
 
 

Delft University of Technology

Deformation Prediction and Autonomous Path Planning for Robot-Assisted Endovascular
Interventions

Li, Z.

DOI
10.4233/uuid:9d3d7180-d021-4067-b14c-05bec9bf5756
Publication date
2023
Document Version
Final published version
Citation (APA)
Li, Z. (2023). Deformation Prediction and Autonomous Path Planning for Robot-Assisted Endovascular
Interventions. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:9d3d7180-d021-4067-b14c-05bec9bf5756

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:9d3d7180-d021-4067-b14c-05bec9bf5756
https://doi.org/10.4233/uuid:9d3d7180-d021-4067-b14c-05bec9bf5756


DEFORMATION PREDICTION AND AUTONOMOUS
PATH PLANNING FOR ROBOT-ASSISTED

ENDOVASCULAR INTERVENTIONS





DEFORMATION PREDICTION AND AUTONOMOUS
PATH PLANNING FOR ROBOT-ASSISTED

ENDOVASCULAR INTERVENTIONS

Dissertation

for the purpose of obtaining the degree of doctor
at the Delft University of Technology,

by the authority of the Rector Magnificus, prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Friday 15 December 2023 at 10:00 o’clock

by

Zhen LI

Master of Science, Technology and Health, Specialism Advanced Robotics,
École Centrale de Nantes, France,

Master of Science in Engineering, Specialism Automatic Control and Robotics,
Warsaw University of Technology, Poland,

born in Henan, China.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. J. Dankelman, Delft University of Technology, promotor
Dr. E. De Momi, Politecnico di Milano, promotor

Independent members:
Prof. dr. ir. J.C.F. de Winter, Delft University of Technology
Prof. dr. P. Valdastri, University of Leeds, United Kingdom
Dr. E. Votta, Politecnico di Milano, Italy
Dr. L.S. De Mattos, Italian Institute of Technology, Italy
Prof. dr. ir. P. Breedveld, Delft University of Technology, reserve member

Other member:
Dr. E. Vander Poorten, KU Leuven, Belgium

Dr. E. Vander Poorten of KU Leuven has made a significant contribution to the comple-
tion of this dissertation.

The doctoral research has been carried out in the context of an agreement for double
degree PhD program between Delft University of Technology, the Netherlands and Po-
litecnico di Milano, Italy.

This work was supported by the ATLAS project. This project has received funding from
the European Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 813782.

Keywords: Path planning, Medical robots, Augmented reality

Printed by: Gildeprint

Copyright © 2023 by Z. Li

ISBN 978-94-6384-520-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/

http://repository.tudelft.nl/


Boldly hypothesize, meticulously validate.
Researchers in this spirit will embark on a transformative journey,

unraveling the enigmatic aspects of their research topics.

Zhen Li





CONTENTS

Summary ix

Samenvatting xi

Sommario xiii

1 Introduction 1
1.1 Clinical background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Autonomous navigation for robot-assisted intraluminal and endovascular
procedures: a systematic review 11
2.1 Systematic review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Limitations of present path planning methods . . . . . . . . . . . . . . . 24
2.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I Pre-operative path planning 41

3 Path planning for endovascular catheterization under curvature constraints 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

II Vessels deformation prediction 59

4 Position-based dynamics simulator of vessel deformations for path planning 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Deformable model-to-image registration towards augmented reality-guided
endovascular interventions 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Experiment and validation . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



viii CONTENTS

III Path planning in deformable environments 107

6 Robust path planning via learning from demonstrations for robotic catheters
in deformable environments 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6 Extended study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

IV Discussion and conclusion 141

7 Discussion and conclusion 143
7.1 Contributions and limitations. . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 Recommendations for future research . . . . . . . . . . . . . . . . . . . 147

Acronyms 153

Acknowledgements 157

List of Publications 159

Curriculum Vitæ 161



SUMMARY

Endovascular interventions, as emerging medical therapies, utilize blood vessels as con-
duits to access anatomically challenging regions deep within the body. Within endovas-
cular interventions, one of the prominent challenges involves maneuvering the instru-
ment tip by coordinating insertion, retraction, and torque actions at the proximal end
of the instrument. This intricate task is hindered by the presence of a complex mapping
between input actions and resulting motion, rendering precise control and accurate tar-
geting of the desired area difficult. Thanks to the introduction of robotic assistance and
the steerability of robotic catheters, the complexity of endovascular interventions has
been mitigated.

The integration of steerable catheters and navigation guidance has the potential to
reduce the level of expertise required for endovascular interventions. By leveraging au-
tonomous navigation, path-related complications, such as perforation, embolization,
and dissection, arising from excessive interaction forces between interventional tools
and the vessels, can be effectively addressed and potentially reduced. Within the context
of robotic catheters navigating through narrow, delicate, and deformable vessels, path
planning presents significant challenges, particularly under complex operating condi-
tions, stringent safety constraints, and the inherent limitations on catheter steering ca-
pability. Furthermore, the intricate interplay between the steerable catheter and vessel
walls, coupled with the deformable nature of the vessels, intensifies the complexity of
achieving reliable and real-time path planning, rendering it a hard problem to solve.

This dissertation aims to develop a safe, accurate, and efficient path planner for
steerable robotic catheters. Firstly, this dissertation provides a systematic literature anal-
ysis of path planning techniques, collating the findings from the most significant re-
search contributions in the field employing the PRISMA method. In the first part of
this dissertation, a novel path planning approach named BFS-GA is proposed, which
effectively adheres to the robot curvature constraint while keeping the catheter’s path as
close to the vasculature’s centerline as possible. This path planner is capable of swiftly
calculating obstacle-free trajectories that conform to the patient’s vasculature, while in-
corporating the inherent limitations of the catheter such as maximum curvature.

A major challenge during autonomous navigation in endovascular interventions is
the complexity of operating in a deformable but constrained workspace with an instru-
ment. To address this, two methods are proposed in the second part of this dissertation
to provide a realistic and dynamic environment for path planning. Specifically, a realis-
tic, auto-adaptive, and visually plausible simulator is developed. This simulator has the
capability to accurately predict the interplay between catheters and vessel walls. Addi-
tionally, it accounts for the deformable nature of the vessels induced by the cyclic heart-
beat motion. In addition, a novel deformable model-to-image registration framework is
designed to reconstruct comprehensive intra-operative vessel structures from medical
imaging data, while accurately accounting for deformations.

ix
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Given the dynamic vascular environments generated as above, a robust path planner
named C-GAIL for steerable catheters is proposed in the third part of this dissertation.
This path planner ensures higher precision and robustness by accounting for both the
deformable properties of vessels and the catheter’s steering capabilities. The in-vitro ex-
periments demonstrate that the path generated by the proposed C-GAIL path planner
aligns better with the actual steering capability of robotic catheters. Thereafter, the dis-
sertation presents an in-depth exploration of path planning assistance utilizing various
interactive modalities based on augmented reality. Three interactive control modalities
for steering robotic catheters are introduced, and their impact on human-in-the-loop
robot-assisted cardiac catheterization is investigated. The path guidance is facilitated
by the previously discussed C-GAIL path planning method. A user study is conducted,
which demonstrates the feasibility of harnessing the capabilities of a gaming joystick for
catheter teleoperation and the practicality of utilizing a head-mounted display to receive
3D visual feedback.



SAMENVATTING

Endovasculaire interventies, als opkomende medische therapieën, gebruiken bloedva-
ten als doorvoerkanalen om anatomisch uitdagende gebieden diep in het lichaam te be-
reiken. Binnen endovasculaire interventies is een van de belangrijkste uitdagingen het
manoeuvreren van de punt van het instrument door middel van coördinatie van inbren-
gen, terugtrekken en draaiacties aan het proximale uiteinde van het instrument. Deze
complexe taak wordt bemoeilijkt door de aanwezigheid van een complexe koppeling
tussen invoeracties en resulterende beweging, waardoor het lastig wordt om precieze
controle en nauwkeurige targeting van het gewenste gebied te bereiken. De introductie
van robotondersteuning en de bestuurbaarheid van robotische katheters heeft bijgedra-
gen aan het verminderen van de complexiteit van endovasculaire interventies.

De integratie van bestuurbare katheters en navigatiebegeleiding heeft het potenti-
eel om het vereiste expertiseniveau voor endovasculaire interventies te verlagen. Door
gebruik te maken van autonavigatie kunnen path-gerelateerde complicaties, zoals per-
foratie, embolisatie en dissectie, veroorzaakt door overmatige interactiekrachten tussen
interventiegereedschappen en bloedvaten, effectief worden aangepakt en mogelijk ver-
minderd. Binnen de context van robotische katheters die door smalle, delicate en ver-
vormbare bloedvaten navigeren, brengt padplanning aanzienlijke uitdagingen met zich
mee, met name onder complexe werkomstandigheden, strikte veiligheidsbeperkingen
en de inherente beperkingen van de katheterstuurcapaciteit. Bovendien versterkt de
complexe interactie tussen de bestuurbare katheter en de bloedvatwanden, in combi-
natie met de vervormbare aard van de bloedvaten, de complexiteit van het realiseren
van betrouwbare en real-time padplanning, wat het tot een uitdagend probleem maakt
om op te lossen.

Dit proefschrift heeft als doel een veilige, nauwkeurige en efficiënte padplanner te
ontwikkelen voor bestuurbare robotische katheters. Dit proefschrift begint met een sys-
tematische literatuuranalyse van padplanningstechnieken, waarin de bevindingen van
de belangrijkste onderzoeksbijdragen in dit veld worden verzameld met behulp van de
PRISMA-methode. In het eerste deel van dit proefschrift wordt een nieuwe benadering
voor padplanning, genaamd BFS-GA, voorgesteld, die effectief voldoet aan de buigings-
restrictie van de robot terwijl het pad van de katheter zo dicht mogelijk bij de middellijn
van het vaatstelsel wordt gehouden. Deze padplanner kan snel vrije van obstakels tra-
jecten berekenen die in overeenstemming zijn met de vasculatuur van de patiënt, terwijl
de inherente beperkingen van de katheter, zoals maximale kromming, worden meege-
nomen.

Een grote uitdaging tijdens autonavigatie bij endovasculaire interventies is de com-
plexiteit van het werken in een vervormbare maar beperkte werkruimte met een instru-
ment. Om dit aan te pakken worden in het tweede deel van dit proefschrift twee metho-
den voorgesteld om een realistische en dynamische omgeving te bieden voor padplan-
ning. Specifiek wordt een realistische, auto-adaptieve en visueel aannemelijke simulator
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ontwikkeld. Deze simulator heeft het vermogen om de wisselwerking tussen katheters
en vaatwanden nauwkeurig te voorspellen. Bovendien houdt het rekening met de ver-
vormbare aard van de vaten veroorzaakt door de cyclische hartslagbeweging. Daarnaast
is een nieuw vervormbaar model-naar-afbeelding registratiekader ontworpen om uit-
gebreide intra-operatieve vaatstructuren te reconstrueren uit medische beeldgegevens,
terwijl deze nauwkeurig rekening houdt met vervormingen.

In het licht van de dynamische vaatomgevingen, zoals eerder beschreven, introdu-
ceert het derde deel van dit proefschrift een robuuste padplanner genaamd C-GAIL voor
bestuurbare katheters. Deze padplanner zorgt voor hogere precisie en robuustheid door
zowel de vervormbare eigenschappen van bloedvaten als de stuurmogelijkheden van
de katheter mee te nemen. De in-vitro experimenten tonen aan dat het pad gegene-
reerd door de voorgestelde C-GAIL padplanner beter overeenkomt met de daadwerke-
lijke stuurmogelijkheden van robotische katheters. Vervolgens presenteert de dissertatie
een diepgaande verkenning van hulp bij padplanning met gebruik van diverse interac-
tieve modaliteiten gebaseerd op augmented reality. Er worden drie interactieve bestu-
ringsmodaliteiten voor het sturen van robotische katheters geïntroduceerd, en hun im-
pact op mens-in-de-lus robot-ondersteunde hartkatheterisatie wordt onderzocht. De
padbegeleiding wordt vergemakkelijkt door de eerder besproken C-GAIL padplanning-
methode. Een gebruikersstudie toont aan dat het haalbaar is om de mogelijkheden van
een game-joystick te benutten voor katheter-teleoperatie en dat het praktisch is om een
head-mounted display te gebruiken voor 3D visuele feedback.



SOMMARIO

Gli interventi endovascolari, come terapie mediche emergenti, utilizzano i vasi sangui-
gni come condotti per accedere a regioni anatomicamente complesse all’interno del cor-
po. In tali interventi, una delle principali sfide è la manovra della punta dello strumento
coordinando le azioni di inserimento, ritrazione e torsione all’estremità prossimale dello
strumento. Questa complessa operazione è resa più difficile dalla presenza di una cor-
relazione complessa tra le azioni di input e il movimento risultante, rendendo difficile
il controllo preciso e il puntamento accurato dell’area desiderata. Grazie all’introduzio-
ne dell’assistenza robotica e alla manovrabilità dei cateteri robotici, la complessità degli
interventi endovascolari è stata mitigata.

L’integrazione di cateteri manovrabili e orientamenti di navigazione ha il potenzia-
le per ridurre il livello di competenza richiesta per gli interventi endovascolari. Sfrut-
tando la navigazione autonoma, le complicanze legate al percorso, come la perforazio-
ne, l’embolizzazione e la dissezione, derivanti dalle forze di interazione eccessive tra gli
strumenti interventistici e i vasi sanguigni, possono essere affrontate in modo efficace e
potenzialmente ridotte. Nel contesto dei cateteri robotici che si muovono attraverso vasi
sanguigni stretti, delicati e deformabili, la pianificazione del percorso presenta significa-
tive sfide, in particolare in condizioni operative complesse, stringenti vincoli di sicurezza
e le limitazioni intrinseche della capacità di manovra del catetere. Inoltre, l’interazione
complessa tra il catetere manovrabile e le pareti dei vasi sanguigni, unita alla natura de-
formabile dei vasi stessi, intensifica la complessità nel raggiungere una pianificazione
del percorso affidabile e in tempo reale, rendendo il problema difficile da risolvere.

Questa dissertazione si propone di sviluppare un pianificatore di percorso sicuro, ac-
curato ed efficiente per cateteri robotici manovrabili. Innanzitutto, la tesi fornisce un’a-
nalisi sistematica della letteratura sulle tecniche di pianificazione del percorso, racco-
gliendo i risultati delle più significative ricerche nel campo utilizzando il metodo PRI-
SMA. Nella prima parte di questa tesi, viene proposto un nuovo approccio alla pianifica-
zione del percorso chiamato BFS-GA, che rispetta efficacemente il vincolo di curvatura
del robot, mantenendo il percorso del catetere il più vicino possibile alla linea centrale
del sistema vascolare. Questo pianificatore del percorso è in grado di calcolare rapi-
damente percorsi privi di ostacoli che si adattano alla vascolarizzazione del paziente,
considerando le limitazioni intrinseche del catetere, quali la massima curvatura.

Una delle principali sfide durante la navigazione autonoma negli interventi endova-
scolari è la complessità di operare in uno spazio di lavoro deformabile ma vincolato con
uno strumento. Per affrontare ciò, nella seconda parte di questa dissertazione sono pro-
posti due metodi per creare un ambiente realistico e dinamico utile alla pianificazione
del percorso. Specificamente, viene sviluppato un simulatore realistico, auto-adattivo
e visivamente plausibile. Questo simulatore ha la capacità di prevedere accuratamente
l’interazione tra cateteri e pareti dei vasi. Inoltre, tiene conto della natura deformabile
dei vasi causata dal movimento ciclico del battito cardiaco. In aggiunta, viene progettato
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un nuovo framework di registrazione deformabile da modello a immagine per ricostruire
strutture vascolari intra-operatorie complete dai dati di imaging medico, considerando
accuratamente le deformazioni.

Dato l’ambiente vascolare dinamico descritto in precedenza, nella terza parte di que-
sta dissertazione viene proposto un robusto pianificatore di percorso chiamato C-GAIL
per cateteri sterzabili. Questo pianificatore di percorso assicura una maggiore precisione
e robustezza tenendo conto sia delle proprietà deformabili dei vasi sanguigni che delle
capacità di manovra del catetere. Gli esperimenti in-vitro dimostrano che il percorso
generato dal pianificatore C-GAIL si allinea meglio con la reale capacità di manovra dei
cateteri robotici. Successivamente, la dissertazione presenta un’esplorazione approfon-
dita dell’assistenza alla pianificazione del percorso utilizzando varie modalità interattive
basate sulla realtà aumentata. Vengono introdotte tre modalità di controllo interattivo
per manovrare cateteri robotici, e viene indagato il loro impatto sulla cateterizzazione
cardiaca assistita da robot con interazione umana. La guida del percorso è facilitata dal
metodo di pianificazione C-GAIL precedentemente discusso. Viene condotto uno stu-
dio utente che dimostra la fattibilità di sfruttare le capacità di un joystick da gioco per la
teleoperazione del catetere e la praticità di utilizzare un display montato sulla testa per
ricevere un feedback visivo tridimensionale.

Parole chiave: Pianificazione del percorso, Robot medici, Progettazione del simulato-
re, Realtà aumentata



1
INTRODUCTION

The important thing is not to stop questioning.

Albert Einstein

The scientific mind does not so much provide the right answers
as ask the right questions.

Claude Lévi-Strauss

The main objective of this dissertation is to develop autonomous path planning tech-
niques for robot-assisted endovascular interventions conducted in tortuous and deformable
environments. The introduction chapter of this dissertation offers a comprehensive clini-
cal background and elucidates the motivations behind this research endeavor. It begins by
highlighting the prevailing challenges in endovascular interventions and underscores the
indispensability of autonomous path planning in their execution. The chapter specifically
delves into pre-operative path planning and robust path planning within deformable en-
vironments, the central focus of this thesis, accentuating key unresolved issues within the
field. The research objectives are then outlined, followed by a succinct summary of the
subsequent chapters’ organization.

Parts of this chapter have been published as:
Ameya Pore*, Zhen Li*, Diego Dall’Alba, Albert Hernansanz, Elena De Momi, Arianna Menciassi, Alicia Casals
Gelpí, Jenny Dankelman, Paolo Fiorini, and Emmanuel Vander Poorten. “Autonomous Navigation for Robot-
Assisted Intraluminal and Endovascular Procedures: A Systematic Review”. In: IEEE Transactions on Robotics
39.4 (2023), pp. 2529–2548. DOI: 10.1109/TRO.2023.3269384. (Ameya Pore and Zhen Li contributed equally
to this manuscript. Corresponding author: Zhen Li.)
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2 1. INTRODUCTION

1.1. CLINICAL BACKGROUND
Endovascular interventions are a growing field in medical therapy, offering a minimally
invasive approach to accessing complex anatomical regions deep within the body. To en-
able these procedures, the use of flexible instruments with snake-like characteristics is
essential, as they can navigate through the intricate endovascular anatomy with ease [1].
Typically, cardiologists introduce a guidewire through a small incision in the groin, arm,
or neck during endovascular interventions. This guidewire acts as a stable pathway,
guiding the catheter to the desired target location. It is worth noting that endovascu-
lar interventions have significantly improved patient outcomes, leading to reductions in
blood loss, post-operative trauma, wound infections, and overall recovery time [2].

In the field of endovascular interventions, there are two significant challenges asso-
ciated with controlling catheters and guidewires. The first challenge involves navigating
the instruments based on two-dimensional (2D) fluoroscopy images, requiring a precise
understanding of the three-dimensional (3D) anatomy projected onto a 2D plane [3, 4].
The second challenge in endovascular interventions involves the intricate maneuvering
of the instrument tip, which is achieved by coordinating actions such as insertion, re-
traction, and torque applied at the proximal end of the catheter and guidewire. This
task is inherently complex due to the non-linear relationship between the input actions
and the resulting motion of the instrument tip. This non-linearity is an intrinsic charac-
teristic of the physical and mechanical properties of these flexible instruments as they
navigate through the vascular system’s complex and variable anatomy. Such character-
istics impose significant cognitive and physical demands on clinicians, necessitating a
substantial learning curve to achieve proficiency in manipulating these highly dexterous
instruments effectively [5]. Furthermore, operating within deformable and constrained
anatomical pathways introduces additional risks, as friction and collisions between the
instruments and vascular walls can lead to potentially dangerous outcomes. Predict-
ing instrument behavior, particularly in situations where direct visualization of the local
anatomy is unavailable, poses a substantial challenge.

The navigation challenges encountered in endovascular interventions have prompted
the development of robotic systems to improve the current landscape. Robotic assis-
tance, involving instrumentation, imaging, and navigation, has significantly advanced
the field of endovascular procedures. These robotic platforms allow for precise con-
trol of the catheter tip, enhancing stability during operations. As a result, teleoperated
robotic catheterization systems have gained considerable attention due to their numer-
ous advantages, including reduced radiation exposure, increased precision, elimination
of tremors, and improved operator comfort.

Endovascular interventions have witnessed remarkable advancements in robotic tech-
nology, leading to significant developments in the field. The CorPath™ GRX system from
Corindus (Waltham, USA) is a notable example, offering guided robotic control that al-
lows clinicians to navigate endovascular tools using a joystick interface. Hansen Med-
ical’s Sensei™ X and Magellan platforms, although no longer commercially available,
have played a crucial role in the evolution of robotic systems for endovascular interven-
tions, with J&J Robotics (New Brunswick, USA) acquiring them. The Monarch platform
by Auris Health (Redwood, USA), focused on bronchoscopy, incorporates certain ele-
ments from these technologies. Catheter Robotics Inc.’s Amigo™ platform and Robo-
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cath’s R-One™ platform employ mechanical mechanisms to enable steering of standard
catheters in 3 Degrees-of-Freedom (DoFs) through an intuitive remote controller de-
signed to mimic the standard catheter handle. On the other hand, the Niobe™ system by
Stereotaxis (St. Louis, USA) utilizes remote magnetic navigation, employing a magnetic
field to guide the catheter tip. Tip deflection is controlled by adjusting the orientation of
external magnets through a mouse or joystick at the workstation. These robotic systems
have demonstrated exceptional capabilities in intravascular navigation.

Despite the incorporation of robotic assistance, the challenges posed by the com-
plexity of procedures in endovascular interventions remain unresolved to a significant
extent [6]. These challenges stem from factors such as the non-intuitive mapping be-
tween user and robot motions, inherent limitations on tool dexterity, and insufficient
shape sensing capabilities, all of which contribute to a lack of situational awareness [7].
There is a growing consensus that automation can play a pivotal role in reducing clini-
cians’ workload while enhancing overall procedural outcomes [6, 7, 8]. The integration
of steerable catheters and navigation guidance holds promise in reducing the level of
expertise required for percutaneous treatments [9].

One noteworthy area where the utilization of navigation assistance can have a sig-
nificant impact is in the mitigation of path-related complications, including perforation,
embolization, and dissection, which can arise from excessive interaction forces between
interventional tools and blood vessels. By harnessing autonomous navigation capabil-
ities, these complications can be potentially addressed and minimized. Furthermore,
the growing demand for endovascular interventions, coupled with a limited number of
experts in the field [10], highlights the significance of autonomous navigation. Such
advancements would position clinicians in a supervisory role, requiring minimal and
sporadic intervention. This transition allows clinicians to focus on high-level decision-
making rather than being immersed in low-level execution, resulting in improved effi-
ciency and optimal resource allocation.

In the quest to enable autonomous navigation in endovascular interventions, a cru-
cial aspect involves the implementation of path planning techniques [11]. Path planning
encompasses the process of determining an optimal trajectory that connects an initial
configuration to a desired goal configuration while ensuring a collision-free workspace.
When considering the specific context of robotic catheters maneuvering through nar-
row, delicate, and deformable vessels, path planning poses significant challenges. These
challenges are further compounded by complex operating conditions, stringent safety
constraints, and the inherent limitations on catheter steering capability. Moreover, the
intricate interplay between the steerable catheter and the vessel walls, combined with
the deformable nature of the vessels, amplifies the complexity of achieving reliable and
real-time path planning. Consequently, there is a demand for robust path planning ap-
proaches that effectively tackle these constraints and uncertainties.

1.2. RESEARCH OBJECTIVES
This research project aims to develop a safe, accurate, and efficient path planner for
steerable robotic catheters. The primary objectives driving the PhD research can be
summarized as follows, aiming to advance the field of robotic catheter navigation and
path planning:
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• (O1) to devise an expeditious path planner capable of swiftly calculating trajec-
tories free of obstacles (such as plaque or calcium) that conform to the patient’s
vasculature, while incorporating the inherent limitations of the catheter such as
maximum curvature;

• (O2) to develop a simulator with the ability to accurately predict the interplay be-
tween catheters and vessel walls, as well as account for the deformable nature of
the vessels;

• (O3) to reconstruct comprehensive intra-operative vessel tree structures from med-
ical imaging data, while accurately accounting for deformations;

• (O4) to develop an enhanced path planner tailored for steerable catheters, which
ensures higher precision and robustness by accounting for both the deformable
properties of vessels and the catheter’s steering capabilities.

1.3. THESIS ORGANIZATION
The structure of this thesis, along with the interconnections between each chapter, is
depicted in Figure 1.1. A comprehensive overview of the contents within each part and
chapter is provided below.

In Chapter 1, a thorough clinical context is presented, shedding light on the under-
lying motivations that drive this research endeavor. The intricate challenges faced in
the realm of endovascular interventions are explored, emphasizing the crucial role of
autonomous path planning in overcoming these obstacles. Special attention is given to
pre-operative path planning and the development of robust path planning methodolo-
gies tailored for deformable environments.

Chapter 2 provides an overview of path planning techniques and categorizes them
according to the displayed Level of Autonomy (LoA). A systematic literature analysis is
carried out using the PRISMA method to summarise the results of the most relevant
work. For each retained work, the clinical aim, the level of autonomy, the adopted path
planning method, and the type of validation conducted are investigated. The limitations
of the corresponding path planning methods are further identified, along with directions
to improve the robustness of the algorithms, enabling adaptation to a dynamic intralu-
minal environment.

Chapter 2 is partially based on the following publication:

[12] Ameya Pore*, Zhen Li*, Diego Dall’Alba, Albert Hernansanz, Elena De Momi, Ari-
anna Menciassi, Alicia Casals Gelpí, Jenny Dankelman, Paolo Fiorini, and Emmanuel
Vander Poorten. “Autonomous Navigation for Robot-Assisted Intraluminal and En-
dovascular Procedures: A Systematic Review”. In: IEEE Transactions on Robotics 39.4
(2023), pp. 2529–2548. DOI: 10.1109/TRO.2023.3269384. (Ameya Pore and Zhen
Li contributed equally to this manuscript. Corresponding author: Zhen Li.)

The main research studies of this dissertation are composed of three parts: pre-
operative path planning, vessels deformation prediction, and path planning in deformable
environments. Each part will be introduced in detail as follows.

https://doi.org/10.1109/TRO.2023.3269384
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Figure 1.1: Structure of the thesis. Arrows indicate read-before relations.

Part I: Pre-operative path planning
Current state-of-the-art methods frequently overlook the constraint of catheter curva-
ture and do not consistently achieve a low computational time which is essential for
real-time path replanning. The acceptable computation time should be appropriately
determined based on several key factors: the frequency of catheter tip tracking, the fre-
quency of vision sensing feedback, and the controller’s operating frequency. This part of
the dissertation proposes a fast two-phase path planning approach specifically designed
to address these challenges while accommodating the robot curvature constraint.

Chapter 3 is dedicated to fulfilling objective O1. A novel path planning approach
called BFS-GA is introduced, which effectively adheres to the robot curvature constraint
while keeping the catheter’s path as close to the centerlines as possible. The high ef-
ficiency of the method is demonstrated through extensive experimentation in both 2D
and 3D scenarios. The results highlight the planner’s capability to satisfy the robot cur-
vature constraint while maintaining low computational time costs when compared to
sampling-based methods. The presented work is particularly suitable for clinical pro-
cedures that require compatibility with curvature constraints while optimizing specific
criteria. Additionally, it finds applicability in scenarios involving curvature-constrained
robots navigating through narrow passages.

Chapter 3 is partially based on the following publication:

[13] Zhen Li, Jenny Dankelman, and Elena De Momi. “Path planning for endovascu-
lar catheterization under curvature constraints via two-phase searching approach”.
In: International Journal of Computer Assisted Radiology and Surgery 16.4 (2021),
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pp. 619–627. DOI: 10.1007/s11548-021-02328-x

Part II: Vessels deformation prediction
A major challenge during autonomous navigation in endovascular interventions is the
complexity of operating in a deformable but constrained workspace with an instrument.
To address this, the simulation of deformations provides a cost-effective training plat-
form for path planning, as explored in Chapter 4. Additionally, Chapter 5 focuses on
intra-operative model reconstruction from medical images while considering deforma-
tions, offering a realistic and dynamic environment for path planning.

Chapter 4 is dedicated to fulfilling objective O2. Within this chapter, a realistic, auto-
adaptive, and visually plausible simulator is developed. This simulator can accurately
predict the global deformation of vessels induced by the contact of a robotic catheter
and the cyclic motion corresponding to the heartbeat. Extensive in-vitro experiments
are conducted and compared with in-silico results. The evaluation of end-user experi-
ences is presented through quantitative performance metrics and a 5-Point Likert Scale
questionnaire. The real-time and accurate performance of the simulator renders this
framework suitable for creating a dynamic environment conducive to the training of
path planning for robotic catheters.

Chapter 4 is partially based on the following publication:

[14] Zhen Li, Enrico Manzionna, Giovanni Monizzi, Angelo Mastrangelo, Maria Elisa-
betta Mancini, Daniele Andreini, Jenny Dankelman, and Elena De Momi. “Position-
based dynamics simulator of vessel deformations for path planning in robotic en-
dovascular catheterization”. In: Medical Engineering & Physics 110 (2022), p. 103920.
DOI: 10.1016/j.medengphy.2022.103920
Chapter 5 is dedicated to fulfilling objective O3. Within this chapter, a novel de-

formable model-to-image registration framework is introduced, leveraging deep learn-
ing techniques specifically tailored for augmented reality-guided endovascular catheter-
ization. The registration accuracy is validated in both 2D and 3D scenarios. For the
2D validation, a dataset comprising nine patients is utilized, while for the 3D valida-
tion, a dataset obtained from the previously mentioned intervention simulator is em-
ployed. This study successfully demonstrates the feasibility and accuracy of the pro-
posed weakly-supervised deformable model-to-image registration framework. The re-
sults highlight its potential to provide intra-operative 3D imaging as valuable interven-
tion assistance in dynamic vascular environments.

Chapter 5 is partially based on the following publications:

[15] Zhen Li, Maria Elisabetta Mancini, Giovanni Monizzi, Daniele Andreini, Gian-
carlo Ferrigno, Jenny Dankelman, and Elena De Momi. “Model-to-Image Registra-
tion via Deep Learning towards Image-Guided Endovascular Interventions”. In: 2021
International Symposium on Medical Robotics (ISMR). 2021, pp. 1–6. DOI: 10.1109/
ISMR48346.2021.9661511
[16] Zhen Li, Letizia Contini, Alessandro Ippoliti, Elena Bastianelli, Federico De Marco,
Jenny Dankelman, and Elena De Momi. “Deformable Model-to-Image Registration
towards Augmented Reality-Guided Endovascular Interventions”. 2023. (Under Re-
view)

https://doi.org/10.1007/s11548-021-02328-x
https://doi.org/10.1016/j.medengphy.2022.103920
https://doi.org/10.1109/ISMR48346.2021.9661511
https://doi.org/10.1109/ISMR48346.2021.9661511
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Part III: Path planning in deformable environments
Navigation within tortuous and deformable vessels using catheters with limited steering
capabilities necessitates the development of reliable path planning techniques. Existing
state-of-the-art path planners fail to fully consider the deformable nature of the envi-
ronment, making real-time and dependable path planning a challenging task due to the
complex interaction between the steerable catheter and vessel walls.

Chapter 6 is dedicated to addressing objective O4. Within this chapter, a robust
path planner named Curriculum Generative Adversarial Imitation Learning (C-GAIL) is
proposed, based on a Learning from Demonstrations (LfD) approach to enhance risk
management. This framework aims to reduce the uncertainty associated with vessel de-
formation, thereby minimizing tracking errors. By accounting for the interaction be-
tween steerable catheters and vessel walls, as well as the deformable properties of the
vessels, the proposed path planning framework demonstrates superior performance in
managing uncertainty and achieving lower tracking errors, as validated through both
in-silico and in-vitro experiments. Thereafter, Chapter 6 introduces an in-depth explo-
ration of path planning assistance utilizing various interactive modalities. This chapter
introduces three interactive control modalities for steering robotic catheters and inves-
tigates their impact on human-in-the-loop robot-assisted cardiac catheterization. The
path guidance is facilitated by the previously discussed path planning technique. An
in-vitro user study was conducted to compare the effectiveness of different interactive
modalities. The findings of the study demonstrate the feasibility of employing the pro-
posed path planning technique as guidance in different interactive modalities.

Chapter 6 is partially based on the following publication:
[17] Zhen Li, Chiara Lambranzi, Di Wu, Alice Segato, Federico De Marco, Emmanuel
Vander Poorten, Jenny Dankelman, and Elena De Momi. “Robust Path Planning via
Learning from Demonstrations for Robotic Catheters in Deformable Environments”.
2023. (Under Review)
[18] Di Wu*, Zhen Li*, Mohammad Hasan Dad Ansari, Xuan Thao Ha, Mouloud Ourak,
Jenny Dankelman, Arianna Menciassi, Elena De Momi, and Emmanuel Vander Poorten.
“Comparative Analysis of Interactive Modalities for Intuitive Endovascular Interven-
tions”. 2023. (Under Review. Di Wu and Zhen Li contributed equally to this manuscript.
Corresponding author: Zhen Li.)

Part IV: Conclusion
Lastly, Chapter 7 presents the concluding remarks, summarizing the main contributions
of this thesis and emphasizing potential avenues for future research. Furthermore, a
comprehensive list of articles published by the author during her doctoral studies, in-
cluding those not covered in this dissertation, can be found at the end of this thesis,
providing a comprehensive overview of the author’s scholarly output.
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2
AUTONOMOUS NAVIGATION FOR

ROBOT-ASSISTED INTRALUMINAL

AND ENDOVASCULAR PROCEDURES:
A SYSTEMATIC REVIEW

This chapter presents a comprehensive overview of path planning techniques and orga-
nizes them based on their demonstrated Level of Autonomy (LoA). To summarize the find-
ings from relevant studies, a systematic literature analysis is conducted using the PRISMA
method. The selected works are examined to determine their clinical objectives, the degree
of autonomy, the path planning approach employed, and the validation methods em-
ployed. The limitations of these path planning methods are also identified, and strategies
are proposed to enhance their robustness, thus enabling adaptation to dynamic tubular
environments. Looking ahead, the field of navigation is expected to witness increased au-
tonomy, empowering clinicians with improved precision control and reduced workload,
while maintaining their active involvement in the decision-making process.

Parts of this chapter have been published in:
Ameya Pore*, Zhen Li*, Diego Dall’Alba, Albert Hernansanz, Elena De Momi, Arianna Menciassi, Alicia Casals
Gelpí, Jenny Dankelman, Paolo Fiorini, and Emmanuel Vander Poorten. “Autonomous Navigation for Robot-
Assisted Intraluminal and Endovascular Procedures: A Systematic Review”. In: IEEE Transactions on Robotics
39.4 (2023), pp. 2529–2548. DOI: 10.1109/TRO.2023.3269384. (Ameya Pore and Zhen Li contributed equally
to this manuscript. Corresponding author: Zhen Li.)
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Figure 2.1: Case study examining the LoA for endovascular navigation. The case study is visually depicted as
follows: (Row 1) Target localization using preoperative images. The identified target is represented by a red cir-
cle. (Row 2) Preoperative path planning. The path representation within the vessels is depicted with a yellow
line. (Row 3) Intraoperative motion execution and path planning, along with visualization of intraoperative
fluoroscopy. From left to right, LoA0 to LoA4 are presented, respectively. Each level indicates the agent respon-
sible for performing each cognitive function. The agent can refer to a human operator, path planning system,
or robotic manipulator. In cases where two agents are involved, the supervisor agent is depicted on the right
side, while the main agent executing the actions is on the left side, with its icon displayed larger.

2.1. SYSTEMATIC REVIEW
Path planning has been extensively studied in the field of navigation since the 1980s,
supporting a wide range of applications including robotic manipulators and mobile plat-
forms in both indoor and outdoor industrial settings. During the path planning process,
various robot characteristics are taken into account to determine a feasible path solu-
tion. These characteristics include the geometrical dimensions of the robot to avoid
collisions and the kinematic constraints that ensure the robot’s movement capabilities
are respected. The robot kinematics describes the relationship between the configu-
ration space and the task space [1]. The configuration space, denoted as C , encom-
passes all possible robot configurations, while the task space, denoted as T , represents
the workspace that the robot can reach for each specific configuration q. The general
expression for robot kinematics can be described as follows:

T = f (q) q ∈C (2.1)

Path planning plays a crucial role in autonomous Intraluminal Procedures and En-
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dovascular Interventions (IPEI) robotic systems, even when faced with complex operat-
ing conditions and stringent safety constraints. Path planning methods are categorized
into four sub-groups, adapted from the general taxonomy of path planning in robots as
presented in [2]: node-based, sampling-based, optimization-based, and learning-based
techniques.

Node-based (or graph-based) algorithms employ a graph-searching strategy using a
tree structure. Sampling-based algorithms construct a tree structure based on random
samples in the configuration space, enabling the discovery of collision-free paths that
align with the robot’s motion capabilities. Optimization-based algorithms formulate the
path planning problem as a mathematical optimization problem, aiming to minimize or
maximize an objective function subject to constraints. These algorithms employ solvers
to obtain the optimal solution. Learning-based methods leverage Markov decision pro-
cesses to learn goal-directed policies based on reward functions.

To conduct a comprehensive analysis of path planning developments in IPEI, a sys-
tematic review was carried out using the PRISMA methodology [3]. The review encom-
passed works published from 2005 to July 2022. The search terms were selected to broadly
encompass the concept of “path planning for intervention". They were combined us-
ing logical operators AND and OR, enabling a thorough coverage of a wide search space.
Each search query incorporated a blend of research topic, application scenario, and clin-
ical device, such as “planning AND *vascular AND catheter". After exploring all pos-
sible combinations, the approach resulted in 520 entries. For detailed information on
the search terms, methodology, and selection criteria, refer to [4]. The initial literature
search identified 11,404 references. Through the application of the Prisma flow diagram,
10,833 references were excluded after the title check, followed by an additional 515 ref-
erences after the abstract check. Nine references were manually included due to various
reasons that prevented their coverage in the search results. This process resulted in a
final list of 65 references.

The outcomes of the studies were classified based on several criteria, including the
targeted procedure, LoA (see Figure 2.1), path planning method, validation techniques,
and the dynamics of the environment. Figure 2.1 presents a case study examining the
LoA for endovascular navigation. The entire navigation task is divided into three cogni-
tive functions: target localization using preoperative imaging, preoperative path plan-
ning, and intraoperative motion execution and path planning. For more details, please
refer to our study [4].

The path planning methods were further categorized into subgroups, as illustrated
in Figure 2.2, to facilitate a detailed analysis. The evolution of path planning approaches
is depicted in Figure 2.3. Up to 2016, the predominant focus in studies was on imple-
menting node-based and sampling-based algorithms. However, in recent years, there
has been a shift towards learning-based methods, facilitated by the exponential increase
in computational resources. A summary of the state-of-the-art in IPEI path planning
publications is presented in Table 2.1. Additionally, Table 2.1 indicates that certain stud-
ies involved intraoperative path replanning in dynamic environments, as denoted in the
last column.
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Figure 2.2: Classification of IPEI path planning methods for continuum robots found in the literature.

2.1.1. NODE-BASED ALGORITHMS
Node-based algorithms utilize an information structure to represent the environment
map and are frequently employed in navigation assistance [2]. Table 2.1 presents a com-
pilation of various path planning studies for IPEI that utilize node-based methods. The
algorithms depicted in Figure 2.2 include Centerline-based Structure (CBS), Depth First
Search (DFS), Breadth First Search (BFS), Dijkstra, potential field, A*, Lifelong Planning
A* (LPA*), and wall-following.

Centerline-based Structure Geiger et al. [5] employ a methodology for bronchoscopy
planning that involves extracting the 3D skeleton by computing the skeleton of the seg-
mented structure. The resulting skeleton is then transformed into a hierarchical tree

Figure 2.3: Chronological development of path planning approaches.
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model consisting of interconnected branches.
S’anchez et al. [6] utilize the fast marching method to obtain the skeleton of the

bronchial anatomy. The skeleton branching points are then defined as a binary tree (B-
tree). In their study, a path is derived by traversing the B-tree nodes, and a geometry
likelihood map is employed to match the current exploration to the preoperative path.

Khare et al. [7] represent airway centerlines as discrete sets of airway branches,
which serve as natural pathways for navigation through the airway tree. Their method
automatically derives a navigation plan from each target Region of Interest (ROI) asso-
ciated airway route. The navigation plan adheres to the rotate-flex-advance paradigm
learned by physicians during their training. This rotate-flex-advance paradigm involves
initially rotating the device through wrist-twisting either clockwise or counterclockwise,
followed by articulating, achieved by thumb flexion on the control lever to adjust the de-
vice’s tip upwards or downwards, and concluding with translational movements, which
include advancing or retracting the device [7, 8]. This navigation approach is evaluated
in both phantom and human studies.

Wang et al. [9] develop a navigation information tree based on the centerline of the
vasculature for catheterization. The authors assume a rigid vascular system and utilize
the tree structure to identify the nearest node during intraoperative navigation. Exper-
imental validation is performed on a resin vessel phantom. Another study proposes a
method for extracting the centerline of 3D vasculature using a Voronoi diagram [10].
The centerlines are considered as minimal action paths on the Voronoi diagrams within
the vascular model surface. The results demonstrate the effectiveness of this approach
in extracting the centerlines of the vessel model.

Zheng et al. [11] present a two-step approach for bronchoscopy navigation. Firstly,
they employ a parallel thinning algorithm to extract the preoperative 3D skeleton. Sec-
ondly, a graph matching method is used to establish correspondence between the 3D
preoperative skeleton and the 2D intraoperative skeleton extracted from fluoroscopic
images. However, the proposed graph matching technique is sensitive to topology vari-
ations and transformations in the sagittal and transverse planes. In a recent study on
transnasal exploration, Yudong et al. [12] propose a central path extraction algorithm
based on pre-planning for the roaming area.

However, a common limitation of the existing literature on this topic is the focus on
constructing an information structure, while neglecting the exploration of paths within
the information structure [5, 6, 7, 9, 10, 11]. Although tree structures are built, the au-
tonomous generation of path solutions through graph search strategies remains unex-
plored. This gap in the methodology can lead to uncertainties in the path solution, es-
pecially when multiple viable paths to the target exist.

Depth First Search Several studies have employed DFS as a method to explore tree
structures or graphs in the context of endobronchial ultrasound bronchoscopes and en-
dovascular interventions.

Zang et al. [13, 14] implemented a route search strategy using DFS for an integrated
endobronchial ultrasound bronchoscope. They explored a graph by expanding the most
promising node along the depth. Similarly, Gibbs et al. [15] utilized DFS as a first phase
search to view sites, followed by a second search focused on ROI localization, and a fi-



2

16
2. AUTONOMOUS NAVIGATION FOR ROBOT-ASSISTED INTRALUMINAL AND ENDOVASCULAR

PROCEDURES: A SYSTEMATIC REVIEW

nal refinement to adjust the viewing directions of the bronchoscope. Huang et al. [16]
also developed a DFS approach for endovascular interventions. In their work, instead of
considering path length as node weights in the typical DFS approach, they defined the
node weights as an experience value set by doctors.

It is important to note that the search time and the resulting planned path can sig-
nificantly vary depending on the order of nodes within the same graph layer. Although
DFS can search for a feasible path by exploring the graph along the depth, it does not
guarantee that the first path found is the optimal path.

Breadth First Search The BFS algorithm was utilized in Fischer et al. [17] to find a
path for a magnetically-actuated catheter, specifically along vascular centerline points
towards a target. However, the BFS algorithm may require significantly more time to
find a solution in complex vascular environments with multiple branches.

Dijkstra In Schafer et al. [18], a graph structure based on vasculature’s centerlines is
designed using a volume growing and a wavefront technique. The optimal path is de-
termined using the shortest path algorithms from Dijkstra. However, it is important to
note that Schafer et al. make the assumption that the centerline points are provided
as an ordered set, which can be a strict assumption. Additionally, they only report on
scenarios with a single lumen and no branches, which does not fully reflect the advan-
tages of the Dijkstra algorithm. Similarly, Egger et al. [19] present a similar method, but
in a backward direction. They determine an initial path using Dijkstra, where users de-
fine the initial and destination points. The initial path is then aligned with the blood
vessel, resulting in the vasculature’s centerline. However, this methodology is not fully
autonomous and involves manually tuned parameters.

Another approach, presented in Liu et al. [20], involves extracting the centerline and
placing a series of guiding circular workspaces along the navigation path that are per-
pendicular to the path. These circular planes collectively form a safe cylindrical path
from the start to the target. The Dijkstra algorithm is implemented in several works to
find the minimal cumulative cost set of voxels within the airway tree for bronchoscope
navigation [21, 22] and to find the shortest path along the vessel’s centerline [23, 24, 25].

Compared to DFS, the Dijkstra algorithm keeps track of and checks the cost until
it reaches the target, increasing the likelihood of obtaining a better solution. However,
it should be noted that these studies still primarily focus on tracking anatomical cen-
terlines, which can be challenging to precisely follow and may not always be desirable.
Aligning the instrument tip with the centerline can result in excessive forces at more
proximal points along the instrument’s body where contact with the anatomy occurs.

Potential field In the work by Rosell et al. [26], a potential field is computed over grids
based on the L1 distance to obstacles for bronchoscopy path planning. Wavefront prop-
agation is used to search for a path, taking into account geometry and kinematic con-
straints to select the best motion based on a cost function. Yang et al. [27] extract cen-
terlines using a distance field method and then establish and navigate a tree structure.
However, it is important to note that the authors only considered the curvature con-
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straint at 180◦ turns along vasculature’s centerlines and assumed that all path points
have the same Y coordinate.

Martin et al. [28] employ a potential field approach by defining an attractive force
from the endoluminal image center mass to the colon center mass. They reconstruct
a linear translation between the colon center mass and the image center, considering
it as the linear motion of the colonoscope tip. This work is validated in both synthetic
colon and pig colon (in-vivo) settings. Zhang et al. [29] follow a similar approach, using
a robotic endoscope platform to bring surgical instruments to the target site. Girerd et
al. [30] utilize a 3D point cloud representation of a tubular structure and compute a
repulsive force to ensure that the concentric tube needle tip remains inside the contour.

The potential field method has an advantage in local planning by keeping the center
of the image close to the center of the lumen or vessel cross-section. However, it primar-
ily considers short-term benefits during local planning and may encounter difficulties
in achieving global optimality during global path planning, potentially getting stuck in a
local minimum.

A* and Lifelong Planning A* He et al. [31] compute and optimize endoscopic paths
using the A* algorithm. The effectiveness of the preoperatively planned path is verified
through an automatic virtual nasal endoscopy browsing experiment. Ciobirca et al. [32]
search for the shortest airway paths through voxels of a bronchus model using the A*
algorithm, suggesting that this method could potentially improve the diagnostic success
rate with a system for tracking the bronchoscope during a real procedure. However, this
claim has not been validated yet.

Some studies propose path planning methods for CTRs in brain surgery. The authors
of these studies build a nearest-neighbor graph and utilize the LPA* algorithm for effi-
cient replanning to optimize the insertion pose [33, 34]. Compared to A*, LPA* [35] can
reuse information from previous searches to accelerate future ones. Ravigopal et al. [36]
propose a modified hybrid A* algorithm to navigate a tendon-actuated coaxially aligned
steerable guidewire robot along a pre-computed path in 2D vasculature phantoms un-
der C-arm fluoroscopic guidance. Huang et al. [37] demonstrate colon navigation using
a real-time heuristic searching method called Learning real-time A* (LRTA*). LRTA* with
a designed directional heuristic evaluation shows efficient performance in colon explo-
ration compared to BFS and DFS. Directional biasing avoids the need for unnecessary
searches by constraining the next state based on local trends.

A* and LPA* algorithms utilize a heuristic method to approximate the cost of the
cheapest path from the current node to the target. This strategy directs their exploration
through the graph, prioritizing the most likely paths. Typically, this heuristic is repre-
sented by the Euclidean distance between the current node and the target. Additionally,
it can encompass costs associated with the robot’s functional abilities, like the expense
incurred from altering the curvature radius [36]. A* is commonly used for static envi-
ronments, while LPA* can adapt to changes in the environment. They converge quickly
while ensuring optimality by considering both the cost from the start and the cost to the
goal. However, their execution performance depends on the accuracy of the heuristic
information. If inaccurate heuristic information is employed, searching in non-optimal
directions can severely impact their performance.
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Wall-following In the study by Fagogenis et al. [38], a wall-following algorithm is used
to assist catheter navigation. They employ haptic vision to accomplish wall-following in-
side the blood-filled heart for a catheter. The wall-following algorithm can be considered
an efficient navigation approach when there are few feasible routes to reach the target
state. However, the solution provided by a wall-following algorithm does not guarantee
optimality when multiple options exist.

2.1.2. SAMPLING-BASED ALGORITHMS
As evident from the references listed in Table 2.1, various studies in the field of path
planning for IPEI utilize sampling-based methods. Illustrated in Figure 2.2, these meth-
ods include algorithms based onRapidly-exploring Random Tree (RRT) and its variants,
as well as Probabilistic RoadMap* (PRM*).

Rapidly-exploring Random Tree and its variants Several studies have conducted com-
parisons among various algorithms based on RRT in the context of virtual bronchoscopy
simulation. These algorithms include RRT, RRT-Connect, dynamic-domain RRT, and
RRT-Connect with dynamic-domain [39, 40]. The results indicate that RRT-Connect with
Dynamic Domain is the optimal method, as it requires the minimum number of samples
and computation time to find a solution path. Fellmann et al. use a collision-free path
generated by RRT as a baseline in their work [41]. They then apply and evaluate different
trajectory generation strategies. In narrow and straight nasal passages, the synchronous
point-to-point strategy is found to be the most effective. However, as the distance be-
tween intermediate configurations increases, this strategy may become infeasible. Kuntz
et al. introduce a three-step planning approach using an RRT-based algorithm for a novel
transoral lung system that includes a bronchoscope, a CTR, and a bevel-tip needle [42].
Their approach takes into account the needle steering capability during path planning
and demonstrates the motion planner’s ability to adhere to a maximum needle steering
curvature. The time required to find a motion plan depends significantly on the steering
capability and the target location.

The research conducted by Guo et al. [43] introduces an enhanced version of the
Rapidly-exploring RRT algorithm for cerebrovascular intervention. In their study, they
optimize the expansion direction of the random tree by considering a trade-off between
the newly sampled node and the target. This approach aims to improve the convergence
speed of the algorithm, even in scenarios where catheter constraints are not taken into
account.

The approach introduced by Alterovitz et al. [44] presents a modified version of the
Rapidly-exploring RoadMap (RRM) method. Similar to the RRT, the RRM algorithm ex-
plores the configuration space to find a path. However, the RRM method includes an
additional step that refines the explored space by adding edges to the current roadmap.
This refinement process aims to find higher-quality paths within the explored space.
The method is initially proposed for planning in tubular environments with protrusions,
such as bronchial tubes in lung procedures.

The RRM method has been further developed and enhanced in subsequent studies.
Torres et al. [45] improve the RRM method by incorporating more accurate mechanics-
based models. They apply this enhanced method in skull base surgery scenarios, where
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the planner successfully avoids bone, critical blood vessels, and healthy brain tissue
while reaching the skull base tumor. In a later work [46], Torres et al. propose a mod-
ified Rapidly-exploring Random Graph (RRG) method that computes motion plans at
interactive rates. This modification improves the computation cost and allows for re-
planning when the robot tip position changes. However, it should be noted that gen-
erating such a roadmap still requires a significant amount of computation. As a result,
while the method performs well in static environments, its effectiveness in deformable
lumens may be limited.

Fauser et al. utilize the formulation of bi-directional RRT (or bi-RRT) (RRT-connect),
previously introduced by them, to address a common path planning challenge in which
instruments must adhere to curvature-constrained trajectories. This approach is dis-
cussed in their earlier work [47] and is employed to solve the problem in [48]. In a sub-
sequent study [49], the RRT-connect algorithm is implemented for path planning of a
catheter in a 3D static aorta model. The algorithm ensures that the catheter follows a
trajectory with a maximum allowable curvature of 0.1 mm−1. In an extension of their
research, Fauser et al. propose path replanning from various robot positions along the
initial path, starting from the descending aorta and leading to the left ventricle [50].

Probabilistic RoadMap* Kuntz et al. present an approach that combines the PRM*
method with local optimization to plan motions in a point cloud representation of a
nasal cavity anatomy [51]. It should be noted that this approach has a limitation: the
anatomy model is updated only within the visible region of the endoscope, neglecting
deformations in the remaining anatomy. This planning method can be applicable for
intraoperative planning in cases where tissue deformation is insignificant. However, if
significant deformations are expected, the overall model’s deformations need to be ac-
counted for in advance.

2.1.3. OPTIMIZATION-BASED ALGORITHM

Path planning can be framed as an optimization problem and addressed using numeri-
cal solvers [52]. These solvers can be customized to incorporate considerations of robotic
kinematics.

Mathematical model Lyons et al. [53] propose an optimization-based planning algo-
rithm for Concentric Tube Robots (CTRs) with five tubes, aiming to optimize the inser-
tion length and orientation angle of each tube. The authors formulate the path plan-
ning problem as a non-linear constrained optimization problem. To simplify the prob-
lem, they incorporate the constraint into the objective function, resulting in a series
of unconstrained optimization problems. The optimal solution is then obtained using
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [54] and
Armijo’s Rule [55]. In their work, the robot kinematics are modeled using a physically-
based simulation that incorporates beam mechanics. The evaluation of this method is
conducted through simulation on a patient’s lung anatomy. However, it is important to
note that the computation time required by the proposed approach is relatively high,
which limits its practical applicability in real-time scenarios. Additionally, the authors
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manually define the skeleton and assume rigid body behavior, which may restrict the
generalizability of their findings.

Qi et al. [56] propose an Inverse Kinematics (IK) path planning method for con-
tinuum robots, formulated as an optimization problem based on the backbone curve
method. This technique aims to minimize the distance to the vasculature’s centerline
under kinematic constraints at each step independently. However, it should be noted
that this approach does not consider long-term cumulative costs or the influence of past
and future phases. Consequently, the optimality of the IK solution achieved in this man-
ner may not be globally optimal.

Guo et al. [57] utilized directional modeling of a teleoperated catheter and proposed
a hybrid evaluation function to determine the optimal trajectory. In their work, wall-
hit experiments were conducted to compare the obstacle avoidance response time with
and without path planning. However, it is worth noting that the optimal solution was
obtained through exhaustive enumeration, which can be computationally expensive.
Abah et al. [58] approached path planning as a nonlinear least-squares problem, aim-
ing to minimize the passive deflection of the steerable catheter. They achieved this by
closely matching the shape of the steerable segment to the cerebrovascular’s centerline.
However, it should be acknowledged that the centerline may not necessarily represent
the optimal reference route for steerable catheters.

Evolutionary algorithms An enhanced Ant Colony Optimization (ACO) method is in-
troduced for optimal vascular path planning, considering factors such as catheter diam-
eter, vascular length, diameter, as well as curvature and torsion [59]. The computation
time associated with this method ranged from 2 s to 30 s, with an average of 12.32 s. How-
ever, the high computation time restricts its practical application in real-time scenarios.
Li et al. [60] proposed a rapid path planning approach under the constraint of steerable
catheter curvature using a local Genetic Algorithm (GA) optimization. The reported re-
sults demonstrate the planner’s ability to satisfy the curvature constraint of the robot
while maintaining a low computation time cost.

2.1.4. LEARNING-BASED ALGORITHMS
Learning-based techniques offer a promising solution for real-time path planning, lever-
aging statistical tools like artificial neural networks, Hidden Markov models (HMMs),
and dynamical models to establish mappings between perceptual and behavioral spaces.
In the context of this article, two sub-fields of learning methods have been identified:
LfD and Reinforcement Learning (RL) approaches.

Learning from Demonstrations Rafii-Tari et al. introduced a collaborative human-
robot system for catheterization, where the procedure is decomposed into catheter move-
ment primitives modeled using HMMs and learned through LfD [61]. Additionally, a
higher-level HMM is employed to sequence these motion primitives. In another work by
the same authors, they presented a semi-automated navigation approach, where guidewire
manipulation is controlled manually while catheter motion is automated using a Gaus-
sian Mixture Model (GMM) based on temporally aligned phase data from demonstra-
tions [62]. Chi et al. extended this work by incorporating subject-specific anatomical
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information from preoperative image data to account for variability among type I aortic
arches [63]. The learning process in all these methods involved expectation maximiza-
tion for maximum-likelihood estimation of model parameters. In a different study, a LfD
method based on Dynamical Movement Primitives (DMPs) was employed to avoid un-
desired contact between the catheter tip and the vessel wall [64]. DMPs serve as compact
representations of motion primitives defined by dynamic system equations [65]. The
proposed robotic catheterization platform utilized DMPs trained from human demon-
strations to generate motion trajectories, adapting to various flow simulations, vascular
models, and catheterization tasks. Building upon their previous work, Chi et al. further
improved the RL component by incorporating a model-free Generative Adversarial Im-
itation Learning (GAIL) loss that learns from multiple expert demonstrations [66]. This
enhancement enabled the catheterization policies to adapt to real-world setups and suc-
cessfully replicate the task despite uncertainties in simulated parameters such as blood
flow and tissue-tool interaction. Another study by Zhao et al. proposed a Generative
Adversarial Network (GAN) framework that combines Convolutional Neural Network
(CNN) and Long Short Term Memory (LSTM) networks to estimate suitable manipu-
lation actions for catheterization [67]. The Deep Neural Network (DNN) in this frame-
work was trained using expert demonstration data and evaluated using a phantom and
a grayscale camera simulating X-ray imaging.

Reinforcement Learning Trovato et al. developed a hardware system for a robot colonic
endoscope, where classic RL algorithms such as State-Action-Reward-State-Action (SARSA)
and Q-learning were used to control the propulsion voltage for forward and backward
motion [68]. In recent years, Deep Reinforcement Learning (DRL) algorithms, which
leverage DNNs to learn directly from high-dimensional and unstructured state inputs
with minimal feature engineering, have become the state-of-the-art in RL [69]. Behr et
al. [70], Karstensen et al. [71], and Meng et al. [72] proposed closed-loop control systems
based on DRL. These systems utilize the kinematic coordinates of the guidewire tip and
manipulator as inputs and generate continuous actions for rotation and translation in
each degree of freedom. The translation capability was demonstrated in ex-vivo veins of
a porcine liver in the work by Karstensen et al. [73]. To further enhance closed-loop con-
trol, You et al. [74] and Kweon et al. [75] introduced DRL-based automation of catheter
control, incorporating image inputs in addition to the kinematic information. The au-
thors trained a policy in a simulator and successfully transferred it to a real robotic sys-
tem. Real robotic experiments utilized tip position data from an electromagnetic sensor,
which was sent to the simulator to emulate the virtual image input.

Pore et al. introduced a deep visuomotor control approach for transanal interven-
tional procedures, where endoscopic images were mapped to control signals [76]. The
study demonstrated efficient colon navigation in various in-silico colon models and out-
performed human experts in terms of overall trajectory properties. Tracheotomy is an-
other area where applications of DRL have emerged. Athiniotis et al. utilized a snake-like
clinical robot for autonomous navigation through the airway [77]. Their work employed
a navigation policy based on Deep Q-Network (DQN), utilizing images from a monocular
camera mounted on the robot’s tip. The system serves as an assistive device for medical
personnel, facilitating endoscopic intubation with minimal human intervention.
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2. AUTONOMOUS NAVIGATION FOR ROBOT-ASSISTED INTRALUMINAL AND ENDOVASCULAR

PROCEDURES: A SYSTEMATIC REVIEW

2.2. LIMITATIONS OF PRESENT PATH PLANNING METHODS
Path planning plays a critical role in facilitating autonomous navigation, but certain lim-
itations impede its widespread applicability in IPEI procedures. This section aims to
address and discuss the limitations associated with the aforementioned path planning
methods.

Node-based Node-based algorithms employ searching strategies based on specific cost
functions, ensuring the optimality and completeness of the obtained solutions. How-
ever, these algorithms exhibit several shortcomings:

(i) Inadequate Consideration of Robot Capability: Node-based algorithms often over-
look the incorporation of robot kinematic constraints during path planning.

(ii) Neglect of Sensing Uncertainty: The uncertainty associated with sensing is rarely
taken into account, limiting the robustness of these methods.

(iii) Limited Application to Rigid Environments: The proposed node-based methods
primarily focus on rigid environments, disregarding tissue deformations that may occur
during procedures.

(iv) Dependency on Accurate Anatomical Graph Structures: Node-based algorithms
heavily rely on precise reconstructions of anatomical environments in the preoperative
phase to construct the necessary data structures and facilitate efficient search opera-
tions. This requirement further restricts their usability.

These limitations hinder the practical application of node-based algorithms for au-
tonomous real-time navigation in real-life conditions, despite their theoretical viability.
Addressing these challenges is crucial to enhance their effectiveness and enable their
successful deployment in autonomous systems.

Sampling and Optimization-based Approaches The utilization of sampling and op-
timization approaches offers the advantage of considering robot-specific characteris-
tics. However, these methods encounter significant performance limitations associated
with the robot model. Furthermore, when applied to continuum soft robots, as dis-
cussed in [79], modeling methods and incorporating soft constraints for obstacle col-
lision pose ongoing challenges that are currently under investigation. Sampling-based
approaches present the advantage of reduced computation time compared to optimiza-
tion approaches. However, they do not guarantee optimal solutions, as their inherent
property of random sampling results in "probabilistic" completeness. In other words,
the feasibility of finding a path solution is not always assured. Existing optimization-
based methods, primarily utilized in static environments for preoperative path planning,
suffer from time-consuming computations. For instance, the average computation time
can be as long as 12.32 s, as noted in [59]. To maximize the benefits of these approaches,
hybrid methods that integrate multiple techniques could be employed, capitalizing on
their respective strengths.

Learning-based Approaches The application of learning-based methods in robotics
has experienced significant growth. However, the current challenges associated with
these approaches restrict their universal use in clinical scenarios, as highlighted in [80].
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Safety is a major concern in learning-based methods [81]. The utilization of Deep Neu-
ral Networks (DNNs) introduces the potential for unpredictable behavior when encoun-
tering unseen data beyond the training regime. Therefore, ensuring that the decisions
made by DNN never lead to safety violations is of utmost importance [82, 83].

Furthermore, learning-based methods based on DNN necessitate a substantial amount
of training data due to their inherent complexity, involving a large number of parame-
ters and learning optimization [84]. Consequently, efficient acquisition, storage, anno-
tation, and querying of massive amounts of data become essential [85]. However, in
the surgical domain, obtaining high-quality diverse information is a rarity [86]. To ad-
dress data limitations, various groups have proposed shared standards for device inte-
gration, data acquisition systems, and scalable infrastructure for data transmission, such
as the CONDOR (Connected Optimized Network and Data in Operating Rooms) project
(https://condor-h2020.eu/) and OR black box [87]. The use of simulators has become in-
creasingly prevalent as a solution to address the issue of data scarcity. These simulators
offer a controlled and data-rich environment for training and experimentation. How-
ever, a significant challenge arises when attempting to apply the insights and policies
learned within these simulators to real-world scenarios. This challenge is commonly
referred to as the “sim-to-real" reality gap. The crux of the issue lies in the discrepan-
cies between the simulated environment and the real world, often due to differences in
modeling and environmental variables [88, 89]. As a result, policies that are effective in a
simulated setting may not perform as expected when deployed in actual conditions. Ad-
dressing this “sim-to-real" gap is crucial for the successful implementation of simulator-
trained models in practical scenarios.

It is worth noting that model-free Deep Reinforcement Learning (DRL) has gained
popularity in learning goal-directed behaviors and demonstrated promising success in
controlled robotic environments [80]. Commonly used algorithms include PPO (Proxi-
mal Policy Optimization) [90] and SAC (Soft Actor-Critic) [91]. However, model-free DRL
exhibits several limitations. Firstly, the design of an implicit reward function necessi-
tates domain knowledge of the environment’s dynamics, which can be highly complex
for deformable objects and tissues [80, 92, 93]. Secondly, sensitivity to hyperparam-
eters and under-optimized parameters can significantly impact performance, requir-
ing significant time investment in hyperparameter tuning. Thirdly, learning from high-
dimensional inputs like images poses challenges compared to low-dimensional state
features such as robot kinematic data and often encounters generalization problems due
to the high capacity of DNNs [80]. Finally, continuum robots, such as endoscopes, intro-
duce additional dimensionality to the action space due to their complex architectures
and high number of Degrees of Freedom (DoFs), unlike industrial robots [94]. Certain
algorithmic difficulties are associated with restricted policy search.

LfD is a popular approach for acquiring human gestures within the realm of imita-
tion learning [95]. Nevertheless, LfD methods face a notable limitation: they necessitate
a substantial number of demonstrations for effective training, which proves impractical
in clinical settings due to time constraints, resource limitations, and ethical considera-
tions. Additionally, LfD primarily allows the robot to perform at the level demonstrated
by humans, as significant deviations from the demonstrated data can result in unstable
policy learning [96].
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2. AUTONOMOUS NAVIGATION FOR ROBOT-ASSISTED INTRALUMINAL AND ENDOVASCULAR

PROCEDURES: A SYSTEMATIC REVIEW

2.3. FUTURE DIRECTIONS
Navigation is one of the crucial interventional phases of an IPEI procedure. The need
for automation in IPEI navigation will increasingly support the adoption of novel path
planning techniques capable of working in unstructured and dynamic luminal environ-
ments. This section describes the improvements in path planning algorithms that have
been applied in other robotics domains and can be extended to IPEI. Moreover, robot
navigation relies on robot design and its sensing capabilities. Therefore, the essential
robotics capabilities that are yet to be developed to enable navigation systems with a
higher level of autonomy, such as Level of Autonomy 4 (LoA 4), are discussed.

Path planning for continuum robots presents a complex challenge due to the exis-
tence of numerous configurations and multiple internal DoFs that must be coordinated
to achieve purposeful motion [94, 97]. Among the 65 publications reviewed, 32 focus on
path planning for the robot without considering its kinematics, as outlined in Table 2.1.
It is imperative for future studies to prioritize incorporating robotic constraints into ac-
tive path planning. Additionally, in order to navigate through deformable environments,
replanning is required based on sensory information. The objective of replanning is to
minimize navigation errors measured by predefined metrics. Hence, computational ef-
ficiency in path planning becomes crucial for real-time scenarios.

Exploring novel studies on path planning for steerable needles in neurosurgery can
provide inspiration for IPEI applications, as these studies consider curvature constraints
of robotic needles. Liu et al. propose the use of parallel path exploration in their Adap-
tive Fractal Trees (AFT) method for a programmable bevel-tip steerable needle [98]. This
approach utilizes fractal theory and Graphics Processing Units (GPUs) architecture to
parallelize the planning process, thereby improving computational performance and en-
abling online replanning, as demonstrated in simulated 3D liver needle insertions. Sub-
sequently, an Adaptive Hermite Fractal Tree (AHFT) is introduced, combining AFT with
optimized geometric Hermite curves to satisfy heading and targeting curvature con-
straints in path planning [99]. Although originally developed and tested for preoperative
neurosurgery, AHFT is well-suited for GPU parallelization to facilitate rapid replanning.

Hybrid approaches have the potential to leverage the strengths of individual meth-
ods and overcome their limitations. Learning-based approaches, for instance, can be
combined with other techniques to enhance performance. Wang et al. propose a hybrid
approach that combines RL and RRT algorithms for path planning in narrow passages
[100]. This method enhances the ability to explore local space while ensuring efficient
global path planning. Other authors have also presented hybrid path planning meth-
ods for IPEI navigation. For instance, Meng et al. propose a hybrid method that utilizes
BFS and GA for micro-robot navigation in blood vessels of rat livers, aiming to minimize
energy consumption [101].

Optimization-based methods have gained significant attention as a means to ob-
tain optimal preoperative plans while considering complex constraints. Granna et al.
implement Particle Swarm Optimization (PSO) for a concentric tube robotic system in
neurosurgery [102]. Micro-robot path planning in rigid arteries under a minimum effort
criterion utilizes Dynamic Programming [103]. However, the reduction of search space
for constrained optimization problems is crucial for intraoperative path planning. How-
ell et al. propose an augmented Lagrangian trajectory optimizer solver that addresses
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general nonlinear state and input constraints, offering fast convergence and numerical
robustness [104]. The application of an efficient optimization solver with reduced search
space holds potential for intraoperative planning in IPEI scenarios.

As illustrated in Figure 2.3, recent research has witnessed a shift towards learning-
based approaches, which have demonstrated promising success. Ensuring provable be-
havior using DNN remains an open problem, and it is essential to incorporate safety
constraints to automate IPEI navigation tasks and prevent hazardous actions. Some
studies propose safe RL frameworks that utilize barrier functions to restrict robot actu-
ation within a safe workspace [105, 81], with behavior formally verified to ensure safety
[82, 83]. Large policy updates in gradient-based optimization can lead to unsafe robot
behavior. To mitigate this issue, the policy update can be constrained within a trust re-
gion, promoting monotonic improvement in policy performance. Some works employ
f-divergence methods, such as KL-divergence, to restrict the policy search from being
overly greedy [90]. To tackle issues like high costs, environmental interaction risks, and
data inefficiency in current DRL methods, recent research has shifted focus to offline RL,
which learns exclusively from static datasets of previously collected experiences [106].

Commonly used model-free RL techniques often overlook the dynamics of the en-
vironment [107]. However, complexities such as pulsatile flow within the vasculature
or nonlinear behavior of instruments pose challenges for implementing model-free al-
gorithms and necessitate problem simplification. Consequently, the future trend may
involve the adoption of model-based approaches in endoluminal or endovascular envi-
ronments [108]. Model-based approaches are sample-efficient and require less training
data [109]. Hierarchical RL is an untapped field for addressing long navigation tasks, as it
subdivides the interventional phase into steps and applies specific policies to each step,
adapting to their specific requirements. The entire navigation task of IPEI can be divided
and incrementally learned [110]. Recently, curriculum learning has been proposed to fa-
cilitate learning in increasingly complex environments [111].

2.4. CONCLUSION
Navigation is a pivotal element in the success of IPEI procedures, demanding excep-
tional levels of dexterity and proficiency in interventional techniques. The incorporation
of autonomous navigation systems stands to revolutionize IPEI procedures by stream-
lining operational processes. This advancement enables interventionists to shift their
focus from the complexities of instrument manipulation to the critical medical aspects
of the procedure. This chapter conducts a thorough systematic review of various path
planning techniques currently employed in IPEI navigation. This review is crucial as it
sheds light on the capabilities and constraints of existing methodologies. One key as-
pect of this chapter is its focus on identifying and addressing the limitations of current
methods. Addressing these limitations is essential for enhancing the autonomy of ex-
isting robotic systems. Improvements in autonomy are envisaged in areas such as en-
hanced path planning approaches and the augmentation of robotic functions, including
more sophisticated actuation and precise proprioception modeling. The adoption of
autonomous navigation in IPEI promises to broaden the accessibility of these advanced
medical procedures to a wider patient demographic.
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3
PATH PLANNING FOR

ENDOVASCULAR CATHETERIZATION

UNDER CURVATURE CONSTRAINTS

Planning a safe path for steerable catheters is one of the major challenges of endovascu-
lar catheterization. State-of-the-art methods rarely consider the catheter curvature con-
straint and reduced computation time of path planning which guarantees the possibility
to re-plan the path during the actual operation. In this chapter, a fast two-phase path
planning approach under the robot curvature constraint is proposed. Firstly, the vascular
structure is extracted and represented by vascular centerlines and corresponding vascular
radii. Then, the path is searched along the vascular centerline using Breadth First Search
(BFS) strategy and locally optimized via the Genetic Algorithm (GA) to satisfy the robot
curvature constraint. This approach (BFS-GA) is able to respect the robot curvature con-
straint while keeping it close to the centerlines as much as possible. The optimization
search space can also be reduced, and parallel optimization techniques can be applied
to decrease the computation time. The method’s high efficiency is demonstrated in both
two-dimensional and three-dimensional space scenarios. The results showed the plan-
ner’s ability to satisfy the robot curvature constraint while keeping a low computation
time cost compared with sampling-based methods. Path replanning in femoral arteries
can reach an updating frequency at 6.4±2.3Hz. The presented work is suited for surgical
procedures demanding satisfying curvature constraints while optimizing specified crite-
ria. It is also applicable for curvature-constrained robots in narrow passages.

This chapter is available as:
Zhen Li, Jenny Dankelman, and Elena De Momi. “Path planning for endovascular catheterization under curva-
ture constraints via two-phase searching approach”. In: International Journal of Computer Assisted Radiology
and Surgery 16.4 (2021), pp. 619–627. DOI: 10.1007/s11548-021-02328-x.
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3.1. INTRODUCTION
Percutaneous Coronary Intervention (PCI) is used to widen stenotic and occluded blood
vessels by pushing the plaque aside and placing a stent nearby to restore and maintain
blood circulation. For example, in Figure 3.1, a catheter is inserted from a femoral artery
and targeting the occlusion site.

Tool and navigation guidance can lower the skill requirements for percutaneous treat-
ment. Nowadays, steerable catheters have been developed via mechanical, magnetic,
and fluidic actuation principles. Steerable catheters have different bending capabilities
exhibiting a minimum bending radius. The minimum bending radius found in literature
lies between 8.13mm and 171mm [1].

Path planning is one of the major challenges of endovascular catheterization. Vascu-
lar centerlines were seen as a reference trajectory, and centerline extraction has aroused
the interest of researchers. A graph matching method is proposed to establish the cor-
respondence between the 3D pre-operative and 2D intra-operative skeletons extracting
from fluoroscopic images, and then the two skeletons are registered by skeleton defor-
mation [2]. Nevertheless, the path planning approach which merely follows centerlines
might be infeasible when the path curvature exceeds catheter bending capability. For
example, if the robot is attempting to follow the centerlines (like in [2]), the minimum
bending radius is less than 1mm at the bifurcation (Figure 3.1B), which exceeds the robot
bending capability 13.1mm [3] and makes the robot fail to follow.

A performant path planner should provide a reliable path within the catheter’s capa-
bility. Sampling-based methods such as extended Probabilistic RoadMap (PRM) [4] and
RRT-connect [5] are able to plan the path in configuration space. These methods have
been coupled with the Dubins path and Bézier spline to generate curvature-bounded
paths. AFT [6] takes advantage of the fractal theory and the architecture of GPUs paral-
leling the planning process. It has a higher success rate than RRTs, as demonstrated for
needle insertions in a complex environment [6]. However, the success rate of RRTs or
AFT is not always ensured.

To overcome the drawbacks mentioned above, a compromise between following the

Figure 3.1: Clinical background (A) Coronary endovascular procedure (B) Femoral endovascular procedure
(The anatomy models are made using BodyParts3D, ©2008 The Database Center for Life Science licensed un-
der CC Attribution-Share Alike 2.1 Japan).
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vascular centerlines and satisfying the curvature constraint is needed. An approach was
implemented that involves gradually reducing the arch height of the path away from the
vascular centerline until it meets the curvature constraint [7]. An enhanced ACO method
is introduced for optimal vascular path planning, considering factors such as catheter di-
ameter, vascular length, diameter, as well as curvature and torsion [8]. The computation
time associated with this method ranged from 2 s to 30 s, with an average of 12.32 s. Also,
in [9], a backbone curve method was implemented to optimize the path under kinematic
constraint for a cable-driven continuum robot in a cardiovascular system. Nevertheless,
this work considers the constrained optimization problem along the overall path with-
out reducing the optimization search space.

More importantly, reducing computation time would help path planners to be ap-
plied in path replanning. Intra-operatively, planned paths might be infeasible or less
accurate due to environment deformations and sensing uncertainties. The work in [10]
quantified the displacement of arteries during endovascular catheterization: the aortic
bifurcation was mostly displaced in a cranial direction with the median cranio-caudal
dislocation of 6.7 mm (min 2.1, max 12.3). Considering that the high computation time
of 12.3 s [8] can barely make the path adapted to the deformation, the need for real-time
path planning with low computation time is highlighted. In practical applications, the
optimal frequency for replanning is determined by several key factors: the tracking fre-
quency of the catheter tip position, the frequency of vision sensing feedback, and the
operational frequency of the controller. It is essential for the path planner to function
at a frequency that not only effectively utilizes the latest data from the sensing mod-
ules but also delivers instructions to the controller in a timely manner. For instance, the
frequency of the electromagnetic tracking system (Aurora) is reported to be 40 Hz [11],
while the frequency for intra-operative model reconstruction stands at 1.25 Hz [2], and
the controller operates at a frequency of 10 Hz [12]. The controller’s operational fre-
quency of 10 Hz naturally serves as the practical ceiling for the path planner’s frequency.
Path planning at a frequency exceeding that of the controller’s operational capacity of-
fers minimal additional benefit. Therefore, a pragmatic strategy involves setting the path
planner’s frequency at or slightly above the 10 Hz mark of the controller. This ensures
that the path planner remains responsive to control commands and incorporates the
most current high-frequency sensor data effectively.

In this chapter, a fast two-phase path planning approach is proposed, considering
the robot curvature and time constraints.

3.2. METHODOLOGY

The proposed approach is a two-phase searching framework (see the pipeline in Fig-
ure 3.2). The inputs of the path planner are the centerline points pi and their minimum
distances to the vascular walls ri , where i is the running index (detailed in Sec 3.2.1).
Globally, a cubic B-spline curve as is found along the vascular centerlines from a user-
defined initial point p0 to a goal point pG (detailed in Sec 3.2.2). Locally, the aforemen-
tioned curve is optimized to satisfy the catheter curvature constraint. The final output
curve a f is the curve with locally optimized curve segments (detailed in Sec 3.2.3).
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Figure 3.2: Pipeline for the proposed path planning approach: given centerlines and radii, the global planner
computes a tentative curve, then the local planner optimizes the curve to satisfy the catheter curvature con-
straint.
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Figure 3.3: The schematic view of: (A) Voronoi regions to extract centerlines and radii, where Voronoi vertices,
Voronoi edges, and centerlines are blue, yellow, and green, respectively. (B) Example of path points definition
(C) Example of curve segments to be optimized.

3.2.1. CENTERLINE EXTRACTION

Our approach employs the method demonstrated in [13], which treats the centerlines as
the minimal action paths linking Voronoi vertices inside the model surface. By solving
a nonlinear hyperbolic equation (Eikonal equation) followed by an ordinary differen-
tial equation, the approach [13] provides the minimal action paths points pi that locally
maximize their minimum distances ri to the boundary of the surface. The Vascular Mod-
eling Toolkit (VMTK) library based on [13] was used to automatically extract pi and ri .
For example, Figure 3.3A shows the Voronoi regions with Voronoi vertices (blue), Voronoi
edges (yellow), and extracted centerline points (green).
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3.2.2. GLOBAL PLANNER
From the global planner, a tentative curve from an initial point p0 to a goal point pG

inside blood vessels is obtained (see Figure 3.3B). Each waypoint is presented in the N-
dimensional Cartesian coordinate system (N = 2 or 3).

pi = [xi 0, xi 1, · · · , xi (N−1)] i = 0, · · · ,G (3.1)

The initial point p0 is regarded as the exploration tree root. The BFS strategy starts at
the tree root and explores the k-nearest neighbor centerline nodes at the present depth
prior to moving on to the nodes at the next depth level. It stops when the goal point is
visited. Thus a list of centerline points from p0 to pG is obtained by navigating through
the BFS tree.

The list of points is smoothed via cubic B-spline interpolation and a tentative B-
spline curve as is then obtained. Given a knot sequence t0, · · · , tG , B-splines with de-
gree M = 3 can be defined by the Cox–de Boor recursion formula as (3.2), where w is the
parametric space of the B-spline.

0pi (w) =
{

1 ti ≤ w < ti+1

0 otherwise

M pi (w) = w − ti

ti+M − ti

M−1pi (w)+ ti+M+1 −w

ti+M+1 − ti+1

M−1pi+1(w)

i = 0, · · · ,G (3.2)

3.2.3. LOCAL PLANNER
The curvature si at pi along the B-spline interpolated curve is defined as (3.3) in a generic
form. Specifying N = 3, the expression is simplified as (3.4).

si =

√
1
2

N−1∑
j=0

N−1∑
k=0

(ẋi j ẍi k − ẋi k ẍi j )2

(
N−1∑
j=0

ẋ2
i j )

3
2

i = 0, · · · ,G (3.3)

si =
√

(ẋi 0ẍi 1 − ẋi 1ẍi 0)2 + (ẋi 0ẍi 2 − ẋi 2ẍi 0)2 + (ẋi 1ẍi 2 − ẋi 2ẍi 1)2

(ẋ2
i 0 + ẋ2

i 1 + ẋ2
i 2)

3
2

(3.4)

The curvature constraint is expressed as (3.5), and S is the allowed maximal curvature
value depending on robot kinematic constraints.

si ≤ S for i = 0, · · · ,G (3.5)

It is evaluated for the tentative curve as first. If the constraint is satisfied, as will
be the final path without further optimization. Otherwise, local optimization will be
applied. The curve to be optimized a0 is defined by the curvature at path points, as
outlined in (3.6).

If si > S for i = i0, · · · , iF

Then a0 = [pi0−∆, · · · , piF +∆]
(3.6)
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Figure 3.4: Schematics of the genetic algorithm procedure for local optimization.

where a0 is the curve segment exceeding robot bending capability and it is represented
by a list of waypoints (see Figure 3.3C). The variable∆ represents a user-defined marginal
capacity allocated for local optimization, set at a value like 5% of the total number of path
points. This margin is instrumental in facilitating the seamless connection between the
local curve a0 and the global curve.

GA finds the optimal re-interpolated curve segment. In Figure 3.4, there are 8 chro-
mosomes making up the initial population. Each chromosome A j ( j = 1 · · ·8) is com-
posed of 2 genes, which are the parameters determining the re-interpolated B-spline
curve a j . Specifically, the gene g j 1 is the number of points that are assigned with weight
0 when performing B-spline fitting; the gene g j 2 is the smoothness value that affects
the trade-off between smoothness and displacement during spline fitting, and it is the
upper border of the error sum of displacement squares. Then the fitness f j is com-
puted for each re-interpolated curve segment according to a cost function. Next, the
best re-interpolated curves are selected for mating. For example, there are 4 chromo-
somes selected for mating in Figure 3.4. Then the crossover and mutation of genes are
performed so that the population is updated. During mutation, a Gaussian distributed
noise ∆g j ∼ N (µ, σ2) is added to the genes. Finally, the optimal curve segment is se-
lected from the population after ng iterations.

The cost function is designed to find the optimal path by a trade-off between the
distance to vascular walls, path length, and curvature. The constrained optimization
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problem is formulated as

min f (a) = w1gd (a)+w2gs (a)+w3gl (a)

s.t. si ≤ S for i = i0 −∆, · · · , iF +∆
di ≤ ri for i = i0 −∆, · · · , iF +∆

(3.7)

where gd (a) is the mean value of normalized distances to the centerlines, gs (a) is the
mean value of normalized curvatures, and gl (a) is the normalized path length.

The mean value of the normalized distances to the centerlines gd (a) is

gd (a) = mean(dc /r ) (3.8)

dci = min
j=0,··· ,G

||p0
j −pi || i = i0 −∆, · · · , iF +∆ (3.9)

where dc is the distance from B-spline curve a to the centerline. At the i-th index, dci is
computed by the minimum value of Euclidean distance from the new point pi to cen-
terline points p0

j .

The mean value of normalized curvatures gs (a) is formulated as

gs (a) = mean(s)/S (3.10)

The normalized path length gl (a) is presented as (3.11), where the length l (a) is a cu-
mulative sum of the distance between adjacent points. In specific medical procedures,
such as catheterizations and endoscopies, the path length is a critical consideration.
Opting for shorter paths can lead to reduced procedural duration, which may in turn
decrease the likelihood of patient discomfort and lower the risk of complications. How-
ever, it is important to note that in certain scenarios, the variability in path length may
be inherently limited due to anatomical constraints. Nonetheless, strategically shorter
paths could be beneficial in minimizing tissue damage and avoiding critical structures,
such as plaques. Conversely, longer paths in these procedures would increase wear and
tear on instruments, such as catheters. This is particularly pertinent in catheterizations,
where the instruments are required to navigate through narrow and convoluted paths.
Additionally, extensive bending or manipulation of these instruments could adversely
affect their structural integrity.

gl (a) = l (a)/l (a0) (3.11)

l (a) =
iF +∆∑
i0−∆

||pi+1 −pi || (3.12)

Moreover, there are two constraints in (3.7): the curvature constraint and the colli-
sion avoidance constraint. In the context of the collision avoidance constraint, ensuring
that the distance to the centerline remains smaller than the vascular radius (specifically,
the minimum distance to the vascular walls, denoted as ri ) guarantees that the point is
positioned within the blood vessels. Since the path points are already refined in the B-
spline interpolation in (3.2), the collision avoidance constraint is checked merely for the
path points to reduce computational cost.
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The constrained optimization problem (3.7) is converted to an unconstrained one
via moving constraints to the objective function as

min f (a) = w1gd (a)+w2gs (a)+w3gl (a)

+w4 max{0, s −S}+w5 max{0,dc − r }
(3.13)

Here, in order to satisfy the hard constraints (curvature constraint and collision avoid-
ance), the weights assigned to the cost function should have a significant difference
between w4, w5 and others, for example, w1 = 1, w2 = 1, w3 = 1, w4 = 1000, w5 = 1000.
When the hard constraints are satisfied, the last two elements are 0. Otherwise, a large
number will be added to the cost function value f (a), indicating that the corresponding
solution a will not be selected since the procedure intends to find the minimum cost
value. After ng iterations, if the optimal cost value is greater than a reasonable threshold
(such as 1000), which means the constraints are not fully satisfied, there is no feasible
solution until now. To look for new solutions within the time limit, the number of it-
erations ng will be increased. If the time limit is reached and there is still no feasible
solution found, the path planner fails to find a path respecting all constraints.

There may be several portions of the tentative curve exceeding the allowed maximum
curvature. In that case, each portion is assigned to an individual local planning thread.
Multiple threads are carried on in parallel, instead of being conducted in serial to re-
duce computation time. After all the threads are done, the final path a f under curvature
constraint is obtained.

3.2.4. EVALUATION METRICS
Multiple criteria are chosen for performance evaluation. The time cost t is the time spent
on path planning in a single trial from start to finish. The path length (3.12) is one of the
essential components to evaluate the path optimality, and it is normalized by dividing
it by the shortest distance from the initial point to the goal point. The curvature (3.3) is
used to evaluate the bending extent of a curve.

The minimum distance to vascular walls at point pi can be obtained by the subtrac-
tion of two elements: the vascular radius ri and the distance to vascular centerline dci

given in (3.9). The distance to the vascular wall represents a safety margin ensuring colli-
sion avoidance between the catheter tip and the vascular wall. To prevent physical harm
such as scratching to soft tissues if the catheter comes in contact with vascular walls, the
distance to the vascular wall should not be less than the outer radius of the catheter.

The success rate is defined as the fraction or percentage of success among a number
of attempts as δ = ns /n, where ns is the successful times to find a path and n is the
number of attempts. For the proposed two-phase searching approach in this chapter,
a feasible path solution can be found as long as there is a feasible solution between the
initial and goal points.

3.2.5. EXPERIMENTAL SETUP
This work targets endovascular procedures such as PCI, Endovascular Aortic Repair (EVAR),
Transcatheter Aortic Valve Implantation (TAVI), and iliac recanalization. The datasets in-
clude models such as the coronary artery, aorta, femoral artery, peripheral arterial, etc,
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to evaluate and validate the approach. The datasets are classified into 4 groups, includ-
ing 2D (G1, G2) and 3D (G3, G4) space scenarios.

The dataset G1 contains 2D images describing femoral arteries (pixel resolution of
220×294 and spacing of 0.68mm). The dataset G2 includes 2D images describing lower
limb arteries (pixel resolution of 2822× 1539 and spacing of 0.37mm). The dataset G3
includes several 3D mesh models: (i) A model which takes patient specific Computed
Tomography (CT) images as inputs, typically in a 512×512×737 voxel dimension with a
voxel spacing of 0.6445×0.6445×0.8mm; (ii) A model which takes patient specific Mag-
netic Resonance Imaging (MRI) images as inputs, typically in a 512×64×512 voxel di-
mension with a voxel spacing of 0.7813× 2.0× 0.7813mm; (iii) An embeddable model
of the lower limb made from anatomical parts, with the physical dimension of 852 ×
116×169mm; (iv) A mesh model of a single femoral artery with a physical dimension of
37×88×450mm. The dataset G4 includes a 3D mesh model describing coronary arteries
in a physical dimension of 102×89×101mm. Table 3.1 provides other information of the
datasets, among which the tortuosity is used to measure the arc-chord ratio of vascular
structure.

The inputs of the path planner are obtained as follows. First, the centerline is ex-
tracted using the VMTK module on the platform 3DSlicer. Second, Gaussian distributed
noise ∆p0,G ∼ N (µ = 0, σ = 10) is added to the initial and goal points in each trail to
increase data variability. Third, without loss of generality, the path planner is designed
in a generic form which takes the robot’s specification S as an input. The experiments
are carried out on a computer equipped with an Intel (R) Core (TM) i5-8250U CPU @
1.60GHz 1.80GHz processor and 8GB RAM.

The proposed approach is compared with sampling-based methods RRT and RRT*
[18]. Compared with the basic RRT and RRT* [19], the extended ones [18] take random
samples on centerlines instead of randomly sampling inside the vascular model. The
parameter specification is given as follows: the maximum number of samples to take
before timing out is 4048, the probability of checking for a connection to the goal is 0.1,
and the number of nearby branches to rewire is 32.

3.2.6. STATISTICAL ANALYSIS

The statistically significant difference between the proposed method and others will be
evaluated via the Kruskal-Wallis test in this work. It is a non-parametric test that does
not assume a normal distribution of populations. The null hypothesis is that there is
no significant difference between solutions using different methods. If the significance
level α = 0.05, the null hypothesis is accepted as having p > 0.05. If p < 0.05, the null

Table 3.1: The datasets description and related parameters of experiments.

dataset subjects tortuosity source S (mm−1) trials
G1 5 2.365±0.100 - 0.08 250
G2 3 1.067±0.015 [14] 0.10 150
G3 4 1.075±0.045 [15],[16], [17] 0.08 200
G4 1 1.501±0.120 [15] 0.20 100
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Table 3.2: The performance comparison regarding to success rate.

Method G1 G2 G3 G4
RRT [18] 0.980 0.760 0.890 0.910
RRT* [18] 0.988 0.740 0.890 0.950
BFS-GA 1 1 1 1

hypothesis is rejected, which demonstrates that there is a significant difference between
the proposed method with others.

3.3. RESULTS AND DISCUSSION
The proposed approach is performed on our datasets and compared with sampling-
based methods. Figure 3.5A shows that with respect to computation time, the proposed
method has a smaller median and variance. In specific scenarios, where the blood ves-
sels are slender and narrow, collision checking and avoidance of RRT series could take
more time than continuous sampling along the vascular centerlines. More importantly,
to save time, the approach optimizes curve segments in the local planner rather than
considering the curvature constraint in overall path planning. This is because, in most
cases, the curvature limitation would be respected except for some sharp turns along
the centerlines. Therefore, the proposed method takes less computation time. Reducing
computation time would help the path planner to be applied in path replanning. For
example, the time cost on G1 is 191±102ms and the path replanning can achieve an up-
dating frequency at 6.4±2.3Hz. Compared with serial thread processing in the proposed
local planner, the speed of parallel thread processing improves noticeably. For instance,
the time is reduced by 41% (p < 0.05) when processing two threads in parallel on the
dataset G4.

For path length, Figure 3.5B shows that the proposed method has a smaller median
value, while the variance is similar to the results of other methods. The random sampling
property of RRT series leads to path points locating not always on vascular centerlines.
Floating around the centerlines results in paths that can not be ensured to be the shortest
ones. To avoid this drawback, the proposed method adopts a BFS strategy within the
vascular tree, ensuring the path solution is the shortest one. Moreover, the local planner
pushes the path points in the same direction away from the centerlines, avoiding bi-
directional floating around the centerlines that increases path length.

Figure 3.5C shows that the proposed method increases the distance to vascular walls
by keeping close to centerlines. It resulted not only from the sampling property analyzed
in the previous paragraph, but also from the specified optimization criteria in the local
planner. Figure 3.5D demonstrates that the curvature constraint is satisfied using the
proposed method and the curvature median value is decreased. Specifically, the curva-
ture constraint is respected in the local planner. The median value is also decreased by
avoiding bi-directional floating around the centerline.

Table 3.2 shows that the success rate of the method proposed in this study is higher.
As long as a feasible path exists, the proposed method is able to find it by navigating
through the tree and optimize it locally. RRT series can not ensure a path could be found
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(A) (B)

(C) (D)

Figure 3.5: The performance comparison between the proposed method and sampling-based methods [18]
according to (A) time cost, (B) path length, (C) distance to vascular walls, and (D) curvature. (∗, p < 0.05 using
Kruskal-Wallis test).

in a specific trail due to its incompleteness.

In short, the results show that the proposed method achieves a higher efficiency and
better performance. It is further applicable for path planning in narrow passages for
curvature-constrained robots.

To validate the effectiveness of the proposed path planner, it was integrated with a
robotic catheter system and subjected to testing in an in-vitro experimental setup. A
demonstration of the integrated system can be found in the accompanying materials
provided by ATLAS [20]. This validation process aimed to assess the planner’s perfor-
mance and ensure its suitability for real-world applications in endovascular interven-
tions.
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3.4. CONCLUSION
In this chapter, a fast two-phase path planning approach, named BFS-GA, is proposed
for endovascular catheterization. Vascular centerlines were seen as a reference trajec-
tory assisting catheterization in literature. State-of-the-art methods rarely consider the
catheter curvature constraint. The presented approach is able to respect robot curva-
ture constraints while keeping it close to the centerlines as much as possible. Moreover,
researchers in the literature considered merely the constrained optimization problem
along the overall path without reducing search space. In this work, the optimization
problem is formulated and solved for specific portions of the path, with parallel op-
timization employed to reduce the computation time. The limit is that it could lose
accuracy in intra-operative interventions resulting from vasculature deformations and
sensing uncertainties. Future works will concentrate on developing an accurate intra-
operative path planner. A real-time path replanning algorithm based on a pre-operative
path should also be proposed. Such an algorithm should consider additional factors like
the unpredictable deformation of environments and the uncertainties of model sensing
(e.g., the tip position and vascular model).
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4
POSITION-BASED DYNAMICS

SIMULATOR OF VESSEL

DEFORMATIONS FOR PATH

PLANNING

A major challenge during autonomous navigation in endovascular interventions is the
complexity of operating in a deformable but constrained workspace with an instrument.
Simulation of deformations for it can provide a cost-effective training platform for path
planning. The aim of this chapter is to develop a realistic, auto-adaptive, and visually
plausible simulator to predict vessels’ global deformation induced by the robotic catheter’s
contact and cyclic heartbeat motion. Based on a Position-based Dynamics (PBD) ap-
proach for vessel modeling, the Particle Swarm Optimization (PSO) algorithm is employed
for an auto-adaptive calibration of PBD deformation parameters and of the vessel’s move-
ment due to a heartbeat. In-vitro experiments were conducted and compared with in-
silico results. The end-user evaluation results were reported through quantitative perfor-
mance metrics and a 5-Point Likert Scale questionnaire. Compared with literature, this
simulator has an error of 0.23±0.13% for deformation and 0.30±0.85mm for the aortic
root displacement. In-vitro experiments show an error of 1.35±1.38mm for deformation
prediction. The end-user evaluation results show that novices are more accustomed to us-
ing joystick controllers, and cardiologists are more satisfied with the visual authenticity.
The real-time and accurate performance of the simulator make this framework suitable
for creating a dynamic environment for autonomous navigation of robotic catheters.

This chapter is available as:
Zhen Li, Enrico Manzionna, Giovanni Monizzi, Angelo Mastrangelo, Maria Elisabetta Mancini, Daniele An-
dreini, Jenny Dankelman, and Elena De Momi. “Position-based dynamics simulator of vessel deformations
for path planning in robotic endovascular catheterization”. In: Medical Engineering & Physics 110 (2022),
p. 103920. DOI: 10.1016/j.medengphy.2022.103920.
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4.1. INTRODUCTION
Vascular disease is a common, abnormal condition of blood vessels, and it can be se-
vere. Narrowed or obstructed arteries, typically due to atherosclerosis, affect blood cir-
culation. PCI is a reliable and valid procedure for patients with symptomatic coronary
stenosis. Based on patient characteristics, different access sites can be selected. Among
them, radial access is recommended (Class I, Level A) as the standard approach due to
its fewer vascular complications compared with the transfemoral approach [1].

Intra-operative path planning and control for a robotic catheter will increase the level
of autonomy in medical robotics [2]. Vessel deformations in these procedures can be
very high. The displacement of vessels due to the collision of the catheter with the aor-
tic wall was quantified in [3, 4, 5]: the aortic bifurcation was mostly displaced in a cra-
nial direction with the median craniocaudal dislocation of 6.7 mm (min 2.1 mm, max
12.3 mm). A displacement at the aortic bifurcation of (1.4±1.1) mm was reported due to
the passing of a stiff guidewire [6]. This deformation of vessels makes robotic catheter-
ization very challenging and will require training. For training, a virtual endovascular
catheterization system that simulates the characteristics of percutaneous devices and
the vasculature can provide a cost-effective and safe training environment for robotic
catheter manipulation compared with phantoms, ex-vivo or in-vivo experiments. More-
over, important intra-operative data can be collected (e.g., the catheter tip trajectory)
and post-processed to gain valuable insight for improving the outcome and developing
autonomous interventions [7]. Peral-Boiza et al. [8] presented a virtual reality training
platform involving the progress of a flexible endoscope with a steerable tip into a virtual
rigid vascular phantom. Hao et al. [9] proposed a personalized cardiovascular interven-
tion simulation system that can simulate the complex interactions between vessels and
tipped guidewires.

To model and simulate intra-operative vessel deformations, different prediction ap-
proaches were developed using Mass-Spring Model (MSM) [10], Finite-Element Method
(FEM) [6], and Position-Based Dynamics (PBD) [11]. Compared with the first two meth-
ods, PBD is more suitable for real-time simulations because it does not need a complex
mesh generation [11, 12, 13]. Although PBD is not as accurate as other methods, its
high efficiency and close match to real deformations have been reported [14, 15]. How-
ever, PBD parameters do not have physical meanings, and thus they should be properly
tuned.

Different modeling methods for catheters and guidewires are studied. PBD and shape
matching approaches were applied for endoscope modeling [8]. FEM, MSM [16], and
rigid multibody links [17] were also developed for catheters and guidewires [18]. Con-
cerning the steerable tip, Cosserat rod [19], elastic rod [9], constant-curvature [20], and
rigid-link [21] were extensively exploited as modeling approaches of steerable devices.
While the Cosserat rod provides an exact solution to the static equilibrium of the device,
the computational complexity and cost become high when extending the modeling to
dynamics. On the other hand, the rigid-link modeling approach is well-established, but
the number of variables increases dramatically when a realistic model is of interest. Con-
stant curvature modeling may constitute a valuable trade-off between the Cosserat rod’s
complications and assumptions of rigid-link models [22].

Current research extensively explores various aspects such as vessel deformations
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due to device contact, the impact of heartbeat motion on vessel movement, and the
steerability of robotic catheters. However, a comprehensive modeling and simulation
approach that integrates all these elements within a single framework has not been re-
ported in existing literature. This work distinguishes itself with three major contribu-
tions compared to existing studies: (1) It models the deformations of vessels due to de-
vice contact as global distributions, in contrast to the localized deformation approach
using an individual bounding box, as demonstrated in the work of Ye et al. [11]; (2) It
incorporates vessel movement induced by heartbeat motion; and (3) It employs a more
universal and autonomous method for calibrating patient-specific parameters.

4.2. MATERIALS AND METHODS

4.2.1. MODELING METHOD OF VASCULATURE
Mimicking intra-operative deformations is essential for providing a dynamic environ-
ment in robotic system simulation. To achieve this goal, a vasculature deformation
framework is proposed, as depicted in Figure 4.1 (top left). This framework illustrates the
workflow of a patient-specific vessel mesh model extracted from Computed Tomography
Angiography (CTA) images and deformed via the PBD approach. A series of optimization
processes were performed to calibrate our modeling and simulation framework. To sim-
ulate the deformable properties of the aorta accurately, the vasculature PBD parameters
were calibrated using PSO based on the data reported in the reference [11]. The vessel’s
movement due to a heartbeat was also calibrated through PSO according to the cyclic
movement of the aortic annulus [23].

The data collection followed the ethical protocol approved by the Centro Cardio-
logico Monzino (CCM) under the assigned code of 02_21 PA. The CTA images are from
a patient with cardiac disease. The simulation environment was developed in Unity
2020.3.7 using NVIDIA FleX on a workstation equipped with an Intel Core i9-9900KF CPU
@3.60GHz processor, 32GB RAM, NVIDIA GeForce GTX 1660 GPU with CUDA 11.0. The
time step of the simulation was set as 0.02 s.

VASCULATURE RECONSTRUCTION

First, a vessel mesh model was extracted from CTA images. Pre-operative CTA images
were acquired following the typical Multidetector Computed Tomography (MDCT) scan
strategies: cardiac Electrocardiogram (ECG)-synchronized CTA of the aortic root and
heart followed by a non-ECG-synchronized helical CTA of the thorax, abdomen and
pelvis. Respiratory motion is also a common artifact seen in cardiac CT [24]. There are
novel studies regarding motion correction under a free-breathing acquisition mode [25,
26]. In this study, a breath-holding method was employed for CT scan acquisition, and
the respiratory motion was assumed to be negligible. The image data were acquired with
a voxel size of 0.789×0.789×0.625 mm and a voxel number of 512×512×832.

Semi-automatic segmentation of the vessels and 3D mesh model reconstruction were
performed using the AW server (GE Healthcare), followed by a manual refinement pro-
cess. The 3D models with embedded lesions were exported under the support of the 3D
suite (GE Healthcare). After that, to better represent the aortic geometry and avoid un-
desired section distortion, a constant thickness of 1 mm was constructed for the aorta
and a thickness of 0.55 mm for the coronaries using Meshmixer (Autodesk, Inc., CA, US),
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Figure 4.1: Overview of the proposed modeling and simulation system, presenting the workflow from the ex-
traction of the patient-specific deformable vessel mesh model (top left, Sec 4.2.1) and the device simulation
procedure (bottom left, Sec 4.2.2) to the visualization of the simulated training environment (right).

considering that the thickness of aorta is between 0.97 mm and 1.99 mm [27] and the
thickness of coronaries is between 0.55 mm and 1 mm [28]. Post-processing was ap-
plied using MeshLab (ISTI - CNR) [29] by applying a simplification of the mesh with the
quadratic edge collapse decimation with a default quality threshold of 0.3 and the target
number of faces of 7000. Finally, smoothing was carried out using a Taubin smoothing
technique [30] with scaling factors λ= 0.5, µ=−0.53 and 10 smoothing steps.

POSITION-BASED DYNAMICS (PBD) APPROACH

As first proposed by Müller et al. [31], the PBD approach discretizes an object into a
particle system composed of a set of particles. Then it computes the time evolution of the
system by directly updating particles positions, subject to a set of equality and inequality
constraints. The type of constraints among particles can influence the system’s behavior.
For generating deformations of objects, a multi-cluster shape matching constraint [32]
is considered. Specifically, the particle system is represented as a set of clusters, and the
clusters can overlap. Since one particle can belong to multiple clusters, the final position
correction is obtained by averaging all goal positions of the belonging clusters.

The PBD approach implementation is based on the simulation library NVIDIA FleX.
A realistic elastic behavior is obtained by appropriately selecting cluster-related param-
eters: cluster spacing (sc , the distance between adjacent clusters), cluster radius (rc , the
radius of each cluster region) and cluster stiffness (tc ∈ [0,1], the extent to which adjacent
cluster are constrained to each other). The cluster spacing and radius would influence
the overlapping of adjacent clusters and the particles’ goal positions.

The other PBD parameters keep their values fixed across all the simulations (See Ta-
ble 4.1). The particle spacing and particle radius are set in accordance with the follow-
ing rules: the number of particles that discretizes the whole aorta should be less than
10000, which is the maximum allowable number in NVIDIA FleX, and the particle spac-
ing should be less than the two times of particle radius to maintain connectivity. The
solid rest and collision distance were set to 2.5 mm respecting the particle radius. Fur-
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Table 4.1: PBD parameters kept constant for all simulations.

Category Parameter Value

FleX Container Particle Radius 3.0 mm
Solid Rest 2.5 mm
Particle Friction 0.1
Collision Distance 2.5 mm

FleX Soft Asset Particle Spacing 2.1 mm
Surface Sampling 6.0

FleX Soft Skinning Skinning Falloff 100
Skinning Max Distance 20

Figure 4.2: Overview of the steps to obtain the strain: (A) Based on the simplified geometry of fibers, (B) an
external force (F ) is applied in the radial direction (B) on the vasculature particle system. (D) Then the change
of radius (r 0,r ) is converted from the particle position (x0

k , xk ).

thermore, the flex soft skinning was determined for proper mesh rendering. In the simu-
lation, fixed constraints were applied as boundary conditions, eliminating all movement
degrees of freedom for particles in selected regions. These regions include the distal
extremities of the internal and external iliac arteries, the supra-aortic vessels, and the
coronary arteries.

VASCULATURE PBD CALIBRATION

In this study, the stress-strain curve from [11] is used for calibration. Ye et al. [11] pre-
sented a geometric vessels model and recorded a sequence of the forces acting on the
vertex in the inner wall and the subsequent displacement. A stress-strain curve (σ− ϵ)
was obtained, which depicts the biomechanics properties appropriately as reported [11].
In order to obtain the stress-strain curve from the virtual system, an assumption is made
for simplicity.

Assumption 1: It is assumed that the vessels can be considered as a composition of
two main families of fibers, which are axially symmetric to each other (Figure 4.2A). Two
fibers yield the same contribution along the circumferential direction.

Therefore, the whole fiber’s stretching is directly linked to the extension in the cir-
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cumferential direction. The displacements along the circumference can be associated
with the elongation or shortening of the vessels’ internal radius (Figure 4.2B). An exter-
nal force (F ) is applied on the vasculature in the radial direction and the change of radius
(initial radius r 0, deformed radius r ) is computed from the particle position. Specifi-
cally, an external distributed force (F ) is applied on the vasculature particle system over
a surface with an area of A in the radial direction (Figure 4.2C). At a specific mark (i.e.,
the k-th particle), its position is deformed from x0

k to xk in a three-dimensional space
(Figure 4.2D). Thus the internal radius is estimated by computing the distance from the
particle to the center of the cross-section of vessels xC :

r 0 = ||x0
k −xC || (4.1)

r = ||xk −xC || (4.2)

Therefore, the stress-strain curve is computed by:

σ= ||F ||/A (4.3)

ϵ= (r − r 0)/r 0 (4.4)

The PSO approach [33] is employed to optimize the PBD cluster parameters (sc ,rc , tc )
by minimizing the Root Mean Square Error (RMSE) (ev ) compared with the reference
stress-strain curve:

min
sc ,rc ,tc

ev with ev =
√∑M

m=1(ϵ̂m −ϵm)2

M
(4.5)

where ϵ̂m is the mth strain of the reference stress-strain curve and ϵm is the mth strain
of the simulated strain stress curve with m that spans from 0 to M , where M is the total
number of samples.

The PSO algorithm considers each solution as a particle of a swarm that moves through
the search space to find an optimal position. Each particle has a positionχi = (x1

i , x2
i , ..., xN

i )

and a velocity vi = (v1
i , v2

i , ..., v N
i ) in an N-dimensional configuration space, where i de-

notes the i th particle and N represents the dimension of the configuration or number
of unknown variables. During every iteration, each particle is updated by following two
“best" values: the position vector of the local optimal solution (“cognitive" item) this
particle has achieved so far and the global optimal position (“social" item), obtained so
far, by any particle in the population according to:

v k
i = w v k

i + c1u1(∗pk
i −χk

i )+ c2u2(∗g k −χk
i )

χk+1
i =χk

i +v k+1
i

(4.6)

where v k
i is the velocity of the i th particle at the kth iteration, and χk

i is the current
position of the i th particle at the kth iteration. c1, c2 are positive constants, and u1, u2

are two random variables with a uniform distribution between 0 and 1. In this equation,
w is the inertia weight which shows the effect of the previous velocity vector on the new
vector, ∗p is the local optimal and ∗g is the global one. The hyperparameters of the PSO
algorithm were set as c1 = 0.5, c2 = 0.3 and w = 0.3.
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Figure 4.3: Simulation scheme for heartbeat movement: a colliding cylinder representing the heart applies an
external force on the aortic root, and causes annulus displacement da between two subsequent time steps (A)
and (B).

The reference curve with a range of [0,0.58] MPa [11] was sampled with a constant
interval of 0.02 MPa stress. Those values were given as an external force to the aortic wall
using (4.3) and the corresponding strains were computed with (4.4). Once the stress-
strain curve was obtained, its RMSE ev was computed relative to the reference and re-
garded as the particle penalty. At this point, the PSO algorithm tries to reduce the penalty
by updating the particles of the swarm (i.e., cluster parameters in this case) in the follow-
ing iteration. Since PSO does not use the gradient of the objective function, it does not
need to be differentiable. Moreover, PSO can evolve into more complicated and cus-
tomized problems.

HEARTBEAT MOVEMENT AND CALIBRATION

To mimic the vessel movement due to a heartbeat, a time-varying external force f (t ) is
applied on the aortic root through a colliding cylinder representing the heart (See Fig-
ure 4.3). Using the optimal PBD parameters obtained from the vasculature calibration,
the heartbeat calibration process looks for the optimal external forces that generate the
heartbeat movement. The displacement of the cylinder was tuned with respect to the
referred cyclic movement of the aortic annulus [23].

The annulus displacement da is defined as the longitudinal displacement of the par-
ticles on the aortic annulus.
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da(t ) = za(t )− z0
a (4.7)

where za(t ) is the average longitudinal position of the particles sampling the aortic an-
nulus at the current time and z0

a is that position in the rest state (i.e., at the initial time).
The PSO is employed to optimize these values by minimizing the RMSE ea between the
simulated and real aortic annulus displacement da with respect to the time t .

min
f (0)··· f (T f )

ea with ea =

√√√√∑T f

t=0(d̂a(t )−da(t ))2

T f
(4.8)

where d̂a(t ) is the annulus displacement of the reference curve at time t and da(t ) is the
simulated annulus displacement at time t with t that spans from 0 to T f , where T f is the
total number of samples for heartbeat calibration.

FORCE BAR VISUALIZATION

To provide visual feedback of the collision force when the device tip collides with the
vessel wall, an absolute collision force is obtained along the entire device shaft via New-
ton’s Second Law of Motion, and a ratio between the force and the maximum force was
computed [34]. The maximum force represents the highest level of force that a user can
apply, beyond which safety may be compromised. For example, the maximum force is
set as 0.8 N in femoral arteries, 0.8 N in the aorta, 0.6 N in coronaries, and 0.8 N in sub-
clavian arteries [34].

Only when the device tip collides with the vessel wall, the contact force is consid-
ered, and the contact force is considered along the entire device shaft. This assumption
was made because end-user interviews revealed that the cardiologists focus more on the
device tip for safety reasons. A mean filtering method is applied to force computation.
Therefore the force is sometimes non-zero in the force bar visualization when the tip
does not seem to be in contact.

4.2.2. MODELING METHOD OF DEVICES

STEERABLE CATHETER

Steerable catheters have one or more bendable segments to help navigate into the coro-
nary ostium. Each steerable segment has three controllable movements: bending, ro-
tating and advancing. Constant curvature modeling may constitute a valuable trade-off
between the Cosserat rod’s complications and the assumptions of rigid-link models [22].

The constant-curvature modeling method considers a continuum device as a set of
finite curved links. These links are represented by a set of arc parameters, converted into
analytical frame transformations. For each steerable segment, its shape is assumed as
an arc with constant curvature κ at different bending angles, arc center at C , and a total
length of l . Figure 4.4A illustrates the segment base frame Fb convention chosen, con-
sidering z-axis tangent to the base of the segment. The configuration space is defined by
arc parameters: the rotation angle around z-axis φ ∈ [0,2π], the arc length s ∈ [0, l ], and
the arc curvature κ which entails the segment bending angle β= κs.

Given the configuration space (κ,φ, s), the transformation b Ti is performed from the
segment base frame Fb to frame Fi at any point (pi = [x, y, z]T , i ∈ [0,G]) along the arc,
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Figure 4.4: (A) Parameterization of the steerable segment modeling: φ denotes the arc rotation angle around
z-axis, s is the arc length at pi , and κ is the arc curvature. C denotes the arc center. (B) Megellan robotic
catheter. The joystick controller settings for (C) steerable catheter and (D) flexible guidewire. The GUI includes
a fluoroscopy view with operation time, and an internal view with visual feedback of collision force.

according to the employed D-H table parameterization approach [35]. Then the position
pi in the global frame F0 can be expressed as:

[pT
i 1]T = Tb · b Ti · i pi with i pi = [0,0,0,1]T (4.9)

where Tb denotes the transformation matrix from the global frame F0 to the segment
based reference frame Fb , and i pi denotes the origin of Fi (i.e., pi ) expressed in Fi .

This transformation allows the mapping from the arc parameters space to the task
space (pi ). By emerging all steerable segments connected with a rigid link, the robotic
catheter can reach multiple points in 3-D space and realize the typical catheterization
movements performed in a clinical environment, namely, push/pull, bend, and rotate.

As a proof of concept, the 6Fr Magellan Robotic Catheter (Hansen Medical, USA)
model (Figure 4.4B) is built with the following specification: distal bending segment
length of 30 mm, proximal bending segment length of 25 mm, guide articulation angle
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of 140◦ for distal bend and 60◦ for the proximal bend. Based on the specified parame-
ters, the maximum curvature is calculated to be 0.08 rad/mm for the distal segment and
0.04 rad/mm for the proximal segment.

FLEXIBLE GUIDEWIRE

A flexible guidewire advances through vessels to reach the target position and provides a
rough reference path for catheters. The flexible guidewire modeling employs the MSM-
based method [16]. For the modeling implementation in Unity, the guidewire consists
of a set of capsules linked together with a configurable joint component that are linear
springs along the longitudinal direction of the guidewire with a certain stiffness Ks .

Two flexible guidewire models were provided as a user choice. The softer coronary
guidewire model was built referring to the Hi-Torque Balance Middleweight Universal II
guidewire (Abbot, Illinois, USA) [17] with the following specifications: an internal diam-
eter Di nt of 0.014 inches (0.356mm), and a bending stiffness Kb of 75 Nmm2. The stiffer
femoral guidewire model was built referring to the Amplatz Super Stiff (Boston Scientific,
Massachusetts, USA) [36] with the following specifications: an internal diameter Di nt of
0.035 inches (0.889mm), and a bending stiffness Kb of 1850 Nmm2.

Therefore, the moment of inertia I is derived as

I =πD4
i nt /64 (4.10)

and the Young Modulus E is expressed as

E = Kb/I (4.11)

To the end, the stiffness Ks can be then computed as

Ks = E As /L (4.12)

where Ks is the stiffness of the spring, E is the Young Modulus (which is 8.5 GPa for Hi-
Torque, and 60 GPa for Amplatz), As is the cross section of the spring and L is the distance
between the joints.

In order to mimic the follow-the-wire movement of the catheter-guidewire pair and
provide a more realistic visual authenticity, during the advancement of the guidewire, a
flexible catheter with a bigger diameter and with referenced mechanical properties as in
[37] can be inserted following the guidewire. The combined system (i.e., catheter over a
guidewire) is more rigid since the stiffness of the spring is computed as a combination
of those two objects:

K = Kg u +Kca

Kca =πEca(D2
ec −D2

i c )/4
(4.13)

where K ,Kg u ,Kca is the stiffness of the resulting system, the guidewire, and the reference
catheter. Eca is the Young modulus of the reference catheter, Dec ,Di c is the external and
internal diameter of the reference catheter. Moreover, the mechanical property of the
catheter [37] is specified as Eca of 85.5 GPa, Dec of 2.96 mm, and Di c of 2.51 mm.
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GUIDING CONTROLLER FOR DEVICES

The guiding system of devices is a CHEREEKI controller (Figure 4.4C-D) by which the
user can move the guidewire and the robotic catheter in a push-pull configuration, and
bend-rotate at the distal/proximal segments of the robotic catheter. The Graphical User
Interface (GUI) provides a fluoroscopy view, an internal view, visual feedback of collision
force, and operation time (Figure 4.4). The users can select starting sites and devices
according to their preferences.

4.2.3. In-vitro SETUP

In-vitro experiments were conducted for the deformed model validation. The displace-
ment obtained during catheter contacts simulated on our PBD model (in-silico) was
compared with those obtained on the aortic phantom (in-vitro).

The in-vitro experimental setup is presented in Figure 4.5. Experiments were per-
formed in a transparent, deformable silicone aortic phantom (Materialise NV, Leuven,
Belgium) [38, 39]. This phantom is a dedicated synthetic testbed developed by the EU-
funded project CASCADE. The silicon model fabrication includes segmentation of CT
data, 3D printing of patient-specific shells and vacuum casting of the silicon model. The
realistic mechanical properties of the deformable phantom were verified through uniax-
ial tensile tests. See [38, 39] for more details. The phantom was placed on a 3D-printed
support designed to preserve the anatomical vascular orientation. A polyethylene tube,
with an outer diameter of 5 mm and stiffness of 0.245 GPa [40], was used as a catheter to
push it against the aortic wall to validate phantom deformation alone. An Electromag-
netic (EM) sensor (Northern Digital Inc., Waterloo, Canada) was embedded at the tip of
the catheter to track its position. The setup also includes the second EM sensor attached
to the surface of the phantom, Aurora EM field generator, and an external camera for
filming the experiments. The PBD model in the simulator with fixed particles marked in
orange is also shown in Figure 4.5.

The vessel deformation obtained in-vitro is defined as the displacement dem of the
EM sensor attached to the surface of the phantom. It indicates the ground-truth defor-
mation.

dem = ||xem −x0
em || (4.14)

where x0
em is the initial position of the EM sensor attached to the surface of the phantom,

and xem is the current position.
The vessel deformation obtained in-silico is presented as the displacement dk of the

particle in the PBD model, which aligns with the position of the second EM sensor at-
tached to the surface of the phantom. This displacement indicates the simulated vessel
deformation. To identify the corresponding particle in the PBD model, a registration
procedure is employed, utilizing the Singular Value Decomposition (SVD) method, as
outlined by Arun et al. [41].

dk = ||xk −x0
k || (4.15)

where the particle position is deformed from x0
k to xk in a three-dimensional space.
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Figure 4.5: The in-vitro experimental setup: 1) a catheter with EM sensor embedded at the tip 2) an aortic
phantom with support 3) the second EM sensor attached to the surface of the phantom 4) Aurora EM field
generator 5) an external camera for filming the experiments 6) The PBD model in the simulator with fixed
particles marked in orange.

4.2.4. END-USER VALIDATION PROTOCOL

The validity and visual authenticity of the virtual system were evaluated by cardiologists
from CCM, IRCCS, Milan, Italy. The users are composed of ten experts (medical doctors
from CCM, experience level 6.4±4.9 years, including two coauthors GM and AM) and
ten novices (six medical doctors from CCM, experience level < 1 year, and four bioengi-
neers). The users were asked to test the usability of the simulator by performing specific
operation tasks of PCI (Figure 4.6).

For each operation task, their performance matrices are recorded. For evaluating
user skills playing with the simulator, two parameters are proposed as performance ma-
trices: playtime (if larger, it means a longer time of exposure to X-rays and a higher risk
of infection for the patient), accumulated collision during the whole path (if larger, it
means a higher risk of vascular rupture due to contact with the device).

The users did not have any previous training on the simulator and they had two
chances to perform the task: the first one to learn how to use the simulator and the
second one to record their scores.

Afterwards, the users were asked to fill out a questionnaire to help improve the sim-
ulator development. The questionnaire stated 11 questions, and for each question, the
users can insert their level of agreement, according to the 5-Point Likert Scale.
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Figure 4.6: The operation tasks: (A) To advance the guidewire from femoral arteries to the abdominal aorta; (B)
To advance the robotic catheter from the aortic arch to the left coronary ostium or (C) the right one; (D, E) To
advance the guidewire from the coronaries ostium to the target position in the coronaries. A simulated demo
of intervention tasks is made available: https://youtu.be/jdfQeZnBLhs

4.3. RESULTS

4.3.1. CALIBRATION RESULTS

VASCULATURE PBD CALIBRATION

To obtain the optimal cluster parameters, an external stress was applied perpendicular
to the vessel wall with the range of [0,0.58]MPa and the displacement of the particles
lying on the vessel wall in the radial direction was measured based on Assumption 1
as shown in Figure 4.2. Compared with the reference curve [11], the RMSE (4.5) was
computed and minimized during the automatic PSO calibration process. The optimal
cluster parameters were: [sc ,rc , tc ] =[8 mm, 12 mm, 0.8] with a RMSE of 0.26% while the
mean error and standard deviation are 0.23±0.13%. The optimal stress-strain curve is
shown in Figure 4.7A.

HEARTBEAT CALIBRATION

The objective of heartbeat calibration is to automatically adjust the relevant parameters
in the simulator to mimic the annulus displacement in [23]. The reference curve [23] is
the averaged annulus displacement from 60 patients with aortic stenosis. It is referred
to as the ground truth in calibration. The relevant parameters are the displacement of
the virtual heart causing the displacement of the annulus. The PSO approach optimizes
these parameters by minimizing the RMSE between the simulated and real aortic annu-
lus displacement. Figure 4.7B presents the displacement of the virtual heart, the annulus
displacement from literature, and the simulated annulus displacement after calibration,
in three cardiac cycles in a time range of [0,2.68]s. The simulated annulus displacement
is shown in Figure 4.7B with a RMSE (4.8) of 0.90 mm while the mean error and standard
deviation are 0.30±0.85mm. The mean absolute error and the standard deviation of the

https://youtu.be/jdfQeZnBLhs
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Figure 4.7: Quantitative comparison results between simulator performance and literature: (A) The vessels
stress-strain curve (σ−ϵ) from literature (blue) and from the optimal case after calibration using PSO algorithm
(red). (B) The annulus displacement (da ) along time t from literature (blue) and from the optimal simulated
case after calibration using PSO algorithm (red). The displacement of the colliding cylinder representing the
heart (as defined in Figure 4.3) is presented in yellow.

absolute error are 0.64±0.63mm. The median, 90th percentile, and maximum absolute
error are 0.31mm, 1.67mm, and 2.44mm, respectively. The simulated annulus displace-
ment has smoother but in-phase positive peaks and sharper anticipated negative peaks.
However, the curve frequency was not altered. Therefore, it can mimic the heartbeat
movement at a similar frequency, even if the peaks are not the same. The peaks rep-
resent the maximum displacement of the annulus plane during cardiac cycles. If the
maximum displacement is more of interest, such as the longitudinal displacement of
the aortic annulus [42], the objective function of heartbeat calibration can be changed
to minimize the error at peaks between the curves.

4.3.2. In-vitro VALIDATION
In-vitro experiments were conducted for the deformed model validation. The displace-
ment obtained during ten different catheter contacts simulated on our PBD model (in-
silico) was compared with those obtained on the aortic phantom (in-vitro).

Figure 4.8 shows the comparison results of vessel deformation obtained in two ways:
in-vitro and in-silico. The mean error and standard deviation are 1.35±1.38mm. The
RMSE is 1.93mm. The mean absolute error and the standard deviation of the absolute
error are 1.46±1.27mm. The median, 90th percentile, and maximum absolute error are
1.13mm, 3.44mm, and 5.66mm, respectively. The Pearson correlation coefficient be-
tween the two curves is 0.83, which indicates a strong positive correlation between the
in-silico and in-vitro displacement. It verifies the comparability between the proposed
PBD deformed model and the silicone aortic phantom. It also reveals the possibility of
further ex-vivo, in-vivo, and patient-specific model validation. One of the error sources
can be the inaccurate rigid registration between EM space and simulator space. This
inaccuracy leads to a less accurate alignment between the second EM sensor and its cor-
responding particle within the PBD model. Due to this misalignment, another particle
might be identified in the PBD model, resulting in varying displacements. Consequently,
the displacement measurements of the particle, used to indicate vessel deformation, are



4.3. RESULTS

4

75

Figure 4.8: The comparison of displacement obtained during ten different catheter contacts simulated on our
PBD model (dem , in-silico, green) and the one obtained on the aortic phantom (dk , in-vitro, blue). Their
difference is marked in orange. The video comparison is made available: https://youtu.be/2p20Y2-YID8

subject to inaccuracies. In this work, a traditional registration method, SVD [41], is per-
formed. More accurate registration methods will help reduce deformation prediction
errors.

4.3.3. END-USER VALIDATION

As shown by Table 4.2, the performance difference between novices and experts shows
that novices are more accustomed to using joystick controllers instead of manual oper-
ation. Experts spent more time performing task A, i.e., to advance the guidewire from
femoral arteries to the abdominal aorta, and task C, i.e., to advance the robotic catheter
from the aortic arch to the right coronary ostium. Meanwhile, the experts presented less
collision in task C. The comparison results for other tasks do not show statistically sig-
nificant differences.

The questionnaire results in Figure 4.9 show that experts have a higher appraisal of
the system, whereas novices are more adaptable to novel technologies, such as joystick
controllers and simulated internal views. The experts have more diverse opinions on Q6.
Two cardiologists rated ‘1’, one cardiologist with three years of experience, and one with
six years of experience. The proposed simulator is intended to use as a training plat-
form for robotic catheters [43, 44, 45]. Currently, conventional procedures use flexible
catheters without robotic assistance. Cardiologists are more customized to use conven-
tional catheters. Therefore, robot assistance affected the scores on the training capability
of the proposed simulator. Scores on other criteria can verify this inference as well. The
cardiologists rated higher on Q1 and Q2 and relatively lower on Q3. It shows that the

https://youtu.be/2p20Y2-YID8


4

76
4. POSITION-BASED DYNAMICS SIMULATOR OF VESSEL DEFORMATIONS FOR PATH

PLANNING

Table 4.2: Performance comparison of ten novices and ten experts after performing specific operation tasks of
PCI, including the operation time of each task and the accumulated collision during the whole task.

Device Task User Playtime [s]
(Mean±SD)

Collision
[N]
(Mean±SD)

guidewire CFA - abdominal aorta Experts 89.8±38.7
↕⋆

13.2±14.7

(Figure 4.6A) Novices 64.0±25.3 7.3±4.7

left coronaries angioplasty Experts 77.8±5.0 3.8±1.7
(Figure 4.6D) Novices 75.6±1.2 3.5±1.7

right coronaries angioplasty Experts 71.3±17.0 14.7±11.3
(Figure 4.6E) Novices 68.4±25.5 12.9±6.9

robotic
catheter

left coronaries cannulation Experts 187.8±156.0 5.8±7.8

(Figure 4.6B) Novices 109.1±60.2 2.9±2.6

right coronaries cannulation Experts 171.1±111.2
↕⋆

5.0±8.0

(Figure 4.6C) Novices 83.9±46.1 15.2±42.1

⋆, p <0.05 Kruskal-Wallis test for statistical significance analysis

cardiologists are satisfied with the visual authenticity of the intervention process and
the deformable property of the vessels. Those are essential factors in a robotic catheter
simulation platform.

Constructive feedback on future improvements was provided by cardiologists as well.
The coronary guidewire could be modeled with a preshaped nitinol tip with the capabil-
ity of rotating, which would let it engage different branches of the coronaries. In addi-
tion to the heartbeat motion, the respiration motion could be included as well. As for
the visual feedback of collision force, haptic feedback, such as the vibration of the joy-
stick, would be more intuitive. Augmented reality would provide more visually plausible
training.

4.4. DISCUSSION

4.4.1. FINDINGS

An important finding of the questionnaire analysis reveals a higher preference for the
internal view of vessels among novice clinicians compared to expert cardiologists. This
preference suggests that an internal view of vessels may offer greater benefits to clini-
cians with less experience in the field. The internal view of the vessels can be recon-
structed from IntraVascular UltraSound (IVUS) images [46]. The internal view is very
useful because cardiologists can only see the structures in 2D in reality without having
information about a collision with structures inside vessels. Despite the absence of such
a feature in the traditional procedure, it would be helpful to have a real-time 3D view of
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Figure 4.9: The validity evaluation results of ten novices and ten experts, where Q1-Q11 are the evaluation
criteria specified in the questionnaire and 1-5 correspond to the level of agreement: 1-Strongly disagree; 2-
Disagree; 3-Neither agree nor disagree; 4-Agree; 5-Strongly agree.

the anatomy, the plaques, and device advancement. What is used in reality is the IVUS
view (with a diagnosing catheter) that could be helpful to know about the anatomy and
plaques etc., but it is not aligned with the advancement of the balloon/stent catheter be-
cause the IVUS view and the intervention treatment are not in the same phase. Despite
the absence of such an internal view in the treatment process, the goal is to provide the
cardiologists with another perspective that will accelerate the process as they can view
the interactions from different views.

4.4.2. POSSIBILITY OF GENERALIZATION

The deformed model is reconstructed from CTA images of a patient with cardiac disease.
It is patient-specific and can be employed for aorta models of other patients. Heartbeat
variability can be achieved as long as a reference curve is given for calibration, such as
the reference curve [23].

Even though the 6Fr Magellan Robotic Catheter and two specific guidewires were
used as a proof-of-concept, it can be extended to other catheters and guidewires. This
simulator can be utilized to optimize the design of robotic catheters, such as maximum
bending extent, steerable tip length, and diameter. Those parameters are adjustable in
the proposed simulator. It can also be used for autonomous path planning and control
in a simulated, cluttered environment.
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4.4.3. LIMITATIONS AND PERSPECTIVES
The joystick control approach is different from the traditional way to advance devices.
Therefore cardiologists expertized in traditional interventions may perform worse than
game players. Existing robotic systems mostly use joystick and workstation as the con-
troller input, such as CorPath™ GRX (Corindus), Niobe™ (Stereotaxis) and R-One™
(Robocath). In [47], a device controller is developed that mimics a standard catheter
handle, has vibrotactile feedback, and is easy to use by cardiologists. However, joystick
controllers with vibrotactile feedback are relatively easy to use and low in cost [14]. Long-
term-following experiments can be carried out to investigate a proper controller and its
training effectiveness.

More operation tasks that reveal expert experience will be carried out in end-user
validation. Positioning and inflating a balloon or stent catheter at the occlusion site can
be developed as an operational task. This proof-of-concept is presented at the link1.
However, accurate simulation of the mechanical properties of the occlusions and stents
requires thorough investigation in the future. The accuracy of stent alignment at the
target site can be selected as a performance matrix. Moreover, the user’s choice of access
route can be assessed to ensure the safety of needle insertion.

Traditional fluoroscopy imaging does not provide enough information for cardiolo-
gists, such as depth. Augmented Reality (AR) could be integrated for more visually plau-
sible training [48]. Deformable vessels with AR provide 3D visualization to help guide
and locate the instrument more intuitively. Clinical studies in [49] highlight the need
for intra-operative 3D visualization to help develop safer interventions. Several com-
mercial systems, such as EnSite NavX (St.Jude), Carto (Biosense Webster), and LocaLisa
(Medtronic), develop AR techniques as an alternative to classical imaging techniques.

4.5. CONCLUSION
This chapter presents a realistic, auto-adaptive, and visually plausible simulator for en-
dovascular catheterization procedures. The proposed workflow implements the model-
ing and simulation of intervention devices and a deformable aorta that could create a
dynamic environment for intra-operative path planning and control in robotic endovas-
cular catheterization, which will be presented in future works. Compared with literature,
some novel properties of the proposed simulator are highlighted, such as a simulated
movement of the vessels caused by the heartbeat and an autonomous calibration using
the PSO algorithm. The reported results of in-vitro validation show that this simulator
framework can be applied to different datasets and represents a good surrogate for the
modelization of deformation.
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1https://youtu.be/lqN4Uw4HZz8

https://youtu.be/lqN4Uw4HZz8
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5
DEFORMABLE MODEL-TO-IMAGE

REGISTRATION TOWARDS

AUGMENTED REALITY-GUIDED

ENDOVASCULAR INTERVENTIONS

Existing image registration methods face difficulties in accurately incorporating tissue de-
formations compared to the pre-operative 3D model, particularly in a weakly-supervised
manner. Additionally, reconstructing deformations from 2D to 3D space and present-
ing this intra-operative model visually to clinicians poses further complexities. To ad-
dress these challenges, this study introduces a novel deformable model-to-image regis-
tration framework using deep learning. Furthermore, this research proposes a visual-
ization method through augmented reality to provide guidance for endovascular inter-
ventions. This study utilized image data collected from 9 patients who underwent Tran-
scatheter Aortic Valve Implantation (TAVI) procedures. The registration results in 2D in-
dicate that the proposed deformable model-to-image registration framework achieves a
Modified Dice Similarity Coefficient (MDSC) value of 0.55± 0.04 and a Penalization of
Deformations in Spare Space (PDSS) value of 3.77± 0.09. Additionally, the accuracy of
registration in 3D was evaluated using a dataset obtained from an intervention simu-
lator, resulting in a Mean Absolute Error (MAE) of 1.51± 1.02 mm within the region of
interest. Overall, the study validates the feasibility and accuracy of the proposed weakly-
supervised deformable model-to-image registration framework, demonstrating its poten-
tial to provide intra-operative 3D imaging as intervention assistance in dynamic vascular
environments.

This chapter is available as:
Zhen Li, Letizia Contini, Alessandro Ippoliti, Elena Bastianelli, Federico De Marco, Jenny Dankelman, and
Elena De Momi. “Deformable Model-to-Image Registration towards Augmented Reality-Guided Endovascular
Interventions”. 2023. (Under Review).
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5. DEFORMABLE MODEL-TO-IMAGE REGISTRATION TOWARDS AUGMENTED

REALITY-GUIDED ENDOVASCULAR INTERVENTIONS

5.1. INTRODUCTION
The rising demand for minimally invasive procedures has expedited the acceptance and
implementation of endovascular interventions [1]. Endovascular interventions utilize
the vascular system to access anatomical regions deep within the body. For example,
TAVI procedure, a percutaneous cardiological intervention, facilitates the implantation
of a miniaturized biological valve prosthesis into the aortic root. This minimally invasive
approach is designed to address aortic valve pathologies, specifically aortic stenosis and
steno-insufficiency [2].

During endovascular interventions, image-based guidance plays a crucial role in pro-
viding clinicians and robotics systems with valuable insights into the dynamic vascular
environment [3, 4]. However, conventional 2D images commonly used for intervention
guidance, such as 2D X-ray fluoroscopy and Digital Subtraction Angiography (DSA), are
often deemed insufficient by cardiologists due to limited information and the absence
of depth perception. Consequently, there is a growing demand among cardiologists for
intra-operative 3D imaging [5]. By fusing 3D pre-operative data with 2D intra-operative
images, complex clinical procedures can benefit from enhanced visualization of con-
cealed structures and a more comprehensive anatomical model [6, 7, 8]. The necessity
for introducing a deformable model-to-image registration approach stems from various
physiological factors such as heartbeat, respiration, patient movement, and instrument
insertion, all of which can induce vascular deformations and adversely impact registra-
tion accuracy [9].

Existing image registration methods to reconstruct vascular deformations can be
broadly categorized into optimization-based methods, which rely on iterative optimiza-
tion processes, and learning-based methods that leverage neural networks. Zhang et
al. [11] proposed a method to reconstruct a deformed intra-operative 3D aortic model
using a pre-operative 3D model and intra-operative fluoroscopy images. They formu-
lated the deformation estimation process as a non-linear optimization problem based
on the deformation graph approach, utilizing the comparison between pre-operative
model projection contours and intra-operative segmented aortic shape contours. How-
ever, optimization-based methods often suffer from high computational complexity [12,
13]. Haskins et al. [13] conducted a survey on learning-based methods and highlighted
a significant limitation: most studies in the literature rely on landmarks or manually
annotated features, making them severely constrained by the laborious task of generat-
ing datasets. In another study by Guan et al. [14], a Multi-Channel Convolutional Neural
Network (MCNN) was employed to achieve favorable registration results, demonstrating
average errors of approximately 0.3 mm. This approach, however, necessitates the def-
inition of a mathematical model for periodic deformation, which is only feasible when
a complete dataset representing all phases of the periodic movement is available. This
requirement implies the need for a long exposure time and significant amounts of con-
trast media. Overall, existing image registration methods encounter challenges in ef-
fectively handling tissue deformations in a weakly-supervised manner and accurately
reconstructing deformations from 2D to 3D space.

AR visualization has been widely acknowledged in numerous studies for its ability
to offer crucial advantages during clinical procedures. These benefits include provid-
ing valuable insights into the physiology of deformable organs and enabling clinicians
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Figure 5.1: The architecture of the proposed framework consists of multiple modules: 1) reconstruction of a
pre-operative 3D aortic model from CTA slices; 2) autonomous segmentation of vessels from intra-operative
fluoroscopy images using a DRU-Net; 3) generation of 2D ROI projections and registration with segmented
images using a hybrid approach incorporating a CNN and 4) DRU-Net model to estimate the registration ma-
trix and deformation fields, respectively; 5) application of these parameters to deform the pre-operative 3D
model; 6) visualization of the deformed 3D model alongside the intra-operative fluoroscopy image using an
AR HMD (Microsoft HoloLens 2®). The red dashed box highlights the extensions introduced in comparison
to our previous work [10].

to integrate information from multiple sources seamlessly, all while maintaining a clear
line of sight with the patient in the operating room [15, 16, 17]. These advantages are
particularly significant in the context of minimally invasive interventions, where direct
visual observation is inherently limited [18]. Moreover, several studies have highlighted
the positive outcomes achieved through the integration of AR technologies with robot-
assisted medical platforms, as evidenced by user-centric and ergonomic evaluation cri-
teria [19, 20, 21].

To overcome the aforementioned challenges, this study presents a novel deformable
model-to-image registration framework using deep learning, specifically tailored for aug-
mented reality-guided endovascular catheterization. Building upon our previous work
[10], which proposed an affine model-to-image registration approach using a CNN to
align segmented fluoroscopy images with a pre-operative 3D model reconstructed from
CTA scans, this study extends the registration pipeline. A phase for deformation pre-
diction and reconstruction is introduced, along with the incorporation of immersive AR
visualization using the Microsoft HoloLens 2® augmented reality device. The main con-
tributions of this research can be summarized as follows:

• proposal of an accurate deep learning-based deformable model-to-image regis-
tration framework for predicting and reconstructing deformations from 2D images
onto the pre-operative 3D model, using a Deep Residual U-Net (DRU-Net) model
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with a customized loss function to adequately capture the registration accuracy;

• development of an immersive visualization method for intra-operative 3D models
using the AR Head-Mounted Display (HMD);

• validation of the registration accuracy both in 2D using a dataset comprising nine
patients and in 3D using a dataset obtained from an intervention simulator.

The chapter is organized as follows: Section 5.2 provides an overview of the pro-
posed deformable model-to-image registration framework. Section 5.3 explains the ex-
perimental design and the performance metrics employed to evaluate the accuracy of
the results. Section 5.4 showcases the results, accompanied by a relevant discussion.
Finally, Section 5.5 concludes the chapter and outlines future directions for research.

5.2. MATERIALS AND METHODS
The proposed deformable model-to-image registration framework is illustrated in Figure
5.1, which comprises six modules:

1. 3D model reconstruction: semi-automatic reconstruction of the patient’s 3D model
from pre-operative CTA images obtained using one of two typical MDCT scan
strategies [22]. The first strategy involves an ECG-synchronized CTA of the aor-
tic root and heart, followed by a non-ECG-synchronized helical CTA of the thorax,
abdomen, and pelvis. The second strategy comprises an ECG-synchronized CTA
of the thorax, succeeded by a non-ECG-synchronized helical CTA of the abdomen
and pelvis;

2. 2D fluoroscopy image segmentation: acquisition of intra-operative fluoroscopy
images, followed by automatic segmentation using a DRU-Net. The segmentation
results in the generation of binary images, as described in [10]. These fluoroscopic
images predominantly focus on two main Field-of-View (FoV) during interven-
tions: the entry site, typically the femoral arteries, and the target site, generally the
aortic root. These fluoroscopy images are typically captured at key stages of the
intervention: firstly, following the insertion of the needle into the femoral arteries;
secondly, prior to the inflation of the balloon catheter; and finally, subsequent to
the placement of the stent at the aortic root;

3. Affine model-to-image registration: conversion of the model-to-image registra-
tion problem into an image-to-image registration problem by projecting a 2D view
of the ROI of the 3D model corresponding to the fluoroscopy image. Two distinct
types of ROI are utilized: the entry site, which encompasses the femoral arteries,
and the target site, identified as the aortic root. An affine registration matrix is
estimated using CNN to align the ROI projection with the segmented image [10];

Extensions in comparison to our previous work [10]:

4. Deformable model-to-image registration: estimation of the deformation field
describing the vessel deformation between the ROI projection and the segmented
image using a DRU-Net model;
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Table 5.1: Number of fluoroscopy image frames extracted from each patient.

Patient No. 1 2 3 4 5 6 7 8 9
Age 84 85 82 85 85 75 75 79 80
Sex M F F M F M M F M

Images 38 15 14 21 38 24 30 24 23

Table 5.2: Image dataset subdivision in training, validation and testing sets.

Phase Dataset Patient Images

General Training (W 1)
Training 1-7 180

Validation 8 24
Testing 9 15

Patient-specific Retraining (W 2)
Training 9 6

Validation 9 2
Testing 9 15

5. 3D model registration: application of the 2D affine registration matrix and defor-
mation field obtained from the previous modules to the 3D model using a Free
Form Deformation (FFD) algorithm [23];

6. Augmented reality visualization: visualization of the deformed 3D model, along
with the fluoroscopy image and deformation field, using the Microsoft HoloLens
2® augmented reality device.

Our contribution to this extended framework introduced in comparison to the pre-
vious work [10] is depicted by the red dashed box in Figure 5.1, including the model de-
formation prediction using a DRU-Net and the reconstruction of deformations onto the
pre-operative 3D model. Furthermore, the visualization phase is enhanced by integra-
tion with augmented reality. Detailed descriptions of these extensions will be provided
in the subsequent subsections.

5.2.1. IMAGE DATASET
For this study, a dataset was collected from 9 patients who underwent TAVI procedures
at the CCM in Milan, Italy. The data collection process adhered to the ethical protocol
approved by the CCM under the assigned code of 02_21 PA.

During the procedure, a collection of fluoroscopy images was obtained for each pa-
tient. The number of frames extracted varied according to the details presented in Ta-
ble 5.1. Prior to analysis, all images utilized in this study were resized to dimensions of
256×256. Subsequently, these images were segmented and aligned with the correspond-
ing pre-operative 3D model via the previously proposed affine registration method [10].

To estimate deformations using a DRU-Net model, the dataset was divided into train-
ing, validation, and testing sets, as depicted in Table 5.2. Notably, two distinct training
phases were introduced: (W 1) the initial phase involved standard training procedures
to obtain a well-trained model, while (W 2) the subsequent phase focused on rapid re-
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Figure 5.2: The sketch of the DRU-Net architecture for deformable model-to-image registration: given a seg-
mented fixed image and an affine registered moving image as inputs, the DRU-Net network produces a warped
image and predicts the deformation fields along the x and y axes.

training utilizing intra-operative images obtained during the procedure for the specific
patient. This personalized fine-tuning phase is proposed to enhance registration accu-
racy in patient-specific scenarios.

5.2.2. DEFORMABLE MODEL-TO-IMAGE REGISTRATION (MODULE 4)
The DRU-Net architecture of the "deformable model-to-image registration" module is
illustrated in Figure 5.2. In this module, the fixed image (i.e., the intra-operative seg-
mentation) and the moving image (i.e., the pre-operative projection), which have been
previously aligned through the "affine model-to-image registration" module [10], are
concatenated and fed into the DRU-Net.

The DRU-Net encoder consists of four residual blocks. Each residual block is fol-
lowed by a 2×2 max-pooling layer to reduce the number of network parameters. Within
each residual block, there are two convolutional layers with a kernel size of 3×3, followed
by a ReLU activation layer. The number of filters used in each block is denoted by n and
indicated in Figure 5.2.

In the DRU-Net decoder, each block consists of a 2× 2 up-sampling layer followed
by a residual block. Subsequently, a convolutional layer with 2 filters having a kernel
size of 1×1 and a linear activation function is used, followed by a fully-connected layer
with a hyperbolic activation function that produces output values within the range of
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Figure 5.3: Workflow illustrating the application of predicted deformation fields on the 3D pre-operative mesh
model. (a) The pre-operative mesh model (shown in red) serves as the base. (b) Evenly-distributed control
points (depicted in green) are generated within the region of interest (ROI). (c) The predicted deformation
fields are subsequently applied to the mesh model, resulting in a deformed mesh model (shown in blue).

[−1,1]. To ensure a meaningful range of deformation while preventing overfitting, these
values are scaled by a factor h, which represents the maximum possible amplitude of
the deformation field value [24, 25]. As a result, the output values are confined within
the range of [−h,h]. The output of this fully-connected layer is a 2-channel image con-
taining the deformation field components along the x and y axes. This deformation field
is applied to the moving image and concatenated with the warped result, resulting in a
single 256×256×3 output. As shown in Figure 5.2, the DRU-Net generates a 3-channel
image, consisting of a warped binary image and deformation field components along
the x and y axes.

The model loss between the warped and fixed image is then calculated and utilized
to update the neural network parameters during the subsequent training iterations. This
iterative process allows the DRU-Net to optimize its performance and improve the accu-
racy of the deformable registration.

The network training utilizes an Adam optimizer [26] to minimize a customized loss
function, which is a linear combination of two components:

L =αLA +βLB (5.1)

Here, L represents the combined loss proposed in this work, while α and β are the
weights assigned to each component. LA corresponds to a customized similarity loss,
and LB refers to the customized Penalization of Deformations in Spare Space (PDSS).
The following paragraphs present comprehensive explanations and definitions of these
two loss components.

To improve upon the efficacy of the standard Dice Similarity Coefficient (DSC) [27],
this study introduces the concept of Modified Dice Similarity Coefficient (MDSC). This
approach involves partitioning both images into N ×N subregions, thereby enhancing
the performance of the traditional DSC metric in image similarity analysis. The formu-
lation is given by:

MDSC = 2T P∑N
i=1

ai
ai+s bi + bi

bi+s ai

(5.2)

where True Positive (TP) represents the number of corresponding white pixels (vessels)
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in both images. ai and bi represent the number of white pixels in the i th subregion of
the fixed and warped image, respectively, while s denotes a smoothing factor.

Compared to the traditional DSC, the improvement introduced in the denominator
of MDSC reduces the dependence on vessel pixels that are absent in either the fixed and
the warped images (where either ai or bi is equal to 0). This modification mitigates the
adverse effects caused by incomplete vessel segmentation in fluoroscopy images, which
has a substantial impact on the accuracy of the registration process. The loss component
LA in (5.1) is then defined as:

LA = 1−MDSC (5.3)

The loss component LB is introduced to penalize deformations in sparse areas of
the fixed image. To achieve this, both the fixed image and the deformation field in both
x and y directions are divided into N ×N subregions. LB is then defined as follows:

LB = PDSS = 1

N 2

N∑
i=1

∥1−ai∥
kai +1

(
ci +di

2h

)
(5.4)

where ci and di represent the maximum absolute values of the deformation field in the
i th subregion along the x and y axes, respectively. The parameter k serves as an ampli-
fication factor.

The first part of the summation approaches 1 when the i th subregion of the fixed
image is empty (i.e., ai = 0) and approaches 0 otherwise. By doing so, it penalizes defor-
mations in subregions of the moving image that do not correspond to any vessels in the
fixed image.

5.2.3. 3D MODEL REGISTRATION (MODULE 5)
The process of the 3D model registration involves both 3D affine registration and 3D
deformation reconstruction. The 3D affine registration [10], performed in Module 3 as
shown in Figure 5.1, aligns the coordinate frames of the 3D model and the fixed im-
age. Subsequently, the estimated deformation field obtained from the Module 4 is re-
constructed onto the pre-operative 3D model (Figure 5.3a) using a FFD approach [23].

To discretize the 3D ROI in the model, an evenly-distributed grid of size mx ×my ×
mz is employed. Each voxel corresponds to a control point (Figure 5.3b) that applies a
specific transformation in the three orthogonal axes based on its position. The number
of control points mx and my is set to be equal. The spacing between control points along
the depth direction (z-axis) is set to be equal to the spacing in the other two directions.

Subsequently, the estimated deformation fields (obtained from Module 4) are ap-
plied to the control points. The deformation between adjacent control points is deter-
mined using non-linear cubic B-spline interpolation. It is assumed that the deformation
field is consistent throughout the depth of the model, as the deformation information
along the depth is not captured in fluoroscopy images. An example of the resulting 3D
deformed model is illustrated in Figure 5.3c.

5.2.4. AUGMENTED REALITY VISUALIZATION (MODULE 6)
As shown in Figure 5.4, the 3D visualization interface of the deformed 3D model, along
with the fluoroscopy image and deformation field, is developed using Unity3D under the



5.3. EXPERIMENT AND VALIDATION

5

93

Figure 5.4: The 3D visualization interface, showcasing the fluoroscopy image, the deformation field, and the
deformed 3D model.

support of Microsoft Mixed Reality Toolkit (MRTK) [28]. This interface application is de-
ployed on the Microsoft HoloLens 2® AR device. Leveraging optical see-through display
technology, digital elements are overlaid on real-world views with limited interaction.

5.3. EXPERIMENT AND VALIDATION

5.3.1. EXPERIMENTAL SETUP
The experimental setup for modules 1-3 remains consistent with the configuration de-
scribed in [10].

DEFORMABLE MODEL-TO-IMAGE REGISTRATION

The DRU-Net was implemented in Python using the Tensorflow and Keras frameworks
and trained on a NVIDIA GeForce RTX2080Ti GPU card.

The learning rate of the model was determined using KerasTuner, a scalable hyperpa-
rameter optimization framework for conducting hyperparameter search [29]. The search
process involved sampling values of the learning rate within the commonly used range
[1e −5,1e −2] on a logarithmic scale. The optimal learning rate was selected based on
achieving the lowest loss after a number of iterations (e.g., 20 iterations). The best learn-
ing rate was found to be within the range [1e −4, 5e −4]. A batch size of 4 was chosen to
strike a balance between gradient estimation precision and iteration time.

The weights in the loss function were set as α = 1 and β = 0.1 to properly weigh the
relative importance of image similarity and the penalization of spare space. The MDSC
was computed using 16×16 subregions with N = 16 and a smoothing factor of s = 1e−4.
The amplification factor k in the loss function was set to 1e6, and h = 15 represented the
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maximum possible amplitude of the deformation field value.

3D MODEL REGISTRATION AND VISUALIZATION

The 3D model deformation is performed using the FFD approach, which is implemented
utilizing the PyGem library [30].

The length of the ROI and the depth of the model in the corresponding volume were
found to be similar across all patients. Consequently, when dealing with 256×256 im-
ages representing the estimated deformation field and mx = my = 256, the number of
control points surpassed the computational limitation of 1e6, making precise deforma-
tions impractical. To address this constraint, the deformation field was downsampled
to 64×64 using an averaging filter. This downsampling strategy reduced the number of
control points to mx = my = 64.

The 3D visualization interface is developed using Unity3D under the support of MRTK.

5.3.2. REGISTRATION ACCURACY VALIDATION
In order to validate the accuracy of registration in 3D, a dataset was generated since
ground truth data for patients’ intra-operative deformed mesh models was not available.
This dataset was generated using a PBD simulator [31]. External forces were applied at
three different locations on the left and right femoral arteries in the simulator, resulting
in three distinct groups of images and mesh models. The three mentioned locations rep-
resent typical regions that experience deformations due to catheter-vessel contact [24,
25]. These groups comprised 64, 46, and 33 pairs of images and mesh models, respec-
tively. Subsequently, a split of 7:2:1 was employed to assign each group to the training,
validation, and testing datasets. The training dataset contained a total of 99 pairs of im-
ages and mesh models, while the validation and testing datasets consisted of 27 and 17
pairs, respectively.

During the optimization process, the hyperparameter framework determined that
the optimal learning rate for the DRU-Net was 2e −4. Additionally, the maximum possi-
ble amplitude of the deformation field value was set to h = 60. The remaining parameters
remained consistent with the description provided in Sec. 5.3.1.

5.3.3. PERFORMANCE METRICS

REGISTRATION ACCURACY IN 2D
The performance metrics employed to assess the quality of the deformable registration
results included the DSC (5.5), Precision (5.6), Recall (5.7), MDSC (5.2) and PDSS (5.4).

DSC = 2T P

2T P +F N +F P
(5.5)

Precision = T P

T P +F P
(5.6)

Recall = T P

T P +F N
(5.7)

Here, TP represents the number of corresponding white pixels (vessels) in both images,
False Positive (FP) represents the number of pixels that are white in the first image (warped
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image) but black (background) in the second (fixed image), and False Negative (FN) rep-
resents the number of pixels that are black in the first image but white in the second.

The first three metrics, namely DSC, Precision, and Recall, are commonly used in
the field [32]. The DSC provides a comprehensive assessment of the registration per-
formance by considering both FP and FN, while Recall and Precision offer insights into
the predominant type of matching error. On the other hand, the MDSC and PDSS met-
rics were specifically introduced in this study to address the challenges associated with
deformable registration in partial regions.

REGISTRATION ACCURACY IN 3D
To assess the accuracy of the 3D registration, the Mean Absolute Error (MAE) metric is
employed. This metric measures the discrepancy between the vertex positions of the
estimated mesh model and the ground truth positions of the deformed mesh model ob-
tained from the simulator. The MAE values were computed for all vertices and for spe-
cific axes, denoted as e for overall MAE and ex , ey , and ez for MAE along the x, y , and z
axes, respectively.

e =
∑m

i=1 ||vi − v̂i ||
m

(5.8)

ex =
∑m

i=1 |(vi − v̂i ) · (1,0,0)|
m

ey =
∑m

i=1 |(vi − v̂i ) · (0,1,0)|
m

ez =
∑m

i=1 |(vi − v̂i ) · (0,0,1)|
m

(5.9)

Here, m represents the total number of vertices in the mesh model. In the context of
the deformed mesh model, vi denotes the actual position of the i th vertex, representing
the ground truth. Conversely, v̂i signifies the position of the i th vertex in the estimated
mesh model, illustrating the approximation of the vertex’s location. Moreover, the MAE
is calculated specifically for the vertices within the ROI, referred to as eROI. Addition-
ally, the MAE is calculated along specific axes within the ROI: ex−ROI, ey−ROI, and ez−ROI,
representing the MAE along the x, y , and z axes, respectively.

STATISTICAL SIGNIFICANCE

To assess the statistically significant differences between the method proposed in this
study and the state-of-the-art approach developed by Hu et al. [33], the non-parametric
Kruskal-Wallis test [34] is employed at a significance level of 0.05. In their work, Hu et
al. [33] introduced a weakly-supervised CNN for multimodal image registration. The
primary distinctions between this existing state-of-the-art CNN and the CNN proposed
in this study lie in the unique design of the loss function and the form of deformation
output. Specifically, the network proposed in this study generates a deformation field as
its output, whereas the model presented by Hu et al. [33] employs a Dense Displacement
Field (DDF) as its output mechanism.
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Figure 5.5: Boxplots of the testing data depicting the distribution of performance metrics including DSC, Pre-
cision, Recall, MDSC, and PDSS. The label H corresponds to the weakly-supervised CNN proposed by Hu et al.
in 2018 [33]. The label W1 represents the proposed deformable registration after the general training phase,
while the label W2 signifies the proposed deformable registration after the patient-specific retraining phase.
Significance (*, p < 0.05) was determined using the Kruskal-Wallis test. A higher MDSC value indicates better
performance, while a lower PDSS value indicates better performance.

5.4. RESULTS AND DISCUSSION

5.4.1. DEFORMABLE MODEL-TO-IMAGE REGISTRATION
Figure 5.5 presents the performance metrics of the testing data, including DSC, Preci-
sion, Recall, MDSC, and PDSS, following the deformable registration phase. The results
are shown for three approaches: the state-of-the-art approach [33] (denoted as H), the
DRU-Net model with general training only (W 1), and the DRU-Net model with a patient-
specific retraining phase (W 2).

The testing results indicate that the retraining phase (W 2) leads to a significant im-
provement across all performance metrics compared to the general training case. Specif-
ically, the mean and standard deviation values of DSC increased from 0.61 ± 0.07 to 0.65
± 0.06, Precision improved from 0.41 ± 0.08 to 0.46 ± 0.07, Recall increased from 0.76
± 0.14 to 0.79 ± 0.13, MDSC improved from 0.52 ± 0.05 to 0.55 ± 0.04, and PDSS de-
creased from 4.01 ± 0.09 to 3.77 ± 0.09. These findings suggest that incorporating a
patient-specific retraining phase using intra-operative images can effectively enhance
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Figure 5.6: Examples of model-to-image registration results obtained using the method proposed by Hu et al.
in 2018 [33] (H) and the DRU-Net retraining phase (W 2). The last two columns display different elements
of the confusion matrix between the fixed and warped images using distinct colors: yellow represents true
positives (TP), gray represents true negatives (True Negative (TN)), cyan represents false negatives (FN), and
magenta represents false positives (FP).

deformable model-to-image registration accuracy. It is noteworthy that the retraining
process requires a relatively low number of epochs and minimal dataset extension, in-
dicating the potential practicality of this technique in intra-operative applications. For
instance, during the patient-specific retraining phase of the model, a training dataset
comprising six images is utilized. The retraining involves 50 epochs, with each epoch
taking approximately 4 s to complete. Consequently, this retraining phase can be ac-
complished in just a few minutes. This efficiency underscores the technique’s potential
for practical application within the same intervention session, offering a swift and adapt-
able solution for patient-specific requirements.

In this specific image registration scenario, Recall emerges as the most reliable met-
ric among the conventional metrics (DSC, Precision, Recall) for evaluating registration
accuracy. This is attributed to Recall’s dependency solely on the number of TP and FN
in the predicted image, considering that the fixed image typically represents a partial
segmentation of the vessels visible in the moving image. The relatively lower Precision
values obtained align with the expected outcome, indicating that the majority of predic-
tion errors correspond to FP value.

In comparison to the state-of-the-art approach [33] (H), our proposed approach (W 2)
exhibits lower performance values in terms of DSC, Precision, and Recall. However, it is
important to note that these metrics may not adequately capture the registration accu-
racy in the specific scenario characterized by vessels in the fixed image appearing in par-
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Figure 5.7: Examples of 3D model visualization at three different time stamps, showcasing the fluoroscopy
image, the deformation field, and the deformed 3D model.

tial regions of the moving image only. Figure 5.6 showcases examples of deformable reg-
istration using both the state-of-the-art approach [33] (H) and our proposed approach
(W 2). Notably, our approach demonstrates improved performance in estimating defor-
mations, particularly in regions where the vessels appear in the moving image but not in
the fixed image (see the red boxes in Figure 5.6). It is worth mentioning that due to the
low contrast media dose, the fixed image derived from fluoroscopy usually contains only
partial vessel branches present in the moving image. This incomplete segmentation in-
troduces challenges to the stability of the deformable registration network, resulting in
deformation artifacts in areas of projected vessels that do not exist in the fixed image.

To provide a more comprehensive representation of registration accuracy, the perfor-
mance metrics MDSC and PDSS are employed. As illustrated in Figure 5.5, the DRU-Net
model (W 2) did not exhibit a significant improvement in MDSC accuracy compared to
the literature [33] (H). However, the DRU-Net model achieves a reduced penalization
loss in terms of PDSS, with mean and standard deviation values of 3.77 ± 0.09 (com-
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Figure 5.8: Examples of model-to-image registration results after deformable model-to-image registration (c)
and 3D model registration and visualization (d). In the third column (1c-3c), different elements of the con-
fusion matrix between the fixed and warped image are represented by different colors: yellow indicates true
positives (TP), gray indicates true negatives (TN), cyan indicates false negatives (FN), and magenta indicates
false positives (FP). In (1d-3d), red represents the pre-operative mesh model, blue represents the deformed
mesh model predicted using the proposed approach, and gray represents the ground truth of the deformed
mesh model.

pared to 4.19 ± 0.23). Despite the incorporation of the component LB in the loss func-
tion, residual artifacts persist even after the retraining phase. Notably, these artifacts
become more apparent in regions where the fixed image contains smaller vessel sec-
tions. As these deformation artifacts can potentially provide incorrect guidance, their
suppression becomes crucial. Future work will address this challenge by introducing
a post-processing step aimed at mitigating deformations outside the segmented vessel
area and enhancing deformation smoothness.

5.4.2. 3D MODEL REGISTRATION AND VISUALIZATION

The deformed models provide improved accuracy and real-time representation of envi-
ronmental changes during intra-operative procedures, benefiting both robotic systems
and cardiologists. For a comprehensive demonstration of the 3D visualization, readers
are referred to the accompanying video1.

Figure 5.7 presents examples of the 3D model visualization at three distinct time
stamps. The visualization includes fluoroscopy images, estimated deformation fields
obtained from the DRU-Net, and the corresponding deformed 3D models. Consequently,
the model-to-image registration facilitates 3D visualization, enhancing visual guidance
during procedures.

1https://youtu.be/3YbdejVkgzk

https://youtu.be/3YbdejVkgzk
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Table 5.3: Performance metrics on the dataset obtained from the simulator.

Performance
Metrics

Training Validation Testing

No. Images 99 27 17
DSC 0.98 ± 0.01 0.98 ± 0.01 0.97 ± 0.01

Precision 0.96 ± 0.02 0.96 ± 0.02 0.95 ± 0.02
Recall 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

e [mm] 0.34 ± 0.26 0.33 ± 0.26 0.39 ± 0.26
ex [mm] 0.22 ± 0.20 0.22 ± 0.21 0.26 ± 0.21
ey [mm] 0.17 ± 0.12 0.17 ± 0.12 0.19 ± 0.12
ez [mm] 0.08 ± 0.05 0.08 ± 0.05 0.09 ± 0.05

eROI [mm] 1.30 ± 1.01 1.30 ± 1.03 1.51 ± 1.02
ex−ROI [mm] 0.85 ± 0.81 0.84 ± 0.82 0.99 ± 0.84
ey−ROI [mm] 0.69 ± 0.52 0.68 ± 0.54 0.79 ± 0.54
ez−ROI [mm] 0.24 ± 0.15 0.24 ± 0.15 0.27 ± 0.14

5.4.3. REGISTRATION ACCURACY VALIDATION
Table 5.3 presents the results of the model-to-image registration performed on the dataset
obtained from the simulator [31]. The registration accuracy in 2D exceeds 0.9, indicat-
ing excellent performance. The mean 3D registration error for all vertices in the testing
dataset is 0.39 mm, while for vertices within the ROI, it is 1.51 mm. The mean 3D registra-
tion error observed within the ROI is notably higher compared to the average registration
error across the entire dataset. This discrepancy can be attributed to the fact that the ROI
is subject to a greater degree of deformations compared to regions that are more distant
or less affected by such changes. The majority of the error arises from the x-y plane
rather than the z-axis, indicating that our assumption of uniform deformation along the
depth direction is reasonable. Figure 5.8 showcases examples of model-to-image reg-
istration results. The pre-operative mesh model (depicted in red) is transformed into
an intra-operative mesh model (shown in blue) using the predicted deformation field
obtained from our proposed DRU-Net approach. The similarity between the predicted
deformed mesh model and the ground truth (represented in gray) confirms the feasibil-
ity and accuracy of the model-to-image registration. For a comprehensive recording of
the 3D visualization, please refer to the accompanying video2.

In this study, the accuracy of the registration process is validated by applying a force
near the femoral arteries in the simulator. This method effectively evaluates the pre-
cision of the registration under specific simulated conditions. However, this validation
does not encompass the registration accuracy when considering deformations attributed
to physiological factors such as heartbeat and pulsation. Future work could extend this
validation process by incorporating these physiological factors into the simulator as de-
scribed in [31]. This advancement would enable a more comprehensive assessment of
the registration accuracy, particularly under the varying conditions that mimic the real-
istic physiological environment of heartbeat and pulsation.

2https://youtu.be/2QFrwmTKIQs

https://youtu.be/2QFrwmTKIQs
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5.5. CONCLUSION
In this study, a deformable model-to-image registration framework is proposed based on
deep learning for augmented reality-guided endovascular interventions. The proposed
framework encompasses several key components: (i) autonomous vessel segmentation
of intra-operative fluoroscopy images through a DRU-Net; (ii) affine model-to-image
registration, achieved by employing a CNN to align the segmented images with the pre-
operative 3D model reconstructed from CTA scans; (iii) deformable model-to-image reg-
istration, accomplished by employing a DRU-Net model to predict and reconstruct de-
formations from 2D images onto the pre-operative 3D model; and (iv) an immersive
visualization of intra-operative 3D models using augmented reality. A comprehensive
evaluation of registration accuracy is provided through the introduction of a customized
loss function and performance metrics, namely MDSC and PDSS.

This framework has the potential to assist clinicians during procedures by provid-
ing augmented reality visualization of patient-specific intra-operative vascular models.
Our results demonstrate improved accuracy and real-time representation of vascular
changes compared to existing literature. The proposed DRU-Net approach achieved a
reduced PDSS value of 3.77 ± 0.09 (compared to 4.19 ± 0.23 in the literature). Further-
more, the incorporation of a patient-specific retraining phase using intra-operative im-
ages effectively enhanced deformable model-to-image registration accuracy.

To validate the registration accuracy in 3D, a dataset was generated using a simulator.
The mean 3D registration error for all vertices in the testing dataset was 0.39 mm, while
for vertices within the ROI, it was 1.51 mm. The similarity between the predicted de-
formed mesh model and the ground truth further confirmed the feasibility and accuracy
of the model-to-image registration approach.

Future work entails expanding the training dataset to enhance the robustness of the
registration model, implementing post-processing techniques to address residual arti-
fact suppression, and conducting end-user evaluations in the operating room. These
endeavors will contribute to further advancements and practical application of the pro-
posed framework in clinical settings.
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6
ROBUST PATH PLANNING VIA

LEARNING FROM DEMONSTRATIONS

FOR ROBOTIC CATHETERS IN

DEFORMABLE ENVIRONMENTS

This chapter proposes a robust path planner via a learning from demonstrations method,
named Curriculum Generative Adversarial Imitation Learning (C-GAIL). This path plan-
ning framework takes into account the interaction between steerable catheters and vessel
walls and the deformable property of vessels. In-silico comparative experiments show that
the proposed network achieves smaller targeting errors, and a higher success rate, com-
pared to a state-of-the-art approach based on GAIL. The in-vitro validation experiments
demonstrate that the path generated by the proposed C-GAIL path planner aligns better
with the actual steering capability of the pneumatic artificial muscle-driven catheter uti-
lized in this study. Therefore, the proposed approach can provide enhanced support to
the user in navigating the catheter towards the target with greater precision, in contrast
to the conventional centerline-following technique. The targeting and tracking errors are
1.26±0.55mm and 5.18±3.48mm, respectively. The proposed path planning framework
exhibits superior performance in managing uncertainty associated with vessel deforma-
tion, thereby resulting in lower tracking errors.

This chapter can be found in part from:
Zhen Li, Chiara Lambranzi, Di Wu, Alice Segato, Federico De Marco, Emmanuel Vander Poorten, Jenny
Dankelman, and Elena De Momi. “Robust Path Planning via Learning from Demonstrations for Robotic
Catheters in Deformable Environments”. 2023. (Under Review)
Di Wu*, Zhen Li*, Mohammad Hasan Dad Ansari, Xuan Thao Ha, Mouloud Ourak, Jenny Dankelman, Arianna
Menciassi, Elena De Momi, and Emmanuel Vander Poorten. “Comparative Analysis of Interactive Modalities
for Intuitive Endovascular Interventions”. 2023. (Under Review. Di Wu and Zhen Li contributed equally to this
manuscript. Corresponding author: Zhen Li.)
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6.1. INTRODUCTION
Endovascular procedures are a rapidly emerging field in medicine. The number of pa-
tients treated has constantly increased over the past few decades [1]. These procedures
increase patient comfort, reduce risks, and improve outcomes compared to traditional
open surgery. However, navigation through narrow, fragile, and deformable vessels, us-
ing traditional non-steerable catheters and guidewires, requires considerable skill and
experience [2]. Steerable catheters and navigation guidance could potentially lower the
skill that would be required for percutaneous treatment [3]. Commercial robotic plat-
forms can attest to the robot-assisted trend, such as CorPath™ GRX (Corindus, Waltham,
USA), Sensei™ X and Magellan (J&J robotics, New Brunswick, USA), Amigo™ (Catheter
Robotics Inc. Budd Lake, USA), R-One™ (Robocath, Rouen, France) and Niobe™ (Stereo-
taxis, St. Louis, USA). In the last decades, different research groups have focused their
efforts on the development of steerable catheters [4, 5, 6, 7]. For example, a proof-of-
concept medical robotic platform, composed of a multi-lumen catheter shaft and mag-
netically actuated microcatheter, was developed in [7]. Limited steering capability un-
derscores the need for reliable path planning [8]. However, the complex interaction be-
tween the steerable catheter and vessel walls and the deformable property of the vessels
makes reliable and real-time path planning a hard problem.

This work presents a robust and accurate path planning framework, designed to en-
hance risk management. This framework effectively mitigates the impact of vessel de-
formation while satisfying robot constraints. It achieves this by employing a method that
keeps the catheter tip away from the vessel wall, thereby minimizing potential risks and
reducing tracking errors. This strategic approach is pivotal in ensuring safer and more
accurate navigational outcomes. The main contributions are:

• proposing a reliable path planning approach, named C-GAIL, to deliver the opti-
mal path planning performance while satisfying the given robotic catheter con-
straints. The curriculum learning module of C-GAIL enables progressive training
in a complex environment;

• presenting a path planning framework takes into account the deformable property
of the environment and the dynamic movement of the target;

• validating the proposed path planner in an in-vitro environment using teleoper-
ation control strategy. These experiments demonstrate the algorithm’s feasibility
in generating suitable paths that align with the actual steering capability of the
catheter.

6.2. RELATED WORK
Over the last decade, several path planning methods for steerable/non-steerable catheters
or guidewires have been proposed to assist clinicians. Table 6.1 summarizes the state-
of-the-art from 2011 to 2022, in terms of path planning methodology, type of medical
instrument used, type of environment (presence of dynamic changes), and type of val-
idation (in-silico, in-vitro, ex-vivo, in-vivo). In the following a very brief description of
the main types of planners is given.



6.2. RELATED WORK

6

111

Table 6.1: Overview of state-of-the-art path planning methods for endovascular catheterization (From 2011 to
2022). Key: NB - Node-Based Methods; SB - Sampling-Based Methods; OB - Optimization-Based Methods; LB
- Learning-Based Methods.

Reference Method Algorithm Instrument Environment Validation
[9] Wang 2011 NB Centerline-based tree Shaped catheter Rigid in-vitro
[10] Zheng 2018 NB Centerline-based tree - (Not specified) Deformable in-vitro
[11] Huang 2011 NB DFS Guidewire Rigid in-silico
[12] Qian 2019, [13] Cho 2021, [14] Schegg 2022 NB Dijkstra Guidewire Rigid in-vitro
[15, 16] Ravigopal 2022 NB Modified hybrid A* Steerable guidewire Deformable ex-vivo
[17] Fagogenis 2019 NB Wall-following Concentric tube robot Deformable in-vivo
[18], [19], [20] Fauser 2019 SB bi-RRT Catheter / Steerable

guidewire
Rigid in-silico

[21] Guo 2021 SB RRT Catheter Rigid in-silico
[22] Gao 2015 OB ACO Catheter Rigid in-silico
[23] Qi 2019 OB Optimal IK Steerable catheter Rigid in-vitro
[24] Li 2021 OB GA Steerable catheter Rigid in-silico
[25], [26] Rafii-Tari 2014 LB GMM, HMM Shaped catheter, pre-

loaded guidewire
Rigid in-vitro

[27], [28], [29] Chi 2020 LB DMPs, GMMs, GAIL Shaped catheter, pre-
loaded guidewire

Deformable in-vitro

[30] Zhao 2022 LB GAN Guidewire Rigid in-vitro
[31] Tibebu 2014, [32] You 2019 LB Q-learning, DQN Steerable catheter Rigid in-vitro
[33] Behr 2019, [34] Karstensen 2020, [35] Kweon 2021 LB DQN, DDPG Shaped guidewire Rigid in-vitro
[36] Meng 2021 LB A3C Guidewire Rigid in-silico
[37] Karstensen 2022 LB DDPG Shaped guidewire Deformable ex-vivo
Proposed LB C-GAIL Steerable catheter Deformable in-vitro

6.2.1. NODE-BASED (NB) METHODS
Node-based algorithms use an information structure to represent the environment map.
Studies [9] and [10] extracted the vessel centerline and built an exploration tree along
the centerline. The aim of this method is to keep the tip of the instrument away from
the walls. Nevertheless, path exploration inside the information structure is not men-
tioned in those studies. Graph search strategies such as DFS algorithm [11], Dijkstra al-
gorithm [12, 13, 14] and A* algorithm [15, 16] were employed to generate a path solution
in a tubular environment with multi-branches. For movement in the cardiac chamber,
a wall-following strategy employing haptic vision was developed in [17] by Fagogenis et
al. to keep a certain distance from the heart wall.

6.2.2. SAMPLING-BASED (SB) METHODS
Sampling-based methods randomly sample in the robot’s configuration space or workspace
to generate new tree vertices. Then collision-free vertices are connected as tree edges.
Fauser et al. [18, 20, 19] introduced a RRT-connect method for instruments that follow
curvature constrained trajectories in vena cava or aorta. The study in [21] implemented
an improved RRT algorithm for cerebrovascular interventions. The expansion direction
of the random tree is a compromise between the new randomly sampled node and the
target. This strategy can improve the convergence speed of the algorithm. However, their
work did not take into account any kinematic constraints governing catheter movement.

6.2.3. OPTIMIZATION-BASED (OB) METHODS
Path planning can be formulated as an optimization problem and solved by numerical
solvers. Gao et al. [22] proposed an improved ACO algorithm to plan an optimal path
that also accounted for factors such as catheter diameter, vascular length, diameter, cur-
vature and torsion. Nevertheless, the high computational time with an average value of
12.32s makes it infeasible in real-time scenarios. Qi et al. [23] formulated the path plan-
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ning as an optimization problem under the IK modeling of continuum robots. However,
the optimization problem is solved locally without considering long-term cumulative
costs. Li et al. [24] proposed a fast path planning approach via a local GA optimization.
The approach is able to account for constraints on the catheter curvature, but the opti-
mization algorithm is based on vessel centerlines that are sensitive to deformations of
the anatomical model.

6.2.4. LEARNING-BASED (LB) METHODS

Learning-based methods use statistical tools and machine learning algorithms for path
planning. Rafii-Tari et al. [25, 26] and Chi et al. [27, 28, 29] proposed LfD approaches
to optimize trajectories or learn motion primitives using expert demonstrations. Zhao et
al. proposed a GAN framework for real-time path planning and evaluated it in 2D-DSA
images [30]. The work in [32, 33, 34, 31, 35, 36, 37] developed RL approaches to predict
a sequence of actions to reach a target. LfD methods based on GAIL were adapted into
other medical scenarios [38, 39] because of their ability to compromise between learning
the distribution and ensuring the generalization of trajectories.

6.2.5. LIMITATIONS

Current approaches lack planning capabilities that actually take into account the de-
formable nature of the environment, even while those studies were verified in a soft en-
vironment [10, 17, 27, 28, 29, 37, 16]. Moreover, most of the studies that looked at de-
formable environments were actually developed for passive, non-steerable instruments
[10, 27, 28, 29, 37]. The wall-following algorithm [17] was only tested on a short path
along the inner heart-wall. This approach could be considered efficient if there are few
feasible routes to reach the target. However, in scenarios where there are multiple feasi-
ble routes, the solution provided by a wall-following algorithm cannot ensure optimality
and may cause the catheter to enter other branches along the vessel wall. This algorithm
has limited application scenarios. For navigation along vessels, wall-following is not ad-
visable as it could cause the catheter to come into excessive contact with fragile tissue,
plaque or calcium that should actually be avoided.

In summary, there is a need for a reliable path planner elaborated in this work that
takes into account the deformable nature of the environment and the kinematics of
steerable catheters. The work is built up as follows. Section 6.3 introduces the modeling
and path planning methods. Section 6.4 presents an in-silico and in-vitro experimental
setup, followed by experimental results in Sec. 6.5. Conclusions and future directions are
summarized in Sec. 6.7.

6.3. MATERIALS AND METHODS

6.3.1. MOVING AGENT

The tip of the catheter is considered as the moving agent. The movement of the catheter
is fully determined by the tip under the assumption of Follow-The-Leader (FTL) deploy-
ment [3]. While this assumption may not seem very realistic for a catheter with a single
bendable segment, it will be shown that it leads to reasonable results.

A fixed coordinate frame FA is attached to the tip of the catheter as shown in Fig-
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Figure 6.1: Parameterization of a robotic catheter agent: the catheter tip has configuration qt at time t . The
agent can perform an insertion movement ∆l along the y A axis and can bend with angle α about the xA axis
and with angle γ about the zA axis, respectively, in the tip frame FA . The catheter segments following the tip
adopt the previous configurations sequentially.

ure 6.1. The agent can perform an insertion movement∆l along the y A axis and can bend
with angle α about the xA axis and with angle γ about the zA axis, respectively. The pose
of the agent is determined and updated at each time step by the 3-dimensional continu-
ous action space A = [α,γ,∆l ]. The pose is defined by the tip’s position pt = [x, y, z] and
orientation rt = [α,0,γ] in a global frame F0. Using a transformation matrix, the agent
configuration qt can be defined by its pose as below, where the superscript T means
transpose.

qt =
[

R(α,0,γ) [x, y, z]T

0T 1

]
(6.1)

The geometric constraints of the catheter, such as its outer diameter and the length of
the distal segment L, along with the kinematic constraints, such as the maximum bend-
ing angle θmax and the maximum insertion speed, are considered in the agent’s motion.
θt

max is the maximum bending angle the catheter can bend at time t , given an insertion
∆l . The bending angle is within the range of [−θt

max ,θt
max ]. This range further depends

on the insertion speed vt and time interval ∆t because ∆l = vt∆t .

θt
max = θmax∆l

L
(6.2)

6.3.2. DYNAMIC ENVIRONMENT
An effective planner should address the level of uncertainty that is present in this prob-
lem. Due to the deformable nature of vessels, pre-planned paths will deviate from the
reality. Rigidly following such outdated paths may lead to intense contacts with the frag-
ile anatomy. A realistic and auto-adaptive simulator to predict vessels’ global deforma-
tion induced by the catheter’s contact and cyclic heartbeat motion was proposed in our
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previous work [40, 41]. The vessel modeling is based on a PBD approach. It discretizes
an object into a particle system composed of particles. Then it computes the system’s
time evolution by directly updating particle positions, subject to a set of equality and in-
equality constraints. The deformable property was calibrated using a stress-strain curve
which appropriately depicts the biomechanics properties.

In this work, for the construction of the 3D dynamic environment (see Figure 6.2), let
us define:

• the “configuration space" Cspace as the set of all the possible agent configurations
qt ;

• the “obstacle space" Cobst ⊂ Cspace that is the space occupied by the vessel wall
that limits the area in which the catheter can move;

• the “free space" C f r ee ⊂ Cspace that is the set of all possible agent configurations
qt within the aorta lumen without collisions with other objects;

• the “centerline space" Ccenter l i ne that is the shortest path computed via the Voronoi
Diagram from the descending aorta to the left and right coronaries;

• the “target space" Ct ar g et ⊂ Cspace that is the volume where the target configura-
tion qg can locate. Once the delivery catheter reaches the target space, a micro-
catheter can be inserted from a channel of the delivery catheter [7]. qg changes
randomly at every learning episode within Ct ar g et . qg is linked to a moving parti-
cle of the PBD system to cooperate with deformations;

• the agent start configuration q0 that is located in the descending aorta.

6.3.3. PATH PLANNING
The path planning problem can be described as: the agent has to find an admissible
set of configurations Qt = {q0, ..., qg } to move from a start position p0 ∈ q0 to a target
position pg ∈ qg . The target position is reached when the distance between the agent
and the target is smaller than a distance threshold ϵ, in our case set to 5mm.

The state of the agent consists of its pose, that can be changed through the actions
of rotation and insertion A = [α,γ,∆l ]. In training, the agent learns to maximize the
reward function by taking actions according to its policy τ, expressed in the paragraph
Reward Function and by observing its interaction with the environment, described in the
subsequent paragraph Observations.

REWARD FUNCTION

The reward function R(τ) = rt associated with each time step t is designed to optimize
the path according to a combination of multiple criteria: the number of steps, the num-
ber of collisions, reaching the target position, passing through the centerline waypoints,
bending angle. The reward rt consists of two main parts: rend , a reward added at the end
of a learning episode; ri n , a relatively small reward added at each step during a learning
episode. The reward rt is expressed in (6.3)-(6.5).
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Figure 6.2: The environment is represented by an aortic anatomy, the obstacle space Cobst , the free space
C f r ee , the centerline space Ccenter l i ne , and the target space Ct ar g et . The catheter moves from the start con-
figuration q0 and proceeds to move to reach the target configuration qg . (A) Top view on the aortic model. (B)
Cross-sectional view of the open lumen of the descending aorta.

rt = rend + ri n (6.3)

rend =


robst if qt ∈Cobst

rexi t if qt ∉C f r ee and qt ∉Cobst

rt ar g et if ||pt −pg || < ϵ

(6.4)

ri n = rstep + rcenter l i ne + rbendi ng (6.5)

• robst is a negative reward that is given if a collision between the catheter tip and
vessel walls is detected. This study only takes that collision into account because
it has a higher risk during navigation. Conversely, detecting contact between the
catheter body and the vessel walls may yield misleading or superfluous data. This
is particularly relevant in scenarios where the catheter body maintains contact
with the vessel walls, a phenomenon often necessitated by gravitational forces or
constraints in the available workspace. An episode terminates when a non-minor
collision occurs;

• rexi t is a negative reward when the agent tries to exit from the open lumen down
the descending aorta;

• rt ar g et is a positive reward given to the agent when it reaches the target;
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• rstep is a negative reward given at each time step. It is set to keep the total number
of steps of the trajectory as small as possible;

• rcenter l i ne is a positive reward if the agent reaches a waypoint in Ccenter l i ne ;

• rbendi ng is a positive reward that is given when the bending action is bigger than a
threshold. This reward was introduced to overcome the tendency of the network
to avoid producing actions near the catheter’s maximum bending angle. To pass
tortuous areas, the maximal bending range is often needed to be able to pass. This
reward will not promote bending beyond the maximum bending angle, as such
excessive bending is prevented by limitations on the configuration space.

The values of the reward function parameters obtained with an empirical method
are summarized in Table 6.2. All rewards are set within the interval of [-1,1]. The min-
imum value of “-1" is assigned to prohibited behaviors such as violent collisions with
the vessel walls. The maximum value of “1" is assigned to reaching the target, which is
the agent’s task. The other rewards are chosen based on their frequency. For instance,
since rstep occurs very often, if it is not small enough, it can lead to a large cumulative
reward. Similarly, the bending reward also has the potential to lead to a large cumulative
reward. In contrast, the number of centerline points is relatively small, with only around
100 points, and not all of them are reachable if the catheter constraints are met. Hence,
this positive reward is set slightly larger.

OBSERVATIONS

At every step, the agent collects observations ot , which are composed of:

• the agent configuration qt ;

• the normalized distance from the agent to the target u = ||pg −pt ||
dmax

, where dmax is
the maximum distance between the agent and the target when qt ∈C f r ee ;

• the direction from the agent to the target v = pg −pt ;

• a set of raycast observations or ay . Each raycast detects the presence of the aor-
tic wall along its direction within the ray length. In this research, a collection of
raycasts, constituting a part of a sphere, is utilized. Specifically, this arrangement
spans a range of 60 degrees in alignment with the heading direction.

Table 6.2: Values of the reward function parameters

Reward Value Reward Value

robst -1 rstep -1e-5
rexi t -1 rcenter l i ne +0.05
rt ar g et +1 rbendi ng +1e-5
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Figure 6.3: The proposed C-GAIL network architecture. The extrinsic reward signal considers the reward given
by interacting with the environment, such as curriculum and PPO modules. The intrinsic reward has a policy
that considers other factors, and it is defined inside the learning algorithm: for GAIL about the similarity of the
path with respect to the expert demonstrations, for curiosity about the difference between the predicted and
the actual path.

C-GAIL NETWORK

The new network proposed in this work, named C-GAIL network, is built around the
combination of the principles of LfD and RL (see Figure 6.3). The LfD component is
realized through Behavioral Cloning (BC) and GAIL networks. The Proximal Policy Op-
timization (PPO) network has two parts: the actor network provides an action given the
observation; the critic network that evaluates the actor network using the extrinsic re-
ward and suggests modification according to a gradient ascent policy. The actor network
updates its actions according to three policies: the BC policy, PPO policy, and the GAIL
generator policy. The curiosity module [42] acts as an intrinsic reward signal that en-
ables the agent to explore its environment in novel states to help escape local minima of
the policy function. The curiosity module contains an inverse and forward network. The
inverse network predicts the action between observations, while the forward network
predicts the next encoded observation. The difference between the predicted and actual
encoded observations is defined as the loss of the forward network. Therefore, through
curiosity-driven exploration, the agent can predict the outcome of its actions and ac-
quire skills that may be valuable in the future. The curriculum learning module acts on
the environment by progressively adding complexity during the training [43]. The cur-
riculum learning module optimizes the bending angle while respecting the reachable
bending range of the catheter. Specifically, in curriculum learning, the learning progress
is measured through the reward function and once the agent performance improves,
θmax is decreased for the next level of learning. Finally, the agent is able to try actions in
different reachable bending ranges and obtain globally optimal paths.



6

118
6. ROBUST PATH PLANNING VIA LEARNING FROM DEMONSTRATIONS FOR ROBOTIC

CATHETERS IN DEFORMABLE ENVIRONMENTS

The proposed network can be represented as a set of modules with weights, that de-
fine the contribution of each module to the loss function. These modules interact with
the environment and with each other. The goal is to come up with an optimal combina-
tion of the strengths of the different modules such that a performance is achieved that
exceeds those of the offered demonstrations. The training is based on the linear combi-
nation of the respective RL and LfD losses:

L = κ(1−µ)LPPO +λLG AI L +κµLBC +νLcur i osi t y (6.6)

where LPPO is the PPO critic network loss (see its definition in [44]), LG AI L is the GAIL
loss [45], LBC is the BC loss [46], Lcur i osi t y is the curiosity loss [42]. The weight µ indi-
cates the degree to which the influence of BC is prioritized over the policy relative to PPO,
with a higher weight indicating a higher learning rate of imitation from demonstrations
and a lower weight indicating more operations attempting to maximize reward rather
than imitating. The following weights were found empirically to work well: κ = 0.2,
λ = 0.8, µ = 0.7, ν = 0.02. The GAIL is given the highest weight because the method
combines two paradigms and reward types, intrinsic and extrinsic.

6.3.4. CLINICAL WORKFLOW FOR THE PROPOSED PATH PLANNER

Regarding the clinical translation of this work, the anticipated clinical workflow is de-
signed as follows.

• Firstly, a 3D mesh model is reconstructed from the pre-operative CTA images of a
specific patient using the AW server (GE Healthcare). Based on this 3D model, a
patient-specific deformable environment is built using the PBD simulator [40].

• Then, the proposed C-GAIL network is trained using patient-specific demonstra-
tions provided by experts. This network model can be trained from scratch for this
specific patient, or retrained from a previous network model with a slightly dif-
ferent anatomy. This network training step may last around six hours in the PBD
simulator without the involvement of expert clinicians.

• Given the desired target configuration, the proposed C-GAIL path planner gives a
set of configurations to move from a starting position to the target and outputs an
optimal path for the catheter.

• (optional) A patient-specific phantom is manufactured, and clinicians can tele-
operate the robotic catheter to perform in-vitro experiments. The C-GAIL path is
rendered through a GUI, serving as path guidance for the clinicians. This enables
clinicians to acquire experience prior to the actual interventions, thereby reducing
the likelihood of encountering unforeseen situations.

• For in-vivo, ex-vivo, or clinical practice, the C-GAIL path is rendered through a GUI
and serves as path guidance for the clinicians. The clinicians can teleoperate the
robotic catheter to reach the clinical target site by following the C-GAIL path.
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Figure 6.4: Workflow for simulation and in-vitro user study. First, a 3D model is reconstructed from CTA images
for a specific patient, and a deformable environment is built. Next, based on expert demonstrations, the C-
GAIL network is trained to provide an optimal path. This path is then rendered through a GUI for the in-vitro
experiments and serves as path guidance for users.

6.4. EXPERIMENTAL SETUP

The proposed workflow for the simulation and in-vitro user study is illustrated in Fig-
ure 6.4. Firstly, a 3D mesh model is reconstructed from the CTA images of a specific
patient, and a deformable environment is built using the PBD approach [40]. Then, the
proposed C-GAIL network is trained using demonstrations provided by experts, which
outputs an optimal path for the catheter. The C-GAIL network utilizes expert demon-
strations to learn and transfer expert experience, which can provide path references for
non-expert users and even autonomous catheters.

In addition to evaluating the path planning algorithm based on C-GAIL, this work
also includes control experiments (path following experiments) to verify the feasibility
of executing the planned path. The in-vitro experiments used human-in-the-loop tele-
operation control to guide the catheter along the planned path. It is worth noting that
while control strategies are not the focus of this work, they were merely included in the
experiments to evaluate the feasibility and performance of the path planner. Teleopera-
tion is more commonly used and easier to implement in practice, making it the method
of choice for the in-vitro experiments. It is important to note that any control algorithm
could theoretically be used to execute the path planned in this work.

6.4.1. In-silico PATH PLANNING SETUP

HARDWARE SPECIFICATION

Experiments are carried out on a computer equipped with an Intel(R) Core(TM) i9-9900KF
CPU @3.60GHz 3.60 GHz processor and 32.0 GB RAM, with an NVIDIA GeForce RTX2080Ti
GPU card.
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Table 6.3: Training parameters for C-GAIL and GAIL.

Parameter Value Parameter Value

PPO beta 5.0e-4 PPO gamma 0.99
max steps 5.0e5 GAIL gamma 0.99
batch size 1024 buffer size 10240

All parameters are defined in the Unity ML-Agents Toolkit [49].

EXPERIMENTAL PROTOCOL

The purpose of the in-silico experiments is to validate that, given the curvature con-
straints of the robotic catheter, the paths obtained by the proposed C-GAIL network have
better performance than the state-of-the-art GAIL approach in a static environment and
are also capable to operate in a complex dynamic environment.

Training and testing were conducted in a single aortic model. For the training, 70
demonstrations were recorded using a joystick by one expert user, who performed catheter
navigation through vessels in the aortic model for a Percutaneous Coronary Intervention
(PCI). The number of experiments for comparison was set to 100. Different start config-
urations in the descending aorta and possible target positions were chosen to make the
training more generally valid. There are three possible start configurations distributed
within 5.3cm along the descending aorta. There are five target positions distributed in a
spherical space with a radius of 3cm near the coronaries and the vessel walls. Although
having diverse configurations in the training data might hinder convergence, it could
actually enhance the robustness and generalizability of the network model [47].

The C-GAIL network training was carried out in two phases: pre-training in a rigid,
computationally less heavy environment, where the tuning of the network parameter
settings is performed; re-training in a deformable environment, starting with the pre-
viously tuned network settings. Pre-training helps reduce the time required to obtain
network settings with empirical parameters and compare the differences in agent be-
havior under different settings. The training parameters for the C-GAIL is presented in
Table 6.3. The work from Chi et al. [29] is used as a reference to compare with. To keep
consistency in comparison, the same training parameters are set for the state-of-the-art
GAIL. The GAIL network architecture of [29] is adopted with minor modifications: each
layer has 64 units and a Swish activation function [48].

6.4.2. In-vitro VALIDATION SETUP

HARDWARE SPECIFICATION

Experiments were performed in a transparent, deformable silicone aortic phantom (T-S-
N-002, Elastrat Sarl, Geneva, Switzerland). The robotic catheter is fabricated out of Niti-
nol using metal laser cutting technology and is actuated by four integrated Pneumatic
Artificial Muscles (PAMs) [50]. The outer diameter of the catheter is 7mm, and the length
is 900mm. The distal Nitinol segment is 75mm long and includes a 50mm long 2 DOF
steerable distal segment. The maximum bending angle is 90◦. An EM sensor (Northern
Digital Inc., Waterloo, Canada) is embedded at the tip of the catheter to track its pose.
The robotic catheter driver system is described in [51]. The sleeve-based catheter driver
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Figure 6.5: In-vitro experimental setup to validate the proposed path planning approach: (1) silicone aortic
phantom; (2) robotic catheter; (3) Aurora EM field generator; (4) sleeve-based catheter driver; (5) wireless
PlayStation 4 (PS4) controller; (6) the GUI as visual feedback.

has two pneumatically actuated grippers that grasp the catheter alternately and insert
the catheter in a relay fashion. The maximum insertion (and retraction) speed is set as
5mm/s. The teleoperated catheter insertion and bending are realized through veloc-
ity control of the catheter driver and pressure control of the PAMs, respectively, using a
wireless PlayStation 4 (PS4) controller. The path planning is visualized by a GUI, which
includes an external projected view showing the aorta, path, and pose of the catheter
tip, and an internal view showing the next waypoint and suggested bend direction. The
in-vitro experimental setup, including the abovementioned devices, is depicted in Fig-
ure 6.5.

EXPERIMENTAL PROTOCOL

The objective of the in-vitro experiments is to validate whether the path obtained from
the proposed C-GAIL path planner is more compatible with the actual steering capability
of the catheter. Therefore, it can also be verified whether this path can better help the
user steer the catheter accurately to the target.

For the in-vitro comparison with C-GAIL, the traditional centerline-following ap-
proach was chosen. The centerline path is widely used in interventions [52, 53], whereas
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GAIL approach (which was served as a comparison in the in-silico experiments) has
not yet been validated in clinical practice. Moreover, both GAIL and C-GAIL are RL
approaches, which have limited interpretability. Therefore, it may be suggested to use
traditional approaches in parallel with learning-based approaches in order to provide a
more transparent and explainable analysis. By comparing C-GAIL with the traditional
centerline approach, a more interpretable comparison can be achieved.

User-involved control experiments were carried out. In each trial, the user teleoper-
ates with the robotic catheter, tries to pass through each waypoint, and finally reaches
the target. The maximum operation time is set to 3 minutes. If the maximum opera-
tion time is exceeded and the target is still not reached, the experiment will be forcibly
stopped and be regarded as a failure. Setting this stopping criterion can avoid the fol-
lowing two cases: 1) The user rushes to finish the experiment without considering the
performance; 2) The user tries excessively to get better performance while the proce-
dure is very time-consuming.

The user’s performance was compared in two scenarios: with the C-GAIL assistance
and centerline assistance. The waypoints from Ccenter l i ne were utilized in the centerline-
following approach. The C-GAIL network was trained using different targets and ob-
tained a path to reach an unseen target (that was not used during training). To largely
eliminate the impact of the user’s learning curve, the user is required to be pre-trained.
Only when the learning curve converges to a plateau can we assume that the user has
stable catheter manipulation abilities. The user pre-training experiments are repeated
ten times. After that, control experiments with the same C-GAIL path are conducted ten
times. Similarly, the pre-training experiments with the centerline and the control exper-
iments with the same centerline are repeated ten times each. The experiments with the
C-GAIL path are first performed to eliminate experience learnt from the other scenario.

6.4.3. PERFORMANCE METRICS
The following criteria were chosen to quantify the performance of in-silico and in-vitro
experimental results. The statistically significant difference between the proposed method
and others is evaluated via the Kruskal-Wallis test in this work, with a significance level
of 0.05.

SUCCESS RATE (δ)
Success rate represents the percentage of successes among the total number of attempts.
A trial is deemed successful if the robotic catheter reaches the target within the given
time, which is set as 3 minutes in these experiments.

δ= ns /n (6.7)

where ns is the number of successes to reach the target within a given time, and n is the
number of attempts.

TIMESTEPS (Ts )
For in-silico experiments, at each time step, the agent receives observations, takes an
action according to its policy and receives rewards. Ts is defined as the number of time
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steps moving from the start configuration to the target.

Ts = Ng −N0 +1 (6.8)

where N0 and Ng are the first and last time step, respectively.

DURATION (T )
Duration is the length of time a single experiment lasts from start to stop. An experiment
stops when the target or the maximum duration has been reached.

T = tg − t0 (6.9)

where t0 and tg are the first and last timestamp, respectively.

TRACKING ERROR (Tr )
Tracking error refers to the average deviation between the actual trajectory p j ( j = 1, ...k
with t = t0 when j = 1, and t = tg when j = k) and desired trajectory pd

i (i = 1, ...m).
For each point p j on the actual trajectory, the shortest distance to the desired trajectory
is identified and treated as the deviation for that individual point. The tracking error
is computed as the mean error of all these individual points. This criterion is used to
evaluate the path following capability.

Tr = 1

k

k∑
j=1

(min
i

||pd
i −p j ||) (6.10)

TARGETING ERROR (Ta )
Targeting error is calculated by searching the entire trajectory and determining the short-
est distance between the trajectory p j and the target qg . This metric serves as a criterion
for evaluating the accuracy of reaching the target.

Ta = min
j

||qg −p j || (6.11)

6.5. RESULTS AND DISCUSSION

6.5.1. In-silico PATH PLANNING
The performance comparison of the proposed C-GAIL and the state-of-the-art GAIL [29]
in a static environment is presented in Figure 6.6. The number of experiments for com-
parison is set to 100, and results are reported regardless of whether the target was suc-
cessfully reached. Figure 6.6A shows an example of trajectories obtained by these two
approaches. The C-GAIL approach generates paths with smaller targeting errors (see
Figure 6.6B). An ablation study of the C-GAIL is also presented, investigating its perfor-
mance when µ = 0, λ = 0, or ν = 0. The results indicate that BC, GAIL and curiosity
modules are all critical for accurate target reaching. However, compared to GAIL, C-
GAIL requires more timesteps to reach the target (see Figure 6.6C). This indicates that
either the path is longer or there are more samples taken along the path to achieve the
same level of path length. Furthermore, the robustness of the proposed network is veri-
fied by the success rate of the C-GAIL network, that is 66%, compared to that of the GAIL
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Figure 6.6: In-silico performance comparison between the proposed C-GAIL network (purple) and the state-
of-the-art GAIL network [29] (red), with respect to (A) example of trajectories, (B) targeting error Ta , and (C)
timesteps Ts . An ablation study of the C-GAIL is presented when µ = 0, λ = 0 or ν = 0. (∗, p < 0.05 using
Kruskal-Wallis test)

network [29] which is only 16%. The duration is affected by a large number of failures
that often cause early termination of the experiment. A common failure is that the path
planning tends to stop due to non-minor collision with the aortic arch and are therefore
unsuccessful attempts. Minor collisions that cause slight deformation within reasonable
stress ranges were considered harmless [54].

The agent was then trained using pre-trained weights from the static environment
in a dynamic environment, where deformations are caused by contact with the catheter
and the heartbeat motion. Figure 6.7A demonstrates the ability of real-time planning
in a complex dynamic environment with deformable vessels and a moving target. The
top zoom-in view shows that the paths of pre-trained qpr e and intraoperatively trained
qi ntr a are initially close and then separate in the aortic arch, where the degree of de-
formation is greater. The bottom zoom-in view shows the change from the initial target
position qg pr e to the intraoperative target position qg i ntr a . Figure 6.7B-C present per-

formance comparisons in static and dynamic environments. The timesteps are much
more in the deformable environment. This is due to the fact that there are more possi-
bilities when interacting with a deformable environment than with a static one. Due to
the greater complexity of navigation and low success rate, targeting error is larger and
more widely distributed than in the static environment. The success rate of 17% is rel-
atively low but indicates that it is possible to find a feasible path in a constrained envi-
ronment, compared to the success rate of 0% for the GAIL network [29] in the dynamic
environment. A common failure is the inability to reach the moving targets with a small
threshold of 5mm. Including this distance threshold to reach a target in the curriculum
module would improve network performance, such as success rate. This would be in-
vestigated at a later stage. The limited bending capability of robotic catheters and the
presence of moving targets in deformable environments led to a reduced success rate
within a limited number of timesteps. Despite the relatively low success rate of C-GAIL,
it has outperformed the state-of-the-art approach.
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Figure 6.7: In-silico performance of the proposed C-GAIL network in static and dynamic environments: (A)
The intra-operative adaptation of the pre-operative path qpr e when the environment is deformable and the
target moves; (B) Targeting error Ta and (C) Timesteps Ts in static and dynamic environments. (∗, p < 0.05
using Kruskal-Wallis test)

6.5.2. In-vitro VALIDATION
To essentially eliminate the impact of the user’s learning curve, the user is required to
be pre-trained. For example, the learning curve of the targeting error by following the
C-GAIL path decreased from 3.6 to ∼2mm in ten trials. The user can achieve a targeting
error of 0.23mm in the later stage. Since the learning curve converges to a plateau, it
can be concluded that the user has stable catheter manipulation ability. A video is made
available showing example experiments of following the C-GAIL path and the center-
line1.

The performance comparison between the C-GAIL path and the centerline is shown
in Figure 6.8. The C-GAIL path leads to a smaller tracking error of 5.18±3.48mm. It con-
firms that C-GAIL leads to a path that can be followed better by the robotic catheter.
Furthermore, the C-GAIL path also shows a smaller targeting error of 1.26±0.55mm (Fig-
ure 6.8B). Following the C-GAIL path takes a longer time than following the centerline.
This is interpretable given that since the user learned that the centerline waypoints could
not be reached anyway when passing the aortic arch, the user kept inserting the catheter
at the maximum bending angle and spent less effort following the centerline. While in
the other scenario, the user realized that (s)he could follow the C-GAIL path waypoints.
Therefore, it takes a longer time than following the centerline. Two of the ten experi-
ments with the C-GAIL path took longer because the user made a retraction motion in
order to re-reach the target more accurately. Both the C-GAIL path and centerline fol-
lowing experiments had a 100% success rate.

1https://youtu.be/GhBi_xHTMFw

https://youtu.be/GhBi_xHTMFw
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Figure 6.8: In-vitro performance comparison between C-GAIL path and centerline, with respect to (A) tracking
error Tr , (B) targeting error Ta , and (C) duration T . (∗, p < 0.05 using Kruskal-Wallis test)

Figure 6.9 presents a representative graphical comparison of actual trajectories and
path guidance in two scenarios: following the C-GAIL path and following the center-
line. The trajectories of the catheter tip following the C-GAIL path are more stable and
smoother, with a curvature of 3.1±26.6mm−1, compared to a curvature of 3.5±38.9mm−1

when following the centerline. In the other scenario, the catheter tip can follow the cen-
terline well at the beginning. However, the trajectory then moves away from the center-
line as the catheter passes through the aortic arch due to the limited bending capability.

6.5.3. GENERALIZATION

To further generalize the proposed path planning framework, in-silico experiments were
conducted in a different aortic anatomy (Materialise NV, Leuven, Belgium). 70 demon-
strations were recorded, and 100 testing trials were performed. The success rate of the
proposed C-GAIL network was 79% when ϵ= 10. Other performance values with respect
to targeting error and timesteps are summarized in Table 6.4. Representative paths ob-
tained by the C-GAIL approach are shown in Figure 6.10. These results indicate the ro-
bustness and feasibility of applying the proposed path planning framework in anatomies
with different geometries.

This work employs an EM sensor to measure the tip pose, which has been validated
in a phantom study. EM sensor has demonstrated its efficacy also in in-vivo environ-
ments [55, 56] considering its small size (<1mm in diameter and <10mm in length) and
bio-compatibility. Furthermore, other sensors, such as Fiber Bragg Gratings (FBG) sen-
sor, as well as imaging modalities, can also be utilized to obtain catheter tip pose. In
certain specific cases (e.g., free space), the catheter tip pose can also be obtained with
a sensorless approach, e.g., an accurate forward kinematic model if control variables
are provided [50]. One limitation of this study is that there was no intra-operative envi-
ronment reconstruction for the in-vitro experiments. Instead, a simulated deformable
model was utilized to predict intra-operative deformations. In clinical settings, real-time
vessel reconstruction from IVUS or Optical Coherence Tomography (OCT) images would
be suitable for providing raycast observations elaborated in this work.
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Figure 6.9: Representative in-vitro trajectories (blue) and path guidance (black) using: (A) C-GAIL path, and
(B) centerline.

Table 6.4: In-silico performance of the proposed C-GAIL network in a different aortic anatomy.

Ta (mm) Ts (×103) δ

25th median 75th mean std 25th median 75th mean std (%)

6.58 6.84 8.57 17.98 23.51 9.41 10.22 11.59 9.71 2.78 79

6.6. EXTENDED STUDY
Given the proposed path planner as navigation guidance for robotic catheters, three in-
teractive control modalities have been designed for steering these catheters. Our study
focuses on the application of these modalities in human-in-the-loop robot-assisted car-
diac catheterization. The interactive modalities include a gaming joystick, a standard
2D monitor, and an AR HMD. Specifically, the Microsoft HoloLens 2® is utilized as an
advanced AR headset for 3D visualization. To evaluate the effectiveness of these modali-
ties, an in-vitro user study was conducted, comparing three interactive modes: 1) Mode
JM - a joystick with a standard 2D monitor, 2) Mode JH - a joystick with a HoloLens pro-
viding 3D visualization, and 3) Mode HH - a HoloLens serving as both the control and
visualization device. Figure 6.11 illustrates the control schematic for human-in-the-loop
catheter navigation with visual feedback. Users can interact with either the joystick or
the HoloLens to generate control commands, while receiving 3D visual feedback from
the HoloLens or 2D visual feedback from a standard 2D screen.
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Figure 6.10: Examples of in-silico C-GAIL paths in a different aortic anatomy (Materialise NV, Leuven, Bel-
gium).

The functionalities of the different thumbsticks and buttons are depicted in Figure
6.12a. Using a joystick driver library in ROS, the bending angle of the left thumbstick
is read as a float value ranging from 0 to 1, while the button toggles between two dis-
tinct values: 0 and 1. Users can control the bending in the 2-DoFs by directly mapping
the bending angle of the left thumbstick (φ, θ) to the pressure applied to the PAMs (pφ,
pθ), namely pφ ∝ φ, pθ ∝ θ. The right thumbstick is utilized to adjust the speed of the
catheter driver for insertion/retraction motion. The catheter driver is operated using
velocity control. The thumbstick’s bending angle r is mapped to the translation speed
of the catheter driver v , namely v ∝ r . The maximum translational speed is set at 5
mm/s. The PS (∆) and OPTIONS (X) buttons on the right side (as shown in Figure 6.12a)
are used to switch between insertion and retraction modes. This choice of selecting for-
ward and backward motion commands rather than mapping the joystick’s bi-directional
motion to forward and backward motion helps prevent the catheter driver from contin-
uously switching between forward and backward motion, making it a more deliberate
and controlled choice by the user. The thumbstick is equipped with an automatic re-
turn mechanism similar to a spring, which may cause input fluctuations around 0 when
abruptly released. Consequently, the catheter driver may rapidly alternate between for-
ward and backward movements within a short duration. This approach is adopted as
an alternative to implementing a deadzone where the catheter driver’s speed defaults to
zero.

Figure 6.12b depicts the user interface design of the HoloLens when utilized as a
control input device. Users can interact with virtual buttons or sliders displayed by the
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Figure 6.11: The schematic of our advanced human-in-the-loop vessel navigation system, which incorporates
multiple interactive modalities. The system includes the following components: (a) a gaming joystick or an
HMD serving as control devices; (b) a pneumatic valve with four output ports that receives control commands
from ROS; (c) the catheter driver, which operates through velocity control to regulate the insertion and retrac-
tion of the catheter; (d) the PAM-driven catheter, featuring a 2-DoF mechanism and a 50 mm active bendable
segment; (e) an EM tracking system that localizes the catheter tip, and its pose is registered to the mesh frame
of the 3D reconstructed model; (f) a virtual 3D aortic model reconstructed using high-resolution CT images,
along with the guidance path and the catheter tip pose registered and rendered within this virtual model frame;
(g) visual feedback provided to users, either through a standard monitor displaying a 2D view or via a HoloLens
headset offering a 3D view.

HoloLens, similar to how they would interact with physical objects, to send control com-
mands for steering the catheter. The position of the slider r controls a speed v for the
catheter driver. To ensure safety, an emergency button has been incorporated, enabling
users to quickly halt the translational movement of the catheter in case of an emergency.
The blue control panel is located on the right side, while the green sphere can be manip-
ulated within this 2D plane. The sphere’s coordinates are measured and proportionally
converted into pressures. These pressures are then transmitted to the Pneumatic Artifi-
cial Muscles (PAMs) in two orthogonal directions, referred to as pφ and pθ . Users have
the flexibility to reposition various holographic components within the HoloLens view
by grasping and dragging them, allowing for customization of the layout based on their
comfort and preference. Furthermore, users can activate a hand-ray feature, commonly
found in HoloLens, which extends from their palm towards the holographic object. This
feature enables interaction with holographic objects that are situated beyond their phys-
ical reach.

Control commands generated by either the joystick or the HoloLens are processed by
the PC and subsequently transmitted to the pressure valves responsible for adjusting the
catheter’s bending, as well as to the catheter driver responsible for managing its transla-
tional movement, as depicted in Figure 6.12c. This systematic procedure enables precise
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Figure 6.12: User interfaces for input devices and visual feedback: (a) a gaming joystick is provided as a control
input device, allowing users to manipulate the system; (b) a HoloLens headset serves as an alternative control
input device, equipped with hand gesture recognition capabilities for intuitive interaction; (c) a schematic
illustration depicts the three mapping relationships corresponding to the 3-DoF of the catheter system; (d) 2D
visualization is achieved using a standard monitor, providing users with a two-dimensional representation of
the system and its feedback; (e) 3D visualization is facilitated through the use of the HoloLens, enabling users
to view holograms from different perspectives by physically moving around in real-world space.

control over all 3-DoFs of the robotic catheter.

The visualizations for both the standard 2D monitor and the HoloLens can be ob-
served in Figure 6.12d and Figure 6.12e, respectively, with each displaying similar user
interface designs. The user interface is divided into two main sections: an external view
on the left and an internal view on the right. The external view provides users with
a comprehensive perspective of the aorta, featuring a prominent green line indicating
the desired path to be followed and a yellow arrow denoting the current position of the
catheter tip. The internal view offers an immersive inside-the-vessel view, resembling
angioscopy, and showcases several discrete green spheres that represent the setpoints
along the path. Specifically, there are 26 green spheres corresponding to the 26 setpoints
generated by the C-GAIL path planning algorithm [57]. To provide guidance, a yellow
arrow is included to indicate the direction and magnitude of the required bending of the
catheter tip from its current position. The white cross represents the center of the field
of view, while a blue sphere represents the final target located at the end of the path that
users aim to reach with utmost accuracy.

It is important to mention that the internal view, as presented in this study, is not
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Figure 6.13: The experimental procedure with the robotic catheter at three different locations when steering
using Mode JH: a) descending aorta; b) aortic arch; c) aortic root; d) the recorded trajectory of a single trial.

currently utilized in clinical practice. Instead, it serves as an innovative and novel feature
aimed at improving navigation capabilities within the vessels. The internal view images
are obtained by utilizing a virtual camera in the Unity3D software. The camera’s position
and orientation are constantly synchronized with the pose of the catheter tip, providing
the operator with a first-person perspective of the procedure.

The experimental procedure consisted of three distinct stages, as depicted in Figure
6.13. In Figure 6.13a, the catheter is positioned within the descending aorta, and the
internal view displays an arrow pointing towards the upper left. This indicates to the
user that the catheter should begin bending in that direction to follow the optimal path
and navigate through the aortic arch. Moving on to Figure 6.13b, it can be observed that
the catheter is nearing the end of the aortic arch, with the guidance arrow now pointing
towards the bottom left, signifying the need for increased bending. Finally, Figure 6.13c
demonstrates the successful arrival of the catheter at the aortic root, as evident in the
corresponding view from the HoloLens, where the blue target is almost reached. An
arrow pointing towards the bottom-right direction suggests that by gently bending the
catheter in this direction, the target can be precisely achieved. Additionally, Figure 6.13d
showcases an example of a recorded trajectory from a single trial.

A total of 15 participants, all between the ages of 20 and 35 and possessing an ed-
ucational background in engineering, took part in the user study conducted. Based on
the analysis of the obtained results from the user study, the use of a joystick for steering
and a HoloLens for visual feedback (Mode JH) scored the best on all the subjective met-
rics except for mental demand. The Mode JH outperformed the other modalities also
concerning the objective metrics showing a median tracking error of 4.72 mm, a median
targeting error of 1.01 mm, a median duration of 82.34 s, and a median natural logarithm
of dimensionless squared jerk of 40.38 in the conducted in-vitro study. Mode JH showed
8.5%, 4.7%, 6.5%, and 3.9% improvements over Mode JM and 1.5%, 33.6%, 34.9%, and
8.1% over Mode HH, respectively. More detailed information regarding the experimen-
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tal protocol and the results of the comparative analysis can be found in the study [58].
The results of the study confirm the viability and effectiveness of employing the pro-

posed path planning technique as a reliable guidance tool across different interactive
modalities. This study conclusively highlights the practicality of using HoloLens for en-
hanced 3D visualization in catheterization. Additionally, it demonstrates the superiority
of the joystick in catheter teleoperation, offering user-friendliness, responsiveness, and
portability advantages.

6.7. CONCLUSION
This study set out to design a robust path planning approach respecting the kinematics
of robotic catheters and real-time changes in deformable cluttered environments. The
insights gained from this study add to the rapidly expanding field of autonomous nav-
igation of robotic catheters. The findings of this study suggest that the proposed path
planner can effectively handle the uncertainty present in vessel deformation. A further
clinical study involving real-time vessel reconstruction will be carried out.



BIBLIOGRAPHY

[1] Andras P Durko, Ruben L Osnabrugge, Nicolas M Van Mieghem, Milan Milojevic,
Darren Mylotte, Vuyisile T Nkomo, and A Pieter Kappetein. “Annual number of
candidates for transcatheter aortic valve implantation per country: current esti-
mates and future projections”. In: European heart journal 39.28 (2018), pp. 2635–
2642. DOI: 10.1093/eurheartj/ehy107.

[2] Rajesh Aggarwal, Stephen A Black, JR Hance, A Darzi, and NJW Cheshire. “Vir-
tual reality simulation training can improve inexperienced surgeons’ endovascu-
lar skills”. In: European journal of vascular and endovascular surgery 31.6 (2006),
pp. 588–593. DOI: 10.1016/j.ejvs.2005.11.009.

[3] Costanza Culmone, Semih Fatih Yikilmaz, Fabian Trauzettel, and Paul Breedveld.
“Follow-The-Leader Mechanisms in Medical Devices: A Review on Scientific and
Patent Literature”. In: IEEE Reviews in Biomedical Engineering (2021). DOI: 10.
1109/RBME.2021.3113395.

[4] Tomas da Veiga, James H Chandler, Peter Lloyd, Giovanni Pittiglio, Nathan J Wilkin-
son, Ali K Hoshiar, Russell A Harris, and Pietro Valdastri. “Challenges of contin-
uum robots in clinical context: A review”. In: Progress in Biomedical Engineering
2.3 (2020). DOI: 10.1088/2516-1091/ab9f41.

[5] Awaz Ali, Tamas Szili-Torok, Marco Stijnen, Paul Breedveld, and Dimitra Dodou.
“First expert evaluation of a new steerable catheter in an isolated beating heart”.
In: Cardiovascular Engineering and Technology 11 (2020), pp. 769–782. DOI: 10.
1007/s13239-020-00499-3.

[6] Namrata Nayar, Seokhwan Jeong, and Jaydev P. Desai. “Design and Control of 5-
DoF Robotically Steerable Catheter for the Delivery of the Mitral Valve Implant”.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021,
pp. 12268–12274. DOI: 10.1109/ICRA48506.2021.9561146.

[7] Mohammad Hasan Dad Ansari, Beatriz Farola Barata, Fabian Trauzettel, Zhen
Li, Di Wu, Diego DallÁlba, Gianni Borghesan, Mouloud Ourak, Veronica Iacov-
acci, Selene Tognarelli, Jenny Dankelman, Elena De Momi, Paul Breedveld, Paolo
Fiorini, Jos Vander Sloten, Arianna Menciassi, and Emmanuel Vander Poorten.
“Proof-of-Concept Medical Robotic Platform for Endovascular Catheterization”.
In: Proceedings of the 11th Conference on New Technologies for Computer and
Robot Assisted Surgery (CRAS). 2022, pp. 66–67. Available online: https://atlas-
itn.eu/wp-content/uploads/2022/05/CRAS2022_ATLAS_C3.pdf.

[8] Alberto Favaro, Alice Segato, Federico Muretti, and Elena De Momi. “An Evolutionary-
Optimized Surgical Path Planner for a Programmable Bevel-Tip Needle”. In: IEEE
Transactions on Robotics 37.4 (2021), pp. 1039–1050. DOI: 10.1109/TRO.2020.
3043692.

133

https://doi.org/10.1093/eurheartj/ehy107
https://doi.org/10.1016/j.ejvs.2005.11.009
https://doi.org/10.1109/RBME.2021.3113395
https://doi.org/10.1109/RBME.2021.3113395
https://doi.org/10.1088/2516-1091/ab9f41
https://doi.org/10.1007/s13239-020-00499-3
https://doi.org/10.1007/s13239-020-00499-3
https://doi.org/10.1109/ICRA48506.2021.9561146
https://atlas-itn.eu/wp-content/uploads/2022/05/CRAS2022_ATLAS_C3.pdf
https://atlas-itn.eu/wp-content/uploads/2022/05/CRAS2022_ATLAS_C3.pdf
https://doi.org/10.1109/TRO.2020.3043692
https://doi.org/10.1109/TRO.2020.3043692


6

134 BIBLIOGRAPHY

[9] Junchen Wang, Takashi Ohya, Hongen Liao, Ichiro Sakuma, Tianmiao Wang, Iwai
Tohnai, and Toshinori Iwai. “Intravascular catheter navigation using path plan-
ning and virtual visual feedback for oral cancer treatment”. In: The International
Journal of Medical Robotics and Computer Assisted Surgery 7.2 (2011), pp. 214–
224. DOI: 10.1002/rcs.392.

[10] Jian-Qing Zheng, Xiao-Yun Zhou, Celia Riga, and Guang-Zhong Yang. “Towards
3d path planning from a single 2d fluoroscopic image for robot assisted fenes-
trated endovascular aortic repair”. In: International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 8747–8753. DOI: 10 . 1109 / ICRA . 2019 .
8793918.

[11] Dongjin Huang, Wen Tang, Youdong Ding, Taoruan Wan, and Yimin Chen. “An
Interactive 3D Preoperative Planning and Training System for Minimally Invasive
Vascular Surgery”. In: 2011 12th International Conference on Computer-Aided De-
sign and Computer Graphics. 2011, pp. 443–449. DOI: 10.1109/CAD/Graphics.
2011.40.

[12] Hanxin Qian, Xiaofeng Lin, Zonghan Wu, Quan Zeng, Chichi Li, Yi Pang, Cheng
Wang, and Shoujun Zhou. “Towards Rebuild The Interventionist’s Intra-Operative
Natural Behavior: A Fully Sensorized Endovascular Robotic System Design”. In:
2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE).
2019, pp. 1–7. DOI: 10.1109/ICMIPE47306.2019.9098198.

[13] Yongjun Cho, Jae-Hyeon Park, Jaesoon Choi, and Dong Eui Chang. “Image pro-
cessing based autonomous guidewire navigation in percutaneous coronary in-
tervention”. In: 2021 IEEE International Conference on Consumer Electronics-Asia
(ICCE-Asia). IEEE. 2021, pp. 1–6. DOI: 10.1109/ICCE-Asia53811.2021.9641975.

[14] Pierre Schegg, Jérémie Dequidt, Eulalie Coevoet, Edouard Leurent, Rémi Sabatier,
Philippe Preux, and Christian Duriez. “Automated Planning for Robotic Guidewire
Navigation in the Coronary Arteries”. In: 2022 IEEE 5th International Conference
on Soft Robotics (RoboSoft). IEEE. 2022, pp. 239–246. DOI: 10.1109/RoboSoft54090.
2022.9762096.

[15] Sharan R Ravigopal, Timothy A Brumfiel, and Jaydev P Desai. “Automated Motion
Control of the COAST Robotic Guidewire under Fluoroscopic Guidance”. In: 2021
International Symposium on Medical Robotics (ISMR). IEEE. 2021, pp. 1–7. DOI:
10.1109/ISMR48346.2021.9661508.

[16] Sharan R Ravigopal, Timothy A Brumfiel, Achraj Sarma, and Jaydev P Desai. “Flu-
oroscopic Image-Based 3-D Environment Reconstruction and Automated Path
Planning for a Robotically Steerable Guidewire”. In: IEEE Robotics and Automa-
tion Letters 7.4 (2022), pp. 11918–11925. DOI: 10.1109/LRA.2022.3207568.

[17] G Fagogenis, M Mencattelli, Z Machaidze, B Rosa, K Price, F Wu, V Weixler, M
Saeed, JE Mayer, and PE Dupont. “Autonomous robotic intracardiac catheter nav-
igation using haptic vision”. In: Science robotics 4.29 (2019). DOI: 10.1126/scirobotics.
aaw1977.

https://doi.org/10.1002/rcs.392
https://doi.org/10.1109/ICRA.2019.8793918
https://doi.org/10.1109/ICRA.2019.8793918
https://doi.org/10.1109/CAD/Graphics.2011.40
https://doi.org/10.1109/CAD/Graphics.2011.40
https://doi.org/10.1109/ICMIPE47306.2019.9098198
https://doi.org/10.1109/ICCE-Asia53811.2021.9641975
https://doi.org/10.1109/RoboSoft54090.2022.9762096
https://doi.org/10.1109/RoboSoft54090.2022.9762096
https://doi.org/10.1109/ISMR48346.2021.9661508
https://doi.org/10.1109/LRA.2022.3207568
https://doi.org/10.1126/scirobotics.aaw1977
https://doi.org/10.1126/scirobotics.aaw1977


BIBLIOGRAPHY

6

135

[18] Johannes Fauser, Igor Stenin, Julia Kristin, Thomas Klenzner, Jörg Schipper, Di-
eter Fellner, and Anirban Mukhopadhyay. “Generalized trajectory planning for
nonlinear interventions”. In: OR 2.0 Context-Aware Operating Theaters, Computer
Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Anal-
ysis. Springer, 2018, pp. 46–53. DOI: 10.1007/978-3-030-01201-4_6.

[19] Johannes Fauser, Romol Chadda, Yannik Goergen, Markus Hessinger, Paul Motzki,
Igor Stenin, Julia Kristin, Thomas Klenzner, Jörg Schipper, Stefan Seelecke, et
al. “Planning for flexible surgical robots via Bézier spline translation”. In: IEEE
Robotics and Automation Letters 4.4 (2019), pp. 3270–3277. DOI: 10.1109/LRA.
2019.2926221.

[20] Johannes Fauser, Igor Stenin, Julia Kristin, Thomas Klenzner, Jörg Schipper, and
Anirban Mukhopadhyay. “Optimizing clearance of bézier spline trajectories for
minimally-invasive surgery”. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. Springer. 2019, pp. 20–28. DOI: 10.
1007/978-3-030-32254-0_3.

[21] Jian Guo, Yue Sun, and Shuxiang Guo. “A Training System for Vascular Interven-
tional Surgeons based on Local Path Planning”. In: 2021 IEEE International Con-
ference on Mechatronics and Automation (ICMA). IEEE. 2021, pp. 1328–1333. DOI:
10.1109/ICMA52036.2021.9512808.

[22] Ming-ke Gao, Yi-min Chen, Quan Liu, Chen Huang, Ze-yu Li, and Dian-hua Zhang.
“Three-dimensional path planning and guidance of leg vascular based on im-
proved ant colony algorithm in augmented reality”. In: Journal of medical systems
39.11 (2015), p. 133. DOI: 10.1007/s10916-015-0315-2.

[23] Fei Qi, Feng Ju, Dongming Bai, Yaoyao Wang, and Bai Chen. “Kinematic analysis
and navigation method of a cable-driven continuum robot used for minimally in-
vasive surgery”. In: The International Journal of Medical Robotics and Computer
Assisted Surgery (2019), e2007. DOI: 10.1002/rcs.2007.

[24] Zhen Li, Jenny Dankelman, and Elena De Momi. “Path planning for endovascular
catheterization under curvature constraints via two-phase searching approach”.
In: International Journal of Computer Assisted Radiology and Surgery 16.4 (2021),
pp. 619–627. DOI: 10.1007/s11548-021-02328-x.

[25] Hedyeh Rafii-Tari, Jindong Liu, Su-Lin Lee, Colin Bicknell, and Guang-Zhong Yang.
“Learning-Based Modeling of Endovascular Navigation for Collaborative Robotic
Catheterization”. In: Advanced Information Systems Engineering. Springer Berlin
Heidelberg, 2013, pp. 369–377. DOI: 10.1007/978-3-642-40763-5_46.

[26] Hedyeh Rafii-Tari, Jindong Liu, Christopher J Payne, Colin Bicknell, and Guang-
Zhong Yang. “Hierarchical HMM based learning of navigation primitives for co-
operative robotic endovascular catheterization”. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer. 2014,
pp. 496–503. DOI: 10.1007/978-3-319-10404-1_62.

https://doi.org/10.1007/978-3-030-01201-4_6
https://doi.org/10.1109/LRA.2019.2926221
https://doi.org/10.1109/LRA.2019.2926221
https://doi.org/10.1007/978-3-030-32254-0_3
https://doi.org/10.1007/978-3-030-32254-0_3
https://doi.org/10.1109/ICMA52036.2021.9512808
https://doi.org/10.1007/s10916-015-0315-2
https://doi.org/10.1002/rcs.2007
https://doi.org/10.1007/s11548-021-02328-x
https://doi.org/10.1007/978-3-642-40763-5_46
https://doi.org/10.1007/978-3-319-10404-1_62


6

136 BIBLIOGRAPHY

[27] Wenqiang Chi, Jindong Liu, Mohamed EMK Abdelaziz, Giulio Dagnino, Celia Riga,
Colin Bicknell, and Guang-Zhong Yang. “Trajectory Optimization of Robot-Assisted
Endovascular Catheterization with Reinforcement Learning”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, Oct. 2018.
DOI: 10.1109/IROS.2018.8593421.

[28] Wenqiang Chi, Jindong Liu, Hedyeh Rafii-Tari, Celia Riga, Colin Bicknell, and
Guang-Zhong Yang. “Learning-based endovascular navigation through the use of
non-rigid registration for collaborative robotic catheterization”. In: International
Journal of Computer Assisted Radiology and Surgery 13.6 (Apr. 2018), pp. 855–864.
DOI: 10.1007/s11548-018-1743-5.

[29] Wenqiang Chi, Giulio Dagnino, Trevor Kwok, Anh Nguyen, Dennis Kundrat, Mo-
hamed E. M. K. Abdelaziz, Celia Riga, Colin Bicknell, and Guang-Zhong Yang.
“Collaborative robot-assisted endovascular catheterization with generative ad-
versarial imitation learning”. In: IEEE International Conference on Robotics and
Automation (ICRA). IEEE, June 2020. DOI: 10.1109/ICRA40945.2020.9196912.

[30] Yan Zhao, Yuxin Wang, Jianhua Zhang, Xinke Liu, Youxiang Li, Shuxiang Guo,
Xu Yang, and Shunming Hong. “Surgical GAN: Towards Real-time Path Planning
for Passive Flexible Tools in Endovascular Surgeries”. In: Neurocomputing (2022).
DOI: 10.1016/j.neucom.2022.05.044.

[31] Abraham Temesgen Tibebu, Bingbin Yu, Yohannes Kassahun, Emmanuel Vander
Poorten, and Phuong Toan Tran. “Towards autonomous robotic catheter naviga-
tion using reinforcement learning”. In: 4th Joint Workshop on New Technologies
for Computer/Robot Assisted Surgery. 2014, pp. 163–166. Available online: https:
//lirias.kuleuven.be/1748447?limo=0.

[32] Hyeonseok You, EunKyung Bae, Youngjin Moon, Jihoon Kweon, and Jaesoon Choi.
“Automatic control of cardiac ablation catheter with deep reinforcement learn-
ing method”. In: Journal of Mechanical Science and Technology 33.11 (2019), pp. 5415–
5423. DOI: 10.1007/s12206-019-1036-0.

[33] Tobias Behr, Tim Philipp Pusch, Marius Siegfarth, Dominik Hüsener, Tobias Mörschel,
and Lennart Karstensen. “Deep Reinforcement Learning for the Navigation of
Neurovascular Catheters”. In: Current Directions in Biomedical Engineering 5.1
(2019), pp. 5–8. DOI: 10.1515/cdbme-2019-0002.

[34] Lennart Karstensen, Tobias Behr, Tim Philipp Pusch, Franziska Mathis-Ullrich,
and Jan Stallkamp. “Autonomous guidewire navigation in a two dimensional vas-
cular phantom”. In: Current Directions in Biomedical Engineering 6.1 (2020). DOI:
10.1515/cdbme-2020-0007.

[35] Jihoon Kweon, Kyunghwan Kim, Chaehyuk Lee, Hwi Kwon, Jinwoo Park, Kyoseok
Song, Young In Kim, Jeeone Park, Inwook Back, Jae-Hyung Roh, et al. “Deep re-
inforcement learning for guidewire navigation in coronary artery phantom”. In:
IEEE Access 9 (2021), pp. 166409–166422. DOI: 10.1109/ACCESS.2021.3135277.

https://doi.org/10.1109/IROS.2018.8593421
https://doi.org/10.1007/s11548-018-1743-5
https://doi.org/10.1109/ICRA40945.2020.9196912
https://doi.org/10.1016/j.neucom.2022.05.044
https://lirias.kuleuven.be/1748447?limo=0
https://lirias.kuleuven.be/1748447?limo=0
https://doi.org/10.1007/s12206-019-1036-0
https://doi.org/10.1515/cdbme-2019-0002
https://doi.org/10.1515/cdbme-2020-0007
https://doi.org/10.1109/ACCESS.2021.3135277


BIBLIOGRAPHY

6

137

[36] Fanxu Meng, Shuxiang Guo, Wei Zhou, and Zhengyang Chen. “Evaluation of a
Reinforcement Learning Algorithm for Vascular Intervention Surgery”. In: 2021
IEEE International Conference on Mechatronics and Automation (ICMA). IEEE.
2021, pp. 1033–1037. DOI: 10.1109/ICMA52036.2021.9512675.

[37] Lennart Karstensen, Jacqueline Ritter, Johannes Hatzl, Torben Pätz, Jens Lange-
jürgen, Christian Uhl, and Franziska Mathis-Ullrich. “Learning-based autonomous
vascular guidewire navigation without human demonstration in the venous sys-
tem of a porcine liver”. In: International Journal of Computer Assisted Radiology
and Surgery (2022), pp. 1–8. DOI: 10.1007/s11548-022-02646-8.

[38] Ameya Pore, Eleonora Tagliabue, Marco Piccinelli, Diego Dall’Alba, Alicia Casals,
and Paolo Fiorini. “Learning from demonstrations for autonomous soft-tissue
retraction”. In: 2021 International Symposium on Medical Robotics (ISMR). IEEE.
2021, pp. 1–7. DOI: 10.1109/ISMR48346.2021.9661514.

[39] Alice Segato, Marco Di Marzo, Sara Zucchelli, Stefano Galvan, Riccardo Secoli,
and Elena De Momi. “Inverse reinforcement learning intra-operative path plan-
ning for steerable needle”. In: IEEE Transactions on Biomedical Engineering 69.6
(2021), pp. 1995–2005. DOI: 10.1109/TBME.2021.3133075.

[40] Zhen Li, Enrico Manzionna, Giovanni Monizzi, Angelo Mastrangelo, Maria Elisa-
betta Mancini, Daniele Andreini, Jenny Dankelman, and Elena De Momi. “Position-
based dynamics simulator of vessel deformations for path planning in robotic
endovascular catheterization”. In: Medical Engineering & Physics 110 (2022), p. 103920.
DOI: 10.1016/j.medengphy.2022.103920.

[41] Zhen Li, Enrico Manzionna, Giovanni Monizzi, Angelo Mastrangelo, Maria Elisa-
betta Mancini, Daniele Andreini, Jenny Dankelman, and Elena De Momi. “Sim-
ulation of Deformable Vasculature for Robot-assisted Endovascular Catheteriza-
tion”. In: Proceedings of the 33rd Conference of the International Society for Medi-
cal Innovation and Technology (iSMIT). 2022. Available online: https://atlas-
itn.eu/wp-content/uploads/2022/10/SMIT_-poster_Zhen.pdf.

[42] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. “Curiosity-
driven Exploration by Self-supervised Prediction”. In: Proceedings of the 34th In-
ternational Conference on Machine Learning. Ed. by Doina Precup and Yee Whye
Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, Aug. 2017, pp. 2778–
2787. URL: https://proceedings.mlr.press/v70/pathak17a.html.

[43] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. “Source task
creation for curriculum learning”. In: Proceedings of the 2016 international con-
ference on autonomous agents & multiagent systems. 2016, pp. 566–574. URL: https:
//www.cs.utexas.edu/~sanmit/papers/AAMAS16-Narvekar.pdf.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017). URL: https://arxiv.org/abs/1707.06347.

https://doi.org/10.1109/ICMA52036.2021.9512675
https://doi.org/10.1007/s11548-022-02646-8
https://doi.org/10.1109/ISMR48346.2021.9661514
https://doi.org/10.1109/TBME.2021.3133075
https://doi.org/10.1016/j.medengphy.2022.103920
https://atlas-itn.eu/wp-content/uploads/2022/10/SMIT_-poster_Zhen.pdf
https://atlas-itn.eu/wp-content/uploads/2022/10/SMIT_-poster_Zhen.pdf
https://proceedings.mlr.press/v70/pathak17a.html
https://www.cs.utexas.edu/~sanmit/papers/AAMAS16-Narvekar.pdf
https://www.cs.utexas.edu/~sanmit/papers/AAMAS16-Narvekar.pdf
https://arxiv.org/abs/1707.06347


6

138 BIBLIOGRAPHY

[45] Jonathan Ho and Stefano Ermon. “Generative Adversarial Imitation Learning”.
In: Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc., 2016. URL:
https://proceedings.neurips.cc/paper_files/paper/2016/file/
cc7e2b878868cbae992d1fb743995d8f-Paper.pdf.

[46] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral cloning from obser-
vation”. In: arXiv preprint arXiv:1805.01954 (2018). URL: https://arxiv.org/
abs/1805.01954.

[47] Wendong Xiao, Liang Yuan, Li He, Teng Ran, Jianbo Zhang, and Jianping Cui.
“Multigoal Visual Navigation With Collision Avoidance via Deep Reinforcement
Learning”. In: IEEE Transactions on Instrumentation and Measurement 71 (2022),
pp. 1–9. DOI: 10.1109/TIM.2022.3158384.

[48] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation func-
tions”. In: arXiv preprint arXiv:1710.05941 (2017). URL: https://arxiv.org/
abs/1710.05941.

[49] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper,
Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. “Unity:
A general platform for intelligent agents”. In: arXiv preprint arXiv:1809.02627
(2018). URL: https://arxiv.org/abs/1809.02627.

[50] Di Wu, Yao Zhang, Mouloud Ourak, Kenan Niu, Jenny Dankelman, and Emmanuel
Vander Poorten. “Hysteresis modeling of robotic catheters based on long short-
term memory network for improved environment reconstruction”. In: IEEE Robotics
and Automation Letters 6.2 (2021), pp. 2106–2113. DOI: 10.1109/LRA.2021.
3061069.

[51] Omar Al-Ahmad, Mouloud Ourak, Johan Vlekken, and Emmanuel Vander Poorten.
“Force Control With a Novel Robotic Catheterization System Based on Braided
Sleeve Grippers”. In: IEEE Transactions on Medical Robotics and Bionics (2023),
pp. 1–1. DOI: 10.1109/TMRB.2023.3291026.

[52] J. Sobocinski, H. Chenorhokian, B. Maurel, M. Midulla, A. Hertault, M. Le Roux, R.
Azzaoui, and S. Haulon. “The Benefits of EVAR Planning Using a 3D Workstation”.
In: European Journal of Vascular and Endovascular Surgery 46.4 (2013), pp. 418–
423. ISSN: 1078-5884. DOI: 10.1016/j.ejvs.2013.07.018.

[53] Steve Ramcharitar, Mark S Patterson, Robert Jan Van Geuns, Carlos Van Meighem,
and Patrick W Serruys. “Technology insight: magnetic navigation in coronary in-
terventions”. In: Nature Clinical Practice Cardiovascular Medicine 5.3 (2008), pp. 148–
156. DOI: 10.1038/ncpcardio1095.

[54] Xiufen Ye, Jianguo Zhang, Peng Li, Tian Wang, and Shuxiang Guo. “A fast and
stable vascular deformation scheme for interventional surgery training system”.
In: Biomedical engineering online 15.1 (2016), pp. 1–14. DOI: 10.1186/s12938-
016-0148-3.

https://proceedings.neurips.cc/paper_files/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://arxiv.org/abs/1805.01954
https://arxiv.org/abs/1805.01954
https://doi.org/10.1109/TIM.2022.3158384
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1809.02627
https://doi.org/10.1109/LRA.2021.3061069
https://doi.org/10.1109/LRA.2021.3061069
https://doi.org/10.1109/TMRB.2023.3291026
https://doi.org/10.1016/j.ejvs.2013.07.018
https://doi.org/10.1038/ncpcardio1095
https://doi.org/10.1186/s12938-016-0148-3
https://doi.org/10.1186/s12938-016-0148-3


BIBLIOGRAPHY

6

139

[55] M. Ourak, S. De Buck, X. T. Ha, O. Al-Ahmad, K. Bamps, J. Ector, and E. Van-
der Poorten. “Fusion of Biplane Fluoroscopy With Fiber Bragg Grating for 3D
Catheter Shape Reconstruction”. In: IEEE Robotics and Automation Letters 6.4
(2021), pp. 6505–6512. DOI: 10.1109/LRA.2021.3094238.

[56] Xuan Thao Ha, Mouloud Ourak, Omar Al-Ahmad, Di Wu, Gianni Borghesan, Ar-
ianna Menciassi, and Emmanuel Vander Poorten. “Robust Catheter Tracking by
Fusing Electromagnetic Tracking, Fiber Bragg Grating and Sparse Fluoroscopic
Images”. In: IEEE Sensors Journal 21.20 (2021), pp. 23422–23434. DOI: 10.1109/
JSEN.2021.3107036.

[57] Zhen Li, Chiara Lambranzi, Di Wu, Alice Segato, Federico De Marco, Emmanuel
Vander Poorten, Jenny Dankelman, and Elena De Momi. “Robust Path Planning
via Learning from Demonstrations for Robotic Catheters in Deformable Environ-
ments”. 2023. (Under Review).

[58] Di Wu, Zhen Li, Mohammad Hasan Dad Ansari, Xuan Thao Ha, Mouloud Ourak,
Jenny Dankelman, Arianna Menciassi, Elena De Momi, and Emmanuel Vander
Poorten. “Comparative Analysis of Interactive Modalities for Intuitive Endovas-
cular Interventions”. 2023. (Under Review).

https://doi.org/10.1109/LRA.2021.3094238
https://doi.org/10.1109/JSEN.2021.3107036
https://doi.org/10.1109/JSEN.2021.3107036




IV
DISCUSSION AND CONCLUSION

141





7
DISCUSSION AND CONCLUSION

There will come a time when you believe everything is finished.
Yet that will be the beginning.

Louis L’Amour

The best way to predict the future is to create it.

Peter Drucker

In conclusion, this dissertation has explored and advanced the field of path planning for
robotic catheters in tortuous and deformable environments. The last chapter consoli-
dates all findings and provides a comprehensive summary of the key contributions made
throughout this research. Additionally, a comprehensive evaluation of this work in re-
lation to the existing literature is provided, accompanied by an acknowledgment of the
inherent limitations. Furthermore, a comprehensive exploration of the prevailing chal-
lenges that persist in this domain is presented, offering valuable insights and recommen-
dations for future research endeavors. Presenting these findings in an academic context
aims to foster further scholarly inquiry and contribute to the ongoing development of this
dynamic field of study.
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7.1. CONTRIBUTIONS AND LIMITATIONS
This dissertation contributes to the development of safe, accurate, and efficient path
planning techniques for robotic catheters. This research focused on offering a realistic
and dynamic environment for path planning, and designed path planning algorithm ac-
counting for the deformable property of the vessels and the limited steering capability
of catheters. In detail, the main findings and contributions of this thesis in accordance
with the sub-objectives presented in Chapter 1 are summarized as follows.

Path planning incorporating the limited steering capability of catheters (O1)
In Chapter 2, a comprehensive systematic review of path planning techniques in intra-
luminal and endovascular interventions was conducted. The limitations of existing path
planning methods are identified, and recommendations for improving the robustness of
these algorithms are proposed.

In Chapter 3, a novel path planning approach called BFS-GA was proposed, which
effectively adheres to the robot curvature constraint while keeping the catheter’s path
as close to the centerlines as possible. The proposed BFS-GA path planner is capable
of swiftly calculating obstacle-free trajectories that conform to the patient’s vasculature,
while incorporating the inherent limitations of the catheter such as maximum curva-
ture. The presented work is suited for clinical procedures demanding satisfying curva-
ture constraints while optimizing specified criteria. It is also applicable for curvature-
constrained robots in narrow passages.

The proposed path planner has undergone comprehensive evaluation and validation
using diverse datasets, encompassing various anatomical models such as the coronary
artery, aorta, femoral artery, and peripheral arterial system, etc. Comparative analysis
against conventional sampling-based path planning methods reveals the superior effi-
ciency and performance of the proposed BFS-GA approach. Specifically, the proposed
method exhibits notable advantages, including reduced computation time, shorter path
length, increased distance from vascular walls, diminished path curvature, and elevated
success rates.

Nevertheless, it is important to acknowledge that the effectiveness of the proposed
path planner is contingent upon the accuracy of the anatomical centerlines, which can
be influenced by deformations within the anatomical model. Consequently, the compu-
tational cost and precision of the anatomical centerline extraction process significantly
impact the performance of the path planner. A comparison with other alternative opti-
mization algorithms would be interesting to investigate. Additionally, the use of the GA
as the chosen optimization approach for the local planner raises considerations regard-
ing its advantages and disadvantages. Notably, alternative optimization algorithms such
as PSO and ACO offer potential alternatives worth exploring through comparative anal-
ysis. Undertaking such investigations would provide valuable insights into the selection
of the most suitable optimization algorithm for the local planner.

Auto-adaptive simulator accurately predicting the deformation of vessels (O2)
In Chapter 4, a realistic, auto-adaptive, and visually plausible simulator was designed.
This simulator can accurately predict the global deformation of vessels induced by the
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contact of a robotic catheter and cyclic motion corresponding to the heartbeat. Com-
pared with the literature, some novel properties of the proposed simulator are high-
lighted, such as a simulated movement of the vessels caused by the heartbeat and an au-
tonomous calibration of PBD parameters using the PSO algorithm. Compared with the
literature, this simulator has an error of 0.23±0.13% for deformation and 0.30±0.85mm
for the aortic root displacement. In-vitro experiments show an error of 1.35±1.38mm for
deformation prediction. The reported results of in-vitro validation show that this sim-
ulator framework can be applied to different datasets and represents a good surrogate
for the modelization of deformation. The proposed workflow implements the model-
ing and simulation of intervention devices and a deformable aorta that could create a
dynamic environment for intra-operative path planning and control in robotic endovas-
cular catheterization.

However, it should be noted that the induced deformation of vessels resulting from
the cyclic motion of the heartbeat has yet to be empirically validated through in-vitro ex-
periments. The inclusion of an experimental setup featuring a phantom incorporating a
pump to mimic the motion of the heartbeat would significantly enhance the credibility
of this study. Furthermore, to attain a simulation environment that closely resembles
real-world scenarios, it is crucial to incorporate the modeling and simulation of robotic
catheters with a steerable tip and flexible shaft body. Currently, the simulation only con-
siders the steerable tip, overlooking the force transmission loss occurring between the
proximal and distal ends of the shaft body. Since the interaction between the shaft and
vessels directly impacts the pose of the steerable tip of the catheter, delving into the intri-
cate modeling of robotic catheters will undoubtedly bolster the simulator’s performance.

Deformable model reconstruction from intra-operative medical images (O3)
In Chapter 5, a deformable model-to-image registration framework was proposed based
on deep learning for augmented reality-guided endovascular interventions. The pro-
posed framework encompasses several key components: (i) autonomous vessel segmen-
tation of intra-operative fluoroscopy images through a DRU-Net; (ii) affine model-to-
image registration, achieved by employing a CNN to align the segmented images with
the pre-operative 3D model reconstructed from CTA scans; (iii) deformable model-to-
image registration, accomplished by employing a DRU-Net model to predict and re-
construct deformations from 2D images onto the pre-operative 3D model; and (iv) an
immersive visualization of intra-operative 3D models using augmented reality. To pro-
vide a comprehensive evaluation of registration accuracy, a customized loss function
and performance metrics (i.e., MDSC and PDSS) were introduced. This framework has
the potential to assist clinicians during procedures by providing augmented reality visu-
alization of patient-specific intra-operative vascular models.

Compared to the literature, this framework can effectively handle tissue deforma-
tions in a weakly-supervised manner and accurately reconstruct deformations from 2D
to 3D space. The DRU-Net model achieves a notable reduction in penalization loss, as
evidenced by the improved PDSS scores with mean and standard deviation values of
3.77 ± 0.09 (compared to 4.19 ± 0.23). However, despite the incorporation of the LB

component in the loss function, residual artifacts persist even after the retraining phase.
Notably, these artifacts become more pronounced in regions where the fixed image con-



7

146 7. DISCUSSION AND CONCLUSION

tains smaller vessel sections, posing a concern as they can potentially provide incor-
rect guidance. It is therefore imperative to address this challenge by introducing a post-
processing step that targets the suppression of deformations outside the segmented ves-
sel area and enhances deformation smoothness.

To evaluate the accuracy of the 3D registration, the discrepancy between the pre-
dicted and ground truth mesh models, obtained from the aforementioned simulator,
was quantified. Within the ROI, the mean 3D registration error for vertices was mea-
sured to be 1.51 mm. However, it is important to note that the accuracy of the 3D regis-
tration has not yet been validated using patient-specific image datasets due to the lack
of ground truth, specifically intra-operative mesh models. This presents an opportunity
for future research to explore and validate the accuracy of the proposed 3D registration
approach using such datasets, which would further strengthen the findings of this study.

Robust path planning algorithm incorporating deformable environments (O4)
In Chapter 6, an enhanced path planner named C-GAIL is proposed, tailored for steer-
able catheters. This planner ensures higher precision and robustness by accounting for
both the deformable properties of vessels and the catheter’s steering capabilities. The
robustness of the proposed network is verified by the success rate of the C-GAIL net-
work, which is 17%-66%, compared to that of the GAIL network in literature, which is
only 0%-16%. This framework can reduce the uncertainty in vessel deformation, thereby
minimizing tracking errors. One of the contributions is validating the proposed path
planner in an in-vitro environment using a teleoperation control strategy. These experi-
ments demonstrate the algorithm’s feasibility in generating suitable paths that align with
the actual steering capability of the catheter. Compared with the traditional centerline-
following approach, the proposed C-GAIL path planner leads to a smaller tracking error
of 5.18±3.48mm and a smaller targeting error of 1.26±0.55mm.

One limitation of this study is the absence of intra-operative environment recon-
struction for the in-vitro experiments. Instead, a simulated deformable model was em-
ployed to predict intra-operative deformations. In real clinical scenarios, the utilization
of real-time vessel reconstruction from IVUS or OCT images would be more appropriate
for generating raycast observations as elaborated in this work. This would enhance the
fidelity and relevance of the findings to actual clinical practice. Future research could
incorporate such real-time imaging techniques to validate the proposed framework in a
more realistic and clinically relevant environment.

Our extended work [1] presents an in-depth exploration of interactive modalities in
teleoperation, utilizing the path guidance derived from the robust path planner C-GAIL
mentioned earlier. The findings from this user study hold the potential to improve cur-
rent cardiac catheterization procedures by introducing an innovative clinical workflow.
In this approach, physicians remotely maneuver the catheter using a joystick while wear-
ing a HoloLens, under the path guidance obtained through the C-GAIL path planner.

Nevertheless, one limitation of this study is the limited number of studies conducted
thus far. Given the delicate and complex structure of vessels, intuitive catheter steering
becomes crucial in these applications. Therefore, it would be valuable to conduct an
increased number of trials per user and engage a broader range of participants in future
research.
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7.2. RECOMMENDATIONS FOR FUTURE RESEARCH
The subsequent sections delve into the prominent unresolved challenges in path plan-
ning for robotic catheters, outline directions for future research, and explore potential
extensions of the studies conducted in this dissertation.

Efficient centerline extraction approaches
As illustrated in the systematic review [2], a significant portion of existing literature on
path planning for intraluminal and endovascular interventions relies on anatomical cen-
terlines. These centerlines serve as a common basis for path guidance in interventions
[3, 4]. However, the accuracy of anatomical centerlines is susceptible to deformations
in the anatomical model. Incorporating centerline extraction methods into real-time
intra-operative procedures necessitates addressing the challenges of reducing compu-
tation time and efficiently generating closed mesh models (such as the models required
in the VMTK library [5]).

Adaptive path planning algorithms
Chapter 6 showcases the potential for generalizing the proposed path planning method.
In-silico experiments were conducted using two different aortic anatomies. However,
exploring an easier and more adaptable approach for the current network model to be
applied to new, unseen anatomy models would be of interest.

In addition, it would be highly valuable to conduct a clinical study that involves intra-
operative path planning accompanied by real-time vessel reconstruction using imaging
modalities such as through IVUS [6] or OCT [7]. These intraoperative imaging tech-
niques, including IVUS and OCT, offer the advantage of direct observation and visu-
alization capabilities [6, 8, 7]. By combining the information obtained from IVUS and
EM sensors, intravascular vessel reconstruction can be achieved [9, 6]. Leveraging real-
time vessel reconstruction enables the effective achievement of precise and reliable path
re-planning for continuum robots during intra-operative procedures.

Simulation of respiration motion
Chapter 4 presents an auto-adaptive simulator designed to accurately predict vessel de-
formations caused by the contact of a robotic catheter and cyclic heartbeat motion.
While the heartbeat motion is considered, it is important to note that the respiratory
motion can also contribute to vessel deformations [10]. According to findings in [10],
the spatial variation in the respiratory displacement of the coronary arteries suggests
that the heart’s breathing motion is more complex than a simple 3D translation. For a
dataset of 10 patients, the maximum 3D displacement of the right coronary artery os-
tium during a respiratory cycle is reported as 5.0±1.3 mm [10]. By simulating the impact
of respiratory motion on vessel deformations, the realism and accuracy of the simulator
can be enhanced.

Design of intuitive haptic feedback
The GUI of the simulator proposed in Chapter 4 provides visual feedback indicating the
collision force when the device tip collides with the vessel wall. However, considering the
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conventional clinical workflow and reducing the visual burden of users, incorporating
haptic feedback, such as utilizing joystick vibrations [11], would potentially provide a
more intuitive experience for users.

Improvements of deformable registration
In Chapter 5, a deformable image registration framework is introduced to extract the
vessel deformations from intra-operative 2D images and reconstruct those deformations
on the pre-operative 3D model. To enhance the robustness of the registration model,
future work involves expanding the training dataset and implementing post-processing
techniques to suppress residual artifacts. Additionally, conducting end-user evaluations
in the operating room is an important step. These efforts will contribute to the continued
advancement and practical implementation of this framework in clinical settings.

Research beyond the scope of this thesis
Proprioception and Shape-sensing: To achieve precise and reliable path planning for
robotic catheters, it is crucial to have accurate and real-time shape-sensing capabili-
ties. However, accurately modeling the shape of these robots presents challenges due to
factors such as friction, backlash, the deformable nature of the lumen or vessels, and col-
lisions with the anatomy [12]. In recent years, sensor-based shape reconstruction tech-
niques have emerged as promising solutions for interventional devices, utilizing sen-
sors such as Fiber Bragg Grating (FBG) and Electromagnetic (EM) sensors [12, 13, 14,
15, 16]. Both FBG and EM-enabled techniques offer advantages such as real-time shape
estimation, short response time, compact size, biocompatibility, non-toxicity, and high
sensitivity. By attaching multiple sensors along the length of the continuum robot, the
robot’s position can be tracked, and axial strain can be measured. However, FBG sensors
exhibit limitations in high-strain conditions, while EM sensors are susceptible to elec-
tromagnetic interference [13]. Therefore, a sensor-fusion approach that combines FBG,
EM sensors, and sparse fluoroscopic images has the potential to enhance the accuracy
of 3D catheter shape reconstruction [16].

Catheter design: Steerable catheters designed for endovascular procedures are devel-
oped using various technologies. For example, pneumatic-driven or magnetic-driven
systems have been utilized in different instruments [17, 18, 19]. Soft robotics systems are
emerged as a promising paradigm, offering the potential for multi-steering capabilities
and stress-less interventions in narrow passageways. To enhance the bending capability
of steerable catheters, novel designs for catheter actuation or the use of soft materials
can be explored as potential solutions.
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ACRONYMS

2D two-dimensional.
3D three-dimensional.

ACO Ant Colony Optimization.
AFT Adaptive Fractal Trees.
AHFT Adaptive Hermite Fractal Tree.
AR Augmented Reality.

BC Behavioral Cloning.
BFS Breadth First Search.

C-GAIL Curriculum Generative Adversarial Imitation Learning.
CBS Centerline-based Structure.
CCM Centro Cardiologico Monzino.
CNN Convolutional Neural Network.
CT Computed Tomography.
CTA Computed Tomography Angiography.
CTRs Concentric Tube Robots.

DDF Dense Displacement Field.
DFS Depth First Search.
DMPs Dynamical Movement Primitives.
DNN Deep Neural Network.
DoFs Degrees-of-Freedom.
DQN Deep Q-Network.
DRL Deep Reinforcement Learning.
DRU-Net Deep Residual U-Net.
DSA Digital Subtraction Angiography.
DSC Dice Similarity Coefficient.

ECG Electrocardiogram.
EM Electromagnetic.
EVAR Endovascular Aortic Repair.

FBG Fiber Bragg Gratings.
FEM Finite-Element Method.
FFD Free Form Deformation.
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FN False Negative.
FoV Field-of-View.
FP False Positive.
FTL Follow-The-Leader.

GA Genetic Algorithm.
GAIL Generative Adversarial Imitation Learning.
GAN Generative Adversarial Network.
GMM Gaussian Mixture Model.
GPUs Graphics Processing Units.
GUI Graphical User Interface.

HMD Head-Mounted Display.
HMMs Hidden Markov models.

IK Inverse Kinematics.
IPEI Intraluminal Procedures and Endovascular Interventions.
IVUS IntraVascular UltraSound.

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno.
LfD Learning from Demonstrations.
LoA Level of Autonomy.
LPA* Lifelong Planning A*.
LSTM Long Short Term Memory.

MCNN Multi-Channel Convolutional Neural Network.
MDCT Multidetector Computed Tomography.
MDSC Modified Dice Similarity Coefficient.
MRI Magnetic Resonance Imaging.
MRTK Microsoft Mixed Reality Toolkit.
MSM Mass-Spring Model.

OCT Optical Coherence Tomography.

PAMs Pneumatic Artificial Muscles.
PBD Position-Based Dynamics.
PCI Percutaneous Coronary Intervention.
PDSS Penalization of Deformations in Spare Space.
PPO Proximal Policy Optimization.
PRM Probabilistic RoadMap.
PRM* Probabilistic RoadMap*.
PSO Particle Swarm Optimization.

RL Reinforcement Learning.
RMSE Root Mean Square Error.
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ROI Region of Interest.
RRG Rapidly-exploring Random Graph.
RRM Rapidly-exploring RoadMap.
RRT Rapidly-exploring Random Tree.
RRT-connect bi-directional RRT (or bi-RRT).

SARSA State-Action-Reward-State-Action.
SVD Singular Value Decomposition.

TAVI Transcatheter Aortic Valve Implantation.
TN True Negative.
TP True Positive.

VMTK Vascular Modeling Toolkit.
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