
Policy Distillation in
Offline Multi-Task

Reinforcement
Learning

by

J.A.E. van Lith

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on November 4 at 10:30AM.

Student number: 4917634

Project duration: February 8, 2024 – November 4, 2024

Thesis committee: Prof. dr. M.T.J. Spaan, TU Delft, Chair

MSc. D. Mambelli, TU Delft, Supervisor

Dr. sc. N.M. Gürel, TU Delft, External examiner

An electronic version of this thesis is available at repository.tudelft.nl.

The official code repository for this project is available at github.com/jaevanlith/mop.

http://repository.tudelft.nl/
https://github.com/jaevanlith/mop

Abstract

In Reinforcement Learning (RL), an agent learns to make decisions by interacting with an environment

and receiving feedback in the form of rewards. Multi-Task Reinforcement Learning (MTRL) extends this

concept by training a single agent to perform multiple tasks simultaneously, allowing for more efficient

use of resources and behavior sharing between tasks. Policy Distillation (PD) is a technique commonly

used in MTRL, where policies from multiple single-task agents (teachers) are distilled into a single

multi-task agent (student). This is done by merging common structure across tasks, while separating

task-specific properties. However, existing PD approaches require interactions with the environment

during training.

In this work, we investigate the effectiveness of PD in the offline setting, where the agent has no

interaction with the environment before deployment and can only learn from previously collected

data. Through a series of experiments, we demonstrate that a straightforward approach yields the

highest performance. This approach involves first learning teacher policies using an existing offline

RL algorithm, then distilling these policies into a student by sampling states from the offline data and

applying a Mean Squared Error (MSE) loss between the teachers’ and student’s best actions. Moreover,

we investigate the effect of a state distribution shift—a major challenge in offline RL—on our approach.

We find that such shifts impact performance only slightly in cases of relatively small neural networks or

substantial distribution shifts.

We also explore how PD can be enhanced to better capture common structure across related tasks, a key

to improving efficiency in MTRL. To this end, we formally define common structure at two levels: the

trajectory level and the computational level. To the best of our knowledge, we present the first attempt

to quantify the amount of common structure shared across tasks. This measurement reveals that task

commonalities are not fully exploited automatically. At the computational level, we attempt to improve

sharing of common structure by reducing the network size and adding a regularization term to the loss

function. To capture more common structure at the trajectory level, we argue that multi-task exploration

is required, meaning that behaviors from one task must be evaluated in the context of another task. We

propose two extensions to our approach that introduce multi-task exploration: Data Sharing (DS) and

Offline Q-Switch (OQS). While these extensions are capable of improving performance, they also have

clear limitations.

Overall, we propose a new, high-performing offline MTRL method and provide valuable insights

into the fundamental capabilities and limitations of PD in capturing common structure across tasks,

specifically within the offline MTRL setting.

i

Contents

Asbtract i

1 Introduction 1
1.1 Contributions . 3

1.2 Outline . 4

2 Background 5
2.1 Markov Decision Process . 5

2.1.1 Multi-Task Markov Decision Process . 6

2.2 Reinforcement Learning . 6

2.2.1 Q-value Function . 6

2.2.2 Deep Reinforcement Learning . 6

2.2.3 Offline Reinforcement Learning . 7

2.2.4 Offline Multi-Task Reinforcement Learning . 7

2.3 Reinforcement Learning Algorithms . 7

2.3.1 Actor-Critic Reinforcement Learning Algorithms 7

2.3.2 Offline Reinforcement Learning Algorithms . 7

2.3.3 Policy Distillation . 8

3 Related Work 10
3.1 Multi-Task Policy Distillation . 10

3.2 Offline Multi-Task Reinforcement Learning . 11

3.3 Data Sharing . 11

3.4 Selective Behavior Sharing . 12

4 Approach 13
4.1 Online Approaches . 13

4.2 Offline Approach . 14

4.3 Online and Offline Comparison . 15

4.4 Experimental Setup . 15

4.4.1 Environment . 15

4.4.2 Tasks . 16

4.4.3 Data Collection . 17

5 Offline Policy Distillation 18
5.1 Standard Setup . 18

5.1.1 Learning Teacher Policies . 18

5.1.2 Justification For Policy Distillation . 18

5.1.3 Distillation Loss . 20

5.2 State Distribution Shift . 21

5.2.1 Hypothesis Clarification . 23

5.2.2 Measure State Distribution Shift . 23

5.2.3 Eliminate State Distribution Shift . 24

5.2.4 Vary Network Size Under Artificial State Distribution Shift 24

5.3 Discussion . 26

6 Capturing Common Structure Through Policy Distillation 28
6.1 Common Structure Definition . 28

6.2 Measuring Shared Computation . 30

6.2.1 Activation Values . 30

6.2.2 Similarity Measure . 32

ii

Contents iii

6.2.3 Results . 34

6.2.4 Limitations . 34

6.3 Computational Level Common Structure . 36

6.3.1 Reducing Network Size . 36

6.3.2 Ranking Regularization . 36

6.4 Trajectory Level Common Structure . 40

6.4.1 Multi-Task Exploration . 40

6.4.2 Data Sharing . 42

6.4.3 Offline Q-Switch . 43

6.4.4 Results . 45

6.4.5 Limitations . 47

6.5 Discussion . 48

7 General Discussion 50
7.1 Relevance of Offline Multi-Task Reinforcement Learning 50

7.2 Limitations of Policy Distillation . 51

7.3 Limitations of Experimental Setup . 51

8 Conclusion 53
8.1 Operating Policy Distillation Offline . 53

8.2 Capturing Common Structure Through Policy Distillation 54

8.3 Future Work . 55

Bibliography 58

A TD3 Agent Specifications 62

B PBRL Agent Specifications 63

C Single-Task PBRL Results 64

D Naive Multi-Task PBRL Results 65

E MSE Loss Results 66

F Measuring Shared Computation Results 69
F.1 Expert Offline Datasets . 69

F.2 Medium Offline Datasets . 70

1
Introduction

The field of Reinforcement Learning (RL) has shown notable successes across many challenging domains.

RL agents have excelled in complex games [7, 63], continuous control tasks [15, 21], and have even been

applied in natural language processing tasks [71, 41]. However, many of these successes were obtained

through single-task learning. This means that each task requires a different agent, which is inefficient

when tasks are highly related [26]. For instance, consider two related tasks: frying an egg and boiling

an egg. Frying an egg roughly involves four phases: grasping an egg, grasping a frying pan, placing it

on the stove, and waiting for the egg to fry. For simplicity, details like cracking the egg and pouring oil

are omitted. Similarly, boiling an egg involves grasping an egg, grasping a boiling pan, placing it on the

stove, and waiting for the egg to boil. This example is visualized in Figure 1.1a. These tasks are highly

related, as they require similar skills. Thus, it is inefficient to maintain a separate agent to perform each

task.

Similar to frying and boiling eggs, there are many real-world domains in which tasks are related. For

example, in robotic manipulation, an agent should be able to manipulate (grasp, stack, push, etc.)

different types of objects [31]. While the objects can differ significantly in shape and size, it would

be highly inefficient to maintain a separate robot arm for each type of object. Another example is

autonomous driving, which includes tasks such as lane following and intersection crossing [13]. These

tasks are also highly related, as they both require steering and speed control. It would be inefficient to

switch agents when crossing an intersection or entering the highway. Ideally, a single agent should be

capable of handling all driving scenarios, just like humans.

There are several RL settings in which agents are trained on various tasks, such as Transfer Learning,

Meta RL, and Multi-Task RL (MTRL). The goal is to exploit structural similarities between tasks to

enhance generalization [45]. Transfer Learning in RL focuses on transferring knowledge learned from

one or more tasks to another related task [60]. The agent first learns a policy on one or more source

tasks, then extracts and transfers the reusable knowledge to perform better on a single target task. Meta

(a) Single-task agents: the top agent fries an egg, and the bottom agent

boils an egg.

(b) Multi-task agent: common structure is in green, and task-specific

properties are in red.

Figure 1.1: Frying and boiling an egg can be done by two single-task agents or one multi-task agent.

1

2

RL, on the other hand, teaches the agent to ’learn how to learn’ [6]. Instead of transferring knowledge to

a particular target task, the agent is trained across a set of tasks to quickly adapt to any new related task.

MTRL involves training an agent on multiple tasks simultaneously [64]. The agent attempts to leverage

commonalities across tasks to perform well on all of them. Before, we addressed the inefficiency to

maintain separate agents for related tasks. Therefore, we focus on MTRL, which aims to learn a single

agent capable of performing well across a set of tasks.

To be successful in MTRL, it is essential to capture the common structure between tasks while

distinguishing task-specific properties [14]. This approach is particularly useful when tasks are highly

related, as in the example of frying and boiling an egg. MTRL aims to learn which skills are similar

and can be reused across tasks, such as grasping an egg and putting a pan on the stove. However, the

challenge lies in avoiding negative transfer, where task-specific properties are inappropriately shared

across tasks [40]. For instance, using a boiling pan when frying an egg will lead to a poorly fried

egg. Therefore, it is crucial to ensure that the type of pan is not transferred from one task to the other.

Figure 1.1b visualizes how a multi-task agent merges common structure in green and distinguishes

task-specific properties in red. Note that this example is highly simplified. In reality, common structure

and task-specific properties can be intertwined. For example, placing a frying pan or a boiling pan on

the stove is similar in terms of keeping the pan upright, but a frying pan may require one hand, while

a boiling pan may need two hands. This intertwined nature already indicates the complexity of the

problem.

There are several objectives for using MTRL. It can enhance the average performance across tasks [61],

compress multiple agents into a smaller agent [51], reduce the overall training time [77], or improve

sample efficiency across tasks [10].

A well-studied technique for MTRL focusing on compression while improving performance, is Policy

Distillation (PD) [51]. PD was originally designed to compress the size of a single-task policy network

(a Deep Neural Network [28]) while maintaining or even improving accuracy. This is achieved by

transferring knowledge from a larger, pre-trained network (the teacher) to a smaller network (the

student). There are several reasons why this is beneficial. First, training the small network from scratch

often yields lower accuracy, because it lacks the capacity to learn as effectively without the guidance

of the larger model [27]. During training, a large network can memorize many state-action pairs and

quickly adapt to them. This flexibility is necessary, as it is unclear which pairs are most important for

achieving high performance. After training, the most relevant state-action pairs become clear, allowing

the network to focus on these specifically. Through PD, only the essential knowledge is transferred

to the smaller student network. Secondly, deploying the large network, on the other hand, is more

computationally expensive [27]. Lastly, the distillation process itself can have a regularizing effect,

which sometimes leads to the student outperforming its teacher [51].

In the multi-task setting, there are teachers for each task, and their knowledge is distilled into a single

student. This student is designed to solve all tasks while having a size comparable to a single-task

teacher. Training the multi-task student from scratch is prone to negative transfer [61], making PD a

more effective approach.

Numerous methods have been proposed for multi-task PD and have shown effectiveness in online

MTRL. The paper that introduced PD [51] experiments with different distillation loss functions and

demonstrates that a student can outperform its teacher by leveraging the Kullback-Leibler divergence.

Actor-Mimic [48] achieved similar results using a cross-entropy loss. Distral [61] is another successful

method, which introduces a form of multi-task exploration by allowing the student to regularize its

teachers. DROID [29] leverages PD to learn autonomous driving across a range of challenging domains.

KTM-DRL [70] is the first method to explore the capabilities of PD in the continuous control setting and

also shows that the student can outperform its teachers in certain situations.

However, all these methods require online interactions. In many real-world domains, such as healthcare

and robotics, online policy exploration is expensive or even dangerous [17]. Offline RL addresses this by

training an agent without interaction with the environment, relying instead on previously collected

data from a so-called behavior policy [38]. The goal is to safely improve upon this behavior policy,

avoiding catastrophic behavior in the environment. An intuitive analogy is learning to fry or boil eggs

only by watching video tutorials before attempting the tasks, thereby avoiding the risk of burning down

1.1. Contributions 3

your house through trial and error. A major challenge in offline RL is the distribution shift between the

previously collected data and the learned policy [69]. This occurs when the learned policy is significantly

different from the behavior policy and can degrade performance upon deployment. To mitigate the

distribution shift, the learned policy can be constrained to stay close to the behavior policy [37] or to

stay within the known state-action distribution [5].

The combination of the offline and MTRL settings is a relatively under explored research area. Some

methods, such as Pre-Training for Robots [36], MT-Opt [32], and Q-Transformer [12], focus on learning a

multi-task policy by utilizing large amounts of offline data in high-capacity models. Skills Regularized

Task Decomposition (SRTD) [74] is another approach which aims to learn task and skill embeddings

to uncover commonalities across tasks. However, none of these methods leverage PD, despite its

demonstrated effectiveness in the online setting.

This study investigates the effectiveness of PD in offline MTRL. Additionally, we explore how PD can

better capture common structure across related tasks. The combination of multi-tasking and offline

learning addresses two important aspects of open problems in RL [45]: generalization (solving a

set of tasks simultaneously) and deployability (avoiding catastrophic behavior in the environment).

Specifically, this research addresses the following questions:

1. How does Policy Distillation operate effectively in the Offline Multi-Task Reinforcement Learning

setting?

2. How can the common structure across related tasks be better captured through Policy Distillation?

The first question focuses on the differences between the online and offline setting relevant to PD. The

second question examines PD from a more fundamental multi-tasking perspective.

1.1. Contributions
We will establish a general approach and explore different instances of it, to operate PD effectively in

the offline setting. Experiments indicate that a simple method, which performs distillation using a

Mean Squared Error (MSE) loss and samples states from the offline data, performs particularly well.

Moreover, we investigate the effect of a state distribution shift between the teacher policies and the

corresponding offline data on the student’s performance. Experiments show that this only becomes

problematic when the student has a relatively small size or when the distribution shift is very large. We

also find that slightly more diversity in the offline data can outperform the online setting for students

with limited network capacity. Moreover, we hypothesize that large distribution shifts can be addressed

by increasing the network size. However, results indicate that this approach is prone to overfitting to

the offline data.

Additionally, we make several attempts to better capture common structure. First, we formally define

common structure at two levels: the trajectory level and the computational level. Next, we design a novel

method to measure shared computation, which serves as an indicator of the extent of common structure

captured. To the best of our knowledge, this is the first attempt to quantify the amount of common

structure shared across tasks. In our initial approach, a significant amount of shared computation is

already present for well-performing teachers. However, suboptimal teachers share considerably less

computation across tasks.

To improve the sharing of common structure at the computational level, we reduce the network size and

introduce a regularization term in the loss function. Reducing the network size is intended to act as

an information bottleneck, encouraging the student to merge common behaviors. Nonetheless, this

approach does not enhance the sharing of common structure, as it lacks an explicit incentive. To address

this, we add a regularization term in the loss function to provide such an incentive explicitly.

We then shift focus to common structure at the trajectory level. We argue that multi-task exploration is

essential for capturing this effectively, which requires access to the reward functions. Assuming the

reward functions are known, we explore two approaches: Data Sharing (DS) and Offline Q-Switch

(OQS). These approaches yield some performance gains but also reveal clear limitations. Overall, our

work provides insights into the limitations of PD in capturing common structure within the offline

setting.

1.2. Outline 4

1.2. Outline
This report is structured as follows:

• Chapter 2 provides the background. It explains the required prior knowledge and introduces the

notations used throughout the work.

• Chapter 3 reviews the related work, including online multi-task PD methods, offline MTRL

algorithms, and data sharing approaches.

• Chapter 4 details our approach to offline multi-task PD. We discuss two main online approaches

and explain the design choices made to extend these to the offline setting. The chapter also

highlights the differences between the online and offline approaches. This is followed by a

description of the experimental setup, including the environment, tasks, and collection of the

offline datasets.

• Chapter 5 addresses the first research question, focusing on applying PD in the offline RL

setting. We establish a standard setup by selecting an offline RL algorithm to learn teacher

policies, demonstrating that direct multi-tasking suffers from negative transfer, and comparing

the performance of three different distillation loss functions. We then examine the effect of a state

distribution shift on our approach. Based on the results from the standard setup, we establish a

hypothesis and attempt to verify it through a series of experiments.

• Chapter 6 explores the second research question, aimed at better capturing common structure

through PD. The chapter begins with a formal definition of common structure, as far as this is

feasible. Then, we design a method to measure shared computation across tasks, which indicates

how much common structure is captured. We first attempt to increase shared computation

through ranking regularization. Next, we assume the reward function is known and implement

two approaches that facilitate multi-task exploration: Data Sharing (DS) and Offline Q-Switch

(OQS). The chapter concludes with a discussion on the limitations of PD in the offline setting.

• Chapter 7 provides a general discussion on the findings of this work and broader related topics.

• Chapter 8 concludes the report with a brief summary and a recap of the main findings.

2
Background

In this chapter, we introduce the key concepts needed to understand this work. We start by explaining

the Markov Decision Process (MDP), which is the basis for decision-making in RL. We then extend

this to the multi-task setting and discuss how RL agents learn to perform multiple tasks. After that,

we cover RL concepts, including Q-value functions, deep RL, and the offline RL setting, where the

agent learns from previously collected data. We also describe the main RL algorithms used in our

experiments. Finally, we explain PD. These concepts will be important for understanding the methods

and experiments in the rest of the report.

2.1. Markov Decision Process
A Markov Decision Process (MDP) [49] is a mathematical framework used to model decision-making

where outcomes are influenced by both the actions taken by an agent and the randomness in the

environment. Formally, an MDP is defined by the tuple ℳ = (𝒮 ,𝒜, 𝜌, 𝑃, 𝑅, 𝛾), where:

• 𝒮 is the state space.

• 𝒜 is the action space.

• 𝜌 : Δ(𝒮) is the probability distribution over starting states.

• 𝑃 : 𝒮 ×𝒜 → Δ(𝒮) is the stochastic transition probability function.

• 𝑅 : 𝒮 ×𝒜 × 𝒮 → R is the deterministic reward function.

• 𝛾 ∈ [0, 1) is the discount factor, which determines the importance of future rewards.

An agent operating in an MDP ℳ will start a state drawn from the distribution over start states: 𝑠0 ∼ 𝜌.

At each discrete time-step 𝑡, it will observe state 𝑠𝑡 and take action 𝑎𝑡 . The agent will then transition to a

next state determined by the transition dynamics: 𝑠𝑡+1 ∼ 𝑃(𝑠𝑡 , 𝑎𝑡). It will receive a reward determined

by the reward function: 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1).
We define a policy 𝜋 as a function mapping a state to an action, which can be either deterministic

𝜋 : 𝒮 → 𝒜 or stochastic 𝜋 : 𝒮 → Δ(𝒜). The objective in an MDP is to find an optimal policy 𝜋∗
, which

maximizes the expected discounted cumulative reward, also known as the return. The optimal policy is

defined as:

𝜋∗(𝑠) := arg max

𝜋
E
𝜋

[
ℎ−1∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]

:= arg max

𝜋
E

[
ℎ−1∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)|𝑠0 ∼ 𝜌, 𝑠𝑡+1 ∼ 𝑃(𝑠𝑡 , 𝑎𝑡), 𝑎𝑡 ∼ 𝜋(𝑠𝑡)
]

where ℎ is the episode length (or horizon), 𝑡 is the time step, and 𝜋 is any policy being evaluated.

5

2.2. Reinforcement Learning 6

2.1.1. Multi-Task Markov Decision Process
A multi-task MDP [4] is defined by the tuple ℳ = (𝒮 ,𝒜, 𝜌, 𝑃, {𝑅𝑖 , 𝑖}𝑚−1

𝑖=0
, 𝛾), which has 𝑚 tasks with

their own index 𝑖 and reward function 𝑅𝑖 . The reward function differs across tasks, whereas the

transition function remains the same. This makes it a subset of a Contextual MDP [22], where both the

reward and transition function can vary depending on the context.

A multi-task policy 𝜋 : 𝒮 × 𝑖 → 𝒜 is defined as function mapping a state and task ID to an action. It is

aimed to maximize the discounted return across all tasks on average. The optimal multi-task policy is

defined as:

𝜋∗(𝑠, 𝑖) := arg max

𝜋

1

𝑚

𝑚−1∑
𝑖=0

E𝜋(·|·,𝑖)

[
ℎ−1∑
𝑡=0

𝛾𝑡𝑅𝑖(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]

where ℎ is the episode length (or horizon), 𝑡 is the time step, and 𝜋 is any policy being evaluated.

2.2. Reinforcement Learning
In Reinforcement Learning (RL) [30] an agent learns to make decisions by interacting with its environment,

formulated as an MDP ℳ. The agent’s goal is to learn the optimal policy 𝜋∗
in its environment. RL

methods can broadly be categorized into two main approaches [3]: policy-based and value-based.

In policy-based methods, the agent directly learns the optimal policy by optimizing the expected return

of the agent’s actions [68]. In contrast, value-based methods involve learning value functions, which

estimate the expected return of states or state-action pairs, and use these estimates to derive a policy [66].

In addition, there are approaches that combine both techniques [20].

In the following, we will describe Q-value functions, which are commonly used in value-based

approaches. Then, we will introduce deep RL, which employs Deep Neural Networks (DNNs) [28] for

value function or policy approximation. Next, we will discuss offline RL, the setting where an agent

cannot interact with the environment before deployment. Lastly, we will explain offline Multi-Task

Reinforcement Learning (MTRL), the specific setting investigated in this work.

2.2.1. Q-value Function
One of the most common value functions in RL is the Q-value function [57]. The Q-value function

𝑄𝜋(𝑠, 𝑎) represents the expected return of taking action 𝑎 in state 𝑠 and following policy 𝜋 thereafter.

Formally, the Q-value function is defined as:

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = E𝜋

[
𝑟𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1 , 𝑎𝑡+1)

]
where 𝑎𝑡+1 represents the next action drawn from policy 𝜋, 𝑠𝑡+1 is the next state arrived at after taking

action 𝑎𝑡 in 𝑠𝑡 , and 𝑟𝑡 is the reward obtained by taking action 𝑎𝑡 in state 𝑠𝑡 and ending up in 𝑠𝑡+1.

The goal in value-based RL is to learn the optimal Q-value function 𝑄∗ = 𝑄𝜋∗
, which gives the highest

expected return for any state-action pair. This is defined as:

𝑄∗(𝑠𝑡 , 𝑎𝑡) := E𝜋∗

[
𝑟𝑡 + 𝛾 max

𝑎𝑡+1

𝑄∗(𝑠𝑡+1 , 𝑎𝑡+1)
]

Estimating a Q-value function in large, continuous state and action spaces can be done using DNNs.

Deep RL [3] is a specific field within RL that employs DNNs as function approximators, which will be

explained next.

2.2.2. Deep Reinforcement Learning
In deep RL, Deep Neural Networks (DNNs, or simply referred to as networks) [28] are used to

approximate value functions or policies [3]. Instead of defining the state-action mappings in a tabular

fashion, DNNs are trained to generalize over large state and action spaces. This makes deep RL effective

in complex environments. Deep Q-Networks (DQNs) [44], for example, use DNNs to approximate the

2.3. Reinforcement Learning Algorithms 7

Q-value function. In this work, we leverage DNNs for approximation of both Q-value functions and

policies.

2.2.3. Offline Reinforcement Learning
Offline RL is a setting where the agent cannot interact with the environment during training and

learns only from previously collected data [38]. This approach helps avoid catastrophic behavior in

the environment, making it particularly useful in domains where policy exploration is expensive or

dangerous, such as robotics and healthcare [17]. The agent has access to an offline dataset, which

consists of transitions (𝑠, 𝑎, 𝑟, 𝑠′) previously collected by a behavior policy 𝜋𝛽. The objective of Offline

RL is to train a target policy 𝜋target, which performs well when deployed in the environment, without

the need for collecting any additional data.

However, in Offline RL, the transitions in the dataset are generated by the behavior policy 𝜋𝛽, and the

agent must estimate 𝑄𝜋target(𝑠, 𝑎) based only on this offline data. This poses a challenge because the

state-action distribution induced by 𝜋𝛽 may differ significantly from that of 𝜋target. This distribution shift

[69] occurs when the distribution of states in the offline dataset differs from the distribution of states

the agent will encounter during deployment. Since the agent cannot interact with the environment

to gather new data, it must generalize from the limited offline data, and any mismatch between the

training and deployment distributions can significantly degrade performance.

Offline RL algorithms must address this distribution shift by either constraining the learned policy to

stay close to the behavior policy [37] or by penalizing uncertain state-action pairs [5].

2.2.4. Offline Multi-Task Reinforcement Learning
We focus on offline MTRL [76], which is similar to offline RL in many aspects. However, it differs in that

it should solve a multi-task MDP and it has access to a multi-task offline dataset containing transitions

previously collected by all task-specific behavior policies 𝜋𝛽𝑖 . The multi-task offline dataset is defined as

𝒟 = ∪𝑚−1

𝑖=0
𝒟𝑖 , where 𝒟𝑖 = (𝑠, 𝑎, 𝑟𝑖 , 𝑠′) is the offline dataset for task 𝑖, collected by its respective behavior

policy 𝜋𝛽𝑖 , with rewards determined by 𝑅𝑖 .

2.3. Reinforcement Learning Algorithms
In this section, we will describe RL algorithms relevant to our research. This includes actor-critic

algorithms, offline algorithms, and PD.

2.3.1. Actor-Critic Reinforcement Learning Algorithms
Actor-critic algorithms are aimed at learning an optimal policy by combining elements of value-based

and policy-based approaches [20]. These methods involve two main components: an actor and a critic.

The actor represents the current policy 𝜋, mapping a state to an action. The critic maintains a Q-value

function 𝑄𝜋
, which estimates the value of the actions chosen by the actor. During training, the critic

guides the actor by evaluating the taken actions. This evaluation is used to update both the actor

(improving the policy) and the critic (improving the Q-value function). The process of alternately

improving the policy and updating the value estimates is known as the policy iteration cycle [55].

We will use the actor-critic algorithm Twin Delayed Deep Deterministic Policy Gradient (TD3) [19].

TD3 is an improved version of the Deep Deterministic Policy Gradient (DDPG) [39] algorithm, which

was specifically designed for continuous action spaces. TD3 uses two critics to estimate the Q-values

and takes the minimum of the two estimates to reduce overestimation bias. The critic is updated by

minimizing the Temporal Difference (TD) error [55], while the actor is updated using policy gradients by

maximizing the critic. Furthermore, TD3 updates the actor less frequently than the critic to ensure more

stable training. The authors recommend one policy update for every two Q-value function updates.

Moreover, TD3 performs regularization by adding clipped noise to the target action. This reduces the

likelihood of overfitting to a specific action.

2.3.2. Offline Reinforcement Learning Algorithms
As mentioned before, offline RL agents should learn a policy from previously collected data and cannot

interact with the environment before deployment. A major challenge is the distribution shift between

2.3. Reinforcement Learning Algorithms 8

the behavior and target policy [17]. To mitigate this, offline RL algorithms must prevent the target policy

to visit state-action pairs not present in the offline data.

One of the first methods proposed for this purpose is Conservative Q-learning (CQL) [37]. CQL attempts

to mitigate the distribution shift by constraining the target policy to stay close the behavior policy

with the use of the Kullback-Leibler (KL) divergence. The disadvantage of this approach is that the

performance is highly reliant on the quality of the behavior policy. Alternatively, uncertainty-based

approaches can be used which pessimistically set the value of state-action pairs underrepresented in the

offline data.

In this work, we will use the uncertainty-based algorithm Pessimistic Bootstrapping for offline RL

(PBRL) [5]. PBRL employs an ensemble of critics to quantify uncertainty. This means that the critic

consists of multiple Q-value functions, which will output similar values on state-action pairs within the

known distribution. However, the Q-value functions will disagree outside of the known distribution.

Therefore, the ensemble can be used as an uncertainty quantifier. PBRL penalizes uncertain state-action

pairs by taking the minimum value across the Q-value functions. The actor, in turn, maximizes the

minimum value across the ensemble of critics. This approach encourages focusing on state-action pairs

that are well-represented in the offline data. This approach discourages the agent to visit uncertain

states, thereby avoiding catastrophic behavior upon deployment in the environment.

2.3.3. Policy Distillation
Policy Distillation (PD) [51] is a technique designed to compress a large policy network into a smaller

network while maintaining or improving performance. It uses a pre-trained network, referred to as

the teacher, to train a smaller student network by mimicking the teacher’s outputs. A state is sampled

from the environment, and the teacher policy computes the action it would take. The student, which

is randomly initialized, also predicts an action for that state. The student learns by minimizing a loss

function that measures the difference between its outputs and those of the teacher.

The distillation process is a form of Supervised Learning (SL) [24]. In SL, a model is trained to predict

an output (the label) based on an input feature vector. The goal is to accurately predict the label for

unseen data. The training data consists of pairs of feature vectors and their corresponding ground-truth

labels. The model learns by minimizing the difference between its predictions and these ground-truth

labels. In the context of PD, the input feature vector corresponds to the input state, the ground-truth

label is the teacher’s output, and the student is the model attempting to predict the labels. By learning

from the teacher’s outputs in this supervised fashion, the student approximates the teacher’s policy.

When the student is deployed in the environment, it must select the same action as its teacher even for

unseen states.

PD benefits from the advantages of a large network during training and a small network upon deployment

[27]. During training, a relatively large network and extensive training are needed to achieve high

performance [51]. Specifically for DQNs in Atari games, it has been shown that training a smaller

network results in considerably lower performance [43]. This is because a smaller network has limited

capacity to capture complex relationships between states and actions. The authors of the original PD

paper [51] speculate that, with fewer parameters, the network can struggle to learn the most important

patterns, especially when high-reward situations do not occur often. As a result, it adjusts slower to

new and important information, making it harder to find better policies. On the other hand, larger

networks can store more information and update faster when relevant state-action pairs are encountered.

Therefore, while a smaller network is more efficient for deployment, a larger network is capable of

achieving better performance during training. PD trains a relatively large network but distills relevant

knowledge to a smaller network for deployment, thereby exploiting the advantages of both.

Additionally, the distillation process can have a regularizing effect, which can lead to the student

outperforming its teacher [51]. Since the teacher network is larger, it can approximate more complex

functions. This might result in overfitting to states encountered while training. The smaller student

network replicates the teacher’s behaviors but has fewer parameters, and therefore approximates simpler

relationships between the same states and actions. This can lead to better generalization, particularly in

continuous state spaces where it is impossible to visit all states during training, increasing the likelihood

of overfitting [79].

2.3. Reinforcement Learning Algorithms 9

PD was initially designed for the single-task setting. However, PD can also be effectively used in

multi-tasking. Multi-task PD merges knowledge from multiple teacher networks, each trained on a

specific task, into a single student network having the same size as each of the teachers. Depending

on the specific algorithm, either an explicit task ID is provided to the student along with the state, or

the student must infer the task itself. The existing multi-task PD methods are discussed in Section

3.1. Multi-task PD enables the student to perform well on all tasks while sharing common structure

and separating task-specific properties. PD is particularly useful in avoiding negative transfer [40],

whereas training a multi-task agent from scratch can negatively impact performance [61]. Intuitively,

this robustness to negative transfer is because the student learns from pre-trained teachers that are

already optimized for each task. By focusing on replicating the correct behaviors from these expert

policies, the student avoids interference between tasks that might occur if trained jointly from the start.

This allows the student to leverage shared knowledge without negatively impacting performance on the

individual tasks.

3
Related Work

In this chapter, we review previous work relevant to our research. We begin by discussing multi-task

PD methods. We then cover offline MTRL algorithms, which focus on training multi-task agents using

pre-collected data without further interaction with the environment. Next, we explore data-sharing

techniques, which aim to improve single-task policies by leveraging offline data across multiple tasks.

Finally, we explain policy sharing, which also attempts to enhance single-task policies but through

selective behavior sharing.

3.1. Multi-Task Policy Distillation
The paper that introduced PD [51] investigates the effectiveness of three distillation loss functions.

The authors maintain Deep Q-Networks (DQNs) [44] for several Atari games. The goal is to transfer

knowledge from all of these teacher DQNs to a single student DQN capable of performing all of the

games. The first loss function is the Negative Log Likelihood (NLL) between the best actions of the

teachers and the student. The second loss function is the Mean Squared Error (MSE) between the

Q-values of the teachers and the student. The third loss is the Kullback-Leibler (KL) divergence on the

softmax of the Q-values of the teachers and the student. Experiments point out that the KL-divergence

is the most effective loss function in their particular setup. Furthermore, results indicate that in some

situations the student can outperform its teachers as it can have a regularizing effect.

Actor-Mimic [48] is another distillation method operating in the discrete action space with DQNs. It

showed similar results by transforming expert Deep Q-Networks (DQNs) into actor networks and

transferring their knowledge to the student utilizing a cross-entropy loss. However, other than the

original PD paper, the authors find that negative transfer occurs in some experiments.

Distral [61] is another successful method that introduces a form of multi-task exploration. Similar to PD

and Actor-Mimic, it distills common behavior from the teachers to the student. However, it also uses

the student to regularize the teachers, allowing them to explore the environment with newly learned

behaviors from other tasks. It is important to note that, unlike other PD methods, Distral does not

provide an explicit task ID to the student policy. The reason for this is to prevent the student from

overfitting to its teachers. If the student overfits, it would simply replicate the teacher’s actions, offering

no exploration. Distral aims to enhance the performance of the teacher policies and deploy them

separately after training. This is different than our objective to deploy a compact multi-task student.

Nonetheless, we will explore ways of multi-task exploration similar to Distral.

KTM-DRL [70] is specifically focused on the continuous control setting. It uses TD3 agents and performs

distillation using the MSE loss between the critics of the teachers and the student. Moreover, it introduces

hierarchical experience replay, which picks transitions from each task’s replay buffer to balance the

skills learned across tasks. After distillation, the student is finetuned by interacting with all the tasks

alternately, which is also a form of multi-task exploration. Results show that the student is capable of

matching and sometimes slightly exceeding the performance of its teachers.

10

3.2. Offline Multi-Task Reinforcement Learning 11

DROID [29] performs policy and reward distillation specifically applied to driving Mars rovers.

It leverages demonstrations of expert human drivers and is capable of outperforming competing

learning-from-demonstration methods. Nonetheless, it does not match the performance of the expert

demonstrations.

However, in all of these studies expert teachers are assumed to be provided and utilized to collect data

online. In this work, the aim is to investigate if the high performance of policy distillation translates to

the offline MTRL setting, where we exclusively have access to previously collected offline data by an

unknown behavior policy.

3.2. Offline Multi-Task Reinforcement Learning
In this research, we focus on offline MTRL. In this setting, the goal is to learn a single multi-task

policy using only previously collected data from each of the tasks. No interaction is allowed with the

environment before deployment.

Skills Regularized Task Decomposition (SRTD) [74] is a method proposed for this purpose. SRTD

addresses the multi-tasking problem by decomposing tasks into subtasks, referred to as skills, which

are short-term state-action sequences. It maps both tasks and skills into a shared latent space. This

latent space is used to find the relationships between tasks, enabling the sharing of overlapping skills.

Additionally, the offline data is augmented by sampling imaginary trajectories from the latent space.

However, this approach heavily relies on the quality of the learned latent representations. If the latent

space fails to accurately capture the commonalities and differences between tasks, SRTD may struggle

to correctly identify shared skills, potentially leading to negative transfer.

Other methods, such as Pre-Training for Robots [36], MT-Opt [32], and Q-Transformer [12], focus on

learning a multi-task policy by using large amounts of data. This data is generated from simulations

or real-world demonstrations at a large scale. These approaches aim to improve policy learning with

high-capacity models. In contrast, our work focuses on optimizing performance with fixed and relatively

small datasets, without the possibility of gathering more data. Moreover, none of these techniques

utilize policy distillation, which will be investigated in this work.

3.3. Data Sharing
Data sharing techniques focus on relabeling and sharing offline data across related tasks. Instead of

training each task on its own dataset, all available data is used collectively to learn better policies for all

tasks.

Conservative Data Sharing (CDS) [76] finds that naively sharing all data can improve learning but may

degrade performance when it exacerbates the distribution shift between the behavior policy and the

learned policy. To address this, CDS selectively shares data based on a conservative Q-value, balancing

the quality of the data with the degree of distribution shift. Experiments show that CDS consistently

performs better than without data sharing.

Uncertainty-based Data Sharing (UTDS) [4] argues that CDS is sensitive to a large distribution shift

because the offline RL algorithm constrains the learned policy to stay close to the behavior policy.

Instead, UTDS shares all data and applies pessimistic updates based on the uncertainty of state-action

pairs, which mitigates the negative effects of suboptimal behavior policies. Results show that UTDS

significantly outperforms CDS for random behavior policies and achieves comparable performance

with more optimal behavior policies.

Unlabeled Data Sharing (CDS-zero) [75] addresses the scenario where the reward functions are unknown,

whereas CDS and UTDS assume known reward functions for data relabeling. CDS-zero shows that

simply assigning a reward of 0 to data from related tasks can still yield surprisingly good performance.

However, this approach has limitations, especially when the shared data is highly relevant to the target

task.

All of these methods utilize offline datasets from multiple related tasks to improve single-task policies.

While this work is aimed at learning a multi-task policy, we explore how data sharing can be utilized as

an extension to our approach in Section 6.4.2.

3.4. Selective Behavior Sharing 12

3.4. Selective Behavior Sharing
Q-Switch Mixture of Policies (QMP) [80] introduces selective behavior sharing across related tasks.

Similar to the Distral method [61], it encourages multi-task exploration. However, while Distral achieves

this by regularizing with a shared policy, QMP directly explores actions from the policies of other tasks.

This approach is intended to avoid bias toward the average behavior of all tasks. Experiments show that

QMP accelerates learning and improves task performance. Unlike our work, QMP does not perform

policy distillation and is focused on learning single-task policies in the online setting. Nonetheless,

we investigate whether the Q-switch mechanism can be adapted as an extension to our approach, as

discussed in Section 6.4.3.

4
Approach

In this chapter, we describe two main online PD approaches from related work and explain how we

extend them to operate in the offline setting. We also discuss the differences between the online and

offline approaches. Following this, we introduce the experimental setup. Throughout the rest of the

paper, we will explore different instances of our approach and specific adaptations, and we will conduct

experiments within the same experimental setup.

4.1. Online Approaches
To motivate our choice of approach, we will discuss two main online approaches: Policy Distillation

(PD) [51] and Distral [61].

The original online multi-task PD setup [51] is shown in Figure 4.1. Expert teachers are assumed to be

provided and are deployed online to gather transitions. These transitions are stored in a separate replay

memory for each task. Distillation begins by sampling transitions from the replay memories. The state

and task ID (or game label) are fed into the randomly initialized student policy network. The student’s

output is then compared to the transition’s target output using a distillation loss function. This loss is

used to optimize the student network. As described in Chapter 3, this approach is capable of learning a

student that can match or even exceed teacher performance.

A limitation of this setup is that there is no multi-task exploration. Knowledge from the teachers is

distilled to the student, but the student never has the chance to explore the newly learned behaviors in

the context of other tasks. Distral [61] introduces a form of multi-task exploration by regularizing the

teachers with the student policy. This is displayed in Figure 4.2. It is important to note that Distral’s

Figure 4.1: The original online multi-task PD setup [51]. The teachers are named after the Atari game they were trained on, but

the approach can be applied to any domain consisting of related tasks.

13

4.2. Offline Approach 14

Figure 4.2: The Distral setup [61] distills knowledge from the teacher policies (colored) to the student policy (black), where the

teachers are regularized by the student policy.

Task 1 data

Task 0 data

Task n data
Distillation Loss

Offline RL algorithm

Offline RL algorithm

Offline RL algorithm

Sample state from task i Input state
to teacher i

Input state & i
to student

Target output

Predicted
output Optimize

π0
β

π1
β

πn
β

π0
T

π1
T

πn
T

πS

Figure 4.3: An overview of the offline PD approach, where the blue dashed lines represent the distillation process.

multi-task policy does not receive a task ID. This is because regularization would have negligible effect

if the multi-task policy overfits to the task ID of its teachers. Instead, not providing a task ID encourages

some randomization in the action selection from the different teachers, thereby allowing the student to

explore behaviors from all teachers across tasks more effectively.

4.2. Offline Approach
Having explained the original PD (Figure 4.1) and Distral (Figure 4.2) approaches, we now introduce

our offline approach. As mentioned earlier, the main difference between PD and Distral is the presence

of multi-task exploration. However, in the offline setting, exploration is not possible, as there is no

interaction with the environment before deployment. Instead, all transitions are collected beforehand

by a behavior policy. This eliminates the benefit of using Distral’s approach for our purposes, so we

build upon the original PD approach.

We aim to extend the original PD approach in the simplest way possible. We will investigate its

effectiveness and propose adaptations where necessary. Our approach consists of learning teacher

policies for each task from offline data and then distilling these teachers into a single multi-task student

policy. Figure 4.3 provides an overview of our offline approach. We will refer to this framework as MOP

(Multi-task Offline Policy distillation).

The first step in our approach involves learning a teacher policy for each task. For every task, a behavior

policy collects data from the environment, which is then used by an offline RL algorithm to learn the

corresponding policy. The outcome of this step is a teacher policy for each task. Ideally, these teacher

policies outperform their respective behavior policies, providing a strong foundation for the next phase.

The second step focuses on distilling the learned teacher policies into a single multi-task student policy.

4.3. Online and Offline Comparison 15

Distillation begins by sampling states from the previously collected data of each task. These states

are fed into both the corresponding teacher network and the randomly initialized multi-task student

network, along with the task ID. The outputs of the teacher and student are compared using a distillation

loss function. Potential loss functions will be explored in Section 5.1.3. This loss is then used to perform

an optimization step on the student network. The objective is to minimize the loss, which occurs when

the student accurately predicts the same outputs as the teachers for the same states and tasks.

4.3. Online and Offline Comparison
Our offline approach would be equivalent to the online case studied in previous work [51], if two

conditions are met:

1. All behavior policies are of expert level.

2. The learned teacher policies are equivalent to their corresponding behavior policies.

These conditions ensure that the assumptions of online PD are satisfied. The first assumption is that

expert teachers are provided. This holds, because the behavior policies are of expert level and the teacher

policies match them. The second assumption is that the teachers are deployed in the environment to

collect transitions. This also holds, since the behavior policies collect the data and the teacher policies

are equivalent to the behavior policies, making it equivalent to the teacher policies collecting the data.

However, such an ideal scenario is unlikely in the offline setting. Behavior policies are often not of

expert level and can even be random [17]. Additionally, offline RL algorithms are typically designed

to improve upon the behavior policy [38], meaning the learned teacher policy likely differs from the

original behavior policy.

The discrepancy between the teacher and behavior policies can be particularly problematic. The teacher

policy is learned from the offline data, which was collected by the behavior policy. Since no new

samples can be collected in the offline setting, the teacher policy is constrained to stay within the state

distribution generated by the behavior policy. However, the teacher policy can still learn to behave

differently within that state distribution. This would lead to a situation where the teacher’s distribution

of states (the states it would naturally visit) differs from the state distribution of the offline dataset.

This mismatch is known as a state distribution shift. Although the teacher policy is learning from the

offline data, the distribution of states it would encounter during deployment may be different from the

states present in the offline dataset. As a result, the student policy, which is trained to mimic the teacher

using the offline data, may struggle to learn the correct behavior in situations that the teacher would

naturally encounter. If those situations are underrepresented in the offline dataset, the student may not

be able to generalize well to deployment. This can significantly degrade the performance of the student.

This challenge will be further explored in Section 5.2.

4.4. Experimental Setup
We will investigate the effectiveness of our approach under the same experimental setup throughout

this work. In this section, the experimental setup is described by introducing the environment and

explaining how the offline data was collected.

4.4.1. Environment
The environment used in the experiments is DeepMind Control Walker [59], as shown in Figure 4.4. It

consists of a planar body with 7 segments and 6 joints. The state space is continuous and numerical,

representing the orientations and velocities of the body parts. The action space is also continuous,

representing the torque applied to the joints. The transition dynamics are governed by the MuJoCo

physics simulator [62].

We have chosen this environment, because offline RL problems are more apparent in continuous state

and action spaces. Continuous spaces are often more challenging than discrete ones since it is infeasible

to visit every state in a continuous domain [17]. This forces an agent to generalize beyond the states and

actions present in the offline dataset. This generalization introduces additional complexity in offline

RL, because the agent must learn the correct behavior for unseen states based on previously collected

4.4. Experimental Setup 16

(a) Stand expert (b) Walk expert

Figure 4.4: Examples of expert policies in the stand and walk task.

data with limited coverage. Without the ability to interact with the environment and to collect new

samples, the agent relies on its ability to generalize, which can lead to performance degradation in

underrepresented areas of the state space. This makes continuous environments particularly suitable

for evaluating offline RL approaches.

On the other hand, in environments with discrete state and action spaces, offline RL problems are less

challenging. When the offline dataset has low coverage for certain state-action pairs, the algorithm can

simply ignore these parts of the state-action space or assign low value to unseen pairs. Discrete spaces

are easier to tabulate, so even if the dataset is incomplete, the algorithm can easily avoid the missing

areas. Furthermore, having discrete states allows for estimating state distributions, which can be used

to reweigh samples and mitigate the effect of a state distribution shift. So offline RL challenges generally

vanish in discrete environments.

4.4.2. Tasks
In our experiments, we use two tasks: standing and walking, each with its own reward function. The

standing task rewards an upright torso and a minimum torso height, while the walking task includes an

additional reward component for forward velocity. Expert policies for both tasks are shown in Figure 4.4.

These policies are considered expert because they achieve high values. In both tasks, the torso remains

upright and elevated from the ground. Additionally, the walking expert successfully moves forward.

The tasks share common structure, such as the position and orientation of the torso and interpretation

of features from ’raw’ states. Negative transfer could occur if the stationarity in the stand task is applied

to the walk task. Similarly, forward bending of the torso for balance in the walk task could be incorrectly

transferred to the stand task.

The common structure that a multi-task agent should share across tasks exists at multiple levels. The

most straightforward common structure is at the trajectory level, meaning that parts of the state-action

trajectories overlap across tasks. In those overlapping parts, the multi-task agent should take the same

action for the same state, regardless of the task ID. In the standing and walking tasks, this corresponds

to the initial part of the trajectory where the agent needs to stand up from the ground. Whether the task

is to stand still or to walk, the agent must first stand up.

Additionally, common structure may exist at the computational level. At this level, the states and actions

might differ entirely, but certain aspects of the policy computation—mapping a state to an action—can

be shared across tasks. This can be thought of as underlying skills, rather than a one-to-one transfer of

behaviors. In the standing and walking tasks, this would correspond to the skill of keeping the torso

upright. While the states are different, as the leg segments have different orientations when standing

or walking. The actions differ as well, since standing involves mostly stationary joints, while walking

requires dynamic joint movements. However, keeping the torso balanced is a shared skill across both

tasks, regardless of the task-specific requirements. We will further discuss and formalize common

structure in Chapter 6.

We have selected only two tasks to simplify the multi-tasking setup. Previous work [4] extends this

4.4. Experimental Setup 17

approach with two additional tasks: running and flipping. Running is similar to walking but requires a

higher forward velocity, while flipping involves rotating the torso vertically. For flipping, the common

structure is less clearly defined since the torso does not need to remain upright, making it less suitable

for multi-tasking.

4.4.3. Data Collection
As shown in Figure 4.3, our approach consists of behavior policies for each task that gather data from

the environment. This offline data serves as the starting point for the offline RL algorithms to learn

teacher policies and is also used to sample states during distillation. We will now define the behavior

policies and explain how we employ them to collect data in our experimental setup.

The behavior policies are established by training TD3 [19] agents for each task. We utilize TD3 because

it effectively learns expert policies for both tasks. The specific configurations of the TD3 agents are

provided in Appendix A, following guidelines from prior work [5].

By using early stopping, we are able to establish different levels of behavior policies. This approach

creates a realistic offline RL scenario, where the behavior policies can have different proficiencies.

Medium-level behavior policies are obtained by early stopping at 1 million gradient steps, while

expert-level policies are achieved by training until convergence at 2 million gradient steps. Initially,

we aimed to include random-level behavior policies, which are typically used for broader exploration

[17]. However, in our environment, a random policy fails to coordinate the body parts, resulting in no

exploration at all. As a result, we excluded it from the experiments. The details of the policies are listed

in Table 4.1.

Policy Gradient Steps Final Episode Reward
Stand (Medium) 1 · 10

6
463

Stand (Expert) 2 · 10
6

979

Walk (Medium) 1 · 10
6

691

Walk (Expert) 2 · 10
6

907

Table 4.1: Details of the medium and expert behavior policies for the stand and walk tasks. The final episode reward represents

the reward obtained by the final policy averaged over 10 episodes.

Based on the medium and expert behavior policies, we generated three offline datasets consisting of 1

million transitions per task:

• Expert: rollouts of the expert policy

• Medium: rollouts of the medium policy

• Medium-replay: all 1 million transitions observed in the replay buffer during the training of TD3

up to the medium level

The expert and medium datasets are logically derived from the established behavior policies. Addition-

ally, we decided to include a medium-replay dataset, which typically has broader coverage as it contains

all exploratory transitions encountered during learning. On one hand, this wider variety in the data

can make it easier for an offline algorithm to learn a policy, as the agent is exposed to more diverse

states. On the other hand, it can exacerbate the state distribution shift, since the distribution of states in

the dataset is likely much broader than the state distribution of the learned policy. We will discuss the

consequences of this in Section 5.2.

5
Offline Policy Distillation

This chapter addresses the first research question: how does PD operate effectively in the offline MTRL

setting? First, we will establish the standard setup by exploring different instances of the approach

described in Section 4.2. Then, we will examine the impact of a state distribution shift, a major challenge

in offline RL, on this standard setup.

5.1. Standard Setup
In Section 4.2, the general offline approach was discussed. Now, we will refine this by exploring specific

instances of the method. The result will be a standardized setup that will be used throughout the rest of

this work.

5.1.1. Learning Teacher Policies
The first step of the method involves learning teacher policies for each task from previously collected

data using an offline RL algorithm. It is important to emphasize that the choice of algorithm is flexible,

as long as it produces an effective teacher policy in the target environment. This means that if a more

effective algorithm is introduced in the future, it can be easily integrated into our approach. Therefore,

we will not conduct an in-depth analysis of algorithm selection; the goal is simply to find an algorithm

capable of matching or surpassing the performance of the behavior policy.

For our experimental setup, which requires continuous control, we use Pessimistic Bootstrapping for

Offline RL (PBRL) [5]. The specific configurations of the PBRL agents are provided in Appendix A,

following guidelines from prior work [5].

For each offline dataset, we trained a new PBRL agent for 1 million gradient steps. The resulting policies

closely match or slightly exceed the performance of their corresponding behavior policies. The results

for the medium datasets are shown in Figure 5.1. The complete results can be found in Appendix C.

5.1.2. Justification For Policy Distillation
Before investigating how to perform the distillation most effectively, it is important to justify the need for

it. This is best demonstrated through a naive multi-task implementation of PBRL, which is displayed in

Figure 5.2. PBRL is an actor-critic method, where the actor represents the policy and the critic represents

the Q-value function. Since the goal is to develop a multi-task policy, the actor is modified to receive a

task ID as input and is used across all tasks. However, because the reward functions differ between

tasks, a separate critic is maintained for each task. The training procedure alternates between sampling

batches from the stand and walk datasets.

The results, shown in Figure 5.3, indicate that this naive multi-task implementation of PBRL yields low

rewards and flat learning curves. The multi-task agent is identical to the single-task agents, except

that the actor was adapted to handle multiple tasks. While there are many potential ways to modify

this naive multi-task agent to improve performance, such changes would no longer reflect a naive

18

5.1. Standard Setup 19

Figure 5.1: Results of PBRL [5] on the medium offline datasets, showing performance of 3 independently trained agents, each

using a different random seed. The shaded area represents the 95% confidence interval.

Stand data
(i = 0)

π0

Original Single-​Task

π(s)Q(s,a)

Walk data
(i = 1)

π1π(s)Q(s,a)

ST

ST

Original Single-​Task

(a) Original single-task

Stand data
(i = 0)

Naive Multi-​Task

π(s,i)

Q (s,a)

Walk data
(i = 1) Q (s,a)

π
0

1

MT

(b) Naive multi-task

Figure 5.2: A comparison of the original single-task PBRL agents and our naive implementation of a multi-task PBRL agent. The

multi-task agent maintains separate critics for each task, while its actor is modified to handle both tasks.

Figure 5.3: Results of the original single-task PBRL and our naive implementation of multi-task PBRL, each trained from scratch

with 3 independent seeds on the medium offline datasets. Shaded areas indicate 95% confidence intervals.

5.1. Standard Setup 20

implementation. We conclude that introducing a multi-task actor prevents the agent to effectively learn

either task. This suggests that negative transfer is occurring, and a more sophisticated multi-tasking

approach is required. In the following, we will investigate whether PD can address this issue.

5.1.3. Distillation Loss
The goal of PD is to enable the student network to replicate the outputs of the teacher networks for the

same states and tasks. To achieve this, it is required to use a loss function that properly encourages this

objective. We will consider three potential loss functions: Mean Squared Error (MSE) loss, Q-value loss,

and Kullback-Leibler (KL) divergence.

Before discussing each of these loss functions, it is important to note that during optimization, all teacher

agents are frozen. This means that while gradients can flow through them, their weights remain constant.

This is because PD operates like supervised learning, where the input state serves as the ’features’ and

the teacher’s output as the ’label’. If the teachers’ weights were updated during training, the labels

would change, affecting the ground truth. Freezing the teacher agents prevents this from happening.

Mean Squared Error Loss
The first approach minimizes the MSE between the actions generated by the teachers and the student.

This method is straightforward and only requires access to the actor of each teacher. The corresponding

loss function is:

ℒ𝑀𝑆𝐸 :=
1

𝑚

𝑚−1∑
𝑖=0

E
𝑠∼𝒟𝑖

[

𝜋𝑇𝑖 (𝑠) − 𝜋𝑆(𝑠, 𝑖)

2

2

]
,

where 𝑚 is the total number of tasks, 𝑖 is the task ID, 𝒟𝑖 is the offline dataset for task 𝑖, 𝜋𝑇
𝑖

: 𝒮 → 𝒜 is

the actor network of the teacher for task 𝑖, and 𝜋𝑆 : 𝒮 × 𝑖 → 𝒜 is the student’s actor network.

Q-value Loss
While the MSE loss considers the optimal action for a given state, it ignores other actions that might be

nearly as good. To address this, an alternative approach is to apply a Q-value loss, which aims to learn a

multi-task actor that maximizes the teachers’ critics. The loss function in this case is:

ℒ𝑄 := − 1

𝑚

𝑚−1∑
𝑖=0

E
𝑠∼𝒟𝑖

[
𝑄𝑇
𝑖 (𝑠,𝜋𝑆(𝑠, 𝑖))

]
,

where 𝑚 is the total number of tasks, 𝑖 is the task ID, 𝒟𝑖 is the offline dataset for task 𝑖, 𝑄𝑇
𝑖

: 𝒮 ×𝒜 → R
is the critic network of the teacher for task 𝑖, and 𝜋𝑆 : 𝒮 × 𝑖 → 𝒜 is the student’s actor network.

Kullback-Leibler Divergence
However, the Q-value loss can be sensitive to differences in reward scaling across tasks. To mitigate this,

and to consider more than just the single best action, we can use KL-divergence as the loss function.

KL-divergence measures the difference between two probability distributions. To apply this, we modify

the actors to be stochastic, returning the mean and covariance of a multivariate Gaussian distribution:

𝜋𝑇𝐺𝑎𝑢𝑠𝑠,𝑖 : 𝒮 → Δ(𝒜) := (𝜇𝑇𝑖 ,Σ𝑇𝑖)

𝜋𝑆𝐺𝑎𝑢𝑠𝑠 : 𝒮 × 𝑖 → Δ(𝒜) := (𝜇𝑆 ,Σ𝑆),

where 𝒜 ∈ R𝑘 , 𝜇 ∈ R𝑘 , and Σ ∈ 𝑑𝑖𝑎𝑔(R𝑘).
Actions can then be sampled stochastically from the Gaussian distribution or deterministically by taking

the mean:

𝑎𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 ∼ 𝒩(𝜇,Σ)

5.2. State Distribution Shift 21

𝑎𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 = 𝜇

The loss is computed on the sufficient statistics of the Gaussian distribution:

ℒ𝐾𝐿 :=
1

𝑚

𝑚−1∑
𝑖=0

E
𝑠∼𝒟𝑖

[
𝐾𝐿

(
𝒩

(
𝜇𝑆(𝑠, 𝑖),Σ𝑆(𝑠, 𝑖)

)
∥𝒩

(
𝜇𝑇𝑖 (𝑠),Σ𝑇𝑖 (𝑠)

))]

=
1

2𝑚

𝑚−1∑
𝑖=0

E
𝑠∼𝒟𝑖

[
tr

((
Σ𝑇𝑖 (𝑠)

)−1

Σ𝑆(𝑠, 𝑖)
)
+(𝜇𝑇𝑖 (𝑠)−𝜇𝑆(𝑠, 𝑖))⊤

(
Σ𝑇𝑖 (𝑠)

)−1 (𝜇𝑇𝑖 (𝑠)−𝜇𝑆(𝑠, 𝑖))−𝑘−ln

|Σ𝑇
𝑖
(𝑠)|

|Σ𝑆(𝑠, 𝑖)|

]
[16],

where 𝑚 is the total number of tasks, 𝑖 is the task ID, 𝒟𝑖 is the offline dataset for task 𝑖, 𝜇𝑆(𝑠, 𝑖) :=[
𝜋𝑆
𝐺𝑎𝑢𝑠𝑠

(𝑠, 𝑖)
]

1

, Σ𝑆(𝑠, 𝑖) :=
[
𝜋𝑆
𝐺𝑎𝑢𝑠𝑠

(𝑠, 𝑖)
]

2

, 𝜇𝑇
𝑖
(𝑠) :=

[
𝜋𝑆
𝐺𝑎𝑢𝑠𝑠,𝑖

(𝑠)
]

1

, Σ𝑇
𝑖
(𝑠) :=

[
𝜋𝑇
𝐺𝑎𝑢𝑠𝑠,𝑖

(𝑠)
]

2

, and 𝑘 is the

number of dimensions in 𝒜.

The KL-divergence approach not only avoids issues with reward scaling but also accounts for the full

distribution of possible actions rather than just the most likely one.

Results
Experiments in the Walker environment indicate that, somewhat surprisingly, the MSE loss performs

best. The results for the medium datasets of the stand and walk tasks are displayed in Figure 5.4.

First, let us examine the teacher policies. The stochastic teachers perform worse than the deterministic

ones. This is expected, as we adapted the PBRL algorithm to learn stochastic teachers, even though it

was originally designed for learning deterministic policies. While we could replace PBRL with another

offline RL algorithm to improve performance, this is not our primary objective. The choice of offline RL

algorithm remains flexible, as our focus is on evaluating the effectiveness of the distillation process by

comparing the performance of the multi-task student relative to its teachers.

Both the MSE and Q-value losses involve the deterministic teachers. MSE matches the teachers’

performance, whereas the Q-value loss yields slightly lower values. Apparently, the more direct

approach of the MSE loss makes optimization easier.

The KL-divergence involves the stochastic teachers. It fails to match teacher performance, particularly in

the walking task. This approach is also less direct than MSE, as it minimizes distributions over actions

rather than replicating the single best action. We suspect that the optimization is distracted by many

irrelevant actions, leading to lower performance.

With the MSE loss successfully matching teacher performance, we have a solid baseline, which will be

used for the remainder of this work.

5.2. State Distribution Shift
In the previous section, we established a standard setup for offline multi-task PD and demonstrated

that it can successfully train a multi-task student to match the performance of its teachers on the

medium offline datasets. However, the approach falls slightly short on the walking task with the

medium-replay dataset (see Figure 5.5). As discussed in Section 4.4.3, the medium-replay dataset

consists of all transitions that the TD3 agent encountered during training up to the medium level,

including many exploratory samples that the medium policy is unlikely to encounter during deployment.

In other words, the state distribution of this dataset is probably much wider than that of the medium

dataset. This variety typically makes it easier for an offline RL algorithm to learn a good teacher policy.

Nonetheless, the resulting teacher is trained to avoid low-reward transitions, which most likely causes

its state distribution to be much narrower than the dataset it was trained on. Such a mismatch would

result in a large state distribution shift between the teacher and the offline data.

As mentioned earlier in Section 4.3, a significant state distribution shift between the offline data and

the learned teacher policy can negatively impact the distillation process. The offline dataset likely

5.2. State Distribution Shift 22

Figure 5.4: Results of the different distillation losses, each trained from scratch with 4 random seeds on the medium offline

datasets. The shaded areas represent the 95% confidence intervals. MSE and Q are distilled from the deterministic teachers,

whereas KL is distilled from the stochastic teachers.

Figure 5.5: Results of MOP for the medium-replay datasets show that the student is unable to match teacher performance in the

walking task. Note that the training time was doubled to 1 million gradient steps to verify whether the student would eventually

catch up. The experiment was conducted over 4 random seeds and the shaded area represents the 95% confidence interval.

Figure 5.6: No distribution shift (left) and a large distribution shift (right) between the offline data and the teacher. Dashed lines

indicate states remembered (green) or forgotten (red) by a student policy with a capacity to store 4 state-action pairs.

5.2. State Distribution Shift 23

contains many states that the teacher would not encounter during deployment, making them irrelevant.

Consequently, during PD, the student attempts to mimic the teacher’s behavior in these irrelevant states,

which may require more capacity in the student network. This observation leads to Hypothesis 1. In the

remainder of this section, we will explore this hypothesis through a series of experiments to verify its

validity.

Hypothesis 1 A larger state distribution shift between the offline data and the learned teacher policy increases
the capacity required in the student network.

5.2.1. Hypothesis Clarification
To clarify the hypothesis, let us consider a simple example (displayed in Figure 5.6). In this example,

there are 5 discrete, single-dimension states. The states in the offline data follow a negative Boltzmann

distribution 𝑝(𝑠) = exp(−(𝑠−1))
Σ5

𝑥=1
exp(−(𝑥−1)) . If the teacher’s state distribution matches this, there is no distribution

shift. However, if the teacher follows a positive Boltzmann distribution, 𝑝(𝑠) = exp(𝑠−1)
Σ5

𝑥=1
exp(𝑥−1) , a large

distribution shift occurs.

The hypothesis suggests that a larger state distribution shift requires more network capacity. In other

words, if the student network has limited capacity and there is a significant distribution shift, its

performance will degrade. This occurs because the student’s actions are learned based on states sampled

from the offline data. With limited capacity, the student may forget what to do in states that have a low

probability of being sampled.

In the simple example, suppose the network has the capacity to remember the correct action in at most 4

states. The fifth state will most likely be forgotten, because it has the lowest probability in the offline data

distribution. If there is no distribution shift, this has minimal impact since the teacher only visits the

fifth state 2% of the time. However, with the large distribution shift, performance degrades significantly

because the student does not know what action to take in a state that the teacher visits more than 50% of

the time. Increasing the network’s capacity to handle all states would allow the student to remember

the correct action for state 5, thereby improving performance. Thus, we hypothesize that a larger state

distribution shift requires greater capacity in the student network.

Note that this example consists of a small, discrete space, making it feasible to tabulate and remember all

states in practice. In contrast, our setup involves a large, continuous state space. It is impossible for all

states to be represented in the offline data, let alone for the student to remember all of the states. Instead,

the student must generalize over regions of the space, which increases the likelihood of ’forgetting’ the

correct actions in underrepresented regions.

5.2.2. Measure State Distribution Shift
The hypothesis arose from the assumption that the medium-replay dataset of the walking task has a

large state distribution shift relative to the teacher policy learned from it. To support this assumption,

we aimed to measure the KL-divergence between the state distributions of two datasets: the offline

dataset collected by the behavior policy and the online dataset collected by the teacher policy. However,

estimating densities in a continuous state space with 24 dimesions is challenging.

We implemented two methods: Kernel Density Estimation (KDE) [67] and Histogram Density Estimation

(HDE) [18]. KDE with Gaussian kernels fails due to high dimensionality and insufficient samples (1

million per dataset). HDE, which divides the space into bins, is impractical as the number of bins grows

exponentially with dimensionality; only three bins per dimension already requires over a Terabyte of

memory. As a result, we were unable to produce reliable measurements and decided to omit them.

This limitation is a disadvantage of using such a complex environment. However, as previously

discussed, if we were to use a simpler, toy environment with discrete states, many of the typical offline

RL challenges would disappear. In such a case, the behavior policy could potentially visit all states, or

the student network could memorize the best actions for every state in the offline data. To truly address

the challenges of offline RL, we must evaluate the method in a complex environment where these issues

are far more pronounced.

5.2. State Distribution Shift 24

Figure 5.7: Results of MOP with online and offline state sampling on the medium-replay datasets, each trained from scratch with

4 random seeds. Shaded areas represent the 95% confidence intervals. Even with eliminated distribution shift (online), teacher

performance is not matched in the walking task (right).

5.2.3. Eliminate State Distribution Shift
Another approach to verify the hypothesis is by comparing the results of offline and online PD. In this

experiment, PD is run twice with identical settings, except for the dataset used for state sampling. In the

offline setting, the offline datasets are used as before. In the online setting, an online dataset is created

by deploying the teachers in the environment and collecting trajectories. The states in the online dataset

correspond to those the teachers would naturally visit, thereby eliminating the distribution shift. If the

hypothesis is correct, less network capacity should be required for online PD. In other words, it should

yield a higher reward with the same capacity. Thus, it is expected that online PD will match teacher

performance. Note that this would be similar to the other offline datasets, which are assumed to have

smaller distribution shifts.

The results are shown in Figure 5.7. Contrary to expectations, online PD does not outperform offline PD

in this setting. This suggests that the distribution shift is not the cause of the issue in the medium-replay

walking dataset. Nevertheless, the hypothesis remains plausible, and further investigation is needed for

verification.

5.2.4. Vary Network Size Under Artificial State Distribution Shift
We are not capable of measuring the distribution shift, as described in Section 5.2.2. However, we can

create offline datasets with an artificial distribution shift to test the hypothesis. The goal is to verify

whether a larger distribution shift leads to decreased robustness with smaller network sizes.

Composed Datasets
For this purpose, we compose four datasets for each task 𝑖:

• Online : 100% collected by 𝜋𝑇
𝑖

(the teacher policy for task 𝑖)

• Noise: 10% collected by 𝜋𝑇
𝑖
, and 90% collected by max(−1,min(𝜋𝑇

𝑖
+ 𝒩(0, 1), 1))

• Random90: 10% collected by 𝜋𝑇
𝑖
, and 90% collected by 𝒰(−1, 1)

• Random99: 1% collected by 𝜋𝑇
𝑖
, and 99% collected by 𝒰(−1, 1)

The Online dataset is collected by the teacher policy itself, so the state distributions are identical,

resulting in no shift. Both the Noise and Random90 datasets contain 10% of trajectories collected by the

teacher policy to ensure that the student has the opportunity to replicate the teacher’s behavior. For

Random99, this percentage is only 1%, which has the risk that the student ends up distilling on states

irrelevant to the teacher, making it challenging to copy the correct behavior.

To introduce an artificial distribution shift, the Noise dataset includes 90% of trajectories collected by

deploying the teacher policy while injecting Gaussian noise into the actions. The noisy actions are

5.2. State Distribution Shift 25

clipped to ensure that they remain within the action bounds of -1 and 1. We expect this to cause a slight

distribution shift, although we cannot measure it directly. Upon reviewing video recordings of the noisy

policy being deployed in the environment, it becomes clear that the policy is still capable of performing

the task, although highly disturbed by the noise. This suggests that many states will be encountered

which the regular teacher policy would not, for example when the noise causes the body to fall while

walking. This induces at least a slight shift between the state distributions.

The Random90 and Random99 datasets contain trajectories where the actions are sampled from a

Uniform distribution within the action range of -1 and 1. These random actions fail to coordinate the

joints, resulting in no effective exploration. Instead, the body remains on the ground, randomly moving

its joints. These states are absent or highly underrepresented in the teacher policy’s state distribution.

We expect this to induce a significant state distribution shift. The shift for Random99 should be even

larger than that of Random90, as the percentage of teacher trajectories is even lower.

Varying Network Size Experiment
We test MOP’s performance on each of these datasets with varying network sizes. The original

architecture of the student network consists of an input layer matching the state dimensions and an

additional dimension for the task ID, two hidden layers with 256 neurons each, and an output layer

matching the action dimensions. In this experiment, the number of neurons in the hidden layers is

varied between 16 and 512. Following Hypothesis 1, we expect that the performance of the student

trained on datasets with a larger distribution shift relative to the teacher policy will degrade more as the

network size decreases.

Results
The results are shown in Figure 5.8. The Random90 and Random99 datasets are the least robust to

smaller network sizes, which aligns with our initial expectations. However, contrary to expectations,

the Noise dataset outperforms the Online dataset for the smallest network sizes. It is important to be

cautious in making hard claims from these results, because the 95% confidence intervals highly overlap

suggesting that the differences may not be statistically significant. Nevertheless, the results indicate that

a larger state distribution shift does not impact performance as strongly as initially expected.

Remarkably, the Noise dataset appears to be the most robust to smaller networks. This suggests that

increased variety in the training data can actually improve performance, even if it introduces a slight

state distribution shift. We hypothesize that this occurs because smaller networks tend to take less

optimal actions, lacking the capacity to remember all teacher behaviors. As a result, the agent is more

likely to end up outside the teacher’s state distribution. With more diverse training data, the agent is

better equipped to handle these out-of-distribution states. On the other hand, when trained only on

Online data, it may have no clear guidance for states slightly outside the teacher’s distribution.

Furthermore, Random90 and Random99 achieve acceptable performance despite introducing substantial

distribution shifts. Random90 nearly matches teacher performance for the largest network, which has

512 neurons per hidden layer. However, Random99 does not reach this level of performance. We suspect

this may be due to either overfitting or the need for an even larger network.

Overfitting is a common issue in Supervised Learning (SL) [73]. It occurs when a model fits the training

data too closely, but fails to generalize well to unseen test data. Overfitting can also happen in RL, even

though training and testing occur within the same environment [79]. As discussed in Section 2.3.3, PD

is a combination of RL and SL. In PD, the states sampled from the offline data can be considered as

the training data, while the states encountered upon deployment serve as the test data. It is possible

that the student network accurately mimics the teacher’s actions in states used during distillation but

struggles to generalize to unseen states during deployment.

The likelihood of overfitting increases when the training data is limited, and the network has many

parameters [78]. For example, the Random99 dataset contains only a small subset of states (1%) that

contribute useful behavior for distillation. Simply increasing the network size in such cases might

exacerbate overfitting. This highlights an important difference between tabular policies and policy

networks. In tabular policies, actions for each state are stored explicitly, which is feasible only in

discrete state spaces. Expanding the table directly increases its capacity to remember more state-action

pairs. However, increasing the size of a neural network enhances its ability to represent more complex

5.3. Discussion 26

Figure 5.8: Results of MOP across varying network sizes and dataset types, each trained from scratch with 3 random seeds.

Shaded areas represent the 95% confidence intervals.

functions. This does not necessarily imply that it can remember the best actions over a larger part of the

state space. Instead, a larger network might overfit to the offline data, particularly when only a small

amount of data is available.

However, we cannot completely exclude the possibility that increasing the network size even further

might allow Random90’s performance to eventually catch up with the teacher. Due to computational

constraints, we did not test wider or deeper networks. Prior research [25] has shown that larger networks

do not consistently lead to better performance in RL. In fact, deep RL agents can encounter instability

during training with larger networks, which could be due to a rougher loss surface [54]. As a result,

effectively utilizing larger networks in RL requires careful consideration of architecture and training

methods [46]. However, these issues primarily arise when training RL agents from scratch, whereas we

are distilling pre-trained teacher policies through SL. It would therefore be valuable for future research

to investigate whether enlarging the network even further enables the student to match the teachers’

performance under a large distribution shift.

In conclusion, the state distribution shift did not impact MOP’s performance as much as initially

expected. A slight shift can even be beneficial as it increases the variety in the data, which may improve

out-of-distribution robustness. However, a very large shift could still degrade performance, even for

larger networks, due to potential overfitting to the offline data. We recommend that future work explores

the effects of further increasing the network size under significant distribution shifts. This should

reveal whether overfitting occurs or if the student can eventually match the teachers’ performance.

Additionally, more sophisticated methods than simply increasing the network size should be explored

to eliminate the risk of overfitting.

5.3. Discussion
In this chapter, we explored how to apply PD in the offline setting. First, we established a standard

setup by examining specific instances of the approach described in Section 4.2. We demonstrated that

the PBRL offline algorithm [5] is capable of learning single-task teacher policies that closely match or

slightly exceed the performance of the behavior policies. Next, we found that directly multi-tasking

through a naive multi-task implementation of PBRL suffers from negative transfer, failing to perform

effectively on either task. PD, however, successfully mitigated this issue. We experimented with three

different distillation loss functions: MSE loss, Q-value loss, and KL-divergence. The results showed that

directly optimizing MSE loss yielded the highest performance, making it the standard distillation loss

for the remainder of this work.

We then investigated the impact of a state distribution shift, a major challenge in offline RL, on our

approach. Initially, we hypothesized that a larger state distribution shift between the offline data and

5.3. Discussion 27

the teacher policy would require increased network capacity in the student network (Hypothesis 1). To

test this hypothesis, we composed datasets with varying degrees of artificial distribution shifts, ranging

from no shift (100% data collected by the teacher policies) to a large shift (1% data collected by the

teacher policies). The results indicated that the hypothesis was partly correct and partly incorrect.

The hypothesis holds in that student performance generally declines when the network size is small and

the distribution shift is large. However, a slight distribution shift can actually improve performance by

increasing the variety in the offline data, which may help to enhance out-of-distribution robustness.

Furthermore, simply increasing the network size does not necessarily resolve performance loss caused

by a large distribution shift. This is because the combination of limited useful data and a network with

many parameters may lead to overfitting [78].

Thus, we conclude that a state distribution shift does not significantly affect MOP’s performance unless

the shift is very large. Unfortunately, we cannot quantify what ’very large’ means, as we are unable to

measure the shift in our environment due to the large continuous state and action spaces. Increasing

the size of the student network can help mitigate performance loss from a distribution shift, but this is

not guaranteed to resolve the problem if the shift is too large. Exploring more sophisticated approaches

to handle large state distribution shifts is an interesting direction for future research.

We leave the development of such an approach for future work, but would like to propose a promising

idea. Typically, distribution shifts can be addressed by reweighting samples in the dataset. Importance

Sampling (IS) is such a reweighting technique [58]. IS reweights samples by calculating the probability

density ratio between the two distributions of interest, which requires the distributions to be known.

This is not the case in our setting. However, we can use the ratio of Q-values to reweight samples in a

similar fashion. A policy’s Q-value reflects how it evaluates a state-action pair, indicating whether the

policy is likely to visit (high value) or avoid (low value) that pair. Thus, the ratio of the Q-values of the

behavior policy and the teacher policy could be used as an alternative to the probability density ratio.

However, this assumes that the Q-value function of the behavior policy is known. While this is typically

available in offline RL, it could be estimated through Behavioral Cloning (BC) [35] for example.

6
Capturing Common Structure

Through Policy Distillation

In this chapter, we address the second research question: how can common structure be better captured

through PD? As outlined in the introduction, our goal is to exploit common structure with two main

objectives: improving performance and reducing required capacity. Ideally, common structure is highly

exploited, allowing the size of the student network to be reduced while maintaining or even improving

the performance.

We begin by formally defining common structure, which is essential for understanding the specific

problem we aim to address. We define common structure at two distinct levels: the trajectory level and

the computational level. Next, we introduce a measure to quantify the amount of shared computation,

which serves as an indicator of how much common structure is captured.

We then explore methods to improve PD’s ability to capture common structure. Initially, we focus on

the computational level. Specifically, we investigate whether introducing an information bottleneck by

constraining capacity can lead to increased sharing of common structure across tasks. Following this,

we add a regularization term to the distillation loss to encourage shared computation.

Next, we shift our focus to the trajectory level. To address common structure at this level, we discuss the

limitations of not having multi-task exploration. We argue that the reward functions must be known

to enable multi-task exploration. Under this assumption, we propose two methods designed to share

more common structure across tasks through multi-task exploration: Data Sharing (DS) and Offline

Q-Switch (OQS).

The chapter concludes with a discussion of our findings and an answer to the second research question.

6.1. Common Structure Definition
Before attempting to better capture common structure, it is crucial to define what common structure

actually is. In the literature, there is no single definition of common structure. This is because common

structure is not a property of the environment, but rather a property of the behaviors represented in the

policies. Common structure can be understood as behaviors that are shared across tasks. Essentially,

when defining common structure, we are defining a solution to the multi-tasking problem. Since there

are various ways to represent such solutions depending on the multi-tasking method, there are also

multiple ways to define common structure.

We distinguish two types of common structure based on the level at which they occur: the trajectory

level and the computational level. In this section, we provide an intuitive explanation of these types of

common structure, attempt to formally define them, and link them to similar concepts found in the

literature. Afterwards, we describe the expected challenges that we might encounter attempting to

capture common structure.

28

6.1. Common Structure Definition 29

Trajectory Level
Common structure at the trajectory level means that parts of the trajectories across tasks overlap. Within

these overlapping parts, the agent should select the same action for the same state, regardless of which

task it is trying to solve. To build intuition about this, let us consider a simple example in a grid world

environment.

In this example, the environment is a 4 × 4 grid. Each cell in the grid represents a possible state, and the

possible actions are up, down, left, or right. The transition dynamics are deterministic, meaning the agent

moves in the direction specified by the action unless blocked by the boundary of the grid. For instance,

if the agent is at the left boundary and attempts to move left, it will remain in the same cell. The agent

always starts at the upper-left corner of the grid. The reward is 0 for every transition, except when the

agent reaches the goal state, where the reward is 1. Each task is defined by a different position of the

goal state, resulting in different reward functions. The objective for the agent is to reach the goal state as

fast as possible, yielding the maximum discounted return.

T1
T0

Figure 6.1: An example grid

world with two targets.

An instance of such a grid world is shown in Figure 6.1. To reach the

goal states from the top left, the first three state-action pairs are identical

across tasks. These are marked in green, and we define them as part of

the common structure. In the fourth state, a different action must be taken

depending on which task the agent is solving. Therefore, the final parts of

the trajectories are task-specific.

We can formally define common structure at the trajectory level as a set of

states in which the action chosen by the policy is identical across tasks. For

two tasks this is defined by:

𝜋(𝑠, 𝑖) =
{
𝜋(𝑠, 0) = 𝜋(𝑠, 1) if 𝑠 ∈ 𝑆common

𝜋(𝑠, 𝑖) otherwise

where 𝑠 is the input state, 𝑖 is the task ID, and 𝑆common is the set of states where the policy actions are

shared across tasks.

Several papers address multi-tasking from this perspective, even though they do not explicitly define

common structure. For instance, Q-switch Mixture of Policies (QMP) [80] dynamically determines

which actions to share across tasks in a state-dependent manner. The method ranks and selects the best

action proposed by other tasks’ policies for the same state. Over time, the agent learns which actions are

beneficial to share across tasks and which should remain task-specific.

Furthermore, hierarchical approaches attempt to reuse parts of policies across tasks by defining lower-

and higher-level policies [50]. Sharing specific lower-level policies across tasks is essentially equivalent

to selecting the same action across common structure states irrespective of the task ID.

Lastly, data-sharing approaches [76, 4] focus on relabeling and sharing offline data across tasks to

improve single-task policy performance. While these methods do not explicitly incentivize capturing

common structure, they aim to optimize parts of trajectories by exploring state-action pairs across

different tasks.

In our experimental setup, as described in Chapter 4.4, the common structure at the trajectory level

corresponds to the agent standing up from the starting state. Regardless of whether the task is to stand

or to walk, the agent must first get up from the ground. After this initial phase, the trajectories become

task-specific: for the standing task, the agent must remain stationary, while for the walking task, it must

start moving.

Computational Level
Common structure at the computational level can only occur in deep RL, where policies are represented

by neural networks. This is because we assume that parts of the computation—mapping a state to an

action—can be shared across tasks, even when the input state and output action are different. This is

not possible if the policy is a table in which an action is stored for each state, because this does not entail

any computation.

6.2. Measuring Shared Computation 30

The idea behind common structure at the computational level is that there are underlying skills that

can be reused across tasks. An intuitive example is the notion of ’ball feeling’. If a person is good at

football, they can predict the movement of the ball and act upon it. When the same person plays tennis,

many things are different: the size of the ball, the way the ball is played, the playing field, etc. However,

this person is still capable of using the skill of predicting where the ball will go and how to hit the ball

correctly. So the states and chosen actions can be completely different, but there is an underlying skill

that is reused across tasks.

A possible way to formalize this is by using function compositions. The policy function can be composed

of a set of functions, some of which can be shared across tasks. For two tasks, this is could be defined as:

𝜋(𝑠, 𝑖) =
{
ℎ(𝑓 (𝑠)) if 𝑖 = 0

ℎ(𝑔(𝑠)) if 𝑖 = 1

where 𝑠 is the input state, 𝑖 is the task ID, ℎ is a common function across tasks, and 𝑓 and 𝑔 are

task-specific functions. Note that this is an example, many more functions can be involved and the order

of how the functions are applied can also take many different forms.

Representation-based approaches consider common structure from this perspective. These methods

aim to learn an abstraction of common structure in a representation and share it between tasks [8]. This

shared representation enables policies to generalize more effectively across tasks.

As already mentioned in Chapter 4.4, common structure at the computational level can be thought of as

the skill to keep an upright torso in our experimental setup. The encountered states and performed

actions are different across tasks, since while standing the legs are stationary whereas while walking the

legs are continuously moving. However, in both tasks the agent must keep an upright torso, which

could possibly be enforced by shared computation across tasks in the multi-task student network.

Challenges
Having defined common structure from two perspectives, we can already foresee some challenges in

capturing it through PD. At the trajectory level, it is possible that the teacher behaviors are unaligned,

meaning their trajectories may never or only slightly overlap. During distillation, the student network

copies the behaviors of the teachers, but the student cannot explore new behaviors across tasks because

of the offline RL setting. If the behaviors are unaligned, this make it difficult for PD to capture any

common structure at all. This will be addressed in Chapter 6.4.1.

At the computational level, enforcing partially shared computation across tasks can be challenging.

The computation is not directly copied from the teachers, as the student is randomly initialized and

only receives input states and target actions to minimize the loss. The student network independently

learns how to compute actions from states. Therefore, an additional incentive should be introduced to

encourage shared computation across tasks. We will experiment with this in Chapter 6.3.2.

6.2. Measuring Shared Computation
In Chapter 5, we demonstrated that MOP can learn student policies that match the performance of their

teachers. Now, we aim to evaluate how much common structure these students capture. To achieve this,

we design a technique to measure shared computation across tasks, which serves as an indicator of how

much common structure is being captured. To the best of our knowledge, this is the first attempt to

quantify the sharing of common structure across tasks.

We begin by discussing how the network’s activation values can be leveraged for this purpose. Next,

we explore measures to assess the similarity between these activation values across tasks. Lastly, we

address the limitations of our measurement technique.

6.2.1. Activation Values
The student network used in our experiments consists of an input layer with 25 neurons (1 for the

task ID and 24 for each state dimension), two hidden layers of 256 neurons each, and an output layer

with 6 neurons corresponding to the action dimensions. The hidden layers use the ReLU (Rectified

6.2. Measuring Shared Computation 31

24 (s)1 (i)

128

6

i=1

128

128 128

i=0

(a) Separate task-specific subnetworks

24 (s)1 (i)

256

256

6

(b) Highly overlapping task-specific subnetworks

Figure 6.2: An intuitive illustration of when there is no shared computation or high shared computation across tasks. The

rectangles represent layers in the neural network with the number of neurons denoted inside. The blue and red colors represent

two different tasks, where there is no overlap between activated neurons in (a) and high overlap in (b).

Linear Unit: 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥)) activation function [23], which maps negative values to 0 and applies

an identity function otherwise. The output layer leverages the hyperbolic (𝑓 (𝑥) = 𝑡𝑎𝑛ℎ(𝑥)) tangent

activation function [33] to map the result between -1 and 1, which corresponds to the range of the action

space.

Every time the network maps a state and task ID to an action, a neuron in a hidden layer is considered

activated when the outcome of the ReLU is positive, and not activated when the outcome is 0. We

are interested in understanding how these intermediate activation values correlate with the different

tasks. Before diving into the exact measurement, let us first build some intuition about what would

hypothetically occur within the student network when no common structure is captured compared to

when a significant amount is shared.

Two scenarios are illustrated in Figure 6.2. If no common structure is shared, the student network

might consist of two disjoint subnetworks, each dedicated to one task, with the task ID determining

which subnetwork to activate (Figure 6.2a). In this scenario, there would be no shared computation

across tasks, and there would be no advantage to maintaining a multi-task network. In fact, it would

be equivalent to using two separate single-task networks and selecting which to use based on the

task ID. Note that this is a hypothetical situation, and there is no direct indication that the network

would develop two completely non-overlapping subnetworks. However, if such a case were to occur, it

would imply that using a multi-task network offers no additional benefits compared to having separate

single-task networks.

On the other hand, if a significant amount of common structure is exploited, the subnetworks would

overlap considerably (Figure 6.2b). Many neurons would activate regardless of the task ID to process

common structure. However, some neurons would still activate only for specific task IDs, reflecting

task-specific properties.

While Figure 6.2 is a hypothetical illustration meant to build intuition, our goal is to quantify the

correlation between neuron activation values and the task ID of the actual student networks. This

comparison does not only consider whether a neuron is activated or not, but also takes into account the

magnitude of its activation. We will later discuss how to numerically compare these activation values

using a similarity measure. However, before doing so, it is essential to determine which activation

values should be compared. There are two primary options for this: comparing per-state activation

values or comparing activation values averaged over a task’s own state distribution.

For both options, we deploy the student agent online to perform both tasks and let it collect transitions.

We let it perform 1000 episodes per task. An episode consists of 1000 transitions, so it collects 1 million

states per task. 𝒟𝑆
𝑖

denotes the dataset of transitions collected by the student in task 𝑖.

Per-State Activation Values
To compare the per-state activation values of the agent across tasks, we let the student infer an action for

each state in the datasets and both task IDs: 𝜋𝑆(𝑠, 0) and 𝜋𝑆(𝑠, 1), where 𝑠 ∼ 𝒟𝑆
0
∪𝒟𝑆

1
. This allows us to

6.2. Measuring Shared Computation 32

compare the activation values for the same state, but with different task IDs.

This approach reveals the influence of the task ID on the activation values of individual input states. A

key limitation of comparing per-state activation values is that a state can implicitly indicate the task,

even without the explicit task ID. This occurs because certain states might only be relevant to a specific

task. In such cases, the student could output the same action for both tasks without a performance

loss, since it would not encounter that state in the offline data or the environment for the other task.

For these states, which are only relevant to one of the tasks, there could be high correlation across

tasks. However, this correlation does not truly reflect the common structure shared between tasks. To

capture the common structure more accurately, it is necessary to incorporate the state distributions of

the student across both tasks.

Average Activation Values
To compare the activation values while accounting for the state distribution of each task, we can use

the average activation values per task. As before, we utilize the datasets collected by the student in

the environment. However, we only pass the states through the student network with the task ID

corresponding to the task in which the state was encountered: 𝜋𝑆(𝑠, 𝑖), where 𝑠 ∼ 𝒟𝑆
𝑖
. We then average

the activation values per task and neuron.

This method accounts for the state distributions of each task, as it only considers the states the student

would naturally encounter when performing that task. This is crucial to accurately compare the

activation of neurons across tasks. However, a limitation is that averaging could disregard important

details, as the activation values may fade out when averaged across all states. Nonetheless, this technique

can still provide useful insights into which neurons are consistently active for each task. A high degree of

overlap in active neurons across tasks may suggest that common structure is being effectively captured.

We can then plot these average activation values and compare them between the standing and walking

tasks. Figure 6.3a shows this comparison for the student trained on the Medium-replay offline datasets.

However, this visualization is difficult to interpret, as the network does not enforce any positional

constraints on neurons with respect to the task ID. In other words, the network does not activate all

the left-side neurons for the standing task and the right-side neurons for the walking task; instead, the

activations are completely intertwined.

To make this visualization more interpretable, we sort the neurons based on their average activation

values for the standing task. This is shown in Figure 6.3b. Since the neurons are sorted by the activation

values of the standing task in ascending order, a positive correlation is indicated if the plot of the

walking task shows an increasing trend. A negative correlation is indicated if the walking plot shows a

decreasing trend. No correlation is indicated if there is no trend. The results show a slight correlation

in the first layer and a strong correlation in the second layer. This suggests that the student is sharing

computation across tasks and could mean that at least some common structure is captured.

6.2.2. Similarity Measure
In the previous section, we explained how activation values can be compared across tasks, serving

as an indicator of the common structure captured by the multi-task student network. Our goal is to

quantify the correlation between activation values and task ID using a numerical metric rather than a

plot. Therefore, we will use Kendall’s 𝜏 as a similarity measure.

In the previous section, we plotted the average activation values across tasks (Figure 6.3). To make it

visually interpretable and enable trend comparison between tasks, we sorted the neurons based on their

activation values in the stand task. We believe that this ordering provides an intuitive way to compare

neurons, as it reflects their relative activation rather than the absolute value. A commonly used measure

for comparing such orderings is Kendall’s 𝜏.

Kendall’s 𝜏 is widely used in information retrieval to measure the correlation between two ranked

variables by comparing the number of concordant and discordant pairs [53]. An example of ranked

variables is the output of search engines, which produce ranked lists of documents [72]. To assess the

effectiveness of search engines, it is helpful to compare such ranked lists. In our case, Kendall’s 𝜏 can be

interpreted as ranking the neurons in each layer based on their activation values and then comparing

the concordant and discordant pairs between tasks. Kendall’s 𝜏 ranges from -1 (indicating negative

6.2. Measuring Shared Computation 33

(a) Unsorted.

(b) Sorted by the average activation values of the standing task in ascending order.

Figure 6.3: The average activation values per neuron of the student network trained on the Medium-replay datasets after being

deployed online to perform the standing and walking tasks.

6.2. Measuring Shared Computation 34

correlation) to 1 (indicating positive correlation), with 0 representing no correlation. A high positive

value would indicate that neurons in both tasks are similarly ranked, suggesting significant shared

computation.

Formally, Kendall’s 𝜏 is defined as:

𝜏 =
2(𝐶 − 𝐷)
𝑁(𝑁 − 1) [72],

where 𝐶 is the number of concordant pairs, 𝐷 is the number of discordant pairs, and 𝑁 is the number

of objects in each ranked variable.

6.2.3. Results
The results of measuring shared computation are shown in Table 6.1. The similarity for per-state

activations is significantly higher than for average activations. This is expected, as there may be high

similarity for states encountered in only one of the tasks, as explained in Section 6.2.1. Furthermore,

the per-state activations indicate more sharing in the first layer than in the second layer, whereas for

the average activations, this is reversed. This observation makes sense because per-state activations

are evaluated on the exact same input, leading to a correlation of 1 at the input level, which gradually

diverges deeper in the network due to sequential transformations. In contrast, the average activations

consider a distribution of input states, providing a measure of similarity that is less dependent on

specific inputs.

We believe that the average comparison best reflects the purpose of our measurement, as it incorporates

the state distributions of the tasks. Furthermore, the results indicate that activation values do not fade

out against each other in our setting, which can be a risk when taking the mean. Therefore, we will use

the average activation comparison as the primary technique to measure shared computation throughout

this work. Only in cases where it is impractical to compute the mean of activation values, we will use

the per-state comparison. When using the per-state comparison, this will be explicitly noted.

The results show that Expert X Expert shares the most. We suspect this sharing occurs because both

teachers demonstrate correct behavior in states with common structures. Correct behavior is more likely

to be aligned, making it easier for PD to merge. Conversely, Medium X Medium shares the least, which

can be explained by the fact that suboptimal behaviors are less likely to be aligned. This observation

will be discussed further in Chapter 6.4.1.

Furthermore, Medium-replay X Medium-replay shares a significant amount. This is expected, as the

offline data includes all trajectories of TD3 trained up to the medium level. This implies that many

similar states are present in the offline data for both tasks, leading to more similar state distributions.

Consequently, this increases the likelihood of shared computation in these states.

Student Network (Walk X Stand) Per-state Average
𝜏 layer 1 𝜏 layer 2 𝜏 layer 1 𝜏 layer 2

Expert X Expert 0.57 ± 0.05 0.45 ± 0.06 0.16 0.36

Medium X Medium 0.53 ± 0.06 0.37 ± 0.08 0.067 0.15

Medium-replay X Medium-replay 0.54 ± 0.06 0.36 ± 0.07 0.14 0.36

Table 6.1: Results of per-state and average activation values comparison with Kendall’s 𝜏. The per-state values represent the

mean and standard deviation over all state comparisons, while the average values are single-point comparisons of mean

activation values.

6.2.4. Limitations
As mentioned earlier, this is the first attempt, to the best of our knowledge, to quantify the sharing of

common structure across tasks. We recognize that our measurement technique may not fully capture

the extent of shared structure in all cases. Therefore, we discuss its limitations and aspects that should

be addressed in future work.

6.2. Measuring Shared Computation 35

Comparing Different State Distributions
First of all, we compared activation values per-state and on average. The per-state comparison has a

limitation: activation values are compared between tasks, but some states may be encountered in only

one of the tasks. When inferring an action for these states with a switched task ID, it is possible that

the computation remains highly similar. However, this similarity does not necessarily indicate shared

behavior across tasks. Instead, it may occur because the state-action pair is irrelevant for one of the tasks,

as it is never encountered. The network could produce any action in these states without degrading

performance. By averaging across all states in a task, only the relevant states are considered for each

task. This makes it a more appropriate method for accounting for task-specific state distributions.

Nonetheless, this approach also has a limitation: averaging can cause activation values to fade out

against each other. It would be interesting for future work to investigate other ways of comparing

activation values, while accounting for different state distributions across tasks.

The concept of comparing activation values relates to prior work that examines the similarity of

representations learned by different neural networks. Centered Kernel Alignment (CKA) [34] is a

similarity index used to compare feature representations across various neural network architectures,

different random initializations, or networks trained on different datasets. CKA is often applied in

image classification tasks, where intermediate representations naturally capture high-level features of

input images.

In our context, switching the task ID in the student network could be viewed as similar to using different

networks with the same architecture, influenced by different random initializations based on task ID

and trained on different datasets. However, in our policy network, the intermediate activation values

do not correspond to high-level features of the input state in the same way. Here, states are numerical

values, which explicitly define the relevant features. For example, if we had visual states, feature

extraction would involve deriving coordinates for body parts from each state image, leading to similar

extracted features across states. However, given that we work with numerical states, it is more intuitive

to interpret the intermediate values as outputs of individual functions within a larger function, where

the overall mapping forms a composition of these smaller functions.

Given a set of input examples, CKA first compares every pair within each representation (inner product)

and then assesses the similarity structure across representations. In image classification tasks, this

approach makes sense, as the network may extract similar features from images of different animals,

such as dogs and cats. While the images differ, they may share common features. However, in our

case, comparing different numerical states may not be meaningful, as these states may lack inherent

commonalities. We recommend that future work explores how CKA can be adapted for policy networks

and data in the form of numerical state-action pairs. Furthermore, it should also account for evaluation

on datasets with different distributions.

Similarity Measure Invariances
Another limitation of our measurement technique is that it only compares orderings between neurons,

which may not always fully reflect the shared common structure between tasks. Currently, we use

Kendall’s 𝜏 to compare vectors of activation values. Kendall’s 𝜏 has certain invariances, such as being

unaffected by monotonic transformations. This means that any transformation preserving the order

of the neurons, do not affect the final similarity. This is specifically designed for ranking problems in

information retrieval. However, CKA has specific invariances that are intended to capture meaningful

similarities in neural network representations. Future work should explore what invariances are

necessary for a similarity measure to identify common structure across tasks effectively. This should be

derived from the formal definition of common structure, which is also not yet standardized.

To illustrate the complexity of defining these invariances, consider two mathematical expressions that

hypothetically represent optimal behavior: (1) 𝑥 + 𝑦, and (2) ln(𝑥 + 𝑦). Both expressions share common

structure in the form of the summation, while the natural logarithm is a task-specific operation. If we

modify expression (1) to 𝑒 ln(𝑥+𝑦)
, the computation has technically changed, but the outcome remains

equivalent to the original expression, still reflecting optimal behavior. In terms of shared computation,

both expressions perform a summation and apply the natural logarithm. However, in expression (1) the

natural logarithm is canceled out by the exponent. This increases the observed shared computation,

but without truly capturing more common structure. One possible invariance for a common structure

6.3. Computational Level Common Structure 36

similarity measure could involve enforcing a minimal form of mathematical expression. However, this

would be challenging to implement effectively.

Another example of a property that we believe should hold for a similarity measure in our context is

that the correlation should be 1 when the activation values are exactly the same. This property holds

for Kendall’s 𝜏, as it reaches a value of 1 when two sets of activation values have identical rankings,

indicating perfect concordance. It is important to construct more properties like this to allow for a

meaningful similarity measure with proper invariances for our context.

6.3. Computational Level Common Structure
After measuring the amount of shared computation in the current student agents, we will now try to

improve it. In this section, we focus on better capturing common structure at the computational level.

We first introduce an information bottleneck by reducing the network size. Afterwards, we will add a

regularization term to the loss function, encouraging the student to not only mimic its teachers but also

to capture common structure.

6.3.1. Reducing Network Size
The first intuition for capturing more common structure at the computational level is to reduce the size

of the student network. This intuition arises from the hypothetical illustration of neuron activations

across tasks (Figure 6.2) discussed in Section 6.2.1. Hypothetically, the multi-task student network could

internally maintain two task-specific subnetworks. If this were the case, there would be no advantage to

using a multi-task network over simply maintaining two separate single-task networks. Such a situation

is only feasible if the student network has enough capacity to accommodate both tasks independently.

However, if the network’s capacity is reduced, it is forced to share common structure across tasks in

order to preserve performance.

This approach introduces an information bottleneck [56]. An information bottleneck forces a model

to capture only the essential information needed for optimal performance across all scenarios. In our

case, reducing the network size restricts the student network’s capacity to model both tasks separately.

This forces it to merge redundant information in the common structure, while maintaining essential

task-specific properties.

The aim of reducing the network size is to balance the performance with the shared computation. We

expect that if the network is too small, there is not enough capacity to represent all essential information.

This would degrade performance. If the network is too large, the information bottleneck is not fully

enforced allowing the student to represent redundant information in common structure. This would

decrease the amount of shared computation.

In this experiment, we vary the number of neurons in the hidden layers of the student network. This

setup is similar to the experiment in Section 5.2.4. However, here we consider actual offline data instead

of generated datasets with artificial distribution shifts. Additionally, we measure the degree of shared

computation by computing Kendall’s 𝜏 over the per-state activation values, as explained in Section 6.2.1.

We use per-state measurements because it is impractical to average activation values over many states

during training. The results of this experiment are presented in Figure 6.4.

As the network size decreases, both performance and shared computation gradually degrade. This

suggests that reducing network size alone does not automatically encourage sharing common structure

across tasks. This is likely because it does not provide an explicit incentive to merge common behaviors

across tasks. In the next section, we explore adding such an incentive directly into the loss function.

6.3.2. Ranking Regularization
We introduce a regularization term in the loss function that incentivizes the student network to achieve

a high correlation in activation values across tasks. Although directly optimizing Kendall’s 𝜏 would be

ideal, it is non-differentiable and discontinuous, making it unsuitable as a loss function. As an alternative,

we consider Normalized Discounted Cumulative Gain (NDCG) [65]. NDCG is also non-differentiable

but smooth, therefore it can be used as a loss function by taking the surrogate gradient. Additionally,

two other commonly used loss functions in learning-to-rank methods are the pairwise logistic loss [11]

and the listwise softmax cross-entropy loss [9]. In our experiments, we evaluate all three loss functions

6.3. Computational Level Common Structure 37

(a) Episode reward

(b) Per-state Kendall’s 𝜏

Figure 6.4: Results of reducing the network size evaluated on final performance (a) and shared computation (b). Each student

was trained from scratch on a single random seed.

6.3. Computational Level Common Structure 38

as regularization terms.

For simplicity, we define the regularized loss function in the context of our experimental setup, where

the number of tasks is two. The new loss function is defined as:

ℒregularized :=
1

2

1∑
𝑖=0

E
𝑠∼𝒟𝑖

[

𝜋𝑇𝑖 (𝑠) − 𝜋𝑆(𝑠, 𝑖)

2

2
+ 𝜆Σ𝑘𝑗=0

ℒrank

(
ℓ 𝑗(𝜋𝑆(𝑠, 𝑖)), ℓ 𝑗(𝜋𝑆(𝑠, 𝑖 ⊕ 1))

)]
where the total number of tasks is 2, 𝑖 is the task ID, 𝒟𝑖 is the offline dataset for task 𝑖, 𝜋𝑇

𝑖
: 𝒮 → 𝒜

is the actor network of the teacher for task 𝑖, and 𝜋𝑆 : 𝒮 × 𝑖 → 𝒜 is the student’s actor network, 𝜆 is

a hyperparameter, 𝑘 is the number of layers in the student’s actor network, ℓ 𝑗 retrieves the activation

values of the 𝑗th layer from a network, and ℒ𝑟𝑎𝑛𝑘 is the ranking loss.

The equations for the ranking losses are as follows:

• Normalized Discounted Cumulative Gain (NDCG):

NDCG(𝑥, 𝑦) := −
∑𝑛
𝑖=1

𝑦𝜋𝑥 (𝑖)
log

2
(𝑖+1)∑𝑛

𝑖=1

𝑦
sorted(𝑖)

log
2
(𝑖+1)

,

where 𝜋𝑥(𝑖) is the permutation of item 𝑖 induced by 𝑥.

• Pairwise logistic loss:

ℒpair(𝑥, 𝑦) :=

𝑛∑
𝑖=0

𝑛∑
𝑗=0

log

(
1 + 𝑒−(𝑥𝑖−𝑥 𝑗)·(𝑦𝑖−𝑦𝑗)

)
• Listwise softmax cross-entropy loss:

ℒlist(𝑥, 𝑦) := −
𝑛∑
𝑖=1

𝑃𝑦(𝑖) log𝑃𝑥(𝑖),

where 𝑃𝑧(𝑖) = 𝑒𝑧𝑖∑𝑛
𝑗=1

𝑒
𝑧𝑗 .

Each ranking loss takes two vectors of ranking scores and computes a similarity in terms of ordering.

In our context, these two vectors correspond to the neuron activation values of a layer in the standing

task and the walking task. Note that this is a per-state comparison of activation values, as described in

Section 6.2.1. We use per-state comparisons because averaging activation values over all states in the

offline data is impractical for every gradient step. By minimizing these losses, we encourage the same

ranking of neurons across tasks, effectively guiding the student network to activate the same neurons

irrespective of the task ID.

This regularization term serves as an additional objective to the primary objective of replicating the

teachers’ actions. The hyperparameter 𝜆 controls the relative importance of this objective. When 𝜆 is set

to 0, the optimization focuses only on replicating the teachers’ actions. In contrast, a high 𝜆 value leads

the student to prioritize maximizing shared computation. So we are essentially balancing between the

two objectives with the goal to deviate slightly from the teacher actions where it can significantly increase

shared computation. To reduce computational overhead, we did not perform extensive hyperparameter

tuning but found that setting 𝜆 to 100 best illustrates the effect in our experiments.

The results are displayed in Figure 6.5. The pairwise loss achieves the highest Kendall’s 𝜏, but this

comes at a significant cost to performance. This suggests that the student effectively learns to ignore the

task ID. However, the primary objective of replicating the teachers’ actions is overshadowed, leading

to a degradation in performance. This outcome indicates that negative transfer occurs, as the student

network is encouraged to increase shared computation across tasks, resulting in suboptimal actions for

both tasks.

The NDCG loss shows results almost identical to those with no regularization in both episode reward

and Kendall’s 𝜏. This is likely due to the difficulty of optimizing the surrogate gradient. Consequently,

6.3. Computational Level Common Structure 39

(a) Episode reward

(b) Per-state Kendall’s 𝜏

Figure 6.5: The results of the ranking regularization experiment with 𝜆 = 100 evaluated on performance (a) and shared

computation (b) where each line represents a different type of ranking loss. Each student was trained from scratch on a single

random seed.

6.4. Trajectory Level Common Structure 40

the optimization process may fail to meaningfully impact the model’s behavior, resulting in little

difference compared to no regularization.

Lastly, the listwise loss maintains the same performance while significantly improving Kendall’s 𝜏 in

the first layer. However, in the second layer, the shared computation decreases, averaging out to a level

similar to that with no regularization. This suggests that shared computation can be enforced across

tasks in one layer, but this transformation may be undone in a deeper layer. This behavior is the same as

in the example of mathematical expressions discussed in Section 6.2.4. We considered two expressions:

(1) 𝑥 + 𝑦 and (2) ln(𝑥 + 𝑦). The shared computation can be increased by modifying expression (1) to

𝑒 ln(𝑥+𝑦)
. In this way, the natural logarithm could be applied in one layer to increase shared computation,

but be canceled out in a deeper layer by raising the exponent. On average, this process hypothetically

maintains the same level of shared computation.

In conclusion, adding a regularization term to increase shared computation in the loss function does not

improve performance or increase shared computation. The main challenge with ranking regularization

lies in the abstract nature of shared computation. As discussed in Section 6.2.4, our technique for

measuring shared computation has limitations in fully reflecting the captured common structure. While

it can be somewhat useful as a measurement tool, directly optimizing this measure is less intuitive.

This is because the measure does not fully represent the goal of capturing more common structure.

Without a clearly defined objective for shared computation, optimization becomes difficult. This makes

it challenging to ensure that the desired type of behavior is shared.

6.4. Trajectory Level Common Structure
In this section, we focus on capturing common structure at the trajectory level. We begin by discussing

the fundamental capabilities of PD and conclude that PD can only merge common structure in states

where the teacher behaviors are aligned. We argue that multi-task exploration is necessary to align

teacher behaviors. To enable multi-task exploration, we introduce the assumption that the reward

functions are known. Based on this assumption, we propose two extensions to our approach aimed at

aligning teacher behaviors through multi-task exploration: Data Sharing (DS) and Offline Q-Switch.

Finally, we discuss the limitations of these extensions.

6.4.1. Multi-Task Exploration
In Chapter 5, we demonstrated that MOP can successfully learn a multi-task student network that

matches the performance of its teachers. However, in Section 6.2, we observed that the extent of shared

computation across tasks within the student network is limited. This raises a fundamental question:

why does the student fail to leverage common structure to outperform its teachers? PD essentially

copies the behavior of its teachers, merging common behaviors and separating different behaviors. This

approach is effective at avoiding negative transfer, but it can miss common structure if the teachers do

not behave similarly in those parts of the tasks. In other words, common structure at the trajectory level

is not automatically captured by PD if the teacher behaviors are unaligned.

There are two situations in which the behaviors of the teachers are unaligned: 1) at least one teacher is

non-expert, or 2) alternative behaviors are equally optimal. To explain this, we will use the grid world

example from Chapter 6.1.

In the ideal case, the teachers follow an optimal path from the top left to their target and they follow the

same trajectory as much as possible. PD will merge the state-action pairs that are task independent.

This is shown in Figure 6.6a, where three state-action pairs are shared across tasks which is optimal for

the declared targets.

If at least one teacher is non-expert, it is likely to take a different action in a common structure state than

the other teacher. This is visualized in Figure 6.6b. The red agent, aiming to reach 𝑇1, takes a longer path

than necessary. However, the distillation process does not correct for this. It simply copies the behavior

of the teachers and identifies the detour as a task-specific property. This specific example results in one

state-action pair less being shared across tasks, than the ideal scenario.

If the teachers are optimal but equally optimal behaviors exist, the behaviors can be unaligned. This

is illustrated in Figure 6.6c. Both teachers follow an optimal path to their target, but there are no

6.4. Trajectory Level Common Structure 41

T1

T0

T1
T0

(a) Optimal and aligned

T1
T0

T1

T0

(b) Suboptimal

T1

T0

T1
T0

(c) Unaligned

Figure 6.6: Three scenario’s of single-task teachers (left) distilled into a multi-task student (right) in a grid world. The trajectories

of task 0 are in blue, of task 1 in red, and the common structure is green.

6.4. Trajectory Level Common Structure 42

overlapping parts of the trajectories. When distilling from these teachers, PD will identify all state-action

pairs as task-specific. Thus no common structure is captured in this example.

These scenario’s show that the amount of common structure captured by PD is highly dependent on the

behaviors of the teachers. It will not merge state-action pairs which are not already the same across

teachers. This reasoning leads to Hypothesis 2.

Hypothesis 2 Regular Policy Distillation can only share common structure in states where the teachers behave
identically.

A consequence of Hypothesis 2 is that the student cannot outperform its teachers in regular PD. This

occurs because common behaviors in the teachers are merged, while different behaviors are separated.

There is no incentive for the student to compare different behaviors in the same state and merge them by

selecting the best performing one. The reason for this limitation is the absence of multi-task exploration;

the student has no way of knowing how effective a teacher’s behavior would be in the other task.

Multi-task exploration would allow to try behaviors of teachers in another task. If multi-task exploration

shows that one behavior yields greater or equal reward across all tasks, the student can copy it and treat

it as common structure. If each behavior performs best only for its own task, it should be preserved as

task-specific.

The most straightforward way to introduce multi-task exploration would be to test the behavior in

the environment and observe the resulting reward. Distral [61] is a method that incorporates this by

alternately distilling knowledge from single-task policies into a multi-task policy and regularizing the

single-task policies with the multi-task policy. This regularization promotes exploration of behaviors

learned in other tasks. However, in the offline setting, online exploration is not possible.

Another intuitive approach is to use the teachers’ Q-values. Q-switch Mixture of Policies (QMP) [80] is a

method which selects the best action across all single-task policies at a given state by evaluating it in the

Q-value function of the current task. QMP operates online and adapts single-task Q-value functions

by observing the reward while performing multi-task exploration. However, offline RL algorithms

typically learn pessimistic value functions, penalizing state-action pairs outside the training distribution

to avoid catastrophic behavior upon deployment. As a result, evaluating a state-action pair from one

task using the Q-value function of another would yield a low value if the pair is outside the training

distribution. If the pair is inside the distribution, it would yield a high value, but in that case the teacher

would have already learned the best action for that state.

To enable multi-task exploration in our setup, we assume that the reward functions are known. We

formalize this in Assumption 1. In the following sections, we explore two approaches for leveraging

these reward functions to better capture common structure: Data Sharing (DS) and Offline Q-Switch

(OQS).

Assumption 1 The reward functions of all tasks, {𝑅𝑖}𝑚−1

𝑖=0
, are known to the agent, either provided directly or

accurately estimated.

6.4.2. Data Sharing
As discussed in Chapter 3, prior work has demonstrated that sharing offline data from related tasks can

enhance single-task policies [76, 4, 75]. This concept can be incorporated into MOP by relabeling the

data with the known reward functions and adding it to each task’s offline dataset. This adaptation is

illustrated in Figure 6.7. For each task, the transitions in all offline datasets are relabeled by applying

the transition (𝑠, 𝑎, 𝑟 𝑗 , 𝑠
′
) to the reward function of the target task: 𝑟 𝑗→𝑖 = 𝑅𝑖(𝑠, 𝑎, 𝑠′), where 𝑅𝑖 is the

reward function for task 𝑖, 𝑠 is the initial state, 𝑎 is the action taken, and 𝑠′ is the resulting state. The

mixed offline datasets, containing all relabeled transitions, are then used by the offline RL algorithm to

learn the teacher policies. The distillation process remains the same as in MOP, with the only difference

being that states are now sampled from the mixed datasets. In the original approach, the states sampled

for distillation were separated by task, whereas in this approach, all states from all tasks are fed to all

teacher policies.

6.4. Trajectory Level Common Structure 43

Task 1 mixed data
Offline RL algorithm π1

T

Relabel

Task 0 mixed data
Offline RL algorithm

π0
β

π1
β

π0
T

Task 1 data

Task 0 data
Relabel

Distillation Loss

Sample state from task i Input state
to teacher i

Input state & i
to student

Target output

Predicted
output Optimize

πS

Figure 6.7: Data sharing incorporated into MOP. Task 0 is marked in blue and Task 1 in red to highlight the relabeling of data.

The adapted distillation loss becomes:

ℒ𝐷𝑆 :=
1

𝑚

𝑚∑
𝑖=0

E
𝑠∼𝒟

[

𝜋𝑇𝐷𝑆𝑖
(𝑠) − 𝜋𝑆(𝑠, 𝑖)

2

2

]
,

where 𝑚 is the total number of tasks, 𝑖 is the task ID, 𝒟 :=
⋃𝑚
𝑖=0

𝒟𝑖 is the union of all task-specific offline

datasets, 𝜋𝑇𝐷𝑆
𝑖

is the actor of the teacher for task 𝑖 trained on relabeled data

⋃𝑚
𝑗=0
𝐷𝑗→𝑖 , and 𝜋𝑆 is the

student’s actor.

However, DS can also exacerbate distribution shift and degrade offline RL performance [76]. This occurs

because the offline data is collected by different behavior policies for each task, leading to significantly

different state distributions. The final state distribution of the mixed dataset is likely much broader and

may contain many low-reward transitions for the target task, as these were collected under different

objectives. Offline RL algorithms aim to avoid low-reward state-action pairs, so the teacher policy is

likely to follow a much narrower state distribution. This can exacerbate the distribution shift relative

to the original offline dataset. In particular, offline RL algorithms that constrain the teacher policy to

stay close to the behavior policy are vulnerable to performance degradation due to large distribution

shifts. In contrast, uncertainty-based algorithms tend to be more robust to this issue [4]. We are using

the uncertainty-based PBRL algorithm [5], which helps mitigate the performance degradation caused

by a distribution shift.

In the context of PD, DS serves as a form of multi-task exploration, enabling trajectories collected by

behavior policies from all tasks to be cross-evaluated and included in each offline dataset. This approach

should help the offline RL algorithm learn better teacher policies if DS improves the coverage of optimal

trajectories, especially in cases where a teacher would otherwise be non-expert. Ideally, DS results

in expert teachers across tasks, thereby avoiding the issue of unmergable teacher behaviors caused

by suboptimal actions, as discussed in Chapter 6.4.1. While it does not fully address the challenge of

equally optimal but unaligned teacher behaviors in common structure states, we are working with

continuous state and action spaces, making it highly unlikely that behaviors will be exactly equally

optimal. DS ensures that teacher policies are learned on the same distribution of state-action pairs.

Given the continuous nature of the state and action spaces, we expect that the teacher policies will

naturally align if they can learn expert behavior. Having aligned teacher behaviors across common

structure states would allow PD to merge these behaviors and fully leverage the common structure.

6.4.3. Offline Q-Switch
As mentioned earlier, DS can exacerbate distribution shift, leading to a degradation in offline RL

performance. While an uncertainty-based offline RL algorithm can mitigate this, the risk is not entirely

eliminated. One potential solution to this issue is sharing policies instead of data. QMP [80] is a method

that implements this approach in the online setting. It compares the actions of all task-specific policies

and selects the highest-valued action according to the Q-value function of the target task. This action is

then executed in the environment, and the policy and Q-value function of the target task are updated

accordingly.

While QMP provides an effective approach to multi-task exploration, it is not feasible in the offline

6.4. Trajectory Level Common Structure 44

Offline RL algorithm

π0
β

π1
β

π00
T

Task 1 data

Task 0 data
Relabel

Task 1 → 0 data

Task 0 data

Offline RL algorithm π01
T

Offline RL algorithm π10
T

Task 1 data

Task 0 →﻿ 1 data

Offline RL algorithm π11
T

Relabel

Distillation Loss

Sample state from task i Input state
to teacher i

Input state & i
to student

Predicted
output Optimize

πS

Q 00
T

01
T

10
T

11
T

Q

Q

Q
Q-​switch

argmax Q (s,a)

a ~ πi0

i1

j ij ij

Target output

Actions & Q-​values for task i i0

a ~ πi1

Figure 6.8: Q-switch incorporated into MOP. Task 0 is marked in blue and Task 1 in red. The relabeled datasets are circled with

their original colors to emphasize that the transitions still follow the distribution of the original offline datasets, while the rewards

have been relabeled to the target task.

setting. Offline RL algorithms typically learn pessimistic Q-value functions, assigning low values to

state-action pairs that are out-of-distribution relative to the offline data. Evaluating a state-action pair

from another task using such a pessimistic Q-value function will result in a low value if the pair is

out-of-distribution, offering no contribution to exploration. State-action pairs within the offline data

distribution might yield high values, but these are likely already known by the policy as good actions.

Nevertheless, since the reward function is known, we can instead learn multiple critics that accurately

evaluate each task’s state-action pairs in another task. Rather than relabeling the data and merging

it into a single dataset as in DS, we can maintain separate datasets for each relabeled set and learn

individual teachers from them. This approach also avoids exacerbating the state distribution shift. The

highest-valued action can then be used as the target output for distillation. We refer to this technique as

Offline Q-Switch (OQS).

The extension of MOP with OQS is shown in Figure 6.8. For each task, the transitions from all offline

datasets are relabeled according to the target task. However, these relabeled datasets remain separate.

The offline RL algorithm learns a teacher from each dataset, retaining both the actor (policy) and the

critic (Q-value function). During distillation, a state is sampled, and all teachers for the target task

select an action and evaluate it using their respective critics. The Q-switch mechanism selects the

highest-valued action as the target output for the student to mimic.

The new loss function is defined by:

ℒ𝑂𝑄𝑆 :=
1

𝑚

𝑚∑
𝑖=0

E
𝑠∼𝒟



𝑎𝑟𝑔𝑚𝑎𝑥

0≤ 𝑗<𝑚

(
𝑄
𝑇𝑂𝑄𝑆
𝑖 𝑗

(𝑠,𝜋𝑇𝑂𝑄𝑆
𝑖 𝑗

(𝑠))
)
− 𝜋𝑆(𝑠, 𝑖)

2

2

 ,
where 𝑚 is the total number of tasks, 𝑖 is the task ID, 𝒟 :=

⋃𝑚
𝑖=0

𝒟𝑖 is the union of all task-specific offline

datasets, 𝑄
𝑇𝑂𝑄𝑆
𝑖 𝑗

and 𝜋
𝑇𝑂𝑄𝑆
𝑖 𝑗

are the critic and actor of the teacher for task 𝑖 trained on relabeled data 𝐷𝑗→𝑖 ,

and 𝜋𝑆 is the student’s actor.

This approach will significantly increase training time, as it requires the offline RL algorithm to run

𝑚2
times instead of 𝑚. However, it has the potential to improve performance and reduce the required

network capacity. This is because the original teacher, trained on the original offline dataset, is included

among the teachers trained on relabeled data. The idea is that this teacher serves as a baseline, and its

actions are only overridden if a higher-valued action is found from one of the other teachers.

6.4. Trajectory Level Common Structure 45

6.4.4. Results
To test the DS and OQS extensions, we evaluate three objectives: teacher performance, student

performance, and the amount of shared computation across tasks.

Data Sharing
We expect DS to improve teacher performance in an absolute sense, as it is trained on twice as much

data. It is important to note that the sample complexity remains unchanged; we are not collecting

additional data but rather utilizing the available offline data more efficiently by sharing it across tasks.

However, performance may degrade if sharing significantly exacerbates the distribution shift.

We anticipate that teacher behavior in common structure states will naturally align due to DS. The

teachers are trained on the same offline data, with the only difference being the relabeled rewards. In

common structure states, the optimal action is the same across tasks. Since all teachers have access to the

same data, they are likely to converge on the same action in these states. This does not address the issue

of equally optimal behaviors, where multiple actions may yield similar value in common structure states.

Without communication between the teachers during training, unaligned behavior could still occur.

However, given the continuous state and action spaces, it is highly unlikely that different behaviors

would result in exactly the same reward. Therefore, we expect that if the offline RL algorithm is capable

of learning high-performing teachers, their behaviors will naturally align.

If the teachers show improved performance and aligned behavior, we expect student performance

and the amount of shared computation to improve as well. This expectation follows directly from

Hypothesis 2. Teachers with identical behavior can be effectively merged by PD, leading to increased

shared computation. Since we anticipate that teacher performance will improve and the student typically

matches this performance, the student’s performance is also expected to improve.

The results indicate that DS is particularly effective in the Medium X Medium setting (Figure 6.9a). The

teacher improves upon MOP in the standing task and matches its performance in the walking task. The

student successfully replicates this behavior, achieving the best performance compared to both MOP

and OQS across both tasks. Additionally, shared computation improves significantly compared to MOP

(Table 6.2), which aligns with our expectations.

However, in the Expert X Expert setting (Figure 6.9b), DS significantly degrades teacher performance

compared to MOP in both tasks. This is likely due to an increased distribution shift. The expert datasets

consist of high-value trajectories specific to the target task. When data is shared across tasks, the newly

introduced trajectories are likely to have lower value, as they were collected by expert behavior policies

from another task. While this increases the overall coverage of state-action pairs, it relatively reduces the

proportion of optimal trajectories. Therefore, we conclude that DS can degrade performance when the

behavior policies are already highly performant. As a result, the students learned from these teachers

also perform poorly. Nonetheless, the shared computation (Table 6.2) remains significantly higher than

in MOP, which can be attributed to the teachers being trained on the same mixed data.

Offline Q-Switch
Aside from DS, OQS is not always expected to improve teacher performance. With OQS, we learn two

teachers per task: one trained on the original offline data of the target task (as in MOP), and one trained

on the relabeled data from the other task. Ideally, the Q-switch ensures that the original teacher is only

overruled by the cross-task teacher if it suggests a higher-valued action. Therefore, we expect the OQS

student to perform at least as well as the MOP student.

We also expect OQS to increase shared computation compared to MOP. Unlike DS, OQS does not train

all teacher policies on the same mixed data. Instead, it keeps the relabeled data separate, preventing an

exacerbation of the distribution shift. As a result, the teacher policies are not expected to show fully

aligned behavior. However, the student mimics the best action from either the original or cross-task

teacher for each task. This should result in the student selecting the same actions in common structure

states across tasks. In other words, while the teachers are not trained on the mixed datasets, the student

indirectly leverages data from both tasks via the Q-switch mechanism. Consequently, we expect that

behaviors will align in common structure states, allowing the student to merge them effectively.

The results shown in Figure 6.9 present two teachers for OQS. The left bar corresponds to the teacher

6.4. Trajectory Level Common Structure 46

(a) Medium X Medium

(b) Expert X Expert

Figure 6.9: Results for MOP, extended with Data Sharing (DS) and Offline Q-Switch (OQS). Note that OQS maintains two teachers

per task: the left bar corresponds to MOP’s teacher (𝜋
𝑇𝑂𝑄𝑆
𝑖𝑖

), and the right bar represents the teacher trained on relabeled data

from the other task (𝜋
𝑇𝑂𝑄𝑆
𝑖 𝑗

). The experiments were conducted using 4 random seeds for each bar. Error bars represent the 95%

confidence intervals.

Student (Walk X Stand) Approach 𝜏 Layer 1 𝜏 Layer 2

Medium X Medium

MOP 0.067 0.15

DS 0.52 0.67

OQS 0.68 0.76

Expert X Expert

MOP 0.16 0.36

DS 0.44 0.62

OQS 0.43 0.72

Table 6.2: A comparison of Kendall’s 𝜏 across different student models, training approaches, and layers.

6.4. Trajectory Level Common Structure 47

trained on the original data (𝜋
𝑇𝑂𝑄𝑆
𝑖𝑖

, where 𝑖 is the target task), which is the same as the MOP teacher.

The right bar represents the cross-task teacher (𝜋
𝑇𝑂𝑄𝑆
𝑖 𝑗

, where 𝑖 is the target task and 𝑗 ≠ 𝑖), trained on the

relabeled data from the other task.

In the standing task, the cross-task teachers outperform or match the original teachers (the right bar is

higher than the left bar), suggesting that using walking data to learn to stand is effective. This makes

sense because the walking data contains many instances of standing, which can be leveraged to learn

the standing task. The state-action pairs related to walking can be disregarded when learning to stand.

However, in the walking task, the cross-task teachers perform poorly (the right bar is lower than the left

bar). This is expected, as the standing data contains no examples of walking behavior. It can only learn

how to stand, leading to lower rewards under the reward function of walk.

The key idea of Q-Switch is that the student replicates the best-performing teacher for any given state.

Therefore, the student is expected to match the performance of the best of the two teachers across all

tasks. Contrary to these expectations, the OQS student always performs worse than its best teacher. We

suspect this is due to the lack of proper coordination between the different Q-values being maximized.

Switching between different teachers may increase the per-action Q-value, but it could disrupt the

overall reward obtained over the entire trajectory.

In terms of shared computation, as shown in Table 6.2, OQS performs the best. However, since the

reward decreases, some of this sharing may be attributed to negative transfer.

6.4.5. Limitations
In the previous experiment, it was shown that data sharing can produce high-performing teachers,

especially in the stand task when trained on the medium offline dataset (Figure 6.9a). However, this

approach significantly degrades performance when applied to the expert offline datasets (Figure 6.9b).

Data sharing has been extensively explored in prior work, with significant claims about its performance.

However, we also want to point out the limitations of the technique.

We found that the high performance of data sharing can be attributed to an unintended feature in

the environment. To demonstrate this, we deployed each teacher to solve the other task: the walk

teacher was tested with the stand reward function, and vice versa (𝑅𝑖⊕1). The results, shown in Table 6.3,

indicate that the walk teacher performs better in both tasks for all offline datasets. This suggests that

simply copying the walk teacher could maximize rewards across tasks, rather than learning a multi-task

policy. In other words, there is no negative transfer from the walk task to the stand task. To prevent

this unintended feature, task-specific properties should be added to the stand task, such as a negative

reward for movement.

Teacher 𝑅𝑠𝑡𝑎𝑛𝑑 𝑅𝑤𝑎𝑙𝑘

Walk expert 904 862
Stand expert 898 204

Walk medium 752 729
Stand medium 514 181

Walk medium-replay 669 623
Stand medium-replay 503 139

Table 6.3: A comparison of teachers performing each other’s task shows that consistently using the walk teacher yields the

highest reward.

Upon reviewing the Uncertainty-driven Data Sharing (UTDS) method [4], we hypothesize that its

success depends on the incremental structure of the tasks in their experiments. It would be interesting

for future work to explore the effectiveness of this method in an environment where negative transfer

occurs between all tasks, forcing it to operate in a true multi-task setting.

Our work does not rely on this environmental unintended feature. Although the stand reward

function does not enforce stationarity, our student agents did learn to remain stationary (except under

6.5. Discussion 48

the data sharing extension). We also explored using a new environment with clearly disjoint task-

specific properties. However, the tasks proved too challenging for TD3 and PBRL to solve within

our computational constraints. Refining this computationally intensive experimental setup is beyond

the scope of this work. A better solution to address the unintended feature would be to modify the

DeepMind Walker environment by introducing a negative reward for forward movement in the stand

task, which we leave for future work.

6.5. Discussion
In this chapter, we aimed to capture the common structure between tasks through PD. In Section 6.1,

we defined common structure as behaviors that can be shared across tasks at either the trajectory

or computational level. However, defining common structure is challenging due to the abstract

nature of behaviors and their dependency on the multi-tasking method. Future work should focus on

standardizing the definition of common structure. This could help comparing and improving methods

aimed at capturing it across tasks.

To the best of our knowledge, we proposed the first method to quantify common structure shared across

tasks. Specifically, we measured shared computation as an indicator of the extent of common structure

captured across tasks. We analyzed the correlation of neuron activations on a per-state basis as well

as averaged across all states encountered during task performance. Each approach has its limitations:

per-state comparisons do not account for the tasks’ state distributions, while averaging activations can

cause them to fade out against one another. To measure the similarity between activation values across

tasks, we employed Kendall’s 𝜏, which intuitively ranks neurons based on their consistent activation for

each task and compares these rankings across tasks. Although Kendall’s 𝜏 provides a useful indication

of the level of shared structure, it may not capture all aspects of a formal definition of common structure.

We recommend that future work addresses the limitations of comparing activation values with respect

to the tasks’ state distributions and establishes invariance properties of a similarity measure that aligns

with a formal definition of common structure.

The results of measuring the shared computation of the students from Chapter 5, showed that tasks

trained on medium offline datasets shared very little computation. Nonetheless, those trained on expert

datasets shared significantly more. This suggests that better performing teachers are more likely to

share behaviors in common structure. We suspect this is because the teachers learned optimal behaviors,

which tend to be more aligned across tasks.

To further enhance PD’s ability to capture common structure at the computational level, we reduced the

network size and introduced ranking regularization. Reducing the network size alone did not enhance

shared computation, due to the absence of an explicit incentive. Ranking regularization was designed

to provide this incentive by adding a regularization term to the loss function. This encourages the

student network to align neuron activation values more closely across tasks. Using a pairwise logistic

loss improved shared computation, but degraded performance. The listwise softmax cross-entropy and

Normalized Cumulative Gain (NDCG) losses did maintain performance, but the shared computation

remained constant on average. The main challenge with ranking regularization is the abstract nature of

shared computation: it is not entirely clear what shared computation should look like to best capture

common structure. The lack of a well-defined goal for shared computation complicates optimization,

making it difficult to determine whether the correct kind of shared behavior is being encouraged.

When focusing on common structure at the trajectory kevel, we found that a key limitation of regular

PD, as shown by Hypothesis 2, is that it can only merge behaviors where the teachers are identical. If

teachers show different behaviors for the same state, PD treats these behaviors as task-specific properties,

keeping them separate in the student.

To address limitation, teacher behaviors must be aligned. Multi-task exploration could help facilitate

this by evaluating behaviors from one task in the context of another. We proposed two extensions that

introduce a form of multi-task exploration: Data Sharing (DS) and Offline Q-Switch (OQS). Both of

these extensions require the reward functions to be known. DS relabels offline data from one task

with the reward function of the target task and shares all data to train the teacher policies. The results

indicated that DS can improve teacher and student performance when data from related tasks is shared.

It enhances shared computation across tasks as well. However, DS can also degrade performance due to

6.5. Discussion 49

an exacerbated state distribution shift. OQS, on the other hand, selects the best action between two

teachers trained on separate relabeled datasets. While it showed improved shared computation, the

overall student performance decreased. This is probably due to a lack of coordination between the

teachers’ Q-values, leading to suboptimal decisions over an entire trajectory.

For future work, we recommend investigating alternative methods for multi-task exploration. Skills

Regularized Task Decomposition (SRTD) [74] is a related method focused on offline MTRL. As discussed

in Section 3.2, SRTD augments offline data by sampling imaginary trajectories from learned skill and task

embeddings. The authors suggest that these imaginary trajectories are similar to expert demonstrations.

This presents an appealing approach for multi-task exploration, because skills shared across tasks can

be leveraged to generate trajectories with aligned behavior. However, it is unclear from the SRTD results

whether this alignment is effectively achieved. The authors do not compare their method to single-task

offline RL approaches, leaving it uncertain whether there is a performance gain from exploiting common

structure across tasks. It is possible that the latent space does not accurately represent shared skills, as it

is trained on limited offline data. As a result, the generated trajectories might still fail to align across

tasks, thereby preventing effective multi-task exploration.

It would be interesting to investigate whether incorporating context through Large Language Models

(LLMs) [1] could enable more meaningful exploration across tasks. Recent research has demonstrated

that the broader contextual understanding of LLMs can be used to generate high-quality imaginary

trajectories for exploration in offline RL. Knowledgeable Agents from Language Model Rollouts (KALM)

[47] is a technique that leverages natural language descriptions of skills along with corresponding

offline data to produce diverse rollouts that reflect new skills. Results show that KALM is capable of

effectively executing tasks with previously unseen goals. While this approach requires textual context

to be available for each task, it has the potential to generate trajectories with aligned behaviors across

tasks. Therefore, it could serve as a useful extension to our approach.

Lastly, our experiments revealed limitations in the environment. We found that deploying the walking

teacher in the stand task consistently outperforms the standing teacher at its own task. Rather than

learning a proper multi-task student, it is more effective to simply copy the walking teacher and deploy

it for both tasks. While our work did not exploit this unintended feature, introducing a penalty for

movement in the stand task would help prevent this issue. We leave this improvement for future work.

In conclusion, while PD successfully avoids negative transfer, it can fail to capture common structure

when teacher behaviors are unaligned. We explored several approaches to address this: ranking

regularization, DS, and OQS. Ranking regularization did not improve performance, as the objective is

too abstract. Both DS and OQS introduced forms of multi-task exploration, which showed promise

in certain scenarios but also revealed clear limitations in others. Future research should focus on

standardizing definitions of common structure, developing more effective multi-task exploration

methods for the offline setting, and designing environments that better reflect the actual multi-task

setting.

7
General Discussion

This chapter presents a general discussion on the limitations, future work, and broader topics related

to our work. We emphasize the relevance of offline MTRL, discuss the general limitations of PD, and

address the limitations of our experimental setup.

7.1. Relevance of Offline Multi-Task Reinforcement Learning
This work addressed the offline MTRL setting. In the introduction, we briefly outlined its relevance,

but we would like to emphasize this again. We believe that both the offline and multi-task settings are

essential for applying RL to real-world problems. The offline setting enables safe deployment by relying

on previously collected data, but it may be constrained by the coverage and quality of the available offline

data. On the other hand, MTRL contributes to general artificial intelligence by combining skills across

tasks, which is particularly valuable in the offline setting. MTRL can use offline data from different

tasks, allowing RL agents to maximize the use of available samples. In this section, we emphasize the

relevance of offline MTRL from three perspectives. First, how it contributes to key open problems in RL.

Second, the importance of capturing common structure rather than simply scaling up resources. Third,

the potential of offline MTRL to address real-world problems effectively.

Relevance to Open Problems
As discussed in previous work, two major open problems in RL are generalizability and deployability [45].

Generalizability refers to the agent’s ability to perform well across diverse tasks and environments,

while deployability focuses on training agents in a way that prevents catastrophic actions in the real

world.

Offline MTRL addresses both of these challenges when an agent successfully captures common

structure across tasks. MTRL enhances generalizability by enabling the agent to learn multiple tasks

simultaneously, allowing shared behaviors to improve performance across tasks. Offline RL enhances

deployability by training agents only on previously collected data, thus avoiding the risk of catastrophic

behavior that can arise from interactions with the environment during training.

Relevance of Capturing Common Structure
We mentioned that it is crucial to capture common structure to be successful in MTRL. However, in

practice, it is also possible to scale up resources and maintain redundant single-task policies without

merging common behaviors, achieving high accuracy across tasks. While this approach may work in

the short term, it does not reflect true multi-tasking and has significant scalability challenges, especially

when dealing with a large number of tasks.

This is similar to the generalization problem in supervised learning, where spurious correlations in the

training data can be exploited to achieve high accuracy [2]. For instance, in a classification task, a model

might rely on irrelevant features (such as the background in an image) to predict the label correctly,

which results in overfitting. Although this could yield high performance in the training domain,

50

7.2. Limitations of Policy Distillation 51

the model’s accuracy degrades when exposed to a new domain where those spurious correlations

are no longer present. To ensure out-of-distribution generalization, it is necessary to learn invariant

relationships that are consistent across different environments. Similarly, in MTRL, merging shared

behaviors across tasks is essential for capturing common structure. When dealing with hundreds of

related tasks, this approach reduces the amount of resources significantly and can enhance performance

across all tasks. An intuitive analogy is a set of socket wrenches, each designed for a specific bolt size. It

is much more efficient to have a single adjustable socket wrench that can adapt to any bolt size.

Relevance to Real-World Problems
As an example of the practical relevance of MTRL, prior work shows how robotic arms can learn to

grasp a wide range of objects [31]. In this setup, rather than learning separate grasping policies for

individual objects, the robot arms learn a single, adaptable policy capable of generalizing to previously

unseen objects. This generalization is enabled by leveraging a large, diverse offline dataset and focusing

on skills that apply across multiple objects. Thereby it enhances grasping efficiency and adaptability

without requiring extensive new data for each individual object. It is worth noting, however, that this

approach is not fully offline. While it starts with an extensive initial dataset, the robot arm gathers

additional data during training through interaction with the environment. This allows the model to

explore new trajectories, which is not possible in domains where policy exploration is dangerous, such

as in healthcare. Therefore, it remains important to address the truly offline setting, where no interaction

with the environment is allowed before deployment.

Another example is the development of self-driving cars, which require extensive offline data to operate

reliably in real-world scenarios. Large datasets from diverse driving environments enable the car’s

policy to generalize and perform complex tasks, such as urban driving [52] or highway driving [42].

The reward functions for urban and highway driving share components for lane following and speed

control. Additionally, both tasks can benefit from sharing behaviors, such as detecting other vehicles.

However, there are also task-specific properties. For example, urban driving requires responsiveness to

pedestrians crossing the road, a scenario that does not arise on the highway. Applying offline MTRL

techniques can maximize the value of the previously collected data by learning a single policy that can

handle both tasks. This approach could improve performance across both settings while requiring less

capacity in the car’s self-driving system.

7.2. Limitations of Policy Distillation
While PD is a powerful technique for capturing common structure and avoiding negative transfer,

it comes with several limitations. One of the drawbacks is the training time. PD requires training

single-task agents before distilling their behaviors into a student network. This two-stage process can

be time consuming, especially when dealing with a large number of tasks. However, in the offline RL

setting, training time is generally a lower priority [38]. The focus tends to be more on maximizing the

use of available data rather than minimizing computation time. Therefore, the increased training time is

less critical in the offline setting.

As previously discussed, a major limitation of PD in the offline setting is its inability to perform

multi-task exploration during training, unlike methods such as Distral [61] and QMP [80]. In the online

setting, these methods enable the agent to evaluate behaviors from one task in the context of another

which enhances multi-task learning. However, in the offline context, exploration is not possible because

the agent is restricted to learning from a fixed offline dataset. This means PD can only rely on the

state-action pairs present in the previously collected data. As explained in Section 6.4.1, PD is limited to

capturing common structure in states where the teachers show identical behaviors, making it essential

for teacher behaviors to be aligned. Without multi-task exploration, achieving this alignment is highly

challenging. While we have attempted to introduce forms of multi-task exploration by assuming the

reward functions are known, this approach has proven to be difficult. We recommend that future work

explores other ways to enable multi-task exploration in the offline setting to address these limitations.

7.3. Limitations of Experimental Setup
While our experimental setup provides useful insights into PD in the offline MTRL setting, several

limitations remain that could be addressed in future work.

7.3. Limitations of Experimental Setup 52

The environment we used involves large continuous state and action spaces, which make it difficult

to measure state-action distributions and clearly define common structure. However, using smaller,

discrete spaces would mitigate offline RL challenges. So our choice of environment reflects the practical

challenges in offline RL, but it also introduces difficulties in analysis.

Our experiments focus on only two tasks: standing and walking. While this is enough for investigating

shared behavior, we did not test the performance when learning more tasks. Future work could explore

a larger set of tasks to further test the effectiveness of our approach. Additionally, the two tasks used in

this work have an incremental relationship: standing is easier than walking. Testing our approach on

tasks of equal difficulty could provide further insights into its performance.

Another limitation involves the reward function. The walking agent consistently outperformed the

standing agent across both tasks. This was due to the reward function in the standing task which does

not penalize movement. This meant that there was no negative transfer from walking to standing. To

better reflect a realistic multi-tasking setting, future work should consider adding a negative reward for

movement in the standing task.

Lastly, we collected data using a fixed sample size, which does not test how robust our approach is to

varying amounts of data. Investigating the impact of different dataset sizes on performance would be an

interesting direction for future work. Understanding how the approach performs with less data could

provide useful insights into its applicability in real-world problems.

8
Conclusion

This research focused on Policy Distillation (PD) in the Offline Multi-Task Reinforcement Learning

(MTRL) setting. Specifically, we addressed the following two research questions:

1. How can PD operate effectively in the Offline MTRL setting?

2. How can the common structure across related tasks be better captured through PD?

To answer these questions, we introduced a general approach called Multi-Task Offline Policy Distillation

(MOP). MOP involves learning teacher policies from offline data using an offline RL algorithm and

distilling this knowledge into a student policy. The distillation process involves sampling states from

the offline data, feeding them to the teacher and student networks, and comparing the teachers’ outputs

to the student’s outputs using a distillation loss function. The student is then optimized by minimizing

this loss. Specific instances and adaptations of MOP were explored to address each of the research

questions. In this chapter, we summarize our work and present the main conclusions.

8.1. Operating Policy Distillation Offline
To address the first research question, we established a standard setup of MOP. We utilized the Pessimistic

Bootstrapping for Offline RL (PBRL) algorithm to learn the teacher policies. The teachers trained with

PBRL closely matched or slightly exceeded the performance of their corresponding behavior policies.

We also demonstrated that direct multi-tasking using PBRL is prone to negative transfer, justifying the

need for PD.

We explored three different distillation loss functions: Mean Squared Error (MSE) loss, Q-value loss,

and KL-divergence. The results showed that direct optimization with MSE loss was the most effective.

The student was able to match the performance of its teachers across tasks, while being able to perform

all tasks using the same network size as a single teacher. This demonstrates that MOP can effectively

merge multiple task-specific policies into a single multi-task policy in the offline RL setting.

Next, we examined the impact of a state distribution shift between the offline data and the teacher policy

on the performance of our approach. Addressing distribution shift is a major challenge in offline RL, so

it was essential to assess MOP’s robustness in this regard. We hypothesized that a larger distribution

shift would require more capacity in the student network (Hypothesis 1). We performed a series of

experiments to test this hypothesis. Our findings suggest that, in general, a larger distribution shift

degrades the student’s performance when the network size remains fixed. However, we observed that a

small distribution shift can actually be beneficial for small networks, as it introduces more diversity

into the offline data, potentially enhancing out-of-distribution robustness. This kind of robustness is

particularly beneficial for very small networks, which are more prone to selecting suboptimal actions

that lead the agent into out-of-distribution states.

Moreover, increasing the network size can mitigate the effects of a large distribution shift and improve

performance, but it is not always sufficient to close the gap between the student and teacher performance

53

8.2. Capturing Common Structure Through Policy Distillation 54

when the shift is too large. This is because simply increasing network capacity is prone to overfitting to

the offline data. Therefore, we recommend that future work focuses on developing more sophisticated

methods for mitigating the distribution shift to enhance student performance in these situations.

8.2. Capturing Common Structure Through Policy Distillation
Addressing the first research question led to an instance of MOP that could effectively merge single-task

teacher policies into a multi-task student policy, achieving comparable performance while maintaining

the size of a single teacher network. In the second research question, we investigated the fundamental

concept of MTRL: sharing common structure across tasks while separating task-specific properties.

To explore this, we formally defined common structure at two levels: the trajectory level and the

computational level. Common structure at the trajectory level refers to cases where the optimal action

for a given state is the same across tasks. In contrast, common structure at the computational level refers

to shared computation in the student network across tasks, independent of specific state-action pairs.

To get an indication of the amount of common structure captured, we designed a method to measure

shared computation across tasks. This metric evaluates the correlation between neuron activation values

and the task ID. We proposed two approaches for comparing activation values across tasks: per-state

and average comparisons. The per-state approach compares activations for identical input states under

both task IDs, while the average approach compares the mean activation values over each task’s state

distribution. Both approaches have their limitations. A per-state comparison does not account for

differences in state distributions between tasks, while the average comparison has the risk that activation

values cancel out against each other. We quantified similarity using Kendall’s 𝜏, which ranks neuron

activity for each task and compares these rankings across tasks. This intuitively indicates whether

the same neurons are consistently active across tasks, providing an estimate of the common structure

captured. However, comparing neurons by relative activity alone may not fully capture the concept of

common structure. Future work should establish invariance properties for a robust metric of common

structure. Additionally, techniques for comparing activation values that account for each task’s state

distribution should be further explored.

The results of measuring shared computation showed that MOP initially shared a considerable amount of

computation across tasks, particularly when the teacher policies were of expert level. For medium-level

teacher policies, the degree of sharing was lower. We hypothesize that expert policies display more

aligned behavior in common structure states due to their optimality, enabling PD to merge these

behaviors more effectively.

At the computational level, we made two attempts to increase shared structure across tasks. First, we

reduced the network size. This was intended to create an information bottleneck, forcing the student

network to merge redundant behaviors to maintain performance. However, the absence of an explicit

incentive led to degraded performance and less shared computation. Next, we introduced ranking

regularization. This approach added a regularization term to the loss function to explicitly encourage

greater shared computation across tasks. We experimented with three types of regularization losses:

pairwise logistic loss, listwise softmax cross-entropy loss, and Normalized Discounted Cumulative Gain

(NDCG) loss. The pairwise loss increased sharing but caused the network to ignore the task ID, resulting

in negative transfer and reduced performance. The listwise and NDCG losses maintained performance

but did not increase shared computation. We concluded that the abstract nature of common structure

at the computational level makes it difficult to define a clear objective, let alone to optimize it. This

highlights the need for a standardized, formal definition of common structure at the computational

level.

To address common structure at the trajectory level, we hypothesized that PD can only share behaviors

across tasks when the teachers exhibit identical behaviors in common structure states. However, such

alignment is not always present. Teacher behaviors may be unaligned if at least one teacher is suboptimal

or if multiple equally optimal but distinct behaviors exist. We argued that multi-task exploration is

necessary to align teacher behaviors. This would require evaluating behaviors from one task in the

context of another task. However, in the offline RL setting, no interaction with the environment is

possible during training. The agent is limited to learning from previously collected data, which restricts

exploration.

8.3. Future Work 55

To address this, we introduced the assumption that the reward functions are known to the agent,

allowing for multi-task exploration. Under this assumption, we proposed two extensions to MOP: Data

Sharing (DS) and Offline Q-Switch (OQS).

DS involves relabeling and sharing all data across tasks, resulting in a mixed offline dataset for each task,

which is then used to train the teacher policies. This theoretically improves performance by expanding

the coverage of the offline data. Additionally, we expected teacher behaviors to naturally align across

tasks. This is because the teachers were trained on the same data, and our environment consists of

a continuous state-action space, making it highly unlikely that distinct, equally optimal behaviors

would be learned. Results showed that DS could improve teacher performance in specific situations,

but performance significantly degraded when the state distribution shift increased. The student’s

performance matched that of the teachers, and therefore the student was also indirectly affected by this

exacerbated distribution shift. However, the amount of shared computation increased significantly,

indicating that multi-task exploration does help align teacher behaviors.

OQS also involves relabeling data but keeps data from other tasks in separate datasets. These separate

datasets are used to train cross-task teachers. During distillation, each cross-task teacher computes its

best action along with its corresponding Q-value, and the student mimics the action with the highest

Q-value. We expected the student to perform at least as well as the best cross-task teacher or the original

teacher. While shared computation increased, the overall student performance declined. This was likely

due to insufficient coordination between the teachers’ Q-values, resulting in suboptimal decisions across

entire trajectories.

In conclusion, MOP initially captured some common structure, as demonstrated by the high correlation

between task ID and neuron activation values. We attempted to improve the sharing of common structure

at the computational level by reducing the network size and ranking regularization. Nonetheless, this

failed due to the abstract nature of common structure at the computational level. It may not even exist in

a clearly defined form. We then aimed to capture common structure at the trajectory level by introducing

multi-task exploration. However, this is particularly challenging in the offline setting, where exploration

is not possible. The two extensions we introduced, DS and OQS, allowed for some form of multi-task

exploration under the assumption of known reward functions. While these methods did successfully

increase shared computation, they did not consistently improve performance. This highlights the need

for further research into effective multi-task exploration techniques in the offline RL setting.

8.3. Future Work
Throughout this work, we have proposed various directions for future research. In this section, we

provide an overview of the most important areas for further investigation, along with high-level ideas

for potential approaches.

First, a valuable direction for future research would be to explore methods to mitigate the state

distribution shift during state sampling in the distillation process. One promising idea is to apply

reweighting techniques, similar to Importance Sampling (IS) [58], by using the ratio of Q-values from

the behavior and teacher policies. This should serve as an approximation for the probability density

ratio. This approach could help prioritize states which the teacher policy is more likely to encounter in

the environment. However, it relies on access to the Q-value function of the behavior policy. This is

typically unavailable in offline RL, but could be estimated through Behavioral Cloning (BC) [35] for

example.

Furthermore, establishing a standardized, formal definition of common structure is essential. Related

work does not formally define common structure, making it challenging to compare MTRL methods.

Defining common structure at the computational level is particularly difficult due to its abstract nature.

We can intuitively relate it to human skills, such as a notion of ’ball feeling’ when playing different

sports like football and tennis. However, mathematically expressing this concept requires a thorough

examination of its properties and even consideration of whether it truly exists. Without a standardized

definition, it is challenging not only to compare methods but also to define a concrete objective for

optimization.

Moreover, our metric for measuring shared computation as an indicator of the amount of captured

8.3. Future Work 56

common structure should be refined. Future work should investigate methods to compare activation

values while accounting for task-specific state distributions. Additionally, appropriate invariances

that align with a formal definition of common structure should be explored and incorporated into

the similarity measure. Establishing such invariances would help ensure that the measured values

accurately correspond to the true amount of common structure shared across tasks.

Additionally, exploring methods to generate imaginary trajectories for multi-task exploration presents

a promising direction. Techniques like Skills Regularized Task Decomposition (SRTD) [74] generate

trajectories using a latent space, leveraging shared skills across tasks. However, alignment of the skills

across tasks may still be limited by the accuracy of the learned latent space. Incorporating context

from Large Language Models (LLMs) [1] could enhance this approach by providing broader contextual

understanding. For example, methods such as Knowledgeable Agents from Language Model Rollouts

(KALM) [47] use textual descriptions to create diverse, aligned trajectories across tasks. Applying LLMs

to generate more accurate task-aligned behaviors could significantly improve multi-task exploration in

offline RL.

Lastly, our experiments highlighted limitations within the DeepMind-control Walker [59] environment.

Deploying the walking teacher in the stand task consistently outperformed the standing teacher,

suggesting it would be more effective to simply copy the walking teacher for both tasks rather than

learning a true multi-task student. Future work could address this by introducing a movement penalty

in the stand task to encourage distinct task-specific behaviors.

Acknowledgments

I would like to thank MSc. D. Mambelli for his continuous support and for our engaging discussions

that enriched this project. I am also grateful to Prof. dr. M.T.J. Spaan for his constructive feedback and

valuable advice on high-level decisions throughout the project. Furthermore, I would like to thank the

Delft High Performance Computing Centre (DHPC) for providing access to their computing cluster,

which offered excellent and reliable service for my computational needs.

57

Bibliography

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,

S. Altman, S. Anadkat, et al. “GPT-4 Technical Report”. In: arXiv preprint arXiv:2303.08774 (2023).

[2] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. “Invariant Risk Minimization”. In: arXiv
preprint arXiv:1907.02893 (2019).

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. “Deep Reinforcement

Learning: A Brief Survey”. In: IEEE Signal Processing Magazine 34.6 (2017), pp. 26–38.

[4] C. Bai, L. Wang, J. Hao, Z. Yang, B. Zhao, Z. Wang, and X. Li. “Pessimistic Value Iteration for

Multi-Task Data Sharing in Offline Reinforcement Learning”. In: Artificial Intelligence 326 (2024),

p. 104048. issn: 0004-3702.

[5] C. Bai, L. Wang, Z. Yang, Z. Deng, A. Garg, P. Liu, and Z. Wang. “Pessimistic Bootstrapping for

Uncertainty-Driven Offline Reinforcement Learning”. In: arXiv preprint arXiv:2202.11566 (2022).

[6] J. Beck, R. Vuorio, E. Z. Liu, Z. Xiong, L. Zintgraf, C. Finn, and S. Whiteson. “A Survey of

Meta-Reinforcement Learning”. In: arXiv preprint arXiv:2301.08028 (2023).

[7] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer, S.

Hashme, C. Hesse, et al. “Dota 2 with Large Scale Deep Reinforcement Learning”. In: arXiv
preprint arXiv:1912.06680 (2019).

[8] D. Borsa, T. Graepel, and J. Shawe-Taylor. “Learning Shared Representations in Multi-Task

Reinforcement Learning”. In: arXiv preprint arXiv:1603.02041 (2016).

[9] S. Bruch, X. Wang, M. Bendersky, and M. Najork. “An Analysis of the Softmax Cross Entropy Loss

for Learning-to-Rank with Binary Relevance”. In: Proceedings of the 2019 ACM SIGIR International
Conference on Theory of Information Retrieval. 2019, pp. 75–78.

[10] E. Brunskill and L. Li. “Sample Complexity of Multi-Task Reinforcement Learning”. In: arXiv
preprint arXiv:1309.6821 (2013).

[11] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. “Learning

to Rank Using Gradient Descent”. In: Proceedings of the 22nd International Conference on Machine
Learning. 2005, pp. 89–96.

[12] Y. Chebotar, Q. Vuong, K. Hausman, F. Xia, Y. Lu, A. Irpan, A. Kumar, T. Yu, A. Herzog, K. Pertsch,

et al. “Q-Transformer: Scalable Offline Reinforcement Learning via Autoregressive Q-Functions”.

In: Conference on Robot Learning (CoRL). PMLR. 2023, pp. 3909–3928.

[13] S. Chowdhuri, T. Pankaj, and K. Zipser. “MultiNet: Multi-Modal Multi-Task Learning for Au-

tonomous Driving”. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE. 2019, pp. 1496–1504.

[14] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters. “Sharing Knowledge in Multi-Task

Deep Reinforcement Learning”. In: arXiv preprint arXiv:2401.09561 (2024).

[15] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement

Learning for Continuous Control”. In: International Conference on Machine Learning (ICML). PMLR.

2016, pp. 1329–1338.

[16] J. Duchi. Derivations for Linear Algebra and Optimization. University of California, Berkeley. 2014.

[17] R. Figueiredo Prudencio, M. R. O. A. Maximo, and E. L. Colombini. “A Survey on Offline

Reinforcement Learning: Taxonomy, Review, and Open Problems”. In: IEEE Transactions on Neural
Networks and Learning Systems 35.8 (2024), pp. 10237–10257.

[18] D. Freedman and P. Diaconis. “On the Histogram as a Density Estimator: L2 Theory”. In: Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57.4 (1981), pp. 453–476.

58

Bibliography 59

[19] S. Fujimoto, H. Hoof, and D. Meger. “Addressing Function Approximation Error in Actor-Critic

Methods”. In: International Conference on Machine Learning (ICML). PMLR. 2018, pp. 1587–1596.

[20] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska. “A Survey of Actor-Critic Reinforcement

Learning: Standard and Natural Policy Gradients”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42.6 (2012), pp. 1291–1307.

[21] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. “Continuous Deep Q-Learning with Model-Based

Acceleration”. In: International Conference on Machine Learning (ICML). PMLR. 2016, pp. 2829–2838.

[22] A. Hallak, D. Di Castro, and S. Mannor. “Contextual Markov Decision Processes”. In: arXiv preprint
arXiv:1502.02259 (2015).

[23] K. Hara, D. Saito, and H. Shouno. “Analysis of Function of Rectified Linear Unit Used in Deep

Learning”. In: 2015 International Joint Conference on Neural Networks (ĲCNN). IEEE. 2015, pp. 1–8.

[24] T. Hastie, R. Tibshirani, and J. Friedman. “Overview of Supervised Learning”. In: The Elements of
Statistical Learning: Data Mining, Inference, and Prediction (2009), pp. 9–41.

[25] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. “Deep Reinforcement

Learning That Matters”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.

2018.

[26] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. Van Hasselt. “Multi-Task

Deep Reinforcement Learning with PopArt”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 01. 2019, pp. 3796–3803.

[27] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. 2015.

[28] J. J. Hopfield. “Neural Networks and Physical Systems with Emergent Collective Computational

Abilities”. In: Proceedings of the National Academy of Sciences 79.8 (1982), pp. 2554–2558.

[29] S. Jayanthi, L. Chen, N. Balabanska, V. Duong, E. Scarlatescu, E. Ameperosa, Z. H. Zaidi, D. Martin,

T. K. Del Matto, M. Ono, et al. “DROID: Learning from Offline Heterogeneous Demonstrations via

Reward-Policy Distillation”. In: Conference on Robot Learning (CoRL). PMLR. 2023, pp. 1547–1571.

[30] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A Survey”. In: Journal
of Artificial Intelligence Research 4 (1996), pp. 237–285.

[31] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-

ishnan, V. Vanhoucke, et al. “Scalable Deep Reinforcement Learning for Vision-Based Robotic

Manipulation”. In: Conference on Robot Learning (CoRL). PMLR. 2018, pp. 651–673.

[32] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and

K. Hausman. “MT-OPT: Continuous Multi-Task Robotic Reinforcement Learning at Scale”. In:

arXiv preprint arXiv:2104.08212 (2021).

[33] S. Kılıçarslan, K. Adem, and M. Çelik. “An Overview of the Activation Functions Used in Deep

Learning Algorithms”. In: Journal of New Results in Science 10.3 (2021), pp. 75–88.

[34] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. “Similarity of Neural Network Representations

Revisited”. In: International Conference on Machine Learning (ICML). PMLR. 2019, pp. 3519–3529.

[35] A. Kumar, J. Hong, A. Singh, and S. Levine. “Should I Run Offline Reinforcement Learning or

Behavioral Cloning?” In: International Conference on Learning Representations (ICLR). 2021.

[36] A. Kumar, A. Singh, F. Ebert, M. Nakamoto, Y. Yang, C. Finn, and S. Levine. “Pre-Training for

Robots: Offline RL Enables Learning New Tasks from a Handful of Trials”. In: arXiv preprint
arXiv:2210.05178 (2022).

[37] A. Kumar, A. Zhou, G. Tucker, and S. Levine. “Conservative Q-Learning for Offline Reinforcement

Learning”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 1179–1191.

[38] S. Levine, A. Kumar, G. Tucker, and J. Fu. “Offline Reinforcement Learning: Tutorial, Review, and

Perspectives on Open Problems”. In: CoRR abs/2005.01643 (2020).

[39] T. Lillicrap. “Continuous Control with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1509.02971
(2015).

[40] Y. Liu, S. Liang, H. Wang, Y. Liang, and A. Gitter. Avoiding Negative Transfer on a Focused Task with
Deep Multi-Task Reinforcement Learning. 2017.

Bibliography 60

[41] K. Lu, S. Zhang, and X. Chen. “Goal-Oriented Dialogue Policy Learning from Failures”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 2596–2603.

[42] B. Mirchevska, M. Werling, and J. Boedecker. “Optimizing Trajectories for Highway Driving with

Offline Reinforcement Learning”. In: Frontiers in Future Transportation 4 (2023), p. 1076439.

[43] V. Mnih. “Playing Atari with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1312.5602
(2013).

[44] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,

A. K. Fidjeland, G. Ostrovski, et al. “Human-Level Control Through Deep Reinforcement Learning”.

In: Nature 518.7540 (2015), pp. 529–533.

[45] A. Mohan, A. Zhang, and M. Lindauer. “Structure in Deep Reinforcement Learning: A Survey

and Open Problems”. In: Journal of Artificial Intelligence Research 79 (2024), pp. 1167–1236.

[46] K. Ota, D. K. Jha, and A. Kanezaki. “A Framework for Training Larger Networks for Deep

Reinforcement Learning”. In: Machine Learning (2024), pp. 1–25.

[47] J.-C. Pang, S.-H. Yang, K. Li, J. Zhang, X.-H. Chen, N. Tang, and Y. Yu. “Knowledgeable Agents

by Offline Reinforcement Learning from Large Language Model Rollouts”. In: arXiv preprint
arXiv:2404.09248 (2024).

[48] E. Parisotto, J. L. Ba, and R. Salakhutdinov. “Actor-Mimic: Deep Multitask and Transfer Reinforce-

ment Learning”. In: arXiv preprint arXiv:1511.06342 (2015).

[49] M. L. Puterman. “Markov Decision Processes”. In: Handbooks in Operations Research and Management
Science 2 (1990), pp. 331–434.

[50] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard. “Latent Plans for Task-Agnostic

Offline Reinforcement Learning”. In: Conference on Robot Learning (CoRL). PMLR. 2023, pp. 1838–

1849.

[51] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,

K. Kavukcuoglu, and R. Hadsell. “Policy Distillation”. In: arXiv preprint arXiv:1511.06295 (2015).

[52] O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński, and P. Ondruska. “Urban Driver: Learning to

Drive from Real-World Demonstrations Using Policy Gradients”. In: Conference on Robot Learning
(CoRL). PMLR. 2022, pp. 718–728.

[53] S. Siegel and N. J. Castellan. Nonparametric Statistics for the Behavioral Sciences. 2nd. New York:

McGraw-Hill, 1988, pp. 213–214.

[54] S. Sinha, H. Bharadhwaj, A. Srinivas, and A. Garg. “D2RL: Deep Dense Architectures in Reinforce-

ment Learning”. In: arXiv preprint arXiv:2010.09163 (2020).

[55] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Second. The MIT Press, 2018.

[56] J. Swentworth. Fixing the Good Regulator Theorem. Feb. 2021. url: https://www.lesswrong.com/
posts/Dx9LoqsEh3gHNJMDk/fixing-the-good-regulator-theorem.

[57] C. Szepesvári and M. L. Littman. “A Unified Analysis of Value-Function-Based Reinforcement-

Learning Algorithms”. In: Neural Computation 11.8 (1999), pp. 2017–2060.

[58] A. Tabandeh, G. Jia, and P. Gardoni. “A Review and Assessment of Importance Sampling Methods

for Reliability Analysis”. In: Structural Safety 97 (2022), p. 102216.

[59] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki, J.

Merel, A. Lefrancq, T. P. Lillicrap, and M. A. Riedmiller. “DeepMind Control Suite”. In: CoRR
abs/1801.00690 (2018).

[60] M. E. Taylor and P. Stone. “Transfer Learning for Reinforcement Learning Domains: A Survey”. In:

Journal of Machine Learning Research 10.7 (2009).

[61] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess, and R. Pascanu.

“Distral: Robust Multitask Reinforcement Learning”. In: Advances in Neural Information Processing
Systems 30 (2017).

[62] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A Physics Engine for Model-Based Control”. In:

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

2012, pp. 5026–5033. isbn: 978-1-4673-1737-5.

https://www.lesswrong.com/posts/Dx9LoqsEh3gHNJMDk/fixing-the-good-regulator-theorem
https://www.lesswrong.com/posts/Dx9LoqsEh3gHNJMDk/fixing-the-good-regulator-theorem

Bibliography 61

[63] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Küttler,

J. Agapiou, J. Schrittwieser, et al. “StarCraft II: A New Challenge for Reinforcement Learning”. In:

arXiv preprint arXiv:1708.04782 (2017).

[64] N. Vithayathil Varghese and Q. H. Mahmoud. “A Survey of Multi-Task Deep Reinforcement

Learning”. In: Electronics 9.9 (2020), p. 1363.

[65] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T. Liu. “A Theoretical Analysis of Normalized

Discounted Cumulative Gain (NDCG) Ranking Measures”. In: Proceedings of the 26th Annual
Conference on Learning Theory (COLT). Citeseer. 2013.

[66] C. J. Watkins and P. Dayan. “Q-Learning”. In: Machine Learning 8 (1992), pp. 279–292.

[67] S. Węglarczyk. “Kernel Density Estimation and Its Application”. In: ITM Web of Conferences. Vol. 23.

EDP Sciences. 2018, p. 00037.

[68] R. J. Williams. “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement

Learning”. In: Machine Learning 8 (1992), pp. 229–256.

[69] Y. Wu, G. Tucker, and O. Nachum. “Behavior Regularized Offline Reinforcement Learning”. In:

arXiv preprint arXiv:1911.11361 (2019).

[70] Z. Xu, K. Wu, Z. Che, J. Tang, and J. Ye. “Knowledge Transfer in Multi-Task Deep Reinforcement

Learning for Continuous Control”. In: Advances in Neural Information Processing Systems 33 (2020),

pp. 15146–15155.

[71] S. Yao, R. Rao, M. Hausknecht, and K. Narasimhan. “Keep Calm and Explore: Language Models

for Action Generation in Text-Based Games”. In: arXiv preprint arXiv:2010.02903 (2020).

[72] E. Yilmaz, J. A. Aslam, and S. Robertson. “A New Rank Correlation Coefficient for Information

Retrieval”. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2008, pp. 587–594.

[73] X. Ying. “An Overview of Overfitting and Its Solutions”. In: Journal of Physics: Conference Series.
Vol. 1168. IOP Publishing. 2019, p. 022022.

[74] M. Yoo, S. Cho, and H. Woo. “Skills Regularized Task Decomposition for Multi-Task Offline

Reinforcement Learning”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 37432–

37444.

[75] T. Yu, A. Kumar, Y. Chebotar, K. Hausman, C. Finn, and S. Levine. “How to Leverage Unlabeled

Data in Offline Reinforcement Learning”. In: International Conference on Machine Learning (ICML).
PMLR. 2022, pp. 25611–25635.

[76] T. Yu, A. Kumar, Y. Chebotar, K. Hausman, S. Levine, and C. Finn. “Conservative Data Sharing for

Multi-Task Offline Reinforcement Learning”. In: Advances in Neural Information Processing Systems
34 (2021), pp. 11501–11516.

[77] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. “Gradient Surgery for Multi-Task

Learning”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 5824–5836.

[78] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding Deep Learning (Still)

Requires Rethinking Generalization”. In: Communications of the ACM 64.3 (2021), pp. 107–115.

[79] C. Zhang, O. Vinyals, R. Munos, and S. Bengio. “A Study on Overfitting in Deep Reinforcement

Learning”. In: arXiv preprint arXiv:1804.06893 (2018).

[80] G. Zhang, A. Jain, I. Hwang, S.-H. Sun, and J. J. Lim. “Efficient Multi-Task Reinforcement Learning

via Selective Behavior Sharing”. In: arXiv preprint arXiv:2302.00671 (2023).

A
TD3 Agent Specifications

• Learning rate: 10
−4

• Standard deviation in clipped noise: 3 · 10
−1

• Actor/critic update ratio:
1

2

• Critic target smoothing rate: 10
−2

• Neural network properties:

– Fully-connected feed forward

– Input layer of 24 neurons (corresponding to the state dimensions of the Walker environment)

– Two hidden layers of 1024 neurons each

– Output layer of 6 neurons (corresponding to the action dimensions of the Walker environment)

62

B
PBRL Agent Specifications

• Learning rate: 10
−4

• Standard deviation in clipped noise: 2 · 10
−1

• Actor/critic update ratio:
1

2

• Critic target smoothing rate: 5 · 10
−3

• Actor target smoothing rate: 5 · 10
−3

• Neural network properties:

– Fully-connected feed forward

– Input layer of 24 neurons (corresponding to the state dimensions of the Walker environment)

– Two hidden layers of 256 neurons each

– Output layer of 6 neurons (corresponding to the action dimensions of the Walker environment)

63

C
Single-Task PBRL Results

Figure C.1: Results of PBRL on the expert offline datasets.

Figure C.2: Results of PBRL on the medium-replay offline datasets.

64

D
Naive Multi-Task PBRL Results

Figure D.1: Results of naive multi-task and original single-task PBRL on the expert offline datasets.

Figure D.2: Results of naive multi-task and original single-task PBRL on the medium-replay offline datasets.

65

E
MSE Loss Results

Below the results are plotted for all combination of datasets for MOP with MSE lossℒ𝑀𝑆𝐸.

Figure E.1: Expert X Expert

Figure E.2: Expert X Medium

66

67

Figure E.3: Expert X Medium-replay

Figure E.4: Medium X Expert

Figure E.5: Medium X Medium

Figure E.6: Medium X Medium-replay

68

Figure E.7: Medium-replay X Expert

Figure E.8: Medium-replay X Medium

Figure E.9: Medium-replay X Medium-replay

F
Measuring Shared Computation

Results

F.1. Expert Offline Datasets

(a) Unsorted.

(b) Sorted by the average activation values of the standing task in ascending order.

Figure F.1: The average activation values per neuron of the student network trained on the Expert datasets after being deployed

online to perform the standing and walking tasks.

69

F.2. Medium Offline Datasets 70

F.2. Medium Offline Datasets

(a) Unsorted.

(b) Sorted by the average activation values of the standing task in ascending order.

Figure F.2: The average activation values per neuron of the student network trained on the Medium datasets after being deployed

online to perform the standing and walking tasks.

	Asbtract
	Introduction
	Contributions
	Outline

	Background
	Markov Decision Process
	Multi-Task Markov Decision Process

	Reinforcement Learning
	Q-value Function
	Deep Reinforcement Learning
	Offline Reinforcement Learning
	Offline Multi-Task Reinforcement Learning

	Reinforcement Learning Algorithms
	Actor-Critic Reinforcement Learning Algorithms
	Offline Reinforcement Learning Algorithms
	Policy Distillation

	Related Work
	Multi-Task Policy Distillation
	Offline Multi-Task Reinforcement Learning
	Data Sharing
	Selective Behavior Sharing

	Approach
	Online Approaches
	Offline Approach
	Online and Offline Comparison
	Experimental Setup
	Environment
	Tasks
	Data Collection

	Offline Policy Distillation
	Standard Setup
	Learning Teacher Policies
	Justification For Policy Distillation
	Distillation Loss

	State Distribution Shift
	Hypothesis Clarification
	Measure State Distribution Shift
	Eliminate State Distribution Shift
	Vary Network Size Under Artificial State Distribution Shift

	Discussion

	Capturing Common Structure Through Policy Distillation
	Common Structure Definition
	Measuring Shared Computation
	Activation Values
	Similarity Measure
	Results
	Limitations

	Computational Level Common Structure
	Reducing Network Size
	Ranking Regularization

	Trajectory Level Common Structure
	Multi-Task Exploration
	Data Sharing
	Offline Q-Switch
	Results
	Limitations

	Discussion

	General Discussion
	Relevance of Offline Multi-Task Reinforcement Learning
	Limitations of Policy Distillation
	Limitations of Experimental Setup

	Conclusion
	Operating Policy Distillation Offline
	Capturing Common Structure Through Policy Distillation
	Future Work

	Bibliography
	TD3 Agent Specifications
	PBRL Agent Specifications
	Single-Task PBRL Results
	Naive Multi-Task PBRL Results
	MSE Loss Results
	Measuring Shared Computation Results
	Expert Offline Datasets
	Medium Offline Datasets

