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A B S T R A C T   

The assessment of fatigue crack propagation of steel structures is essential and important especially to improve 
the application of high strength steel in construction. The load ratio R, reflecting mean stress effects, will be 
changed with crack extension in the steel structures with complicated geometry. In this paper, the Walker 
equation is employed to fit the fatigue crack propagation rate of steel grades S355 and S690 based on experi
mental data in the literature to incorporate the mean stress effects. The material fatigue crack propagation pa
rameters with 95%, 97.7%, and 99% guarantee of Walker equation were obtained by a stochastic analysis using 
the Monte Carlo method. The fatigue life was firstly predicted by the analytical method and was used as a 
baseline for numerical fatigue crack propagation simulation. A user-defined fatigue crack propagation subroutine 
based on the Walker equation was developed using phantom nodes-based extended finite element method (PN- 
XFEM) and Virtual Crack Closure Technique (VCCT) to consider the mean stress effects. The proposed three- 
dimensional fatigue crack propagation simulation subroutine is successfully validated of both steel grades, 
S355 and S690.   

1. Introduction 

The application of high strength steel in construction is becoming 
increasingly attractive during the past two decades, especially in infra
structure applications. High strength steels provide the potential for 
economical solutions for highly loaded and slender structures. Despite 
the benefits of the increased yield strength, the fatigue resistance of steel 
structures is one of the most important concerns [1]. The fatigue phe
nomenon is the process of progressive localized permanent structural 
change occurring in the material under cyclic loading. The fatigue 
process of steel structures is divided into two stages: the fatigue crack 
initiation period and the fatigue crack propagation period [2–4]. 

In 1961, from the fatigue experiments, Paris [5] proposed a fatigue 
crack growth rate equation that links the stress intensity factor (SIF) 
range ΔK to sub-critical fatigue crack growth rate dα/dN, known as 
“Paris’ law”. Nowadays, the Paris’ law and its extensions [6–10] are 
widely used to predict the fatigue crack growth for different engineering 
structures. The crack growth curve is divided into three regions of 

generalized behaviour. At the lower end, the fatigue crack growth rate 
dα/dN approached zero at a threshold ΔKth, below which the crack will 
not grow. At the intermediate part, the crack growth curve is linear in 
the log-log plot, described by Paris’ equation. The unstable region at the 
top end is characterized by rapid, unstable crack growth, which is due to 
two possible reasons [11]: The crack growth accelerated as maximum 
SIF approaches fracture toughness; ② The influence of crack tip plas
ticity on the true driving force for fatigue is larger at higher SIF range. 

One shortcoming of the original Paris’ equation is that it could not 
consider mean stress effects. In 1970, Elber [12] noticed that the 
compliance of fatigue specimens at higher loads agreed with the stan
dard formulae for fracture mechanics specimens but at low loads, the 
compliance was close to that of an un-cracked specimen. Elber [12] 
postulated that this change in compliance was due to the contact be
tween crack surfaces at loads that were low but greater than zero, known 
as crack closure. Crack closure decreased the fatigue crack growth rate 
by reducing the effective stress intensity range in correlating fatigue 
crack growth data at various R ratios. Elber [12] proposed an empirical 
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relationship of effective stress intensity ratio U by measuring the closure 
stress intensity in aluminum at various load levels and R ratios. Similar 
empirical expressions were reported by subsequent researchers [13,14]. 
Walker [15] reported on the effects of the R-ratio on crack propagation 
for aluminum in 1970, concluding that increasing ratio R resulted in an 
increased growth rate. An empirical model with three material param
eters was developed to address the effect of R-ratio on fatigue crack 
growth rate, denoted as the Walker equation. The Paris and Walker 
equations did not address the asymptotic behaviour in the unstable re
gion. A theoretical model to take into account the crack closure effects 
based on the Walker model and including the threshold stress intensity 
factor range, ΔKth, was proposed by Correia et al. [16]. Forman et al. [7] 
proposed a model incorporating both the R-ratio and maximum SIF ef
fects to address the above behaviour. In the Forman equation, the crack 
propagation rate dα/dN tends toward infinity when the maximum SIF 
approaches fracture toughness. Besides, the crack growth rate could also 
be affected by other parameters [17], such as load frequency, load 
sequencing, temperature, and environmental factors, etc. Hartman and 
Schijve reported [18] that an increase in loading frequency produces a 
decrease in growth rates of aluminum alloys, and the fatigue crack 
growth rates are quite different when it is exposed to the different aging 
environments. Yokobori and Kiypshi [19] investigated the influence of 
temperatures and stress intensity factors effects on fatigue crack 

propagation rate and striation spacing exposed to high temperature from 
1500 K to 3500 K. Lesiuk et al. [20] have investigated the influence of 
heat treatment on the fatigue crack propagation for the 42CrMo4 and 
41Cr4 steels based on experimental testing. Several experimental tests 
have been conducted to study the fatigue crack propagation behaviour 
in structural steels under pure-mode I and mixed-mode (I + II) loading 
conditions applied to old puddled irons [21], S355J0 steel [22], and 
S235 steel [23]. Silva et al. [23] investigated the crack propagation rates 
under mixed-mode (I + II) loading conditions based on an analytical-to- 
numerical methodology using the digital image correlation (DIC) data 
and finite element modelling. The fatigue crack propagation phase in the 
fatigue life prediction of structural details has been done based on Paris 
material properties obtained experimentally and supported by numeri
cal simulation through the finite element method combined with the 
Virtual Crack Closure Technique (VCCT) or J-integral method [24–26]. 

Several methodologies could be used for the fatigue crack propaga
tion simulation, such as traditional finite element methods [27], the 
extended element method (XFEM) [28], mesh-free method [29], 
discrete element method [30–32], Peridynamics [33], and phase-field 
approach [34]. Da Silva et al. [35] studied the fatigue life prediction 
of welded joints where a comparison between the finite element method 

Fig. 1. Dimension of compact tension specimen (mm) (Reproduced based 
on Ref. [1]). Fig. 2. Comparisons between fitted results and experimental data.  
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(FEM) and the extended element method (XFEM) applied to the fatigue 
crack propagation stage was presented. Some studies of 2D and 3D crack 
propagation modelling using the XFEM method have been presented 
[36–41], however, without considering the R-ratio effects. Gonzalez- 
Herrera et al. [42] have analyzed the crack opening and closure in 2D 
and 3D fatigue crack propagation modelling applied to compact tension 
specimens (CT) considering the meshing and element size effects. 
Mahmoud and Riveros [43] suggested a fatigue crack propagation 
analysis of a single stiffened ship hull panel based on a finite element 

modelling combined with a Monte Carlo simulation (MCS). Lee et al. 
[44] analyzed the fatigue behaviour of a welded T-joint considering the 
crack initiation and propagation phases supported by finite element 
simulation where the authors found that the residual stress effects 
cannot be neglected. Huang et al. [45] developed a numerical study on 
fatigue crack propagation behaviour of CFRP-repaired FPB specimens 
under mixed-mode loading conditions considering the NASGRO model. 
Menk et al. [46] predict the lifetime of solder joints undergoing thermal 
cycling for the electronic industry based on microstructural features of 
the joint using XFEM. 

In addition, the developments of accuracy and convergence of the 
crack driving force are very important [47]. Wyart et al. [48,49] 
investigated two sub-structuring methods to allow for the application of 
XFEM within commercial FE software without the need for modifying 
their kernel. Duflot and Bordas [50,51] derived an associated recovery- 
based error indicator based on global recovery techniques. Pierard et al. 
[52] evaluate the influence of the contact around crack lips on fatigue 
crack path and crack growth rate under multi-axial loading conditions. 
The results showed that both fatigue crack path and growth rate are 
strongly influenced by the partial contact around the crack tip. Peng 
et al. [53] proposed an isogeometric boundary element method based on 
non-uniform rational B-splines to simulate three-dimensional crack 
growth. Convergence studies in the crack opening displacement are 
performed for a penny-shaped crack and an elliptical crack. Sutula et al. 
[54–56] investigated the energy-minimal multiple crack propagation in 
a linear elastic solid under quasi-static conditions. The crack extension 
directions and lengths are calculated based on the minimization of the 
total energy of the mechanical system through three parts: Theory and 
state of the art review, discrete solution with XFEM, and XFEM computer 
implementation and applications. 

In order to evaluate the fatigue performance of high strength steels, 
the fatigue crack propagation tests of steel grades S355 and S690 were 
reported by Jesus et al. [1], and four different groups of crack propa
gation parameters were fitted based on the Paris equation in terms of 
different loading ratio R. Besides, the commercial software ABAQUS 
[57] includes the extended finite element method (XFEM) [28] to pre
dict the fatigue crack growth using original Paris’ law based on Griffith 
energy rate (G) and the Virtual Crack Closure Techniques (VCCT). In this 
way, the load ratio effects on fatigue crack propagation properties of 
structural steels are not considered currently. However, in the engi
neering application, the stress ratio, R, will be changed with crack 
extension in terms of steel structures with complicated geometry. The 
crack propagation model in the commercial software ABAQUS is ex
pected to be extended, and the material parameters of steel grades S355 
and S690 are suggested to be fitted to incorporate the stress R-ratio ef
fects to tackle the shortcoming of original Paris’ equation. Noted that 
this paper is limited to the linear elastic fracture mechanics, the 
enrichment shape functions should be enhanced to represent the sin
gularities if elastic-plastic fracture mechanics are expected. Elguedj et al. 
[58] proposed a new tip enrichment basis coupled with a Newton-like 
iteration scheme and a radial return method for plastic flow. The re
sults presented good accuracy for numerical evaluation of standard 
fracture parameters such as J-integral. Elguedj et al. also [59] presented 
an augmented Lagrangian formulation in the XFEM framework that can 
deal with elastic-plastic crack growth with the treatment of contact. 
Pañeda et al. [60] presented a gradient enhanced framework by means 
of XFEM using microstructurally-motivated models. 

Hence, in this paper, the Walker equation is employed to fit the fa
tigue crack propagation rate of steel grades, S355, and S690, based on 
experimental data in the literature to incorporate the R-ratio effects. The 
parameters fitted by normal probability distributions, with 95%, 97.7%, 
and 99% guarantee of the Walker equation were obtained by a stochastic 
analysis using Monte Carlo simulation. The fatigue life was firstly pre
dicted by the analytical method and was used as a baseline for the nu
merical fatigue crack propagation model. A user-defined fatigue crack 
propagation subroutine was developed based on the Walker equation 

Fig. 3. Walker equations fit experimental data of structural steels.  

Table 1 
Coefficients of Walker Equation.  

Parameters Statistical values S355 S690 

log(C0) Average − 14.21 − 12.66  
Standard Derivation 0.2368 0.1630  
95% confidence bounds [− 14.68,− 13.74] [− 12.98,− 12.34] 

γ  Average 0.6818 0.8826  
Standard Derivation 0.0155 0.0152  
95% confidence bounds [0.7477,0.8085] [0.8527,0.9124] 

m Average 3.478 3.067  
Standard Derivation 0.0814 0.0540  
95% confidence bounds [3.318,3.628] [2.960,3.173] 

R2 0.86 0.94  
RMSE 0.1589 0.1258  
SSE 8.5390 5.3362   
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Fig. 4. Histogram of material parameters of steel S355.  
Fig. 5. Histogram of material parameters of steel S690.  
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using phantom nodes-based extended finite element method (PN-XFEM) 
and VCCT to consider the mean stress effects. The proposed three- 
dimensional fatigue crack propagation simulation method is success
fully validated of both steel grades, S355 and S690. 

2. Fatigue crack propagation considering r-ratio effects 

Jesus et al. [1] performed crack propagation tests of steel grades 
S355 and S690 with four different load ratios, namely R = 0.01, R =
0.25, R = 0.5, and R = 0.75. Fig. 1 illustrates the detailed geometry of 
the compact tension (CT) specimen[61]. The SIF ranges were computed 
using the formulation proposed by ASTM E647 for the CT specimens 
[61], as shown in Eq.(1). The seven-points incremental polynomial 
technique, adopted by ASTM E647 [61], was used to determine the 
crack propagation rate. 

ΔK =

ΔF
(

2 + a
W

)(

0.886 + 4.46 a
W − 13.32

(
a
W

)2
+ 14.72

(
a
W

)3
− 5.6

(
a
W

)4
)

B
̅̅̅̅̅
W

√ (
1 − a

W

)1.5

(1)  

where: ΔF is the applied load range, a is crack size, W is the effective 
width, B is the thickness. 

As shown in Eqs. (2) and (3), the Walker equation [15] proposed the 
equivalent SIF, ΔK, to consider the load ratio effects. As shown in Fig. 2, 
a linear regression was used in MATLAB [62] to fit the material pa
rameters in the Walker equation after transforming the data to log–log 
space. The fitted coefficients of the Walker equation for steel grades 
S355 and S690 are listed in Table 1. The Walker equation collapses the 
data from R-ratios to a single line when plotting crack propagation rate 
dα/dN versus the equivalent SIF, ΔK, as shown in Fig. 3. It is noted that 
the Root Mean Square Error (RMSE) of steel grade S690 is smaller than 
S355. 

da
dN

= C0

(
ΔK
)m

(2)  

ΔK =
ΔK

(1 − R)1− γ (3)  

where:C0, m, γ are material parameters of fatigue crack propagation in 
the Walker equation. 

Fig. 6. Fatigue crack growth rate distribution of S355 from Monte Carlo Simulation.  

H. Xin et al.                                                                                                                                                                                                                                      



Engineering Structures 227 (2021) 111414

6

Fig. 7. Fatigue crack growth rate distribution of S690 from Monte Carlo Simulation.  
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Fatigue crack growth is inherently stochastic to predict. The micro 
material imperfections, such as voids and secondary particles, have a 
statistical distribution, and it is important to investigate how these im
perfections affect the structure’s fatigue life in a presence of a crack to 
guarantee a safer and more robust design. Hence, the Monte Carlo 
method [63] is employed to investigate the fatigue life distribution, 
where the material properties are replaced by Probability Distribution 
Functions (PDF), random values are selected from each PDF and the 
analysis is run as many times as needed. 

Three material constants are presented in the Walker equations and 
each is assumed to be normally distributed around the mean value in 
log-log space where the coefficients were fit, shown in Fig. 2. But the 
crack growth constants are not suggested to be independently selected at 

random from one PDF because those parameters are jointly distributed 
during linear regression fit [64]. A multivariate normal distribution, 
expressed in Eq. (4), is used as a PDF through MATLAB [62] software. A 
total of one million random material parameters was selected based on 
multivariate normal distribution using the mean value and standard 
derivation listed in Table 1 to meet the large numbers requirement and 
central limit theorem [63]. The histogram of material parameters for 
steel grades S355 and S690 is presented in Figs. 4 and 5. Because the 
random parameters from multivariate normal distribution will interact 

with each other, the mean value of random material parameters agreed 
well with the fitted results, but the standard derivation is different from 
the original fitted results in Table 1. 

f (x) =
1

(2π)n/2 ̅̅̅̅
Σ

√ exp

(

−

[
(x − μ)T Σ− 1(x − μ)

]

2

)

(4)  

where: μ is the mean value, Σ is the non-singular symmetric covariance 
matrix describing the interaction between constants, n is the total 
number of samples. 

The fatigue crack growth rate is calculated based on one million 
random material parameters generated by a multivariate normal dis
tribution. The fatigue crack growth rate distribution of steel S355 and 
S690 based on Monte Carlo Simulation is presented in Figs. 6 and 7 in 
terms of different loading ratios. The fatigue crack growth rate with 
95%, 97.7%, and 99% guarantee rate is calculated with four different 
load ratios, presented in Figs. 6 and 7. In terms of different guarantee 
rate, the material parameters in the Walker equation are fitted again 
using linear regression by MATLAB [62] after transforming the data to 
log-log space. The material coefficients of the Walker equation based on 
stochastic analysis are listed in Table 2. The results showed that a higher 
guarantee rate leads to a larger value of material parameter C0 and m, 
but the effect on material parameter γ is not obvious. 

3. Analytical fatigue crack propagation prediction 

The fatigue crack propagation rate could be described as Eq. (5) by 
combining Eq. (1) and Eq. (2). The fatigue crack propagation life could 
be calculated analytically by three methods, namely integration method, 
crack increment iteration method, and fatigue cycle increment iteration 
method.    

(1) Integration method 

The fatigue life is calculated by solving the integral equations with 
the crack propagation rate listed in Eq. (6). In this paper, the integral 
equation is solved numerically by MATLAB [62] based on Eq. (6).    

(2) Crack increment iteration method 

The fatigue life is predicted iteratively, as expressed in Eq. (7), with a 
constant crack length increment Δa. The fatigue life increment is 
calculated by the forward Euler method listed in Eq. (8). 

Table 2 
Fitted coefficients of Walker equation based on stochastic analysis.  

Materials Statistical parameters log(C0) γ  m 

S355 Mean value − 14.21 0.6818 3.478 
With 95% guarantee − 13.75 0.6531 3.862 
With 97.7% guarantee − 13.45 0.7134 3.946 
With 99% guarantee − 13.34 0.7123 4.021 

S690 Mean value − 12.66 0.8826 3.067 
With 95% guarantee − 12.27 0.8540 3.375 
With 97.7% guarantee − 12.19 0.8452 3.442 
With 99% guarantee − 12.10 0.8382 3.504  

da
dN

=

ΔFmC0

(
2 + a

W

)m
(

0.886 + 4.64 a
W − 13.32

(
a
W

)2
+ 14.72

(
a
W

)3
− 5.6

(
a
W

)4
)m

BmWm/2(1 − R)m(1 - γ)
(

1 − a
W

)1.5m (5)   

N =

∫ af

ai

BmWm/2(1 − R)m(1 - γ)
(

1 − a
W

)1.5m

ΔFmC0

(
2 + a

W

)m
(

0.886 + 4.64 a
W − 13.32

(
a
W

)2
+ 14.72

(
a
W

)3
− 5.6

(
a
W

)4
)m da (6)   
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Fig. 9. Fatigue crack growth comparisons with different guarantee rate.  

Table 4 
Crack length error comparisons using fatigue cycle iteration method at Nf =

5.7× 106.

Fatigue cycle 
increment ΔN  

Predicted Crack 
length af iteration 

(mm)  

Analytical 
Prediction 
af analytical (mm)  

Predicted/ 
Analytical 
Riteration/analytical  

1 25.6135 25.6141 1.00 
10 25.6083 25.6141 1.00 
100 25.5566 25.6141 1.00 
1000 25.0791 25.6141 0.98 
2000 24.6162 25.6141 0.96 
3000 24.2607 25.6141 0.95 
4000 23.8387 25.6141 0.93 
5000 23.5041 25.6141 0.92 
6000 23.1968 25.6141 0.91 
7000 23.0508 25.6141 0.90 
10,000 22.1663 25.6141 0.87 
100,000 14.8096 25.6141 0.58  

Fig. 8. Fatigue crack growth comparisons with different iteration increment.  

Table 3 
Fatigue cycle error comparisons using crack increment iteration method at af =

25 mm.

Crack length 
incrementΔa 
(mm)  

Predicted Crack 
lengthNf iteration  

Analytical 
PredictionNf analytical  

Predicted/ 
AnalyticalRiteration/analytical  

0.0001 5.6967× 106  5.6966× 106  1.00 

0.001 5.6976× 106  5.6966× 106  1.00 

0.01 5.7068× 106  5.6966× 106  1.00 

0.1 5.7993× 106  5.6966× 106  1.02 

0.2 5.9036× 106  5.6966× 106  1.04 

0.3 6.0096× 106  5.6966× 106  1.05 

0.5 6.2260× 106  5.6966× 106  1.09 

0.6 6.3375× 106  5.6966× 106  1.11 

1.0 6.7989× 106  5.6966× 106  1.19 

5.0 1.2589× 107  5.6966× 106  2.21  
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Nk+1 = Nk +ΔN (7)      

(3) Fatigue cycle iteration method 

The fatigue crack propagation length is predicted iteratively, as 
expressed in Eq. (9), with a constant fatigue life increment ΔN. The crack 
length increment is calculated by the forward Euler method listed in Eq. 
(10). 

ak+1 = ak +Δa (9)   

In terms of steel grade S355 with an initial crack length, ai = 11.0 
mm, exposed a constant load range ΔP = 5.7 kN, the fatigue crack 
growth comparison with different increment size is shown in Fig. 8. The 
results showed that, compared with integrated value, the larger crack 
length increment leads to an overestimation of the fatigue cycle in terms 
of crack increment iteration method, but the larger fatigue cycle incre
ment leads to an underestimation of the crack length in terms of fatigue 
cycle iteration methods. Tables 3 and 4 listed the error comparisons 
using crack increment iteration methods and fatigue cycle iteration 
methods. The results showed that the fatigue cycle difference at af =

25 mm between crack increment iteration methods and integrated value 
is within 5% when the crack length increment is smaller than 0.3 mm 
and is within 10% when the crack length increment is smaller than 0.6 
mm. The results also showed that the crack length difference at Nf =

5.7 × 106 between the fatigue cycle increment method and integrated 
value is within 5% when the fatigue cycle increment is less than 3000 
and is within 10% when the fatigue cycle increment is less than 7000. 

For CT specimen with an initial crack ai = 15 mm exposed a constant 
load range ΔP = 5.7 kN, the fatigue life is predicted using crack 

increment iteration method with increment Δa = 0.001 mm based on 
material parameters with different guarantee rate. The fatigue crack 
propagation comparisons with different guarantee rates are shown in 

Fig. 9. The results showed that the guarantee rates affect the fatigue 
crack propagation a lot, and higher guarantee rates contribute to a much 
faster crack propagation rate. Interestingly, the fatigue cycle ratio at the 
same crack length between different probabilities kept as a constant 
when the crack propagated from 15 mm to 30 mm. The probability ef
fects on fatigue crack propagation are quantified in Table 5. The fatigue 
life calculated by parameters with 95%, 97.7%, and 99% guarantee rates 
is only 0.03, 0.008 and 0.004 times of it predicted from the parameters 
fitted by experiments for steel grades S355 respectively, and the fatigue 
life calculated by parameters with 95%, 97.7%, and 99% guarantee rates 
is 0.055, 0.030 and 0.016 times of it predicted from the parameters fitted 

by experiments for steel grades S690 respectively. 
For CT specimen made of S355 steel with an initial crack ai = 15 mm 

exposed a constant load range ΔP = 5.7 kN, the fatigue life is predicted 
using crack increment iteration method with increment Δa = 0.001 mm 
with different R ratio. The load ratio R effects on fatigue crack propa
gation are shown in Fig. 10. The results showed that a higher R ratio 
exposed to a constant load range leads to faster crack propagation. The R 
ratio effects on fatigue crack propagation exposed to a constant load 
range are quantified in Table 5. The fatigue cycle ratio exposed to a 
constant load range at the same crack length between different R ratios 
kept as a constant when the crack propagated from 15 mm to 30 mm. 
The fatigue life loaded with R = 0.1, R = 0.25, R = 0.5 and R = 0.75 with 
a constant load range is 0.90, 0.74, 0.47 and 0.22 times of it with R =
0.01 for steel grades S355, and is 0.97, 0.90, 0.78 and 0.61 times of it 
with R = 0.01 for steel grades S690. 

4. Numerical fatigue crack propagation prediction 

4.1. Implementation of fatigue crack propagation model considering mean 
stress effects 

Modeling discontinuities as an enriched feature [28] is an effective 
way to simulate the initiation and propagation of the discrete crack 
along an arbitrary, solution-dependent path without the requirement of 
re-meshing in the bulk materials. Based on the concept of partition of 
unity, XFEM [28] treated the cracks as a special enriched function in 
conjunction with additional degrees of freedom. The nodes are enriched 
with the jump function when the elements are intersected by a crack. 

u =
∑N

i=1
Ni(x)[ui +H(x)ai ] (11) 

The jump function H(x) for a crack is given by: 

ΔN =
BmWm/2(1 − R)m(1 - γ)

ΔFmC0

Δa
(

1 − ak
W

)1.5m

(
2 + ak

W

)m
(

0.886 + 4.64 ak
W − 13.32

(
ak
W

)2
+ 14.72

(
ak
W

)3
− 5.6

(
ak
W

)4
)m (8)   

Δa =
ΔFmC0

BmWm/2(1 − R)m(1 - γ)

ΔN
(

2 + ak
W

)m
(

0.886 + 4.64 ak
W − 13.32
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Table 5 
R ratio and probability effects on fatigue crack propagation.  

Item S355 S690  

R Ratio NR=0.1/NR=0.01  0.90 0.97  
NR=0.25/NR=0.01  0.74 0.90  
NR=0.5/NR=0.01  0.47 0.78  
NR=0.75/NR=0.01  0.22 0.61 

Probability N95%− Guarantee/Nmean  0.030 0.055  
N97.7%− Guarantee/Nmean  0.008 0.030  
N99%− Guarantee/Nmean  0.004 0.016  
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H(x) =
{

1, if (x − x*)∙nx* ≥ 0
− 1, otherwise

(12) 

As illustrated in Fig. 11, phantom nodes are superposed on the 
original real nodes aiming to represent the discontinuity of the cracked 
elements. The element is “cracked” by splitting it into two parts using 
the level set method (LSM) [65], where two orthogonal signed distance 
functions are defined, one is used to describe the crack surface and the 
other is to build the orthogonal surface. The intersection of those two 

surfaces gives the crack front. 
The VCCT criterion [66], under the assumption that the strain energy 

released when a crack is extended by a certain amount is the same as the 
energy required to close the crack by the same amount, is used to 
calculate the strain energy release rate. As shown in Fig. 12, the strain 
energy release rate of Mode I [57] could be calculated through the 
following equations under the assumption of linear elastic behavior. 
Similar arguments and equations could be used to calculate the strain 
energy release rate of Mode II and III. 

GI =
1
2

v1,6Fv,2,5

bd
(13)  

where: GI is the Mode I energy release rate, b is the width, d is the length 
of the elements at the crack front, Fv,2,5 is the vertical force between 
nodes 2 and 5, v1,6 is the vertical displacement between nodes 1 and 6. 

A quasi-static analysis subjected to sub-critical cyclic loading is used 
to simulate the fatigue crack propagation. The Walker equation is 
implemented through user subroutine UMIXMODEFATIGUE based on 
commercial software ABAQUS [57] to predict the fatigue crack propa
gation considering mean stress effects. The detailed implementation 
flow chart is shown in Fig. 13. The crack length aN is extended, from the 
current cycle forward over a number of cycles ΔN, to aN+ΔN by fracturing 
at least one enriched element ahead of the crack tips. Based on the 
Walker equation combined with the known element length and propa
gation direction at the enriched elements ahead of the crack tips, the 
number of cycles necessary to fail each of the enriched elements ahead of 
the crack tips could be calculated. The minimum number ΔN is repre
sented as the number of cycles to grow the crack equal to its element 
length, as the cycle jump strategies. The element is completely fractured 
with a zero constraint and zero stiffness at the cracked surfaces at the 
end of the completed cycle. As the enriched element is fractured, the 
load is redistributed, and a new fracture energy release rate will be 
calculated for the enriched elements ahead of the crack tips for the next 
cycle. To accelerate the fatigue crack growth analysis and to provide a 
smooth solution for the crack front, a nonzero tolerance,ΔDtol, for the 
least number of cycles to fracture an enriched element, as presented in 
Eq. (14). 

LogΔNj − LogΔNmin

LogΔNmin
⩽ΔDNtol (14)  

4.2. Three-dimensional fatigue crack propagation using XFEM method 

This section will investigate the effects of boundary condition, mesh 
size, damage tolerance, and R-ratio on fatigue crack propagation of CT 
specimens based on the XFEM model using commercial FEM software 
ABAQUS. One cycle in the numerical simulation is assumed as 1 s, and 
the time increment is defined as 0.01 s. The material is assumed as 
elastic, with a modulus 210.0 GPa and the Poisson’s ratio 0.3. The 

Fig. 10. Load ratio effects on fatigue crack propagation.  

= +

Crack Crack Crack

0Ω
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Fig. 11. The schematic of the phantom node method [2,3].  
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element type of CT model is C3D8. To accelerate the fatigue crack 
growth analysis and to provide a smooth solution for the crack front, a 
nonzero tolerance, ΔDtol (expressed in Eq. (14)), for the least number of 
cycles to fracture an enriched element. The nonzero tolerance,ΔDtol, is 
assumed to be 0.1. 

4.2.1. Boundary condition effects 
As shown in Fig. 14, the fatigue crack propagation is predicted by 

three-dimensional XFEM methods with five different boundary condi
tions to investigate the effects of the area tied to reference point, ② 
constrains of horizontal displacement, ③ constrains of rotation. The 
boundary condition effects on fatigue crack propagation of steel grade 
S355 is shown in Fig. 15. The results of XFEM simulation with BC3, BC4, 
and BC5 agreed well with the integration methods, but the simulation 
results with BC1 and BC2 lead to an overestimation of fatigue crack 
propagation life because the loading point is no longer pin support due 
to over constrains. In all the boundary conditions, BC3 agreed best with 
the analytical results. 

4.2.2. Mesh size effects 
The crack length is extended from the current cycle forward over a 

number of cycles by fracturing at least one enriched element ahead of 
the crack tips. In order to alleviate numerical error induced by the for
ward Euler method, similar to the crack increment size effects reported 
in Fig. 8, the mesh size is suggested to smaller than a certain value. As 
shown in Fig. 16, fatigue crack propagation simulation is conducted 
with different mesh sizes and boundary conditions of BC3 and load ratio 
R = 0.01. The mesh size effect on fatigue crack propagation is shown in 
Fig. 18. The crack shape at 27 mm of CT specimen with different mesh 
size is shown in Fig. 19. The results showed that XFEM simulation with 
mesh size 0.5 mm and 1.0 mm agreed well with the integration methods, 
but the simulation results with mesh size 1.5 mm and 2 mm lead to an 
overestimation of fatigue crack propagation life. Hence, it is recom
mended that the mesh size of fatigue crack propagation is smaller than 
1.0 mm for the CT crack propagation simulation using XFEM method. 

4.2.3. Load ratio effects 
As shown in Fig. 17, fatigue crack propagation simulation of CT 

specimens of steel grade S355 with an initial crack length 15 mm 
(Fig. 1a) and S690 with an initial crack length 12 mm (Fig. 1b) is con
ducted with different R-ratio. The maximum load F is 5.7kN and 3.3kN 
of CT specimens made of S355 and S690 respectively for the four 
different loading ratios. A good agreement is observed between XFEM 
simulation and analytical integration results for both S355 and S690 
steel. The fatigue cycle ratio at crack length a = 30 mm for NR=0.25/

NR=0.01 NR=0.5/NR=0.01 and NR=0.75/NR=0.01 is 0.53, 0.19, and 0.04 for 
steel grades S355, respectively, and the fatigue cycle ratio at crack 
length a=20mm for NR=0.25/NR=0.01, NR=0.5/NR=0.01 and NR=0.75/NR=0.01 
is 0.68, 0.19 and 0.03 for steel grades S690, respectively. 

Figs. 18 and 19 present the fatigue process of CT specimens with 
boundary conditions BC3 (in Fig. 14) and load ratio R = 0.25 made of 
S355 and S690 respectively. The crack gradually propagated from 15 
mm (start from loading point) to around 35 mm when the fatigue cycle 
increased to 4.2e5 for CT specimen made of S355 steel, and the crack 
gradually propagated from 10 mm(start from loading point) to around 
20 mm when the fatigue cycle increased to 1.3e5 for CT specimen made 

Fig. 12. Schematic finite element representation of the VCCT method [57].  

Fig. 13. Implementation flow chart of fatigue crack propagation considering R- 
ratio effects. 
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of S690 steel. The crack tip is not strictly propagated uniformly in terms 
of thickness direction caused by the non-uniform distribution of SIFs. It 
is noted that the threshold effects are not considered during the fatigue 
crack propagation simulation due to a lack of experimental data. 

5. Conclusions and future work 

In this paper, the Walker equation is employed to fit the fatigue crack 
propagation rate of steel grades S355 and S690 based on experimental 
data in the literature to incorporate the load ratio effects. The fatigue life 
was firstly predicted by the analytical method and was used as a baseline 
for numerical fatigue crack propagation simulation. A user-defined fa
tigue crack propagation subroutine was developed based on the Walker 
equation using phantom nodes-based extended finite element method 
(PN-XFEM) and Virtual Crack Closure Technique (VCCT). The following 
conclusions are drawn below:  

(1) In terms of steel grade S355 with an initial crack ai = 11.0 mm 
exposed a constant load range ΔP = 5.7 kN, the fatigue cycle 
difference between crack increment iteration methods and inte
grated value is within 5% when the crack length increment is 
smaller than 0.3 mm and is within 10% when the crack length 
increment is smaller than 0.6 mm. The crack length difference 
between the fatigue cycle increment method and integrated value 
is within 5% when the fatigue cycle increment is less than 3000 
and is within 10% when the fatigue cycle increment is less than 
7000.  

(2) The parameters with 95%, 97.7%, and 99% guarantee of Walker 
equation were obtained by a stochastic analysis using the Monte 
Carlo analysis. For CT specimen with an initial crack ai = 15 mm 
exposed a constant load range ΔP = 5.7 kN, the fatigue life 
calculated by parameters with 95%, 97.7%, and 99% guarantee 
rate is only 0.03, 0.008 and 0.004 of it predicted from the pa
rameters fitted by experiments respectively of steel grades S355, 
and is 0.055, 0.030 and 0.016 times of it predicted from the pa
rameters fitted by experiments respectively of steel grades S690. 
The fatigue crack propagation rate with 95%, 97.7%, and 99% 
guarantee aims to provide a safe design.  

(3) The fatigue crack propagation of CT specimens is predicted by 
three-dimensional XFEM methods with five different boundary 
conditions. The results showed that XFEM simulation with 
boundaries applied by two half-cylinders (BC3 in Fig. 14c), 
applied by reference points tied to half cycles with translation 
constrain free (BC4 in Fig. 14d), and applied by reference points 
tied to full cycles with translation constrain free (BC5 in Fig. 14e), 
agreed well with the integration methods, but the simulation 
results with boundaries applied by reference points tied to half 
cycles with all degree freedom fixed (BC1 in Fig. 14a) and applied 
by reference points tied to full cycles with all degree freedom 
fixed (BC2 in Fig. 14b) lead to an overestimation of fatigue crack 
propagation life because the loading point is no longer pin sup
port due to over constrains. In all the boundary conditions, BC3 
agreed best with the analytical results.  

(4) XFEM simulation with mesh size 0.5 mm and 1.0 mm agreed well 
with the integration methods, but the simulation results with 

Fig. 14. Different boundary conditions of CT specimens.  
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mesh size 1.5 mm and 2 mm lead to an overestimation of fatigue 
crack propagation life. It is recommended that the mesh size of 
fatigue crack propagation is smaller than 1.0 mm for the CT crack 
propagation simulation using XFEM method.  

(5) The load ratio effect on fatigue crack propagation is investigated 
by both analytical and numerical simulation. With the assump
tion of a constant load range, the fatigue life loaded with R = 0.1, 
R = 0.25, R = 0.5, and R = 0.75 is 0.90, 0.74, 0.47, and 0.22 times 
of it with R = 0.01 for steel grades S355, and is 0.97, 0.90, 0.78, 
and 0.61 times of it with R = 0.01 for steel grades S690 for CT 
specimen with an initial crack ai = 15 mm based on the analytical 
results. With the assumption of a constant maximum load using 
XFEM simulation, the proposed three-dimensional fatigue crack 
propagation simulation method is successfully validated against 
analytical results, and the fatigue life loaded with R = 0.25, R =
0.5 and R = 0.75 are, respectively, 0.53, 0.19 and 0.04 of it with 
R = 0.01 for steel grades S355 with an initial crack ai = 15 mm, 
and the fatigue life loaded with R = 0.25, R = 0.5 and R = 0.75 
are, respectively, 0.68, 0.19 and 0.03 for steel grades S690 with 
an initial crack ai = 10 mm. The load ratio effects on fatigue crack 
propagation should not be neglected during the fatigue crack 
simulation in the real engineering structures. It is noted that the 
load ratio effects on the threshold of fatigue crack propagation 

Fig. 17. R-ratio effects on fatigue crack propagation.  Fig. 15. Boundary condition effects on fatigue crack propagation of steel S355.  

Fig. 16. Mesh size effects on fatigue crack propagation.  
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Fig. 18. Crack propagation of CT specimen made of S355 steel.  
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rate will be investigated in the future study due to a lack of 
experimental data. 
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lips and its influence on fatigue life prediction; 2016. 

[53] Peng X, Atroshchenko E, Kerfriden P, Bordas SPA. Isogeometric boundary element 
methods for three dimensional static fracture and fatigue crack growth. Comput 
Methods Appl Mech Eng 2017;316:151–85. 

[54] Sutula D, Kerfriden P, Van Dam T, Bordas SPA. Minimum energy multiple crack 
propagation. Part III: XFEM computer implementation and applications. Eng Fract 
Mech 2018;191:257–76. 

[55] Sutula D, Kerfriden P, Van Dam T, Bordas SPA. Minimum energy multiple crack 
propagation. Part-II: discrete solution with XFEM. Eng Fract Mech 2018;191: 
225–56. 

[56] Sutula D, Kerfriden P, Van Dam T, Bordas SPA. Minimum energy multiple crack 
propagation. Part I: Theory and state of the art review. Eng Fract Mech 2018;191: 
205–24. 

[57] Abaqus V. 2019 Documentation. Dassault Syst Simulia Corp 2019;651. 
[58] Elguedj T, Gravouil A, Combescure A. Appropriate extended functions for X-FEM 

simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 2006; 
195:501–15. 

[59] Elguedj T, Gravouil A, Combescure A. A mixed augmented Lagrangian-extended 
finite element method for modelling elastic–plastic fatigue crack growth with 
unilateral contact. Int J Numer Methods Eng 2007;71:1569–97. 
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