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Arrays of Rydberg atoms have appeared as a remarkably rich playground to study quantum phase
transitions in one dimension. One of the biggest puzzles that was brought forward in this context are chiral
phase transitions out of density waves. Theoretically predicted chiral transition out of period-four phase is
still pending experimental verification mainly due to extremely short interval over which this transition is
realized in a single-component Rydberg array. In this Letter, we show that multicomponent Rydberg arrays
with extra experimentally tunable parameters provide a mechanism to manipulate quantum critical
properties without breaking translation symmetry explicitly. We consider an effective blockade model of
two component Rydberg atoms. Weak and strong components obey nearest- and next-nearest-neighbor
blockades correspondingly. When laser detuning is applied to either of the two components the system is in
the period-3 and period-2 phases. But laser detuning applied to both components simultaneously stabilizes
the period-4 phase partly bounded by the chiral transition. We show that relative ratio of the Rabi
frequencies of the two components tunes the properties of the conformal Ashkin-Teller point and allows us
to manipulate an extent of the chiral transition. The prospects of multicomponent Rydberg arrays in the
context of critical fusion is briefly discussed.

DOI: 10.1103/PhysRevLett.132.076505

Introduction.—Understanding the nature of quantum
phase transitions in low-dimensional systems is a central
topic of condensed matter physics [1,2]. One of the most
debated and long-standing problems in the theory of phase
transitions is a chiral melting of the density-wave order that
roots back to the study of adsorbed monolayers [3–9].
Recent experiments on Rydberg atoms attract new attention
to this problem now in the context of one-dimensional (1D)
quantum chains [10–18]. The microscopic Hamiltonian of
a Rydberg array can be formulated in terms of hard-core
bosons:

HRyd ¼
X

i

�
−Ωðd†i þ diÞ − Δni þ

Xþ∞

R¼1

VRniniþR

�
; ð1Þ

where Ω is a Rabi frequency and VR ∝ R−6 is the van der
Waals potential. The competition between the laser detun-
ing Δ that keeps atom in a Rydberg state and strong van der
Waals interaction that blocks simultaneous excitation of
multiple atoms within a certain radius realizes a sequence
of density-wave lobes with integer periodicities p ¼
2; 3; 4;… [10,18]. These ordered phases are surrounded
by the disordered phase with incommensurate short-range
order. Incommensurability signals chiral perturbations in a
system that have a drastic effect on the nature of quantum
phase transitions [7,9,19].
For p ¼ 2 chiral perturbations do not appear and the

transition, if continuous, is in the Ising universality class.
For p ≥ 5 the transition takes place via an incommensurate

Luttinger liquid phase (also known as a floating phase)
[18]. The transition out of the p ¼ 3 phase is more
complicated. Inside the disordered phase chiral perturba-
tions vanish along commensurate lines with wave vectors
q ¼ 2π=p. At the point where a commensurate line hits the
boundary of the period-3 phase the transition is conformal
in the three-state Potts universality class. Away from this
point chiral perturbations are relevant and the transition is
believed to be in the Huse-Fisher chiral universality class
[9,12–14,17]. When chiral perturbations are strong a
chiral transition is eventually replaced by a floating phase
[12,13,18].
The most intriguing case is p ¼ 4. Along the commen-

surate line q ¼ π=2 the transition is conformal [15],
however, the underlying Ashkin-Teller critical theory forms
a weak universality class [20,21]. This implies that critical
exponents, for instance ν that describes a divergence of the
correlation length, can be continuously tuned by an external
parameter λ [20]. The Ashkin-Teller model interpolates
between two decoupled Ising chains at λ ¼ 0 and the
symmetric four-state Potts point at λ ¼ 1 (see Fig. 1). The
exponent ν as a function of λ is known exactly [20,22]:

ν ¼ 1

2 − π
2
½arccosð−λÞ�−1 :

As sketched in Fig. 1 the effect of chiral perturbations that
appear in Rydberg arrays away from the commensurate line
change the nature of the transition [3,9,23,24]. When
ν≳ 0.8 chiral perturbations immediately open a floating
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phase; when 0.8≳ ν ≥ ð1þ ffiffiffi
3

p Þ=4 chiral perturbations are
also relevant but for awhile the transition is direct in the chiral
universality class [23,24]; finally, when ð1þ ffiffiffi

3
p Þ=4 > ν ≥

2=3 chiral perturbations are irrelevant and for a certain
interval the transition is in the Ashkin-Teller universality
class that upon increasing chiral perturbations is followed
first by the chiral transition and then by the floating phase
[24,25]. In the single-component Rydberg array the con-
formal Ashkin-Teller point has critical exponent ν ≈ 0.78
and the second scenario is realized [15]. However, as
illustrated in Fig. 1, the closer is the Ashkin-Teller point
to ν ≈ 0.8 the shorter is the interval of the chiral transition. As
a consequence, the chiral transition in a Rydberg array
appears only very close to the conformal point [13] making
its experimental investigation extremely difficult.
In this Letter we directly address this problem and show

how tomanipulate quantum critical properties and to enlarge
an extent of the chiral transitionwith two-component bosonic
Rydberg array (see below). We show that the ratio between
Rabi frequencies of the two components tunes the properties
of the Ashkin-Teller multicritical point that in turn controls
an appearance and an extent of the chiral transition.
Multicomponent Rydberg atoms.—Rydberg arrays

defined in Eq. (1) have two independent parameters while
the phase diagram of the chiral Ashkin-Teller model [24]
sketched in Fig. 1 requires at least three. In recent years
there were several proposals aiming to extend the set of
control parameters in Rydberg atoms [26–32]. Among
them the multispecies [26,27] and the multicomponent
[28,29] Rydberg arrays seem the most promising. In
multispecies setup a certain arrangement of Cs and Rb
atoms is prepared. Rabi frequency, laser detuning, and van
der Waals potential can be individually controlled for each

individual specimen in addition to the interspecies inter-
action, so the effective model spans over six-dimensional
parameter space. In multicomponent Rydberg atoms, only
one type of atom is used but each atom can be excited to
one of the two Rydberg levels components as sketched in
Fig. 2. The levels can be selected such that (i) first-
component interaction is much stronger than the second
component one; and (ii) all other interactions including
those between different components are negligibly small.
This model has five independent parameters: interatomic
spacing, two Rabi frequencies Ω1 and Ω2 and two
individually controlled laser detunings Δ1 and Δ2 (see
Fig. 2). Between two setups—multispecies and multi-
component arrays—the latter has one significant advantage
in the context of quantum phase transition and chiral
melting: it preserves translation symmetry.
The blockade model.—Because of the very fast increase

of the van der Waals potential at short distances simulta-
neous occupation of atoms within certain blockade radius is
essentially excluded. It allows us to approximate long-
range interactions of two components with two types of
Rydberg blockade: nearest-neighbor blockade for the weak
and next-nearest-neighbor one for the strong components.
This effectively fixes two parameters—relative interaction
strength of two species and an interatomic distance. The
resulting model is defined by the following microscopic
Hamiltonian acting in a constrained Hilbert space:

HMC ¼
X

α¼1;2

X

i

½−Ωαðd†α;i þ dα;iÞ − Δαnα;i�; ð2aÞ

n1;in1;iþ1 ¼ n2;in2;iþ1 ¼ n2;in2;iþ2 ¼ n1;in2;i ¼ 0: ð2bÞ

Here, d†α;i brings an atom at site i from the ground state to a
first or second Rydberg level if α ¼ 1 or 2 correspondingly.
This model has three independent parameters that we
define as Δ1=Ω1, Δ2=Ω2, and Ω1=Ω2. We study the model
with a state-of-the-art density-matrix renormalization group
algorithm [33–36] with up to N ¼ 907 sites keeping up
to 2500 states and performing up to 8 sweeps (see
Supplemental Material [37] for details).

FIG. 1. Nature of the quantum phase transition between the
period-four and disordered phases. Vertical axis states for some
relevant operator that brings a system from the disordered phase
to the period-4 phase. Orange line states for the conformal
Ashkin-Teller transition. Yellow and orange regions at finite
chiral perturbations correspond to direct chiral and Ashkin-Teller
transitions. Blue and red surfaces indicate Pokrovsky-Talapov
and Kosterlitz-Thouless transitions with a floating phase between
the two. Green line states for the Lifshitz line.

(b)(a)

FIG. 2. Sketch of the two-component Rydberg atom. (a) Atoms
are excited to the two Rydberg levels α ¼ 1, 2 from the ground
state by a laser with Rabi frequency Ωα and detuning Δα.
(b) Interaction within the strong (magenta) and weak (blue)
components result in nearest- and next-nearest-neighbor block-
ades. Configurations that violate these blockades are marked with
red ellipses.
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Phase diagram.—Our main results are summarized in
three phase diagrams in Fig. 3. When laser detunings are
small Δ1=Ω1;Δ2=Ω2 ≪ 1 the system is in the disordered
phase and translation symmetry is not broken. For
Δ2=Ω2 ≫ Δ1=Ω1 the system is populated with the strong
component that due to next-nearest-neighbor Rydberg
blockade leads to a period-three phase separated from
the disorder phase by either chiral transition or the floating
phase [37]. In the opposite limit Δ2=Ω2 ≪ Δ1=Ω1 the
system is in the period-two phase with every other site
occupied by a weak component; the transition to the
disordered phase is in the Ising universality phase [37].
Upon increasing the detuning Δ2 the system undergoes
the second Ising transition [37] where the translation
symmetry is spontaneously broken once again and every
other empty site of the period-2 phase is occupied by the
strong component resulting in the period-four phase
[sketched in Fig. 3(a)] with broken Z2 × Z2 symmetry
(see Supplemental Material [37] for further details). Upon
increasing Δ2=Ω2 two Ising lines come closer and even-
tually merge into a multicritical point in the Ashkin-Teller
universality class [21]. Beyond this point the transition
from the disordered to the period-four phases is either direct
in the chiral universality class or via the floating phase as
shown in Fig. 3. This is further supported by incommen-
surate correlations that weak component develops beyond
the disorder line [37].
We distinguish three types of transitions—Ashkin-Teller,

chiral, and floating phase—by looking at the product
jq − π=2j × ξ, where q is incommensurate wave vector
approaching its commensurate value with the critical
exponent β̄ and ξ is a correlation length diverging with
the critical exponent ν. To the best of our knowledge for the
Ashkin-Teller criticality the exact value of β̄ is not known
but according to Huse and Fisher β̄ > ν [7,9]. Then for the
Ashkin-Teller point the product jq − π=2j × ξ is expected
to vanish. By contrast, at the chiral transition the equality
ν ¼ β̄ should hold and jq − π=2j × ξ takes some finite
value. In the case of the floating phase, it is separated from
the disordered phase by the Kosterlitz-Thouless transition
[40] characterized by the stretch-exponential divergence of
correlation length; at the same time the wave vector q
remains incommensurate across the transition, therefore
jq − π=2j × ξ diverges.
In Fig. 4 we show the inverse of the correlation length and

the product jq − π=2j × ξ across different cuts through the
transition. For Ω1=Ω2 ¼ 1 and Δ2=Ω2 ¼ 2.27 presented in
Figs. 4(a) and 4(b) the divergence of the correlation length is
symmetric and the numerically extracted critical exponent
ν ¼ ν0 ≈ 0.76� 0.02 is consistent with the Ashkin-Teller
critical theory; the product jq − π=2j × ξ vanishes. This
Ashkin-Teller point belongs to the interval where chiral
perturbations result into a chiral transition [23,24]. Indeed,
already at Δ2=Ω2 ¼ 2.3 the product jq − π=2j × ξ shown in
Fig. 4(c) takes some finite value at the transition. This picture
remains valid up to Δ2=Ω2 ¼ 2.5. The location of the

transition is extracted by fitting the correlation length in
the period-four phase [37]. For Δ2=Ω2 ¼ 2.6 presented in
Fig. 4(d) we see a sign of divergence of jq − π=2j × ξ
signaling the opening of the floating phase.

FIG. 3. Phase diagrams of the blockade models defined by
Eqs. (2a) and (2b) as a function of laser detuning of two species
and for three relative ratio of Rabi frequencies Ω1=Ω2. Each
phase diagram contains four gapped phases: the disordered phase,
and three density wave phases with periodicity p ¼ 2, 3, and 4.
Typical patterns of these phases are sketched in (a) where white
circles denote atoms in the ground state, and blue and red circles
denote the states for atoms excited to the first (weak) and second
(strong) Rydberg levels, correspondingly. The period-2 phase is
separated from the disordered and period-4 phases by two Ising
transitions (blue squares and diamonds). The multicritical point
(open orange circle) belongs to the Ashkin-Teller universality
class. For some interval in (a) and (b) the transition to the period-4
phase is direct and chiral (red line). The key observation is that
the extent of the chiral transition in (b) for Ω1=Ω2 ¼ 2 is
significantly larger than in (a) forΩ1=Ω2 ¼ 1, while forΩ1=Ω2 ¼
0.5 in (c) the floating phase (gray) opens immediately. The
transition between the period-three phase and the disordered
phase is chiral (purple line) for small values of Δ1=Ω1 and
through a floating phase (gray) for large detuning of the weak
component (see “Methods ” for details).
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For the larger ratio of Rabi frequencies Ω1=Ω2 ¼ 2 the
location of the Ashkin-Teller point is almost the same but
the extracted critical exponent is noticeably smaller ν ≈
0.68� 0.04 [see Figs. 4(e) and 4(f)]. Beyond this point
we detect the chiral transition that extends at least up
to Δ2=Ω2 ¼ 2.7 as shown in Fig. 4(g). In Fig. 4(h)
for Δ2=Ω2 ¼ 2.8 one can clearly see a divergence of
jq − π=2j × ξ upon approaching the floating phase. The
larger interval of the chiral transition compares to the
previous case with Ω1=Ω2 ¼ 1 being fully consistent with
the smaller critical exponent ν at the Ashkin-Teller point
[see Fig. 4(e)]. In other words, by increasing Ω1=Ω2 one
can tune the multicritical Ashkin-Teller point toward larger
λ and smaller ν, that in turn leads to a longer chiral
transition as sketched in Fig. 1. Note also that the difference
between the chiral transition and floating phase is more
pronounced for Ω1=Ω2 ¼ 2.
For Ω1=Ω2 ¼ 0.5 the multicritical point is very close to

the period-three phase and the floating phase surrounding
it; as a consequence the correlation length is very large all
over the narrow window of the disordered phase. This
prevents us from fitting the divergence of the correla-
tion length inside the disordered phase but the product
jq − π=2j × ξ computed locally remains a valid measure: it
goes to zero at the Ashkin-Teller point at Δ2=Ω2 ¼ 2.4 [see
Figs. 4(i)–4(j)], while for Δ2=Ω2 ¼ 2.5 it already shows a
signature of divergence suggesting the presence of the
floating phase. The latter is further supported by the
divergence of the correlation length with the Pokrovsky-
Talapov critical exponent 1=2 (see Supplemental Material
[37]). The picture is completed by the observation that
along the cut Δ2=Ω2 ¼ 2.4 through the Ashkin-Teller point
the correlation length diverges with the critical exponent
ν0 ≈ 0.81 that lies outside of the interval 2=3 ≤ ν≲ 0.8

where chiral transition is possible. Of course, neither this
interval nor the critical exponents ν0 are exact and we cannot
exclude a possibility of a short chiral transition between
Δ2=Ω2 ¼ 2.4 and 2.5. But what we observe here is a very
important tendency of the Ashkin-Teller critical exponent to
increase with decreasing Ω1=Ω2 such that the chiral tran-
sition shrinks to the point when it eventually disappears.
Discussion.—To summarize, our results offer a novel

approach to manipulate quantum criticality in Rydberg
atoms that, in particular, overcomes the bottleneck asso-
ciated with the short extent of the chiral transition. In
addition, we formulate a protocol to probe the complete
phase diagram of the chiral Ashkin-Teller model.
Altogether, these provide an opportunity to explore uni-
versal and nonuniversal properties of chiral transitions—a
necessary step toward a formal definition of the p ¼ 4
chiral universality class. We expect our results obtained for
the blockade approximation to be qualitatively correct for
the model with 1=r6 potential as soon as the selected
Rydberg levels and the lattice spacing are such that
detuning of weak and strong components alone leads to
stable period-two and period-three phases correspondingly.
Multicomponent Rydberg arrays open a unique opportunity
to explore fusion rules of quantum criticalities directly on a
lattice. Here, we focused on the simplest case: fusion of two
Ising transitions into the Ashkin-Teller point followed by
the chiral transition. Playing with different interaction
regimes and longer blockades one can realize, for instance,
a fusion of chiral transitions. Further generalization to three
and more components is conceptually straightforward and
introduces a new class of models with multicomponent
Hilbert space. Multiple individually controllable parameters
enables a fine-tuning, for instance, to points with higher
symmetries.

FIG. 4. Inverse correlation length 1=ξ and product jq − π=2j × ξ along various cuts across the transition (a)–(d) for Ω1=Ω2 ¼ 1;
(e)–(h) for Ω1=Ω2 ¼ 2; and (i), (j) for Ω1=Ω2 ¼ 0.5. (a), (b), (e), (f), (i) and pale symbols in (j): vertical cut through the Ashkin-Teller
point. (c), (g): vertical cuts through chiral transitions. (d), (h) and bright symbols in (j): a cut through a floating phase. In (a) and
(e) correlation lengths are fitted with the power law with equal critical exponents ν ¼ ν0 specified in each panel. jq − π=2j × ξ is defined
with error bars 2 × ξ2=N2; we only show error bars if they exceed the size of the symbols. Dashed lines show the boundary of the
ordered phase extracted by fitting the correlation length, color code corresponds to the legend in the lower part of the figure.
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