

coefficient b = 0.1. We use a quadratic cost function `(x, u) = x>Qx+u>Ru, with Q =
[
1 0
0 1

]
and R = 1. For the policy and the value function, we use two 2− 300− 1 NNs with learning
rate α = 0.01, SiLU and linear activation for the hidden and final layer, respectively. We
consider domain of interest D = 0.5 ≤

√
x2

1 + x2
2 ≤ 6.

During initialization, the policy network is trained to approximate the LQR solution of the
linearized system (K =

[
39.27 6.64

]
), after which three iterations of the procedure occur.

Figure 4-20 shows the resulting policies after each iteration.

Figure 4-21 shows several trajectories of the system when it is controlled by the initial policy,
the optimized policy after one iteration and the optimized policy after three iterations. In
contrast to the previous two examples, here the policy after the first iteration performs better
than after two and three iterations. An overview of synthesis times and a detailed cost
comparison of the trajectories are given and further discussed in the next section.

x1

4
2

0
2

4 x24
2

0
2

4

1

100
75
50
25
0
25
50
75
100

1st iteration

x1

4
2

0
2

4 x24
2

0
2

4

2

40
20
0

20

40

2nd iteration

x1

4
2

0
2

4 x24
2

0
2

4

3

30
20
10
0
10
20

3rd iteration

Figure 4-20: The resulting policies for the inverted pendulum after one, two and three iterations
of the method.

Jonathan Klein Schiphorst Master of Science Thesis

4-4 Nonlinear systems 39

6 4 2 0 2 4 6
x1

15

10

5

0

5

10

15

x 2

Initial controller
1st iteration
3rd iteration

Figure 4-21: Trajectories of the inverted pendulum subject to the initial linear policy, the resulting
policy after one iteration and after three iterations. The color of the × marks denotes which policy
attains the lowest additive cost for that trajectory

4-4-4 Analysis & comparison

We have tested the method on three nonlinear systems. The synthesis times of our method
are now compared to synthesis times of related literature. Furthermore, we compare the
performance of the controllers synthesized by our method with the initial linear controllers.

Synthesis times The durations of the different routines of Formal Neural Policy Iteration
(FNPI) are depicted in Table 4-3. Compared to the synthesis times of [55], our method is up
to 300 times slower for both synthesis and verification routines. The increase in synthesis time
is largely accredited to the way the certificate networks are utilized. In [55], the certificate
networks solely function as Lyapunov functions, whereas in our experiments the certificate
networks also serve as value functions. The increase in verification time can be explained by
the fact that [55] uses significantly smaller networks for the Lyapunov function (2− 6− 1 for
the inverted pendulum), and a linear policy.

Other formal neural controller synthesis methods, such as [52] and [57], although they solve
slightly different problems, boast up to three orders of magnitude lower synthesis and ver-
ification times. Possible explanations are the use of different SMT solvers (Z3 and iSAT3,
respectively), and the special structures of the NNs used. The NNs used in [52] have no bias
term and quadratic activation functions, thereby restricting the NNs to be polynomial. In
[57], a piece-wise linear approximation of the activation functions is used during verification.

Master of Science Thesis Jonathan Klein Schiphorst

40 Results

Table 4-3: Synthesis times and number of iterations for Dubins car, the Duffing oscillator and
the inverted pendulum. NPE denotes neural policy evaluation, NPI denotes neural policy iteration

Dubins car Duffing oscillator Inverted pendulum

Stage Sub-iters Time [s] Stage Sub-iters Time [s] Stage Sub-iters Time [s]

Iter = 1 NPE 1 1416.37 NPE 1 3563.55 NPE 3 5392.47
Verify 1 108.96 Verify 1 172.77 Verify 3 2502.28
NPI 1 112.36 NPI 1 71.35 NPI 1 87.40

Verify 1 147.842 Verify 1 155.76 Verify 1 1113.48

2 NPE 1 343.10 NPE 1 895.58 NPE 1 1073.39
Verify 1 400.55 Verify 1 436.10 Verify 1 124.24
NPI 1 156.47 NPI 1 66.46 NPI 1 81.15

Verify 1 468.94 Verify 1 350.38 Verify 1 197.09

3 NPE 1 695.32
Verify 1 120.26
NPI 1 79.23

Verify 1 162.51

Total 3154.60 5711.95 11628.82

Cost comparison For each experiment, we calculated the additive cost for several trajec-
tories of the system when it is controlled by the initial policy and when it is controlled by
the optimized policy. The results are shown in Table 4-4. For the Dubins car experiment,
16 trajectories attain a lower additive cost with the optimized policy than with the initial
policy. For the remaining 8 trajectories, our controller performs roughly similar to the linear
controller, as the costs of the policies are within 5% of each other. Furthermore, trajectories
1 and 24 are, in contrast to the linear policy, stabilized by the optimized policy and therefore
show a significantly lower cost.

For the Duffing oscillator, 10 out of 24 trajectories accumulate a lower cost with the optimized
policy. On average, the policy obtained by our method performs roughly similar to the linear
policy. Although our policies do not convincingly outperform the linear policy in this example,
we are able to give stability guarantee for all policies, as the value function was successfully
verified as a Lyapunov function after each iteration.

In the inverted pendulum example, the optimized policy after one iteration outperforms the
linear policy, but the policies of subsequent iterations perform worse. Therefore, we consider
the optimized policy after one iteration in this cost comparison. From Table 4-4 and Figure
4-21 we conclude that our policy outperforms the linear policy where the nonlinearities of the
plant are most apparent. Around x1 = 0, where the plant behaves approximately linear, the
linear policy outperforms our policy.

We hypothesize that the deterioration of performance of the policy after consecutive iterations
is caused by poor approximation of the value function [103]. To prevent this from happening,
one would have to deploy a sufficiently large value network, such that is able to adequately
approximate the value function. However, in our approach, the topology of the value network
can not be arbitrarily large, as this would make the verification step intractable.

Jonathan Klein Schiphorst Master of Science Thesis

4-4 Nonlinear systems 41

Table 4-4: Cost comparison between the initial policy and the optimized policy for 24 trajectories
of Dubins car, the Duffing oscillator and the inverted pendulum.

Dubins car Duffing oscillator Inverted pendulum

Policy Initial Optimized Difference Initial Optimized Difference Initial Optimized Difference

Trajectory 1 848.59 94.13 754.45 34.01 37.71 -3.70 1468.61 550.55 918.05
2 38.88 38.06 0.81 9.34 12.48 -3.14 325.71 324.71 0.99
3 30.09 27.51 2.57 12.86 14.74 -1.88 164.47 216.71 -52.23
4 59.36 51.50 7.86 24.52 23.05 1.46 1465.82 1001.44 464.38
5 144.59 117.85 26.74 52.37 44.77 7.59 3339.86 1355.34 1984.51

6 93.31 57.16 36.15 30.41 33.19 -2.78 1853.72 717.50 1136.21
7 12.86 13.38 -0.52 4.26 5.82 -1.56 537.42 474.46 62.95
8 9.15 9.28 -0.13 3.22 3.80 -0.57 41.44 57.20 -15.75
9 33.02 33.14 -0.12 12.02 11.18 0.84 1109.38 819.05 290.32

10 112.91 94.45 18.45 39.66 37.24 2.42 2788.21 1113.64 1674.56

11 70.87 63.50 7.36 32.32 32.75 -0.43 2293.24 905.06 1388.18
12 11.78 12.35 -0.56 5.21 4.96 0.24 799.39 640.63 158.76
13 11.78 12.09 -0.31 5.21 5.13 0.08 799.39 645.90 153.49
14 70.87 58.82 12.04 32.32 33.47 -1.14 2293.24 900.73 1392.50

15 112.91 101.27 11.63 39.66 36.24 3.42 2788.21 1120.42 1667.78
16 33.02 33.83 -0.81 12.02 9.98 2.03 1109.38 814.41 294.97
17 9.15 9.54 -0.39 3.22 3.78 -0.55 41.44 57.96 -16.52
18 12.86 12.91 -0.05 4.26 5.63 -1.37 537.42 480.54 56.87
19 93.31 55.06 38.25 30.41 33.75 -3.34 1853.72 712.35 1141.36

20 144.59 124.22 20.37 52.37 43.51 8.85 3339.86 1366.66 1973.20
21 59.36 52.44 6.91 24.52 20.44 4.08 1465.82 997.55 468.27
22 30.09 27.85 2.24 12.86 14.64 -1.78 164.47 218.12 -53.65
23 38.88 37.53 1.34 9.34 12.57 -3.22 325.71 330.82 -5.11
24 848.59 91.28 757.30 34.01 38.35 -4.34 1468.61 547.23 921.37

Master of Science Thesis Jonathan Klein Schiphorst

42 Results

4-4-5 Conclusion

In this section, we subjected the method to nonlinear systems. In the Dubins car and inverted
pendulum examples, the optimized policies were able to outperform the linear policies when
the effects of the nonlinearities of the plants are apparent. The optimized policy for the
Duffing oscillator performed, on average, similar to the linear policy.

For the inverted pendulum, the optimized policy after one iteration performed better than the
policies obtained after multiple iterations. We hypothesize that this deterioration is caused
by poor approximation of the value function.

Lastly, the synthesis times of FNPI were compared to synthesis times of methods in related
literature. It was concluded that the synthesis times of FNPI are up to three orders of
magnitude higher. Both training and verification take longer in our method, which is primarily
caused by the deployment of larger networks and that the fact that we use the value network
as a Lyapunov candidate.

4-5 Summary & discussion

In this section the proposed methodology of Chapter 3 and the results presented in Chapter 4
are discussed and evaluated. The goal of this thesis was to design an automatic controller syn-
thesis method for continuous-time nonlinear systems that produces (near-)optimal controllers
with stability and safety guarantees. To this end, we developed a certificate-based synthesis
method based on Approximate Dynamic Programming (ADP), using NNs for the policy and
the value function, and Satisfiability Modulo Theory (SMT) for formal verification.

To verify the correctness of the synthesis method, we tested the method on linear systems with
quadratic cost. There exists an analytical solution of the value function and policy, provided
by LQR theory. First, the policy is initialized at a stabilizing solution. Subsequently, seven
iterations of the method occurred, after which the method converged to the analytical solution
of both the policy and the value function.

To get an adequate approximation of the value function, the value network should be suf-
ficiently large. However, the verification time scales with the size of the policy and value
networks. Therefore, in Section 4-2, we ran the procedure for policy and value networks with
various topologies. From Figure 4-3 we can conclude verification times for two-dimensional
linear systems with single-layer networks scale linearly with the amount of nodes in the layer.
Networks with multiple hidden layers, however, quickly become intractable to use as the
amount of nodes per layer increases. We therefore propose to use single-layer networks with
relatively large amount of nodes in the hidden layer. However, as detailed in Figure 4-6,
the verification time for three-dimensional systems becomes intractable, even for single-layer
NNs.

In Section 4-3, we show the effectiveness of the method on linear systems with input and state
constraints. Input constraints are enforced by appending the policy network with an extra
layer with a bounded, Lipschitz continuous activation function. This way, the inputs are kept
within the bounds of the activation function of the last layer. Figure 4-7 shows a truncated
policy and Figure 4-8 shows its corresponding value function, which is verified as a Lyapunov
function by dReal.

Jonathan Klein Schiphorst Master of Science Thesis

4-5 Summary & discussion 43

To enforce state constraints, we propose to use cost function shaping. By adding an extra
penalty to certain regions of the state space, the method will improve the policy such that
those regions will be avoided. We provide two examples. In the first example, we put a
penalty on states where |x2| > 3. After three iterations of the method, the resulting policy
effectively avoids high velocities. Figure 4-13 shows the level set of the value function of the
nonlinear policy and of the initial policy. The level set of the optimized policy is significantly
larger. The value function can therefore be used as a barrier function, to render the level set
invariant and thus safe.

In the second example, we penalise states in a circular region of the state space around
[x1, x2]> = [2.4,−1.7]>. After two iterations of the method, the policy is able to circumvent
the penalised region, as depicted in Figure 4-12. In this experiment, the value function can
not be used as a barrier function to certify the policy as safe, as the value function has no
level set that solely excludes the penalised region from the rest of the region of interest. More
constructive methods to design the cost function are needed in this regard.

In Section 4-4, we subject the method to three nonlinear systems. To test the ability of the
method to synthesize optimal controllers, we compared the additive cost of several trajectories
when the system was subject to the optimized policies and to the initial linear policies. The
optimized policy for the Duffing oscillator performed, on average, similar to the linear policy.
In the Dubins car and inverted pendulum examples, the optimized policies were able to
outperform the linear policies when the trajectories traversed parts of the state-space where
the effects of the nonlinearities of the system are significant. In the parts of the state-space
where the systems are approximately linear, the optimized policies performed slightly worse.
For the inverted pendulum, the optimized policy after one iteration performed better than the
policies obtained after multiple iterations. We hypothesize that this deterioration is caused
by poor approximation of the value function.

Lastly, we compared the synthesis times of FNPI to formal synthesis methods of related
literature. We conclude that the synthesis times of FNPI are up to three orders of magnitude
higher, which is primarily caused by the use of larger networks, which in turn causes the
training and verification durations to be longer. This observation highlights the principal
bottleneck of our method. With the selection of the network topologies, a trade-off is made
between their approximation capabilities and the time it takes to verify the networks. In our
method, however, we cannot compromise on the approximation capabilities of the networks.
The inverted pendulum example illustrates that poor approximation of the value function
causes the deterioration of performance of the policies, ultimately leading to worse performing
policies than the initial linear ones.

Master of Science Thesis Jonathan Klein Schiphorst

44 Results

Jonathan Klein Schiphorst Master of Science Thesis

Chapter 5

Conclusion

In this chapter, the research goal and problem statements are revisited and answered, final
conclusions are drawn, and recommendations for future research are given.

5-1 Conclusion

The goal of this thesis was to design an automatic controller synthesis procedure for continuous-
time nonlinear systems that produces (near-)optimal controllers with stability and safety
guarantees that does not require computationally expensive online optimization.
To this end, we developed a certificate-based controller synthesis method called Formal Neural
Policy Iteration (FNPI). FNPI synthesizes closed-form controllers offline, which therefore
do not suffer from computationally expensive online optimization. To check whether the
proposed method achieves the remaining requirements of the research goal, we defined three
sub-problems, which will be discussed hereafter.

1. Optimal stability: Provided with a cost function, synthesize a controller with formal
guarantee of stability, that minimizes the the infinite horizon additive cost.

To synthesize controllers with optimality and stability guarantees, FNPI uses Approximate
Dynamic Programming (ADP) techniques in combination with Lyapunov theory. Specif-
ically, we utilize techniques from Generalized Policy Iteration (GPI) to obtain a con-
troller and value function in the form of Neural Networks (NNs). We exploit the fact
that the value function obtained by GPI can, under certain conditions, be used as a
Lyapunov function. To assure the controllers are stabilizing, we deploy Satisfiability
Modulo Theory (SMT) solver dReal throughout the procedure to formally verify that
the value function is a Lyapunov function. In Section 4-1, we show that FNPI effectively
combines optimality and stability.

2. Safe and optimal stability: Provided with a cost function, synthesize a controller
with formal guarantee of stability and safety, that minimizes the the infinite horizon
additive cost.

Master of Science Thesis Jonathan Klein Schiphorst

46 Conclusion

In addition to stability and safety, it was investigated in Section 4-3 whether the method
is able to synthesize controllers with additional safety guarantee. To this end, we con-
ducted two experiments, in which we used cost function shaping. We designed the cost
function in such a way that the value network serves as a Lyapunov function for stability
guarantee and as a barrier function for safety guarantee. The method was successful
for the first experiment, but required careful manual design of the cost function. The
method failed to synthesize an adequate certificate function in the second experiment.
We therefore conclude that, for cost function shaping, more constructive methods are
needed to design the cost function, or other methods need to be considered to combine
stability, safety and optimality.

3. Cost minimization: The synthesized controller should attain a lower infinite horizon
additive cost than a linear controller, where the linear controller is a Linear-Quadratic
Regulator (LQR) controller for the linearized system.

From the comparisons in Section 4-4-4, it can be concluded that controllers synthesized
by our method are able to outperform the linear controllers. The optimized policies
showed significantly lower infinite horizon additive cost when the trajectories traversed
parts of the state-space where the effects of the nonlinearities of the system are most
apparent. In the parts of the state-space where the systems are approximately linear,
the optimized policies performed slightly worse.

We can conclude that the proposed method is able to solve the three sub-problems. FNPI
is able to produce optimal controllers with stability guarantee for continuous-time nonlinear
systems, which can outperform linear controllers in terms of cost minimization. The method
is also capable of synthesizing optimal controllers with safety and stability guarantee for
specific problems. However, more constructive methods are needed for the method to be able
to synthesize safe controllers for any problem.

In terms of synthesis times, SMT-based verification showed to be the principle bottleneck
of the method. This bottleneck prohibits the verification of systems with more than two
states. Furthermore, with the selection of the network topologies, a trade-off is made between
their approximation capabilities and the time it takes to verify the networks. In our method,
however, we cannot compromise on the approximation capabilities of the networks, as poor
approximation of the value function causes the deterioration of performance of the policies.

Despite these bottlenecks, FNPI has proven itself to be a flexible framework that adds opti-
mality to the certificate-based formal synthesis paradigm. We are confident the bottlenecks
are surmountable and that the method is able to improve with certain adjustments, which
we will discuss in the next section.

Jonathan Klein Schiphorst Master of Science Thesis

5-2 Future work 47

5-2 Future work

In this thesis a novel controller synthesis procedure was presented. In theory, the method
is able to produce optimal controllers with stability and safety guarantee for continuous-
time nonlinear systems. In practice, however, the method runs into a couple of bottlenecks.
Potential research directions to overcome these bottlenecks and directions to further extend
the method will be discussed in this section.

Faster verification With the selection of the network topologies, a trade-off is made between
their approximation capabilities and the time it takes to verify the networks. In our method,
however, we cannot compromise on the approximation capabilities of the networks, as poor
approximation of the value function causes the deterioration of performance of the policies.
Potential ways to improve the verification times are:

1. Decoupling of the Lyapunov function from the value network. One could use a sepa-
rate, smaller NN for verifiction, which only has to adhere to the Lyapunov conditions.
Although this solution might help, it will not be scalable, as this method scales poorly
with higher system dimensions, as shown in Section 4-2-4.

2. Sparse networks. By encouraging the weight parameters of the NNs to become exactly
zero, the symbolic representation of these networks will become smaller, therefore re-
ducing the verification time. Potential methods to achieve this are L0 regularization
[104] or with parameter selection through gate variables [105].

3. Use linear approximations of the activation functions for verification, as done in [57].

4. Use a different function approximation method, e.g. StaF kernels [106] used by [107,108],
which allows for efficient local approximation.

5. Utilize the sampling based verification method from [97], which is parallelizable and
therefore potentially faster. With a sampling based verification method, the verification
step could potentially be merged with the neural policy evaluation and improvement
steps, making the synthesis method more concise.

Barrier functions In this thesis, we attempted to train a single NN to serve as a Lyapunov
and barrier function, by utilizing cost function shaping. The experiments show modest results
in this regard. The synthesis of barrier functions could be further improved by the following
suggestions:

1. Design a cost function shaping algorithm which transforms the value network into a
barrier function. Note that the cost function need not be fixed in advance, but could
be adjusted during the synthesis procedure.

2. Decouple the barrier function from the value network. One could look into the density
function, which is considered the dual of the value function, and is used for safety
[109,110].

Master of Science Thesis Jonathan Klein Schiphorst

48 Conclusion

Initial stabilizing policy Another potential bottleneck is the necessity of a stabilizing policy
at initialization. In this work, we have examined systems that feature a linear stabilizing
policy. Yet, for many systems this is not the case [111]. We therefore exhibit related synthesis
methods in literature, which do not require an initial stabilizing policy.

1. Approximate value iteration for continuous-time systems [112]. Value iteration is closely
related to policy iteration. Value iteration does not feature an explicit policy, however.

2. Actor-critic reinforcement learning [71], utilizes a similar policy-value function structure,
but assumes no knowledge of the model and no initial policy.

Other systems and control specifications In this thesis, we considered continuous-time
nonlinear systems. The systems are deterministic and full knowledge of the dynamics is as-
sumed. Furthermore, we considered the control specifications stability, safety and optimality.
This work could be extended, by considering:

1. Synthesis of robust controllers for models with disturbances. This involves a varia-
tion of the Hamilton-Jacobi-Bellman (HJB) equation, called the Hamilton-Jacobi-Isaac
equation [113] [114].

2. Hybrid systems, which exhibit both continuous and discrete dynamic behavior. An
introduction to control and verification of hybrid systems is given in [115].

3. More complex control specifications in the form of Linear Temporal Logic (LTL) or
Signal Temporal Logic (STL) [116] [108].

Jonathan Klein Schiphorst Master of Science Thesis

Appendix A

Prototype tool FNPI

The methodology discussed in this thesis has been implemented in a prototype tool called
Formal Neural Policy Iteration (FNPI). FNPI is available at: github.com/JonathanKLSCH/formal-
neural-controller-synthesis.

FNPI utilizes five main classes: CostFunction, Controller, Verifier, ControlSystem and
NeuralNetwork. How these classes interact is depicted in Figure A-1. We will discuss those
classes in detail hereafter.

Activation

Layer

Verifier

ControlSystem NeuralNetwork

CostFunction Controller

Procedure

Figure A-1: Class diagram of FNPI

Master of Science Thesis Jonathan Klein Schiphorst

50 Prototype tool FNPI

ControlSystem In the ControlSystem class, the dynamics of the control system are de-
scribed. The class inherits from the GenericControlSystem class, which contains a cou-
ple of helper functions, such as euler_step(), for the visualisation of trajectories, and
lqr_controller(Q,R), for initializing the policy network. The ControlSystem class acts
as a bridge between PyTorch and dReal, as it can represent the control system in both a
Tensor format to work with PyTorch, and in a Symbolic format to work with dReal.

1 class DubinsCar (GenericControlSystem):
2 def __init__ (self):
3 super (). __init__ (num_states =2, num_inputs =1)
4 self.v = 1
5
6 def f(self , x, u):
7 f = [self.v * torch.sin(x[:,:,1]),
8 -u[:,:,0]]
9 f = torch.stack ((f[0]. flatten (), f[1]. flatten ()), 1). unsqueeze (2)
10 return f
11
12 def symbolic (self , x1 , x2 , u):
13 expression = [self.v * dreal.sin(x2),
14 -u]
15 return expression

NeuralNetwork The NeuralNetwork class is initialized with a learning rate, the amount of
nodes per layer and the activation functions.

1 policy_network_lr = 1e-3
2 policy_network_dimensions = [2,200 ,1]
3 policy_network_activations = [SiLU (), Identity ()]
4
5 policy_network = NeuralNetwork (policy_network_lr , policy_network_dimensions ,

policy_network_activations)

Similar to the ControlSystems class, the NeuralNetwork class also acts as a bridge between
PyTorch and dReal, as it can represent the control system in both a Tensor and Symbolic for-
mat. To realize this, the activation functions are implemented in an Activation class, which
has a forward(x) method for Tensor operations and a symbolic(x) method for verification.

1 class SiLU(torch.nn. Module):
2 def __init__ (self):
3 super (). __init__ ()
4
5 def forward (self , x):
6 return x * torch. sigmoid (x)
7
8 def symbolic (self , x):
9 return x/(1+dreal.exp(-x))

Controller The Controller class is initialized with a ControlSystem and two neural net-
work topologies. The class will make two instances of the NeuralNetwork class, one for the
policy and one for the value function. This class is able to calculate the Lie derivative of the
value network with respect to the system dynamic in Tensor format, which allows for fast
evaluation of the value loss and policy loss, and therefore speeds up training significantly.

Jonathan Klein Schiphorst Master of Science Thesis

51

Verifier The Verifier class receives the ControlSystem and the value and policy network
from the Controller class and transforms them into symbolic expressions. The class has a
verify_continuous_lyapunov_conditions(area) method, which returns a counterexample
if the conditions are violated in area, or returns None if the conditions are satisfied.

CostFunction The cost function class has an array called total_cost, to which cost function
elements in the form of lambda functions can be added. The calculate_total_cost()
function returns the cost in the form of a Tensor for each (X,U) pair.

1 class CostFunction (object):
2 def __init__ (self):
3 self. total_cost = []
4
5 def add_cost_term (self , term):
6 self. total_cost . append (term)
7
8 def calculate_total_cost (self , X, U):
9 cost = 0
10
11 for cost_element in self. total_cost :
12 cost += cost_element (X,U)
13
14 return cost

Master of Science Thesis Jonathan Klein Schiphorst

52 Prototype tool FNPI

Jonathan Klein Schiphorst Master of Science Thesis

Appendix B

Verification times

Table B-1 depicts the verification times with various value network topologies for a two-
dimensional system. The policy is linear and the gains are initialized at the optimal solution,
where after the value network was trained until convergence.

Table B-2 depicts the verification times for various policy network topologies. The experiment
is conducted on a two-dimensional linear system with a 2 − 20 − 20 − 1 value network with
quadratic activation function for the hidden layers and linear activation for the final layer.

Master of Science Thesis Jonathan Klein Schiphorst

54 Verification times

Table B-1: Verification times of neural certificates with various topologies for a linear system
with two states. × denotes the network topology was too small to represent a Lyapunov function
for the system. − denotes the verification time limit was reached.

Quadratic Tanh SiLU

1-layer 2-layer 3-layer 1-layer 2-layer 3-layer 1-layer 2-layer 3-layer

nodes = 4 0.006 0.056 0.916 × 0.195 4.065 0.063 8.334 105.490
5 0.008 0.116 2.830 0.042 0.412 82.072 0.116 8.336 256.395
6 0.009 0.215 6.578 0.094 0.633 43.994 0.129 8.516 606.956
7 0.008 1.002 16.218 0.088 1.529 42.011 0.179 11.345 339.309
8 0.012 0.326 38.442 0.062 4.466 71.379 0.149 25.203 1032.875
9 0.010 0.715 51.140 0.221 2.610 125.102 0.180 25.914 732.219

10 0.012 0.774 8.199 0.630 11.139 196.791 0.200 27.158 527.415
15 0.019 1.463 43.520 0.254 14.278 - 0.377 40.777 -
20 0.029 3.008 253.507 0.540 57.067 - 0.324 62.564 -
25 0.181 4.814 302.560 0.744 29.120 - 0.367 161.854 -
30 0.035 8.479 761.696 0.860 44.864 - 0.664 667.855 -
35 0.040 16.253 1558.707 0.745 72.062 - 0.610 1109.383 -
40 0.048 17.617 - 1.953 13.620 - 1.264 - -
45 0.055 31.556 - 1.484 56.292 - 0.821 - -
50 0.073 44.852 - 1.117 29.934 - 0.902 - -
60 0.081 58.925 - 1.057 364.927 - 1.165 - -
70 0.099 89.865 - 2.012 413.041 - 1.525 - -
80 0.105 135.183 - 1.377 - - 1.496 - -
90 0.134 162.840 - 2.770 - - 2.706 - -
100 0.144 184.360 - 3.114 - - 2.253 - -

Table B-2: Verification times of neural certificates with neural policies with various topologies
for a linear system with two states. − denotes the verification time limit was reached.

Quadratic Tanh SiLU

1-layer 2-layer 3-layer 1-layer 2-layer 3-layer 1-layer 2-layer 3-layer

nodes = 4 2.043 2.803 5.880 0.980 1.042 1.038 2.396 1.473 2.373
5 2.280 2.275 11.325 1.084 0.956 1.041 2.057 1.258 2.502
6 2.452 4.760 81.591 1.060 0.982 1.160 2.032 1.346 3.633
7 2.282 8.525 79.681 0.982 0.957 1.960 2.125 1.400 4.092
8 2.113 3.590 37.303 0.944 0.969 1.447 2.131 1.463 7.238
9 2.522 4.677 137.549 1.011 1.052 1.506 2.000 1.899 7.797
10 2.371 5.617 44.916 0.954 1.081 1.958 2.289 1.634 9.986
15 2.317 6.971 191.253 1.007 1.195 4.845 2.060 2.198 29.537
20 2.505 14.339 - 1.076 1.271 10.809 2.023 2.788 107.276
25 3.024 16.218 - 1.054 1.599 30.792 2.365 4.247 226.941
30 2.999 23.232 - 1.022 2.314 57.838 2.619 4.548 479.072
35 2.571 21.540 - 0.969 2.862 99.822 2.112 6.148 1045.039
40 2.466 28.470 - 1.044 3.304 164.976 2.124 7.939 -
45 2.711 68.623 - 1.046 3.881 346.513 2.276 11.391 -
50 3.084 100.835 - 1.043 4.684 571.932 2.354 13.630 -
60 3.073 47.873 - 0.992 6.415 1122.305 2.257 21.910 -
70 2.806 55.478 - 0.991 10.276 - 2.300 29.333 -
80 2.716 95.914 - 1.070 13.748 - 2.467 49.343 -
90 3.045 368.531 - 1.002 18.175 - 2.541 68.768 -

100 3.205 378.751 - 1.095 26.680 - 2.340 80.386 -

Jonathan Klein Schiphorst Master of Science Thesis

Bibliography

[1] C. Belta and S. Sadraddini, “Formal methods for control synthesis: An optimization
perspective,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 2,
pp. 115–140, 2019.

[2] R. E. Kalman et al., “Contributions to the theory of optimal control,” Bol. soc. mat.
mexicana, vol. 5, no. 2, pp. 102–119, 1960.

[3] R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive nonlinear control.
Springer Science & Business Media, 2012.

[4] J. H. Lee, “Model predictive control: Review of the three decades of development,”
International Journal of Control, Automation and Systems, vol. 9, no. 3, pp. 415–424,
2011.

[5] D. P. Bertsekas, “Dynamic programming and suboptimal control: A survey from ADP
to MPC,” European Journal of Control, vol. 11, no. 4-5, pp. 310–334, 2005.

[6] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement learning for
control: Performance, stability, and deep approximators,” Annual Reviews in Control,
vol. 46, pp. 8–28, 2018.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[8] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal
locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, 2020.

[9] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with reinforce-
ment learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2096–2103,
2017.

[10] M. Reble, Model predictive control for nonlinear continuous-time systems with and with-
out time-delays. Logos Verlag Berlin GmbH, 2013.

Master of Science Thesis Jonathan Klein Schiphorst

56 Bibliography

[11] A. Girard, “Controller synthesis for safety and reachability via approximate bisimula-
tion,” Automatica, vol. 48, no. 5, pp. 947–953, 2012.

[12] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for nonlinear con-
trol systems without stability assumptions,” IEEE Transactions on Automatic Control,
vol. 57, no. 7, pp. 1804–1809, 2011.

[13] P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009.

[14] K. Y. Rozier, “Linear temporal logic symbolic model checking,” Computer Science Re-
view, vol. 5, no. 2, pp. 163–203, 2011.

[15] M. Rungger and M. Zamani, “SCOTS: A tool for the synthesis of symbolic controllers,”
in Proceedings of the 19th international conference on hybrid systems: Computation and
control, pp. 99–104, 2016.

[16] M. Mazo, A. Davitian, and P. Tabuada, “PESSOA: A tool for embedded controller
synthesis,” in International Conference on Computer Aided Verification, pp. 566–569,
Springer, 2010.

[17] S. Mouelhi, A. Girard, and G. Gössler, “CoSyMa: a tool for controller synthesis using
multi-scale abstractions,” in Proceedings of the 16th international conference on Hybrid
systems: computation and control, pp. 83–88, 2013.

[18] K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck, “Multi-layered abstraction-based
controller synthesis for continuous-time systems,” in Proceedings of the 21st Interna-
tional Conference on Hybrid Systems: Computation and Control (part of CPS Week),
pp. 120–129, 2018.

[19] J. Cámara, A. Girard, and G. Gössler, “Synthesis of switching controllers using ap-
proximately bisimilar multiscale abstractions,” in Proceedings of the 14th international
conference on Hybrid systems: computation and control, pp. 191–200, 2011.

[20] Y. Tazaki and J. Imura, “Bisimilar finite abstractions of interconnected systems,” in
International Workshop on Hybrid Systems: Computation and Control, pp. 514–527,
Springer, 2008.

[21] E. S. Kim, M. Arcak, and M. Zamani, “Constructing control system abstractions from
modular components,” in Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week), pp. 137–146, 2018.

[22] M. Zamani, A. Abate, and A. Girard, “Symbolic models for stochastic switched systems:
A discretization and a discretization-free approach,” Automatica, vol. 55, pp. 183–196,
2015.

[23] V. Staudt, “Compact representation of mathematical functions for control applications
by piecewise linear approximations,” Electrical Engineering, vol. 81, no. 3, pp. 129–134,
1998.

[24] I. S. Zapreev, C. Verdier, and M. Mazo Jr, “Optimal symbolic controllers determiniza-
tion for BDD storage,” IFAC-PapersOnLine, vol. 51, no. 16, pp. 1–6, 2018.

Jonathan Klein Schiphorst Master of Science Thesis

57

[25] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,”
in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166, Springer, 2004.

[26] C. A. Floudas, Nonlinear and mixed-integer optimization: fundamentals and applica-
tions. Oxford University Press, 1995.

[27] A. Richards and J. P. How, “Aircraft trajectory planning with collision avoidance us-
ing mixed integer linear programming,” in Proceedings of the 2002 American Control
Conference (IEEE Cat. No. CH37301), vol. 3, pp. 1936–1941, IEEE, 2002.

[28] Y. Wang, B. De Schutter, T. J. van den Boom, and B. Ning, “Optimal trajectory
planning for trains–a pseudospectral method and a mixed integer linear programming
approach,” Transportation Research Part C: Emerging Technologies, vol. 29, pp. 97–114,
2013.

[29] Z. Liu, J. Dai, B. Wu, and H. Lin, “Communication-aware motion planning for multi-
agent systems from signal temporal logic specifications,” in 2017 American Control
Conference (ACC), pp. 2516–2521, IEEE, 2017.

[30] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing with applications to
multi-UAV mission planning,” International Journal of Robust and Nonlinear Control,
vol. 21, no. 12, pp. 1372–1395, 2011.

[31] I. Haghighi, S. Sadraddini, and C. Belta, “Robotic swarm control from spatio-temporal
specifications,” in 2016 IEEE 55th Conference on Decision and Control (CDC),
pp. 5708–5713, IEEE, 2016.

[32] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic program tra-
jectory generation for heterogeneous quadrotor teams,” in 2012 IEEE international
conference on robotics and automation, pp. 477–483, IEEE, 2012.

[33] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and
S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in
53rd IEEE Conference on Decision and Control, pp. 81–87, IEEE, 2014.

[34] H. Abbas, A. Winn, G. Fainekos, and A. A. Julius, “Functional gradient descent
method for metric temporal logic specifications,” in 2014 American Control Confer-
ence, pp. 2312–2317, IEEE, 2014.

[35] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control using the smooth
robustness of temporal logic,” in 2017 IEEE Conference on Control Technology and
Applications (CCTA), pp. 1235–1240, IEEE, 2017.

[36] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pap-
pas, and P. Tabuada, “Scalable lazy SMT-based motion planning,” in 2016 IEEE 55th
Conference on Decision and Control (CDC), pp. 6683–6688, IEEE, 2016.

[37] D. Monniaux, “A survey of satisfiability modulo theory,” in International Workshop on
Computer Algebra in Scientific Computing, pp. 401–425, Springer, 2016.

Master of Science Thesis Jonathan Klein Schiphorst

58 Bibliography

[38] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada, “Linear temporal logic motion planning for teams of
underactuated robots using satisfiability modulo convex programming,” in 2017 IEEE
56th annual conference on decision and control (CDC), pp. 1132–1137, IEEE, 2017.

[39] S. S. Farahani, V. Raman, and R. M. Murray, “Robust model predictive control for
signal temporal logic synthesis,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 323–328,
2015.

[40] S. Sadraddini and C. Belta, “Robust temporal logic model predictive control,” in 2015
53rd Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pp. 772–779, IEEE, 2015.

[41] A. M. Lyapunov, “The general problem of the stability of motion,” International journal
of control, vol. 55, no. 3, pp. 531–534, 1992.

[42] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767,
1999.

[43] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier cer-
tificates,” in International Workshop on Hybrid Systems: Computation and Control,
pp. 477–492, Springer, 2004.

[44] S. Prajna, “Barrier certificates for nonlinear model validation,” Automatica, vol. 42,
no. 1, pp. 117–126, 2006.

[45] S. Prajna, A. Papachristodoulou, and F. Wu, “Nonlinear control synthesis by sum of
squares optimization: A lyapunov-based approach,” in 2004 5th Asian Control Confer-
ence (IEEE Cat. No. 04EX904), vol. 1, pp. 157–165, IEEE, 2004.

[46] A. A. Ahmadi, M. Krstic, and P. A. Parrilo, “A globally asymptotically stable polyno-
mial vector field with no polynomial Lyapunov function,” in 2011 50th IEEE Conference
on Decision and Control and European Control Conference, pp. 7579–7580, IEEE, 2011.

[47] J. Lofberg, “Pre-and post-processing sum-of-squares programs in practice,” IEEE trans-
actions on automatic control, vol. 54, no. 5, pp. 1007–1011, 2009.

[48] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback motion
planning,” The International Journal of Robotics Research, vol. 36, no. 8, pp. 947–982,
2017.

[49] A. A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, and Y. Zheng, “Im-
proving efficiency and scalability of sum of squares optimization: Recent advances and
limitations,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
pp. 453–462, IEEE, 2017.

[50] S. Shen and R. Tedrake, “Scalable sampling-based sum-of-squares programs for systems
verification,”

[51] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combinatorial
sketching for finite programs,” in Proc. of the 12th Int.Conf. on Architectural Support
for Programming Languages and Operating Systems, p. 404–415, ACM, 2006.

Jonathan Klein Schiphorst Master of Science Thesis

59

[52] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Automated formal synthesis of
Lyapunov neural networks,” arXiv preprint arXiv:2003.08910, 2020.

[53] H. Dai, B. Landry, M. Pavone, and R. Tedrake, “Counter-example guided synthesis of
neural network Lyapunov functions for piecewise linear systems,” in 2020 59th IEEE
Conference on Decision and Control (CDC), pp. 1274–1281, IEEE, 2020.

[54] A. Peruffo, D. Ahmed, and A. Abate, “Automated formal synthesis of neural barrier
certificates for dynamical models,” arXiv preprint arXiv:2007.03251, 2020.

[55] Y.-C. Chang, N. Roohi, and S. Gao, “Neural Lyapunov control,” in Advances in Neural
Information Processing Systems, pp. 3240–3249, 2019.

[56] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Neural certificates for safe control policies,”
arXiv preprint arXiv:2006.08465, 2020.

[57] H. Zhao, X. Zeng, T. Chen, Z. Liu, and J. Woodcock, “Learning safe neural network
controllers with barrier certificates,” in International Symposium on Dependable Soft-
ware Engineering: Theories, Tools, and Applications, pp. 177–185, Springer, 2020.

[58] H. Ravanbakhsh and S. Sankaranarayanan, “Counter-example guided synthesis of con-
trol Lyapunov functions for switched systems,” in 2015 54th IEEE conference on deci-
sion and control (CDC), pp. 4232–4239, IEEE, 2015.

[59] C. F. Verdier and M. Mazo, “Formal synthesis of analytic controllers for sampled-data
systems via genetic programming,” in 2018 IEEE Conference on Decision and Control
(CDC), pp. 4896–4901, IEEE, 2018.

[60] R. V. Gamkrelidze, “Discovery of the maximum principle,” Journal of dynamical and
control systems, vol. 5, no. 4, pp. 437–451, 1999.

[61] M. Barbero-Liñán and M. C. Muñoz-Lecanda, “Geometric approach to Pontryagin’s
maximum principle,” Acta applicandae mathematicae, vol. 108, no. 2, pp. 429–485,
2009.

[62] A. Filippov, “On certain questions in the theory of optimal control,” Journal of the
Society for Industrial and Applied Mathematics, Series A: Control, vol. 1, no. 1, pp. 76–
84, 1962.

[63] S. J. Qin and T. A. Badgwell, “An overview of industrial model predictive control
technology,” in AIche symposium series, vol. 93, pp. 232–256, New York, NY: American
Institute of Chemical Engineers, 1971-c2002., 1997.

[64] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An integrated
system for real-time model predictive control of humanoid robots,” in 2013 13th IEEE-
RAS International conference on humanoid robots (Humanoids), pp. 292–299, IEEE,
2013.

[65] M. Zanon, J. V. Frasch, M. Vukov, S. Sager, and M. Diehl, “Model predictive control
of autonomous vehicles,” in Optimization and optimal control in automotive systems,
pp. 41–57, Springer, 2014.

Master of Science Thesis Jonathan Klein Schiphorst

60 Bibliography

[66] D. P. Bertsekas, Dynamic programming and optimal control, vol. 1. Athena scientific
Belmont, MA, 1995.

[67] J. Duan, S. E. Li, Z. Liu, M. Bujarbaruah, and B. Cheng, “Generalized policy iteration
for optimal control in continuous time,” arXiv preprint arXiv:1909.05402, 2019.

[68] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based reinforce-
ment learning with stability guarantees,” in Advances in neural information processing
systems, pp. 908–918, 2017.

[69] H. Ferreira, P. Rocha, and R. Sales, “Nonlinear H-infinity control and the Hamilton-
Jacobi-Isaac equation,” in 17th World Congress, The international Federation of Auto-
matic Control, Seoul, Korea, pp. 188–193, 2009.

[70] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[71] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-critic
reinforcement learning: Standard and natural policy gradients,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6,
pp. 1291–1307, 2012.

[72] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[73] H. K. Khalil and J. W. Grizzle, Nonlinear systems, vol. 3. Prentice hall Upper Saddle
River, NJ, 2002.

[74] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed safety using
control Lyapunov–barrier function,” Automatica, vol. 66, pp. 39–47, 2016.

[75] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the control of
output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.

[76] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks,” Neural networks,
vol. 3, no. 5, pp. 551–560, 1990.

[77] A. Kratsios, “The universal approximation property,” Annals of Mathematics and Ar-
tificial Intelligence, 2020.

[78] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning,” Neural Networks, vol. 107, pp. 3–11,
2018.

[79] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[80] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

Jonathan Klein Schiphorst Master of Science Thesis

61

[81] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differ-
entiation in machine learning: a survey,” Journal of machine learning research, vol. 18,
2018.

[82] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[83] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization.,” Journal of machine learning research, vol. 12, no. 7, 2011.

[84] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial attacks
on neural network policies,” arXiv preprint arXiv:1702.02284, 2017.

[85] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer, “Algorithms for
verifying deep neural networks,” arXiv preprint arXiv:1903.06758, 2019.

[86] J. P. Vielma, “Mixed integer linear programming formulation techniques,” Siam Review,
vol. 57, no. 1, pp. 3–57, 2015.

[87] M. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano, “Reachability analysis for
neural agent-environment systems,” in Sixteenth International Conference on Principles
of Knowledge Representation and Reasoning, 2018.

[88] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with
mixed integer programming,” arXiv preprint arXiv:1711.07356, 2017.

[89] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi,
“Measuring neural net robustness with constraints,” in Advances in neural information
processing systems, pp. 2613–2621, 2016.

[90] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An
efficient SMT solver for verifying deep neural networks,” in International Conference
on Computer Aided Verification, pp. 97–117, Springer, 2017.

[91] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Sherlock - A tool
for verification of neural network feedback systems: demo abstract,” in Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and Control,
pp. 262–263, 2019.

[92] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli, “A dual approach to
scalable verification of deep networks.,” in UAI, vol. 1, p. 2, 2018.

[93] E. Wong and Z. Kolter, “Provable defenses against adversarial examples via the con-
vex outer adversarial polytope,” in International Conference on Machine Learning,
pp. 5286–5295, 2018.

[94] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial
examples,” arXiv preprint arXiv:1801.09344, 2018.

[95] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340,
Springer, 2008.

Master of Science Thesis Jonathan Klein Schiphorst

62 Bibliography

[96] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for nonlinear theories over
the reals,” in International conference on automated deduction, pp. 208–214, Springer,
2013.

[97] R. Bobiti and M. Lazar, “Sampling-based verification of Lyapunov’s inequality for piece-
wise continuous nonlinear systems,” arXiv preprint arXiv:1609.00302, 2016.

[98] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems
with saturating actuators using a neural network HJB approach,” Automatica, vol. 41,
no. 5, pp. 779–791, 2005.

[99] P. Rutquist, T. Wik, and C. Breitholtz, “Solving the Hamilton-Jacobi-Bellman equation
for a stochastic system with state constraints,” in 53rd IEEE Conference on Decision
and Control, pp. 1840–1845, IEEE, 2014.

[100] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An
imperative style, high-performance deep learning library,” in Advances in Neural Infor-
mation Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-
Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[101] J. V. Deshmukh, J. P. Kapinski, T. Yamaguchi, and D. Prokhorov, “Learning deep
neural network controllers for dynamical systems with safety guarantees,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–7,
IEEE, 2019.

[102] I. Kovacic and M. J. Brennan, The Duffing equation: nonlinear oscillators and their
behaviour. John Wiley & Sons, 2011.

[103] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al., “Policy gradient methods
for reinforcement learning with function approximation.,” in NIPs, vol. 99, pp. 1057–
1063, Citeseer, 1999.

[104] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks through
L0 regularization,” arXiv preprint arXiv:1712.01312, 2017.

[105] S. Srinivas, A. Subramanya, and R. Venkatesh Babu, “Training sparse neural networks,”
in Proceedings of the IEEE conference on computer vision and pattern recognition work-
shops, pp. 138–145, 2017.

[106] J. A. Rosenfeld, R. Kamalapurkar, and W. E. Dixon, “The state following approxi-
mation method,” IEEE transactions on neural networks and learning systems, vol. 30,
no. 6, pp. 1716–1730, 2018.

[107] M. H. Cohen and C. Belta, “Approximate optimal control for safety-critical systems
with control barrier functions,” in 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 2062–2067, IEEE, 2020.

[108] M. Cohen and C. Belta, “Model-based reinforcement learning for approximate optimal
control with temporal logic specifications,” arXiv preprint arXiv:2101.07156, 2021.

Jonathan Klein Schiphorst Master of Science Thesis

63

[109] Y. Chen and A. D. Ames, “Duality between density function and value function with
applications in constrained optimal control and markov decision process,” arXiv preprint
arXiv:1902.09583, 2019.

[110] Y. Chen, M. Ahmadi, and A. D. Ames, “Optimal safe controller synthesis: A den-
sity function approach,” in 2020 American Control Conference (ACC), pp. 5407–5412,
IEEE, 2020.

[111] C. I. Byrnes and A. Isidori, “New results and examples in nonlinear feedback stabiliza-
tion,” Systems & Control Letters, vol. 12, no. 5, pp. 437–442, 1989.

[112] T. Bian and Z.-P. Jiang, “Value iteration and adaptive dynamic programming for data-
driven adaptive optimal control design,” Automatica, vol. 71, pp. 348–360, 2016.

[113] T. Dierks and S. Jagannathan, “Optimal control of affine nonlinear continuous-time
systems using an online Hamilton-Jacobi-Isaacs formulation,” in 49th IEEE Conference
on Decision and Control (CDC), pp. 3048–3053, IEEE, 2010.

[114] J. Li, S. E. Li, Y. Guan, J. Duan, W. Li, and Y. Yin, “Ternary policy iteration algorithm
for nonlinear robust control,” arXiv preprint arXiv:2007.06810, 2020.

[115] H. Lin and P. J. Antsaklis, “Hybrid dynamical systems: An introduction to control and
verification,” Foundations and trends in systems and control, vol. 1, no. 1, pp. 1–172,
2014.

[116] C. F. Verdier, N. Kochdumper, M. Althoff, and M. Mazo Jr, “Formal synthesis of
closed-form sampled-data controllers for nonlinear continuous-time systems under stl
specifications,” arXiv preprint arXiv:2006.04260, 2020.

Master of Science Thesis Jonathan Klein Schiphorst

64 Bibliography

Jonathan Klein Schiphorst Master of Science Thesis

Glossary

List of Acronyms

ADP Approximate Dynamic Programming
CARE Continuous Algebraic Riccati Equation
CEGIS Counterexample-Guided Inductive Synthesis
FNPI Formal Neural Policy Iteration
GPI Generalized Policy Iteration
HJB Hamilton-Jacobi-Bellman
LP Linear Programming
LTL Linear Temporal Logic
LQR Linear-Quadratic Regulator
MILP Mixed-Integer Linear Programming
MPC Model Predictive Control
NN Neural Network
PMP Pontryagin’s Maximum Principle
ReLU Rectified Linear Unit
RL Reinforcement Learning
SDP Semidefinite Programming
SiLU Sigmoid Linear Unit
SMT Satisfiability Modulo Theory
SOS Sum-of-Squares
STL Signal Temporal Logic

Master of Science Thesis Jonathan Klein Schiphorst

66 Glossary

Jonathan Klein Schiphorst Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Motivation
	Related work
	Nomenclature
	Formal controller synthesis
	Optimal controller synthesis

	Research goal & approach
	Contributions beyond the State of the Art
	Thesis outline

	Preliminaries and Problem Statement
	Conditions for stability, safety and optimality
	Neural networks
	Fundamentals
	Training
	Neural network verification

	Problem statement

	Methodology
	Formal Neural Policy Iteration
	Initialization
	Neural Policy Evaluation
	Neural Policy Improvement
	System verification
	Stopping conditions

	Software implementation of FNPI

	Results
	Verification of the procedure with linear systems
	Derivation of the Linear Quadratic Regulator
	Double integrator
	Conclusion

	Scalability of the method
	Value network scaling
	Policy network scaling
	Single layer scaling
	Higher-dimensional systems
	Conclusion

	State & input constraints
	Input constraints
	State constraints via cost function shaping
	Using the value function as a barrier function.
	Conclusion

	Nonlinear systems
	Dubins car
	Duffing oscillator
	Inverted pendulum
	Analysis & comparison
	Conclusion

	Summary & discussion

	Conclusion
	Conclusion
	Future work

	Appendices
	Prototype tool FNPI
	Verification times

	Back Matter
	Glossary
	List of Acronyms
	List of Symbols

