
Detecting Rhyming Words

Simran Karnani1 , Stravos Makrodimitris1 , Arman Naseri Jahfari1 , Tom Viering1 , Marco
Loog1

1TU Delft

Abstract
Rhyming words are one of the most important fea-
tures in poems. They add rhythm to a poem, and
poets use this literary device to portray emotion and
meaning to their readers. Thus, detecting rhyming
words will aid in adding emotions and enhancing
readability when generating poems. Previous stud-
ies have been done on the topic of poem generation.
However, those works did not put too much em-
phasis on the rhyme detector. Thus, this research
will solely focus on rhyme detection and its evalua-
tion. The aim of this research is to determine the
most accurate way of detecting whether two En-
glish words rhyme. English rhyming words will
be detected using combinations of features. Five
features are used: edit distance, hamming distance,
jaccard similarity, longest common substring, and
vowel and consonant weights. We also experiment
with two methods of retrieving phonemes: using
the entire phoneme translation, and using part of
the phoneme translation. We find that using only
hamming distance and jaccard similarity with part
of the phoneme translation, we can already obtain
an accuracy of 90.05% with a log loss of 0.25 when
trained on a balanced dataset. The reason for this
remains unclear because there is no clear separa-
tion between the two classes.

1 Introduction
Deep learning has revolutionized natural language processing
by generating realistic pieces of texts. It can predict the next
set of words, summarize articles, and generate automatic re-
sponses [17]. Deep learning can also be taken a step forward
to generate poems. In order to generate poems, a rhyme de-
tector is necessary. This is because many poem generators
first generate a pair of rhyming words and then generate the
remaining of the sentence. Thus in order for the generator
to generate a rhyming pair, it must be able to detect rhyming
words[7].

Rhyme detection is an easy task for humans, but difficult
for machines. Rhyme is necessary in creative pieces, such as
poems. Thus, in order to generate poems, a rhyme detector
is necessary. Although poem generators already exist, they

underperform in terms of emotion and readability [12]. In
order to enhance the readability, poets use rhyming words,
either within the lines of a poem or at the end of the lines.
Rhyming words add rhythm to a poem, which keeps the poem
in harmony[4]. Rhythm is a literary device that sets poems
apart from other prose. It sets the tone for the poem and can
generate emotion or enhance ideas [14]. Rhyme also helps
poets to draw an image for the reader and can create internal
rhyme to bring about meaning, emotions, and feelings [8].

There are different types of rhymes, such as end rhyme,
double rhyme, first syllable rhyme and many more. This re-
search will focus on end rhymes. End rhymes can be further
subdivided into perfect rhymes and imperfect rhymes also
known as slant rhymes. In perfect rhymes, the last stressed
vowel and all sounds following it are identical for both words
(example: conviction, prediction) [15]. Slant rhymes, on the
other hand, have similar, but not identical sounds or emphasis.
This includes words that end with similar consonant sounds
(example: pact, slacked), words whose last syllable contains
an assonance (example: unpack, detach), and words whose
last syllable contains final consonants that have consonance
(example: country, conta) [2]. Both of these have their own
purpose in poems and help the poet to portray different emo-
tions and illustrations.

The aim of this research is to determine the most accurate
way of detecting whether two English words rhyme. To do
this, the following questions will be answered:

• What (pronunciation) dictionary should be used? Two
words can simply be compared using their spellings or
pronunciations. When using spelling, the English alpha-
bets can be used. When comparing using pronunciation,
pronunciation dictionaries, CMU or IPA, can be used.

• Should the entire word be used or only part of the word
that contains the rhyme? End rhymes usually have sim-
ilar endings, thus the second method will only compare
the ends of the words.

• What combination of features should be used? The five
features that will be used are: edit distance, hamming
distance, jaccard similarity, longest common substring,
and vowel and consonant weights.

• Are more rhyming or non-rhyming pairs detected?
A machine learning algorithm will be used to detect rhyme.

As mentioned above, perfect rhymes have an identical match-

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

ing, but imperfect rhymes do not. Thus, there is not always a
100% similarity from the last stressed syllable onward. Ad-
ditionally, the vowel stress may also differ for slant rhymes.
Therefore, a machine learning algorithm is required to learn
the different patterns.

The remaining of the paper is structured in the following
manner. Section 2 contains some related works. Descriptions
of the pronunciation dictionaries and features are in Sections
3 and 4 respectively. Section 5 contains an explanation of
the method used. The results will be presented in Section 6
and further discussed in Section 7. Section 8 concludes the
research and recommends some future works. Lastly, Sec-
tion 9 includes a part about responsible research and how this
experiment can be reproduced.

2 Related Work
Previous works in the field of rhyme detection have used
datasets of poems or rap music and trained their models
with one feature. These works paid more attention on gen-
erating poems or rap lyrics and determining the position of
the rhymes, thus smaller evaluations were performed on the
rhyme detection. The main focus of this paper will be on
evaluating rhyme detection using a dictionary of rhyming and
non-rhyming pairs.

DeepLyricist [10] is a tool that generates rap lyrics by de-
tecting rhyme, idiom, structure, and novelty. They use longest
common substring, which is further explained in Section 4, to
detect rhyme and calculate the rhyme density. However, to do
this, they remove all consonants from the word and find the
longest substring of vowels. As they discussed, the lack of
consonants in between vowels may be why the rhyme density
was not accurate. Furthermore, the model was trained on a
dataset of rap lyrics, many of which did not contain rhyme.
Therefore, it was less likely for the model to learn the param-
eters for rhyme.

Hirjee and Brown [9] used a probabilistic method to de-
tect rhyming phrases. This method calculated a rhyme score
based on the vowel score, end consonant alignment score, and
metrical stress marking score. These scores are calculated
based on how probable their matches are in rhyming phrases.
The model is trained on a datset of rhyming rap lyrics and
instead of using the entire word for rhyme detection, only
the vowels, stress markings and last consonants of the last
stressed syllable are used.

Furthermore, the work of Kesarwani [11], uses vowel and
consonant weights (described in Section 4) to detect rhyming
pairs. The model is trained on a set of rhyming poems to
detect the type of rhyme (perfect or imperfect) and rhyming
position (internal rhyme, consecutive end rhyme or alterna-
tive end rhyme). When trained on 50 poems and tested on a
different set of 50 poems, the model scored an accuracy of
96.51%.

Lastly, in the Deep-speare study [12], the cosine distance
was used to detect rhyming words. The model was trained
on a set of quatrains and used a rule-based method, where a
pair is considered to be rhyming if it has a cosine similarity
≥ 0.8. This resulted in many rhyming errors. For example,
’supply’ and ’sigh’ have a cosine distance 0.836 when using

Figure 1: Examples of CMU phonemes and IPA phonemes along
with their metric stress markings. Primary stress is represented in
red and secondary stress in blue.

their model, despite being a non-rhyming pair.
Some of these features and methods worked well, while

others did not. In this paper, a combination of these methods
and features will be experimented with to determine which
accurately detects rhyming pairs.

3 Pronunciation Dictionaries
The two dictionaries that were used to get the pronunciation
of words are: Carnegie Mellon University (CMU) Pronounc-
ing Dictionary and International Phonetic Alphabet (IPA).
These two dictionaries contain a large number of English
words, however they do not contain all the words. Thus,
a combination of both dictionaries is used to increase the
dataset of words and their pronunciations.

3.1 CMU Dictionary
The Carnegie Mellon University (CMU) Pronouncing Dictio-
nary is a machine readable pronouncing dictionary for North
American English. It contains over 134,000 words which are
mapped to their pronunciation in the ARPAbet phoneme set,
a standard for English pronunciations [13]. The phoneme set
contains 39 phonemes: 24 consonants and 15 vowels. The
vowels carry a metric stress marking which indicates whether
they have a primary stress (1), secondary stress (2), or no
stress (0) (Figure 1). Thus for each word, its phoneme trans-
lation is returned, which consists of the speech sounds, as
well as the emphasis placed on each syllable pronounced [9].
Some words have multiple phoneme translations, depending
on the context in which it is used. However, the dictionary
does not state the context of the word, thus for this research,
the first phoneme translation is used.

3.2 IPA
The International Phonetic Alphabet (IPA) is an alphabetic
system of phonetic notions based on Latin characters, which
is very well referenced by [6]. The English language consists
of 44 phonemes, 24 consonants and 20 vowels. A vertical line
at the top (’) indicates primary stress and a vertical line at the
bottom (,) indicates secondary stress (Figure 1). The stress
symbols are placed before the stressed syllable in a word [16].
IPA contains mappings of words to their pronunciations in
multiple languages.

4 Features
In order to train a model to detect rhyming words, the
rhyming pair must first be transformed into a format that can

be easily understood by a machine. For this research, five
different similarity techniques were used as features for the
models. Besides for these techniques, a sixth feature, the
length of the longest phoneme translation, is also used. Each
of these features depends on a pair of words to determine how
similar two pronunciations are. The five similarity techniques
will be described in this section.

4.1 Edit Distance
The Edit Distance finds the minimum number of operations
(remove, insert, replace) that need to be performed to trans-
form one list into another. In figure 2, ‘P’ in the second list
can be replaced with ‘T’, and ‘L’ can be removed, to obtain
the first list. Therefore giving an edit distance of 2.

Figure 2: Phonetic translation of ’Thunder’ and ’Plunder’ expressed
using the CMU dictionary

4.2 Hamming Distance
The Hamming Distance is a metric for comparing two strings
or lists. Both lists of phonemes must be of equal length, hence
the shorter list is padded. Since we are detecting end rhymes,
the padding is done at the beginning, to align the ends of the
words. Hamming Distance counts the number of positions at
which the elements differ.

4.3 Jaccard Similarity
The Jaccard Similarity compares the members of two sets to
see which members are shared and which are distinct. Like
the Hamming Distance, both lists must be of the same size,
thus the shorter one is padded at the beginning. Jaccard sim-
ilarity coefficient score is used to calculate the jaccard simi-
larity. It compares the phonemes of word A to those of word
B and returns a score between 0 and 1. Figure 3 displays
an example of jaccard similarity on the lists of phonemes for
words A and B. A higher score means that the two sets are
more similar. Jaccard similarity is calculated using the fol-
lowing formula:

d(A,B) =
A ∩B

A ∪B

Figure 3: Example of Jaccard Similarity using Jaccard similarity
coefficient score

4.4 Longest Common Substring
The longest Common Substring problem is to find the longest
substring that is present in two strings [1]. This can be applied
to lists as well, as seen in figure 2, where the longest common
sublist is [‘AH1’, ‘N’, ‘D’, ‘ER0’].

4.5 Vowel and Consonant Weights
Rhyme is defined by word pronunciations, but end rhymes
are also defined by the stress position. Thus, stress similar-
ity and phoneme comparisons are made. This approach was
inspired by Kesarwani [11]. Since this research focuses on
end rhymes, the two pronunciations are aligned from the last
phonemes. At each position, both phonemes are compared.
Table 1 presents the scores for each type of pairing (scores
are determined by Kesarwani [11]). If only one phoneme is
present at that position, no score is given. The scores at each
position are summed to give the final score. We added an
additional scoring for vowels that match and have different
stresses. This is for slant rhymes since those words do not
always have the same stress marking.

Type of match Score
n Vowel-constant mismatch 0.0
nv Vowel mismatch 0.2
nc Constant mismatch 0.4
-yv Vowel match but stress mismatch 0.5
yv Vowel match without stress 0.6
yc Constant match 0.8

*yv Vowel match with stress 1.0

Table 1: Scores for the type of match (Vowel and Constant Weights)

5 Methodology
The following steps were carried out to build a model that
detects whether two words rhyme:

1. Data collection and cleaning
2. Retrieving phonemes
3. Extracting features
4. Train model
5. Evaluate classifier

5.1 Data collection and cleaning
Since the available dictionaries of rhyming words were very
small (about 100 pairs), a self made dictionary was used.
Using a webscraper1, the website www.rhymer.com2 was
scraped for end rhymes. To obtain a relatively large and di-
verse dataset, one syllable and two syllable end rhymes were
retrieved. 78,475 words were collected, each having a list of
one- and two- syllable end rhymes. The rhyming pairs that
did not have pronunciations in the CMU Dictionary or IPA
American English Dictionary were removed, thus resulting
in 44,660 words, with lists of rhyming words.

In order to make a dictionary of non-rhyming pairs, the
rhyming pairs dictionary was used, and the rhyming words
lists were swapped around. These non-rhyming words were
filtered to remove any words that rhyme with the main word.
An example is displayed in Figure 4.

The dataset of 44,660 words with large lists of rhyming
words made computation very expensive. Thus, a smaller

1https://bitbucket.org/TommieV/sintscrape/src/master/
2https://www.rhymer.com/

Figure 4: Example of non-rhyming dictionary

dataset was used to train the model. The first 25,000 words
made up the rhyming dictionary while the last 25,000 made
up the non-rhyming dictionary. Each of these words had a list
of about 5 rhyming or non-rhyming words. In previous exper-
iments [12], they discovered that having false words that were
not part of the rhyming category can improve the performance
of the model, hence the last 25,000 words were used for the
non-rhyming dictionary. To sum up, the smaller dataset con-
tains a total of 248,905 rhyming and non-rhyming pairs.

5.2 Retrieving phonemes
In the case that CMU and/or IPA dictionaries are used, this
step is conducted. As previously mentioned, the IPA dic-
tionary has phonemes for multiple languages, including both
American English and British English. Since the CMU dic-
tionary only has phonemes for American English, American
English phonemes will be used for both dictionaries to keep
them compatible. CMU phoneme translations were obtained
using the nltk package [3]. The IPA American English dictio-
nary was retrieved from the IPA dictionary.3

End rhymes have identical or similar pronunciations to-
wards the end of the words. This is why we apply two meth-
ods. Method A uses the full pronunciation of the words and
method B only uses part of the pronunciation. The part of
words that are similar or identical are from the last stressed
syllable onward [12]. Thus method B only compares the parts
of the pronunciation from the last primary stressed syllable
onward. If there is no primary stress, the secondary stress is
used. An example of both methods is presented in Figure 5.

5.3 Extracting features
In order to determine whether two words rhyme, features are
extracted from their pronunciations. The five features used to
train the model are:

1. Edit distance

2. Hamming distance

3. Jaccard similarity

3https://github.com/open-dict-data/ipa-dict

Figure 5: Example of full phonemes and part of the phoneme in
CMU and IPA

4. Longest Common substring

5. Vowel and consonant weights

Hamming distance4, jaccard similarity5, and vowel and
consonant weights compare phonemes at each index. Edit
distance6 and longest common substring7 do not compare
phonemes at indices. Instead they look at the entire pronunci-
ation and make comparisons, which may be helpful for slant
rhymes.

The longest common substring returns a sublist of common
phonemes. Thus the length of this sublist is used to obtain
a score. The edit distance, longest common substring, and
vowel and consonant weights are normalized by dividing the
score by the length of the longest phoneme translation in the
word pair. Jaccard similarity and hamming distance already
give a score between 0 and 1.

Combinations of these features will be experimented with
to determine which set of metrics should be used to determine
whether two words rhyme.

5.4 Train model
Due to the large dataset, SKLearn’s SGDClassifier imple-
mentation was used to train the model. The classifier uses
the loss function, log, for logistic regression, with regular-
ization term l1, which can shrink some model parameters to-
wards the zero vector. The regularization parameter, alpha,
is set to 0.001. This parameter was selected through trial
and error. The values 0.0001, 0.1, 0.001, and 1 were tried
with five different feature combinations: all features, jaccard
and hamming, edit, longest common substring, and vowels
and consonant weights, longest common substring and vow-
els and consonant weights, and jaccard and longest common
substring. The value 0.001 resulted in the best accuracy and
log loss. This parameter is used to prevent the model from
overfitting to the training data. Moreover, this parameter is
also used to compute the learning rate (default=’optimal’).

The data is split into a training set and testing set using
10-fold cross validation. Since the dataset was shrunk, cross
validation was used to get a better estimate on how the data
would perform had it been trained on the large dataset.

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.
spatial.distance.hamming.html

5https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.jaccard score.html

6https://pypi.org/project/editdistance/0.3.1/
7https://stackoverflow.com/a/42882629/15236519

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.hamming.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.hamming.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://pypi.org/project/editdistance/0.3.1/
https://stackoverflow.com/a/42882629/15236519

Figure 6: Graph showing the accuracy of detecting rhyming words
using three different dictionaries. The CMU and IPA dictionary have
high accuracies (and the same), thus both pronunciation dictionaries
will be used to detect rhyming pairs.

6 Experimental Results
In order to determine which method, Method A or Method B,
and which feature combination best detects rhyming words,
the accuracy, log loss, and feature weights, will be evaluated.

Which (pronunciation) dictionary should be used to
detect rhyme?
Figure 6 shows the accuracy when using english alphabets,
CMU pronunciations, and IPA pronunciations. During the
initial experiments, the english alphabets were used to deter-
mine whether two words rhymed or not. This was tested on a
very small dataset of 200 rhyming pairs and 200 non-rhyming
pairs. Using alphabets, the model had an accuracy of about
89%. The model was then trained to use the CMU dictionary
and IPA dictionary. Both dictionaries had an accuracy score
of 94%.

Using alphabets resulted in a lower accuracy because word
pairs such as ’love’ and ’move’ are detected as rhyming.
They have common alphabets, but are pronounced differently,
therefore they are neither perfect rhymes, nor slant rhymes.
The CMU dictionary and IPA dictionary use pronunciation
instead, and therefore result in higher accuracies.The CMU
dictionary and IPA dictionary contain many different words,
thus a combination of these will increase the dataset size of
words that contain phoneme translations. For these reason,
the experiment was further conducted using a combination of
CMU and IPA pronunciations.

What method should be used when retrieving
phonemes?
Two methods can be used to retrieve phonemes. Method A,
which uses the entire pronunciation, and Method B, which
only uses part of the pronunciation, as explained in subsec-
tion 5.2. Figure 8 displays the average accuracy when using
Method A and Method B on various feature combinations. It
can be seen that for all combinations, Method B has a higher
accuracy (about 2%). Thus based on these results, it can be
indicated that Method B, using part of the phoneme transla-
tion, should be used to detect rhyming words.

Figure 7: Similarity/Difference between word pairs when using
Method A and Method B

Figure 8: Graph comparing the average accuracy when using
Method A and Method B. Method B has a higher accuracy for all
feature combinations, thus based on these results, Method B should
be used to retrieve phonemes.

After taking a deeper look at the results, the following ob-
servations were made. Method B can better detect rhyming
pairs, since the word is split at the last stressed syllable. Thus,
rhyming pairs will have a smaller distance (or larger similar-
ity) when the score is normalized by the length of the longest
part phoneme translation in the pair. An example of this is
displayed in Figure 7. However, Method A (full phoneme
translation) produces results that do not drastically vary from
those of Method B. This is because the full phoneme transla-
tion can better identify words that do not rhyme, as displayed
in Figure 7.

What combination(s) of features accurately detect
rhyming pairs?
Figure 9 shows the learned feature weights, log loss and av-
erage accuracy of different feature combinations when us-
ing part of the phoneme translation. The lowest accuracy,

Figure 9: Feature weights, log loss, and average accuracy for dif-
ferent feature combinations when using part of the phoneme trans-
lation. Features that were not used to train the model do not contain
feature weights. Based on these results, it appears that the most im-
portant features are Hamming Distance and Jaccard Similarity.

84.96, was obtained when using a combination of edit dis-
tance, longest common substring, and vowel and consonant
weights. This combination also has the highest log loss.

It is also observed that the combinations that include jac-
card similarity and/or hamming distance have a much higher
accuracy. However, the weights of jaccard similarity and
hamming distance are always a lot more important than the
others in the combination. When hamming distance is used
with vowel and consonant weights, the latter has a learned
feature weight of zero. The same for jaccard similarity
and longest common substring. When all features are used,
longest common substring has a learned weight of zero. Thus,
it can be indicated that longest common substring is the least
important feature.

Based on these results, it appears that jaccard similarity
and hamming distance are the most important features for
rhyme detection. Taking a closer look at the results, it was
noticed that the hamming distance identifies more correct per-
fect rhymes. This is because it does an index match.

Are more rhyming or non-rhyming pairs detected?
The dataset contains two classes: rhyming pairs, which are
the end rhymes, and non-rhyming pairs, which may be other
types of rhymes, such as beginning rhymes, or no rhymes.
Figure 10 shows the accuracy of two imbalanced datasets, one
where majority of the word pairs are rhyming, and the other
where majority of the word pairs are non-rhyming. These ac-
curacies are obtained when using part of the phoneme trans-
lation.

From the figure, it can be seen that the dataset that the
dataset that contains more rhyming pairs has a slightly higher
accuracy than the one that contains more non-rhyming pairs.
However, the accuracies differ by ± 0.2. Thus it can be indi-
cated that both rhyming and non-rhyming pairs are detected
when using part of the phoneme translation. This means that
the model has a high accuracy (about 89%) of distinguishing
an end rhyme from all other types of rhyme.

7 Discussion
This research determines the best way of splitting the
phoneme translation and what feature combination gives an
accurate way of determining whether two words rhyme. In

Figure 10: Graph comparing the accuracies of imbalanced datasets
using part of the phoneme translation. It can be seen that the dataset
containing more true values has a higher accuracy. However, the dif-
ference in accuracies is ± 0.2. It can be indicated that both rhyming
and non-rhyming pairs are detected, but the rhyming class has a
slightly higher accuracy.

section 6, the results were evaluated based on their accuracy,
cross entropy, and feature weights. Accuracy and cross en-
tropy are negatively correlated, as seen in Figure 9. While
the accuracy looks at the number of correctly predicted data
points, cross entropy looks at the predicted probability of
data points. A higher accuracy results in a better perform-
ing model, while a lower log loss when predicted outputs are
closer to their class label. Although there was no major differ-
ence, the model performed better when it was evaluated based
on part of the phoneme. Furthermore, the features, ham-
ming distance and jaccard similarity gave better results and
had higher learned weights when compared to edit distance,
longest common substring, and vowel and constant weights.

Using part of the pronunciation is a method that was in-
spired by two previous works[12] [9]. In both papers, they
split the word at the last vowel. As they discussed, this
approach detects words such as drummer and weaker as
rhyming. But these words are not relevant rhymes due to
their lack of stress. End rhymes are identified based on the
last stressed syllable onward[5]. Method B takes this into
account and splits the word at the last stressed syllable. It es-
sentially only compares the parts of the words that are used
to determine whether the two words rhyme. For this reason,
method B is able to better detect rhyming words.

Furthermore, it was not a surprise that the longest common
substring was the least important feature. In previous works
[10], this feature was used to detect rhyming words. How-
ever, it was not able to accurately do so, as described in Sec-
tion 2. This is because some rhyming pairs do not have iden-
tical pronunciations from the last stressed syllable onward.

Slant rhymes, for example, have varying identical pronunci-
ations, thus the longest common substring is almost always
very short.

The feature that is most striking is the vowel and conso-
nant weights. This is the only metric that accounts for words
that have the same vowel with different stresses. Many slant
rhymes do not have the same stress, and yet they are rhyming.
Thus, the vowel and consonant weights metric should be able
to also identify slant rhymes. Kesarwani used this feature to
train the rhyme detection model, which resulted in an accu-
racy of 96.51%. However, this model was trained on a small
dataset of 50 rhyming poems. Thus making it incomparable
to our model which was trained on a large dataset of word
pairs containing both rhyming and non-rhyming words. The
reason for vowel and consonant weights being a low impor-
tance feature remains to be an open question. For future ex-
periments, the ratio of perfect to slant rhymes should be taken
into account to determine whether this feature does indeed
work better for slant rhymes.

Another question that remains unclear is why the combi-
nation of jaccard similarity and hamming distance has a high
accuracy. Figure 11 shows the feature scatter plot for ham-
ming distance and jaccard similarity when using part of the
phoneme translation. When looking at this plot, there is no
clear distinction between both classes.The non-rhyming pairs
are saturated near hamming distance = 1.0 and jaccard simi-
larity = 0.0. However, the rhyming pairs have hamming dis-
tances and jaccard similarities from 0 to 1. This could be
because slant rhymes do not have identical phonemes, and
some even have different stressed vowels. Jaccard similarity
and hamming distance do not take different stress markings
into account.

From this plot, it seems as if non-rhyming pairs are bet-
ter identified than rhyming pairs. This contradicts the results
when using imbalanced datasets, as seen in Figure 10. Ad-
ditional experiments using different datasets can be done to
further investigate why these two features are the most im-
portant.

8 Conclusions and Future Work
The aim of this study is to determine the most accurate way
of detecting whether two English words rhyme. To do this,
a combination of two pronunciation dictionaries were used,
CMU and IPA. Furthermore, rhyming pairs were detected by
comparing two methods for retrieving phoneme translations:
using the full phoneme translation and part of the phoneme
translation. Combinations of five different features (edit dis-
tance, hamming distance, jaccard similarity, longest com-
mon substring, and vowel and consonant weights) were ex-
perimented with to determine which combination gives the
best results. After examining the accuracy, log loss, and
learned feature weights, it can be concluded that the combi-
nation of jaccard similarity and hamming distance on part of
the phoneme translation can more accurately detect rhyming
words. The model identifies both rhyming pairs and non-
rhyming pairs.

Using a combination of jaccard similarity or hamming dis-
tance with another other metric on half of the phoneme trans-

Figure 11: Feature scatter plot for hamming distance and jaccard
similarity when using part of the phoneme translation. The red labels
represent rhyming pairs and the blue labels represent non-rhyming
pairs.

lation have an accuracy of about 89%, with a log loss of
0.25. However, the learning weights of jaccard similarity and
hamming distance are always more important than the others.
Thus the best combination is jaccard similarity and hamming
distance using part of the phoneme translation, which has a
90.05% accuracy. The reason for this combination giving the
best accuracy still remains to be an open question as there is
no clear separation between the two classes.

In the future, this model can be extended to classify end
rhymes as perfect rhymes and slant rhymes. This can be done
by experimenting with the feature combinations to see which
ones give better results for each type of rhyme. This experi-
ment will also clarify whether vowel and consonant weights
can detect slant rhymes. It may also clarify whether the un-
clear separation between the classes when using jaccard sim-
ilarity and hamming distance is indeed because of the slant
rhymes. Furthermore, to aid poem generation, the model
should be able to give a list of rhyming words for every word
given to it. This can be done with a very large dataset and
grouping the words based on their pronunciations.

9 Responsible Research
This research was conducted as part of the course CSE3000
at Delft University of Technology. It was performed without
funding and there was no conflict of personal interest. The
source code along with the parameters, libraries and packages
used can be found on the GitHub repository8, thus allowing
for reproducibility. The data was collected from an external

8https://github.com/simran0413/RhymeDetection

https://github.com/simran0413/RhymeDetection

source. Some rhyming pairs were removed and a justified ex-
planation has been provided in appendix A. The datasets will
be kept confidential as per the license granted. Nonetheless,
the steps taken to collect the data and clean the dataset are
described in methodology and appendix A. Since probabil-
ity played a role in the experimental setup and the data from
the dataset was taken at random, some results may come out
slightly different when the experiment is reproduced. Cross
validation was used to obtain the results. These results had a
very small standard deviation, therefore, repeating the exper-
iment will give results that will not be significantly different
from the ones obtained in this research. However, the general
conclusion drawn from the results will remain the same.

References
[1] Longest common substring problem, Apr 2021.
[2] Bennet Bergman. Slant rhyme, May 2017.
[3] Steven Bird. Source code for

nltk.corpus.reader.cmudict, 2014.
[4] Kathryne Bradesca. Why are rhythm & rhyme impor-

tant in poems?, Jan 2019.
[5] Benji Davies and Alexis Deacon. Quality children’s lit-

erature at the heart of all learning.
[6] Wikimedia Foundation. International phonetic alphabet,

Jun 2021.
[7] Marjan Ghazvininejad, Xing Shi, Yejin Choi, and Kevin

Knight. Generating topical poetry. Proceedings of the
2016 Conference on Empirical Methods in Natural Lan-
guage Processing, Nov 2016.

[8] Michael Hickey. The reason for rhyme, Jan 2007.
[9] Hussein Hirjee and Daniel Brown. Using automated

rhyme detection to characterize rhyming style in rap
music. Empirical Musicology Review, 5(4):121–145,
2010.

[10] Nils Hulzebosch, Mostafa Dehghani, and Sander van
Splunter. Deeplyricist: Automatic generation of rap
lyrics using sequence-to-sequence learning.

[11] Vaibhav Kesarwani. Automatic poetry classification us-
ing natural language processing. pages 27–42, 2018.

[12] Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian
Brooke, and Adam Hammond. Deep-speare: A joint
neural model of poetic language, meter and rhyme. Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Pa-
pers), 2018.

[13] Kevin Lenzo. The cmu pronuouncing dictionary, 2007.
[14] Jason Lineberger. Take online courses. earn college

credit. research schools, degrees & careers.
[15] MasterClass. Perfect vs. imperfect rhymes: Definition,

uses, and differences - 2021, Nov 2020.
[16] Tomasz P. Szynalski. The sounds of english and the

international phonetic alphabet, 2004.

[17] Tom Young, Devamanyu Hazarika, Soujanya Poria, and
Erik Cambria. Recent trends in deep learning based nat-
ural language processing [review article]. IEEE Compu-
tational Intelligence Magazine, 13(3):55–75, Nov 2018.

A Data collection and cleaning
Since the classifier uses a supervised learning method, a large dataset of rhyming words and non-rhyming words was required.
Unfortunately, the dictionaries of rhyming words that were made available were very small (100 pairs), thus a self made
dictionary was used. Using the webscraper built by Tom Viering and Arman Nasari Jafari , the website www.rhymer.com2
was scraped for end rhymes. To obtain a relatively large and diverse dataset, one syllable and two syllable end rhymes were
retrieved. 78,475 words were collected, each having a list of one syllable and two syllable end rhymes.

However, not all of these rhyming pairs had phoneme translations in the CMU Dictionary or IPA American English Dictio-
nary. Thus, the rhyming pairs that did not have phoneme translations were removed from the dataset. This resulted in 44,660
words, with lists of rhyming words. These pairs were removed so that when the data is split into a training set and test set, there
is a fair 80:20 ratio of word pairs that have phonemes and can be used by the model. Moreover, keeping these words in the
dataset would have negatively affected the performance of the classifier (due to unknown imbalanced datasets).

In order to make a dictionary of non-rhyming pairs, the rhyming pairs dictionary was used, and the rhyming words lists were
swapped around. Each word was mapped to two lists of rhyming words that belonged to other words. These non-rhyming
words were filtered to remove any words that rhyme with the main word.

The dataset of 44,660 words with large lists of rhyming words made computation very expensive. Thus, a smaller dataset was
used to train the model. The first 25,000 words made up the True category while the last 25,000 made up the False category.
Each of these words had a list of about 5 rhyming or non-rhyming words. The reason for using the last 25,000 words for the
false category comes from previous experiments[12]. In these experiments, they discovered that having false words that were
not part of the rhyming category can improve the performance of the model. To sum up, the smaller dataset contains a total of
248,905 rhyming and non-rhyming pairs.

B All results

Figure 12: Detailed results of all the feature combinations performed when part of the phoneme translation was used. Results include
the average test score, standard deviation of test score, coefficient weights, log loss, test scores of two imbalanced sets with their standard
deviations

Figure 13: Detailed results of all the feature combinations performed when the entire phoneme translation was used. Results include the
average test score, standard deviation of test score, coefficient weights, log loss, test scores of two imbalanced sets with their standard
deviations

	Introduction
	Related Work
	Pronunciation Dictionaries
	CMU Dictionary
	IPA

	Features
	Edit Distance
	Hamming Distance
	Jaccard Similarity
	Longest Common Substring
	Vowel and Consonant Weights

	Methodology
	Data collection and cleaning
	Retrieving phonemes
	Extracting features
	Train model

	Experimental Results
	Discussion
	Conclusions and Future Work
	Responsible Research
	Data collection and cleaning
	All results

