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Summary

The human brain is arguably the most complex system we know of. For centuries, understanding the
brain and the way it works has been of great concern to scientists. In 1952, the first mathematical
model of a neuron was developed by Hodgkin and Huxley. This work pioneered the field of computa-
tional neuroscience, which studies the organization of the brain and the way it processes information.
Modeling and simulation of neurons and small brain regions at the cellular level offer great insights into
the details of brain mechanics, however, they are far away from clinical applications.

The Virtual Brain (TVB) is a simulation framework that takes a different approach to brain modeling.
TVB reduces complexity at the micro level to achieve the macro level of brain modeling and simulation.
This approach in brain modeling is referred to as Large-scale Brain Network or Neural-Mass Modeling.
Additionally, TVB incorporates individual brain-imaging data with the models to achieve personalized,
patient-specific digital brain twins. The digital brain twins can be used in clinical settings such as neuro-
surgeries and real-time brain-interface systems. However, building and utilizing such large-scale brain
models requires high performance and low latency in terms of computation.

Today, heterogeneous architectures, due to their enhanced performance, energy efficiency, and bet-
ter flexibility are being utilized increasingly in computing systems ranging from low-power edge devices
to high-performance cloud infrastructures. Versal Adaptive Compute Acceleration Platform (ACAP) is
a high-performance, heterogeneous computing platform developed by Xilinx/AMD. Versal ACAP offers
an array of vector processors, specialized in artificial intelligence (AI) and signal processing workloads,
next to the traditional programmable logic with extensive memory resources. The large-scale neural-
mass simulation problem at hand has heterogeneous computational needs, which makes it interesting
to see how it maps to the Versal ACAP. In this work, we explore the benefits and challenges of using het-
erogeneous systems (specifically, the Versal ACAP) in the high-performance workload of large-scale
neural-mass simulation.

We designed and implemented a dataflow-style system for large-scale brain network simulation on
the Versal ACAP. Two different versions of this system, namely AIE-Only and Heterogeneous, were
developed in order to explore the capabilities of the Versal ACAP when accelerating our application.
Compared to the current GPU version of TVB, the Heterogeneous implementation performed on aver-
age around 4× slower in terms of throughput. However, the Versal ACAP Heterogeneous implementa-
tion delivered around 13× lower latency, two orders of magnitude better energy efficiency, and around
2× better power efficiency compared to the GPU version of TVB. Although the Heterogeneous imple-
mentation falls short in terms of throughput compared to the GPU version, its lower latency and energy
efficiency make it suitable for real-time applications that might use large-scale neural-mass modeling
such as virtual surgery or brain interface devices.
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1
Introduction

For centuries, understanding the brain and the way it works has been of great concern to scientists.
The National Academy of Engineering of the US has classified reverse engineering the brain as one
of the grand challenges of the 21st century [19]. Many efforts have been made to better understand
different aspects of the brain, and due to the recent advancements in computational tools, brain simula-
tion has been one of the leading research areas in neuroscience. Brain simulations can be performed
for different purposes, for neuroscientists to unlock the mystery of neurons, the building block of the
brain, or for doctors to use results from simulation in medical settings, to understand and address brain
disorders. The endeavor to build better and more biologically accurate Artificial Intelligence systems
can also benefit from brain simulations.

Figure 1.1: Workflow of The Virtual Epileptic Patient (VEP) [57] (with modifications)

The field of computational neuroscience, which studies the organization of the brain and the way it
processes information, has had many successful efforts in simulating the brain on different levels, from
detailed modeling and simulation of a single neuron to large-scale brain network simulation. Nowa-
days, coarse-grained brain simulation is effectively being used in addressing brain diseases, with one
of its prime examples being in the study of epilepsy [57]. Epilepsy affects more than 50 million peo-
ple around the world and is characterized by recurrent, spontaneous seizure attacks. Many cases of
epilepsy (around 70%) can be contained with the use of drugs, however the rest might need surgical
treatment. The Virtual Epileptic Patient (VEP) [31] is an effort to create personalized digital twins for
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1.1. Motivation 2

epileptic patients’ brains that can help with the surgery. Since epilepsy is a condition involving several
connected brain structures, the VEP can help neurosurgeons estimate the regions that are afflicted as
shown in Figure 1.1. Using VEP can help reduce neurological problems and as a result, reduce surgery
risk. VEP and similar large-scale network models such as the ones meant for Alzheimer’s, Parkinson’s,
or schizophrenia, are being used extensively in the medical setting, providing new insights for scientists
and personalized medicine for affected patients [57].

In another application, large-scale network simulation can be used in a control unit of a brain-
interface system [59, 45]. In these examples, there are medically invasive or non-invasive connections
to the brain for different applications. For example, a closed-loop control system can perform deep-brain
stimulation to suppress high-amplitude epileptic activity. However, a main challenge is how the system
can analytically calculate the stimulus parameters that it is going to perform. Brain network simulation
can be used as part of the closed-loop control in these systems to more accurately and effectively find
the appropriate parameters for the stimulation strategy that suppresses the seizure attacks.

1.1. Motivation
Large-scale brain network models such as VEP rely on patient-specific parameters extracted from the
individual’s brain-imaging data. To build these personalized models, the following steps are taken [33]:

1. The whole-brain model structure, meaning the high-level brain regions that are of concern to the
application, are specified using the unique anatomical structure of the subject.

2. The connectivities between the specified brain regions and other parameters are mapped to the
whole-brain model. The connectivities can be inferred using different methods, from statistical
analysis of the brain activity data to using imaging techniques.

3. Relevant clinical parameters of the model (such as the strength of the connections) are inferred.

The last step is usually done by simulating the model with different parameters and fitting it in small
increments to the actual data taken from the patient. In other words, a learning mechanism runs the
simulation many times, and each time it checks how close the output of the model is to the actual
brain data. According to this, the parameters of the model are tweaked to get it closer to the actual
model or to obtain a distribution over likely values of these parameters. This process, which is shown in
Figure 1.2, is referred to as model fitting, requires a large number of simulations that could take a long
time to finish, making achieving the goal of having a personalized, patient-specific, digital twin of the
brain quite challenging. Furthermore, as mentioned earlier, this digital brain twin can also be used in a
closed-loop control system that interfaces with the brain and requires quick and real-time simulations.
In conclusion, having a high-performance platform that can run such brain network models will
significantly help with building and utilizing patient-specific digital brain twins.

1.2. Research Question and Thesis Goals
There are many tools and frameworks that utilize high-performance computing for brain simulation [22,
51]. However, the use of heterogeneous acceleration platforms for large-scale brain modeling is an
interesting research area that has not been explored before. Therefore, the research question of this
thesis can be formulated as follows:

What are the benefits and challenges of utilizing heterogeneous systems in high-performance
computing, specially in the application of large-scale brain network model fitting and

simulation?

Based on this research question, the following goals are defined for this thesis:

1. Understanding the application of large-scale brain network simulation and its computation impli-
cations.

2. Understanding the target heterogeneous platform and its tool stack.
3. Design of an application-specific design for the brain simulation problem for implementation on

the target device.
4. Implementation of the designed accelerator for whole-brain simulation on the target device, com-

parable in throughput, latency, and power with the current latest work.



1.3. Thesis Methodology 3

Figure 1.2: Overview of a Model Fitting Procedure [35]. (A.i) Patient-specific data are obtained from empirical functional MRI.
(A.ii) Simulation is performed with a certain set of model parameters. (B) The data of both simulated and empirical processes

are used to construct Functional Connectivity Dynamics (FCD) matrices. This time-versus-time matrix shows how the
connectivity structure of different brain regions that share functional properties change over time. (C) Histogram of the

distribution of empirical and the simulated FCD matrices are calculated. The similarity between the empirical and simulation
histograms is calculated using Kolmogorov-Smirnov (KS) distance. (D) Based on the calculated KS distance, the simulation

model parameters are changed and steps A.ii to C are repeated. After a large number of simulations, the set of model
parameters that is the most similar to the empirical data (lowest KS distance) can be regarded as the best fit for that specific

patient.

1.3. Thesis Methodology
In order to understand the benefits and challenges of using heterogeneous systems in the context of
brain modeling, we first have to understand the problem and the scope of it. Related work and lit-
erature concerning large-scale brain network modeling, neural-mass models, numerical methods for
computational neuroscience, (artificial) neural networks, and brain simulation platforms in addition to
the documents and information regarding the target compute platform will be studied.

In the next step, the boundaries of the problem that requires acceleration are set. Then, the problem
will be analyzed in its different aspects and possible optimizations possible at the algorithmic level will
be performed. The target computation platform will also be considered throughout this analysis. With
the scope and boundaries of the problem found and formulated, possible architectures for the problem
are explored. These architectures will also consider the target platform to make a design that best fits
the device. The requirements of each of the possible architectures will be analyzed and compared to
the resources of the target device.

In the next step, the system is implemented on the target device. The system will be benchmarked
throughout the implementation process and based on the performed benchmarks, improvements will
be made to the system. In the end, the results of the implemented system in terms of speed, power,
and energy will be benchmarked and compared to the state-of-the-art related work.

1.4. Thesis Organization
In Chapter 2, background information and relevant topics, problem formulation, and related works are
presented. In Chapter 3, the problem at hand is analyzed in terms of memory and computation. Ad-
ditionally, three design candidates are presented and compared. In Chapter 4, the details of the im-
plemented systems are discussed in depth. In Chapter 5, the performance results of the implemented
systems in addition to the related works are presented and compared. Finally, in Chapter 6, concluding
remarks and suggested future work directions are presented.



2
Background and Related Work

2.1. The Human Brain
The human brain is arguably the most complex system that we know of. It consists of 86 billion neurons,
interacting with each other in a complicated way [24]. There are different types of neurons, however,
almost all of them have the same structure. A neuron is composed of soma (or the cell body), den-
drites, and axons as illustrated in Figure 2.1. The dendrites act as the input of the neuron, receiving
the spikes from other neurons through connections called synapses. The soma is the processing part
of the neuron, and the axons can be seen as the output. The brain consists of a network of individual
neurons, allowing them to communicate with each other to perform different functionalities.

Figure 2.1: Structure of a Neuron [54]

The brain, as a whole, is shaped like a walnut, divided into left and right hemispheres. Through
observing the effects of injuries and strokes, we know that different areas in the brain perform different
processes [24]. For instance, there are different regions in the brain for tactile sensation, movement
control, hearing, vision, or speech. Figure 2.2 shows these different regions of the brain and their main
functionality.

4



2.2. Neural-Mass Models and Whole-Brain Simulation 5

Figure 2.2: Brain Regions and Their Functionality [47]

2.2. Neural-Mass Models and Whole-Brain Simulation
Neurons, as a physical system, are non-linear elements that are capable of producing spikes. These
spikes are the way that neurons communicate with each other. The spikes produced by a neuron can
have different characteristics [30], encoding information in every aspect of them. Figure 2.3 illustrates
some of the most important types of a neuron’s spiking activity in response to simple DC-current inputs.

Figure 2.3: Some Different Characteristics of Spiking Neurons [30] (with modifications)

Over the history of computational neuroscience, brain modeling has been performed at different
levels of abstraction as shown in Figure 2.4 [43]. Early efforts of modeling the brain were focused on
the simulation of a single neuron [26, 20]. These models describe how electrical potentials in neurons
are initiated and propagated. Generally, a model of a neuron consists of a set of non-linear differential
equations with variables describing different characteristics of the neuron. A good model at this level of
abstraction is capable of producing a wide range of spiking behavior shown in Figure 2.3. The single-
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neuron models provided a foundational understanding of the behavior of a single neuron. However,
they did not offer much insight into how a population of neurons interact with each other to perform a
certain task.

Figure 2.4: Evolution of Computational Neuroscience [43] (with modifications)

In an effort to understand the activity patterns of a population of neurons, neural-mass [60, 10] and
neural-field [32, 1] models were formulated. Neural-mass models looked at the activity of a mass of
neurons instead of just a single neuron, where less chaotic and irregular activities that are found com-
pared to just one neuron [18] allowed for less computationally expensive brain simulations. Although
these models had great success in theoretically explaining many neural activities, they had limited ap-
plicability in clinical settings [43]. Many neuronal phenomena that were observed in practice could not
be formulated mathematically and solved analytically within the boundaries of these models.

With brain imaging (such as fMRI) being used more for cognition studies, the need to incorporate
the data gathered by these studies into the brain modeling and simulation increased [43]. This means
that patient-specific imaging data could be combined with brain simulations to enable more precise,
personalized medical practices [49, 16]. In this fashion of simulation, the nodes (which represent the
activity of a collection of neurons in a brain area) are connected to each other based on a connectivity
pattern. These connections have different parameters, and since we want the closest model to the
actual brain possible, different connection parameters are explored to find the best fit to the real data.
In other words, many values for the connection parameters are simulated, the result of the simulation
is compared to the extracted real data from the patient’s brain, and using fitting algorithms (such as
gradient descent or Bayesian inference) the parameters are learned. The large amount of simulation
needed for model fitting is one of the main reasons that we have for accelerating this application.

The nodes are described by differential equations, with the impact of couplings from other areas,
external inputs, and noise [17]. In addition to the connection parameters, the parameters related to the
local dynamics of the nodes are also tunable, and the result of each simulation run is a time-series [43].
For any application that large-scale brain modeling is used for, two questions need to be asked:

1. What local dynamics model best fits the requirements of the application?
2. How the nodes of the model are connected to each other?

The Virtual Brain (TVB) [44] is one of the leading frameworks in providing large-scale brain mod-
eling. TVB uses biologically realistic connectivity data to perform full brain network simulations. This
framework provides the simulation tools, connectivity atlases, integrator, local models, and in general
everything that is needed for large-scale brain simulation. TVB assumes a standard model for each of
the nodes as shown in Equation 2.1 [57].

ψ̇ (xi, t) = L (ψ (xi, t)) +

∫
Γl

gijS (ψ (xj , t− τij)) dxj +
∫
Γg

GijηijS (ψ (xj , t− τij)) dxj + w(t) (2.1)

In Equation 2.1, ψ (xi, t) is the neural activity at time t and location xi, L is the local dynamics of the
node as a function of the neural activity, gij is the coupling input from nearby nodes (local connectivi-
ties), and Gij is the coupling input from the distant nodes (global connectivities). S is the non-linearity
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that is applied to the connectivities coming from other nodes, and w(t) represents the dynamic noise.
Additionally, both the local and global connectivities include delays in their calculations (τij). This delay
is due to the limited speed of signal propagation in the brain, and it depends on the distance between
the two nodes and the speed at which the signal travels in the brain. This signal propagation speed can
be both fixed or distributed [39], which is more biologically accurate. In the large-scale brain network
simulations, the speed of travel is assumed to be fixed as it is sufficiently accurate for the purpose of
the modeling. Furthermore, based on the abstraction level at which the simulation is being performed,
the local connectivity (gij) in Equation 2.1 can be ignored and assumed to be absorbed in the local
neural-mass dynamics.

Equation 2.1 shows the neural activity of a certain location at a certain time. As mentioned earlier,
in large-scale brain network modeling, the brain is divided into different regions (represented by a node)
and the activity and connections of these regions are modeled. The brain can be divided into these
regions in many ways [41], each for a certain reason and use. Figure 2.5 shows the default dataset of
the brain in the TVB with 74 nodes. Each division of the brain can be summarized into two matrices,
a weight matrix and a distance matrix. These matrices are square, and their dimension depends on
the number of nodes in the model. The weight matrix shows the existence and strength of connections
between the nodes, and the distance matrix shows the distance between each pair of nodes.

Figure 2.5: TVB Default Brain Dataset [50]

In order to perform large-scale brain network simulation, one must solve the differential equation
shown in Equation 2.1 for each of the nodes of the brain, for instance, the ones that are shown in
Figure 2.5. In their general form, the differential equations in the TVB are: 1) coupled, due to the
existence of the connections between centers, and 2) delayed, due to the signal propagation speed
being limited. In general, numerical methods, such as different orders of Runga-Kutta, are used to
solve these coupled delayed differential equations [37].
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2.3. Multi-Layer Perceptrons and NeuralODE
Multi-Layer Perceptrons (MLPs) are a family of neural networks with layers of artificial neurons (or
perceptrons) connected densely together, as shown in Figure 2.6. The inputs to each perceptron are
multiplied by weights and added together with a bias value. The result of this summation enters a
non-linearity function which produces the output of the perceptron. Many of these perceptrons are put
together in a layered structure shown in Figure 2.6 to form a multi-layer feed-forward neural network
called an MLP. The parameters of the MLP (θ), meaning the weights and biases of the perceptrons, are
calculated through a training process called backpropagation. In this process, we start with a labeled
training dataset, initial weight and bias values, and a loss function (L) which we try to minimize through
this process [42]. For a batch of training data, we calculate the output of the network and evaluate the
loss function for the calculated and expected values. In the next step, we look at the gradient of the loss
function with regards to the network parameters (∂L∂θ ) to see the effect of the parameters on the loss
function and change the parameters towards minimizing the loss function. This process is repeated
for all the training datasets, leaving us with the final parameters of the network. Hyperparameters of
the network, such as the number and size of the hidden layers, training batch size, and learning rate
have an important role in the training quality of the MLPs, and tuning them to find the best suite of
hyperparameters is also part of the training process.

Figure 2.6: MLP Structure [56]. Each perceptron (on the left) has inputs (x1-xI ) which are multiplied by their corresponding
weights (w1-wI ) and added together and a bias value (b). The result is then passed through an activation function (σ), which
produces the output of the perceptron. Many of these perceptron are organized together in a layered structure as shown on the

right side.

MLPs are universal function approximators [27], meaning that any continuous function f : RN →
RM can be approximated by an MLP with at least one hidden layer, and input and output layers with
N andM neurons, respectively. This means that the local dynamics function of the nodes mentioned
in Section 2.2 can also be approximated using an MLP. This is beneficial for two reasons:

1. As mentioned in Section 2.2, there is a wide variety of neural-masses governing the local dynam-
ics of the brain models. Each of these models describes the activity of the brain regions in a
certain way with a certain set of differential equations. This makes creating a low-level hardware
accelerator for each of these neural masses a difficult task, as implementing each of the possible
functions that could be used for modeling is a time-consuming and tedious task. Having an MLP
approximating the local dynamics of the nodes allows us to switch between different neural-mass
models in the hardware by simply changing the parameters of the network. This makes the plat-
form a general platform, where the local dynamics of the nodes are not limited by the hardware
implementation.
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2. Having an MLP allows us to go beyond the mathematical models and train the network using the
data collected directly from the patient (for example using EEG). In this way, the patient-specific-
trained MLP represents the local dynamics of the nodes exclusive to the patient. This makes all
parts of the system, from connectivities to the local dynamics, very general making it suitable for
different models and simulations. Although the use of an MLP has the drawback of decreased
accuracy (because MLPs only approximate the functions) and also higher computational need, it
makes all parts of the system specific to the patients, resulting in better outcomes for all patients.

As mentioned earlier, the MLPs approximate the local dynamics function of the nodes. The nodes
are mathematically modeled as dynamical systems, and training an MLP to approximate these types
of functions could become challenging and require special processes. Neural Ordinary Differential
Equations (NeuralODE) [14] represent a new viewpoint in modeling continuous dynamics using neural
networks. In NeuralODEs, a black-box ODE solver is used in the process of training (and more specifi-
cally, as part of the loss function) to produce the expected values of the system. Using a method called
adjoint sensitivity [11], the gradient of the loss function with regards to the parameters of the neural
network is calculated. Since the brain, and the models that try to simulate the brain, are dynamical
systems, the NeuralODE can be used to better train the MLPs that are going to approximate them [9].

2.4. Problem Formulation
The problem at hand is the acceleration of large-scale Neural-Mass Models (NMMs). As mentioned
in Section 2.2, NMMs model the populations of neurons (referred to in this document as centers) and
the information transfer between them. Each center is modeled with a number of variables (referred to
as state variables), and its behavior independent of other centers is usually modeled with differential
equations and it is referred to as its local dynamics. The effects of the centers on each other are called
the couplings and are modeled as input variables to the differential equation of the centers. A center’s
effect on another center takes time to arrive, as in the physical brain signals travel at limited speeds.
As a result, our problem boils down to solving a series of coupled delay differential equations. NMMs
generally consist of N centers and each center has M state variables. For each center i ∈ [1, N ], we
can define the state variables as X⃗i ∈ RM . Centers are connected to each other in a network and with
a certain distance. We define connectivity and delay matricesW ∈ RN×N andD ∈ RN×N respectively.

Matrix W shows whether two centers are connected to each other, and if they are, how strong is
their connection. Wij shows the strength of connection from center j to center i. If this value is zero,
it means that there is no connection from center j to center i. It is worth noting that matrix W is not
necessarily a symmetrical matrix. Matrix D shows the delay between 2 centers usually with a unit of
seconds or milliseconds. The delay between 2 centers is calculated by dividing the distance between
them by the speed of signal propagation in the brain. This matrix is symmetrical, since the distance
from center i to j is the same as the distance from center j to i.

NMMs can generally be described as shown in Equations 2.2 and 2.3.

dX⃗i(t)

dt
= F

(
X⃗i(t), C⃗i(t)

)
+ u(t) + η(t) (2.2)

C⃗i(t) = Kpost

 N∑
j=1

WijKpre

(
X⃗j(t−Dij), X⃗i(t)

) (2.3)

• The local dynamics of the centers are represented with F
(
X⃗i(t), C⃗i(t)

)
=

f1(Xi0(t), Ci0(t))
f2(Xi1(t), Ci1(t))

...

.
As mentioned in Section 2.3, when using NeuralODEs, this vector of functions can be replaced
by a Multilayer Perceptron (MLP) that can approximate F , meaning MLP

(
X⃗i(t), : C⃗i(t)

)
≈

F
(
X⃗i(t), C⃗i(t)

)
.

• The effect of other centers on center i is referred to as the coupling input to center i. This is
represented with C⃗i(t) ∈ RM in Equation 2.2. As shown in Equation 2.3, the coupling input of
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node i at time t depends on the previous state variable values of other centers (according to the
delay between center i and other centers) and the strength of their connection.
Functions Kpre ∈ (RM ,RM ) → R and Kpost ∈ R → RM are pre- and post-synapse functions re-
spectively. They scale the signals from other centers to more realistically represent their strength
when reaching the receiving center [50].

• In MLP
(
X⃗i(t), C⃗i(t)

)
, the coupling input C⃗i(t) is usually a linear additive. This allows us to

rewrite the MLP function as MLP
(
X⃗i(t)

)
+ C⃗i(t) to help with the speed of calculation. Even in

the case when the coupling input is not a linear additive to the MLP function, the MLP can be
trained with the new structure using some workarounds to ensure the validity of the MLP output.

• The input stimulus to the center i is shown with u(t). Additionally, the noise present in the system
(η(t)) is also taken into account. This noise term is usually a Brownian motion approximated by
a standard normal random variable.

We aim to solve this differential equation with the Forward Euler method1. In order to do so, we
define the step size h and timestep-delay matrix d ∈ RN×N which is the result of dividing the elements
of matrixD by step size h. This means that matrix d holds the delays between the centers in simulation
timesteps. When solving the differential equation with the Forward Euler method, we also discretize
time (t). So from this point on, the variable t refers to the t-th timestep of the Forward Euler method.
Equations 2.4 and 2.5 show the Forward Euler integration for the NMM problem. In Equation 2.4, the
term ξ(t) represents the integration of the noise term mentioned in Equation 2.2 and it can be replaced
with a normal distribution with a variance of h, meaning ξ(t) ∼ N(0, h) [39].

X⃗i(t+ 1) = X⃗i(t) + h ·
(
MLP (X⃗i(t)) + C⃗i(t) + u(t)

)
+ ξ(t) (2.4)

C⃗i(t) = Kpost

 N∑
j=1

WijKpre

(
X⃗j(t− dij), X⃗i(t)

) (2.5)

In order to make understanding of the problem, in addition to the design and implementation of the
system, easier, some simplifying assumptions were made to Equations 2.4 and 2.5 [50]:

1. The effect of centers on each other happens through only one state variable. This means that X⃗i

consists of one global variable that can be seen by all centers and multiple local variables that
can only be seen by center i itself.

2. The entry point of the coupling input for each center happens through only one of the M state
variables. This basically implies that the value of the coupling input to each center is only added
to one of theM state variables.

3. The input and noise terms (u(t) and ξ(t). respectively) are ignored for now as they are not essen-
tial to the functionality of the system.

With the above assumptions in mind, we can rewrite Equations 2.4 and 2.5 as follows:

X⃗i(t+ 1) = X⃗i(t) + h ·
(
MLP (X⃗i(t)) + Ci(t)

)
(2.6)

Ci(t) = Kpost

 N∑
j=1

WijKpre (Xj(t− dij), Xi(t))

 (2.7)

The Ci(t) calculated in Equation 2.7 is only added to one of the state variables of center i. Addition-
ally, the pre- and post-synapse functions are redefined as Kpre ∈ (R,R)→ R and Kpost ∈ R→ R.

1Actually, due to the presence of a stochastic term it would be more accurate to refer to the integration method as Euler-
Maruyama, but in this report, we refer to it simply as Forward Euler.
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2.5. Computing Paradigms
The most commonly used computers today are based on a computing paradigm proposed by John von
Neumann, a Hungarian computer scientist. The von Neumann computers, in general, separate the
computing unit from the memory. This means that instructions and data are stored in the memory, and
at each iteration, an instruction is loaded from the memory to the CPU. Based on the instruction, the
needed data is also loaded from the CPU, and after the calculations are done, the results are written
back to the CPU. Figure 2.7 shows the block diagram of this paradigm. The von Neumann computers
are very good at being general purpose, meaning that they are capable of performing any computing
workload. However, the cost of this generality is performance, where this constant loading and storing
of data consumes time and energy. Efforts to improve the performance of von Neumann machines
such as increasing the clock frequency, caching the data, adding multiple threads and cores, vector
calculations, and using very long instruction words (VLIW) have been performed, but the bottleneck of
accessing the memory for instructions and data still remains in these types of machines.

Figure 2.7: von Neumann Computing Paradigm [38]

Alternatively, the dataflow computing paradigm tries to eliminate this bottleneck by removing the
notion of instruction. As shown in Figure 2.8, a dataflow machine stores the data in the memory similar
to a von Neumann machine, with the difference that when a dataflow machine loads the data to the
processing unit, it streams it through a series of operation engines. These engines perform a small
operation on the inputs and produce a result for the next engine or the main memory. As opposed to
von Neumann computers, the dataflow computers are not fit for general-purpose workloads, because
the engines and the way they connect to each other differ from application to application. On the other
hand, because the data is only read once from memory (because the data stays in the processing unit
and is not written back until it is no longer needed), and there are no instructions to be fetched, the
dataflow machines can perform significantly better both in terms of speed and power consumption. It
should be noted that dataflow computers are application-specific, and the structure of the processing
unit changes from application to application. This requirement for custom structure in processing is one
of the main reasons that reconfigurable devices, such as FPGAs, are appropriate platforms to realize
dataflow computers. Ideally, tools and compilers exist to map the high-level algorithms to the low-level
engines and connections in the processor [53].

2.6. Versal Adaptive Compute Acceleration Platform
The Versal Adaptive Compute Acceleration Platform (ACAP) was first introduced by Xilinx in 20182.
The Versal ACAP is a heterogeneous compute platform, built on the TSMC 7nm FinFET technology
[6], which combines the traditional FPGA fabric (referred to as Adaptable Engines or Programmable
Logic (PL)) with intelligent engines [65]. Figure 2.9 shows the functional block diagram of the Versal
ACAP.

The device used in our project is a VC1902 AI Core series, which is on a VCK190 Evaluation Kit.
2After acquiring Xilinx in 2022, AMD rebranded the ACAP product line to the Versal Adaptive SoC. Throughout this report, we

use the Versal ACAP term for this product line.
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Figure 2.8: Dataflow Computing Paradigm [38]

The VC1902’s Intelligent Engines contain the most amount of AI Engines, optimized for networking,
digital signal processing, and cloud workloads. For the rest of this section, we dive into details of
different parts of this device.

2.6.1. Processing System (PS)
The processing system (Scalar Engine in Figure 2.9) of the Versal ACAP is a dual-core ARMCortex-A72
processor. Next to this processor, there is an ARM Cortex-R5F processor for real-time applications as
well [7]. The PS has 256 KBytes of on-chip memory, in addition to 4 off-chip DDR memory controllers.
The PS can run Linux, or operate bare-metal and acts as the controlling entity of the Versal ACAP,
communicating with and configuring other parts of the device.

2.6.2. Programmable Logic (PL)
The programmable logic (Adaptable Engines in Figure 2.9) of the Versal ACAP is a traditional FPGA
fabric with direct connections to the Scalar and Intelligent Engines present in the device. The pro-
grammable logic has around 2 million logic cells, in addition to around 900,000 LUTs and 2000 DSP
engines [64]. The PL is fully compatible with purely FPGA-based applications, in addition to high-
performance heterogeneous systems.

The PL has 4.25 MBytes of Block Ram (BRAM) and 16.25 MBytes of Ultra Ram (URAM), totaling
20.5 MBytes of PL SRAM memory [64]. This amount of memory makes the PL a very good candidate
for custom application-specific memory hierarchies which according to Xilinx mitigates the high latency
and uncertainty of the cache-based systems [65].

2.6.3. AI Engines (AIE)
The AI Engines of the Versal ACAP are the differentiating factor of this device compared to other FPGAs
and accelerators. AMD includes the AIE in a variety of its products (including the Versal ACAP) as the
XDNA Neural Processing Unit (NPU) architecture [2]. The AIE architecture (or the XDNA architecture)
is a spatial dataflow architecture that provides more compute density with lower power consumption.
In general, the AIE consists of 400 very long instruction word (VLIW) and single instruction, multiple
data (SIMD) processing units that are organized in a 2-dimensional array structure [3]. As shown in
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Figure 2.9: Versal ACAP Functional Block Diagram [65]

Figure 2.10, each AIE tile has an engine, a memory block, and an interconnect block.

The processing engine in the AIE tile consists of a scalar processor and a vector processor running
at 1.25 GHz, 16 KBytes of program memory, and 3 address generators. The vector processor of the
AIE tile is capable of performing 8 single-precision floating-point MAC operations per cycle (20 FLOPs
per second). The memory module of each AIE tile has 32 KBytes of data memory divided into eight
banks, a memory interface, and a Direct Memory Access (DMA) block. Each AIE tile can access four
different memory modules, its own and three of its neighbors. This enables the tiles to move data be-
tween themselves by putting it in the memory of neighboring tiles.

In terms of communication, as shown in Figure 2.11, there are four main ways for the AIE tiles to
move data between them [3].

1. Using Shared Memory: As mentioned earlier, each AIE tile has access to three of its neighbors’
memory blocks. This means that two AIE tiles that are neighbors with another tile can share data
by putting it in the memory of the tile that they both have access to. To avoid data-access conflicts,
different banks of the shared memory module can be used as ping-pong buffers, where data is
written to different banks alternatively.

2. Using Memory and DMA: Similar to the previous method, non-neighboring AIE tiles can ac-
cess each other’s memory using DMA and locks. Compared to the previous method, this way
consumes more memory resources and has more latency.

3. Using AXI4-Stream Interconnect: The 8 × 50 array of AIE tiles are connected to each other
via an AXI4-Stream protocol using each tile’s interconnect module. In this way, each AIE tile can
send a stream of data to any other tile or a group of tiles (Multicast) in the array. In the multicast
streaming fashion, all of the receivers have to be ready for the transaction to happen, unless
the transmitter stalls until all the receivers are ready. The AXI4-Stream interconnect of the AIE
array is also capable of implementing Explicit Packet Switching, where packets of data can be
sent from many destinations to a single source with addressing, or from many sources to a single
destination.
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Figure 2.10: AIE Tile Architecture [3]

4. Using Cascade Stream A chain starting from the bottom-left AIE tile and ending in the top-left
tile directly connects all the tiles together. This chain (the Cascade Stream) is 384 bits wide, and
each tile can read and write to this stream. This stream can be really helpful when multiple tiles
need their values to be accumulated, meaning each tile can read the value from the stream, add
its own calculated result to the read value, and write it back to the stream.

In addition to full internal connectivity, the AIE array also has connections to the rest of the device.
There are 50 interface tiles at the bottom of the AIE array, which includes PL Interface, NoC Interface,
and Configuration tiles. Figure 2.12 shows the details of each of these interface tiles. From the AIE
perspective, the PL Interface tiles, all together, provide around 1 TB

s and 1.3 TB
s of bandwidth to and

from the PL, respectively.

2.6.4. Network-on-Chip (NoC)
The Network-on-Chip (NoC) of the Versal ACAP is an AXI-Interconnect for information transfer between
PL, PS, and the AIE [5]. The NoC is comprised of horizontal (HNoC) and vertical (VNoC) paths, trans-
ferring data in all four directions. Figure 2.13 shows the block diagram of the Versal ACAP NoC. he
NoC converts the AXI3, AXI4, or AXI4-Stream connections to a 128-bit wide NoC packet protocol [4]
and moves it through the device using VNoC and HNoC paths. The HNoC lies at the bottom and top of
the Versal ACAP, closer to the I/O banks and the integrated blocks such as PCIe or memory controllers.
The VNoC connects the top and the bottom of the device, and the number of it depends on the number
of DDR memory controllers.

2.6.5. Tooling and Design Methods
Heterogeneous systems provide tremendous speedups and power efficiency over homogeneous sys-
tems because of more specialized, dedicated compute units. However, one of the main costs of these
benefits is amore complicated development process [34]. The Versal ACAP is a heterogeneous system
with 3 sub-systems within it, the PS, the PL, and the AIE. In order to facilitate the development process
for this system, Xilinx proposes a platform-based design methodology [63]. In this methodology, the
system is divided into different parts:

1. The Platform which contains the foundational blocks of the system. This part of the system, as
the name suggests, is only an underlying substrate that does not include any functionalities of
the system yet.
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Figure 2.11: AIE Array Communication Methods [3]

2. The Processing System which includes the PS, PL, and AIE features that implement the main
functionalities of the system on top of the platform.

These two parts of the development process can happen in parallel, making it faster and easier
to develop and integrate the Versal ACAP system. Figure 2.14 shows the design flow used in Versal
ACAP. The application development for the PS, the PL, and the AIE in addition to the creation of the
system platform is suggested to be performed in parallel. In the next step, the PL and the AIE sub-
systems are integrated and verified. Finally, the custom platform, in addition to the PS application is
integrated with the PL and the AIE to form the final system.

For the AIE application development, first, the kernels that are going to run on the AIE tiles are
developed in C++. Subsequently, the connections between the kernels (referred to as Graph), in ad-
dition to the connections to the PL and the NoC are specified. After the kernels and the graph of the
AIE application are ready, the aiecompiler is used to compile them. The aiecompiler first performs
the placing process for the kernels, where it maps the kernels to the AIE tiles. Then, the connections
between the kernels and the interconnect tiles are routed by the aiecompiler. Eventually, after the
success of the place and route processes, the kernels inside of the AIE tiles are compiled using a C++
compiler.

For the PL application development, both RTL and HLS modules can be used. However, because
in the next steps the tool has to integrate all parts of the system together, the RTL modules must be
compiled into a kernel object (.XO files) recognizable by the tool. The PS is responsible for controlling
the device and configuring and running the kernels inside the PL and the AIE. The application for the
PS can be both bare-metal written in C++, or using Linux. After all the applications of different parts
of the device are ready, meaning the binary for the AIE tiles, the .XO files of the PL, and the code for
the PS, the tool links all the parts together, creating a final system. In the linking stage, in addition to
all the outputs of different parts of the system, the tool also requires a configuration file where the top-
level connections of the device (for example PL-AIE connections) are specified. With all the mentioned
information provided to the linking tool, the tool outputs an image file to be booted to the device.
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Figure 2.12: AIE Interface Tiles [3]

2.7. Sparse Matrix Calculation
As mentioned in Section 2.2, the connectivities between the centers in the model are specified by a
weight matrix (W ). This matrix in large-scale brain network models is most usually sparse. In linear
algebra, a sparse matrix is a matrix with most of its elements being zero [15]. Because of their unique
characteristic, there exist special methods for storing sparse matrices [15]. For any method of storing
that is chosen, some sort of compressing algorithm is required to avoid storing the zero values. This
compression should be fast and flexible enough to allow for performing different matrix calculations.

The simplest form of representation for the sparse matrices is the zero-based triplet form. In this
method, the sparse matrix A is represented by three arrays i, j, and x. The array x contains all the
non-zero elements of matrix A ∈ RM×N in arbitrary order, and matrices i and j contain the row and
column of the array x elements matrix A. This method is easy to understand and construct, but it is
difficult to use in many matrix operations [15]. Also, if we assume a sparsity of 0 < SP < 100% for
matrix A, in order for this method to be more efficient than storing the whole matrix in terms of memory,
the sparsity of the matrix should be more than 66% as shown in Equation 2.8.

3× (100− SP )× (M ×N) < 100× (M ×N)⇒ SP > 66.66% (2.8)

Another method to store the sparse matrices is the Compressed Sparse Row (CSR) method [13].
This method is the most widely used way to store sparse matrices. In the CSR method, as shown in
Figure 2.15, the non-zero elements of the sparse matrix are put into an array row-by-row consecutively
(array Data). In another array, a pointer to the first element of each row from the original matrix in
the array Data is stored (array Row Pointers). The column indices of the elements in the array Data
are also stored in another array (array Column Offsets). A similar method called CSC also exists that
instead of keeping the row indexes, keeps the column indexes.
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Figure 2.13: Versal ACAP Network-on-Chip Block Diagram [5]

In order for the CSR method to be more efficient in terms of memory usage, the sparsity of the
matrix, for large enough matrices, should be more than 50%, as shown in Equation 2.9. This is a better
compression compared to the zero-based triplet method mentioned above.

2× (100− SP )× (M ×N) + 100×M < 100× (M ×N)⇒ SP > (50 +
100

2N
)% (2.9)

2.8. Related Work
As mentioned earlier in the chapter, in this project we try to implement the large-scale brain simulation
using TVB-style models on the Versal ACAP. This means that the related work to our project is mainly
the work done by the TVB team, which comes in different versions of the TVB tool. TVB is part of the
Human Brain Project (HBP) [25] which was a European flagship project in the field of brain research.
As mentioned earlier in the report, TVB is a prominent brain simulation toolkit that generated many
methods and findings, especially regarding epilepsy [31, 46, 8, 33, 58].

2.8.1. Original TVB
The original TVB [44] is a Python-based tool for large-scale brain modeling available to neuroscientists.
The numerical algorithms behind the original TVB are extracted from the main tool by the TVB team
and are open to the public and are referred to as tvb_algo [61]. This code is also in Python and
shows the basic algorithms and calculations performed in the TVB system. Based on this system, we
developed a code in C++ where the operations done using the numpy library in Python are replaced by
normal, low-level, single-core C++ code (tvb_algo_c) [40]. This code was used to validate the result
of the Versal system throughout the development process, in addition to a purely sequential version of
the TVB system. The local dynamics of the centers are calculated using an MLP in the C++ version,
something that was missing in the Python code. Furthermore, the coupling calculations are done using
sparse representation which improves the performance of the simulation.
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Figure 2.14: Versal ACAP Platform-based Design Flow [4]

Figure 2.15: Compressed Sparse Row (CSR) Method for Sparse Matrix Representation [28]

2.8.2. Optimized TVB on CPU
The original TVB is developed with the idea of generality, maintainability, and ease of development
which often comes at the cost of decreased performance. To tackle the performance bottleneck, other
versions of TVB have been developed for faster and more efficient CPU execution.

The Fast TVB [51] is a specialized and optimized C implementation of TVB for a specific neural-
mass model. The Fast TVB traded the generality of the original TVB for the higher performance of a
single model. Using the CPU resources efficiently, the Fast TVB allows for simulating even very large
models in a reasonable time.

TVB C++ [36] is another, faster version of the original TVB. TVB C++ is more general compared to
the Fast TVB, providing the flexibility of the original TVB to some extent.

Both of the faster CPU versions of TVB mentioned in this section benefit from the multithreading
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and SIMD capabilities of the CPU. They both have a limited number of models available (only one for
the Fast TVB and only a few for TVB C++), mostly aiming for specific research questions.

2.8.3. TVB on GPU
The original TVB is also implemented as a JAX-based [12] Python package for execution on the GPU
[62]. JAX is a Python library developed by Google for array computation with acceleration in mind.
JAX can be used for high-performance numerical and large-scale machine learning computations. The
vbjax, which is the JAX-based version of TVB, maps the numerical calculations of the original TVB to
the GPU. Additionally, the vbjax uses an MLP for local dynamics evaluation.

The main idea behind the acceleration performed in vbjax is batching many simulation instances
and calculating them all at the same time. As mentioned in Section 2.2, a large number of simulations
must be performed in order to fit the brain model into the data taken from the patient’s brain. The GPU
version of TVB can simulate all of the TVB-style brain models, however, all of the concurrent simulations
are only different in the parameter values of the brain model (the values of the weight matrix), and
share all other aspects of the simulation. In other words, this means that all of the simulations running
at the same time share the same control sequence in their calculation, and only the values used in the
calculations are different. This allows for many simultaneous simulations to be executed on the GPU
at the same time, increasing the performance of the system.

2.8.4. Conclusion
Table 2.1 summarizes the related work that we consider in this thesis.

Name Platform Language Notes

Original
TVB CPU C++

This is a single-core, single-thread port of the
original Python-based TVB backend (tvb_algo) to
C++ by us. MLP evaluation and sparse calculations
are added on top of tvb_algo in this implementation.

Fast TVB CPU C This implementation is developed by
the TVB team and can only simulate one model.

TVB C++ CPU C++

This is a multithreaded, SIMD C++ implementation
of TVB developed by the TVB team. It can simulate

all of the TVB models, but does not have
MLP evaluation.

TVB on GPU GPU Python (JAX) This is the GPU version of the TVB algorithm
which is developed as a JAX-based package (vbjax).

Table 2.1: Summary of the Related Work on TVB



3
Design

In this chapter, the process taken to design the system on the Versal ACAP device is discussed. Dur-
ing the design phase of the project, first, the problem was analyzed and its requirements regarding
performance, memory, and transmission bandwidth were evaluated. Then the requirements were ex-
amined against the resources available in the Versal platform. Using the analysis of the problem and
the platform, three design candidates were studied, and one was chosen to be implemented.

The Neural-Mass Model problem is formulated as shown in Equations 2.6 and 2.7. Algorithm 1
shows the pseudocode for the NMM problem.

Algorithm 1 Large-Scale Neural-Mass Model Problem Pseudocode
W ←Weights()
D ← Delays()
θ ←MLP_Parameters()
X ← Initial_States()
H ← Update_History(X)
for t ∈ [1, tf ] do

dX ←MLP (X, θ)
C ← Coupling(X,W,D, t)
X ← X + h(dX + C)
H ← Update_History(X)

end for

The Neural-Mass Model problem is analyzed in Section 3.1, and the three design candidates are
presented and discussed in Section 3.2. In Section 3.3, we discuss the positive and negative aspects
of each design, and a final architecture is chosen for implementation.

3.1. Problem Analysis
The goal of this section is to model the performance and memory requirements of different parts of the
application. This modeling helps us to determine the feasibility and effectiveness of a certain design
with respect to the platform that we are using.

As mentioned in Section 2.4, the problem at hand is the acceleration of neural-mass models (NMMs)
which consists of solving a series of coupled delay differential equations using the Forward Euler
method. The differential equations, which are the local dynamics of the centers of the NMM, are calcu-
lated using MLP. In order to analyze the problem and derive its requirements, we divide the system into
2 different parts: 1) MLP evaluation and the FE Solver, and 2) Coupling calculations. For each part,
the requirements regarding aspects like performance and memory capacity are studied. Additionally,
the bandwidth requirements for the data transmissions across different parts of the system are also
evaluated within the context of each of the three design candidates and are presented in their own

20
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sections. It is worth noting that throughout the analysis, we assume all the values are single-precision
floating point numbers, resulting in 4 bytes of memory requirement per value. Additionally, worst-case
scenarios were considered to get a better idea of the requirements of the application.

3.1.1. MLP and FE Solver Memory Capacity
In this section, we look into the memory capacity requirement of the MLP and FE Solver. The main
memory needs contributors are as follows:

1. Previous Timestep State Variables These are needed by the FE Solver to calculate the next
step state variables. This requirement can be formulated as follows:

MemPrevStates : 4× (NM) = 4NM [Bytes] (3.1)

2. MLPParameters These are weights and biasses used by theMLP to calculate the local dynamics
of the centers at each timestep. The amount of memory needed by the parameters of the MLP
depends on the size of the neural network. The input and output layers of the MLP are the same
size as the number of state variables per center (M ). We can assume that the MLP hasH hidden
layers, and each hidden layer has L neurons. Additionally, there might be multiple MLPs running
at the same time and each requires its own set of parameters separately stored. We assume that
the value of the concurrent MLPs running at the same time is E. With the above assumptions, in
addition to the presence of bias values and the absence of any optimization like pruning, we can
formulate the memory need of the MLP parameters as follows:

MemMLPParams : 4× E × ((M + 1)L+ (H − 1)(L+ 1)L+ (L+ 1)M) [Bytes] (3.2)

3. Intermediate and Coupling Values This corresponds to the memory needed by calculations
of the MLP, the output values, and also to store the coupling values that are needed by the FE
Solver. Assuming single-batch MLP evaluation, these memory requirements can be formulated
as follows:

MemInter : 4× (L+NM +N) = 4N(M + 1) + 4L [Bytes] (3.3)

So the total amount of memory needed by the MLP and the FE Solver can be calculated by adding
the values of Equations 3.1, 3.2, and 3.3:

MemMLP+FE = MemPrevStates +MemMLPParams +MemInter

= 4E((M + 1)L+ (H − 1)(L+ 1)L+ (L+ 1)M) + 4N(2M + 1) + 4L
[Bytes] (3.4)

3.1.2. MLP and FE Solver Computation Performance
Almost all of the required computation for this part of the application comes from the MLP evaluation.
Assuming that theMLP hasH hidden layers withL neurons each, in addition toM neurons for input and
output layers, and no optimization (for example pruning), we can formulate the amount of calculations
needed for each output evaluation as follows:

CompMLP :ML+ (H − 1)L2 +ML = 2ML+ (H − 1)L2 [ MAC
Center ] (3.5)

In addition to the MLP calculations, the FE Solver performs about 3M ( MAC
Center ) to evaluate the next

step state variable. Equation 3.6 formulates the total amount of computation needed for each center
at each timestep of the simulation.

CompFE : 2ML+ (H − 1)L2 + 3M [ MAC
Center ] (3.6)

As in Section 3.1.1, we assume that there are E different MLP and FE Solvers running at the same
time, meaning each of them is tasked with the calculations of N

E centers. Additionally, since we are
aiming for real-time simulation, each of theE blocks needs to finish the calculations within a certain time
limit. This time limit is less than the timestep h, and we refer to its value as hRT (with a unit of seconds)
where 0 < hRT < h. The lower the value of hRT , the more computation-intensive the application. With
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all the needed variables defined, we can formulate the required computation performance by each MLP
and FE Solver block as follows:

CompMLP+FE :
1

hRT
× N

E
×
(
2ML+ (H − 1)L2 + 3M

)
[MAC

s ] (3.7)

3.1.3. Coupling Calculation Memory Capacity
Memory needs for coupling calculations consist of storing past state variable values for all centers and
the connectivity data (including the weight and delay matrices). In order to better analyze the memory
capacity requirements of the coupling calculation engines, we define a new matrix T ∈ RN×N which is
the combination of connectivity (W ) and timestep-delay (d) matrices:

∀ i, j ∈ [1, N ] : ifWij ̸= 0, then Tij = dij otherwise Tij = 0

Matrix T basically keeps the value of d at each position where there is a connectivity between 2
centers. In other words, we apply the sparsity pattern of the weight matrix to the delay matrix. By
looking at the columns of T , the maximum value of each column j (max (T:j)) shows the number of
timesteps that the state variable of center j (X⃗j) is needed for coupling calculation of other centers.
max (T:j) specifies the memory needed for each center of the model to keep its history. The larger the
value of max (T:j), the more memory is needed for center j to keep a history of its state variable.

For each center j, we need to keep max (T:j) elements. Assuming the worst-case scenario, the
total memory needed to store the history of the state variable values is N ∗ Tmax, in which N is the
number of centers and Tmax is the maximum value of matrix T . The real memory capacity requirement
is less than N ∗ Tmax since we don’t need to keep the history of all the centers for Tmax timesteps.

In order to perform the coupling calculations, we need to store the connectivity data (W and dmatri-
ces). Assuming the worst-case, meaning no sparsity in the matrices, the memory required for each of
the mentioned matrices is N2 elements. Therefore, the total memory needed to store the connectivity
data is 2N2 elements.

Adding the requirement for state variable history and the connectivity data, the total memory that
the coupling calculations need is as follows:

MemCC : (NTmax + 2N2)× 4 = 4NTmax + 8N2 [Bytes] (3.8)

The value of Tmax depends on the physical distances between the centers in the brain, the con-
ductance speed, and the timestep of the simulation (h). Since these parameters of the simulation are
mostly fixed, this means that the value of Tmax is mostly fixed, and this means if we increase the number
of centers in the model, the connectivity data will become the dominant memory-requiring part. This
is evident in Figure 3.1 where in models with more than around 500 centers, the connectivity data will
consume most of the memory. However, it is worth noting that this is only true when considering the
worst-case scenario. In reality, as the number of centers in a model grows, the sparsity of the weight
matrix also grows. This means if an implementation stores the connectivity data in sparse format, the
memory requirement for them grows closer to a linear pattern rather than quadratically.

3.1.4. Coupling Calculation Computation Performance
The real computation load of coupling calculation heavily depends on the sparsity of the weight matrix.
However, here we assume a worst-case scenario of an all-to-all connected NMM. In this case, for each
center at each timestep N MAC operations must be performed. Assuming the real-time limitation of
hRT mentioned in Section 3.1.2, we can write the required computation performance for the coupling
calculations at each timestep as follows:

CompCC :
1

hRT
×N2 [MAC

s ] (3.9)

Equation 3.9 shows that the computation required for the coupling calculation grows cubically with
regard to the number of centers. However, an all-to-all connected NMM is a worst-case but unrealistic
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Figure 3.1: Coupling Calculation Memory Requirement (Tmax = 1000)

model, and in reality (as mentioned in Section 3.1.3), the computation growth relative to the number of
centers has a more quadratic relation rather than a cubic one.

3.2. Design Candidates
In this section, three different design architectures are presented and discussed. Each of the design
candidates is introduced in detail, their performance and memory capacity requirements are compared
against the capabilities of the device using formulas derived in Section 3.1, and any new requirements
that are specific to the design are also studied.

3.2.1. Design 1: By-Center Parallelization
Introduction
In this design, parallelization happens at center level for each timestep. This means that for MLP eval-
uation, Forward Euler solving, and coupling calculation we divide the centers into groups and perform
the computation of those groups in parallel. Because of the nature of the problem which is a transient
simulation, this design only parallelizes the workload within a single timestep and no parallelization
happens across the timesteps.

The details of the design are as follows:

1. In this design, there are MLPFE and CC engines. The MLPFE engines are responsible for the
evaluation of the MLP and performing the Forward Euler to calculate the next timestep value. The
CC engines are responsible for the calculation of the couplings for the centers.

2. The N centers are assigned to 1 MLPFE and 1 CC engine (we call the number of engines E).
Each engine is responsible for calculations of N

E centers. The engines run in parallel, and within
a single engine, the calculations of the centers are time-multiplexed.

3. For each center at each timestep, the MLPFE and CC engines run at the same time. When the
CC engine is done with its calculation, it transmits the calculated couplings to the MLPFE engine.
The MLPFE engine evaluates the next timestep state variables of the centers.

4. Each CC engine has a control unit that controls the flow of data and instruction in the engine.
Additionally, each CC engine has dedicated on-chip memory. The previous state variable values
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(X⃗i(t − d)) of the centers that are assigned to an engine are stored in the memory block of that
engine. The amount of history for each center depends on the max (T:j) value of that center.

5. For MLP calculations, the previous step state variables and the neural network parameters are
needed. The values for the centers that are assigned to an MLPFE engine are stored on the
memory block dedicated to the engine. The MLP calculation for each center does not have any
dependency on other centers’ variables.

6. Unlike the MLP calculations, the coupling calculations for each center require variables from other
centers. These dependencies can be of 2 types: Either the value that is needed for the calculation
is also stored in the same engine (meaning that both centers that are connected to each other
are assigned to the same engine), or the value needed for the calculation is stored in another
engine. In the first case, the access to the required value is straightforward. In the second case,
the access to the required value happens through the Inter-Engine Data Exchange block. This
block ensures the fast and efficient transfer of data between different CC engines.

7. The Inter-Engine Data Exchange block is also the entity responsible for communication with the
off-chip memory and the PS. Configurations are loaded from the PS to the engines through this
block. Additionally, when a value is not needed anymore, it is transferred from the CC engine to
the off-chip memory by this block.

As mentioned in Section 2.6, the AI Engines of the Versal ACAP are designed for dataflow-style
processing. The MLPFE engine described in this design is a good candidate to reside in the AI Engines.
On the other hand, because of the inter-engine dependencies of the CC engines, the AI Engines of the
ACAP would not be a good platform to realize them. This is why this design puts the CC engines on
the PL region of the device. Figure 3.2 shows the general block diagram of this design.

Figure 3.2: Design 1 (By-Center Parallelization) Block Diagram
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This design can potentially use some more advanced features to increase its performance:

1. As the number of centers in an NMM increases, the memory needed to store all the state variables
and their history will also increase. In order to tackle this challenge, we can store the state
variables that are not immediately needed, meaning the centers with relatively large T:j min value,
on the off-chip memory and bring them back to the device when they are needed. This will save
the on-chip memory for variables that are immediately needed and reduce the memory need of
the design.

2. One of the bottlenecks of this design is the data transfer between multiple CC engines. Since
the dependencies and data access patterns for each center are known before the start of the
simulation and it is fixed throughout the simulation, the Inter-Engine Data Exchange block can
pre-fetch the data needed by each engine from other engines to save time.

3. To tackle the bottleneck of the data transfer between multiple CC engines, pre-processing can
be done to divide the centers among the engines in a way that reduces the data dependency of
engines on each other.

4. If the memory capacity limitations allow, to reduce the inter-engine data accesses, we can store
a copy of all the needed values by an engine in the engine itself.

Requirement Check
With the assumption of partitioning the design according to Figure 3.2, the number of engines of 32
(E = 32), and that each MLPFE engine is implemented in a single AI Engine tile, we can check the
performance and memory capacity requirements of this design. We use the performance and memory
capacity models derived in Section 3.1, and information provided in Section 2.6 (such as the memory
capacity in the PL and the AIE in addition to the computation performance in the AIE) to compare
the requirements against the resources and capabilities of the device. Equations 3.10, 3.11, and 3.12
show the MLPFE memory capacity, MLPFE performance, and CC memory capacity respectively. The
performance of the CC engine computation performance is heavily implementation-dependent and it
is not considered here.

MemMLP+FE

E
< 32, 768 [Bytes] (3.10)

CompMLP+FE < 1010 [MAC
s ] (3.11)

MemCC < 20, 500, 000 [Bytes] (3.12)

Additionally, we can look into the bandwidth requirement for the MLPFE-CC engines link. In this
design, the coupling input values of the centers are calculated in the CC engines (PL), then it is trans-
ferred to the MLPFE engines (AIE) in order for the next state variable values to be calculated, and in
the end, the calculated state variables are transferred back to the PL. These data exchanges between
the PL and the AIE happen through the direct connection between the two fabrics.

At each timestep, N coupling values are calculated in the CC engines and are transmitted to the
MLPFE engines. Additionally, NM newly calculated state variables are transferred from the MLPFE
engines back to the PL, to go to the CC engines and the main memory. As mentioned in Section
2.6, there are 39 different AXI4-Stream interfaces available between the AIE and the PL, each with
a bandwidth of 24 GB

s (from AIE to PL) and 32 GB
s (from PL to AIE). The time it takes to transfer the

required data from the PL to the AIE and the other way around can be calculated as follows:

TimePL-AIE =
4N

39× 32× 109
[s] (3.13)

TimeAIE-PL =
4NM

39× 24× 109
[s] (3.14)

Furthermore, the Inter-Engine Data Exchange block should also be capable of accommodating high-
bandwidth data transfer among the CC engines. We assume the worst-case an all-to-all connected
NMM. In this case, each CC engine requests N − N

E
= (E − 1)

N

E
values through the data exchange
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block. As a result, we can formulate the amount of data that is needed to be transferred through the
Inter-Engine Data Exchange block at each timestep as follows:

4× E × (E − 1)
N

E
= 4N(E − 1) [Bytes] (3.15)

If we set a time limit where these data transfers have to happen within that period, we can calculate
the bandwidth required by the inter-engine data exchange. We define this time-limit as hIEX where
0 < hIEX < h and write the required bandwidth as follows:

BWIEX :
4N(E − 1)

hIEX
[Bytess ] (3.16)

In order to check the requirements against the capabilities of the device, we assume some ranges
of values for different parameters of the problem and use the worst-case values to verify the feasibility
of this design. These values are summarized in Table 3.1.

Parameter Estimated Range/Value Reason
# of Centers (N ) 50 - 1000 Largest TVB dataset [61]

# of State Variables/Center (M ) 2 - 10 Typical models [60, 10, 32, 1]
# of Engines (E) 32 -

# of MLP Hidden Layers (H) 1- 5 Typical MLP size for evaluating
centers’ local dynamics [9]

# of Neurons/Hidden Layer (L) 16 - 64 Typical MLP size for evaluating
centers’ local dynamics [9]

Maximum Delay (Tmax) 100 - 1000
Size of the brain, typical

signal propagation speed, and
average simulation timestep

Real-time Limit (hRT ) 100 - 1000 (µs) Average simulation
timestep [44, 39]

Data Exchange Time Limit (hIEX ) 10 - 1000 (µs) A fraction of the
average simulation timestep

Table 3.1: Range estimations of the parameters

If we assume the worst-case values for each of the parameters mentioned in Table 3.1, we can
rewrite the Equations 3.10, 3.11, and 3.12 as follows:

MemMLP+FE Requirement (Bytes): 71, 976 + 2625 + 1024 < 32, 768→ 76, 625 < 32, 768 ×

CompMLP+FE Requirement (MAC
s

): 104 × 31.25× 17, 694 < 1010 → 0.55× 1010 < 1010 ✓

MemCC Requirement (Bytes): 4, 000, 000 + 8, 000, 000 < 20, 500, 000→ 12, 000, 000 < 20, 500, 000 ✓

We can see that a single AI Engine tiles memory is not enough to hold the largest MLP that will be
used in the NMMs. Either the workload of a single MLP should be divided into multiple AI Engine tiles
or smaller models with fewer hidden layers or neurons per layer be used to be able to fit all of their
parameters in the memory of a single AIE tile.

For the AIE-PL interface bandwidth required by this design, we assume the same data exchange
time limit we assumed for the Inter-Engine Data Exchange (hIEX). Using this value, we can check the
requirements for the PL-AIE link bandwidth mentioned in Equations 3.13 and 3.14 as follows:

TimePL-AIE Requirement (µs): = 0.0032 < 10 ✓
TimeAIE-PL Requirement (µs): = 0.0427 < 10 ✓
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It can be seen that the AIE-PL interfaces are more than capable of accommodating the bandwidth
demands of this design.

In terms of the required performance by the Inter-Engine Data Exchange block, if we rewrite Equa-
tion 3.16 with the worst-case scenario values from Table 3.1, we can see that the Inter-Engine Data
Exchange block should provide a performance of around 12.4GBytes

s . If we assume a typical 250MHz
clock frequency for this block, the Inter-Engine Data Exchange has to transfer around 50 Bytes of data
per clock cycle. With these performance requirements, the Inter-Engine Data Exchange block can
potentially become a major bottleneck of the design. This bottleneck can come from both its own per-
formance and its communication bandwidth with the CC engines.

Furthermore, when the number of centers (N ) is fixed, as the number of engines (E) increases the
performance required by the Inter-Engine Data Exchange also increases. On the other hand, when the
number of engines increases, the value of N

E decreases, and this lowers the amount of computation
needed by each MLPFE and CC engine. This means that at small values of E, the computation perfor-
mance of the MLPFE or the CC engines would be the bottleneck of the application, and at larger values
of E the bandwidth of the Inter-Engine Data Exchange is the main bottleneck. This means that having
more and more engines doesn’t necessarily increase the performance, and choosing the number of
engines correctly (or in other words, setting the value of N

E correctly) is very important in achieving the
best performance this design can offer.

3.2.2. Design 2: By-Delay Parallelization
Introduction
In this design, the calculated state variables enter a flow of coupling calculations. The main difference
between this design with the previous design discussed in Section 3.2.1 is the way couplings are calcu-
lated. With the general coupling calculation being challenging in terms of memory needs and access
patterns, this design addresses this challenge by efficiently moving the data. The main idea of this
design is to group the connectivities with the same delay. In other words, this design uses the fact that
we can rewrite the coupling calculation formula as shown in Equations 3.17 and 3.18. The Cin values
are coupling inputs for center number i in the delay range n. This design suggests that these values
can be calculated in parallel.

Ci(t) = Kpost

 N∑
j=1

WijKpre (Xj(t− dij), Xi(t))

 = Kpost

(
CCEN∑
n=1

Cin(t)

)
(3.17)

Cin(t) =
N∑
j=1

WijKpre (Xj(t− dij), Xi(t)) For dij ∈ [Dn−1, Dn) (3.18)

The details of the design are as follows:

1. Just like design 1, this design also has MLPFE and CC engines responsible for MLP/Forward
Euler evaluation and coupling calculation respectively. The MLPFE engines and the way they
work are more or less the same as design 1. On the other hand, the process of calculating the
couplings is different in this design.

2. There are E CC engines in this design, and the engines are chained together in a way that
engine #1 can send data to engine #2, and engine #2 can send data to engine #3, and so on.
Each engine calculates the couplings associated with a set of delays in the matrix T . We take all
the unique values in T , sort them, and divide the calculation points associated with those delay
values between the CC engines. At each timestep, all the calculated state variables enter the CC
engine #1. Each state variable might or might not contribute to a connectivity with the delay that
engine #1 is responsible for. If it is, the coupling value is calculated in the engine with that value.
As the simulation advances, the state variables are passed from engine to engine until they are no
longer needed for coupling calculation, which is the moment they are sent to the off-chip memory.

3. Let’s look at an example. Imagine there are 3 CC engines. Engine #1 is responsible for delays
from 0 to 20 timestep, engine #2 for delays of 20 to 50, and engine #3 for delays of 50 to 100. At
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a certain timestep t0, the state variables X⃗(t0) for all nodes are calculated and they enter engine
#1. From timestep t0 to t0 + 20, the state variables X⃗(t0) stay in engine 1 since they are less
than 20 timesteps old. Any connectivity that contributes to the coupling input of any node i and
has a delay of less than 20 is calculated in engine #1 at the right timestep. When the simulation
reaches t0 +20, the values X⃗(t0) are transferred from engine #1 to engine #2. From t0 +20 until
t0 + 50, the connectivities that X⃗(t0) contribute to and have a delay of 20 to 50 are calculated
at the right timestep. This trend continues until the simulation reaches the timestep of t0 + 100,
where no value of X⃗(t0) no longer contributes to any connectivity and they are sent to the off-chip
memory.

4. While the couplings of each timestep are calculated in these engines, the MLPFE engines evalu-
ate the local dynamic of all the nodes and wait for the coupling inputs from the CC engines. After
receiving the calculated coupling values, the MLPFE engines then calculate the next step of the
state variables.

5. Within a CC engine, the calculation of the couplings is a combination of parallel and time-multiplexing.
The exact structure of the engines depends on their implementation.

6. This design eliminates one of the possible bottlenecks of coupling calculation of design 1 which
was the Inter-Engine Data accesses. In this design, the data flows through a series of engines
and are used whenever they are necessary. However, instead of the Inter-Engine Data Exchange
block, in this design, the values calculated in different CC engines have to be added and orga-
nized. Here, the coupling input of a certain center i is calculated in parts in multiple engines.
These values should be gathered together, accumulated, organized, and then sent accordingly
to the corresponding MLPFE engine.

Since unlike the control-heavy coupling calculation process in design 1, the coupling calculation in
this design has a dataflow style, it is suited for implementation on both the PL and the AIE. Figure 3.3
shows the general block diagram of this design.

Figure 3.3: Design 2 (By-Delay Parallelization) Block Diagram



3.2. Design Candidates 29

There is room for performance improvements in this design. Some ideas are as follows:

1. In order to save on memory use, bypass lanes can be implemented between non-adjacent en-
gines, and from engines to the off-chip memory. These bypass lanes can prevent unneeded data
in a certain engine from being stored in that engine, in addition to the data that are no longer
needed in the simulation not being stored on the on-chip memory anymore.

2. Pre-processing can be performed to balance the load of each CC engine in terms of calculation
and memory use.

3. Within the CC engines, multiple sub-engines can work in parallel to further divide the workload of
the delays. Within the sub-engines, the different couplings are calculated by time-multiplexing.

Requirement Check
For this design, the requirements regarding the computation performance and memory capacity of the
MLPFE engines, in addition to the AIE-PL link bandwidth are the same as design 1 discussed in Sec-
tion 3.2.1. Since the coupling calculation engines can be implemented in either PL or the AIE, we will
discuss the performance and memory requirement of the CC engines in both cases.

If the CC engines are implemented in the PL, the memory and computation requirements for
them are similar to the ones discussed in Section 3.2.1. As mentioned before, the accumulator block is
responsible for adding the calculation results from the CC engines together. At each timestep, we can
formulate the amount of computation needed for the accumulation task as (E−1)×N . This is because
there is a calculated value corresponding to each center of the NMM in each of the CC engines and
they are needed to be added together.

If we assume a time limit of hIEX = 10µs for this task to be done, and a clock frequency of 250MHz
for the Accumulator block, we can write the required computation performance of this block using the
worst-case values from the Table 3.1 as follows:

1

hIEX
× (E − 1)N

Clock Frequency
= 12.4 [ Additions

Clock Cycle ] (3.19)

Since the reduction operation that the Accumulator block is performing is highly parallelizable,
achieving 12.4 addition operations per clock cycle is feasible.

If the CC engines are implemented in the AIE, we should look into the performance and memory
capabilities of the AIE and compare it against the requirements of the coupling calculation process
in this design. The memory capacity and the computation performance of coupling calculation in this
design, in this case, are formulated and compared in Equations 3.20 and 3.21 respectively. We assume
that the computation workload of the coupling calculation is evenly distributed among the CC engines,
however, the distribution of the workload heavily depends on the simulation parameters.

MemCC Requirement (Bytes): 4N × Tmax

E
+ 8× N2

E
< 32, 768→ 375, 000 < 32, 768 × (3.20)

CompCC Requirement (MAC
s

): 1

hRT
× N2

E
< 1010 → 0.3125× 1010 < 1010 ✓ (3.21)

It can be seen the main restriction of CC engines being implemented on the AIE is the memory
capacity. Although an all-to-all connected NMM is an unrealistic assumption, Equation 3.20 shows
that the memory capacity has to be given special consideration if this design is implemented with CC
engines residing in the AIE.

3.2.3. Design 3: Tile-Based Scheduling
’

This design is inspired by [21], and unlike the first two, the simulation of different timesteps can
be evaluated in parallel. First, we discuss the principle behind this design. [21] argues that by using
bandwidth-reducing algorithms, like Reversed Cuthill-McKee (RCM), we can re-order the rows and



3.2. Design Candidates 30

columns of the connectivity matrix (W ) in a way that newly indexed centers depend on the history of
the set of centers from a limited range of indices. With this re-ordering, only the elements close to the
diagonal of the matrix would have a non-zero value. Additionally, the RCM algorithm keeps the short
delays closer to the diagonal. We refer to the re-ordered connectivity matrix asWb.

Now we look at our problem of solving the differential equation as a two-dimensional iteration space,
where one dimension is the center number (which corresponds to a row inWb), and the other dimension
is the timestep. As can be seen in Figure 3.4, the value of state variables of a center at timestep t
depends on its value at timestep t − 1 and the value of other neighboring state variables at timesteps
before t− 1.

Figure 3.4: Dependency pattern in the iteration space [21]

The main idea for this design is to create tiles in the iteration space that can be executed in parallel.
In order to do so, [21] suggests hexagonal-shaped tiles across the iteration space. Figure 3.5 shows
the proposed tiling strategy given in [21]. The green tiles are done with their computation, the yellow
tiles are in the middle of their computation, and the triangle shows the data dependency of a certain
center at a certain timestep.

Figure 3.5: Hexagonal-shaped tiling [21]

Each tile only has data dependency on already computed tiles, and tiles in the same row can be
executed at the same time. [21] discusses the algorithm for how to form these tiles and how to schedule
them.
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The details of the design based on the tiling scheduling idea are as follows:

1. Before the start of the simulation, pre-processing is done to create the tiling and scheduling of
them. This scheduling would be based on the connectivity matrix and the resources available.

2. The design consists of E Tile-Based Solvers. Each Tile-Based Solver is responsible for solving
the values associated with 1 tile at a time. Each Tile-Based Solver consists of an MLP, a coupling
calculation, and a Forward Euler solving unit. Based on the implementation, these units can work
in parallel to increase the performance of the design.

3. When an engine is assigned to calculate the values of a tile, a control unit loads all the data
needed by the engine to its dedicated memory from the off-chip memory. After all the data are
provided, the engine starts the calculation of the values of the assigned tile.

4. No data communication would happen between the tiles. All the tiles would have all the data
needed by them for the calculation in their memory.

5. To reduce memory use, some data-sharing schemes between the engines can be implemented
for data points that are needed by more than one engine. Similarly, caching mechanisms can
also be included to reduce the off-chip memory accesses even further.

The Tile-Based Solvers can reside entirely on the PL, on the AIE, or be partially residing on both
of them. Memory-heavy parts of the solver can reside in the PL, while control-heavy parts of the
application can be assigned to the AIE to benefit from higher clock frequency. Figure 3.6 shows the
general block diagram of this design.

Figure 3.6: Design 3 (Tile-Based Scheduling) Block Diagram

Requirement Check
In terms of memory, the analysis for this design is similar to the ones presented in Sections 3.2.1 and
3.2.2. In terms of computation, the amount of calculations needed by each solver depends heavily
on the system input. In reality, the tiling algorithm might produce smaller tiles, meaning the amount
of calculations per Tile-Based Solver is not that large. However, this puts the bottleneck on the Data
Exchange block which is required to transfer the data needed by the solvers at a higher rate. If the
algorithm produces larger tiles, the pressure would be on the Tile-Based Solvers, as they are required
to perform a large amount of computation for a single instance of input. An interesting question of how
many solvers to put in this design rises, as more solvers mean faster calculation but also means more
pressure on the Data Exchange to feed these solvers.

Due to the strong dependency of the performance of this design on the input, a more detailed
analysis of the computation performance would not be studied here.
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3.3. Final Architecture
In this section, we compare the pros and cons of each design and decide on a final design to implement.
The designs are compared with different metrics in mind, ranging from their potential performance to
how well they map to the device. Table 3.2 summarizes the calculations performed earlier in Sections
3.2.1 and 3.2.2 for the first and second designs. To see the effect of different simulation parameters
on the analyzed metrics, the big-O notation of the memory capacity, computation performance, and
connection bandwidth are included in this table. As mentioned earlier in this chapter, and as seen in
Table 3.2, both designs 1 and 2 might encounter limitations with MLP and FE Solver memory capacity
in the AIE. Additionally, if coupling calculations in design 2 are implemented in the AIE, the memory
capacity would be a limiting factor according to the performed analysis.

Metric Big-O
Notation

Design 1:
By-Center

Parallelization

Design 2:
By-Delay

Parallelization
Requirement

MemMLP+FE
(KBytes)

O(N +M + E
+L2 +H)

E × 76.6 E × 76.6 < E × 32.8

CompMLP+FE
(MACs )

O(N +M + 1
E

+L2 +H)
0.55× 1010 0.5× 1010 < 1010

MemCC
(KBytes) O(N2 + Tmax)

- (AIE)
12, 000.0 (PL)

E × 375.0 (AIE)
12, 000.0 (PL)

< E × 32.8 (AIE)
< 20, 500.0 (PL)

CompCC
(MACs ) O(N2)

- (AIE)
- (PL)

0.3× 1010 (AIE)
- (PL)

< 1010 (AIE)
- (PL)

TimePL-AIE
(s) O(N) 3.2× 10−9 3.2× 10−9 < 10−5

TimeAIE-PL
(s) O(N +M) 4.27× 10−8 4.27× 10−8 < 10−5

Scatter/Gather O(N + E + 1
hIEX

) 12.4 GBytes
s 12.4 Additions

Clock Cycle -

Table 3.2: Memory Capacity, Computation Performance, and Bandwidth Requirements of Designs 1 and 2 Considering the
Worst-case Scenario

Design 1 implements probably the most straightforward parallelization for the problem. The main
negative point of this design is the control-heavy nature of its coupling calculation process. In the worst-
case scenario, the data exchange between the CC engines required around 12.4GBytes

s of throughput.
Additionally, the scalability of this design might be challenging due to the fact that increasing the num-
ber of engines also causes the required throughput of the data exchange process to increase. On the
other hand, this design’s partitioning of the problem is good enough to meet most of the performance
and memory capacity requirements.

Design 2 changes the control-heavy nature of coupling calculations in Design 1 to a dataflow-style
architecture. This helps mitigate the bottleneck of data exchange between the engines that exist in
Design 1. However, if the CC engines in this design were implemented in the AIE to make use of the
higher frequency and shorter development time, thememory capacity would become amajor challenge.

Design 3 proposes a different approach to solving the problem, parallelizing also across the timesteps
of the simulation. This approach, although interesting, makes the performance of the design heavily
dependent on the simulation inputs. If the connectivity matrix is not structured in a way that can be
changed to a band matrix, then the tiling algorithm produces very large tiles resulting in a close-to-
sequential performance. In other words, this design faces the challenge of how general it is.

With all the analysis and the comparisons done, it was decided to move forward with Design 2:
By-Delay Parallelization for implementation. This design could map to the Versal ACAP very well,
and could potentially deliver a significant performance and power efficiency.
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Implementation

In this chapter, we dive into the implementation details and gradual improvements of the system. As
mentioned in Section 3.3, the design that parallelizes the coupling calculation by delay was chosen
to be implemented. The chosen design is shown in Figure 3.3, having the option to implement the
CC engines in the AIE or the PL. We decided to implement both versions of this design: 1) A system
in which all of its components are implemented in the AIE (AIE-Only), and 2) A system in which the
coupling calculation part of it is implemented in the PL (Heterogeneous). This is done for the following
reasons:

1. To familiarize myself with the newly developed AI Engines and the tools associated with them,
especially for someone new to the Versal ACAP device.

2. To gain experience working with a truly heterogeneous system, and to see what goes into the de-
sign, realization, and tooling of such systems and also the application that would be implemented
on it.

3. To benefit from the fast development cycle of the AI Engines.
4. To asses how the AIE performs against the PL in the coupling calculation workloads.
5. To observe how this platform addresses the bottleneck of data movement between different parts

of a heterogeneous system.
6. The AIE-only version of the system can be mapped to the AMD XDNA™ architecture [2], which

is available on other AMD devices including some Ryzen CPUs.

For the remainder of this chapter, Section 4.1 dives into the details of the AIE-only system imple-
mentation and what improvements were performed. Section 4.2 discussed the implementation of the
Heterogeneous system that uses both the AIE and PL, and Section 4.3 presents the concluding remarks
regarding the implementation of the system.

4.1. AIE-Only System
As mentioned in Section 3.2.2, the implemented design uses dataflow-style coupling calculations. This
makes this process to be appropriate to be mapped to the AIE of the Versal ACAP. This version of
the system where both the MLPFE and CC engines are implemented in the AIE is referred to as the
AIE-Only System. In this section, we go through the implementation of the AIE-only system, and the
evolution stages that were taken to arrive at the final implementation.

4.1.1. Basic Implementation
Description
In the basic AIE-only implementation, a total number of 16 CC engines, 32 MLP engines, and 1 For-
ward Euler Solver (FES) engine are used. Each of these engines is hosted on a single AIE tile. The
MLP calculation workload of the centers is divided equally among the 32 MLP engines, and also the
coupling calculation workload is divided among the 16 CC engines. All of these engines are running in
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parallel to each other, and when they are done with their calculation, they send their results to the FES
engine to calculate the next step state variables.

Because there are limitations on the number of input streams for each AIE tile, not all MLP engines
can send their results directly to the FES. Additionally, the CC engines can’t send their calculations
directly to the FES engine to be added together either. That is why reduction trees were used to
combine all the streams coming from the MLP and CC engines together. Figure 4.1 shows the block
diagram of this implementation.

Figure 4.1: Block Diagram of the Basic Implementation of the AIE-Only System

As can be seen in Figure 4.1, a concatenation tree is implemented in the basic implementation to
put the outputs of all MLP engines together and feed them to the FES engine. The same tree structure
is implemented to add the values calculated by the CC engines.

Bottlenecks and Possible Improvements
The main bottlenecks of this implementation are the trees used to reduce the outputs of the MLP and
CC engines. Both the concatenation and reduction trees used for MLP and CC engines respectively
introduce a large amount of latency. The latency of these trees is so high that in NMMs with a smaller
amount of centers, the majority of time is spent on the execution of these trees. Additionally, this bot-
tleneck prevents us from scaling up this implementation with more MLP and CC engines, because the
more engines we have, the deeper these trees get, and more latency is introduced to the system. Ad-
dressing this bottleneck should be the priority of the improved version of the system.

Furthermore, when the number of centers increases, the workload of the MLP engines also in-
creases linearly. In this implementation, all of the calculations within the engines are scalar and no
vectorization is performed. Since MLP engines are nothing but matrix multiplications, vectorizing these
engines is very efficient and can help reduce their calculation time significantly.
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4.1.2. First Improved Implementation
Description
As mentioned in Section 4.1.1, the main bottleneck of the basic implementation is the concatenation
and reduction trees. In the first improved version, these trees are replaced with Packet Switching con-
structs. The AIE provides Packet Switching as a solution to the limitation on the number of input/output
streams to each tile. In Packet Switching, two concepts of Merging and Splitting are used. In merging,
multiple streams of data can share a single physical stream to send AXI4-Stream packets. In splitting,
a single physical stream can be divided into multiple streams of AXI4-Stream packets. The difference
between packet split and broadcasting is that in packet split the packets are routed to the desired des-
tination and are not sent to all the connected destinations.

In the first improved version of the AIE-only implementation, we replaced the reduction and con-
catenation trees with packet merge constructs. Additionally, the separate FES engine was removed
and its functionality was added to the MLP engines forming the MLPFE engines. Each MLPFE engine
is responsible for calculating the local dynamics of a group of centers (MLP evaluation), receiving the
couplings from the CC engines, and producing the new state variables (Forward Euler solver). The func-
tionality of the CC engines remains the same as in the previous implementation. After experimenting
with different configurations of packet merge, the system shown in Figure 4.2 with 32 MLPFE engines
and 16 CC engines performed the best.

Figure 4.2: Block Diagram of the First Improved Implementation of the AIE-Only System

There is a difference between the packet merging structure for the MLPFE engines and for the
CC engines. This is due to the fact that the output streams of the MLPFE engines are low bandwidth
streams that are needed to form a higher bandwidth stream, but the output streams from the CC engines
have a higher bandwidth and form a stream with the same bandwidth. This difference leads us to break
up the 32:1 packet merging for the CC engines and implement it as a tree of 4:1 packet merges.

Bottlenecks and Possible Improvements
The first improved implementation performs 30% better compared to the basic AIE-only implementa-
tion with the same benchmark. This shows the packet-switching constructs work better compared to
reduction trees. However, after profiling this implementation, we can see the bottleneck of this design is
the reduction process associated with the CC engines, and this is the area that requires improvements.
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Each 4:1 packet merge block has to receive 4 packets ofN values and add them together to produce a
single packet ofN values at the output. Due to an imbalance in the CC engines’ amount of calculations,
meaning some have to do more calculations than others, the input packets to the first level of packet
merge blocks arrive at different times, introducing delays within the reduction process. Using packet
merge instead of a tree (like the basic implementation) is more scalable, however, if we increase the
number of CC engines, increasing the number of packet merge blocks would be resource-heavy which
can lead to time-consuming or even impossible place and routing processes.

4.1.3. Second Improved Implementation
Description
As mentioned in Section 4.1.2, the main bottleneck of the first improved implementation is the reduction
process of the calculated couplings. In the second improved AIE-only implementation, the packet
merge blocks that are connected to the CC engines are replaced with Cascade Stream connections
that exist within the AIE tiles. As mentioned in Section 2.6, in addition to AXI4-Stream and adjacent
memory connections, AIE tiles can transfer data to other tiles using cascade streams. The cascade
stream is a 384-bit wide connection chaining AIE tiles together unidirectionally. The green arrow in
Figure 4.3 shows how the cascade stream connects AIE tiles together. This connection is 384 bits
wide and is capable of transferring the whole width in a single clock cycle.

Figure 4.3: Cascade Stream Connections Between AIE tiles (Shown in green) [3]

In addition to the cascade stream, a smarter mechanism regarding data availability was used in this
implementation to improve its performance. At each timestep of the simulation, the data needed for all
the CC engines except for the first one to calculate the coupling input for the next timestep is already
calculated, and it is either residing within the CC engine itself or the engine before it. However, the first
engine has to wait for the input from the MLPFE engines to be able to calculate the couplings.

Using the cascade stream and the above-mentioned optimization, the second improved implemen-
tation shown in Figure 4.4 was implemented.

Some details regarding this implementation are as follows:

1. The calculation part of the MLPFE and the CC engines happens more or less in parallel which
helps improve the performance of the system.

2. A cascade stream chain (the green arrows in Figure 4.4) starting from the last CC engine is
responsible for moving the accumulated coupling to the next engine. Each CC engine upon
receiving data from the cascade stream, adds its own calculated couplings to the received data
and outputs the result to the next engine.
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Figure 4.4: Block Diagram of the Second Improved Implementation of the AIE-Only System

3. With this design, the coupling calculation processes of the CC engines, the coupling data transfer,
and the accumulation of the coupling data overlap to a good extent.

4. If we decide to increase the number of CC engines, this implementation would have very little
overhead compared to the first 2 implementations. In other words, the second improved imple-
mentation is much more scalable than the basic and the first improved implementations.

Bottlenecks and Possible Improvements
After benchmarking the second improved implementation with 16 CC engines, we see a 20% improve-
ment in the runtime of the simulation. This shows that the cascade stream and other optimizations
performed on the system helped reduce the overhead of the accumulation process of the CC engines.
As mentioned earlier in this section, the MLPFE and CC engines run more or less in parallel. This
means that the bottleneck of the system would be either the calculations of the MLPFE engines or the
calculations of the CC engines. After profiling, we can see the bottleneck of this implementation still
resides in the coupling calculations. In order to better understand the nature of the bottleneck, we can
take a look at what happens inside the MLPFE and CC engines.

In the MLPFE engines, after receiving the initial states, each engine starts calculating the MLP re-
sult for the centers that it is responsible for. For each center, the engine performs 2(L×M)+(H−1)L2

floating-point MAC operations. For each MAC operation, the engine loads three values and writes back
one value. After the MLP calculations are done, the engines wait for the coupling inputs from the CC
engines to be received, and then the Forward Euler solver calculations are performed. After the solver
calculations are done, the results are sent to the first CC engine and also to the off-chip memory and
the MLPFE engines start calculating the MLP results for the next timestep.

In the CC engines, after receiving the connectivity data associated with each engine for the cal-
culations, the engine enters a loop. In that loop, it first exchanges the state variable data with the
neighboring engines, then it starts the calculation for the couplings. For each calculation, each CC en-
gine performs three floating-point operations and on average, reads about eight values and writes back
one value. After all the calculations are done, the engine reads the values from the neighboring engine
on the cascade stream, adds its own results to the read values, and outputs the result on the cascade
stream to the next engine on the chain. In comparison with the MLPFE engine, although the CC en-
gines might need to perform fewer calculations, they need to access more values from the memory
for their calculation. Additionally, the MLPFE engines perform more structured memory accesses and
calculations, making it a perfect candidate for compiler optimization (for example software pipelining).
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To profile the bottleneck of the second improved implementation, we can look at the number of
centers (N ), the size of the MLP (MLPS), and the sparsity of the connectivity matrix (SP ). The to-
tal amount of calculation needed for the coupling input is proportional to (1 − SP ) × N2 and for the
MLP evaluation is proportional toMLPS×N . While the MLP workload is divided equally between the
MLPFE engines, the amount of workload assigned to each CC engine depends on the distribution of
the values in the delay matrix. As mentioned in Section 3.2.2, we divide the range of [0, Tmax] equally
between E CC engines. In this case, an engine may be assigned with half of the total coupling calcula-
tion workload (because there are a lot of connections with delays in the range assigned to this engine)
while another engine is assigned with no workload. Some processing can be done to assign non-equal
delay ranges to the CC engines to reduce the amount of imbalance in the workload, however, memory
capacity limitation for each CC engine prevents us from achieving a suitable distribution of the coupling
calculation workload among the CC engines. In other words, if we assign a non-equal delay range
assignment to the CC engines, the engine with less amount of workload assigned needs to hold more
history values and the 32KBytes memory limitation of each AIE tile does not allow for this flexibility.
Additionally, this uneven workload distribution challenges the scalability of this system, meaning that
it is possible by adding more CC engines the performance would remain the same. More discussions
regarding these issues are presented in Section 5.2.1

4.1.4. Final Implementation
Description
In the final implementation of the AIE-only system, the bottleneck of uneven distribution of workload
among the CC engines mentioned in Section 4.1.3 is addressed. Thementioned bottleneck is mitigated
in this implementation by adding more CC engines. However, as mentioned in Section 4.1.3, adding
more engines to the current chain of CC engines might not help. This is why in the final implementation,
the current CC engine chain is multiplied, and this implementation uses multiple CC engine chains.
Figure 4.5 shows the block diagram of the multi-chain final implementation of the AIE-only system with
4 CC engine chains.

Some details about the final implementation of the AIE-only system are as follows:

1. The centers are divided into 4 groups, and each group has its ownMLPFE engines and CC engine
chain. These groups are working completely independently from each other, apart from the part
where the outputs of all of the MLPFE engines enter the first CC engine of all of the chains of the
system.

2. The coupling calculation workload is divided into 4 CC engine chains. However, it is possible
that the chains don’t have an equal workload assigned to them. This is resolved to some extent
by re-organizing the centers in a way that the CC engine chains have as close of computation
workload as possible to each other.

3. In addition to the division of workload between multiple CC engine chains and reducing the max-
imum workload of the engines, the delay of sending the coupling calculation results from the first
CC engines to the corresponding MLPFE engines decreases because there are fewer destina-
tions to send to.

Bottlenecks and Possible Improvements
Incorporating multiple chains in the design in addition to performing load-balancing on the chains led
the final implementation to perform around 2.6× better compared to the second improved implementa-
tion with the same number of CC engines per chain. This amount of speedup shows that the uneven
distribution of the workload among the CC engines in a chain would cause a huge bottleneck, and
adding more chains would better this situation to some extent.

The final implementation can still be improved in many ways, including but not limited to:

• Engine Optimization It goes without saying that improving the performance of the MLPFE and
CC engines would improve the performance of the design. For instance, The MLPFE engines
are perfect candidates for vectorization (this is done in the Heterogeneous system described in
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Figure 4.5: Block Diagram of the Final Implementation of the AIE-Only System

Section 4.2), and the number of memory accesses and the flow of operations in the CC engines
could potentially be optimized.

• Using Fixed-Point Arithmetic Using fixed-point operations can help improve the speed of the
calculations in addition to potentially helping with reducing the memory requirement for the en-
gines.

4.1.5. Conclusion - AIE-Only System
During the four stages of improvement of the AIE-only system, we can see more than 3× performance
improvement from the basic implementation to the final implementation. The main bottleneck of this
system remains to be the coupling calculations. As with any chain in the world, the chain of CC engines
is also as fast as its slowest engine. The ideal case is to have all the coupling calculation workload
divided perfectly equally among the CC engines. As mentioned in Section 4.1.3, the memory capacity
limitation of the AIE tiles prevents us from equally distributing all the workload among the CC engines.
Although having multiple CC engine chains helped, but not completely solves this issue. Moving the
coupling calculation process to the PL, as will be discussed in Section 4.2, can help improve the per-
formance in different ways:

1. Almost 20 MBytes of memory resources of the PL can be assigned in a custom way to different
parts of the design, as opposed to the 12.5MBytes of memory in the AIE which is strictly divided
among 400 tiles of 32KBytes each.
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2. In the PL, the CC engines themselves can be implemented as dataflow engines as opposed to
the von Neumann architecture of the AIE tiles.

Having mentioned these possible benefits of the Heterogeneous system, it is still unknown whether
the Heterogeneous system would perform better in all cases against the AIE-only system or not. This
is discussed in Chapter 5, where more in-depth discussions regarding the results from the AIE-only
system are also presented.

4.2. Heterogeneous System
In this section, we discuss the implementation details of the Heterogeneous system. As mentioned
in Section 3.2.2, in the Heterogeneous system the CC engines are implemented in the PL where the
MLPFE engines are residing in the AIE, benefiting from the heterogeneous characteristics of the Versal
platform.

Figure 4.6 shows the general block diagram of the Heterogeneous system.

Figure 4.6: Block Diagram of the Implementation of the Heterogeneous System

As can be seen in Figure 4.6, the CC engines in the PL calculate the couplings for each center from
a certain delay range, and send the calculated values to an addition tree which then feeds the results
into the Data Distributor block. The Data Distributor block, based on how the centers are divided among
the MLPFE engines, puts the coupling results into the appropriate coupling buffer of the engines. Each
MLPFE engine reads the coupling input values from their corresponding coupling buffer, calculates the
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next step state variables of the centers they are responsible for, and puts the newly calculated values
into its state variable buffer. The Data Gatherer block then reads the new state variable values from all
the buffers and sends them into the first CC engine in addition to the off-chip memory.

In the implementation of the Heterogeneous system, theMLPFE engines are vectorized and perform
16 single-precision floating point operations at the same time. This vectorization provides a speedup
of around 8× for the MLPFE engines compared to the non-vectorized implementation of the engines.

As mentioned earlier, the CC engines reside in the PL. Each engine is assigned a URAM chunk
to store the state variables’ history data and the connectivity data. For a system with 32 CC engines,
each engine would be assigned around 310 KBytes of URAM. Additionally, the BRAM resources in the
PL are used for buffering between different parts of the PL, preventing communication stalls.

Each CC engine is implemented as a Finite State Machine (FSM), with 3 important states: 1) INIT,
2) CALC_TX, and 3) RECEIVE shown in Figure 4.7. In the INIT state, the engine reads the connectivity
and initial states data from the off-chip memory, and when it is done it goes to the CALC_TX state. In
this state, the engine calculates the coupling values for each center and sends it to the 4:1 Reduce
block. Additionally, in this state, the engine sends the oldest state variables of each center to the next
CC engine. It is worth noting that there are buffers in between all the connections to prevent stalls from
happening on the transmitter side. After the engine calculates and sends all the coupling and state
variables values, it enters the RECEIVE state where it reads the new state variables from the input buffer
and writes them to its local memory. After all the values are read, the engine checks whether it has
reached the end of the simulation or not, and if it is the end of the simulation it would go to the INIT
state and if the simulation is not done, it would enter the CALC_TX state to perform the calculations for
the next timestep.

Figure 4.7: CC Engines FSM

All of the states of the CC engine FSM are implemented as a dataflow pipeline. The pipeline of the
INIT and RECEIVE states are fairly straightforward, where they read data from either off-chip memory
or a buffer and write them to the local memory. On the other hand, the pipeline of the CALC_TX state, as
shown in Figure 4.8, is more complicated. The operations seen in Figure 4.8 are performed for each
calculation point of the simulation. The calculation points are the points in the weight matrix (W ) where
the value is not zero. Each calculation point’s data (which collectively is the connectivity data), including
its row, column, and delay value are stored in separate memory blocks within each CC engine. The
addition of none, one, or many of the results of these calculation points would be the coupling input for
each center within a CC engine.

The details of the stages of the pipeline are as follows:

1. In this stage, the delay value of the calculation point is read from the Delay memory. Additionally,
the incremented value of n, which is the index of the calculation point, is calculated for control
purposes.

2. In this stage, the reading process of delay is finished and it is used to start the calculation of the
pointer (dpointer) to the ring buffer that holds the history values (History memory).
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Figure 4.8: CC Engines CALC_TX State Pipeline

3. The dpointer calculation continues in this stage.
4. With dpointer calculated, the calculation of the possible History memory addresses begins.

These possible addresses are the delayed value of a center which is based on dpointer, or
it is the most recent value of a center which uses zpointer. (zpointer is the pointer to the cur-
rent head of the state variable ring buffer is used.) Additionally, the col value is read from the
Column memory to be used in later stages for address calculation.

5. The calculations and the accessing process continue in this stage.
6. With the col value read from the memory, it is added to the base addresses calculated in the past

2 stages. The results of these 2 additions enter the next stage of the pipeline.
7. In this stage, based on the timestep that the simulation is in, the appropriate History memory

address is selected and the reading process from the History memory starts. Additionally, row
value is read from the Row memory for control purposes. The address of the Row memory is
center_idx, which is the index of the current center that its coupling input is being calculated.

8. In this stage, the value read from the History memory enters the CC_PRE calculations which is the
pre-synapse function (KPre) mentioned in Section 2.4. Additionally, the row and the n+1 values
are used to determine whether there should be a transmission at the last stage of the pipeline.
Furthermore, the process of calculating the address to the oldest state variable in the ring buffer
(the value that needs to be shifted out) starts. The reading process from the Weight memory also
starts in this stage.

9. In this stage, the output of the CC_PRE calculation and the weight value read from the Weight
memory enter the multiplication process.

10. The pipelined multiplication process continues in this stage. The calculation of the address of the
oldest state variables in the History memory finished as well.

11. With the multiplication finished, its result is added to the stored coupling variable. This variable
holds the value of the coupling input of the center center_idx. Additionally, the process of reading
the oldest value in the History buffer starts in this stage.

12. In the last stage of the pipeline, based on the control signal calculated in stage 8, the value of
coupling is transmitted and updated, the oldest state variable of center center_idx is transmitted,
and also the value of center_idx is updated.

The CALC_TX state in the CC engines is fully pipelined, and the described pipeline runs with mini-
mum intervals in between. This means if a center has to calculate 100 calculation points, the whole
process would take 102 clock cycles. In addition to the CC engines, the reduction blocks (4:1 and 8:1
addition) shown in Figure 4.6 are also implemented as dataflow pipelines. This is also true for Data
Distributor and Gatherer blocks.

Comparing the Heterogeneous implementation with the final AIE-only implementation might raise
the question of why not use the multi-chain design in the Heterogeneous system. To answer this ques-
tion, we should look into why we incorporated the multi-chain implementation in the first place. The
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main reason for using a multi-chain design was to flatten the workload amount in different CC engines
of a single chain as much as possible, as memory limitation would not allow us to assign different delay
ranges to the CC engines. Another reason was that the more AIE tiles we used in the AIE-only sys-
tem, the more memory resources we would have. Although the AIE of the Versal ACAP has around
12.25 MBytes of memory, this amount of memory is distributed among 400 tiles. This way, if a tile is
not used in an implementation, its memory would not be used either. This would reduce the effective
amount of memory available to the system. In the Heterogeneous system, however, all the PL memory
resources are available regardless of the number of CC engine chains used in the implementation. In
fact, if multiple chains exist in the Heterogeneous system, the same data (the history data) would be
copied multiple times in the same amount of memory, which would result in much less effective mem-
ory resources available to the system. In the Heterogeneous system, because of the relatively large
amount of memory available to each CC engine, the division of the coupling calculation workload in a
more balanced way is possible.

When benchmarked, the Heterogeneous system performed around 2.5× faster compared to the fi-
nal implementation of the AIE-only system. Discussions surrounding the reasons behind this speedup
are presented in Section 5.3, where more detailed results of the Heterogeneous system and its perfor-
mance are discussed in Section 5.2.2.

4.3. Conclusion
In this chapter, we dived into the implementation details of the AIE-only and Heterogeneous systems.
At each improvement stage, the implementation was benchmarked with standard, its bottlenecks were
identified using the benchmarks and simulation tools, and the identified bottlenecks were addressed in
the next version of the implementation. From the basic AIE-only implementation to the Heterogeneous
system, we observed around 5× performance improvement. In Chapter 5, the detailed results of the
systems discussed in this chapter, in addition to the results from the systems introduced in Section 2.8,
are presented. Furthermore, the results and performance of the systems are discussed and compared
in more depth.
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Results

In this chapter, we present the results of the state-of-the-art related works, in addition to the AIE-Only
and Heterogeneous systems. The performance results of the systems are discussed and compared,
and the reasons behind the differences in the results are analyzed. Table 5.1 shows all of the systems
we look into in this chapter. The Original TVB, Fast TVB, TVB C++, and TVB on GPU are discussed
in Section 5.1, and the AIE-Only and Heterogeneous systems are analyzed in Section 5.2. The perfor-
mance results of the systems listed in Table 5.1 are compared in Section 5.3.

Name Platform Language Notes

Original
TVB CPU C++

This is a single-core, single-thread port of the
original Python-based TVB backend (tvb_algo) to
C++ by us. MLP evaluation and sparse calculations
are added on top of tvb_algo in this implementation.

Fast TVB CPU C This implementation is developed by
the TVB team and can only simulate one model.

TVB C++ CPU C++

This is a multithreaded, SIMD C++ implementation
of TVB developed by the TVB team. It can simulate

all of the TVB models, but does not have
MLP evaluation.

TVB on GPU GPU Python (JAX) This is the GPU version of the TVB algorithm
which is developed as a JAX-based package (vbjax).

AIE-Only Versal
ACAP C++ (ADF)

This is the implementation of the TVB
on the Versal ACAP that only uses

the AI Engines.

Heterogeneous Versal
ACAP

C++ (ADF)
Vitis HLS

This is the implementation of the TVB
on the Versal ACAP that uses both

the AI Engines and the Programmable Logic.

Table 5.1: Summary of all the TVB Systems

5.1. Experimental Setup
5.1.1. Benchmarks
The Neural-Mass Model used for benchmarking the systems developed in this thesis uses the con-
nectivity data from The Virtual Brain (TVB) [44]. The TVB dataset contains three different models with
different numbers of centers and connectivity data shown in Table 5.2. Table 5.2 also includes the Cal-
culation Points of each dataset which is the number of non-zero elements in the weight matrix (W ) of
the datasets. As described in Section 2.2, the NMM divides the brain into a number of centers that are
connected to each other in a certain way, and each has a number of state variables and local dynam-
ics. The TVB dataset defines the number of centers and how they are connected to each other. For
a large-scale NMM simulation, we also have to specify the number of state variables in addition to the

44
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local dynamics (the structure and parameters of the MLP). For the results presented in this chapter, we
use the state variable number of 2 (M = 2) and an MLP architecture with 1 hidden layer of 64 neurons
(H = 1 and L = 64). The MLP was trained to approximate the local dynamics of a Simple 2D Oscillator
model [30], and the single hidden layer was sufficient to accurately calculate the local dynamics for
this model [9]. It is worth noting that because of the large size of the TVB998 model, a subset of this
dataset with fewer centers (for example, 600 centers - TVB600) is mostly used for benchmarking. This
subset is not accurate in terms of neuroscientific validity and is used for performance measurement
purposes only. Additionally, all of the reported numbers in this chapter are for a simulation running for
3000 timesteps with 0.05 ms step size, unless otherwise specified.

TVB76 TVB192 TVB998
Number of Centers 76 192 998

Sparsity (%) 72.99 90.42 96.41
Number of Calculation Points 1560 3532 18736

Table 5.2: TVB Dataset

5.1.2. Original TVB
Table 5.3 shows the performance results of the original TVB (sequential) system. As mentioned in
Section 2.8.1, the sequential system is a single-core C++ port of the back-end algorithm used in the
original TVB with MLP being used for the local dynamics (the tvb_algo_c). Additionally, this system is
running on a machine with a 16-core Intel Core i7-13700KF CPU with 30 MBytes of cache running at
a maximum of 5.4 GHz. This processor consumes 125 Watts of power during normal operation, with
the maximum power dissipation being around 253 Watts [29].

Benchmark Original TVB System (tvb_algo_c)
TVB76 101.4 ms
TVB192 259.1 ms
TVB600 848.7 ms
TVB998 1,510.9 ms

Table 5.3: Original TVB (tvb_algo_c) Execution Time (3000 timesteps)

Due to the large cache capacity of the machine, the sequential system performs relatively well. The
coupling calculations are memory-heavy operations and the 30MB of cache available to the system
benefits this part of the application significantly. As mentioned in Section 2.6, the total available on-chip
memory in the Versal ACAP (AIE and PL together) is around 33 MBytes, which puts it very close to
the cache capacity of the sequential system. This would make the comparison interesting, as how
a traditional system with a much higher clock frequency and a large cache compares to a dataflow
machine with a lower clock frequency and around the same amount of on-chip memory. Additionally,
the sparse representation used in coupling calculations improved the performance of the tvb_algo_c
by 2× over the version using dense representation.

5.1.3. Optimized TVB on CPU
The performance numbers for the Fast TVB and TVB C++ were extracted from [36], which because of
the limitation of the Fast TVB tool, only a certain model with 379 centers was tested. Table 5.4 shows
the execution time of the Fast TVB and TVB C++ running for 100,000 timesteps and a step size of 0.1
ms.

Benchamrk Fast TVB TVB C++
Reduced Wong Wang

with 379 centers 5,100.0 ms 6,400.0 ms

Table 5.4: Optimized TVB on CPU Execution Time (100,000 timesteps)
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As expected, the Fast TVB performs better compared to TVB C++. This is because the Fast TVB
system is built around the ReducedWongWang model, and it trades off generalization for performance
for this specific model.

5.1.4. TVB on GPU
Table 5.5 shows the performance results of the GPU version of TVB (vbjax) when running a model for
3000 timesteps on an Nvidia RTX6000 GPU. The model that vbjax is running has the same number of
centers as the main benchmarks, but the connections are dense (all-to-all) connections. This doesn’t
affect the performance of the current GPU version of TVB since the vbjax does not perform sparse
matrix operations at this time.

Batch Size# Centers
(Dense) 1 16 32 64 128 256 512 1024

76 105.1 ms 144.1 ms 144.1 ms 144.1 ms 147.2 ms 201.2 ms 549.6 ms 1,084.1 ms
192 114.1 ms 147.2 ms 153.2 ms 159.2 ms 315.3 ms 702.7 ms 1,360.4 ms 2,690.7 ms
600 111.1 ms 186.2 ms 285.3 ms 612.6 ms 1,162.2 ms 2,258.3 ms 4,234.2 ms 8,228.2 ms
998 135.1 ms 279.3 ms 540.5 ms 1,006.0 ms 1,894.9 ms 3,633.6 ms 6,966.0 ms 13,663.7 ms

Table 5.5: TVB on GPU (vbjax) Execution Time (3000 timesteps). The numbers in this table are not divided by the batch size.

The batch size in Table 5.5 refers to the number of simulation instances the GPU runs at the same
time. The number of simulations GPU can perform at the same time depends on the GPU itself and
the size of the model. As the size of the model grows, the GPU saturates faster, and it either performs
worse or is unable to fit all the needed data in its memory and crashes. The cells marked with green
in Table 5.5 are the best performing (when looking at the time per one simulation) batch sizes for a
certain model size. Sometimes, the performance of the system worsens when increasing the batch
size, because of the GPU saturation in terms of compute or memory. If the runtime of the simulations
increases, there is the chance that the outputs of the concurrent simulation instances do not fit in the
memory of the GPU, in which case the chosen batch size must be decreased.

The Quadro RTX6000 used by us for benchmarking the GPU version of TVB operates at a maxi-
mum TDP power of 260 Watts. Table 5.6 shows the approximate power consumption of the GPU when
running each of the benchmarks. These numbers were taken by monitoring the power consumption of
the GPU while running the simulation using the nvidia-smi command-line tool. Based on the reported
numbers in Table 5.6, it is fair to assume an average power consumption of around 162 and 236 Watts
for single and batched simulation cases, respectively.

Benchmark Single Simulation Batched Simulation (Batch Size)
TVB76 119W 230W (256)
TVB192 137W 224W (128)
TVB600 172W 243W (1024)
TVB998 219W 246W (1024)
Average 162W 236W

Table 5.6: TVB on GPU Power Consumption

5.2. Experimental Results
5.2.1. AIE-Only System
Tables 5.7 and 5.8 show different stages and the performance results of all of the implementations of
the AIE-Only system, respectively.

The basic (reduction-tree-based) and first improved (packet-switched-based) implementations were
only tested with the TVB76 model and only 16 CC engines during the development phase. The sec-
ond improved (cascade-stream) and final (multi-chain) implementations are benchmarked with more
datasets, however, the TVB998 connectivity data would not fit in their CC engines’ memory. As can be
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Name Description
Basic Uses reduction trees for both the MLP and CC engines.

First Improved Uses packet switching constructs for both MLPFE and CC engines.
Second Improved Uses cascade stream for the CC engines.

Final Incorporates multiple CC-engine chains.

Table 5.7: Summary of all the AIE-Only System Implementations

AIE-Only Basic First
Improved

Second
Improved Final

# CC
Engines 16 16 16 32 64 96 64

(4×16)
128

(4×32)
160

(4×40)
TVB76 66.0 ms 51.0 ms 41.8 ms 30.5 ms 30.1 ms 30.2 ms 15.8 ms 15.4 ms 15.2 ms
TVB192 × × 165.6 ms 118.3 ms 76.1 ms 74.1 ms 55.0 ms 40.0 ms 39.7 ms
TVB600 - - - - - 319.8 ms - - 205.1 ms
TVB998 - - - - - - - - -

Table 5.8: AIE-Only Systems Execution Time (3000 timesteps). The cells marked with ”×” are not benchmarked. The cells
marked with ”-” are not runnable on the specified system due to memory limitations.

seen in Table 5.8, the stages of the improvement of the AIE-Only system are apparent, with the final
implementation with 160 CC engines performing around 4.3× better compared to the basic design. For
the rest of this section, we dive into the performance of the CC engines chain, which is present in the
second improved and the final implementations of the AIE-Only system.

We mentioned the uneven coupling calculation workload distribution among the CC engines of a
chain in Section 4.1.3. We also mentioned that this uneven workload distribution affects the perfor-
mance of the system negatively, and the time it takes to finish the coupling calculation is dictated by
the engine with the largest workload. This bottleneck worsens if the CC engine with the maximum
workload assigned is the first one. In this case, not only does the first engine have to wait for all the
MLPFE engines to send the newly calculated state variables to it, but it has to do the most calculations
among all the CC engines, and also output the coupling results to all the MLPFE engines. The effect
of this uneven workload distribution can be seen in Table 5.8, wherein the second improved and final
implementations when we increase the number of CC engines, in some cases the runtime would not
decrease. This could be for two reasons: either the bottleneck of the system has shifted from the
CC engines to the MLPFE engines (which is the case for the final implementation running the TVB76
dataset), or by increasing the number of CC engines the workload of the engine that has to do most
calculations is not changed, or changed negligibly (which is the case for the rest).

Figure 5.1a shows the delay distribution of the calculation points in the TVB192 dataset and the
workloads assigned to each CC engine if we divide the set of delays equally between all the engines.
We can see the unbalanced distribution of the workload among the 32 available engines. On the other
hand, Figure 5.1b shows the workloads assigned to each CC engine if we try to balance the workloads
between the engines. It can be seen that in the delay regions where the concentration of calculation
points is higher, the delay period assigned to each CC engine is very small, and if the concentration
of delay points is lower, a larger delay period is assigned to a single engine. Looking at the two strate-
gies of dividing the workloads among the CC engines, we can see the workload of the engine with
the maximum amount of calculation points assigned to it in the adaptive distribution is around half the
amount in the equal distribution strategy. This results in a better performance of around 2× with the
adaptive-distribution strategy.
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(a) Equal Delay Ranges are Assigned (b) Adapted Delay Ranges are Assigned

Figure 5.1: TVB192 Delay Values Distribution and CC Engines Assigned Workload

(a) TVB76 Dataset (b) TVB192 Dataset

(c) TVB600 Dataset

Figure 5.2: Second Improved AIE-Only System’s Performance with Uniform Delay Distribution

However, as mentioned in Section 4.1.3, the adaptive workload distribution is not possible (at least
in an effective way) in the AIE-Only system due to memory capacity limitations. Let’s take a look at
the example of the TVB192 dataset. In the equal-distribution strategy, each CC engine is assigned a
delay range of 22. This means that each engine requires 22× 192× 4 ≈ 17 KBytes of memory to store
the history of the state variables. This is possible as each CC engine has access to 32 KBytes of data
memory. On the other hand, in the adaptive workload distribution, the first engine is assigned a delay
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window of size 71. This means that this engine requires 71× 192× 4 ≈ 54.5 KBytes of memory for the
history data, which is not possible.

In order to see the effect of this uneven workload distribution among the CC engines, we tweaked
the TVB datasets in a way that they have the same sparsity but the delay values are distributed uni-
formly. This means that the workloads assigned to the CC engines are equal. Figure 5.2 shows the
performance of the second improved implementation when simulating the tweaked datasets compared
to the untouched datasets.

As can be seen in Figure 5.2, when the delay values in a dataset are uniformly distributed, and the
workloads of the CC engines are balanced, even with the same sparsity, the performance increases
significantly. This shows the effect of uneven distribution of the workload among the CC engines on the
performance. As mentioned earlier, the performance does not improve when increasing the number
of CC engines, it is either due to the fact that the bottleneck has shifted to the MLPFE engines (since
MLPFE and CC engines are running more or less in parallel) or it is because the value of the largest
workload assigned to a CC engine has not changed. A good pre-processing algorithm should minimize
the maximum workload it assigns to the CC engines while meeting the memory capacity requirements.

In the final implementation of the AIE-Only system, another dimension (the number of CC-engine
chains) is added to the design. With this new dimension added, tuning the number of chains and the
CC engines per chain would become an interesting challenge. As mentioned earlier, the performance
of the coupling calculation chain is limited by the largest amount of workload assigned to any of the
CC engines (MaxWL). There are a limited number of AIE tiles available in the device, and not all of
them can be assigned to CC engines. With this limited amount of AIE tiles available, finding the best
pair of CC-engine chains and CC engines per chain is important for potentially maximizing performance.

The power consumption of the Versal ACAP heavily depends on the utilization of the device. AMD
provides a power estimation tool as part of Vivado. As shown in Figure 5.3, the power consumption
value of the AIE-Only system lies around 32.42 Watts. Since the entirety of the system is used for any
of the simulations regardless of their size, the power consumption value is independent of the input of
the system.

Figure 5.3: Power Consumption and Breakdown of The AIE-Only System
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5.2.2. Heterogeneous System
Table 5.9 shows the performance results of the Heterogeneous system with 32 CC and 32 MLPFE
engines.

Benchmark Heterogeneous System (32 CC / 32 MLPFE)
TVB76 6.3 ms
TVB192 14.7 ms
TVB600 54.5 ms
TVB998 95.3 ms

Table 5.9: Heterogeneous System Execution Time (3000 timesteps)

The performance of the Heterogeneous system in the case of the TVB76 and TVB192 benchmarks
is limited by the MLP evaluation process, and in the case of TVB600 and TVB998 is limited by the cou-
pling calculations. Although there are no chains in this design, the coupling calculation performance
is still limited by the CC engine with the largest workload assigned to it. Unlike the AIE-Only system
where more equal workload distribution among the CC engines was not possible due to the memory
capacity limitations, there are more memory resources available to the CC engines in the Heteroge-
neous system. By readjusting the pre-processing algorithm to try to distribute the coupling calculation
workload equally among the CC engines, in addition to increasing the number of MLPFE engines, we
can potentially achieve higher performance. Table 5.10 shows the performance of the Heterogeneous
system with 32 CC engines, 64 MLPFE engines, and a more even coupling calculation workload dis-
tribution. Additionally, with the number of MLPFE engines increasing, the Data Gather block shown in
Figure 4.6 is divided into 2 levels of gathering blocks, increasing the parallel execution of their operation.

Benchmark Heterogeneous System (32 CC / 64 MLPFE)
TVB76 4.1 ms
TVB192 7.5 ms
TVB600 21.1 ms
TVB998 33.8 ms

Table 5.10: Final Heterogeneous System Execution Time (3000 timesteps)

As can be seen in Table 5.10, the performance of the systems improves by almost 3× in the largest
model. This performance boost shows the effect of the coupling calculation workload distribution, the
increase of the MLPFE engines, and also the optimization in the data-gathering process. Although the
number of CC engines is the same, with smarter distribution of tasks among them we can reduce the
runtime of the coupling calculation process. Furthermore, with the runtime of MLPFE and CC engines
decreasing, the data movement processes (such as data reduction or gathering) become a consid-
erable portion of the runtime. Optimizing the Data Gather block, by making it multi-level and extra
pipelining, helped the Heterogeneous system to achieve better performance.

Using Vivado, the power consumption of the Heterogeneous system is extracted as shown in Fig-
ure 5.4. Less power is consumed by the AIE part of the system compared to the AIE-Only system, and
more power is dissipated by the PL as the coupling calculation process is moved from the AIE to the
PL. As shown in Figure 5.4, the power consumption value of the Heterogeneous system lies around
43.63 Watts. Since the entirety of the system is used for any of the simulations regardless of their size,
the power consumption value is independent of the input of the system.

5.3. Performance Comparison
In this section, we discuss and compare the performance results from the different systems mentioned
earlier. First, the results of the AIE-Only and Heterogeneous systems are compared to each other and
to the CPU versions of the TVB. Next, an extensive comparison between the final Versal ACAP system
(the Heterogeneous system) and the GPU version of the TVB is presented.
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Figure 5.4: Power Consumption and Breakdown of The Heterogeneous System

5.3.1. AIE-Only, Heterogeneous, and TVB on CPU
As can be seen from the numbers presented earlier in this chapter in Tables 5.3, 5.4, 5.8, and 5.10,
both the Final AIE-Only and Heterogeneous systems outperform all of the CPU versions of TVB (Orig-
inal, Fast, and C++ TVBs). Although the CPU runs on a much faster clock frequency compared to
the Versal ACAP, the custom, application-specific dataflow design of the AIE-Only and Heterogeneous
systems made them perform better in terms of speed. Additionally, by looking at the power consump-
tion of the AIE-Only and Heterogeneous systems as shown in Figures 5.3 and 5.4, comparing it to the
base power consumption of the benchmarked CPU (125 Watts), we can see the Versal ACAP systems
perform around 3× better in terms of power efficiency. This makes the AIE-Only and Heterogeneous
systems much more energy efficient compared to the CPU versions of TVB.

The Heterogeneous system performs around 10× better compared to the Final AIE-Only implemen-
tation when running the TVB600 model. This significantly better performance of the Heterogeneous
system is due to the pipelining in coupling calculation, no stalling in inter-engine communication, and
parallelism in data gathering and distribution.

• Pipelining in Coupling Calculations As shown in Figure 4.8, the CC engine has a 12-stage
pipeline in the Heterogeneous system. This pipelining is possible because of the custom mem-
ory hierarchy of the engine, in addition to the dataflow style implementation of the CC engines.
Although the AIE array is designed for adaptive dataflow graphs, the AIE tiles themselves are still
using von Neumann architecture. This means that the processor has to access the memory for
each operation, and this limits the performance of the calculations, even though they are running
on a clock frequency 5 times the one in the PL.

• No Stalling in Inter-Engine Communication In the Heterogeneous system, due to the larger
amount of memory resources, there are buffers in between all the engine-to-engine communica-
tions. In a communication, if the receiver is not ready to receive data, with sufficiently large buffers
in between the communication, the transmitter does not have to wait for the receiver. However,
in the AIE-Only system, the AXI4-Stream communications between the AIE tiles have very small
buffers in between. Additional buffers can be added for the communications, but it uses the mem-
ory resources of the AIE tiles. These memory resources are limited in size and location, meaning
it is not possible to put sufficiently large buffers wherever it is needed. This causes stalls for the
MLPFE and CC engines when they try to send data to other engines in the AIE-Only system. Due
to the presence of larger and more flexible (in terms of location and accessibility) memory in the
PL, the MLPFE and CC engines in the Heterogeneous system experience almost no stalls when
they try to transmit data.
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• Parallelism in Data Gathering and Distribution As mentioned in Section 4.1, the process of
concatenation and summation of the outputs of the MLPFE and CC engines, respectively, were
an important bottleneck. Due to the lack of sufficient buffering and the sequential nature of the
AIE tiles, the tree-style reduction implementation was not successful in the AIE-Only system as
discussed in Section 4.1.1. However, because of enough buffering in the communications, pipelin-
ing, and also the parallel nature of the hardware, the Heterogeneous system can perform the data
gathering and distribution much more efficiently.

With the better performance of the Heterogeneous system over the Final AIE-Only system, and the
fact that this performance boost was achieved by moving the coupling calculation process to the PL,
a question that arises is how good the AIE of the Versal ACAP is. In other words, would we achieve
even better performance if we also moved the MLP evaluation process to the PL? In order to answer
this question, let’s take a look at the AIE performance in the Heterogeneous system.

In the Heterogeneous system with 64 MLPFE engines, each engine performs the MAC calculations
in a Single Instruction, Multiple Data (SIMD) fashion with 16 lines. The AIEs are capable of performing
one SIMD operation per clock cycle, which means that the AIE in the Heterogeneous system achieves
a computation rate of around 1024 MAC

Clock or 2 × 1.25 × 1024 = 1, 280 GFLOPS
s , considering the clock

frequency of 1.25 GHz of the AIE. It is worth noting that only around 16% of the AIE tiles are being
used in the Heterogeneous system for the MLPFE engines, and this number can increase with more
engines. The MLP evaluation process mostly includes MAC operations, which makes it reasonable to
assume the same rate of computation for it.

The PL runs at a clock frequency of around 250 MHz, which is 20% of the frequency of the AIE.
This means that in order for the PL to match the performance of the AIE in the MLP calculation, it has
to operate at around 5120 MAC

Clock . In order for the PL to reach this level of performance, it requires 5120
single-precision floating-point MAC units, which is more than the resources available in the PL. The
Versal ACAP’s PL has 1968 DSP slices [64], around 10% of them being used by the CC engines. The
resource limitation also applies to the memory, where most of the BRAM and URAM resources of the
PL are used by the coupling calculation process. Furthermore, if we put aside the matter of resources,
by looking at the performance of the DNN inference systems implemented in pure FPGA [23, 52], we
can see that the peak performance of these systems is in the range of 10s to 100s of GFLOPS

s , less
than the computational performance of the AIE.

By comparing the performance results of the AIE-Only and Heterogeneous systems, and also con-
sidering the discussion presented earlier, it is fair to say that the AIE of the Versal ACAP is most suitable
for dense, structured, and data-intensive computation workloads (such as MLP, or in general, DNN eval-
uation). On the other hand, computation workloads such as highly sparse calculation or scatter-gather
operations would not be a good fit for the AIE and are better implemented in the PL. It is reasonable
to see the AIE as a small-scale GPU with a high-bandwidth connection to the PL, capable of execut-
ing highly dense and data-intensive workloads very well at a much higher clock frequency, while the
rest of the application’s workload (in our case the coupling calculations, or in other cases control and
networking) can lie in the PL.

5.3.2. Heterogeneous System and TVB on GPU
In order to compare the Versal ACAP version of the system against the GPU version, we take a look
at their throughput, latency, power (energy), and area.

Throughput
When we talk about the throughput of the system, we refer to how many simulation timesteps (or itera-
tions) the system can perform in a second ( iterss ). Figures 5.5 and 5.6 show the throughput results of
the Heterogeneous system and the GPU version of TVB, respectively. The dashed lines in Figure 5.6
are the throughput results of the Heterogeneous system and are used for comparison.

Firstly, as can be seen from both Figures 5.5 and 5.6, the throughputs of the systems decrease
as the number of centers increases. This is expected as with more centers in the model, more calcu-
lations are needed for each timestep. However, with smaller batch sizes in the GPU, the throughput
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Figure 5.5: Throughput of the Heterogeneous System

for all of the benchmarks remains more or less the same. This shows that the GPU can be saturated
with larger batch sizes or larger models due tomemory limitations, asmentioned earlier in Section 5.1.4.

Additionally, when looking at Figure 5.6, we can see that the GPU version of TVB, in its best case,
performs around 2.5− 7× faster than the Versal ACAP Heterogeneous system in terms of throughput.
This performance gap is mainly due to the batching of the simulations performed by the GPU version
of TVB. Furthermore, the batching of simulation instances helps with hiding the overhead that comes
with the host-GPU communication. This high throughput of TVB on GPU makes it a great fit for the
model-fitting workloads required to build personalized large-scale brain network models.

Currently, the Heterogeneous system does not support running multiple simulations at the same
time. One of the main factors that limit the system from doing simulation batching is the on-chip mem-
ory capacity. If we want better throughput for the Heterogeneous system by incorporating simulation
batching, the following measures can be taken:

1. The on-chip memory assigned to each of the simulation instances is reduced, allowing for more
concurrent, independent, coupling calculation processes. The model fitting process performs
many simulations with the same connectivity structure, meaning that the sparsity pattern and
delay values of the connectivity matrices are the same, and only the values of the weight matrix
are changed from simulation to simulation. This implies that the simulation instances can share
the structural data, only requiring separate memory for the weight and history values.

2. As the reduction of the on-chip memory assigned to each simulation causes limitations on the
largest model that the system can handle, off-chip memory can be used to compensate for this
memory shortage. Incorporating the off-chip memory can cause a performance flop, but as we
scale up by running multiple simulations at the same time, throughput ought to increase. Addi-
tionally, smart measures such as pre-fetching or exploiting the delay of accessing the off-chip
memory for the delay inside the simulation can be used to make up for some of the performance
loss caused by incorporating the off-chip memory.

Latency
The first step in building a patient-specific, large-scale brain model is to perform the model fitting. In
this step, as mentioned earlier, we need to perform a large number of simulations to train the pa-
rameters of the model. However, when the system is done with its training, it can be used in many
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(a) TVB76 Benchmark (b) TVB192 Benchmark

(c) TVB600 Benchmark (d) TVB998 Benchmark

Figure 5.6: Throughput of the TVB on GPU

settings including real-time applications (such as the ones in [45, 59]). In this case, what matters is
how fast the system performs a single simulation that is its latency. Figure 5.7 shows the latency of the
Heterogeneous system and the GPU version of TVB when running different models for 3000 timesteps.

As can be seen in Figure 5.7, the Heterogeneous system on the Versal ACAP performs on aver-
age around 13× better compared to the GPU system. The better performance of the Heterogeneous
system in terms of latency shows the effect of the custom memory hierarchy in the PL and the effec-
tive implementation of the MLPFE and CC engines. This lower latency of the Versal ACAP system
makes it more suitable for potential real-time and streaming applications that might utilize large-scale
neural-mass modeling. One example of such applications could be future multi-site brain-interface sys-
tems [48], which target multiple networks of the brain for stimulation. These systems can potentially
benefit from low-latency large-scale brain network simulation to design their multi-site stimulation strat-
egy. Another example is model-based approaches in clinical decision-making, such as virtual epilepsy
surgery [58, 33] where possible scenarios regarding the surgical procedure can be tested and verified
by large-scale brain simulation systems.

Power, Energy, and Area
Although the Versal ACAP consumes less power, to compare the power efficiency of the Versal ACAP
and the GPU systems, we take a look at the Energy and Performance per Watt values of these systems
when running different models. We use the single and batched simulations for energy and performance
per Watt calculations, respectively. For the Heterogeneous system, the power consumption results
shown in Figure 5.4 are used. For the GPU version of TVB, power consumption results reported in Ta-
ble 5.6 are used. Figures 5.8 and 5.9 show the energy and performance per Watt results respectively.
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Figure 5.7: Latency of the Heterogeneous and TVB on GPU Systems. The latency results are extracted by running a single
simulation for 3000 timesteps.

Figure 5.8: Energy Consumption for Heterogeneous and GPU Systems. The energy consumption results are for a single
simulation running for 3000 timesteps.

As expected, the Heterogeneous system consumes less energy compared to the GPU version of
TVB, as shown in Figure 5.8. When running a single simulation, the energy consumption difference
is around two orders of magnitude, making the Versal ACAP system much more energy efficient com-
pared to the GPU system. In terms of performance per Watt, as can be seen in Figure 5.9, the Het-
erogeneous system has around 2.2× higher performance efficiency in the best case compared to the
GPU system. Although the GPU version of TVB performs better in terms of throughput compared to
the Heterogeneous system, the much lower power consumption of the Heterogeneous system makes
it more power efficient.
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Figure 5.9: Performance per Watt for Heterogeneous and GPU Systems. The performance per Watt results are the throughput
of the systems for a unit of power they consume.

In terms of area and process technology, the Quadro RTX6000 GPU is built on 12nm TSMC tech-
nology and fits 18.6 billion transistors in a chip size of 754 mm2 [55]. The Versal ACAP AI Core series
is built on TSMC 7nm FinFET technology with a packaging size of 2,025 mm2 [64]. No public informa-
tion regarding the die size or transistor count of the Versal ACAP exists, which makes the comparison
between Versal and GPU difficult. However, considering Versal ACAP’s smaller process technology
and also relatively big packaging size, we can estimate that it packs more transistors compared to the
RTX6000 GPU. This means that in terms of Performance per Area, the GPU version of TVB performs
better compared to the Heterogeneous system.

5.4. Conclusion
In this chapter, the performance results from different versions of TVB on CPU, GPU, and Versal ACAP
were presented and compared. Two different versions of Versal ACAP implementations (AIE-Only
and Heterogeneous) were benchmarked in Sections 5.2.1 and 5.2.2 respectively, and compared with
each other and to the CPU versions of TVB in Section 5.3.1. The final Versal ACAP system (the
Heterogeneous system) was also compared to the high-performance GPU version of TVB in Section
5.1.4. We showed that although the Heterogeneous system is inferior in terms of throughput compared
to the GPU version of TVB, it performs better in terms of latency, energy consumption, and performance
per Watt; which makes it a great candidate for real-time and low-power applications that require large-
scale brain network simulations.
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Conclusion

In this thesis, we dived into the details of the large-scale brain network modeling problem, in addition
to the design and implementation of an adaptive system to accelerate it. In Chapter 2, we discussed
different abstraction levels regarding brain modeling and looked more in-depth into the large-scale
neural-mass modeling of the brain and how we formulate this problem. We presented the brain net-
work simulation’s applications in different clinical settings, in addition to how these models are built.
Furthermore, the details of the Versal ACAP device and its components were presented in this chapter.
On top of that, algorithms and techniques that are used in this thesis, such as MLPs and sparse matrix
operations, were discussed. At the end of the chapter, different CPU and GPU versions of The Virtual
Brain (TVB) tool were briefly introduced.

In Chapter 3, the problem at hand was analyzed in terms of memory and computational require-
ments. Additionally, three different design candidates were presented and discussed in detail, in addi-
tion to comparing their device-specific requirements to the resources available in Versal ACAP. In the
end, the design candidates were compared to each other and one was chosen for implementation in
Versal ACAP.

In Chapter 4, we dived into the implementation details of the AIE-Only and the Heterogeneous sys-
tems. At each improvement stage, the implementation was benchmarked with a standard dataset, its
bottlenecks were identified using the benchmarks and simulation tools, and the identified bottlenecks
were addressed in the next version of the implementation. From the basic AIE-Only implementation to
the Heterogeneous system, we observed around 5× performance improvement.

In Chapter 5, the performance results from different implementations of the TVB algorithm on CPU,
GPU, and Versal ACAP were presented and compared. Two different versions of Versal ACAP im-
plementations (AIE-Only and Heterogeneous) were benchmarked and compared with each other and
to the CPU versions of TVB. The final Versal ACAP system (the Heterogeneous system) was also
compared to the high-performance GPU version of TVB. We showed that although the Heterogeneous
system is inferior in terms of throughput compared to the GPU version of TVB, it performs better in
terms of latency, energy consumption, and performance per Watt; which makes it a great candidate for
real-time and low-power applications that require large-scale brain network simulations.

6.1. Main Contributions
The main contributions of this work are as follows:

• Analysis of Large-Scale Neural-Mass Model Simulation Problem The problem of large-scale
NMM acceleration on the Versal ACAP was formulated based on the studied literature and ana-
lyzed extensively in terms of memory and computation requirements.
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• Design of Application-specific Dataflow Acceleration From the three proposed designs to
accelerate the problem, one was chosen based on the performed analysis for implementation in
the Versal ACAP. The designs had to consider the main challenges of the problem which were
high-performance requirements and generality of the system. At first glance, the problem seems
to be a control-intensive and difficult-to-accelerate algorithm. However, in the chosen system, we
turned the NMM acceleration problem into a dataflow-style computing system that can effectively
map into the target device.

• Implementation of AIE-Only System Usable on AMD XDNA™ Architecture The chosen de-
sign was implemented purely in the AIE component of the Versal ACAP. The AIE-Only system
performed on average 2 − 5× better compared to the CPU versions of TVB. Additionally, the
AIE-Only implementation is capable of being used on any AMD device with XDNA™ architecture,
such as some Ryzen CPUs. This can potentially bring the performance boost of the AIE-Only
system on the Versal ACAP to other AMD devices as well.

• Implementation of a Low-Latency, Low-Energy, and Efficient Heterogeneous System The
chosen design was also implemented as a heterogeneous system in the Versal ACAP, incorporat-
ing both AIE and PL of the device. The Heterogeneous implementation performed considerably
better in terms of latency, energy, and power efficiency compared to the GPU version of TVB.

6.2. Future Work
The possible future directions for this work and some suggestions are presented in this section.

• In terms of future work:

1. As the benefit of using a dataflow-style architecture in this application is proven in the Versal
ACAP system, one could port the same application onto hardware designed specifically for
dataflow computing.

2. The current implementation of the system focuses on accelerating the execution of a single
simulation, or lower latency. In future work, one could tune the system to make it fit better
for high-throughput simulation acceleration.

3. One could move away from single-precision floating point numbers used in the current sys-
tem and use either fixed-point or lower-precision floating point number representation.

4. A Graphical User Interface (GUI) can be developed to make the interaction and using the
system more straightforward.

5. A smarter pre-processing algorithm that can divide the coupling calculation workload better,
or optimally map the simulation instance to the best implementation could be beneficial in
achieving better performance for different inputs to the system.

• In terms of suggestions:

1. The AI Engines of the Versal ACAP provide great speedup while maintaining their straightfor-
ward development cycle. The memory structure and capacity of the AI Engines were limiting
for our application, especially when implementing the CC engines on them. More flexible
and larger memory banks could be beneficial in future versions of the device.

2. The current compiler of the AI Engines does not allow for an AIE kernel to have more than
32 KBytes of program memory. Although each tile has access to 128 KBytes of memory,
this limitation of the tool causes unnecessary challenges when working with the AIE.
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