Interlocking glued Solid timber from Reclaimed Stocks

Supervised by: Stijn Brancart , Gilbert Koskamp

Industry partners: Sss-ovo/Lorrin Brasser

Why Reclaimed timber?

Future

- Heading Towards Carbon Neutrality by 2050(FAO)
- France's 2022: 50% Natural Materials in New Buildings
- the push for sustainable construction materials raises the crucial issue of sourcing additional wood
- a 37% increase in the consumption of primary processed wood products by 2050 in a business-as-usual (FAO)
- additional 8% growth in a bioeconomic scenario as mass timber and man-made cellulose fibers, as substitutes for non-renewable materials like concrete and steel.
- Forestry Value Chain: Essential for Sustainable Wood Production

Present

- EU Renewable Energy Directive retains woody biomass as renewable despite opposition.
- Concerns include carbon emissions and forest impact, leading to significant public and scientific opposition.
- Legal loopholes exist in forest protection regulations due to weak monitoring and enforcement.
- Dutch Parliament ceased subsidies for biomass heat plants in February 2021 to prevent unsustainable construction.

- Indonesia and Malaysia collectively supplied around 40% of Netherlands' timber imports in 2006.
- Approximately 80% of tropical timber imported by the Netherlands is illegally sourced.
- Environmental risks of uncertified timber include illegal logging and deforestation.
- Social risks include poor labor conditions, human rights violations, and land rights disputes.

Sourcing timber Illegally

Why Reclaimed timber ?

- A high Demand is expected in the future,
- the laws for using wood for biomass energy is matter of change due to the carbon emission research.
- The value of the timber exist in the new and reclaimed stocks has a value for EU region and beyond

Cascading flow for recycling timber

Figure 2. An example of a cascading flow for timber members from a deconstructed building (Sakaguchi 2014). Image courtesy of Daishi Sakaguchi.

1

Rethinking Timber Reuse vs. Recycling

Using <mark>machine-graded timber</mark> since the 1950s, which has lower safety margins, raises <mark>concerns</mark> about reusing demolished timbers for structures <mark>due to possible strength loss</mark>, suggesting recycling as a more sustainable choice.

Element V.S Bundle of Elements!

2

Therefore, the use of reclaimed timber is governed by the concept of its structural capacity. Since each element undergoes a certain amount of degradation, using an aggregation of these elements will provide structural elements with better performance

3

Newly sawn timber> reclaimed timber (Glulam)

still the making structural elements, from newly cut timber has better performance than using using reclaimed timber, but research has proven that glulam from reclaimed timber still satisfy the structural need in the construction market Patakas et al. 2019

4 Unlocking Market Growth

Sustainably sourced wood products are more expensive, causing mass timber buildings to cost 5–15% more than conventional ones. This significant cost increase limits widespread adoption. However, considering engineered timber from reclaimed timber can offer a solution with lower costs than newly sourced timber, helping support market growth (Mayencourt & Mueller, 2020).

Density + Geometrical properties

5

To design strong glulam from reclaimed wood, we need to check the wood's density, age, and structure alongside its geometric data

⁶ Multi source => Bonding Problem !

The evaluation results in a matrix of data, which the literature shows can be used directly to assess designing for optimum strength. The first question is linked to the essence of the salvaged material, the sourcing of the material, and the possibility of creating glulam from different wood species(Palma & Fink, 2013).

Better glued joint = Similar face treatment Chemical + physical (sanded or planared)

7

Various factors can impact how structural elements fit together. Reclaimed timber diverse wood types and surface treatments can affect bonding strength, requiring attention to glue compatibility, wood chemicals, pH, and surface smoothness to prevent weak bonds and damage(Palma & Fink, 2013).

State of art of EPW

Figure 1. Main species of mass timber.

8

1:4 Slope edge , simple joint = increase the strength

9

Most research on reclaimed materials focuses on straight structural parts, overlooking factors like joint shape, cost, and environmental impact(Patlakas et al., 2019).

¹⁰ Problem statement

Moving to carbon-neutral construction will likely raise demand for engineered timber, putting pressure on the wooden materials industry and increasing costs for Mass Timber structures, which are already 15% more expensive than concrete buildings. However, creating mass timber structures from reclaimed timber could be an important alternative, despite lacking comprehensive design and production methods.

The goal of project is to find methods To help structural designer and craftsmen to make IGST structural elements from reclaimed timber stocks.

Research Question:

Main research question

How can we create interlocking glued Solid timber structural components from reclaimed element stocks?

Sub-Questions:

Preparing the Inventory

How to evaluate the timber in the stocks, with simple techniques

Matching algorithm

How to optimize the quality and quantity of the produced elements by controlling the matching process between design and stock?

Environmental Impact

How to calculate the environmental impact of the resulting component and compare it with glulam from newly sawn timber, or combination from both?

Manufacturing

What to workflow needed to manufacture the designed structural component?

Design assignment

Case study A: Case study B: A single Beam A collection of Beam Suitable Method: MILP Suitable methods: Hungarian Algorithm

From Design to workshop workflow

How to proceeds with the concepts

How to proceeds with the concepts

How to produce IGST from Reclaimed timber

workflows(Layout -structural - matching -visualization)

Visual Grading methodology

Visual Grading methodology

How can we utilize <mark>visual grading</mark>, along with <mark>mechanical</mark> material characteristics, to re-grade reclaimed timber according to the Eurocode?

From stock to a grade workflow

Visual characterstics

Measure width (b)

Measure hight (h)

Length (L)

knots diameters ratio(D)

Slope of grain

vibrometer

Knots

New timber

irregularities

Nails

Fractures

Reclaimed timber irregularities

A 3d scan of the reclaimed pieces

-Using Qlone app on the phone-create an obj file with the materials-create a data set of meshes

Measuring Vi and Di

MOEdyn = Vi $2 \cdot \rho i$

 $MOR = A + B^* MOEdyn + C^*(d/b) + D^*sg = 9.86 + 0.0023^*MOEdyn - 22.47^*(d/b) - 0.52^*sg$ $MOE = A + B^*MOEdyn + C^*(d/b) + D^*sg = 5056 + 0.5111^*MOEdyn - 4286^*(d/b) - 94^*sg$
Classes from the eurocode

 \square

 \square

		Popla	Poplar and softwood species						Hardwood species										
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D30	D35	D40	D50	D60	D70
Stiffness properties (in kN	/mm²)	, 																6	
Mean modulus of elasticity parallel	E _{0,mean}	7	8	9	9,5	10	11	11,5	12	13	14	15	16	10	10	11	14	17	20
5% modulus of elasticity parallel	E _{0,05}	4,7	5,4	6,0	<mark>6,4</mark>	<mark>6,7</mark>	7,4	7,7	8,0	8,7	9,4	10,0	10,7	8,0	8,7	9,4	11,8	1 <mark>4</mark> ,3	16,8
Mean modulus of elasticity perpendicular	E _{90,mean}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,64	0,69	0,75	0,93	1,13	1,33
Mean shear modulus	G _{mean}	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,60	0,65	0,70	0,88	1,06	1,25
Density (in kg/m ³)	<u>I</u>				1	1	1	1	1		1	1			1			1	1
Density	ρ _κ	290	310	320	330	340	350	370	380	400	420	440	460	530	560	590	650	700	900
Mean density	ρ_{mean}	350	370	380	390	410	420	450	460	480	500	520	550	640	<mark>670</mark>	700	780	840	1080
NOTE a Values given abo modulus, have bee b The tabulated pr c Timber conformi	ve for tension n calculated operties are on no to classes	n strengt using the compatib	h, comp e equation le with to d C50 m	imber at	strength n in ann a moist e readily	, shear s ex A ure contr availab	strength, ent cons le.	5% mod	dulus of	elasticity	, mean \sim of 20 ⁰ C	modulus	of elast	icity per umidity	pendicul	ar to gra	in and m	hean she	ear

Table 1 — Strength classes - Characteristic values

Using grasshopper to input the data

A snippet of the data set used

Timber piece	Section		1	Moisture	Knots diameter	Slope of		MOE ^{dyn}		
	B cm	H cm	Length	content	ratio d/b	grain	Density		species	
А	8	12	100	20	0.3	12	530	0.64	oak	
В	20	7	60	12	0.4	5	350	0.73	spurce	
С	8	10	35	8	0.1	8	480	0.35	oak	
D	4.5	4.5	95	5	0.34	12	317	0.24	fir	

Insert the eurocode classes values as ranges in python

From design boundaries to ISGT

From a design constraint to a layout

From a design constraint to a layout

-We conservatively discretize the areas of the sections.

-We calculate the mode (Mod) and the mean of the discretized areas dataset.

- If the area of the preliminary section is less than or equal to four times the area of the mode, we choose the four-lamella layout.

- Otherwise, we choose the six-lamella layout

From a design constraint to a layout

Using a simple grasshopper code to do the division

From Line to a structural demand

5 workflows(Layout -structural - matching -visualization)

From principal stress to a structural layout

Map the stresses from the mesh to the linear layout

5 workflows(Layout -structural - matching -visualization)

Creating the matching cost

The code calculates the cost matrix for assigning structural beams to different loads and lengths, considering constraints like length and capacity. It uses functions to compute beam properties and iterates through demand-supply combinations to determine costs, eventually converting the result into a Grasshopper data tree structure.

Using Hungarian Algorithm to solve the matching

The provided C# script implements the Hungarian Algorithm within Grasshopper for Rhino to solve assignment problems efficiently. It takes input parameters such as a distance matrix representing task-resource costs, scales the costs, and finds the optimal assignment. After validating the total cost against a penalty threshold, it outputs the matched assignments and total cost.

Code source for the hungarian algorithm: https://github.com/yijiangh/algorithmic circular design

5 workflows(Layout -structural - matching -visualization)

Creating the matching cost

How to proceeds with the concepts

How to proceeds with the concepts

What is the Product

IGST with different configuration

IGST from different Timber species How to proceeds with the concepts

Collecting the timber

2625 HS

Sample 3, 4

Manufacturing the specimens

Collecting the timber

assembly

Cutting and cleaning

Glueing the first two sample

Glueing the first two sample

Assembly sequence:

Mechanical test

The 3-point bending mechanical test occurred in the 3ME faculty, in the lab of material mechanical behaviour, with the assistance of Dr. ir. F.A. Veer. The test utilized a low- and high-temperature tensile and fatigue testing machine with a span of 34 cm between the supports, a cylindrical pressure head with a diameter of 6 cm, and a pressure speed of 5 mm per second.

Mechanical test

Failures observations

Failures observations

	CRACK IN THE MIDDLE	CRACK AT THE SUPPORT	LAMELLAS DELAMINATIONS	SCARF JOINT DELAMINATION	FIBER EXTRUSION	FIBER SPLIT	РНОТО
Specimen 3		×					
Specimen 4	×		×				
Specimen 5	×			×	×		
Specimen 6	×			×	×		
Specimen 7	×		×	×		×	

Breaking test results

	F _{max}	dL at F _{max}	F _{Break}	dL at break	a ₀	b_0	So
	Ν	mm	Ν	mm	mm	mm	mm²
Specimen 3	10739.19	7.363589	10363.42	7.445922	100) 10	00 10000
Specimen 4	8088.012	6.674073	4688.503	11.99171	100) 1(00 10000
Specimen 5	20574.39	6.110257	3984.609	18.87277	10) 10	00 10000
Specimen 6	19697.14	9.479986	3933.534	26.73088	100) 10	00 10000
Specimen 7	15463.81	11.81508	3092.065	27.96162	100) 10	00 10000
Results

Results:

- Except for Specimen 3, all specimens show a sudden drop in applied force after lower lamella breakage due to lamination issues and specimen anatomy.
- Following the drop, pieces exhibit non-linear elastic behavior as strain transitions from lower to upper lamella. This behavior is most evident in Specimens 5 and 6, where lower lamella is mostly hardwood. Specimen 4 shows less clear non-linear elastic behavior, while Specimen 7, made of a single piece with uniform stiffness, does not exhibit prominent non-linear elastic behavior.
- Specimen 5 displays the highest stiffness, enduring over two tons before breaking, while Specimen 6 remains in the elastic range for a longer period despite reaching higher deformation values before failure.
- Specimen 7 experiences the longest period of plastic deformation before failure.

Key consideration(Glue)

- Careful consideration of glue selection and application is crucial, focusing on the type and quantity of adhesive used in the lamination process.
- Positioning of clamps and surface treatment techniques are equally important factors impacting specimen performance.

Key consideration(grain)

- Grain orientation is critical, especially in four-lamella specimens.
- Tearing of fibers in the lower lamella due to compression forces can occur.
- To prevent this, avoid diagonal grain orientation in the lower lamella.
- Promoting uniform grain direction across all lamellas enhances structural integrity.

Key consideration(slope)

- Enhancing scarf joints is crucial to minimize delamination.
- Using a nipped scarf joint instead of a plane scarf joint can improve connection integrity.
- This modification reduces the risk of delamination, enhancing overall structural robustness.

Key consideration(slope)

Mec	hanical Properties	Ultimate Flexural Strength (MPa)	Young's Modulus (MPa)		
AF	S Yachts (2017)	66.00	10,000		
ISC	0 12215-5 (2019)	77.00	12,060		
Expennental	Solid Timber	73.51	11,980		
	4:1 Scarf	18.28	8,045		
	8:1 Scarf	38.86	10,270		
	12:1 Scarf	48.72	12,379		
	16:1 Scarf	93.43	14,486		
	20:1 Scarf	96.11	15,250		

second phase of tests

Second phase of experiments

Second phase of experiments

What is the Product

IGST with different

configuration

IGST from different Timber species

Second phase of experiments

Developing specimens:

We hypothesize that in interlocking solid glued timber beams made from reclaimed stocks, increasing the number of lamellas and joints will increase strength. Additionally, the placement and slope ratio of the joints will significantly impact beam performance and strength

- How does the number of lamellas affect the strength of interlocking solid glued timber beams produced from reclaimed stocks?
- How do the quantity and placement of joints influence the overall strength of these beams?

On site Visual grading

CONTINIOUS GRAIN (PREFERED) RAIN INTEREPTED BY BIG KNOTS (AVOIDED) AVOIDED ROT

SEPERATING THE CHOSEN PIECES FROM THE VISUAL FIELD-GRADING

RUSTY SCREWS STUCK INSIDE THE FIBERS

DURING THE PROCESS OF CLEANING

Cutting and Planning

Vertical Wall Sawy to cut The Pieces

USING THE

USING THE PLANNER TO PLAIN THE PIECES IN SHAPE

USING TH TABLE SAW TO CUT THE BIGGER PIECES

BUNNDLE OF LAMELLA READY FOR LAMINATING

AGGREGATE THE DRY FITTED PIECES CLAMPS TO MOVE IT TO THE WORKING BENCH

PLACING THE PIECES ON THE WORKING BENCHES AND PLANNING THE THE CUT

CHECKING THE MOISTURE CONTENT BEFORE LAMINATING

DRY FITTING , AND DOUBLE CHECL THE SIZE OF THE PIECES

Preparing for Lamination

Preparing for Lamination

READY TO TEST

10 minutes + 10 Minutes

Drying 5 hours to one day

PREPARING AND BALANCING THE TEST SETTING

Using sand bags the loads

Tolerance and movement, an accurate

Sand bags gets torn through the process

Using water tank for the load

Using water tank for the load

PREPARING AND BALANCING THE TEST SETTING

		-							Max			
									meas-			
Speci-							Inst		ured			
men	Р	а	E		L	#DIV/0!	SLS	Stat SLS	def			
D	10000	1.2	11000000000	0.000038	3.6	0.039617225	0.0072	0.012	0.015			
	4000	1.2	1100000000	0.000038	3.6	0.01584689	0.0072	0.012	none			
C	10000	1.2	11000000000	0.000038	3.6	0.039617225	0.0072	0.012	0.016			
	4200	1.2	11000000000	0.000038	3.6	0.016639234	0.0072	0.012				
Α	10000	1.2	1100000000	0.000038	3.6	0.039617225	0.0072	0.012	0.021			
	5200	1.2	11000000000	0.000038	3.6	0.020600957	0.0072	0.012	0.015			

C24

C24

C24

C24

C24

C24

Environmental impact reclaimed vs New

Defining a simple scenario that represent both source

Environmental impact reclaimed vs New

Using Granta Edupack Eco_Audit tool

From Literature

- Reclaimed timber has significant potential to fill the gap in structural materials due to current environmental challenges.
- The key aspect of using reclaimed timber is the regrading process; more tools and methods adopted by salvagers enable its structural use.
- IGST timber shows great potential as an engineered wood product (EWP), especially with larger sections allowing for wider spans than current EWPs.
- Despite the simple manufacturing techniques of IGST, optimizing production is complex, involving factors like the number of lamellas, slope of the scarf joint, timber species, and glue type.
- Literature indicates that for low-density timber like spruce, a higher slope for the scarf joint is preferable, ideally avoiding an 8:1 slope ratio.
- The number of lamellas is also crucial; more lamellas in the section typically provide better strength, though further investigation is needed.

From workflows:

- The developed workflow successfully selected the right piece from a dataset of regraded elements based on load and length demand.
- However, it does not optimize the overall IGST performance, as it needs to consider the slope of the scarf joint and the effect of the glue used.

- Integrating these factors and environmental impact calculations into the computational process would provide a more comprehensive analysis.

 Including all these parameters requires a more complex parametric model and a matching algorithm that can consider multiple aspects for accurate results.

From first phase experiment:

- Laminating different timber species can improve structural performance.
- However, delamination at the scarf joint with two timber species is a major issue. The connection should be modified by adjusting the slope or using a nibbed scarf joint, which requires more precise cutting.
- Future research should include FEA to analyze force distribution within the joist, helping to understand why failures like extrusion occur in specific locations.

From second phase experiment:

- Initial results of the 4-point bending test show that having more elements in a joist positively impacts beam performance.
- A homogeneous grade along the section improves performance, but splitting into smaller sections can cause waste.
- Using larger sections to manufacture IGST minimizes waste from regrading.
- Improved structural performance with more pieces may be due to the increased glue, which strengthens the fibers.
- The first three elements used epoxy resin-based glue, which is strong but hinders circularity.
 We are now testing a new piece with bio-based glue.
- Controlled destructive tests are essential to check the ULS of SLS beams. DIY testing systems have many flaws, affecting reliability and worker safety.

The experiments will be extended to understand the potential of IGST with different glues and compare it with other EWP.

