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ABSTRACT
Over the last decades, various tools (e.g., AUSTIN and EvoSuite)
have been developed to automate the process of unit-level test case
generation. Most of these tools are designed for statically-typed
languages, such as C and Java. However, as is shown in recent
Stack Overflow developer surveys, the popularity of dynamically-
typed languages, such as JavaScript and Python, has been increasing
and is dominating the charts. Only recently, tools for automated
test case generation of dynamically-typed languages have started
to emerge (e.g., Pynguin for Python). However, to the best of our
knowledge, there is no tool that focuses on automated test case
generation for server-side JavaScript. To this aim, we introduce
SynTest-JavaScript, a user-friendly tool for automated unit-level
test case generation for (server-side) JavaScript. To showcase the
effectiveness of SynTest-JavaScript, we empirically evaluate it on
five large open-source JavaScript projects and one artificial one.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Software testing and debugging.

KEYWORDS
software testing, search-based software testing, test case generation,
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1 INTRODUCTION
Software testing is an important part of the software development
process. This task is often performed manually, which can be both
time-consuming and prone to errors. To automate this process,
various tools for unit-level test case generation (e.g., AUSTIN for
C, and EvoSuite and Randoop for Java) have been created over the
years. These tools mostly focus on statically-typed languages [2].
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The most recent Stack Overflow developer survey1, however,
shows that JavaScript and Python, which are both dynamically-
typed, are the most popular programming languages among pro-
fessional developers. Recently, Lukasczyk and Fraser proposed
Pynguin, an automated unit-level test case generation tool for
Python [6]. However, despite JavaScript’s eleventh year in a row as
the most popular programming language, automated tool support
for test case generation for JavaScript is still lacking.

In the last decade, there has been a growing interest in developing
tools for JavaScript [1, 5, 8, 9]. These tools, however, focus on
JavaScript web applications that are characterized by their event-
driven execution model and interaction with the Document Object
Model (DOM) of the browser. JavaScript started out in 1995 as a
client-side scripting engine for the browser, but through the years,
additional JavaScript runtime engines like Node.js, Deno, and Bun
have emerged, which allow developers to use JavaScript for server-
side applications. These server-side JavaScript engines are used to
create web servers and command-line tools and are heavily used
by companies like Netflix2, PayPal3, and Uber4.

A crucial problem with developing tools for dynamically-typed
languages is that these types of languages do not provide any infor-
mation on the types of variables and parameters. Types are instead
inferred during the execution of the code. This characteristic, cou-
pled with JavaScript’s weak typing —where variables can change
types during execution— complicates the static determination of
types. Without knowing the type of a function parameter, it will be
challenging to generate the appropriate test inputs.

In this paper, we introduce SynTest-JavaScript, an open-source
automated unit-level test case generation tool for JavaScript, which
uses a probabilistic type inference approach we have introduced in
our previous work [12]. It makes use of search-based algorithms
to generate test cases that maximize function, branch, and path
coverage. SynTest-JavaScript is implemented on top of the SynTest-
Framework, which is a modular and extensible ecosystem for testing
tools. This tool aims to provide a platform for researchers and prac-
titioners to develop and evaluate new techniques for test case gen-
eration of JavaScript programs. A key feature of SynTest-JavaScript
is its plugin-friendly architecture, which allows additional search
algorithms and genetic operators to be easily added.

We performed an empirical study to evaluate the effectiveness
(i.e., branch coverage) of our tool for generating test cases for
99 JavaScript source code files. This evaluation shows that SynTest-
JavaScript can on average, achieve 69.4 % of branch coverage with
the state-of-the-art search algorithm DynaMOSA [11].
1https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
2https://netflixtechblog.com/debugging-node-js-in-production-75901bb10f2d
3https://paypal.github.io/PayPal-node-SDK/
4https://www.uber.com/en-NL/blog/uber-tech-stack-part-two/
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Figure 1: SynTest-JavaScript tool workflow

2 SYNTEST-JAVASCRIPT
SynTest-JavaScript is an automated unit-level test case generation
tool for (server-side) JavaScript code within the SynTest-Framework
ecosystem. Users can interact with the tool through the CLI of the
SynTest-Framework. To run the tool the following command struc-
ture can be used “syntest javascript <command> [options]”.
For more information on how to run the tool and its options, see
the documentation5. The tool can be found on GitHub6. In the
following section, we will discuss the workflow and highlight the
critical components of the tool.

2.1 Workflow
The workflow of our tool, depicted in Fig. 1, unfolds across five
phases: (i) initialization, (ii) pre-processing, (iii) processing, (iv) post-
processing, and (v) cleanup.

The initialization phase consists of setting up the environment,
configuring all the required variables, and initializing the required
classes. Next, the pre-processing phase uses static analysis methods
to gather information about the targeted units (i.e., exported func-
tions or classes) that can be used to improve the search process. In
this phase, we build the Control Flow Graph (CFG) starting from the
Abstract Syntax Tree (AST) of the unit under test. The CFG allows
us to extract the branch/function/path objectives from each unit.
These objectives are used during the processing phase to guide the
search algorithms towards maximum coverage. Next, we infer the
variable types using the type inference techniques as proposed in
our previous work [12]. Finally, we instrument the source code.
This instrumentation allows us to record information about the
performance of our generated test cases.

During the processing phase, each targeted file is considered
separately. The information gathered in the pre-processing phase
is used to sample encodings (test cases) during the search process.
These encodings are then evaluated based on the distance from
the objectives, which is calculated by executing the generated test
cases (encodings) and using the coverage data generated by the
instrumentation. For every objective that has been covered, we save
an encoding in our archive [10]. Next to the original objectives (e.g.,
branches), we also save error objectives that are discovered during
the search process. The search and evaluation go back and forth
until one of the stopping criteria is met (e.g., running time).

In the post-processing phase, we optimize and prettify the encod-
ings (test cases) in the archive. To achieve this, we first minimize
the size of the test cases by iteratively removing spurious state-
ments that do not contribute to the total coverage [11]. Next to

5https://www.syntest.org/docs/
6https://github.com/syntest-framework/
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Figure 2: SynTest-JavaScript encoding structure

the individual test case minimization, we also reduce the entire
archive (test suite) by checking whether two test cases cover the
same objectives and removing one of them. After minimization, the
tool generates assertions for each function call result, or exception
thrown. Finally, the resulting test suite is run to calculate the fi-
nal coverage. An example of a generated test case with assertions
is shown in Figure 3. In the last phase, the tool cleans up all the
generated temporary files.

2.2 Components
Presets. Presets allow developers or researchers to create pre-
specified configuration settings. Currently, we have four options,
random search, NSGAII [4], MOSA [10], and DynaMOSA [11]. Each
preset is designed to align with the configurations detailed in their
respective original articles.

Encoding. Our encoding for test cases is structured as a directed
acyclic graph. An example of such an encoding is shown in Fig. 2.
At the top, we have the test case itself, which contains the root
statements. In this example, the root statements consist of three
method calls. Each method call requires an instance of an object to
be called upon, for this reason, each method call has a constructor
child. Next to the constructor, some method calls have arguments.
These arguments can be primitives (e.g., boolean), objects, func-
tions, or results of other method calls. In Fig. 2, we see that method
call C uses the result of method call D as an argument. Although
not shown in the Fig. 2, the roots may also be object function calls
or regular function calls, the regular function call does not require
an object instance to be called.

Supported types. Our encoding supports two primitive types,
namely complex and action statements. The primitive statements
are a reflection of the primitive statements in JavaScript itself. These
include: boolean, integer, null, numeric, string, and undefined.
Note that in JavaScript there is no distinction between numeric
and integer. However, to improve the capabilities of the tool we
included a separate integer statement. Currently, the tool supports
the following complex statements: arrays, arrow functions, and
objects. Finally, the action statements include the constructor,
function, and method calls. When the type matching engine finds
a matching class type for a certain variable, we can import the
matching class and instantiate it through a constructor call. If how-
ever no matching class can be found, we use the object statement
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to construct the required type. This enables the tool to support an
infinite number of types.

Constant Pool. During the static analysis in the pre-processing
phase, we gathered all constant values from the source code and put
them into a constant pool. These constants can then be used during
the sampling of primitive types such as strings and numbers.

Type Pool. Next to the constant pool, we also create a type pool,
using the analysis files, which consists of all the user-defined object
types (classes, interfaces, prototyped functions, etc.). These types
can then be used when certain objects need to be sampled. We try
to find the most likely match to the required object and then sample
a constructor or import of that type. As mentioned before, if no
matching type can be found, the sampler constructs the object itself
through an object statement.

Statement Pool. For each test case, we maintain a statement pool
that consists of each statement within the encoding tree. During
the sampling of new statements for a test case, there is a chance of
reusing already occurring statements from the encoding tree. This
is done by sampling a matching statement from the statement pool.
For this reason, our encoding is a directed acyclic graph instead of
a tree. Fig. 2 shows this by for example method calls B, C, and D all
using constructor instance 2. Note that this only works when the
types of the statements match.

Execution engine. To ensure that test case executions do not
influence each other we created a test case execution engine that
runs each test case in a new process. Running a test case in a
separate process allows us to terminate the execution in case of a
timeout or memory overflow (which can happen with generated
test cases). The execution engine provides a separate process with
the test to execute and the relevant environment. After execution,
the results sent back by the process include instrumentation data,
meta-data, and assertion data. To calculate the “fitness” of a test we
measure its distance to cover all unreached branches in the code, as
typically done in DynaMOSA [11]. The distance to each uncovered
branch is computed using two well-known coverage heuristics [7]:
(1) the approach level and (2) the normalized branch distance. We
use the instrumentation data to calculate the approach level. To
calculate the branch distance we use the meta-data which consists
of the branch conditions together with the relevant variable values.
Finally, the assertion data contains the results of function calls and
is used to generate assertions.

Test splitting. As mentioned before, the post-processing phase
minimizes the size of each test case by splitting them. Take the
encoding shown in Fig. 2 as an illustrative example. In this sce-
nario, the original test case can be split into two separate ones: the
first encompassing method call A, along with its associated child
statements; the second comprising methods calls B and C, along
with their child statements. The tool then runs these two test cases
separately and checks whether their combined coverage is equal
to (or higher than) the original test. In that case, the two new tests
are stored and further considered for additional splits recursively.

Test de-duplication. After the test splitting, we end up with a
large set of test cases, some of which might be redundant w.r.t. to
the final coverage. For this reason, we have a de-duplication step in

1 i t ( "suggestSimilar returns correct suggestion for a misspelled
word with special characters" , a sync ( ) => {

2 // Meta information
3 // Selected for objective: ./ suggestSimilar.js

:80:13:::82:7:::2311:2384
4 // ...
5 // Covers objective: ./ suggestSimilar.js

:81:8:::81:32:::2352:2376
6
7 // Test
8 const word = "cac@e -valiate" ;
9 const a r r ayE l emen t = "cache -validate" ;
10 const c a n d i d a t e s = [ a r r ayE l emen t ]
11 const s u g g e s t S im i l a r R e t u r nVa l u e = awa i t s u g g e s t S im i l a r ( word ,

c a n d i d a t e s )
12
13 // Assertions
14 expe c t ( s u g g e s t S im i l a r R e t u r nVa l u e ) . t o . e qua l ( "\n(Did you mean

cache -validate ?)" )
15 } )

Figure 3: Example of generated test case

our workflow. During this step, each test case is compared to the
other test cases to check for duplicate objective coverage. If two
test cases cover exactly the same objective, the best one is picked
based on secondary objectives such as length or readability.

Meta-commenting. To provide as much information as possible
to the end user the tool provides meta-comments in each test case.
These comments provide information about which objectives the
test case covers and for which objective the test case was chosen. For
error objectives, we also provide the stack trace in the comments.
Fig. 3 shows some meta-comments in line 2 to 5.

Naming strategy. To generate test cases that not only achieve high
coverage but are also very readable, the names of the used variable
names must be logical. To achieve this, the tool uses the names of
the parameters of the called functions as the variable names for
the corresponding arguments. If a variable name is already in use,
we number them. For return values, we currently simply name the
variable "[function name]ReturnValue" as can be seen on line
11 in Fig. 3. In the future, we plan to improve this by using the
name of the returned variable in the source code. We also plan
to improve the test and variable names by using Large Language
Models (LLMs) as a prettifier.

Assertion Generation. A test case is incomplete without proper
assertions. To generate assertions we first execute the test cases
without any assertions and record the result of each function call.
In the case of an error, we catch and record the error. Then the
recorded results are asserted in the final test suite. An example of
this is shown on line 14 in Fig. 3.

3 EVALUATION
To evaluate the effectiveness of SynTest-JavaScript, we performed
an experiment on the SynTest-JavaScript-Benchmark, previously
introduced in [12]. To the best of our knowledge, this is the only
benchmark targeted at unit-level test case generation for JavaScript.
The current version of the benchmark contains 99 JavaScript source
code files which consist of popular JavaScript libraries that rep-
resent a diverse set of JavaScript syntax and code styles. Table 1
provides the main characteristics of the benchmark projects, in-
cluding the number of files, the number of units (i.e., exported
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Benchmark Metrics Achieved Branch Coverage Statistical Significance
Files #Units Avg. CC random DynaMOSA Difference #Lose #No Diff. #Win

Artificial 4 4 5 47.92% 87.50% 39.58% 0 1 3
Commander.js 4 6 23 56.24% 75.43% 19.20% 0 0 4
Express 6 12 32 46.30% 46.41% 0.11% 2 3 1
JavaScript Algorithms 56 69 10 67.88% 73.67% 5.79% 3 28 25
Lodash 10 10 11 81.59% 89.13% 7.54% 0 7 3
Moment.js 19 41 18 45.39% 48.59% 3.20% 1 13 5
Average 17 24 17 57.55% 70.12% 12.57% 1 9 7

Table 1: Overview of the benchmark metrics, achieved coverage, and statistical significance

classes or top-level functions), and the average Cyclomatic Com-
plexity per file (CC column).

We used the state-of-the-art search algorithm DynaMOSA [11]
and compared it against random search as a baseline. We use the
algorithm parameter values as suggested in the DynaMOSA paper7.
We set a search budget of 180 seconds as often used in related
work [10, 11]. To account for the stochastic nature of search-based
approaches, each file under test was run 20 times. This resulted in
8.25 d of consecutive running time (3960 runs × 180 s). The experi-
ment was performed on a system with two AMD EPYC 7H12 (64
cores, 2.6GHz) CPUs and 512GB of RAM.

To determine if one approach performs better than the others, we
applied the unpairedWilcoxon signed-rank test [3] with a threshold
of 0.05. This non-parametric statistical test determines if two data
distributions are significantly different. In addition, we apply the
Vargha-Delaney Â12 statistic [13] to determine the effect size of the
result, which determines the magnitude of the difference between
the two data distributions.

The results of our evaluation can also be found in Table 1. It
shows the average branch coverage per benchmark project achieved
by random search and DynaMOSA and how they perform compared
to each other. As can be seen in the table, DynaMOSA achieves an
average branch coverage above 70% for four out of six projects,
and close to 50 % for the remaining two. As shown in related work,
DynaMOSA achieves higher code coverage than random search for
most units under test. Additionally, Table 1 shows the statistical
results of the comparison between the two search algorithms with
regard to branch coverage across the various benchmarks. This sec-
tion of the table is organized into three main categories: #Win, #No
Diff, and #Lose. Analyzing the #Win category, we observe notable
results in favor of DynaMOSA in all benchmarks. The table shows
that in 41 cases DynaMOSA wins significantly, in 6 cases random
search wins significantly, and in 52 cases there is no significant
difference in performance.

4 CONCLUSION AND FUTUREWORK
In this paper, we introduced SynTest-JavaScript, a unit-level auto-
mated test case generation tool for (server-side) JavaScript. With
this tool, we provide a platform for researchers to experiment with
new search-based approaches for the dynamic programming lan-
guage JavaScript. Additionally, as no tool existed for (server-side)

7https://github.com/syntest-framework/syntest-framework/blob/
3f6b9612c030ffc79d5e79c5c1c126ca816a87a6/tools/base-language/lib/presets/
DynaMOSAPreset.ts

JavaScript, we provide practitioners with a new tool to apply search-
based testing techniques in industry.

As part of our future plan, we will extend the tool with addi-
tional search algorithms (e.g., SPEA2, PESA, PSO) and LLM-based
approaches. To make it easier for researchers to evaluate new ap-
proaches, we plan to provide infrastructure within the tool needed
to easily run and compare experiments. Furthermore, we plan to
incorporate a mutation-testing engine to better evaluate the quality
of the test cases. Lastly, to make the tool easier to use for practi-
tioners, we plan to integrate it within the most popular IDEs (e.g.,
VSCode and WebStorm) and CI/CD platforms (e.g., GitHub, GitLab).
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