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Abstract: Forest above-ground biomass (AGB) can be estimated based on light detection and ranging
(LiDAR) point clouds. This paper introduces an accurate and detailed quantitative structure model
(AdQSM), which can estimate the AGB of large tropical trees. AdQSM is based on the reconstruction
of 3D tree models from terrestrial laser scanning (TLS) point clouds. It represents a tree as a set
of closed and complete convex polyhedra. We use AdQSM to model 29 trees of various species
(total 18 species) scanned by TLS from three study sites (the dense tropical forests of Peru, Indonesia,
and Guyana). The destructively sampled tree geometry measurement data is used as reference values
to evaluate the accuracy of diameter at breast height (DBH), tree height, tree volume, branch volume,
and AGB estimated from AdQSM. After AdQSM reconstructs the structure and volume of each tree,
AGB is derived by combining the wood density of the specific tree species from destructive sampling.
The AGB estimation from AdQSM and the post-harvest reference measurement data show a satisfying
agreement. The coefficient of variation of root mean square error (CV-RMSE) and the concordance
correlation coefficient (CCC) are 20.37% and 0.97, respectively. AdQSM provides accurate tree
volume estimation, regardless of the characteristics of the tree structure, without major systematic
deviations. We compared the accuracy of AdQSM and TreeQSM in modeling the volume of 29 trees.
The tree volume from AdQSM is compared with the reference value, and the determination coefficient
(R2), relative bias (rBias), and CV-RMSE of tree volume are 0.96, 6.98%, and 22.62%, respectively.
The tree volume from TreeQSM is compared with the reference value, and the R2, relative Bias (rBias),
and CV-RMSE of tree volume are 0.94, −9.69%, and 23.20%, respectively. The CCCs between the
volume estimates based on AdQSM, TreeQSM, and the reference values are 0.97 and 0.96. AdQSM
also models the branches in detail. The volume of branches from AdQSM is compared with the
destructive measurement reference data. The R2, rBias, and CV-RMSE of the branches volume are
0.97, 12.38%, and 36.86%, respectively. The DBH and height of the harvested trees were used as
reference values to test the accuracy of AdQSM’s estimation of DBH and tree height. The R2, rBias,
and CV-RMSE of DBH are 0.94, −5.01%, and 9.06%, respectively. The R2, rBias, and CV-RMSE of
the tree height were 0.95, 1.88%, and 5.79%, respectively. This paper provides not only a new QSM
method for estimating AGB based on TLS point clouds but also the potential for further development
and testing of allometric equations.

Keywords: terrestrial laser scanning; AdQSM; destructive sampling; tree volume;
above-ground biomass
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1. Introduction

Above-ground biomass (AGB) estimation, which measures forest productivity or carbon
sequestration, is an essential step in forest management [1–3]. The direct method of measuring
AGB is to cut down and weigh all the trees in the plot, which is costly and time-consuming [4,5].
Therefore, it is necessary to develop indirect biomass estimation methods. Common methods for
estimating forest AGB are based on indirect relationships between tree structure parameters such
as diameter at breast height (DBH) and tree height [6,7]. An allometric equation established by
destructive sampling is an indirect method for estimating AGB, which can be applied to large-scale
sample estimation [8,9]. However, the accuracy is not satisfactory when estimating individual trees or
small samples. Due to different assumptions, it is difficult to conduct reliable verification based on
the measurement results and to quantify the uncertainties [10–12]. This indirect estimation method
produces an error propagation chain, in which the largest source of error is allometric equation [13,14].
This allometric measurement is valid when it is applied within the productivity and species range of
calibration data, but it may lead to greater uncertainty in large-scale biomass mapping [6,8,9]. Thus, it is
necessary to develop a method for non-destructive biomass estimation that can properly balance the
relationship between accuracy and efficiency. LiDAR is one of the most effective and accurate methods
to estimate biomass of single trees [5,15]. This indirect estimation method based on LiDAR data has
been increasingly used for biomass estimation. Terrestrial laser scanning (TLS) can measure the tree
three-dimensional (3D) structure with high precision [16,17]. The TLS point clouds can be used to not
only validate allometric equation but also to develop and test a new allometric relationship [18–20].
Since large trees are not often harvested and measured to calibrate allometric growth, the absolute
error increases with the DBH [10,21,22].

High-density LiDAR point clouds can describe detailed tree information, which lays the foundation
for the reconstruction of tree geometry and topology [11,23]. Three-dimensional reconstruction of trees
based on LiDAR point clouds can directly obtain the structure or size distribution of trees branches,
the size of tree crowns, etc. [24,25]. The quantitative structure model (QSM) is a geometric model that
describes a complete above-ground tree in a hierarchical order [26]. QSM can reconstruct a 3D model
based on the point clouds of the individual tree, and then extract tree attributes [27,28]. QSM can
directly calculate the tree volume from the TLS data, and further derive AGB by combining the wood
density information [29,30]. The remote sensing estimation of AGB is almost entirely dependent on
the allometric form based on tree height or DBH. QSM does not require any prior information about
allometric growth when estimating AGB [28]. Accurate tree information provided by LiDAR data is
necessary to improve the calibration and verification of AGB remote sensing estimates [31–34]. The tree
size will affect the accuracy of allometric equation to estimate AGB, while the QSM method estimates
AGB independent of the tree size [32,35]. The QSM method can better quantify the errors caused
by wood density and the allometric model. It should be noted that it cannot replace the allometric
measurement method. The QSM method based on LiDAR point clouds still relies on validation by
destructive sampling [36,37].

Some results show that the QSM method is feasible and effective for forest AGB estimation [16,32].
TreeQSM, developed by Pasi Raumonen et al., is a QSM that has been widely used [26,27]. Destructive
experiments have confirmed TreeQSM’s high accuracy, and some researchers have used it to model
trees from TLS data. Raumonen et al. automatically reconstructed a quantitative structural model
of each tree in the forest plot from TLS data and estimated the AGB of oak and eucalyptus trees in
combination with the wood density [29]. Compared with the biomass of destructive harvest, the
average relative absolute error of oak was between 23.7% and 25.5%, and the calculated biomass
was overestimated by 15.3–18.8%. The average relative absolute error of eucalyptus biomass was
approximately 28.5%. Sruthi M. Krishna Moorthy et al. calculated the biomass and volume of lianas
stem using TreeQSM from TLS data in tropical forests [38]. The results show that the consistency
correlation coefficient (CCC) between the TLS-derived volume and the reference volume of synthetic
lianas was 0.94. The CCC values of all allometric models and the most commonly used pantropical
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model were relatively low, reaching 133% compared with the biomass derived from TLS. Kim Calders
et al. used TreeQSM to estimate the volume of 65 eucalyptus trees from TLS data and combined with
the basic density information to infer AGB [37]. Estimates of AGB from TLS showed higher agreement
with reference values for destructive sampling (CCC = 0.98). The estimates of AGB from allometric
equation were in low agreement with the reference values (CCC = 0.68 − 0.78), and the total AGB was
underestimated by 36.57–29.85% compared with allometric equation. Jose Gonzalez DE Tanago used
TreeQSM to estimate AGB of large tropical trees from TLS data [10]. The comparison between the
AGB estimation through the QSM method and destructive harvest measurement shows that the best
agreement (coefficient of variation of root mean square error (CV-RMSE) is 28.37% and CCC is 0.95),
and the QSM model outperforms the pantropical allometric models tested.

Shenglan Du et al. proposed a method called AdTree that provides the geometric basis for
automatic, detailed, and accurate 3D reconstruction of real-world trees [39]. The AdTree method
is robust to different types and sizes of trees. As long as the input point clouds has a clear branch
structure, high-quality tree models can be generated. Compared to other open-source tree cylindrical
modeling methods (PypeTree, TreeQSM, and SimpleTree) [40,41], the tree stem and branches generated
based on AdTree have higher geometric accuracy. Specifically, the distances between the input point
and the output model are less than 10 cm. In 2020, Guangpeng Fan et al. [42] further extended the
AdTree method and defined the calculation method for deriving DBH, tree height, and volume from
the model. However, the above research did not use destructive tree measurement data to validate
the AdTree-based QSM method. In this work, we further optimized and tested the research results of
Shenglan Du, Guangpeng Fan, and others, and we call the new QSM model AdQSM. We also use the
destructive sampling data of 29 large trees from tropical forests in Indonesia, Peru, and Guyana as
reference values to verify the accuracy of DBH, tree height, tree volume, branch volume, and AGB
estimated from AdQSM.

In summary, the contribution of this work includes: (1) a novel QSM model based on AdTree,
which is suitable for the study of tree volume, biomass or carbon storage based on forest 3D point
clouds. (2) The use of destructive tree measurement data to validate the potential and accuracy of
volume reconstruction using AdQSMs for estimating AGB of large tropical forest trees.

2. Materials and Methods

2.1. Data Preparation

To effectively test the performance and accuracy of AdQSM, this paper used a large tropical
tree dataset collected by Wageningen University in Indonesia, Peru, and Guyana (http://lucid.wur.
nl/datasets/terrestrial-lidar-of-tropical-forests). The data set consists of 29 individual tree TLS point
clouds, forest inventory data, and destructive sampling measurement data. Most of the trees sampled
were medium to very large tropical trees, with a rather complex canopy structure, and they were
scanned in their natural environment. This dataset is an interesting example for testing the performance
of a given 3D tree model. This dataset was published for the first time in the study of Jose Gonzalez de
Tanago [10]. Table 1 provided relevant description information of the geographic environment and
plot characteristics of the dataset.

http://lucid.wur.nl/datasets/terrestrial-lidar-of-tropical-forests
http://lucid.wur.nl/datasets/terrestrial-lidar-of-tropical-forests
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Table 1. Descriptions of the study sites.

Study Site Peruvian Indonesian Guyanese

Number of plots 9 10 10

Forest type Lowland tropical moist
terrestrial forest Peat swamp forest Lowland tropical

moist forest

Region Madre de Dios.
Southwestern Amazon Mentaya River Vaitarna Holding’s

concession

Lat/long −12.27 lat −69.10 long −2.41 lat 113.13 long 6.04 lat −58.70 long

Mean elevation 312 m 22 m 117 m

Mean yearly rainfall 2074 mm 2616 mm 2195 mm

Mean stem density
(DBH > 10 cm) 565 stems/ha 1314 stems/ha 516 stems/ha

Mean DBH harvested
trees (SD) 90.0 cm (22.2 cm) 58.4 cm (18.2 cm) 73.7 cm (12.0 cm)

2.1.1. TLS Data

The TLS data were collected using the (RIEGL VZ-400 3D®) ground laser scanner (RIEGL Laser
Measurement Systems GmbH, Horn, Austria). TLS scanned 29 plots and then destructively sampled
the largest tree in each plot. Plot spatial design were designed to cover the expected area where the tree
to be harvested will land: 30 × 50 m in Peru and 30 × 40 m in Indonesia and Guyana. The TLS scan
locations within each plot followed a systematic spatial pattern within each plot. It must be noted that
the spatial sampling applied was optimized for plot scanning and not for individual trees, which could
improve the data quality for target trees. Each scan had an angular resolution of 0.06◦. To acquire a
full hemispherical scan, two scans were taken at each scan location; one in an upright position (scanner
rotation perpendicular to the ground) and the other in a tilted position (scanner parallel to the ground).
Please refer to the paper published earlier on the dataset for the detailed configuration of the scanner,
plot space design, and tree selection [10].

2.1.2. Forest Inventory Data

Tree species were identified by an experienced taxonomy expert. Table 2 provides species
information of 29 trees, a total of 18 different species of tropical trees range from medium to large.
Some attributes (the DBH, tree height, the height of the living crown, and crown size of each tree)
were measured before the tree was harvested. The DBH was measured with a forestry tape with a
precision of 0.01 m. The tree height was measured with the Nikon “Forestry-Pro” (Hayama, Japan)
laser altimeter with a precision of 0.2 m. The maximum DBH was 127.6 cm and the maximum tree
height was 50.5 m. The average DBH was 73.5 cm and the average tree height was 33.34 m.

Table 2. Tree species information of the study site.

Study Site Peruvian Indonesian Guyanese

Species

Buchenavia macrophylla Tetramerista glabra Jupunba
Dacryodes peruviana Parastemon urophyllus Coutinhoi
Couratari macrocarpa Cratoxylon glaucum Grandiflora

Sloanea eichleri Shorea Falcata
Pterygota amazonica Aglaia rubiginosa

Pseudopiptadenia suaveolens Diospyrosevena
Nectandra longifolia Shorea teysmanniana
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2.1.3. Tree Geometry Measurement Based on Destructive Sampling

The geometry of trunks, branches, and buttresses of 29 harvested trees from Guyana, Peru,
and Indonesia was measured. As shown in Figure A1(1) in Appendix A, the trunk diameter (1a)
was measured every meter along the trunk (1b) according to the method of Kankare et al. [43]. For
trees with buttresses or major irregularities, the method shown in Figure A1(2) was used. Finally,
the measurement of all branches was completed by measuring each internode individually until the
tapered diameter is ≤10 cm, as shown in Figure A1(3).

2.2. Tree Volume Estimation

2.2.1. Tree Volume Estimation Based on Reference Measurements

The reference volume of the 29 harvested sample trees was determined based on the tree geometric
measurement values. For the geometric measurement method, please refer to Section 2.1.3. The total
volume of an individual tree is calculated as the sum of the trunk, larger branches (diameter > 10 cm),
and buttresses. After obtaining the tree geometry measurement data, the Smalian formula in Nogueira,
Nelson, and Fearnside was used to estimate the volume of the trunk and branches [44], and the general
prism volume formula was used to calculate the buttress volume. Detailed information can be found
in Appendix A.

As stated by Berger, McRoberts, and Fearnside [44,45], any misrepresentation of the trunk and
branch volumes by Smalian approximation and any measurement errors taken were considered
negligible and ignored. Furthermore, it is assumed that the sum of all cylinders represents the real tree
volume without error, and the measurement of wood volume has no error.

2.2.2. Tree Volume Estimation from 3D Reconstruction—A New Quantitative Structure Model of Trees

In 2019, the AdTree method proposed by Shenglan Du et al. can accurately reconstruct the
three-dimensional geometric and topological structure of trees. In 2020, Guangpeng Fan et al. updated
and expanded the AdTree method and proposed a new quantitative estimation method for tree
parameters [39,42]. Based on Adtree’s research, the minimum spanning tree algorithm (MST) was used
to extract the initial skeleton of the tree from the input point clouds and trim it. Then fit a series of
cylinders to approximate the geometry of tree trunks and branches. At this time, trees were a group of
generalized cylindrical surfaces. After closing the ends of the main branch, the tree changed from a
generalized cylindrical surface to a closed convex hull polyhedron.

In this study, C++ was used in Visual Studio 2015 to implement the quantitative structure model
based on AdTree, which further improved the accuracy for estimating tree parameters based on the
reconstruction model. In the original AdTree method, the points near the bottom of the tree were used
as a reference to automatically fit the cylinder to obtain the initial radius of the tree bottom. However,
compared with the trunk point clouds, the buttress point clouds are abrupt and non-linear. There may
also be a lot of noise points in the point clouds at the bottom of the stem, which will eventually cause
the radius of the entire tree cylinder model to be inaccurate. These factors will reduce the accuracy
of the model to estimate tree attributes. These issues were not considered in the original modeling
method. Deviations in the radius of the tree bottom will lose the accuracy of attributes such as tree
volume or DBH. To make the modeling method more accurate and detailed, this paper modified
the original fully automated modeling method to a semi-automated modeling method. As shown
in Figure 1, after manually selecting a relatively stable trunk points to fit a cylinder, the algorithm
will automatically take the non-overlapping parts from the top, middle, and bottom of the selected
point clouds. After calculating the cylinder radius of the intersection point between the three parts
of the point clouds and the tree bottom, the average of the three radii was finally taken as the initial
cylindrical radius. Determine the intersection point of the three-section cylinder with the ground after
the central axis extends downward, and take the average of the three intersection points as the position
of the tree bottom. The point with the largest Z value of each part of the point clouds was taken as the
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center of the top surface, and the point with the smallest Z value was taken as the center of the bottom
surface. Half of the length or width of the minimum bounding box of this part of the point clouds
(take the maximum value) was the radius, which was used as the initial rough cylinder in the tree
cylinder fitting process. After determining the initial cylinder (the center of the top surface, the center
of the bottom surface, radius), the nonlinear least square method was used to optimize the cylinder,
and the optimized cylinder was the fitting cylinder of the final tree reconstruction model.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 21 
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Figure 1. The modeling process of AdQSM. (a) Guyana’s Grandiflora tree point clouds
(TreeID = GUY06_000); (b) manual selection of the point clouds to fit the initial cylinder; (c) the
initial skeleton; (d) the final skeleton after trimming; (e) the reconstructed cylinder model; (f) the
reconstructed model after RGB rendering.

We named the improved QSM method AdQSM, which is a new, accurate, and detailed 3D
reconstruction model of trees based on TLS point clouds. It can measure tree components such as
trunks or branches. Parameters such as the tree height, DBH, tree volume, volume/length of branches
and trunks, total number of branches, the height of the living crown, and crown size can be estimated
from the tree model reconstructed by AdQSM.
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2.3. Tree AGB Estimation Based on Volume Model and Wood Density

We only obtained the dry mass of 10 trees from Indonesia that were dried in the oven, and 19 trees
from Peru and Guyana lacked the dry mass values. Therefore, this paper uses the dry mass of 10 trees
from Indonesia to verify the accuracy of AGB estimation based on the AdQSM reconstruction of tree
volume. We multiply the estimated volume of 10 individual trees by the average basic wood density
(ρ) to calculate the individual AGB. The average basic wood density (g/cm3) of a tree comes from the
different tree components of the destructive measurement [46,47]. The tree components can be stems,
branches, fruits, leaves, and buttresses. All 10 trees have a corresponding average basic wood density
(See Table 3). The AdQSM method does not consider the biomass of leaves or fruits when evaluating
AGB, but it does not affect the accuracy of the test results. Table 3 counted the biomass of leaves or
fruits of 10 individual trees sampled destructively. The contribution of leaves and fruits to the total
biomass was only 1.1%.

Table 3. Tree information for estimating AGB.

TreeID Species Leaf (kg) Fruit (kg) Total Mass
(Mg)

Average Basic Wood
Density (g/cm3)

IND01_054 Tetramerista glabra 26.03993 0 1.14847 0.538393614
IND02_067 Tetramerista glabra 44.87053 0.67993 1.91689 0.521418157
IND03_088 Tetramerista glabra 44.74779 0 3.53473 0.585573601

IND04_109 Parastemon
urophyllus 3.239637 0 1.39142 0.755107967

IND05_080 Cratoxylon glaucum 7.52838 0 0.58864 0.519649557
IND07_083 Shorea 99.88965 0 10.56921 0.571111339
IND08_076 Aglaia rubiginosa 88.95909 0 3.25224 0.535991173
IND09_067 Diospyrosevena 53.78951 0 4.50203 0.754525263
IND10_149 Shorea teysmanniana 0 0 1.47877 0.54
IND11_104 Shorea 64.77693 0 9.97840 0.543427109

2.4. Measurement Comparison

2.4.1. Accuracy Index

We used the destructively sampled tree measurement data as the reference value, and calculated
the Bias, rBias, root mean square error (RMSE) and RMSE% of the AdQSM estimated value (the DBH,
tree height, branch volume, tree volume, AGB), and the corresponding reference measurement value.
The following equations are the definitions of various accuracy indicators. The concordance correlation
coefficient estimated (CCC) by variance components based on the R language is used to evaluate the
consistency between the AGB of AdQSM and the reference measurement value.

Bias =
1
n

n∑
i=1

(yi − yri) (1)

RMSE =

√∑
(yi − yri)

2

n
(2)

rBias% =
Bias
yr
× 100% (3)

rRMSE% =
RMSE

yr
× 100% (4)
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yi represents the estimated value of the i-th tree from AdQSM, yri represents the reference
measurement value, yr represents the average of the reference measurement value, and n represents
the number of trees.

2.4.2. Compare the Accuracy of Tree Volume Reconstruction with TreeQSM

Tree volume reconstruction is one of the important functions of QSM. To more accurately evaluate
the accuracy of the estimated volume of AdQSM, we not only compare the volume value estimated
by AdQSM with the destructive reference measurement value, but also the tree volume estimated
by TreeQSM. TreeQSM is a QSM method developed by Raumonen et al. to reconstruct the wooden
structure of trees and further developed by Calders, Newnham, and Raumonen et al. [26,27,37].
This method first segmented the TLS point clouds, reconstructed the topological branch structure
of the entire tree, and then reconstructed the segmented surface and volume by fitting a cylinder to
each segment. The resulting cylindrical model was used to automatically calculate the volume of the
entire wooden part of a single tree (trunk and branches). TreeQSM performed cylindrical fitting to the
topological structure of the entire tree based on the point clouds of a single tree, calculated the volume
of each cylindrical part, and then calculated the volume of the trunk and branches of each tree.

TreeQSM has two important input parameters, d and l [37]. These two parameters define the
patch size and relative length for the second cover. Given that the cover generation is random, the final
TreeQSM is always a little different, even if using the same input parameters. We randomly selected
nine trees from three research sites for sensitivity analysis. We made 10 models for each of these 9 trees,
a total of 90 models. We implement the TreeQSM method in MATLAB (windows10 64-bit operating
system). Although there are relatively few samples retained for sensitivity analysis (9 out of 29 trees),
the PatchDiam setting in Table 4 is relatively stable in the data performance of this paper regardless of
the characteristics of the randomly selected trees.

Table 4. Parameter Pacthdiam settings in this article.

Study Site Peruvian Indonesian Guyanese

PatchDiam1 0.12 0.08 0.1
PatchDiam2Min 0.04 0.02 0.01
PatchDiam2Max 0.07 0.07 0.07

3. Results

3.1. DBH and Tree Height

We used the DBH and tree height of 29 trees from destructive sampling as reference values for
AdQSM. The reference value of DBH ranged from 33.9 cm to 127.6 cm. The reference value of tree
height ranged from 21.2 m to 50.5 m. The estimated value of DBH ranged from 32.7 cm to 120.3 cm,
and the estimated value of tree height ranged from 24.81 m to 48.83 m. Figure 2a showed that the R2 of
the linear fit of the DBH estimate from AdQSM to the reference value was 0.94, and its slope was 0.98.
AdQSM’s estimation of DBH did not change significantly with the increase of DBH. Figure 2b showed
that the R2 of the linear fit between the estimated tree height of AdQSM and the reference value was
0.95, and its slope was 0.91. AdQSM’s estimation of tree height did not change significantly with the
increase of tree height. AdQSM did not have large deviations in the estimation of the DBH and tree
height of 29 trees from three different ecosystems.
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Figure 3a showed the residual distribution of DBH. Most DBH residuals were between−5.0 cm and
5.0 cm. There was no significant difference in the distribution range of residual value with the increase
of DBH, and it was evenly distributed on both sides of the y = 0 line. Figure 3b showed that most of
the residual values of tree height were between −2 m and 2 m. There was no significant difference in
the distribution range of the residual value with the increase of tree height, and the residual error was
evenly distributed on both sides of the y = 0 line. Although the three study sites contained different
tree species, sizes, and shapes, AdQSM’s estimates of DBH and tree height performed similarly in the
three different locations.
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Table 5 shows the accuracy of DBH and tree height estimates based on AdQSM. The Bias and
RMSE calculated by the least square method were −3.68 cm and 6.65 cm, respectively. The DBH
deviation of 75.9% of the sample trees was less than 6.65 cm. The Bias and RMSE of the tree height
were 0.63 m and 1.93 m, respectively. The tree height deviation of 75.9% of the sample trees was less
than 1.93 m.
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Table 5. Comparison of DBH and tree height accuracy using the AdQSM model and destructive
sampling tree measurement.

Category Bias rBias (%) RMSE rRMSE (%)

DBH (cm) −3.68 −5.01 6.65 9.06
Height (m) 0.63 1.88 1.93 5.79

3.2. Volume

3.2.1. Tree Volume

To test the accuracy of AdQSM’s estimation of tree volume, we compared the tree volume
estimated by AdQSM and TreeQSM with the tree volume of destructive sampling respectively. We
use the volume of 29 trees (the sum of the volume of trunks, branches, and buttresses) from Peru,
Guyana, and Indonesia as reference values. The reference value of tree volume ranged from 1.041 m3 to
43.894 m3, and the volume value estimated by TreeQSM ranged from 1.029 m3 to 40.333 m3. The volume
value estimated by AdQSM ranged from 1.147 m3 to 56.224 m3. Figure 4 provides the performance of
TreeQSM and AdQSM in each tree.
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Figure 4. Reference tree volume value and the value estimated using the AdQSM and TreeQSM.

Figure 5 shows that the R2 of the linear fit between the estimated volume of AdQSM and the
volume reference value was 0.96. The slope was 1.09, indicating that AdQSM slightly overestimated the
volume of the largest tree. The RMSE was 2.651 m3, and the average volume was 11.717 m3, resulting
in a CV (RMSE) of 22.62%. The R2 of the linear fit between the estimated volume of TreeQSM and the
volume reference value was 0.94. The slope was 0.96, indicating that TreeQSM slightly underestimated
the volume of the largest tree. The RMSE was 2.719 m3, and the CV (RMSE) was 23.20%. The CCCs
between the volume estimates based on AdQSM and TreeQSM and the volume reference values were
0.97 and 0.96.
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Figure 6 shows the volume residual distribution of AdQSM and TreeQSM. Most of the residuals
of AdQSM and TreeQSM ranged from −2 m3 to 2 m3, and most of the volume residuals distributed
evenly on both sides of the y = 0 line. Although the three study sites contained different tree species,
sizes, and shapes. The performance of AdQSM and TreeQSM was similar in three different study sites.
The results of ‘small tree’ (DBH ≤ 70 cm) and ‘large tree’ (DBH > 70 cm) were different. Compared
with large trees, the tree reconstruction based on AdQSM and TreeQSM show less uncertainty and
deviation from reference values for small trees, mainly Indonesian TLS data sets.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 21 
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Figure 6. Residual distribution of tree volume. (a) AdQSM; (b) TreeQSM.

Table 6 provides the accuracy of AdQSM and TreeQSM in estimating tree volume. The Bias and
rBias of AdQSM calculated by the least square method were 0.818 m3 and 6.98%, respectively. The tree
volume deviation of 89.7% of all sample trees was less than 2.651 m3. The Bias and rBias of TreeQSM
calculated by the least square method were −1.135 m3 and −9.69%, respectively. The tree volume
deviation of 69.0% of all sample trees was less than 2.719 m3.
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Table 6. Accuracy comparison of tree volume obtained by AdQSM and destructive sampling trees.

QSM Type Bias(m3) rBias (%) RMSE(m3) rRMSE (%)

TreeQSM −1.135 −9.69% 2.719 23.20
AdQSM 0.818 6.98% 2.651 22.62

3.2.2. Branch Volume

AdQSM can model branches in detail (See Figure 7). The detailed branch structure can improve
the accuracy of AGB estimates. To evaluate the accuracy of AdQSM modeling branches, we used the
branches volume as an evaluation indicator.
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Figure 7. Visualization of tree branch modeling of Indonesia’s Aglaia rubiginosa tree branch
(TreeID = IND08_076). (a) Original branch input point clouds; (b) Input point clouds and reconstructed
branches model; (c) Reconstructed branches model; (d) Branches model rendered by RGB.

The geometrically measured branches volume of each tree was used as the reference value
of AdQSM modeling branches. AdQSM estimated branches volume in a range from 0.105 m3 to
37.421 m3. Figure 8 shows that the R2 of the linear fit between the estimated branches volume and the
reference branches volume was 0.97. The slope was 1.13, indicating that AdQSM slightly overestimated
the volume of branches, which was consistent with the test results of 3.2.1 individual tree volume.
The RMSE was 2.174 m3, and the average volume was 5.898 m3, resulting in a CV (RMSE) of 36.86%.
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Figure 8. Comparison of branches volume estimated by AdQSM with reference measurements. Symbols
and colors indicated the value of each study site. The error bar was the standard deviation of the
QSM model implementation for each tree. The blue line represented the fitted linear regression model
between the estimated value of AdQSM and the reference value, and the orange–red band represented
the 95% confidence interval of the regression.

Figure 9 shows that the residual distribution of branches volume was similar to tree volume.
The results of ‘small tree’ and ‘large tree’ were different. Compared with the branches of large trees,
the branches of small trees modeled by AdQSM shows less uncertainty and deviation from the reference
value. Most of the branch volume residuals were more evenly distributed on both sides of the y = 0
line, and most of the residuals were between −1 m3 and 1 m3, and the residual distribution range had
no significant difference with the increase of the reference branch volume.
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Table 7 shows the accuracy of estimating branch volume based on AdQSM. The Bias and rBias
of the branch volume calculated by the least square method were 0.730 m3 and 12.38%, respectively.
Among all the trees whose branch volume reference values ranged from 0.074 m3 to 29.806 m3, the trees
with the absolute value of branch volume deviation of fewer than 1 m3 accounted for 63.2% in total.
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Table 7. Comparison of accuracy of branch volume obtained by AdQSM and destructive sampling tree.

Category Bias rBias (%) RMSE rRMSE (%)

Branches volume (m3) 0.730 12.38 2.174 36.86

3.3. Above Ground Biomass

The dry mass of 10 destructively sampled trees from Indonesia was used as a reference value for
AdQSM. The reference values for tree AGB range from 0.58864 Mg to 10.56921 Mg, and the estimated
values for AdQSM range from 0.59601 Mg to 9.59256 Mg. Figure 10 provides tree AGB reference values
and AdQSM estimates for each tree.
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Figure 10. Reference AGB value and the value estimated by the AdQSM method for each tree.

In Figure 11, the AGB of each tree in AdQSM was compared with the AGB of destructive reference
measurements. The R2 of the linear fitting was 0.98, and the AGB from AdQSM was uniformly
distributed on both sides of the reference value (no significant systematic deviation from the 1:1 line).
Its slope was 0.90, indicating that AdQSM slightly underestimates the AGB of these trees. RMSE and
CV (RMSE) respectively were 0.78146 Mg and 20.37%, according to the AGB results from AdQSM
and after harvest. The AGB estimate of AdQSM was highly consistent with the reference value at the
95% confidence interval level. CCC was 0.97, LL CI was 0.91, and UI CI was 0.99. The total AGB of
10 large tropical trees from AdQSM and reference measurements was 34.03831 Mg and 38.36080 Mg,
respectively. The total AGB was underestimated by 11.27% compared to the reference value.

Figure 12 shows the AGB residual distribution. Most AGB residuals were more evenly distributed
on both sides of the y = 0 line, and most residuals were between −0.3 Mg and 0.3 Mg. For ‘small trees’
with DBH less than 70 cm, the AdQSM model shows less uncertainty and deviation from reference
values. There was no significant difference in residual value distribution range with the increase of
AGB reference value.
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deviation of 60% of the sample trees was less than 0.5 Mg. 
  

Figure 11. Comparison of tree AGB estimated by AdQSM with reference measurements. Symbols
and colors indicated the value of each study site. The error bar was the standard deviation of the
QSM model implementation for each tree. The blue line represented the fitted linear regression model
between the estimated value of AdQSM and the reference value, and the orange–red band represented
the 95% confidence interval of the regression.
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Figure 12. Residual distribution of AGB.

As shown in Table 8, the accuracy of AGB is estimated based on AdQSM. The AGB Bias and rBias
calculated by the least square method were 0.43225 Mg and −11.27% respectively. The AGB deviation
of 60% of the sample trees was less than 0.5 Mg.
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Table 8. Comparison of the accuracy of AGB obtained by AdQSM and the geometric measurement of
destructively sampled trees.

Category Bias rBias (%) RMSE rRMSE (%)

AGB (Mg) −0.43225 −11.27 0.78146 20.37

4. Discussion

4.1. Accuracy Analysis of AdQSM

The development of the QSM method for reconstructing the tree volume based on TLS point clouds
is very important for estimating the tree AGB. Based on the research of Shenglan Du and Guangpeng
Fan [39,42], this paper optimized and updated the original modeling methods and named the latest
QSM model AdQSM. For the first time, the accuracy of AdQSM’s estimation of DBH, tree height,
tree volume, branch volume, and AGB was tested concerning the geometric measurements of trees
with destructive sampling. We tested AdQSM using the largest trees in each of 29 plots from three
study sites (Peru, Indonesia, and Guyana). The canopy characteristics of the 29 large tropical trees
are extremely complex and are all scanned in their natural environment [48]. After the TLS scan,
destructive samples were taken from 29 trees. These tropical tree samples are characterized by the
most challenging conditions in the 3D tree reconstruction methods [10]. The target tree is the tallest
tree in each plot, with the largest canopy size and complexity. Therefore, AdQSM can be better tested
with these data. The DBH estimate from AdQSM was compared with reference value after harvest, the
R2 and CV (RMSE) of linear fitting respectively were 0.94 and 9.06%. When the estimated tree height
from AdQSM was compared with the reference tree height after harvest, the R2 and CV (RMSE) of
linear fitting were 0.95 and 5.79%. Although the 29 trees were from different ecosystems, the DBH and
tree height estimated by AdQSM were well fitted to the reference values, respectively. We compared
the accuracy of AdQSM and TreeQSM in modeling the volume of 29 trees. The CV-RMSE of AdQSM
and TreeQSM with reference volume were 22.62% and 23.20%.

The CCCs between the volume estimates based on AdQSM and TreeQSM and the volume
reference values were 0.97 and 0.96. The experimental results in Section 3.2.1 show that the accuracy of
tree volume estimated by AdQSM is similar to that of TreeQSM, even slightly higher. This may be
related to AdQSM’s ability to model tree geometry with high precision. AdQSM uses the minimum
spanning tree (MST) algorithm to reconstruct the tree geometry. In the original publication of AdTree,
the authors had compared it with TreeQSM, demonstrating the advantages of reconstructed tree
geometry over TreeQSM. Although the three study sites contained different tree species, sizes, and
shapes. The performance of AdQSM and TreeQSM was similar in three different study sites. AdQSM
and TreeQSM differ in terms of programming language used for the implementation. While TreeQSM
was implemented in MATLAB, AdQSM was developed in C++, therefore showing a performance
advantage over TreeQSM. This paper only makes rough statistics on the modeling time of AdQSM.
In the Win10 64-bit operating system (Intel I7-8700 processor, 3.20 GHz, and 16 G RAM), AdQSM can
quickly complete single tree modeling after reading the point clouds input from the user in about
4–8 s. TreeQSM needs 1–3 min. AdQSM provides more possibilities for users to quickly model.
However, TreeQSM is more complete than AdQSM in terms of user interaction, interface design, and
data processing after modeling. The study of Jose Gonzalez DE Tanago provided the test data set
for this paper and the results of AdQSM’s estimation of tree volume and AGB in this data set were
similar to those of Jose Gonzalez de Tanago [10]. The results of Section 3.3 show that AdQSM can
provide reliable and accurate AGB estimation for large tropical trees. Within the AGB reference values
from the destructively sampled trees, ranging from 0.58864 Mg to 10.56921 Mg, the CCC between the
estimated value of AdQSM and the reference value was 0.97, and the CV (RMSE) was 20.37%. Some
studies used other QSM methods for tree AGB estimation of tropical trees [36,49], but destructive tree
measurements were not used in their study. Therefore, the accuracy of tree volume or AGB estimates
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cannot be assessed and can only be compared with estimates provided by the allometric model. Based
on the results of AdQSM’s tests on large tropical trees, it is reasonable to assume that AdQSM might be
better able to model small or medium-sized trees with simpler structures.

4.2. Errors and Limitations of AdQSM

At present, the main error sources of AdQSM are divided into three parts. (1) During the modeling
process, manually selecting the point clouds to fit the initial cylinder is the biggest source of error.
Selecting different parts of the trunk will produce different volume values, and sometimes there
may be a large volume error. We divided the point clouds used to fit the initial cylinder into three
non-overlapping parts and finally calculated an initial radius to minimize the error. However, the
error caused by manual selection of trunk points is still unavoidable. It is suggested to model an
independent tree several times to reduce the error. In modeling, the middle or lower part of the stem
and the uniform distribution of the point clouds of the trunk were selected to fit the initial cylinder.
For trees in different places—such as tropical, subtropical, or temperate zones—users have some
experience and knowledge to model them more accurately. In the future, we will consider further
developing automatic tree modeling with preset fixed parameters in the algorithm. We will provide
a (PatchDiam) parameter setting tool similar to TreeQSM, allowing users to set parameters before
modeling to improve modeling accuracy. (2) AdQSM does not have a detailed buttress model but
uses cylinder fitting. The reconstruction method based on cylindrical fitting cannot model and present
buttresses. For some trees with buttresses, the volume estimated by the reconstruction model may
be smaller than the real volume. Seven trees in Peru have buttresses, which contribute an average of
3.2% to the tree volume. Eight trees in Indonesia have buttresses, which account for an average of
8.1% of tree volume. From the statistical results of the tree volume, the error caused by the undetailed
modeling of the buttresses can be considered as very low, but there is no such error for trees without
buttresses. Because the point clouds of the buttresses are abrupt, a nonlinear method to model the
buttresses is developed to deal with the abrupt point clouds, which can reduce such errors. Trunk
curve optimization algorithms may also need to be considered. (3) Too many twigs or smaller branches
modeled by AdQSM may result in a large volume of trees. Therefore, some lower-order branches or
twigs can be removed to further improve the performance of AdQSM. The rate of change of a branch
relative to the next branch can be considered, and the branch can be discarded when a certain threshold
is exceeded. This study did not consider the biomass of leaves or fruits, as it is almost impossible to
obtain the geometric and textural features of leaves or fruits from laser scanning, especially for large
tropical trees. As a result, it is impossible for AdQSM to completely reconstruct the exact leaf or fruit
from the point clouds. The contribution rate of leaves and fruits to the total AGB biomass estimated by
AGB in this paper was only 1.1%. Further reducing these error sources and setting objective parameters
is an area of future work.

4.3. Potential Applications

In general, AdQSM can be considered as a new and promising QSM model. The result of AdQSM
is based on a limited sample of 29 trees in three ecosystems. Especially in the experiment of tree
volume and AGB, the number of samples of destructively sampled trees was 29 and 10, respectively.
Calders, Newnham et al. [37,50] harvested 65 trees in one ecosystem. Nevertheless, our results confirm
that AdQSM can effectively explain the biophysical structure of individual trees, and provide forest
parameters such as DBH, tree height, tree volume, branch volume, and AGB that may be independent
of tree size for large tropical or other trees. When a user wants to use the QSM method to estimate
tree AGBs in tropical forests, there are some challenges [13,51]. For very large and complex trees,
there is a lack of reference data to verify the TLS 3D reconstruction model. This study reduces the
underrepresentation of large tropical trees or rare trees. AQSM can be further used to test and calibrate
new allometric growth models and to improve current and past estimates of tropical forest biomass and
carbon emissions. AdQSM does not need to assume the tree structure in advance, nor does it depend
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on the limited tree structure parameters [6,10,20,52,53]. This is important because AdQSM can monitor
not only natural gradual changes in biomass, but also sudden changes caused by storm damage,
harvesting, fire, or disease. This is essential for developing effective forest management strategies.
The accurate 3D trees reconstructed by AdQSM also provide opportunities for realistic expression of
scenes such as urban landscape design or entertainment. Besides, in terms of tree volume and AGB
estimation, the accuracy based on AdQSM can be further compared with that based on the allometric
growth model. At present, AdQSM only considers biomass estimation at the tree level, and users
are required to perform single tree extraction operations when estimating biomass at the plot level.
The inclusion of existing knowledge in the field of tree segmentation or identification into the current
research will enable AdQSM to be further applied in practical production [54–56]. AdQSM can also be
tried to be modeled based on point clouds from multiple platforms such as backpacks, ground vehicles,
UAV, or handheld devices [57]. Theoretically, the data source of AdQSM tree reconstruction can be
from not only laser scanning but also photogrammetry. Comparison and analysis of existing QSM
models (such as AdQSM, TreeQSM, SimpleTree, and PypeTree) will provide guidance and reference for
the selection of models in academia and industry [27,43,44], and drive the research and development
of QSM methods.

5. Conclusions

This paper presented a new accurate and detailed QSM method, AdQSM, for estimating AGB of
large tropical trees. Destructive tree measurements were first used to test the accuracy of DBH, tree
height, tree volume, and branch volume derived from AdQSM. The accuracy of AGB estimation by
AdQSM was verified based on the reconstructed tree volume and wood basic density. The experimental
results show that AdQSM can effectively and non-destructively estimate AGB from TLS point clouds.
AdQSM can continuously monitor the growth, health, economic value, and ecological benefits of
trees. AdQSM can be used not only to test the allometric equations but also to develop and test new
allometric relationships. This is important because large trees are not often harvested and measured,
leading to greater absolute errors as DBH increases, especially for large or valuable trees that cannot be
harvested and measured.

In the future, a fully automated AdQSM optimization method needs to be developed to obtain
an optimal reconstruction of an entire tree rather than focusing solely on its trunk. This automatic
method can further improve the accuracy of tree volume and AGB estimation based on TLS data
without cutting trees. Reducing some error sources will make AdQSM more accurate and realistic,
and to be better applied in the field of tree modeling from point clouds. Next, we plan to open up
a common benchmark dataset to compare AdQSM with other existing QSM models. At the same
time, the advantages and disadvantages of each QSM method are analyzed to provide guidance and
reference for academia and industry to choose the most suitable QSM model.
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Appendix A

This appendix shows the geometric measurement and volume estimation methods of trees.
The content of this appendix comes from a research paper by Jose Gonzalez de Tanago.
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Figure A1. Tree geometry measurements. (1) Stem diameter (1a) every metre (1b) until start of first
branch. For trees with buttresses (2): diameter in two orthogonal directions (2a) and for each buttress
horizontal length (from the furthest point to the stem) (2b); width (mean width between the tip and the
buttress intersection with the stem) (2c); and height (from the ground to the highest insertion point of
the buttress into the stem) (2d). For branches (3): proximal diameter at the base of each internode and
above flaring (3a), distal diameter at the tip of each internode and below flaring of the next node (3b)
and branch length from the base to the tip of each internode (3c).

Volumes of tree main stem (bole) sections (each one-meter length) and branches (until tapered
diameter > 10 cm) were calculated using the Smalian formula as shown in Equation (A1)

V =

(Asi + As f

2

)
∗ h (A1)

where Asi is the area at the base of the internode (or base of each 1 m length bole section); As f is the
area at the tip of the internode (or top of 1 m length bole section) and h is the length of the internode
(1m for the bole sections). Areas of stem and branches cross sections were calculated as circles with
diameters from the measurements described in Figure A1. For ellipsoidal sections (central part of
stumps, excluding buttresses) the two extreme diameters were averaged to calculate the section area.

The buttress volumes were calculated with a general triangular prism volume formula as shown
in Equation (A2) (see buttress measurements in Figure A1)

V =
(L + W

2

)
∗ h (A2)

where L is the buttress horizontal length (as described in 2b in Figure A1), W is the buttress width (as
described in 2c), and h is the buttress height (as described in 2d).
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