
Finding the Needle in the
Pre-Trained Model Zoo

The Use of Rich Metadata and Graph Learning to
Estimate Task Transferability

Hilco van der Wilk

Finding the Needle in the
Pre-Trained Model Zoo

The Use of Rich Metadata and Graph Learning to
Estimate Task Transferability

by

Hilco van der Wilk

to

obtain the degree of Master of Science at the Delft University of Technology,
defended publicly on Tuesday, June 25, 2024.

Thesis Advisor: A. Anand
Daily supervisor: R. Hai
Daily co-supervisor: Z. Li
Core committee member: Q. Song
Faculty: Electrical Engineering, Mathematics and Computer Science, Delft

Cover: Inspired by Herman Brood’s ”Porsche”, which was above my
desk while writing this thesis. It was generated using the at this
time state-of-the-art text-to-image generator, Dall-E.

Finding the Needle in the
Pre-Trained Model Zoo

Abstract

Thedemocratization ofmachine learning throughpublic repositories, often knownasmodel
zoos, has significantly increased the availability of pre-trained models for practitioners. How-
ever, this abundance can make it difficult to choose the most suitable pre-trained model for
fine-tuning on new tasks. Although various methods have been proposed in the field of trans-
ferability estimation to address this issue, these methods can take hours to execute and may still
fail to find the optimal pre-trained model for fine-tuning. By exploring a new graph learning-
based approach to transferability estimation, we outperform state-of-the-art methods such as
LogME, improving the accuracy of the best-predicted model by up to 31.5% in less than 5 min-
utes.

Preface & Acknowledgements

Over the course of this thesis, many exciting advancements have taken place in the field of Com-
puter Science. Notably, the launch of ChatGPT just before I began this thesis made Artificial
Intelligence more tangible for non-computer scientists. This personal experience made it easier
to explain my thesis topic to friends and family by relating it to their interactions with AI. Al-
though machine learning was not my primary focus earlier in my master’s program, studying it
through this thesis has been very insightful.

I write these words as the fourth summer of my Master’s in Computer Science approaches.
Completing my degree on time was never my intention; I was too enthusiastic about the com-
pany where I completed my bachelor thesis to leave it. After a brief break from my studies, I
was introduced to Rihan Hai and Ziyu Li and their research. I would like to thank them both
for their enthusiasm during this period. My brief industry experience combined with their aca-
demic insights led to many interesting conversations. Thanks to them, I also had the exciting
opportunity to co-author a paper published at the esteemed International Conference on Data
Engineering (ICDE 2024).

Finally, I would like to thank my colleagues at bunq, specifically Ali el Hassouni and Nick
van de Groes, who have supported me not only through discussions related to my thesis, but
also by enabling me to balance my work with my studies.

Hilco van der Wilk
June 2024

i

Contents

Preface & Acknowledgements i
1 Introduction 1

1.1 Transferability Estimation . 2
1.1.1 Effectiveness of Extracted Features in Diverse Model Zoos 2
1.1.2 Efficiency Matters in Large Model Zoos . 2

1.2 Introducing TransferGraph . 2
1.3 Research Questions . 3
1.4 Thesis Outline and Contributions . 4

2 Background & Related Work 6
2.1 Transfer Learning . 6
2.2 Model Zoos . 7
2.3 Transferability Estimation . 8

2.3.1 Nomenclature and Notations . 9
2.3.2 Types of Transferability Estimation Methods 10
2.3.3 Other related work . 13

2.4 Graph Learning . 14
2.4.1 How to Represent a Graph . 14
2.4.2 Traditional Graph Embedding Methods . 15
2.4.3 Factorization-based . 15
2.4.4 Random Walk-based . 15
2.4.5 GNN-based Graph Embedding . 15

2.5 Summary . 16
3 Transferability Estimation as a Graph Learning Problem 18

3.1 Problem Definition . 18
3.1.1 Example Use Cases . 18
3.1.2 Problem Formalization . 19
3.1.3 How to Measure the Success of Transferability Estimation Methods? . . . 19
3.1.4 Limitations and challenges . 20

3.2 Solution Overview . 21
3.2.1 Motivation for Graph Representation . 21
3.2.2 Basic Metadata . 22
3.2.3 Transferability Estimation as Graph Link Prediction 23

3.3 Summary . 23
4 System Design: TransferGraph 25

4.1 TransferGraph Overview . 25
4.2 Stage 1: Metadata Collection . 25

4.2.1 Dataset Embeddings . 26
4.2.2 Training Performances . 26
4.2.3 Transferability Scores . 26

4.3 Stage 2: Graph Construction & Learning . 27
4.3.1 Graph Construction . 27
4.3.2 Graph Learning . 28

4.4 Stage 3: Regression Learning . 30
4.5 Stage 4: Transferability Estimation . 31
4.6 Summary . 31

ii

Contents iii

5 Metadata Collection & Benchmark Suite 33
5.1 Experiment setup . 33

5.1.1 Target tasks . 33
5.1.2 Pre-trained models . 39
5.1.3 Baselines . 39

5.2 Metadata Collection . 40
5.2.1 Dataset Loading and Preprocessing . 40
5.2.2 Pre-trained Model Loading . 40
5.2.3 Dataset Embedding . 40
5.2.4 Collecting Baseline Transferability Scores 41
5.2.5 Collecting Fine-Tuning Performances . 41

5.3 Summary . 42
6 Evaluating TransferGraph 44

6.1 Evaluation: Effectiveness . 44
6.1.1 Evaluation setup . 44
6.1.2 Evaluation metric . 44
6.1.3 Hardware . 45
6.1.4 Main findings . 45
6.1.5 Effect of Graph Learning- and Regression learning method 47
6.1.6 Effect of k . 47
6.1.7 Effect of Number of Pre-trained Models . 48

6.2 Evaluation: Efficiency . 49
6.2.1 Runtime Steps . 49
6.2.2 Main findings . 50
6.2.3 Effect of Graph Learning- and Regression Learning Method 51

6.3 Summary . 52
7 Conclusion and Outlook 53

7.1 Recommendations for Future Work . 54
7.1.1 Within the Scope of this Thesis . 55
7.1.2 Beyond the Scope of this Thesis . 55

A Benchmark Suite Code Samples 64
A.1 Dataset Configuration . 64
A.2 Collecting Baseline Transferability Scores . 65
A.3 Collecting Fine-tuning Performances . 65

List of Figures

1.1 High-level overview of TransferGraph’s adaptation of the paradigm of transfer-
ability estimation. Stage ¬ represents the pre-training stage, where models are
trained from scratch. The output of this stage is pre-trained models, upstream
datasets and upstream accuracies, which are used in stage to construct a graph
and predict links forwhichmodel is the best fine-tuning candidate. In stage ®, the
best few pre-trained models are fine-tuned, and the actual accuracies are added
back into the graph for later learning. 3

1.2 The accuracy of the best predicted model for our approach and two baselines,
compared to randomly picking a model to fine-tune. 3

2.1 An example of a four-class pre-trained model (left), fine-tuned for a binary clas-
sification task (right). Fine-tuning involves randomly reinitializing a newly clas-
sified head and retraining it, potentially along with the other layers’ parameters. 7

2.2 An example of a pre-trained model on HuggingFace. 8
2.3 A taxonomy of surveyed transferability estimation methods. 10
2.4 An example pipeline of computing model similarity fromGBS (Z. Chen et al. 2021). 11
2.5 An illustration from GBC (Pandy et al. 2022) of how source embedding methods

generally analyze how well the features extracted by a source model cluster for
each target class. 12

2.6 Image of a general framework for training GNNs taken from Khoshraftar & An
(2024). It depicts an input graph with four nodes, two GNN layers and a classifi-
cation layer. xa is the feature representation of node a and h1a and h2a the feature
representations of node a after passing through the first and second layer. The
colors represent the common neighbors of each of the nodes. 16

4.1 An overview of TransferGraph for transferability estimation, includingmodel zoo
construction (stage 1), training (stage 2-3) and transferability estimation (stage 4). 25

4.2 Illustration of a detailed view of the constructed graph. 27
4.3 Illustration of random walk from Grover & Leskovec (2016), where the walk has

just transitioned from t to v, and is determining where to walk next out of node v. 29

5.1 Examples of the Caltech101 dataset. 35
5.2 Examples of the Cifar100 dataset. 35
5.3 Examples of the DTD dataset. 36
5.4 Examples of the Flowers dataset. 36
5.5 Examples of the Pets dataset. 37
5.6 Examples of the SmallNORB dataset. 37
5.7 Examples of the Stanfordcars dataset. 38
5.8 Examples of the SVHN dataset. 38
5.9 Heatmap showing dataset distances. 41
5.10 Distribution of fine-tuning accuracies for the target datasets. 41

6.1 Image datasets’ correlation between the actual performances after fine-tuning and
the predicted scores, for both our approach and the baselines. 45

6.2 Text datasets’ correlation between the actual performances after fine-tuning and
the predicted scores, for both our approach and the baselines. 46

6.3 Rel@1 score for all variations of graph learning methods and regression model
types. 47

iv

List of Figures v

6.4 Average Rel@k when increasing k and varying the graph learning method, for
both image (left) and text classification target datasets (right). 48

6.5 Average Rel@k when increasing k and varying the regression learning method,
for both image (left) and text classification target datasets (right). 48

6.6 Average Rel@k when varying the graph learning method under lower number
of pre-trained models, for both image (left) and text (right) classification target
datasets. 49

6.7 Average Rel@k when varying the regression learning method under lower num-
ber of pre-trained models, for both image (left) and text (right) classification tar-
get datasets. 49

6.8 Average runtime in seconds for obtaining the transferability estimation of our
most competitive method against the selected baselines, for image datasets (left)
and text datasets (right). 50

6.9 Average runtime in seconds for obtaining the transferability estimationwhenvary-
ing the graph learning and regression learning methods, for image datasets (left)
and text datasets (right). 52

A.1 Example configuration for datasets. This example shows small changes to be
made when configuring new datasets to load. 64

A.2 Code sample from our benchmark suite that shows how it can be easily extended
to add new baselines. 65

A.3 Code sample for using our system to fine-tune a pre-trained model. Includes ex-
amples on how to load datasets and pre-trained models and use our trainer class
to fine-tune. 66

List of Tables

2.1 Size of public model zoos, as of May 2024. 7
2.2 Nomenclature in Transfer Learning . 9
2.3 Transferability estimation notations. 9
2.4 Overview of surveyed transferability methods, where ϕp and ϕp denote probe-

and source model. ψt denotes the fine-tuned target model. ds and dt represent
the source- and target tasks. 13

4.1 Summary of the graph property statistics. (* indicates that the value vary when
the dataset and model collection changes) . 28

4.2 Comparison of random walk-based and GNN-based graph learning methods. . . 30
4.3 Example rows used in the supervised learning stage. mf and df represent the

source model and the target dataset embeddings, respectively. 31

5.1 Overview of used target tasks used for evaluation. 34
5.2 Example of used GLUE tasks. 34
5.3 A tweet sample for each of the tasks in TweetEval, for the tasks used in our exper-

iments. 34
5.4 Samples from the Rotten Tomatoes dataset. 35
5.5 Summary of characteristics of pre-trained models used in our experiments. Con-

trary to many related works, our model zoo is heterogeneous in the types of ar-
chitectures, model size and pre-trained datasets used. * the entries combined
as hfpics are multiple types of datasets queried with different keywords, using
https://github.com/nateraw/huggingpics. 39

5.6 Hyperparameter settings used for collecting ground-truth performances for Trans-
ferGraph. 42

6.1 Overview of evaluation of the effectiveness of TransferGraph compared to other
baselines, for all evaluated datasets. 46

6.2 Runtime steps for the baselines and our method, and whether the steps can be
done offline, or online. 50

6.3 Detailed view of runtime per image target dataset. 51
6.4 Detailed view of runtime per text target dataset. 51

vi

1
Introduction

Deep learning, a branch of machine learning, has transformed artificial intelligence by creating
models that can learn and identify complex patterns from large datasets. These models, known
as deep neural networks, are made up of many layers that allow them to understand and pro-
cess information at various levels of detail. Deep learning has achieved remarkable results in
many areas, such as recognizing objects in images, understanding spoken language, translating
text, and even playing complex games. The power of deep learning is evident in real-world
applications (S. Dong et al. 2021). For instance, in self-driving cars, deep learning helps vehi-
cles to see and understand their surroundings, making driving decisions in real-time (Chib &
Singh 2023). In healthcare, it helps diagnose diseases frommedical images more accurately and
quickly than traditional methods (Q. Li et al. 2014). More recently, text and image generation
models have shown impressive capabilities in creating human-like text for applications such as
chatbots, content creation, and automated translation services (Raiaan et al. 2024; Kandwal &
Nehra 2024).

The flexibility of deep learning has played amajor role in its success: the knowledge a neural
network acquired by training for one task can be reused for a different purpose. Like many
concepts within the field ofmachine learning, this notion of knowledge transfer is likely inspired
by human and animal learning (Zhuang et al. 2021). Humans benefit from facing new tasks
equipped with knowledge learned from previous (similar) tasks. For example, someone who
knows how to play the guitar can learn to play the pianomore quickly due to the sharedmusical
knowledge. In the field of machine learning, this practice is known as transfer learning. It has
proven to be highly effective, making first pre-training, then fine-tuning the de facto paradigm
of applying deep learning in practice. In the pre-training phase, a large and diverse upstream
dataset is used to train a neural network. An often smaller downstreamdataset is then used to fine-
tune the pre-trained model for a specific task. Using a pre-trained model prevents the resource-
intensive process of training a model from scratch. Moreover, it bypasses the expensive, time-
consuming, and often unrealistic data collection and annotation that training a neural network
from scratch requires.

Today, many pre-trained models are available in public online platforms such as Hugging-
Face1, KaggleModels2, and PyTorchHub3. These repositories of pre-trainedmodels are referred
to as model zoos. Model zoos have been widely adopted in recent years, as they offer conve-
nient access to a collection of pre-trained models, including cutting-edge deep learning archi-
tectures. This lowers the expertise barrier, enabling non-expert individuals to apply complex
deep learning models in their applications. By using a model zoo for fine-tuning, practitioners
can effectively address various target tasks, even when the available training data are limited in
size (Deshpande et al. 2021).

1https://huggingface.co/
2https://www.kaggle.com/models
3https://pytorch.org/hub/

1

https://huggingface.co/
https://www.kaggle.com/models
https://pytorch.org/hub/

1.1. Transferability Estimation 2

1.1. Transferability Estimation
As the number of available pre-trained models grows, a critical question arises: “Which pre-
trained model will have the best performance onmy downstream task?”. Choosing the right pre-trained
model has a substantial impact on the effectiveness of fine-tuning (Deshpande et al. 2021), espe-
cially in scenarios with little training data (Bassignana et al. 2022). A straightforward solution
is to fine-tune all available pre-trained models, which is computationally expensive, and often
infeasible in practice.

To this end, Transferability Estimation has emerged to assess transferability at a low com-
putational cost. In this setting, the goal is to predict the best pre-trained model given a target
task, without fine-tuning all pre-trained models. Most transferability estimation methods ap-
proach it similarly; they perform a forward pass using all the target task’s samples over each
pre-trained model’s feature extractor and analyze the extracted features (Nguyen et al. 2020;
You et al. 2021; Ding et al. 2022; Ibrahim et al. 2023). This analysis often produces a score, and
the pre-trained models are ranked according to this score. The effectiveness of a transferabil-
ity estimation method is typically evaluated by measuring the (rank) correlations between the
actual performances and the predicted scores.

1.1.1. Effectiveness of Extracted Features in Diverse Model Zoos
A shortcoming of these methods is that they do not consider any meta-information about the
target task or the pre-trained model, even though these can be useful indicators of fine-tuning
success. Factors such as target dataset size, number of labels, and pre-trained model architec-
ture have been shown to affect downstream fine-tuning performance. H. Li et al. (2023) demon-
strate this by reframing the transferability estimation problem as a recommendation problem
and using a linear regression model to predict fine-tuning performance based on these basic
meta-features. They further observe that transferability estimation methods are often evaluated
on only a few pre-trained models, sharing the same architecture and source dataset. In their
more diverse setting, methods that use these extracted features become less effective. While
promising, H. Li et al. (2023) only include coarse-grained metadata to learn to predict trans-
ferability, overlooking valuable insights from previous works and are not able to capture more
complex existing relationships between datasets and pre-trained models.

1.1.2. Efficiency Matters in Large Model Zoos
These days, public model zoos often contain thousands of pre-trained models. Not only are
model zoos growing in size, pre-trained models themselves are also becoming more complex
(i.e., they are increasing in number of parameters). While the transferability estimationmethods
referred to above are indeed orders of magnitude faster than fine-tuning, these aspects make
performing a forward pass over all pre-trained models increasingly computationally expensive.
Efficiency should therefore become a more prominent concern in transferability estimation in the
era of large models and zoos.

1.2. Introducing TransferGraph
In the field of data management systems, such as data lakes (Hai et al. 2023), datasets have been
structured as graphs to, for example, model semantic similarity (Castro Fernandez et al. 2018).
Related works on transferability estimation have uncovered various useful metadata and rich
relationships between pre-trained models and datasets. To overcome the challenges mentioned
above, we borrow the idea of representing the transferability estimation problem as a graph and
propose a new framework for transferability estimation called TransferGraph4. Figure 1.1 gives
a high-level overview of our adaptation to transferability estimation. As the name suggests, we
convert transferability estimation into a graph learning problem, where relationships between
tasks and pre-trained models are modeled as edges between nodes in a graph. Using this graph,
the goal is to predict the link between an unseen target dataset and the pre-trained models in

4The work on TransferGraph has been accepted at the International Conference on Data Engineering (ICDE) 2024
(https://icde2024.github.io/papers.html). Source code, supplementary material, and experiment artifacts are avail-
able at https://github.com/TransferGraph/transfergraph.

https://icde2024.github.io/papers.html
https://github.com/TransferGraph/transfergraph

1.3. Research Questions 3

the model zoo.

1 2 3

ModelsDatasets
User’s

dataset

Predicted links

Ranking

Pre-training Transferability Estimation Fine-tuning

User’s
dataset

acc(0.85)

acc(0.94)

Add actual links in graph

Fine-Tuning
Performances

Figure 1.1: High-level overview of TransferGraph’s adaptation of the paradigm of transferability estimation. Stage ¬
represents the pre-training stage, where models are trained from scratch. The output of this stage is pre-trained models,
upstream datasets and upstream accuracies, which are used in stage to construct a graph and predict links for which
model is the best fine-tuning candidate. In stage ®, the best few pre-trained models are fine-tuned, and the actual
accuracies are added back into the graph for later learning.

Edges can be either dataset-dataset, representing the similarity between datasets, or model-
dataset, representing the historical fine-tuning performances of a pre-trained model on a dataset.
By also incorporating the coarse metadata of pre-trained models and datasets, we can better
understand the underlying dynamics between them. This results in a notable improvement in
final fine-tuning accuracies over the state-of-the-art, as shown in Figure 1.2.

This framework also solves the efficiency issues mentioned earlier. By learning from past
fine-tuning performances, we avoid the forward pass most transferability estimation methods
require. Contrary to most existing methods, this means that TransferGraph can do efficient pre-
dictions on unseen target dataset nodes and scales better with largermodel zoos and pre-trained
models.

0.0 0.2 0.4 0.6 0.8

Best predicted accuracy

Our approach

Reg-H-Score

LogME

random

S
tra

te
gy

0.824

0.509

0.509

0.508

(a) Stanfordcars

0.0 0.2 0.4 0.6 0.8

Best predicted accuracy

Our approach

LogME

Reg-H-Score

random

S
tra

te
gy

0.832

0.781

0.781

0.742

(b) Tweet_Eval/Emotion.

Figure 1.2: The accuracy of the best predictedmodel for our approach and two baselines, compared to randomly picking
a model to fine-tune.

1.3. Research Questions
The research questions of this thesis are as follows:
RQ How can transferability estimation be performed more effectively and efficiently in large

and diverse model zoos?
RQ1 Which methodologies for transferability estimation have been introduced in existing

literature?
RQ2 What types of metadata can be used to effectively estimate transferability?
RQ3 How can we improve the effectiveness of transferability estimation in diverse model

zoos?

1.4. Thesis Outline and Contributions 4

RQ4 How can transferability estimation be made more efficient in large model zoos?

1.4. Thesis Outline and Contributions
This section will outline the rest of this thesis and summarize the contributions for each chapter.
In Chapter 2, the concepts of transfer learning, model zoos, and graph learning are introduced.
Additionally, we introduce the research field of transferability estimation and conduct a survey
on relatedwork in transferability estimation, which ismore extensive than existing surveys, such
as those by Bai et al. (2023) and Agostinelli et al. (2022), and offers a more intuitive taxonomy
by categorizing methods based on the used input.

Contributions Chapter 2

• A survey on the related work on transferability estimation, which is more extensive
than existing surveys, such as those by Bai et al. (2023) and Agostinelli et al. (2022),
and offers a more intuitive taxonomy by categorizing methods based on the used
input.

In Chapter 3, we formally introduce transferability estimation and discuss the limitations
and challenges faced by previously proposed methods. Most notably, they disregard useful
metadata in their estimation and are impractically inefficient for large model zoos. These limita-
tions serve as a basis for motivating our solutions aimed at improving transferability estimation,
both in terms of effectiveness and efficiency. The solution is two-fold. First, to effectively esti-
mate transferability in diverse model zoos, additional pre-trained model and dataset metadata
could be used to learn from past fine-tuning performances. Second, to effectively incorporate
thesemetadata, we propose reframing the transferability estimation problem as a link prediction
problem on a graph. By doing so, we hypothesize that our solution can better capture complex
relationships between datasets and pre-trained models.

Contributions Chapter 3

• We identify the limitations and challenges of previously proposed methods. Most
notably, they disregard useful metadata in their estimation and are impractically
inefficient for large model zoos.

• A reformulation of the transferability estimation problem to a graph link prediction
problem.

Our graph learning-based framework to transferability estimation, called TransferGraph, is
introduced in Chapter 4. In this chapter, we motivate our system design, and we cover the steps
needed to execute the approach, includingmetadata collection, graph construction and learning,
and finally making the prediction.

Contributions Chapter 4

• A novel framework which solves transferability estimation through graph learning.
It includes an end-to-end process from collecting the metadata, graph construction
and learning, and finally making the prediction.

Where Chapter 4 covers the layout of the framework, Chapter 5 shows the implementation
details and the design of our system to collect metadata, other transferability estimation scores,
and fine-tuning performances. Our system expands on other existing benchmark suites and
HuggingFace’s Transformers library. We also introduce our experiment setup and show how
we use the system to perform the preparation needed for evaluation.

1.4. Thesis Outline and Contributions 5

Contributions Chapter 5

• Expanding existing benchmark suites and building on top of HuggingFace’s Trans-
formers library, we introduce an easily extensible system to load datasets and pre-
trained models, compute baseline transferability estimation scores and do result
analysis.

In Chapter 6, TransferGraph is evaluated against two state-of-the-art baselines, LogME (You
et al. 2021) and Reg-Hscore (Ibrahim et al. 2023). The evaluation includes both computer vision
and natural language processing tasks, andwe compare variation of ourmethod to the baselines
in terms of effectiveness and efficiency.

Additionally, we introduce an improved way to measure the success of transferability es-
timation methods across multiple tasks, which may vary in the difficulty with which they are
learned. We evaluate four different graph learningmethods and three different supervised learn-
ing methods to train a regression model: Node2Vec (Grover & Leskovec 2016), Node2Vec+ (R.
Liu et al. 2023), GraphAttentionNetworks (GAT) (Veličković et al. 2018) andGraphSAGE(Hamil-
ton et al. 2017) for graph learning; linear regression, random forests and eXtremeGradient Boost-
ing (T. Chen & Guestrin 2016) for the regression model. We also vary the size of the model zoo
to show the stability of our proposed method. Ultimately, we show that our most competitive
approach outperforms the state-of-the-art methods on most evaluation metrics and is orders of
magnitude faster.

Contributions Chapter 6

• In contrast to related wroks, we propose a more consistent approach to measure
the effectiveness of transferability estimation methods over multiple tasks, which
may vary in terms of how much they benefit from transferability estimation.

• We show that TransferGraph outperforms the state-of-the-art transferability esti-
mation methods LogME (You et al. 2021) and Reg-HScore (Ibrahim et al. 2023) in
terms of effectiveness on most evaluation metrics.

• We show that TransferGraph can estimate transferability orders ofmagnitude faster
than these methods.

• We show that TransferGraph’s performance is stable when varying the model zoo
size in terms of number of pre-trained models to choose from.

2
Background & Related Work

Transferability estimation, also known asmodel selection ormodel search, aims to efficiently predict
the ability of a model to transfer knowledge from one task to another (Agostinelli et al. 2022).
Simply put, given a new dataset of input (e.g., text or images) and label pairs, we do not want
to waste computational resources by randomly fine-tuning available pre-trained models for this
new task. To draw a parallel with human learning, imagine that you want to learn to play the
piano; it would not make sense to spend countless hours getting lessons from a plumber, a math-
ematician, and a doctor. Instead, you would intuitively seek guidance from a musician.

Except, having this intuition for knowledge transfer in deep learning has proven difficult,
even for experts (Bassignana et al. 2022). This chapter will first give background into the con-
cepts relevant to this thesis; transfer learning, model zoos, and graph learning. Next, we expand
existing surveys on transferability estimation (Agostinelli et al. 2022; Bai et al. 2023) by including
more relatedworks and offering amore intuitive categorization. Finally, we provide background
knowledge on graph learning, which is necessary for understanding our solution presented in
Chapter 3.

2.1. Transfer Learning
Traditional machine learning techniques have seen significant progress in various knowledge
engineering areas such as classification, regression, clustering, and data mining. Despite these
advances, real-world applications frequently encounter limitations. Ideally, there are many la-
beled training samples that share the same feature space and distribution as the test samples.
Unfortunately, in many scenarios, obtaining sufficient and representative training data can be a
costly and time-consuming effort.

Semi-supervised learning partially solves this problem by learning from a small set of la-
beled data in combination with a large quantity of unlabeled data (Engelen &Hoos 2019). How-
ever, gathering unlabeled data is often also challenging, ultimately resulting in trainingwith risk
of overfitting and slow convergence. Evenwith enough labeled training data, training amachine
learningmodel from scratch is computationally expensive and can take up tomonths onmodern
hardware.

Transfer learning has been very successful in combating these problems, especially in the
domain of deep learning, where data dependence is even greater (C. Tan et al. 2018). Transfer
learning is a set of techniques that aim to improve the performance of target learners in a target
task by transferring knowledge fromadifferent source task (Zhuang et al. 2021). This is commonly
achieved through fine-tuning, which involves optimizing one or more layers of the model’s pa-
rameters for the target task, including a newly initialized classification layer. This strategy is also
referred to as network-based transfer learning (Zhuang et al. 2021).

An example of how this works is given in Figure 2.1. A source dataset with four possible

6

2.2. Model Zoos 7

labels is first used to pre-train a deep learning network. To fine-tune it, the classification head
layer is removed and randomly initialized for a binary classification target task. The new layer,
including one ormore of the pre-trainedmodel layers, is then updated using the new target task.

Feature extractor Head

Pre-training Fine-tuning

Random init head

Figure 2.1: An example of a four-class pre-trained model (left), fine-tuned for a binary classification task (right). Fine-
tuning involves randomly reinitializing a newly classified head and retraining it, potentially along with the other layers’
parameters.

Which (layers of) parameters to best (re)train and which to freeze is a mostly undiscov-
ered problem (Goerttler & Obermayer 2024) and is determined by practitioners from empirical
experience. For image classification tasks, traditionally all layers were frozen and only a newly
initialized classification layer was trained from scratch. Recently, especially in the field of nat-
ural language processing, all layers are often retrained by default. Retraining all parameters is
more computationally expensive and becomes impractical for modern models with billions of
parameters. Techniques such as LoRA (Hu et al. 2021) are emerging to do this more efficiently.
They freeze all model parameters and insert trainable rank decomposition matrices into each
layer of the source model, reducing the number of trainable parameters.

2.2. Model Zoos
Model zoos or model hubs are repositories of pre-trained machine learning models. These terms
are often used to refer to public web-based repositories such as HuggingFace1, Kaggle Mod-
els2, and PyTorch Hub3. Not only do they offer easy sharing and reuse of pre-trained models
and datasets, but they often also have out-of-the-box tools for the various stages of the machine
learning lifecycle. This makes them have a large overlap with other existing systems and tools
for managing machine learning artifacts (Schlegel & Sattler 2023) and AutoML systems (X. He
et al. 2021).

Hub Models Datasets
PyTorch 52 99
Kaggle 3,183 323,228
HuggingFace 634,589 140,255

Table 2.1: Size of public model zoos, as of May 2024.

However, they are unique due to the sheer
number of available pre-trainedmodels, something
previously only very large organizations would
have had access to. This has opened up new op-
portunities and challenges. One of these is the
main topic of this thesis, the challenge of which
pre-trained model to select for fine-tuning, which
we will expand on in the following sections. There
are various other research areas which aim to im-
prove the lifecycle of machine learning using model zoos. For example, by optimizing inference
queries under constraints (Ziyu Li et al. 2023) and learning from multiple source models (Q.

1https://huggingface.co/
2https://www.kaggle.com/models
3https://pytorch.org/hub/

https://www.kaggle.com/models
https://pytorch.org/hub/

2.3. Transferability Estimation 8

Dong et al. 2022; Shu et al. 2021). However, variants of transferability estimation have gained
the most scientific interest for model zoos.

Table 2.1 gives an overview of the sizes of popular model zoos. Kaggle used to only host
datasets and was known for its competitions, but expanded to host models in collaboration with
TensorFlow hub in 2023. Pre-trainedmodel hosting onHuggingFace has been around for longer,
and its variety comes mainly due to community datasets and models. PyTorch pioneered reuse
of pre-trained models through GitHub repositories. However, it does not offer an easy way to
explore these and only hosts a limited number of models and datasets.

Figure 2.2 shows an example of a pre-trained model on HuggingFace, a masked language
model called BERT (Devlin et al. 2019). HuggingFace supports sharing details through model
cards (Mitchell et al. 2019), which contain information such as pre-training details, intended-
and how to use, and limitations and risks. It also links to the datasets used to pre-train the
model, which in this case is both the English Wikipedia and a large collection of unpublished
books.

Figure 2.2: An example of a pre-trained model on HuggingFace.

2.3. Transferability Estimation
Now that we have covered the necessary background information for this thesis, we turn to
the actual topic of interest: Transferability Estimation. To avoid brute-force fine-tuning all pre-
trained models in a model zoo, transferability estimation attempts to offer an efficient heuristic
to find the best performing source model for a new target task. Early work on transferability
estimation was mainly focused on avoiding negative transfer and targeted at simple classifiers,
such as hierarchical Naive Bayes (Rosenstein et al. 2005). Negative transfer was said to occur
when transferring knowledge from a source task negatively impacted performance on a target
task. While some attention was gained before (Pan & Yang 2010), it was not until Z. Wang et al.
(2019) first gave a formal definition and performed analysis on when negative transfer occurs
for deep neural networks. The limitedworks before this timemainly focused on task relatedness
and clustering to identify such negative transfer (Ben-David & Schuller 2003; Rosenstein et al.
2005; Eaton et al. 2008).

More recently, the terms model selection, model search, and transferability estimation have been
used to describe this problem, and the focus mostly shifted to deep neural networks. Bolya
et al. (2021) differentiate between model selection and transferability estimation by noting that
model selection usually attempts to find the best pre-trained model given a fixed target task,
while transferability estimation fixes the source pre-trained model and attempts to predict the
best target task to transfer to. We no longer see this pattern (Pandy et al. 2022; Shao et al. 2022),
and prefer the term transferability estimation, as it is more explicit about the goal of transfer
learning.

2.3. Transferability Estimation 9

Initially, most works were in the field of computer vision, likely due to the larger data size
and associated computational burden of training models. However, with the recent popularity
of languagemodels, especially very large ones (OpenAI et al. 2024; LLaMA 2024), transferability
estimation has also received notable attention in the field of natural language processing.

Despite great interest in transfer learning and the available surveys (C. Tan et al. 2018; Niu
et al. 2020; Zhuang et al. 2021), there have been few comprehensive surveys on transferabil-
ity estimation, especially covering both computer vision and natural language processing. Bai
et al. (2023) provide a fairly comprehensive survey on transferability estimation methods for
natural language processing and compare them using the GLUE (A. Wang et al. 2018) bench-
mark as target tasks. Bassignana et al. (2022) and Agostinelli et al. (2022) thoroughly assess the
performance of transferability estimation for natural language processing and computer vision,
respectively, but focus on a smaller set of methods.

2.3.1. Nomenclature and Notations
Works on transferability estimation often use terminology from the transfer learning community.
During the rest of this thesis, we will therefore also use these terms. To improve the reading
experience in the remainder of this thesis, Table 2.2 provides an overview of these terms and
their meaning.

Term Meaning
Task Refers to a learning problem a model is designed to address. Mostly used

synonymously with dataset, except that there often also is an associated ob-
jective (such as predicting a label) and an evaluation metric (such as accu-
racy).

Dataset The data used as input for the learning problem, often in the form of input
and label pairs.

Pre-training The step before fine-tuning, often involves training a model from scratch
using a large and diverse dataset, which is suitable to fine-tune for a specific
task.

Upstream, source Used to refer to the dataset used in the pre-training phase, or the model that
results from it.

Fine-tuning Using a pre-trained model to adapt to a new, often smaller task.
Downstream, target Used to refer to the dataset used in the fine-tuning phase, or the model that

results from it.
Forward/backward pass Steps in a model training/fine-tuning loop. Forward refers to passing input

data forwards through the layers, backwards updating the layers’ weights
with error information.

Table 2.2: Nomenclature in Transfer Learning

The notations used throughout this thesis are summarized in Table 2.3. These notations
follow the standards of works related to transferability estimation and are most similar to those
in You et al. (2021).

Notation Definition
Sm→t Predicted transferability score of modelmi on dataset dj
Tm→t Fine-tuning performance of modelmi on dataset dj
ϕi Pre-trained model i
ψi Fine-tuned model i
D Set of datasets
M Set of pre-trained models
N Total number of datasets
M Total number of pre-trained models

Table 2.3: Transferability estimation notations.

2.3. Transferability Estimation 10

2.3.2. Types of Transferability Estimation Methods
In this section, we do an extensive survey and categorization of the related work on transferabil-
ity estimation, both for natural language processing and computer vision. In our survey, we
include 29 works that propose transferability estimation methods. While we largely adopt the
survey by Bai et al. (2023), we expand on it and propose a different categorization, primarily
based on the input of the approaches. Although more distinctions can be made between the
methods, we find that this categorization provides a better idea of the minimum work required
for each method. For example, all source embeddingmethods require a forward pass of the target
dataset over the source model. Table 2.4 outlines the approaches and desirable properties of
transferability estimation metrics. Figure 2.3 presents a categorization of transferability estima-
tion methods. In the following sections, we explain each category and summarize the approach
for each of the works in these categories.

Transferability Estimation
metrics

Dataset similarity Model similarity
Learning from

fine-tune history

Source embeddings

Optimal Transport

Sample wise affinity

Graph-based affinity

Source embedding

Class Separability Model Vectorization

Recommendation

Graph Learning (us)Source-target label

Figure 2.3: A taxonomy of surveyed transferability estimation methods.

Dataset Similarity with Source Embeddings
Pioneering works in the field of transferability estimation mainly focused on capturing the in-
tuition that the fine-tuning performance should be high when the source and target tasks are
similar. Hence, they attempt to embed the tasks in such a way that their distance gives an indi-
cation of their similarity. Embeddings are usually generated by running the source dataset ds
and the target dataset dt through the feature extractor of a large probe network, such as BERT (De-
vlin et al. 2019) for natural language processing tasks and ResNET (Yu et al. 2018) for computer
vision tasks. Methods in this category include Task2Vec (Achille et al. 2019) and Domain Simi-
larity (Cui et al. 2018) for computer vision tasks.

Dataset Similarity with Optimal Transport
Another set of methods attempts to apply the same procedure as above, but without the need of
running the target dataset through a probe network to generate the source embeddings. These
methods estimate transferability by solving the Optimal Transport (OT) problem between the
source and target distributions. OTCE (Y. Tan et al. 2021) then uses the optimal coupling to com-
pute the Negative Conditional Entropy between the source and target labels. OTDD (Alvarez-
Melis & Fusi 2020) propose a hybrid Euclidean-Wasserstein distance over label-feature pairs.
Finally, F-OTCE and JC-OTCE (Y. Tan et al. 2024) improve OTCE in terms of efficiency and
accuracy, by not requiring auxiliary tasks with known fine-tuning performances.

Dataset Similarity with Source-target Label Comparison
Other early transferability methods, such as NCE (Tran et al. 2019) and LEEP (Nguyen et al.
2020), measure the relatedness of the labels of the source and target datasets to construct a score.
In NCE, Tran et al. (2019) assume that the samples from the source and target tasks are equal but
have different labels. They use Negative Conditional Entropy between the source and target la-
bels as the transferability score. LEEP (Nguyen et al. 2020) is more similar to themethods below;

2.3. Transferability Estimation 11

however, instead of extracting the features, the target labels are extracted only using the source
model. These are used to compute the log-likelihood between the source model prediction and
the actual target labels.

Model Similarity
As an improvement over brute force fine-tuning, model similarity-based methods fine-tune one
target model ψt and attempt to measure the similarity between the target model and the set
of source models {ϕm}Mm=1. The idea is that this reduces the time consumption of fine-tuning
to 1/M , plus a relatively efficient pairwise similarity computation. These methods also usually
use sample features extracted from both source and target models to measure similarity. Bai
et al. (2023) divide these methods into Sample-wise Similarity Functions and Graph-wise Similarity
Functions.

TaskEMB (Vu et al. 2020) and CogTaskonomy (Luo et al. 2022) use sample-wise similarity
functions. They do this by computing the affinity between the mean features and using the
average sample affinities of language models, respectively. A-Map (Song et al. 2019) calculate
attribution maps for computer vision models using various methods, which can also be used to
measure the distance between pairs of models.

A second line of model similarity transferability estimation methods use graph-wise simi-
larity functions. Figure 2.4 shows a pipeline of how model similarities are calculated in Graph
Based Similarity (GBS) (Z. Chen et al. 2021). Similarly to sample-wise similarity functions, sam-
ple images are fed through the pre-trained models’ layers to obtain their representations. These
are converted to vectors, which are used to represent the pre-trained models as graphs, which
are finally used to compute their similarity. Other works in this line include Representation Sim-
ilarity Analysis (RSA) (Dwivedi & Roig 2019), Duality Diagram Similarity (DDS) (Dwivedi
et al. 2020), Kernel Alignment (KA) (J. Huang et al. 2021) and Centered Kernel Alignment
(CKA) (Kornblith et al. 2019). These methods differ only slightly in how they compute the
graph affinities.

Figure 2.4: An example pipeline of computing model similarity from GBS (Z. Chen et al. 2021).

Source Embedding
Although model similarity methods only need to fine-tune on the target task once, this still
comes at a high computational cost. Source embedding methods only use the features extracted
from the target task by a source model and the target task labels to efficiently estimate the true
performance. Bai et al. (2023) separate these methods into class separability methods and loss ap-
proximation methods. However, the distinction between these categories is not very clear. Most
importantly, a majority of the methods in the category of loss approximation do not recognize
that this is their strategy. However, the class separability of the extracted features is a common
factor for these methods.

The assumption of these methods is that if the extracted features by a pre-trainedmodel are
similar for the same target class and different from the features of other target classes, the fine-
tuning performance of that pre-trained model will be good. In essence, these methods measure

2.3. Transferability Estimation 12

Figure 2.5: An illustration fromGBC (Pandy et al. 2022) of how source embedding methods generally analyze howwell
the features extracted by a source model cluster for each target class.

how well the extracted features cluster for each of the target labels. Figure 2.5 illustrates how
GBC’s (Pandy et al. 2022) approach, but the essence of these methods is the same.

Meiseles & Rokach (2020) directly use the pre-trained features using the Mean Silhouette
Coefficient (MSC) to assess the clustering quality of target classes. Bolya et al. (2021) use Pair-
wise Annotation Representation Comparison (PARC) by computing the pair-wise affinities of all
pairs of target samples. Gaussian Bhattacharyya Coefficient (GBC) (Pandy et al. 2022), use the
Bhattacharyya coefficient to measure the inter-class overlap of the target features. Puigcerver
et al. (2020) fit a KNN classifier and Kumari et al. (2022) a Logistic Regression model on the
extracted features to estimate how fitting they are for the target labels. Yandong Li et al. (2021)
introduce an extension of LEEP, NLEEP, where they fit a Gaussian Mixture Model of the target
data within the embedding space, replacing the source model’s classification head to calculate
the LEEP score. L.-K. Huang et al. (2022) propose TransRate, which uses a proxy of mutual
information (through coding rate) between the extracted features and target labels.

Bao et al. (2019) developH-Score, which assigns higher transferability scores to embeddings
with lower feature redundancy and inter-class overlap. In Ibrahim et al. (2023), the authors pro-
pose Reg-Hscore, a shrinkage-based estimation of H-Score, which solves H-Score instability due
to poor covariance estimation. The state-of-the-art score, LogME (You et al. 2021), treats each
target label as a linear model influenced by Gaussian noise and adjusts the prior distribution pa-
rameters to determine the average Logarithm of Maximum Evidence for the labels based on the
target sample embeddings. PACTran (Ding et al. 2022) combines ideas from the PAC (Probably
Approximately Correct) learning theory with Bayesian statistics to predict the generalizability
of the pre-trained model to the target task. SFDA (Shao et al. 2022) (Self-challenging Fisher
Discriminant Analysis) measure separability of the target classes through projecting the target
embeddings by Fisher Discriminant Analysis.

Learning from fine-tuning history methods
While performing a forward pass over amodel’s feature extractor is relatively efficient compared
to full fine-tuning, it becomes an increasingly larger burden as the model zoo grows. Further-
more, as mentioned earlier, there is a trend for increasingly larger models, which makes a for-
ward pass even more expensive. By learning from past fine-tuning experiences, some recent
works attempt to circumvent this forward pass over the entire model zoo. Y.-K. Zhang et al.
(2024) do this by vectorizing models and tasks into a single space and learn from previously
obtained fine-tuning performances. H. Li et al. (2023) convert transferability estimation to a rec-
ommendation problem. They show that by only incorporating basicmeta-features of pre-trained
models and tasks, it is possible to train a linear regression model which can accurately predict
the performance and have the same benefit in terms of efficiency.

2.3. Transferability Estimation 13

Method Input
Free of
Target

Training

Free of
Forward

Pass

Learns from
Basic

Metadata

Learns from
Complex
Relations

Dataset similarity with Source Embedding
Task2Vec (Achille et al. 2019) ϕp, ds, dt 7 3 7 7
Domain Similarity (Cui et al. 2018) ϕp, ds, dt 3 3 7 7

Dataset Similarity with Optimal Transport
OTCE (Y. Tan et al. 2021) ds, dt 7 3 7 7
(F/JC)-OTCE (Y. Tan et al. 2024) ds, dt 7 3 7 7
GDD (Alvarez-Melis & Fusi 2020) ds, dt 7 3 7 7

Dataset similarity with Source-target Label Comparison
NCE (Tran et al. 2019) ds, dt 7 7 7 7
LEEP (Nguyen et al. 2020) ds, ϕm, dt 7 7 7 7

Model Similarity
DDS (Dwivedi et al. 2020) ϕm, ψt 7 3 7 7
RSA (Dwivedi & Roig 2019) ϕm, ψt 7 3 7 7
GBS (Z. Chen et al. 2021) ϕm, ψt 7 3 7 7
KA (J. Huang et al. 2021) ϕm, ψt 7 3 7 7
CKA (Kornblith et al. 2019) ϕm, ψt 7 3 7 7
TaskEMB (Vu et al. 2020) ϕm, ψt 7 3 7 7
CogTaskonomy (Luo et al. 2022) ϕm, ψt 7 3 7 7
A-Map (Song et al. 2019) ϕm, ψt 7 3 7 7

Source Embedding
LogME (You et al. 2021) ϕm, dt 3 7 7 7
MSC (Meiseles & Rokach 2020) ϕm, dt 3 7 7 7
PARC (Bolya et al. 2021) ϕm, dt 3 7 7 7
kNN (Puigcerver et al. 2020) ϕm, dt 3 7 7 7
GBC (Pandy et al. 2022) ϕm, dt 3 7 7 7
Logistic (Kumari et al. 2022) ϕm, dt 3 7 7 7
PACTran (Ding et al. 2022) ϕm, dt 3 7 7 7
TransRate (L.-K. Huang et al. 2022) ϕm, dt 3 7 7 7
NLEEP (Yandong Li et al. 2021) ϕm, dt 3 7 7 7
H-Score (Bao et al. 2019) ϕm, dt 3 7 7 7
Reg. H-score (Ibrahim et al. 2023) ϕm, dt 3 7 7 7
SFDA (Shao et al. 2022) ϕm, dt 3 7 7 7

Learning from Fine-tuning History
Model Spider (Y.-K. Zhang et al. 2024) ϕm, dt, Sm→t 3 3 7 7
Amazon LR (H. Li et al. 2023) ϕm, ds, dt, Tm→t 3 3 3 7
TransferGraph ϕm, ds, dt, Tm→t 3 3 3 3

Table 2.4: Overview of surveyed transferability methods, where ϕp and ϕp denote probe- and source model. ψt denotes
the fine-tuned target model. ds and dt represent the source- and target tasks.

2.3.3. Other related work
Below, we will cover other relevant related work which can be useful to understand the context
of transferability estimation. These topics are often seen in works on transferability estimation,
but differ in their ultimate goal.

Transfer learning engine
An omitted work in the above survey is SHiFT (Renggli et al. 2022). It is interesting because it
proposes the first transfer learning engine. It does not propose its own transferability estimation
metric. Instead, practitioners can approach this systemwith their target task and computational
budget, and the system will attempt to select the best source model for transfer learning. It
combines a task-aware and task-agnostic approach and, depending on the budget, it will fine-
tune the best k returned models by the various approaches.

Target task selection
Some works on transferability estimation cover two evaluation scenarios: 1) Source model selec-
tion, that is, ‘For my target task, which pre-trained model will yield the best fine-tuning perfor-
mance”; and 2) Target task selection, i.e. “For my pre-trained model, which target task will yield

2.4. Graph Learning 14

the best fine-tuning performance” (Bolya et al. 2021; Ibrahim et al. 2023). However, most works
only cover source model selection. We will do the same in this thesis, as it fits with the use cases
we described earlier. Additionally, the use case of target task selection is not explicitly made
clear in these works.

Model Ensemble
Another interesting line of work related to transferability estimation is model ensemble, or model
soups (Wortsman et al. 2022). This field focuses on combining weights from layers of different
pre-trained models to adapt to a new target task. A different, but overlapping, setting to trans-
ferability estimation is selecting the best pre-trained models to combine these weights for. B
et al. (2023) apply transferability estimation in this setting, and improve GAN training for large
image generation models.

2.4. Graph Learning
As mentioned in the Introduction, since our solution to transferability estimation utilizes graph
learning to capture relationships between pre-trained models and datasets, we will cover the
required background knowledge on graph learning in this section. Graph learning refers to ma-
chine learning applied to data structured as graphs. Many complex real-world scenarios, such as
social networks (e.g. LinkedIn), biological networks (proteins), chemical networks (molecules),
and traffic networks, can be modeled as graphs. Various tasks can then be solved using these
graphs; this can be:

• On a (sub)graph level, for example graph generation, which can be used in drug discovery
to find new types of molecules (Ilnicka & Schneider 2023).

• On a node level, for example node property prediction, to predict interests of users in a social
network (Nori et al. 2011).

• On an edge level, for example edge (property) prediction, with the goal of identifying real
world friends (Grover & Leskovec 2016) or adverse side effects of pairs of drugs (Zitnik
et al. 2018).

Definition 2.4.1 (Graph). We denote a graph asG = (V,E)where V is the set of vertices/nodes
and E ⊆ V × V denotes the set of edges that connect the vertices in V .

2.4.1. How to Represent a Graph
Graphs are very different from typical data structures used formachine learning, such as images,
text, or tabular data. These are all relatively straightforward to represent as vectors of features,
which is the typical input format for downstream machine learning tasks. To illustrate; intu-
itively, it might be tempting to represent a graph as an adjacency matrix, indicating which node
is directly connected to another. However, such a representation consumes a lot of memory,
as its size is |V | × |V | and only captures neighboring relationships, disregarding more complex
structural information about the graph (D. Zhang et al. 2020).

A common approach therefore is to first find meaningful representations or embeddings for
the subject of interest (subgraph, node, or edge, depending on the task type), and then use
these representations as input for a downstream learning task (Xia et al. 2021). Graph repre-
sentation learning is an active research area, with various available surveys (F. Chen et al. 2020;
Khoshraftar & An 2024).

In a recent survey, Khoshraftar & An (2024) categorize graph embedding methods into
traditional and Graph Neural Network(GNN)-based approaches. We will briefly cover both types
and their advantages below. Their survey also covers dynamic graph embeddingmethods, which
aim to additionally embed the evolution of a graph over time. However, this is not relevant to
our problem setting and we will omit these methods. Below, we will introduce these methods
and their strengths and weaknesses.

2.4. Graph Learning 15

2.4.2. Traditional Graph Embedding Methods
Traditional graph embedding techniques maintain various properties of nodes and edges in
graphs, such as the proximity of nodes. These methods are further divided into three differ-
ent categories by Khoshraftar & An (2024): factorization-based methods, random walk-based methods
and non-GNN-based deep learning methods.

2.4.3. Factorization-based
Early works on graph representation learning are primarily based on factorization techniques.
The starting point for factorization-based methods is a proximity matrix, where each element
is denoted Pi,j and represents the proximity of a node i to j. Next, factorization techniques
decompose this proximity matrix, where the resulting matrices represent lower-dimensional
embeddings of the nodes. Methods mainly vary in how they define their proximity matrix. Al-
thoughmatrix factorization-basedmethods are effective in capturing the global graph structure,
scalability is a bottleneck due to the memory consumption of factorizing very large matrices (D.
Zhang et al. 2020).

2.4.4. Random Walk-based
Random walk-based graph embedding methods are used to learn representations of nodes in a
graph in a low-dimensional space while preserving the graph’s structure. In this context, random
walk refers to the randommovement of one node to another along the edges of the graph, which
helps to explore the structure of the graph and the similarities between nodes. After the random
walks have been performed, they are used to train a SkipGram (Mikolov et al. 2013a) model to
generate the embedded node vectors.
Definition 2.4.2 (Random walk). A random walk on a graph G = (V,E), is defined as a se-
quence of nodes v0, v1, .., .., vk, where (vi, vi+1) ∈ E and k + 1 is the length of the walk. From
each node vi, the next node vi+1 in the sequence is chosen based on a probabilistic distribution.

Popular examples are DeepWalk (Perozzi et al. 2014), Node2Vec (Grover & Leskovec 2016)
and its extension Node2Vec+ (R. Liu et al. 2023). The latter two graph embedding learning
methods are based on Word2Vec’s (Mikolov et al. 2013b) observation that words occurring in
the same sentence have high similarity. These methods apply this in graphs, noting that nodes
occurring in the same random walk have a high degree of similarity.

Although these methods scale better than factorization-based methods, they do have a few
disadvantages. These methods are transductive instead of inductive, meaning that embeddings
have to be generated from scratch every time a new node is added (Hamilton et al. 2017). This
is in contrast to GNN-based graph embedding methods, which train a model which can be used
to generalize over unseen nodes. Furthermore, these methods do not easily incorporate edge or
node properties.

2.4.5. GNN-based Graph Embedding
GNNs are deep learningmodels that generate node embeddings by aggregating the embeddings
of the node’s neighbors (Khoshraftar & An 2024). This process is often referred to as message
passing. During this process, nodes exchange information with their immediate neighbors, it-
eratively updating their states based on both their own attributes and the information received.
By doing this, GNNs can capture local and global structures within a graph, allowing them to
make predictions about nodes, edges, or entire graphs.

Since their first introduction, GNNs have seen a variety of enhancements and architectures,
with varying message passing implementations. Key variants include Recurrent Graph Neural
Networks (RecGNNs) (Scarselli et al. 2009), which are based on RNNs; Convolutional Graph
Neural Networks (CGNNs) (Kipf & Welling 2016), which generalize convolutional neural net-
works to graph data; and Graph Attention Networks (GATs) (Veličković et al. 2018), which in-
troduce attention mechanisms to weigh the importance of neighboring nodes differently.

Their key difference from traditional methods is that they can make predictions for unseen
nodes and their ability to incorporate edge and node properties. However, their computational

2.5. Summary 16

Figure 2.6: Image of a general framework for training GNNs taken from Khoshraftar & An (2024). It depicts an input
graph with four nodes, two GNN layers and a classification layer. xa is the feature representation of node a and h1a
and h2a the feature representations of node a after passing through the first and second layer. The colors represent the
common neighbors of each of the nodes.

complexity is usually greater than for random walk-based methods (Khoshraftar & An 2024).
Below, we will first cover the general architecture of GNNs, followed by a detailed description
of the GNN methods which we use later in our experiments.

Basic Architecture
GNNs generate node representation vectors by stacking multiple GNN layers. A basic architec-
ture of how node representations are updated by a GNN’s layer is by the following formula:

h
(l+1)
i = f

hli, ∑
j∈N(i)

g(i, j)

 , (2.1)

where hli is the node embedding for node i at layer l, f and g are learnable functions and
N(i) the set of neighbors of node i. The embeddings of node i at each layer are generated by
aggregating the embeddings of the node’s neighbors. h0i are the initial features of the node and
hLi is the final representation after passing through L layers.

GNNs are typically trained using a cross-entropy loss function. In case of a node classifica-
tion task, this can be done as follows:

L =
∑

i∈Vtrain

yi log(σ(h
T
i θ)) + (1− yi) log(1− σ(hTi θ)), (2.2)

where hi is the embedding of node i, yi is the true class label and θ the classificationweights.
This loss function can be defined similarly in the case of an edge prediction task using pairwise
node representations. Figure 2.6 shows a general framework for training GNNs for node classi-
fication tasks.

2.5. Summary
In this chapter, we introduced the concept of transferability estimation and the concepts most
relevant to it: transfer learning and model zoos. The field of transferability estimation aims to
give an efficient heuristic to find the best pre-trained model to fine-tune for a target task, among
a set of pre-trained models which can be found in public repositories, often called model zoos.
Fine-tuning is a transfer learning technique that retrains the weights of one or more layers of a
neural network to adapt it to a new task. We further introduce the concept of graph learning
and the available methods.

2.5. Summary 17

Although in recent years many transferability estimation methods have been proposed, no
comprehensive survey of these methods has been provided. The available surveys are mostly
benchmarks of a few methods and do not offer an easy-to-understand categorization of these
methods. In this chapter, we provided a categorization based on the input of these methods,
which we argue to be more intuitive. We categorized a total of 29 proposed transferability esti-
mation methods and described their approach to solving this problem.

Summary of contributions

• A survey on the related work on transferability estimation, which is more extensive
than existing surveys, such as those by Bai et al. (2023) and Agostinelli et al. (2022),
and offers a more intuitive taxonomy by categorizing methods based on the used
input.

3
Transferability Estimation as a

Graph Learning Problem

In Chapter 2, we introduced the topics related to this thesis and provided a brief background
on transferability estimation, together with a review of the related work. In this chapter, we
further explore the concept of transferability estimation. First, we will formally describe the
transferability estimation problem and explain three envisioned use cases. Next, we discuss
the limitations and challenges of the methods introduced in Chapter 2. These limitations are
then used to introduce our solution for estimating transferability. We propose reframing the
transferability estimation problem as a link prediction problem on a graph. The missing link
represents the fine-tuning performance of a pre-trained model on a new target dataset. This
chapter lays out our motivation for this choice and the details of the information we chose to
include in the graph.

3.1. Problem Definition
To fully understand transferability estimation, we will first explain the problem in more detail.
To do so, we first explain the problem through three use cases. After this, we formally describe
the problemand explain how transferability estimationmethods generallymeasure their success.
Finally, we discuss the limitations of the currently proposed transferability estimation methods.

3.1.1. Example Use Cases
To illustrate the problem of transferability estimation and why it is important, we will first pro-
vide three example use cases. We will start with a more trivial use case, building up to how we
envision transferability estimation as an important step in the machine learning lifecycle across
different end-users.

Use case 1: An individual machine learning practitioner is interested in building a niche tool,
which can take an image and tell whether it contains aChihuahua or a blueberrymuffin. They do
not have the resources, both in terms of number of images and computational resources, to train
a classifier for this problem from scratch (surprisingly, no one would invest in their tool). The
practitioner consults a public model zoo with their limited dataset of images and labels and tries
to find a pre-trained image classification model to fine-tune for their task. Currently, this model
zoo will give them no guidance on which pre-trained model to pick. They might intuitively pick
a pre-trained image classification model which was trained to differentiate between breeds of
dogs. Unfortunately, this did not give them satisfying results either, and they wasted the little
funds they had to run the fine-tuning on a GPU instance from a cloud provider.

18

3.1. Problem Definition 19

Use case 2: A medium-sized financial organization, such as a bank, is required to monitor
their transactions for suspicious behavior. At the very least, they should be wary when transac-
tion description somehow have terroristic sentiment in them, mentioning for example guns or
religious extremism. Simple heuristics or lists of words generate toomany false positives, so they
want to explore deploying a text classification model. They have a small dataset of text and label
pairs, but from experience know that this is too little to train a text classifier from scratch with.
They do not have any pre-trainedmodels which they could fine-tune themselves, so they turn to
a public model zoo to search for a pre-trained model. Not able to find any models which were
already fine-tuned for recognizing religious extremism in transaction descriptions, they need
to choose between any of the thousands of pre-trained models the zoo offers. They randomly
pick five popular pre-trained models and fine-tune them. While some of them had promising
results, they were extremely slow and not suitable to execute real-time as transactions are being
executed.

Use case 3: A large international tech company does have the resources to train their own
proprietary pre-trained models. They build a private model hub for internal usage, containing
both pre-trained models and fine-tuned models for specific tasks. Other teams within the orga-
nization are interested in solving their tasks using machine learning, but given the growing size
of the model zoo, are unsure on which to best pick for their tasks.

3.1.2. Problem Formalization
Formally, the goal of transferability estimation is to estimate a score Sm→t for a source model
ϕm and a target task dt. The target task is a dataset containing n image or text samples and
ground truth label pairs {(xi, yi)}ni=1. The dataset has an evaluation metric, such as accuracy
or mean squared error, to measure the ground-truth fine-tuning performance Tm→t. A good
transferability score Sm→t has a high correlation with the ground truth fine-tuning performance
Tm→t.

3.1.3. How to Measure the Success of Transferability Estimation Methods?
For a set of M pre-trained source models {ϕm}Mm=1, a perfect transferability metric would pro-
duce the scores {Sm→t}Mm=1 in exactly the same order as the ground-truth fine-tuning perfor-
mances {Tm→t}Mm=1. Measures such as top-1 or top-k could be used to measure deviations from
this perfect order, but these fail to take into account that the top performing models might per-
form very similar and punish the metric too hard for not picking the best model. Thus, most
transferability estimation methods turn to rank correlation (Fagin et al. 2003). Below, we give
an overview of the commonly used correlation metrics in works on transferability estimation.

Pearson’s correlation coefficient (Pearson 1895) (r) is a measure of the linear correlation
between two sets of data. It gives information about correlation, as well as the direction of the
relationship between the datasets. The values range between r ∈ [−1, 1], where −1 indicates
perfect negative linear relationship, 0 no linear relationship and 1 perfect positive linear rela-
tionship. It is used by Nguyen et al. (2020), but the absence of a linear relationship between the
predicted scores {Sm→t}Mm=1 and the ground truth fine-tuning performances {Tm→t}Mm=1 do not
mean that the transferability metric is bad. On the contrary, the ranking could be perfect while
the relationship is non-linear.

Spearman’s rank correlation coefficient (Spearman 1904) (ρ) - to solve the above issue,
most methods turn to rank correlations to measure the success of their method. Spearman’s
rank correlation coefficient between two variables is equal to the Pearson correlation between
the rank values of these variables.

Kendall rank correlation coefficient (Kendall 1938) (τ) - enumerates all rank pairs and
subtracts all discordant pairs from all concordant pairs. The equation to calculate τ is:

τ =
2

M(M − 1)

∑
1≤l<m≤M

sgn(Tl − Tm) · sgn(Sl − Sm) (3.1)

3.1. Problem Definition 20

Both ρ and τ have values ranging from [−1, 1], where 1 indicates perfect agreement of the
ranks and−1 perfect inverse agreement. You et al. (2021) argue that it has an easy interpretation,
in contrast to the coefficients mentioned above. That is, if S and T have a correlation of τ , the
probability that Ti > TJ is τ+1

2 when Si > Sj .
Weighted Kendall rank correlation coefficient (τw) - in reality, practitioners will mostly

care for the correct ranking of the top performingmodels. This can be incorporated into Kendall
rank correlation by assigning a higher weight on pairs with higher Ti. Agostinelli et al. (2022)
use a hyperbolic dropoff in importance of models as Ti decreases.

Relative top-k accuracy (Yandong Li et al. 2021) (Rel@k) - both τ and especially τw will
overly penalize a transferability metric if the top-performing models are predicted out of order,
but perform very similarly. To account for the relative performance of the top-k predicted mod-
els, Yandong Li et al. (2021) propose Rel@k, which can be calculated by taking the ratio of the
best predicted {ϕn}kn=1 models according to {Sn→t}kn=1 and the best fine-tuning accuracy of all
models:

Rel@k =
max {Tn→t}kn=1

max {Tm→t}Mm=1

(3.2)

and they compare their results for k = 1 and k = 3.

3.1.4. Limitations and challenges
In this section, we discuss the limitations of the methods described in Section 2.3.2. Table 2.4
gives an overview of all surveyedmethods and desirable properties of transferability estimation
methods. Below, wewill go over the categories of transferability estimationmethods and discuss
their strengths and weaknesses.

To prevent brute-force fine-tuning of all pre-trainedmodels,model similaritymethods gen-
erally fine-tune a small targetmodel to compare it tomultiple sourcemodels. While this requires
expensive training, after having trained one target model, the methods usually have an efficient
heuristic to compute the score. Strictly speaking, they do require a forward pass, but with the
column free of forward pass, we mean that it does not require a forward pass for every pre-trained
model. Dataset similarity methods using source embeddings also prevent having to do a for-
ward pass over all pre-trained models. However, by only using a probe model to extract the
features, they do not take into account any information about the source model.

Dataset similaritymethods using optimal transport are free of training and a forward pass.
However, computing optimal transport distances scales quadratically with the number of sam-
ples in the datasets, making it infeasible for larger datasets (Pandy et al. 2022).

While source embeddingmethods are the most popular and competitive methods in terms
of effectiveness, when using model zoos consisting of thousands of pre-trained models, they
are the most impractical in terms of efficiency. As also noted by Y.-K. Zhang et al. (2024), they
require a forward pass of the entire target dataset over all pre-trained models in the model zoo
to compute their ranking. Taking either a subset of the pre-trained models or the target dataset
samples to estimate transferability will negatively affect the performance of these methods, as
shown by Agostinelli et al. (2022).

A major limitation in most related works on transferability estimation is the limited size
and diversity of assessed pre-trained models and datasets. For example, the state-of-the-art
LogME method (You et al. 2021), was evaluated on only 10 pre-trained models, all trained us-
ing ImageNet (Deng et al. 2009). Comparative studies have the same limitation. For example,
Agostinelli et al. (2022) and Bai et al. (2023) experiment with only 16 and 6 source models, re-
spectively. Only a few related works, such as those by Renggli et al. (2022) and, more recently,
H. Li et al. (2023) and Y.-K. Zhang et al. (2024) use settings with more heterogeneous and larger
model zoos, which better representmodern-daymodel zoos. H. Li et al. (2023) specifically show
that in the case of model zoos containing models with different architectures and pre-trained on
different source datasets, source embedding methods become more inaccurate.

3.2. Solution Overview 21

With a limited number of pre-trained models, performing this forward pass is not a major
concern. However, as Y.-K. Zhang et al. (2024) argue, with the increasing number of pre-trained
models in model zoos, this approach is becoming infeasible. To address these challenges, some
existingmethods learn from fine-tuning history, such asModel Spider (Y.-K. Zhang et al. 2024)
and Amazon LR (H. Li et al. 2023). The work on Model Spider is promising and was proposed
simultaneously with this thesis. Therefore, we could not directly compare it to our method.
However, it has some apparent disadvantages. It does not incorporate any additional metadata
of pre-trained models or target datasets, which H. Li et al. (2023) have shown to be useful. An-
other shortcoming is their evaluation setup, where they use a combined ranking of other meth-
ods as a ground-truth score instead of actual fine-tuning performances. While this may serve
as a decent and more efficient proxy, there is no way to ensure the actual performance of their
method, as it may rely on the shortcomings of the methods used for ranking. To summarize, we
identify the following limitations and challenges:

• Transferability estimationmethods are often evaluated against small model zooswith little
variation of pre-trained models.

• Only taking into account a part of the available information, they fail to capture complex
dynamics of pre-trained models and datasets.

• With a growing number of pre-trained models to choose from, most non-learning based
transferability estimation become impractically inefficient.

3.2. Solution Overview
In this section, we will present our solution to overcome these challenges and limitations as
mentioned in the previous section. We will first motivate our choice for representing the trans-
ferability problem as a graph learning problem and discuss the usable relationships in this set-
ting. Next, we explain useful metadata to include as node attributes in our graph as identified
by previous works. Finally, we give a formal definition of reframing transferability estimation
as a link prediction problem.

3.2.1. Motivation for Graph Representation
In Chapter 2, we have discussed the various approaches proposed in existing works to capture
the relationships between pre-trained models and target tasks. To summarize, we identify four
types of relationships used in these metrics:

Type 1: Source- and unseen target task (e.g. Task2Vec (Achille et al. 2019)).
Type 2: Source model and unseen target task, through extracting the source model features for the

target task (e.g. LogME (You et al. 2021)).
Type 3: Source- and target model (e.g. A-Map (Song et al. 2019)).
Type 4: Source model and seen target task, through historic fine-tuning performances (e.g. Ama-

zon LR (H. Li et al. 2023)).
Using these individual relationships, all of these works have had some success in predicting

task transferability. The advantages of types 1 and 2 are that they do not require any metadata
of the models and datasets, training, or past fine-tuning performances. However, as model zoos
grow and become more structured, both metadata and past fine-tuning performances are be-
coming more readily available – which have been shown to be useful by works of type 4. The
disadvantage of type 4 metrics is that they disregard any fine-tuning dynamics that could be
exposed by the underlying structure of the datasets and models. Finally, the relationship of
type 3 has the disadvantage that it requires to first fine-tune a model on the target task, which is
expensive and what we are trying to prevent.

In this work, we advance beyond thesemetrics by combiningmultiple types of relationships
as weighted connections between tasks and models, and reframe transferability estimation as a
graph link prediction problem. We choose this approach, as graph learning can capture more
complex relationships than traditional machine learning methods and can be very effective for
solving recommendation tasks (Shoujin Wang et al. 2021). Additionally, it is more flexible than

3.2. Solution Overview 22

existing approaches, since the general graph structure can still be learned even when certain
nodes (e.g., source dataset) or edges (e.g., fine-tuning performances) are unavailable.

Representing this problem as a graph is inspired by other works on data management sys-
tems, such as data lakes (Hai et al. 2023), where datasets are structured as graphs (Castro Fer-
nandez et al. 2018; Nargesian et al. 2020; Y. Zhang & Ives 2020). In these works, tables can be
presented as nodes and edges as relationships, such as semantic similarity (Castro Fernandez
et al. 2018). We also note that we are not the first to consider graph representations to tackle
transferability estimation (Z. Chen et al. 2021). However, these works are different as they only
represent model similarity relationships in a graph.

In our setting, we will include type 1 and type 4 relationships. In our previous work (Ziyu
Li et al. 2024), we also explore the addition of type 2 relationships. While it is shown in that
work that transferability scores can be used in our graph as a proxy for the historical fine-tuning
performances, we give more focus to efficiency in this work. As noted earlier, obtaining these
transferability scores through a forward pass over the entire model zoo adds toomuch overhead
in today’s largemodel zoos. Type 3 requires full fine-tuning of a targetmodel, whichwe consider
to be too inefficient.

3.2.2. Basic Metadata
Even though they are coarse-grained, some basic metadata of models and datasets can serve as
useful information to predict transferability (H. Li et al. 2023). In this section, we will list the
metadata we identified from related works and why they are valuable to use for transferability
estimation.

Dataset metadata
Themetadata of datasets can be indicators of the fine-tuning difficulty, which can affect amodel’s
ability to transfer knowledge to the target task. For example, a dataset withmany classes is more
difficult to learn than a dataset with binary classes. In our setting, we consider the metadata of
the source and target datasets.

• Number of data samples Smaller tasks have less information and are likely easier to
learn. Similarly, larger tasks with diverse features will likely need a more complex model
to achieve good performances.

• Number of classes Deep learningmodelswill havemore trouble differentiating between
classes accurately when there are many instead of when there are for example only two.
This also means the task may require more samples to learn properly.

Model Metadata
A pre-trained model’s metadata can reveal its learning capabilities. A model with more param-
eters may capture more generalized features, and models with different architectures may have
varying inductive biases for different tasks. Below, we present the usefulmetadata of pre-trained
models.

1. Input shape Higher-resolution images contain more information, which the pre-trained
model has to be able to capture.

2. Architecture A pre-trained model’s architecture can have a significant effect in the fine-
tuning performance. More complex architectures, such as ResNet (K. He et al. 2016) and
Inception (Dosovitskiy et al. 2021) may be better for learning more difficult datasets, with
larger inputs than simpler architectures, such as LeNet (Lecun et al. 1998).

3. Pre-trained dataset The quality and diversity of the dataset used to pre-train the model
will have significant impact on the ability to generalize for a new target dataset. If the
model was pre-trained with a larger dataset, containing diverse images, it is likely to trans-
fer better to a new task compared to a small and specific dataset.

4. Upstream performance The capability of a pre-trained model can be identified by its
upstream performance. Given two models pre-trained on the same dataset, the one with

3.3. Summary 23

higher upstream accuracy indicates better knowledge of that dataset and could give an
indication of better performance on a similar target dataset.

5. Number of parameters Similarly to architecture, this can be an indication of complexity
of the model and ability to generalize over new target tasks.

6. Memory consumption Highly correlating with number of parameters, it is another mea-
sure of complexity.

Most of these basic metadata are inspired by Amazon LR (H. Li et al. 2023). However, we
exclude their dataset difficulty category because it requires additional computation. All other
metadata mentioned above are straightforward to obtain. We expand their set of basic metadata
with upstream performance, which is often available in public model zoos.

3.2.3. Transferability Estimation as Graph Link Prediction
To effectively predict transferability, we propose to reframe the problem to a graph link predic-
tion problem. In this section, we will motivate this choice and introduce our approach.

Link Prediction Problem Formalization
In Section 2.4, we provided a background on graph learning, and in Section 3.1.2, we formally
introduced the problem of transferability estimation. In this section, we will introduce the prob-
lem reframed as a graph link prediction problem.

In our setting, a node is either a dataset D = {di}Ni=1 or a deep learning model M =
{ϕm}Mm=1. Hence, for our set of vertices, we have V = D ∪ M, with the number of datasets
N = |D| and the number of modelsM = |M|. We further construct two types of edges:

1. Dataset-dataset (di, dj), representing the similarity between two datasets.
2. Model-dataset (ϕm, dt), representing the historical fine-tuning or upstream training per-

formances Tm→t.

Link prediction Link prediction aims to predict a missing edge (i.e., link) between two nodes.
Most techniques approach it as a ranking problem, where pairs of unconnected nodes are given
a probability proportional to the likelihood of the existence of a link between them (Martínez
et al. 2017). A threshold is then defined; pairs of nodes with a score above the threshold are
assigned a positive edge and below it a negative edge.

We extend Definition 2.4.1 by including a weight matrix W in G = (V,E,W), which de-
scribes the adjacency of the graph. Here, the weight value w of an edge (i, j) ∈ E is assigned
a value ofWi,j = w andWi,j = 0 otherwise. In our problem setting, these weight values corre-
spond to the actual fine-tuning performances or dataset similarities. The implementation of this
will be discussed in more detail in Section 4.3. After constructing the graph, we reformulate the
transferability estimation problem to a learned function on the graph, which can be denoted by
the following equation:

Tm→t = F (fG(ϕm), fG(dt)) (3.3)

Where fG denotes the function learned by various graph embedding methods to learn the
existence of an edge inW . fG(ϕm) takes the pre-trained model nodem and outputs the embed-
ding of that node, and fG(dt) takes the target dataset node t and returns its embedding. The
function F represents the final learned function to predict the actual fine-tuning performance of
the source model ϕm for the target dataset dt.

3.3. Summary
In this chapter, we delved deeper into the concept of transferability estimation. By presenting
example use cases in Section 3.1.1 and formalizing the problem in Section 3.1.2, we aimed to pro-
vide a clearer understanding of the issue. Next, we discussed the limitations and challenges in

3.3. Summary 24

Section 3.1.4. We noted that transferability methods are often evaluated only against a few pre-
trained models, with little variation in the source datasets and architectures. Moreover, they
fail to capture the complex relationships between pre-trained models and datasets by only in-
corporating a part of the available information, and most methods are impractically inefficient
on large model zoos.

To overcome these challenges, we proposed reframing transferability estimation as a link
prediction problem on a graph, where pre-trained models and datasets form nodes, and the
edges represent either past fine-tuning performances or dataset similarities. Previous research
has shown that these relationships are valuable, and by representing them in a graph, we hy-
pothesize that we can capture them more effectively. We also demonstrated how additional
metadata can be incorporated as node attributes in this graph, which have been shown to be
useful predictors of a model’s transferability to a new task.

Summary of contributions

• We identify the limitations and challenges of previously proposed methods. Most
notably, they disregard useful metadata in their estimation and are impractically
inefficient for large model zoos.

• A reformulation of the transferability estimation problem to a graph link prediction
problem.

4
System Design: TransferGraph

This chapter will outline the design of our solution to transferability estimation: TransferGraph.
TransferGraph is an end-to-end framework for estimating transferability using graph learning.
It includes the four stages of metadata collection (Section 4.2), graph construction and learn-
ing (Section 4.3), regression learning (Section 4.4), and transferability estimation (Section 4.5).
Where in Chapter 2, we gave a general background on graph learning, in this chapter we will
explain the chosen graph learning methods in more detail.

4.1. TransferGraph Overview
In this section, we will introduce the framework for our solution to transferability estimation:
TransferGraph. To apply our graph learning-based approach, there are a few steps involved,
which we will carefully explain in this section. This section will be limited to explaining the
framework and motivation behind our solution; for implementation details, we refer to Chap-
ter 5.

A schematic overview of the approach can be found in Figure 4.1. The following sections
will cover these stages in detail; Section 4.2 and Section 4.3 will cover the stages of metadata col-
lection and graph learning, respectively. In Section 4.4, we explain the learning of a supervised
model, which we use in Section 4.5 to perform the actual transferability estimate.

Stage 1: Metadata collection

Metadata

Model Zoo

Training
accuracy

Transferability
score

 Model
mi

Dataset
dj

Dataset
embeddings dj

0.2 -1.3 0.9

⓵

⓶

⓷

⓸

Stage 2: Graph construction & learning

ImageNetm1

m2

d1
sim:0.4

d4

0.855
d2

sim:0.90.4
d3

beans

pets

Graph
learning

Node
embeddings

⓹

⓺

Stage 3: Training prediction model

Metadata

mi dj mi emb dj emb ...

nat/vitdtd D128 D128 ...

goo/vit�ow D128 D128 ...

...

Training set

Supervised
learning

⓻

⓼

Stage 4: Transferability Estimation

Prediction
model

(LR, RF, XGB)

mi dt mi emb dt emb ...

nat/vit pets D128 D128 ...

goo/vit pets D128 D128 ...

...

mi

nat/vit 0,91

goo/vit 0,81

... ...

Predict
accuracy

Prediction set
target dataset: pets

⓾

⓽

0.7

1.3

Figure 4.1: An overview of TransferGraph for transferability estimation, including model zoo construction (stage 1),
training (stage 2-3) and transferability estimation (stage 4).

4.2. Stage 1: Metadata Collection
The first stage (steps ¬-¯) of TransferGraph is the collection of metadata, which will be used
in later stages. This stage effectively constructs a model zoo from scratch – a process which we
advocate should be done incrementally as models and datasets get added to a model zoo. While
some of the information we use is consistently available in public model zoos, a majority needs
to be prepared by our framework. Some works propose a more structured storage of model zoo

25

4.2. Stage 1: Metadata Collection 26

metadata (Li et al. 2022). This work can be seen as an addition to the metadata that could be
used to facilitate efficient and effective transferability estimation.

We start with a set of pre-trained models {ϕm}Mm=1, and, if available, their source datasets
used to pre-train them {dm}Mm=1. Itmay occur that the chosenmodelwas already fine-tuned for a
different task, inwhich casewewill take the latest fine-tuning dataset as the source dataset. Next,
we select a set of target datasets {dt}Nt=1. This will serve as our model zoo, with the following
sections detailing how we gather additional metadata required in our framework.

4.2.1. Dataset Embeddings
In step ¬, we capture the dataset embeddings. These are used in two places: first, they are used
in step ° to construct the edges between the datasets in our graph. Later in step ², they are also
used as features when learning the supervised prediction model. Representing datasets as vec-
tors to capture semantic similarity has been proposed in works such as Domain Similarity (Cui
et al. 2018) and Task2Vec (Achille et al. 2019). In our previous work, we evaluated both of these
methods. However, Task2Vec requires partial fine-tuning and produces vectors of much higher
dimension than Domain Similarity. Furthermore, Task2Vec did not show significant advantages.
Hence, in this work, we will limit the experiments to Domain Similarity embeddings.

4.2.2. Training Performances
One of the key differences from our approach to most works in transferability estimation is that
we learn from past fine-tuning performances to predict model performance on an unseen target
dataset. In step , we fine-tune all target datasets on all pre-trained models in the model zoo
and capture the fine-tuning performances Tm→t. We use accuracy as the performance metric,
but the framework could be used with other performance metrics, such as f1 or MSE. These
performances will be used to connect models and datasets when constructing the graph in step
°.

Note that at this point, it may seem like we are doing exactly what we were trying to pre-
vent: brute-force fine-tune all pre-trained models to obtain the best fine-tuning performances.
However, for our experiments, we are leaving out the fine-tuning performances for each target
dataset under test. The other fine-tuning performances we consider to be obtained over time
and part of the model zoo’s structured metadata. This is not an unrealistic expectation; public
model zoos such as HuggingFace quite consistently have this data available, and for organiza-
tions building their own model zoos it is considered good practice to capture training metadata
through platforms such as MLflow1 or W&B2.

To obtain these scores, we adopt a fine-tuning method that retrains all layers’ parameters,
which is considered effective by reusing all previously learned knowledge. For very large pre-
trained models, this becomes more expensive in terms of memory used. In Ziyu Li et al. (2024),
we also adopted, LoRA (Hu et al. 2021), which aims at training only a part of the model’s pa-
rameters to allow for more time- and memory-efficient fine-tuning. The mechanism is to freeze
all model parameters and inject trainable rank decomposition matrices into each layer to reduce
the number of trainable parameters. This enables the use of larger batch sizes and learning
rates, achieves quicker convergence, but may lead to slightly reduced performance. However,
the results were very similar, and the models in our model zoo do not have the size that requires
more efficient fine-tuningmethods. Hence, this fine-tuningmethodwill be omitted in this thesis.
More details of our fine-tuning setup will be given in Chapter 5 and Chapter 6.

In case the dataset is a source dataset, we do not fine-tune to obtain the performance, but
use the reported pre-trained accuracy – if available.

4.2.3. Transferability Scores
In our systemdesign for TransferGraph,we include the capture of relationships betweendatasets
and models through existing transferability methods, as shown in step ¯. As mentioned earlier

1https://mlflow.org/
2https://wandb.ai

4.3. Stage 2: Graph Construction & Learning 27

in this section, we experimented using a combination of transferability scores and fine-tuning
performance in our earlier work (Ziyu Li et al. 2024). Adding existing transferability scores
such as LogME (You et al. 2021) to the graph could be done as a proxy, if for experiments we
would not have access to the computational resources required to obtain the actual ground-truth
performances, as in Y.-K. Zhang et al. (2024). However, including bothwouldmean that the time
it took to obtain these transferability scores would have to be added to the total time spent by
our method. In that case, we can no longer argue that this is a ground-truth obtained over time
or a proxy of it, instead it is additional information used by our method.

4.3. Stage 2: Graph Construction & Learning
In this stage (steps° and±), wewill use themetadata collected in the previous stage to construct
a graph and learn the node embeddings. These node embeddings are then used to learn a final
regression model which predicts the links between the unseen target dataset and the source
models. As we have discussed in Section 2.4, this is a common approach for graph learning
tasks.

4.3.1. Graph Construction
To successfully convert transferability estimation to a link prediction problem on a graph, it is
crucial to identify the entities and their relationships in the graph. Figure 4.2 gives a detailed
breakdown of howwe construct the graph. In Table 4.1, we summarize the statistics of the graph
constructed in our experiments.

Dataset

Pre-trained model

Dataset similarity edge

Fine-tune performance edge

Figure 4.2: Illustration of a detailed view of the constructed graph.

Nodes and node properties
Nodes in the graph can be either a dataset or a pre-trained model. A dataset di can either be a
source dataset, used to pre-train the model, or one of our evaluation datasets. While we differ-
entiate slightly in howwe construct the edges for these datasets, for the graph learningmethods,
these nodes will be treated equally. Models in a public model zoo are often pre-trained or fine-
tuned using the same benchmark dataset(s), meaning the number of model nodes in our set
exceeds the number of dataset nodes. While GNN-based graph learning methods can incorpo-
rate node properties, we do not incorporate metadata as node features in the graph. Instead, we
always learn from these features by incorporating them in the training of the prediction model
in the next stage.

Edges
Next, to construct the edges, we use the relationships introduced in Section 3.2.3. These are:

• Dataset-dataset edges. Edges between datasets represent their similarity and are con-
structed using the embeddings generated in the previous stage. These edges are com-

4.3. Stage 2: Graph Construction & Learning 28

puted pair-wise for each dataset using correlation distance, where shorter distance indi-
cates greater similarity.

• Model-dataset edges. For the source datasets, we use the pre-training accuracy if it was
reported. For the evaluation datasets, we use historic fine-tuning performances. We vary
in our experiments how these are used, because not all graph embedding methods can
incorporate edge properties or multiple types of edges.

Graph property Image experiments Text experiments
Graph type homogenous homogenous
Threshold on accuracy for edge pruning 0.5 0.5
Threshold of negative edge identification on accuracy 0.5 0.5
Number of nodes 265 188
Average node degree* 20.1 8.6
Number of dataset-dataset edge 5256 550
Number of model-dataset edge with accuracy weight 1753 918

Table 4.1: Summary of the graph property statistics. (* indicates that the value vary when the dataset and model
collection changes)

4.3.2. Graph Learning
Now we have a constructed graph, representing a network of transferability relations between
models and tasks, we can learn meaningful representations for the nodes in the graph. In Sec-
tion 2.4, we introduced various types of graph learning methods and how they learn to produce
graph embeddings. We also introduced possible downstream tasks, such as node classification,
link prediction, and graph generation. As explained in Section 3.2.3, our problem setting can be
reformulated as a link prediction problem.

Although our ultimate goal is to predict the accuracy of pre-trained model nodes with re-
spect to the unseen target dataset node (i.e., edge weights), most graph learning techniques
cannot or are typically not directly trained using edge weights (Z. Liu et al. 2024). Instead, the
training of the graph embedding method is done on negative and positive pairs of nodes. These
embeddings are then typically used to train a regressionmodel to predict the edgeweights. Since
we obtained fine-tuning performances for all pairs of pre-trained models and target dataset, all
nodes are connected. Hence, it is important to define positive and negative node pairs. Table 4.1
shows the thresholds that we used for this.

We test the performance of TransferGraphusing two randomwalk-basedmethods;Node2Vec
(Grover & Leskovec 2016), Node2Vec+ (R. Liu et al. 2023), and two GNN-based methods;
GraphSAGE (Hamilton et al. 2017) and GAT (Veličković et al. 2018). We provide a detailed
explanation of these methods and outline their respective strengths and weaknesses.

Node2Vec (Grover & Leskovec 2016) performs its randomwalk as follows. Given we want to
generate a random walk v0, v1, .., .., vk and that we already passed edge (vi−1, vi), the next node
vi+1 in the walk is visited based on the probability:

P (vi+1|vi) =

{
αvivi+1

Z if (vi+1, vi) ∈ E,
0 otherwise.

(4.1)

where Z is a normalization constant and αvivi+1 is defined as:

αvivi+1
=

1
p if dvi−1vi+1

= 0,

1 if dvi−1vi+1 = 1,
1
q if dvi−1vi+1

= 2.

(4.2)

4.3. Stage 2: Graph Construction & Learning 29

Figure 4.3: Illustration of random walk from Grover & Leskovec (2016), where the walk has just transitioned from t to
v, and is determining where to walk next out of node v.

Parameters p and q can be customized for different strategies. The parameter p is the return
parameter and controls the probability of immediately returning to the previous node in the
walk. The parameter q is the in-out parameter, allowing the walk to differentiate between inward
and outward nodes. Figure 4.3 shows the illustration used in Grover & Leskovec (2016), where
the transition from t to v just happened, and we are looking where to go next. As can be seen,
a high value of p increases the probability of returning, whereas a high value of q favors inward
nodes (i.e., nodes to the just visited nodes), over outward nodes (i.e., nodes not connected to
our just visited node t).

Node2Vec+ (R. Liu et al. 2023) is an extension of Node2Vec which takes edge weights into
account when generating the random walk. The probability of visiting a node is influenced
by the edge weight. The closer the nodes are according to their edge weight, the higher the
probability of visiting the node in the random walk.

GraphSAGE (Hamilton et al. 2017) for Graph SAmple and AGregate, was one of the first in-
ductive graph learning frameworks, meaning the graph does not have to be retrained to generate
node embeddings for unseen nodes. This is a desirable property, especially as graphs become
larger. Algorithm 1 shows the original algorithm to compute the node embeddings. Each node’s
embeddings are first initialized with its attributes. Then, the node embedding at iteration k is
computed by concatenating the node and its neighbors embeddings at the previous iteration
k − 1. This can be seen in the inner loop in the algorithm. The authors explore different aggre-
gation functions, such as long-short-term-memory(LSTM), mean and pooling.

Algorithm 1 GraphSAGE embedding generation (i.e., forward propagation) algorithm
1: Input: Graph G(V, E); input features {xv, ∀v ∈ V}; depth K; weight matrices W k, ∀k ∈
{1, . . . ,K}; non-linearity σ; differentiable aggregator functions AGGREGATEk, ∀k ∈
{1, . . . ,K}; neighborhood function N : v → 2V

2: Output: Vector representations zv for all v ∈ V
3: h0v ← xv, ∀v ∈ V
4: for k = 1 . . .K do
5: for v ∈ V do
6: hkN (v) ← Aggregatek({hk−1

u , ∀u ∈ N (v)})

7: hkv ← σ
(
W k · Concat(hk−1

v , hkN (v))
)

8: end for
9: hkv ← hkv/∥hkv∥2, ∀v ∈ V

10: end for
11: zv ← hKv , ∀v ∈ V

GAT (Veličković et al. 2018) Graph Attention Networks (GAT) are a specific application of
self-attention in graph learning. They utilize the self-attention mechanism (Vaswani et al. 2017)

4.4. Stage 3: Regression Learning 30

to compute attention scores and aggregate features for each node from its neighbors. In the case
of GAT, the state of a node i at layer l is defined as

hli = σ

 ∑
j∈N (i

αl
i,jW

khl−1
j

 (4.3)

αi,j =
exp(LeakyReLU(aT [Whj∥Whi]))∑

k∈Ni
exp(LeakyReLU(aT [Whj∥Whl]))

(4.4)

h0i = xi, (4.5)

whereαi,j is the attention coefficient of node i to its neighbor j definedby a softmax function.
Ni is the set of neighbors of node i, W is the weight matrix, and a is a weight vector. Finally, ||
refers to concatenation.

Table 4.2, summarizes the most important advantages and disadvantages of these methods,
as discussed in Section 2.4.

Method Advantage Disadvantage
Random walk-based Scalable Cannot generalize over unseen

nodes, cannot easily incorporate
node and edge properties

GNN-based Can generalize over unseen
nodes, can incorporate node and
edge attributes

Scalability

Table 4.2: Comparison of random walk-based and GNN-based graph learning methods.

We use the following hyperparameters for training the graph learners:
• For all graph embedding methods, we use a feature embedding dimension of 128. This is

sufficiently large to capture the inherent structure of our graph, which is fairly small for
graph learning standards.

• ForNode2Vec, we use p = q = 1 to have a balanced combination of local and global explo-
ration. Additionally, we use ten for both the length of the random walks as the number of
walks per node. We train for fifteen epochs.

• For GraphSAGE and GAT, we train for 50 epochs on a homogeneous graph, using Adam
optimizer and binary cross entropy as a loss function.

Finally, these methods will be evaluated in terms of effectiveness and efficiency in Sec-
tion 6.1.5 and Section 6.2.3, respectively.

4.4. Stage 3: Regression Learning
After collecting the metadata, constructing the graph, and learning the node embeddings, we
use the training history as the label for the regression problem to predict the performance of an
unseen target task. Step ² shows how we combine the node embeddings and basic metadata
to construct a supervised learning set for our regression task. There are multiple possible su-
pervised learning methods that are suitable for this regression task. As shown in ³, we explore
the effectiveness of linear regression (LR), random forest (RF), and eXtreme gradient boosting
(XGB).

Linear regression Similarly to Amazon LR H. Li et al. 2023, we use linear regression as one
of our prediction models. Linear regression is a simple, but often applied supervised learning
method which computes the linear relationship between a dependent variable and one or more
independent features.

4.5. Stage 4: Transferability Estimation 31

Random forest Random forest is an ensemble learning technique that constructs multiple de-
cision trees at training time and outputs the mean prediction of the individual trees in case of
regression. We set the number of trees as 100, max depth as 5.

XGBoost XGBoost (eXtreme Gradient Boosting) (T. Chen & Guestrin 2016) is an implemen-
tation of gradient boosted decision trees, designed for speed and performance. It is a powerful
machine learning algorithm that is widely used in competitive machine learning and data sci-
ence. We set the number of trees as 500, and maximum depth as 5.

Table 4.3 shows two rows which were used as input to train the supervised model for one
of the TweetEval (Barbieri et al. 2020) tasks as target dataset, transposed for readability here.
These rows represent the edges between the GLUE (A. Wang et al. 2018) CoLA and SST2 target
datasets and Distilbert-base-uncased and Roberta-large pre-trained models. First, we can see
the basic metadata we introduced in Section 4.2 (as far as they apply to text datasets). This is
followed by the reported upstream accuracies of the models on the source datasets, and the fine-
tuning performance on the target dataset. Finally, we see the embeddings of the model nodes
mf and the target dataset nodes df .

Feature name Row 1 Row 2
mi distilbert-base-uncased roberta-large
dt glue/cola glue/sst2
Architecture DistilBertForMaskedLM RobertaForMaskedLM
Model number of labels 2 2
Model number of parameters 67M 36M
Model memory consumption 267 MB 1.4 GB
Dataset size 8550 70000
Dataset number of classes 2 2
ds Wikipedia Wikipedia
Tmi→dt 0.808 0.864
Tmi→ds 0.864 0.923
mf0 0.010757 0.006599
mf1→126
mf127 0.000000 0.000000
df0 0.016718 -0.215635
df1→126
df127 0.000000 0.000000

Table 4.3: Example rows used in the supervised learning stage. mf and df represent the source model and the target
dataset embeddings, respectively.

4.5. Stage 4: Transferability Estimation
In the final stage, we use the learned predictionmodel to output the expected performance. Step
´ shows how we construct the test set similarly to the training set; for each pre-trained model
ϕm, we construct a row with both the node embedding of the model and the target dataset dt.
The row further contains the basic metadata, as introduced in previous sections. The output is
collected in µ, which is a set of pairs of pre-trained models and predicted fine-tuning accuracies.
These predicted accuracies will be used in Chapter 6, comparing them with the ground-truth
fine-tuning accuracies which we left out of the graph and the training set for the prediction
model.

4.6. Summary
In this chapter, we introduced TransferGraph, a novel framework for transferability estimation.
We reframed transferability estimation as a link prediction problem on a graph, where pre-
trained models and datasets form nodes, and the edges represent either past fine-tuning perfor-
mances or dataset similarities. Previous research has shown that these relationships are valuable,
and by representing them in a graph, we hypothesize that we can capture them more effectively.

4.6. Summary 32

We also demonstrated how additional metadata can be incorporated as node attributes in this
graph, which have been shown to be useful predictors of a model’s transferability to a new task.

Additionally, we discuss the details of constructing the graph and the chosen graph learn-
ing methods. We discuss four graph learning methods: Node2Vec (Grover & Leskovec 2016),
Node2Vec+ (R. Liu et al. 2023), GraphSAGE (Hamilton et al. 2017) and GAT (Veličković et al.
2018). Finally, we discuss how we use the graph embeddings, metadata, and fine-tuning perfor-
mances to train a supervised learning model which will produce the estimated transferability
score. We discuss three supervised learning methods suited for this regression task: linear re-
gression (LR), random forest (RF) and eXtreme Gradient Boosting (XGB).

Summary of contributions

• A novel framework which solves transferability estimation through graph learning.
It includes an end-to-end process from collecting the metadata, graph construction
and learning, and finally making the prediction.

5
Metadata Collection &

Benchmark Suite

In this thesis, we stress the importance of making good use of metadata for meta-machine learn-
ing tasks, such as transferability estimation. In this chapter, we give an in-depth technical de-
scription of how we collect the various metadata discussed in Chapter 4. Our system for dataset
and pre-trainedmodel loading and training is built on HuggingFace’s transformers library1, but
is flexible and designed to be easily extensible to other libraries. The source code can be found
in our GitHub repository2.

This system connects to other components that are needed to compute the metadata for
TransferGraph, such as the dataset embeddings andother baseline transferabilitymethods. These
components are built upon a combination of available papers’ open-source code and benchmark
repositories, such as those by Bai et al. (2023)3.

In this chapter, we will go over the technical implementation of all steps needed to col-
lect the metadata for TransferGraph, and show how our framework can be expanded to a new
experiment setting. This includes loading the datasets and pre-trained models, dataset pre-
processing, dataset embedding, obtaining the baseline transferability scores and the ground
truth fine-tuning performances.

5.1. Experiment setup
The sections below will give the exact characteristics of the used pre-trained models and tasks,
baselines and hardware setup used to run the experiments. The experiments are effectively
divided into twomodel zoos: one for image classification and one for text sequence classification.

5.1.1. Target tasks
Table 5.1 gives an overview of the target tasks used for evaluation. In total, we include eight
text classification tasks and eight image classification tasks. These are public tasks often used
in both classification benchmarks and other transferability estimation studies. As can be seen in
the table, the tasks vary in number of samples and classes.

Below, we will give a short description together with some examples of each of the target
datasets which are used in our experiments.

GLUE (A. Wang et al. 2018) (General Language Understanding Evaluation benchmark4) is
a widely adopted benchmark for natural language understanding systems. We use CoLA (The

1https://github.com/huggingface/transformers/
2https://github.com/TransferGraph/transfergraph
3https://github.com/Ba1Jun/model-selection-nlp
4https://gluebenchmark.com/

33

https://github.com/huggingface/transformers/
https://github.com/TransferGraph/transfergraph
https://github.com/Ba1Jun/model-selection-nlp
https://gluebenchmark.com/

5.1. Experiment setup 34

Dataset Samples Classes
Text Sequence Classification Tasks

TweetEval/Sentiment (Barbieri et al. 2020) 59,900 3
RottenTomatoes (Pang & Lee 2005) 10,662 2
Glue/SST-2 (A. Wang et al. 2018) 70,000 2
TweetEval/Emotion (Barbieri et al. 2020) 5,050 4
TweetEval/Irony (Barbieri et al. 2020) 4,600 2
TweetEval/Hate (Barbieri et al. 2020) 13,000 2
Glue/CoLA (A. Wang et al. 2018) 8,550 2
TweetEval/Offensive (Barbieri et al. 2020) 24,300 18

Image Classification Tasks
Caltech101 (Fei-Fei et al. 2004) 3,060 101
Cifar100 (Krizhevsky 2012) 50,000 100
DTD (Cimpoi et al. 2014) 5,640 47
Flowers (Nilsback & Zisserman 2008) 1,020 10
Pets (Parkhi et al. 2012) 3,680 37
SmallNORB/Elevation 24,300 9
Stanfordcars (Krause et al. 2013) 8,144 196
SVHN (Netzer et al. 2011) 73,257 10

Table 5.1: Overview of used target tasks used for evaluation.

Corpus of Linguistic Acceptability), which are texts annotated with whether they are grammat-
ical English sentences; and SST-2 (The Stanford Sentiment Treebank), which are sentences of
movie reviews and human annotations on their sentiment.

Dataset Sentence Label

CoLA Our friends won’t buy this analysis, let alone the next one we propose. Acceptable
They drank the pub. Unacceptable

SST-2 On the worst revenge-of-the-nerds clichés the filmmakers could dredge
up

Negative

Is pretty damned funny. Positive

Table 5.2: Example of used GLUE tasks.

TweetEval (Barbieri et al. 2020) is a multi-label tweet classification dataset, consisting of
seven tasks: irony, hate, offensive, stance, emoji, emotion, and sentiment.

Dataset Tweet Label
Emotion I love swimming for the same reason I love meditating...the feeling of

weightlessness.
joy

Hate Another illegal alien that shouldn’t be in America killed an innocent
American couple! #BuildThatWall

hateful

Irony Leaving whilst its dark is fun. #not ironic
Offensive Are we all ready to sit and watch Indakurate Passcott play football? non-offensive
Sentiment Hmmmmm where are the #BlackLivesMatter when matters like this a

rise... kids are a disgrace!!
negative

Table 5.3: A tweet sample for each of the tasks in TweetEval, for the tasks used in our experiments.

5.1. Experiment setup 35

Rottentomatoes (Pang & Lee 2005) is a small dataset containing 5331 positive and 5331
negative processed sentences from the Rotten Tomatoes review database. The goal is to classify
whether the sentence has a positive or negative sentiment about the movie.

Text Label
It’s so laddish and juvenile, only teenage boys could possibly find it funny. Negative
Offers that rare combination of entertainment and education. Positive

Table 5.4: Samples from the Rotten Tomatoes dataset.

Caltech101 (Fei-Fei et al. 2004) consists of around 9000 images of object belonging to 101
classes. Classes have between 40 and 800 images each, and images are of variable sizes.

Figure 5.1: Examples of the Caltech101 dataset.

Cifar100 (Krizhevsky 2012) is a labelled subset of the 80MillionTiny ImagesDataset (Birhane
& Prabhu 2021). It consists of 100 classes, with 600 images each. The reasoning for using tiny
images was that this is more memory efficient, while still holding the core visual patterns. This
is also the reason the (enlarged) example images below look blurry.

Figure 5.2: Examples of the Cifar100 dataset.

5.1. Experiment setup 36

DTD (Cimpoi et al. 2014) (Describable TexturesDataset) consists of 5640 images, organized
into 47 categories describing their textures according to human perception. Each category has
120 images, and images have variable sizes.

Figure 5.3: Examples of the DTD dataset.

Flowers (Nilsback & Zisserman 2008) (Oxford Flowers 102) is a dataset of 102 flower cat-
egories which occur in the United Kingdom. Each class has between 40 and 258 images, which
vary in scale, pose and light.

Figure 5.4: Examples of the Flowers dataset.

5.1. Experiment setup 37

Pets (Parkhi et al. 2012) (Oxford-IIT Pet) has images of 37 categories of breeds of cats and
dogs. Each class has roughly 200 images, and have large variations in pose, scale, and lighting.

Figure 5.5: Examples of the Pets dataset.

SmallNORB (Small NYU Object Recognition Benchmark) is a dataset for 3D object recog-
nition. The objects are toys in five categories: four-legged animals, human figures, airplanes,
trucks, and cars. The images of the toys were captured by 2 cameras under 6 lighting condi-
tions, 9 elevations and 18 azimuths. We use the task which classifies the elevation, which can be
between 30 and 70 degrees, for every 5 degrees.

Figure 5.6: Examples of the SmallNORB dataset.

5.1. Experiment setup 38

Stanfordcars (Krause et al. 2013) is a dataset containing images of 196 classes of cars. Classes
are typically organized like make, model, year (e.g. Tesla Model S 2012).

Figure 5.7: Examples of the Stanfordcars dataset.

SVHN (Netzer et al. 2011) (Street ViewHouse Numbers) is a large-scale digit classification
dataset, containing 600,000 32 by 32 images of house numbers. The goal is to classify the digit
centered in the frame.

Figure 5.8: Examples of the SVHN dataset.

5.1. Experiment setup 39

5.1.2. Pre-trained models
For a transferability method to be successful, it should be able to generate a score with high
correlation with the actual performance for different types of models and target datasets. As
discussed in Section 3.1.4, many related works are limited in the sense that they are validated on
one type of architecture ofmodels, or oneswhichwere all pre-trained on the same source dataset.
To verify the stability of our estimation, we construct a heterogeneous model zoo consisting of
models with varying architectures, source datasets, and sizes. Table 5.5 summarizes the main
characteristics of the used pre-trained models.

Image Classification Models Text Classification Models
Architecture Count Architecture Count
vit 114 bert 80
swin 25 distilbert 37
convnext 24 roberta 27
beit 9 xlm-roberta 5
deit 5 electra 5
van 5 albert 3
resnet 1 fnet 2
data2vec-vision 1 camembert 2

deberta-v2 1
perceiver 1
data2vec-text 1

Range of Parameters
<100k 2 1
100k-1M 0 0
1M-10M 5 1
10M-100M 155 46
100M-1B 22 116
Source dataset
hfpics* 67 glue/qqp 16
imagenet 48 glue/cola 16
eurosat 19 wikipedia 9
imagenet-21k 10 glue/sst2 9
beans 9 dair-ai/emotion 9
cifar10 8 imdb 8
cats_vs_dogs 5 bertweet-covid19-cased-tweet-data 4
food101 3 quora 3
chest_xray_classification 3 tweet_eval/emotion 3
age-prediction 3 amazon_reviews_multi/en 2
poolrf2001/facemask 3 glue/mnli 2
Matthijs/snacks 2 kaggle-financial-sentiment 2
Other 22 Other 31
Totals 184 164

Table 5.5: Summary of characteristics of pre-trained models used in our experiments. Contrary to many related works,
our model zoo is heterogeneous in the types of architectures, model size and pre-trained datasets used.
* the entries combined as hfpics are multiple types of datasets queried with different keywords, using https://github.
com/nateraw/huggingpics.

5.1.3. Baselines
We compare TransferGraph with two state-of-the-art baseline methods for transferability estimation. We
include LogME (You et al. 2021), as it has been shown to perform well on image classification tasks by
Agostinelli et al. (2022). We also include Reg-HScore (Ibrahim et al. 2023), which has been found superior
in both efficiency and effectiveness on text classification tasks by Bai et al. (2023).

https://github.com/nateraw/huggingpics
https://github.com/nateraw/huggingpics

5.2. Metadata Collection 40

5.2. Metadata Collection
This section will outline how we collect the metadata for the experiment setting above. To do this, we
developed a tool that can be easily adapted to different experiment settings. Below, we will show the
details of this implementation.

5.2.1. Dataset Loading and Preprocessing
Given a set of target datasets, pre-trained models, a fine-tuning configuration, and baselines to compare to,
the system supports collecting the required metadata and transferability estimation scores. The first step is
to load and preprocess the datasets. Neither local files nor HuggingFace datasets have a consistent way of
defining inputs and labels. This means that after selecting a set of target datasets, configuration is required
for each dataset. The tool includes predefined configurations for the datasets used in the experiments, but
new configurations can be easily added. For code examples on how to use our system, refer to Appendix A.
Our tool currently supports loading datasets either locally or fromHuggingFace. After downloading, they
are preprocessed to be used for subsequent tasks. We apply common practices for preprocessing data to
be used for downstream tasks, depending on the type of task:

• Image classification. Preprocessing for image classification tasks includes normalizing the pixel
values to be on the same scales, and resizing the images to be consistent with the pre-trainedmodel’s
required input format. For training tasks, we apply a random crop and horizontal flip transforms
from the PyTorch library to prevent overfitting.

• Text sequence classification. Pre-trained language models on HuggingFace come with their own
tokenizer, which map words to input values for the model. Similar to image classification models,
language models have a maximum input length. We use the common practice of padding input
sequences in a batch to the longest sequence in the batch, and truncating them to the maximum
length the model accepts.

5.2.2. Pre-trained Model Loading
HuggingFace’s implementation of loading pre-trainedmodels works consistently, so our tool does not have
an abstraction layer on top of it. A pre-trained model can simply be loaded using its identifier from Hug-
gingFace Hub. For downstream tasks, we configure it to discard its classification layer and initialize a new
one with the number of labels associated with that task.

5.2.3. Dataset Embedding
As described in Section 4.2, we use Domain Similarity (Cui et al. 2018) as the dataset embedding method.
These embeddings are used to calculate the distances between datasets in the graph. Domain Similarity
requires a probe model to extract the features. To embed the dataset, the dataset and the probe model
can be loaded as described above and fed into the component that computes and stores the embeddings.
For convenience in reproducing our experiments, we have made the embeddings available online5. In our
experiments, we chose Google/vit-base-patch16-2246 for image datasets and EleutherAI/gpt-neo-1257 for
text datasets.

While most target datasets are manageable in size, especially source datasets used to pre-train the
models can be very large. For example, for the models in the BERT (Devlin et al. 2019) family, the English
Wikipedia is used as a source dataset, containing more than 6 million Wikipedia pages. The same goes
for image pre-trained models, which are pre-trained on ImageNet21k (Ridnik et al. 2021), containing 11
million images. In these cases, while it is valuable for our method to know the relation of the target to the
source dataset, it is too expensive to compute the embedding of the entire dataset. Hence, we randomly
sample up to 100,000 entries to compute the embeddings.

To illustrate the effectiveness of these embeddings, Figure 5.9 shows the distances between the target
datasets for both the text and the image datasets used in our experiments. The domain similarity captured
is as you would intuitively expect for these datasets. The Cifar100, Caltech101 and DTD datasets are multi-
domain datasets, hence, they are most similar to the other datasets and especially to each other. These
datasets also often contain categories related to plants and animals; hence, we see more similarity to the
Pets and Flowers datasets. This also holds for the text datasets: all tweet evaluation datasets form a similar
group. Likewise, GLUE/SST-2 and RottenTomatoes are also similar, as they both cover movie reviews.

5https://huggingface.co/datasets?search=TransferGraph
6https://huggingface.co/google/vit-base-patch16-224
7https://huggingface.co/EleutherAI/gpt-neo-125m

https://huggingface.co/datasets?search=TransferGraph
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/EleutherAI/gpt-neo-125m

5.2. Metadata Collection 41

(a) Image datasets. (b) Text datasets.

Figure 5.9: Heatmap showing dataset distances.

5.2.4. Collecting Baseline Transferability Scores
For collecting existing transferability estimation metrics, we primarily integrate a benchmark suite by Bai
et al. (2023). They evaluated the effectiveness of using only a subset of samples and reducing the feature
dimension using PCA. We collect the baseline scores without reducing the number of samples from the
target datasets, as this approach generally achieves the highest performance. Additionally, we did not in-
tegrate feature reduction, as the used baselines do not significantly benefit from it. However, this would
be an interesting addition to our benchmark suite, especially when comparing metrics that benefit signif-
icantly from reduced feature dimensions, such as PARC (Bolya et al. 2021), Logistic (Kumari et al. 2022),
and PACTran (Ding et al. 2022).

5.2.5. Collecting Fine-Tuning Performances
A major factor in the success of TransferGraph, lies in learning from past fine-tuning performances. In this
section, wewill describe the details of collecting the fine-tuning performances. In total, we spent 4400 GPU
hours fine-tuning the pre-trained image models, and 700 hours for the pre-trained language models.

Figure 5.10 shows the distribution of accuracies after fine-tuning of all pre-trained models. It can be
noted that the distribution of these fine-tuning performances are very different among datasets. Especially
for the text datasets, the majority of accuracies after fine-tuning are relatively high, between 0.7 and 0.9. In
these cases, randomly picking a model to fine-tune might be sufficient, making transferability estimation
not necessary or very beneficial. More discussion on this will be done in Section 6.1.2.

0.0 0.2 0.4 0.6 0.8 1.0
Fine-tune Accuracy

Calt
ec

h1
01

Cifa
r10

0

Dtd

Flow
ers

Pets

Small
N/E

l

Stan
for

d

Svh
n

Ta
rg

et
 D

at
as

et

(a) Image datasets.

0.5 0.6 0.7 0.8 0.9
Fine-tune Accuracy

Glue
/C

Glue
/S

Rott
en

Tw
/E

moti

Tw
/H

ate

Tw
/Iro

ny

Tw
/O

ffe
n

Tw
/S

en
ti

Ta
rg

et
 D

at
as

et

(b) Text datasets.

Figure 5.10: Distribution of fine-tuning accuracies for the target datasets.

Hardware
Fine-tuning performanceswere gathered using the Delft AI Cluster (DAIC), formerly known as INSY-HPC.
Most fine-tuning performances were gathered using NVIDIA GeForce GTX 1080 Ti with 11 GB of RAM.

5.3. Summary 42

For larger, (especially image) pre-trained models, we used NVIDIA Tesla V100 with 16-32 GB of RAM or
NVIDIA A40 with up to 48 GB of RAM to speed up the fine-tuning.

Libraries
To run the fine-tuning on GPUs, we use CUDA Toolkit 12.18. To fine-tune the pre-trained models, we
implement the training loop using transformers=4.37.2 and torch=2.20.0. Hyperparameters can be con-
veniently configured using Transformer’s TrainingArguments. Our tool by default uses accelerate9 to be
able to train using multiple GPUs.

Hyperparameters
Learning rate, weight decay andmomentum (for stochastic gradient descent) play an important role in the
final performance of fine-tuning (H. Li et al. 2020). In the paradigm of fine-tuning, the target dataset is
typically smaller, and it is common practice to use smaller initial learning rates and fewer epochs. However,
which hyperparameters to use depends not only on the target data but also on the similarity between the
source and target domains (H. Li et al. 2020).

To find the best hyperparameters for each source model and target dataset, some works resort to
hyperparameter grid search (You et al. 2021; Ibrahim et al. 2023). However, they typically only use a
few pre-trained models or severely limit the original dataset size. The number of reported GPU hours at
the start of this chapter does not include hyperparameter grid search. For the large-scale evaluation used
for TransferGraph, hyperparameter grid search would be infeasible, as even a conservative search would
increase the required GPU hours by at least a factor of ten. Some learning-based approaches combine
rankings from multiple transferability estimation metrics (Y.-K. Zhang et al. 2024). However, as discussed
in Section 3.1.4, this approach potentially incorporates the shortcomings of these methods into the newly
proposed method, as they are used as ground truth.

To solve these problems, we used modern fine-tuning methods, which we empirically found to gen-
eralize well over the target datasets used in our experiments. Table 5.6 shows the hyperparameters used
to fine-tune the pre-trained models in the different experiment setups. For the used image datasets, we
found stochastic gradient descent to generalize well, especially in combination with a cyclical learning
rate (Smith 2017), with maximum learning rate of 0.01. For experiments on text classification, we found
that AdamW (Loshchilov & Hutter 2018), combined with linear decreasing learning rates initialized at
2e-4, generalized better across target datasets and pre-trained models. For image classification tasks, we
did not notice a big difference in performance when varying the batch size, so we varied it depending on
the memory consumption to save time. For text datasets, the experiments ran fast enough and we kept a
consistent batch size.

Hyperparameter Text Image

Batch size 16 8-64
Learning rate 2e-5 1e-2 (Cycle max)
Epochs 5 30
Optimizer AdamW SGD
Scheduler Linear OneCycle

Table 5.6: Hyperparameter settings used for collecting ground-truth performances for TransferGraph.

Experiment Tracking
Our tool for obtaining fine-tuning performances integrates with Weights & Biases and uploads fine-tuned
models, including model cards, to HuggingFace Hub. This facilitates analyzing and monitoring of fine-
tuning experiments and gives a better historical record of the impact of changing hyperparameters. For the
text classification experiments of TransferGraph, the fine-tuning artifacts are made publicly available1011.

5.3. Summary
This chapter covered the implementation of our system to prepare the metadata required for our frame-
work. This includes extracting the basic metadata of datasets and pre-trained models, computing the

8https://developer.nvidia.com/cuda-12-1-0-download-archive
9https://huggingface.co/docs/accelerate/index

10HuggingFace Hub: https://huggingface.co/TransferGraph
11W&B: https://wandb.ai/hvanderwilk/transfer_graph

https://developer.nvidia.com/cuda-12-1-0-download-archive
https://huggingface.co/docs/accelerate/index
https://huggingface.co/TransferGraph
https://wandb.ai/hvanderwilk/transfer_graph

5.3. Summary 43

dataset embeddings, and gathering past fine-tuning performances. We demonstrated this by introducing
our experimental setup and providing results for each step needed in preparation for later evaluation.

First, we summarized the characteristics of the target datasets and showed examples of input and label
pairs. In total, we used eight image classification tasks and eight text sequence classification tasks for these
experiments. Next, we discussed the pre-trained models used in our experiments, which included 184 pre-
trained image classification models and 164 text classification models, encompassing various architectures
and sizes.

Additionally, building on top of HuggingFace’s Transformers library, we showed how our system
conveniently loads these datasets and pre-trained models to extract metadata such as dataset embeddings.
For both image and text datasets, these embeddings successfully capture the similarity between datasets.

Finally, we discussed our implementation for collecting other baseline transferability scores and fine-
tuning performances.

Summary of contributions

• Expanding existing benchmark suites and building on top of HuggingFace’s Transformers
library, we introduce an easily extensible system to load datasets and pre-trained models,
compute baseline transferability estimation scores and do result analysis.

6
Evaluating TransferGraph

A solution is not good, just because it is novel or conceptually sound. Hence, we will not assume so for our
graph learning-based approach for transferability estimation, and thoroughly evaluate TransferGraph in
this chapter. Contrary to most transferability metrics, the experiments cover transferability estimation in
the setting of both image and text sequence classification, using a heterogeneous model zoo, consisting of
different types and sizes of pre-trainedmodels and task. In Section 5.1, we have introduced our experiment
setup, including the used datasets, pre-trained models and baselines. In this chapter, provide an analysis
of TransferGraph both in terms of effectiveness (Section 6.1) and efficiency (Section 6.2).

6.1. Evaluation: Effectiveness
The evaluation of TransferGraph is separated into twomain parts. This first part will cover the effectiveness
of our transferability estimationmethod in comparison to the selected baselines. Wewill evaluate the effect
of varying our approach in the following sections.

6.1.1. Evaluation setup
The essence of our evaluation approach is as follows; as outlined in Section 4.2, we construct a model zoo
withM pre-trained models {ϕm}Mm=1 andN target datasets {dt}Nt=1. Next, we build our supervision set of
fine-tuning performances {Tm→t}Mm=1 as described in Section 4.2.2. For every target dataset dt, we leave
the fine-tuning performances out of the supervision set and predict a transferability score Sm→t for ev-
ery pre-trained model. Finally, we measure the success of this transferability score, by comparing the left
out supervision fine-tuning performances to the estimated scores using the various correlation metrics dis-
cussed in Section 3.1.3. The resulting correlation scores are compared to various state-of-the-art baselines.

6.1.2. Evaluation metric
The success of a transferability estimation metric can be measured in various ways, as we discussed in
Section 3.1.3. Most related work turn to rank correlation metrics to measure the success of their metric.
However, as figure 5.10 reveals, generally, many source pre-trained models will have similar performances.
Rank correlation metrics will give a high penalty for making predicting errors in the ranks between these
source models, while realistically speaking, this error has no effect in the usefulness of the metric.

The lack of a consistent way to measure the effect of transferability estimation metrics has likely con-
tributed to the contradictory findings in papers on the superiority of proposed methods. As observed by
Agostinelli et al. (2022), NCE (Nguyen et al. 2020) consistently outperforms LEEP (Tran et al. 2019) in
You et al. (2021), while LEEP outperforms NCE in Y. Tan et al. (2021) and Nguyen et al. (2020). The same
applies to LogME (You et al. 2021), which outperforms LEEP, but LEEP outperforms LogME in Pandy et al.
(2022).

Considering the real-life use cases as depicted in Section 3.1.1, we need to ask; what are these prac-
titioners interested in? The answer that emerges is that they want a fast recommendation on which pre-
trained model to fine-tune, which gives them the best performance on the target task. Furthermore, prefer-
ably, they fine-tune just one recommended model to achieve this performance. The only metric that does
a decent job at capturing this success is relative top-k accuracy (Rel@k) – specifically, relative top-1-
accuracy.

44

6.1. Evaluation: Effectiveness 45

While Pearson’s correlation has similar disadvantages as rank correlation, it does give an indication
on how well a metric would perform if not all pre-trained models can be tested due to efficiency concerns.
As we have noted earlier, most transferability metrics need a forward of the entire target dataset over a
pre-trained model to estimate its ability to transfer knowledge. In these cases, Pearson’s correlation would
be a good choice, since realistically, practitioners will prefer not to choose a lot of pre-trained models to do
this for. However, as we will explore in Section 6.2, our method can infer transferability efficiently once the
graph learner is trained. This means testing many pre-trained models is feasible, and makes focusing on
Rel@k more logical.

In our evaluation in terms of effectiveness below, we will therefore focus on this metric. We will
make an important adjustment when it comes to evaluating the success over all target datasets. In the
introduction, we show the top-1 accuracy of the best predicted models and also display the results if you
would randomly pick amodel. This gives valuable insights in the benefit of doing transferability estimation
at all. Simply taking the average of target datasets’Rel@k results may distort the success of a method, since
for some datasets the gain over random selection is very little. Hence, we will take a weighted average,
taking into account the absolute possible accuracy gain over random selection: Tmax − Trand.

6.1.3. Hardware
All experiments were run using an NVIDIA A40 GPU with 48 GB of RAM. The preparation steps, includ-
ing the collection of dataset embeddings and the construction of the supervision set of fine-tuning perfor-
mances, were conducted using different hardware. However, this will not be considered as part of the
efficiency analysis in the following sections, as we assume this data is gathered offline. For details on the
hardware used in the preparation for the experiments, we refer to Chapter 5.

6.1.4. Main findings
The main findings are represented in Table 6.1, with a breakdown of the effectiveness of our method com-
pared to the other baselines, according to the most commonly used correlation metrics. On average, Trans-
ferGraph outperforms the baselines in all evaluation metrics, except for W-Kendall rank correlation on text
target datasets. Most importantly, on hard-to-predict datasets, such as Stanfordcars, TransferGraph is able
to predict the best suited model, with an accuracy of 0.823, whereas LogME and Reg-H-Score only slightly
pick a better model than randomly selecting a model, both retrieving a model with an accuracy of 0.509.

The method presented here is our most competitive method, which uses GAT (Veličković et al. 2018)
as graph embedding method and eXtreme Gradient Boosting (XGB) (T. Chen & Guestrin 2016) as regres-
sion model. In the sections below, we will outline the effect of other explored approaches.

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.4

0.2

0.0

0.2

0.4

0.6

0.8

A
ct

ua
l P

er
fo

rm
an

ce
s

Stanford

TG:XGB:GAT (corr=0.69)
LogME (corr=0.20)
Reg-H-Score (corr=0.43)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.2

0.4

0.6

0.8

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

Svhn

TG:XGB:GAT (corr=0.80)
LogME (corr=0.41)
Reg-H-Score (corr=0.47)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

Caltech101

TG:XGB:GAT (corr=0.90)
LogME (corr=0.48)
Reg-H-Score (corr=0.73)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

Pets

TG:XGB:GAT (corr=0.86)
LogME (corr=0.34)
Reg-H-Score (corr=0.63)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.2

0.4

0.6

0.8

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

Cifar100

TG:XGB:GAT (corr=0.85)
LogME (corr=0.49)
Reg-H-Score (corr=0.57)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

Flowers

TG:XGB:GAT (corr=0.85)
LogME (corr=0.62)
Reg-H-Score (corr=0.72)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.4

0.6

0.8

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

SmallN/El

TG:XGB:GAT (corr=0.89)
LogME (corr=0.39)
Reg-H-Score (corr=0.48)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.0

0.2

0.4

0.6

0.8

A
ct

ua
l P

er
fo

rm
an

ce
s

Dtd

TG:XGB:GAT (corr=0.85)
LogME (corr=0.48)
Reg-H-Score (corr=0.58)

Figure 6.1: Image datasets’ correlation between the actual performances after fine-tuning and the predicted scores, for
both our approach and the baselines.

6.1. Evaluation: Effectiveness 46

Method Image Target Dataset MeanStanford Svhn Caltech101 Pets Cifar100 Flowers SmallN/El Dtd
Pearson Correlation
TG:XGB,GAT 0.691 0.803 0.897 0.860 0.847 0.847 0.886 0.846 0.795
Reg-H-Score 0.433 0.473 0.734 0.630 0.570 0.721 0.481 0.578 0.554
LogME 0.203 0.410 0.480 0.343 0.491 0.620 0.392 0.480 0.380
Rel@1 Accuracy
TG:XGB,GAT 1.000 0.998 0.981 0.988 0.990 0.980 0.998 0.973 0.989
Reg-H-Score 0.634 1.000 0.994 0.993 0.986 0.990 0.907 0.993 0.858
LogME 0.634 1.000 0.994 0.744 0.986 0.990 0.907 0.940 0.827
random 0.616 0.952 0.922 0.920 0.946 0.876 0.964 0.822 0.792
Top@1 Accuracy
TG:XGB,GAT 0.824 0.950 0.960 0.954 0.923 0.980 0.993 0.762 0.880
Reg-H-Score 0.509 0.947 0.972 0.954 0.912 0.990 0.901 0.731 0.757
LogME 0.509 0.947 0.972 0.715 0.912 0.990 0.901 0.691 0.729
random 0.508 0.906 0.902 0.888 0.883 0.876 0.959 0.644 0.713
W-Kendall Correlation
TG:XGB,GAT 0.684 0.595 0.625 0.684 0.402 0.641 0.629 0.704 0.653
Reg-H-Score 0.334 0.367 0.519 0.189 0.384 0.578 0.184 0.321 0.369
LogME 0.218 0.380 0.486 0.081 0.393 0.635 0.129 0.253 0.310

Method Text Target Dataset MeanRotten Tw/Irony Tw/Senti Tw/Offen Glue/C Glue/S Tw/Hate Tw/Emoti
Pearson Correlation
TG:XGB,GAT 0.897 0.809 0.880 0.931 0.765 0.894 0.899 0.769 0.839
Reg-H-Score 0.886 0.790 0.743 0.787 0.524 0.712 0.860 0.769 0.766
LogME 0.831 0.687 0.765 0.743 0.288 0.699 0.829 0.407 0.636
Rel@1 Accuracy
TG:XGB,GAT 0.989 1.000 0.977 0.992 0.960 0.981 0.964 0.997 0.986
Reg-H-Score 0.996 0.888 0.983 0.997 0.974 0.969 0.989 0.936 0.953
LogME 0.996 1.000 0.983 0.983 0.974 0.969 0.989 0.936 0.978
random 0.919 0.853 0.949 0.962 0.934 0.948 0.940 0.890 0.910
Top@1 Accuracy
TG:XGB,GAT 0.889 0.785 0.735 0.791 0.818 0.931 0.779 0.832 0.823
Reg-H-Score 0.896 0.697 0.740 0.795 0.830 0.920 0.799 0.781 0.797
LogME 0.896 0.785 0.740 0.783 0.830 0.920 0.799 0.781 0.816
random 0.827 0.670 0.713 0.767 0.796 0.900 0.760 0.742 0.760
W-Kendall Correlation
TG:XGB,GAT 0.615 0.674 0.190 0.529 0.399 0.465 0.555 0.591 0.541
Reg-H-Score 0.663 0.610 0.466 0.635 0.670 0.265 0.510 0.496 0.551
LogME 0.635 0.702 0.445 0.553 0.668 0.263 0.508 0.457 0.553

Table 6.1: Overview of evaluation of the effectiveness of TransferGraph compared to other baselines, for all evaluated
datasets.

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.5

0.6

0.7

0.8

0.9

A
ct

ua
l P

er
fo

rm
an

ce
s

Rotten

TG:XGB:GAT (corr=0.90)
LogME (corr=0.83)
Reg-H-Score (corr=0.89)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.4

0.5

0.6

0.7

0.8

A
ct

ua
l P

er
fo

rm
an

ce
s

Tw/Irony

TG:XGB:GAT (corr=0.81)
LogME (corr=0.69)
Reg-H-Score (corr=0.79)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.5

0.6

0.7

0.8

A
ct

ua
l P

er
fo

rm
an

ce
s

Tw/Senti

TG:XGB:GAT (corr=0.88)
LogME (corr=0.76)
Reg-H-Score (corr=0.74)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.65

0.70

0.75

0.80

A
ct

ua
l P

er
fo

rm
an

ce
s

Tw/Offen

TG:XGB:GAT (corr=0.93)
LogME (corr=0.74)
Reg-H-Score (corr=0.79)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.65

0.70

0.75

0.80

0.85

A
ct

ua
l P

er
fo

rm
an

ce
s

Glue/C

TG:XGB:GAT (corr=0.77)
LogME (corr=0.29)
Reg-H-Score (corr=0.52)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.5

0.6

0.7

0.8

0.9

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

Glue/S

TG:XGB:GAT (corr=0.89)
LogME (corr=0.70)
Reg-H-Score (corr=0.71)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.5

0.6

0.7

0.8

A
ct

ua
l P

er
fo

rm
an

ce
s

Tw/Hate

TG:XGB:GAT (corr=0.90)
LogME (corr=0.83)
Reg-H-Score (corr=0.86)

0.00 0.25 0.50 0.75 1.00
Transferability Scores

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ct

ua
l P

er
fo

rm
an

ce
s

Tw/Emoti

TG:XGB:GAT (corr=0.77)
LogME (corr=0.41)
Reg-H-Score (corr=0.77)

Figure 6.2: Text datasets’ correlation between the actual performances after fine-tuning and the predicted scores, for
both our approach and the baselines.

6.1. Evaluation: Effectiveness 47

In Figure 6.1 and Figure 6.2, we present a detailed breakdown of the predicted scores, plotted against
the actual performances after fine-tuning. For all datasets, our method has a higher correlation between
the predicted scores and actual performances than the baselines. As we discussed at the beginning of this
chapter, contrary tomost transferabilitymethods, we do not believe thismetric should be used as a primary
means to evaluate the success of a transferabilitymethod. However, this type of plot does give an interesting
overview of how themethod placed the pre-trainedmodelswith respect to the actual performances. One of
the reasons why we believe that correlation is not a good metric is also visible in the plots. For example, in
the case of the Stanfordcars dataset, our method produces an almost perfect correlation. However, due to a
single pre-trainedmodel not following the linear trend, the correlation is significantly lower. This is similar
towhatwe discussed in Section 3.1.3, wherewe noted that the produced ranking could be perfect, while the
predicted scores of the pre-trained models do not follow a linear correlation with the actual performances.

6.1.5. Effect of Graph Learning- and Regression learning method
First, we evaluate the effect of varying the graph learning method and the regression learning method
to train the prediction model. As introduced in Section 4.3.2, we experiment using Node2Vec (Grover &
Leskovec 2016), Node2Vec+ (R. Liu et al. 2023), GraphSAGE (Hamilton et al. 2017) and GAT (Veličković
et al. 2018) as graph embedding methods and linear regression (LR), random forest (RF) and eXtreme
Gradient Boosting (XGB) (T. Chen & Guestrin 2016) as methods to learn the prediction model.

0.0 0.2 0.4 0.6 0.8 1.0

rel@1

TG:XGB:GAT
TG:XGB:GraphSAGE

TG:XGB:N2V+
TG:LR:GraphSAGE

TG:LR:GAT
TG:RF:N2V+
TG:XGB:N2V
TG:LR:N2V+
TG:RF:N2V
TG:RF:GAT

TG:RF:GraphSAGE
TG:LR:N2V

Reg-H-Score
LogME
random

S
tra

te
gy

0.989
0.987

0.967
0.964

0.950
0.947

0.933
0.933
0.931
0.925

0.915
0.868

0.858
0.827

0.792

(a) Image datasets.

0.0 0.2 0.4 0.6 0.8 1.0

rel@1

TG:XGB:N2V+
TG:XGB:N2V
TG:XGB:GAT

LogME
TG:RF:GAT

TG:RF:GraphSAGE
TG:XGB:GraphSAGE

TG:LR:N2V+
Reg-H-Score

TG:RF:N2V
TG:RF:N2V+

TG:LR:GraphSAGE
TG:LR:N2V
TG:LR:GAT

random

S
tra

te
gy

0.988
0.986
0.986
0.978
0.978
0.977
0.977

0.957
0.953
0.948
0.944
0.943
0.941
0.940

0.910

(b) Text datasets.

Figure 6.3: Rel@1 score for all variations of graph learning methods and regression model types.

Figure 6.3 shows the results for varying both graph learning method and prediction model learning
method. It depicts the average relative top-1 accuracy over all target datasets. As discussed earlier in this
chapter, practitioners will ideally not want to perform costly fine-tuning on multiple pre-trained models to
find the best one. Hence, a transferability method’s best predicted pre-trained model (top-1) should give
a high accuracy after fine-tuning.

The colors of the bars and the hatches are grouped by graph embeddingmethod and regression learn-
ing method. It can be observed that generally, XGB (depicted with vertical hatches) outperforms the other
regression learningmethods. In combinationwithGAT, this method gives the best relative top-1 accuracy
on average. To further assess the performance of the variations, in the next sections, we will evaluate the
effect of increasing k and the effect of reducing the number of pre-trained models.

6.1.6. Effect of k
In some scenarios, practitionersmight havemore resources to attempt fine-tuningmore pre-trainedmodels
to find the best one. This notion is formalized by someworks, by returning a number of pre-trainedmodels
to fine-tune depending on an initially defined budget (Renggli et al. 2022). In this section, we will evaluate
the effect of increasing k, which can be viewed as less resource-constrained scenarios.

6.1. Evaluation: Effectiveness 48

1 2 3 4 5
k

0.80

0.85

0.90

0.95

1.00

re
l@

k

Image Datasets

1 2 3 4 5
k

0.92

0.94

0.96

0.98

re
l@

k

Text Datasets

LogME
Reg-H-Score

TG:XGB:GAT
TG:XGB:GraphSAGE

TG:XGB:N2V
TG:XGB:N2V+

random

Figure 6.4: Average Rel@k when increasing k and varying the graph learning method, for both image (left) and text
classification target datasets (right).

1 2 3 4 5
k

0.80

0.85

0.90

0.95

1.00

re
l@

k

Image Datasets

1 2 3 4 5
k

0.92

0.94

0.96

0.98

re
l@

k

Text Datasets

LogME
Reg-H-Score

TG:LR:GAT
TG:RF:GAT

TG:XGB:GAT random

Figure 6.5: Average Rel@k when increasing k and varying the regression learning method, for both image (left) and
text classification target datasets (right).

For visibility purposes, the figures do not showall variations of graph learning and regression learning
methods. Instead, Figure 6.4 and Figure 6.5 fix XGB and GAT and evaluate the effect of varying the graph
and regression learning method, respectively.

Generally, for higher values of k, both our variations and the baselines start to perform very similarly.
Figure 6.5 shows Reg-HScore (Ibrahim et al. 2023) slightly outperforms our most competitive method on
the image target datasets for k = 2 and k = 3. Another observation is that XGB significantly outper-
forms the other regression learning methods, even for higher values of k. As for graph learning methods,
Figure 6.4 shows that all variations perform similarly well when increasing k.

6.1.7. Effect of Number of Pre-trained Models
Graph learning methods, especially those based on GNN, generally need many nodes and edges to learn
meaningful representations. To assess the stability of our proposed approach, wewill decrease the number
of pre-trained models. As discussed in Section 3.1.4, related work often experiments with a very limited
set of pre-trained models. For example, the surveys by Agostinelli et al. (2022) and Bai et al. (2023) use 16
and 6 source pre-trained models, respectively. This amounts to approximately ten percent of the number
of pre-trained models used in our experiments. While we have argued that this is not a realistic setting
in today’s pre-trained model zoos, it does offer an indication of the stability of our approach and a better
comparison with the results presented in related work.

There are multiple observations to be made from these results. Firstly, our methods perform fairly sta-
ble, for both image and text classification tasks. In the case of text classification tasks, all methods perform
very similarly, and our approach that combines GAT and XGB is more stable than the baselines. For image
classification tasks, we note thatNode2Vec andNode2Vec+ aremore stable than the other methods (and
especially the baseline methods) when the size of the model zoo changes.

6.2. Evaluation: Efficiency 49

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

re
l@

1

Image Datasets

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

re
l@

1

Text Datasets

LogME
Reg-H-Score

TG:XGB:GAT
TG:XGB:GraphSAGE

TG:XGB:N2V
TG:XGB:N2V+

random

Figure 6.6: Average Rel@k when varying the graph learning method under lower number of pre-trained models, for
both image (left) and text (right) classification target datasets.

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

re
l@

1

Image Datasets

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
re

l@
1

Text Datasets

LogME
Reg-H-Score

TG:LR:GAT
TG:RF:GAT

TG:XGB:GAT random

Figure 6.7: Average Rel@k when varying the regression learning method under lower number of pre-trained models,
for both image (left) and text (right) classification target datasets.

6.2. Evaluation: Efficiency
The essence of transferability estimation is finding an efficient heuristic to estimate how well a pre-trained
model will transfer to a new task. A transferability estimation method should at least outperform brute
force fine-tuning all pre-trained models in the model zoo. As we discussed in Section 3.1.4, most transfer-
ability estimationmethods require a forward pass of the entire target dataset over all pre-trainedmodels in
the model zoo. While this is a lot more efficient than brute-force fine-tuning, this still requires significant
resources, especially for a growing model zoo with more complex models.

In this section, we will analyze the efficiency of our proposed method. We again compare against
LogME (You et al. 2021) and Reg-HScore (Ibrahim et al. 2023).

6.2.1. Runtime Steps
Before covering the efficiency results, we will provide some motivation on what steps of our method and
the baselines are included in these results. The baselines we use are both source embedding methods,
which means they require a forward pass over all pre-trained models to extract the features for the target
dataset. For these methods, this requires the most significant work. After obtaining the extracted features,
both methods can perform fairly efficient computation to obtain the score.

As discussed in Section 5.2.5, our method requires obtaining a historical record of fine-tuning perfor-
mances to learn from. This requires a significant effort if no previous fine-tuning experiences are available.
However, we argue that as model zoos mature, this data will become more readily available. This is al-
ready the case: when using the HuggingFace library defaults for fine-tuning, the fine-tuned model will be
uploaded containingmetadata about the fine-tuning experiment, including its accuracy. Since thesemodel
zoos are often public, some careful consideration is requiredwhen picking fine-tuning experiments to learn
from, as the authors of the pre-trained model may have used different and suboptimal hyperparameters
and fine-tuning methods. However, we do not see this as an insurmountable problem. Using indications

6.2. Evaluation: Efficiency 50

Method Step Offline Online

Source embedding Extracting features ✓
Computing score ✓

TransferGraph

Obtaining fine-tuning performances ✓
Obtaining source dataset embeddings ✓
Obtaining target dataset embeddings ✓
Obtaining graph embeddings ✓
Training prediction model ✓

Table 6.2: Runtime steps for the baselines and our method, and whether the steps can be done offline, or online.

of quality of the experiments available in these repositories, such as the organization that authored the
model or the popularity, the practitioners we envision in Section 3.1.1 should be able to combine public
fine-tuning experiences with their own to train their own transferability estimator.

Table 6.2 gives an overview of the components required by the baselines whichwe compare to and our
method, and an indication on whether the component needs to be computed online or offline. Essentially,
all steps required to construct the graph, including obtaining fine-tuning performances and embedding the
source datasets, can be obtained offline. When estimating transferability for a new target dataset, we first
have to compute its embedding to measure the similarity to other datasets that are already in the graph.
Currently, every time a target dataset is added to the graph, we have to retrain the graph learner and pre-
diction model. This is because we chose to evaluate many graph learning methods, some of which cannot
be used inductively, as explained in Section 2.4. Our most competitive method, which uses GAT (Veličković
et al. 2018), could be used inductively. Hence, future work could improve efficiency further, by changing
the setup to not require retraining for every target dataset.

6.2.2. Main findings
Figure 6.8 shows a comparison of the runtime in seconds for obtaining the transferability estimation for
our most competitive method, which uses XGB and GAT, compared to LogME and Reg-HScore. Similarly
to the effectiveness experiments in Section 6.1, we vary the size of the model zoo to show the effect of more
pre-trainedmodels to evaluate. What can be observed is that both baselinemethods perform very similarly,
which can be explained by that the majority of the work involves extracting the features, which has to be
done by both methods.

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

10
2

10
3

10
4

Ti
m

e
(s

ec
on

ds
)

Image Datasets

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

10
2

10
3

Ti
m

e
(s

ec
on

ds
)

Text Datasets

LogME Reg-H-Score TG:XGB:GAT

Figure 6.8: Average runtime in seconds for obtaining the transferability estimation of our most competitive method
against the selected baselines, for image datasets (left) and text datasets (right).

Table 6.3 and Table 6.4 give a more detailed breakdown of the runtime, for the image and text tar-
get datasets, respectively. What can be observed is that computing the transferability scores using source
embedding methods like LogME and Reg-HScore, especially for larger image datasets, becomes very ex-
pensive. For our largest dataset, SVHN (Netzer et al. 2011), with 600,000 image samples, it takes around
7.5 hours. Our method offers a 105 times speedup compared to that, at less than 5 minutes.

6.2. Evaluation: Efficiency 51

Method #Models SmallN/El Caltech101 Cifar100 DTD Flowers Pets Cars SVHN

LogME

18 1,316s 178s 2,355s 1,011s 686s 289s 1,044s 2,710s
55 3,948s 533s 7,064s 3,033s 2,059s 868s 3,133s 8,129s
92 6,581s 889s 11,774s 5,055s 3,432s 1,446s 5,222s 13,548s
129 9,213s 1,244s 16,483s 7,078s 4,804s 2,025s 7,311s 18,967s
166 11,845s 1,600s 21,193s 9,100s 6,177s 2,604s 9,400s 24,387s
184 13,161s 1,778s 23,548s 10,111s 6,863s 2,893s 10,444s 27,096s

Reg-H-Score

18 1327s 181s 2359s 1017s 689s 293s 1044s 2728s
55 3,981s 542s 7,078s 3,051s 2,068s 879s 3,133s 8,185s
92 6,636s 903s 11,797s 5,085s 3,447s 1,464s 5,222s 13,642s
129 9,290s 1,265s 16,516s 7,119s 4,826s 2,050s 7,310s 19,099s
166 11,944s 1,626s 21,235s 9,154s 6,205s 2,636s 9,399s 24,556s
184 13,272s 1,806s 23,594s 10,171s 6,894s 2,929s 10,443s 27,284s

TG:XGB:GAT

18 75s 13s 151s 229s 45s 21s 67s 206s
55 80s 18s 156s 234s 50s 25s 73s 211s
92 88s 25s 163s 240s 58s 34s 80s 219s
129 97s 32s 172s 252s 65s 40s 85s 227s
166 105s 43s 181s 258s 76s 52s 98s 241s
184 114s 49s 187s 265s 81s 57s 104s 255s

Table 6.3: Detailed view of runtime per image target dataset.

Method #Models Glue/C Glue/S Rotten Tw/Emoti Tw/Hate Tw/Irony Tw/Offen Tw/Senti

LogME

16 86s 843s 134s 53s 178s 44s 268s 670s
49 258s 2,530s 401s 160s 535s 132s 803s 2,009s
82 430s 4,217s 668s 266s 892s 219s 1,338s 3,348s
115 602s 5,904s 935s 373s 1,249s 307s 1,873s 4,687s
148 775s 7,591s 1,202s 479s 1,606s 395s 2,408s 6,026s
164 861s 8,434s 1,336s 532s 1,785s 438s 2,675s 6,696s

Reg-H-Score

16 92s 853s 140s 58s 184s 49s 274s 676s
49 275s 2,560s 419s 173s 551s 146s 823s 2,028s
82 459s 4,267s 698s 289s 919s 243s 1,371s 3,380s
115 642s 5,974s 977s 404s 1,287s 340s 1,920s 4,733s
148 825s 7,681s 1,256s 520s 1,654s 437s 2,468s 6,085s
164 917s 8,534s 1,395s 578s 1,838s 485s 2,742s 6,761s

TG:XGB:GAT

16 11s 58s 15s 5s 16s 8s 24s 50s
49 12s 61s 17s 10s 19s 13s 28s 52s
82 18s 65s 21s 11s 24s 16s 34s 54s
115 21s 68s 23s 17s 28s 18s 35s 56s
148 23s 70s 26s 19s 30s 21s 36s 60s
164 25s 74s 27s 20s 30s 20s 37s 61s

Table 6.4: Detailed view of runtime per text target dataset.

6.2.3. Effect of Graph Learning- and Regression Learning Method
In this section, we will evaluate the effect on the runtime when varying the graph embedding and regres-
sion learningmethod. Similarly to our effectiveness analysis in Section 6.1.5, in Figure 6.9, all combinations
of graph learners and regression learningmethods are displayed. The graph learningmethods are grouped
by color, whereas the regression learning methods are grouped by line markers. The depicted results are
the average for all target datasets in our experiments.

We can see that the chosen graph learning method has the greatest influence on the runtime of our
methods. Themost efficient methods are Node2Vec (Grover & Leskovec 2016), followed byNode2Vec+ (R.
Liu et al. 2023). GraphSAGE (Hamilton et al. 2017) and GAT (Veličković et al. 2018) are the slowest meth-
ods. This follows the line of expectations set out in Section 2.4. GNN-based methods are more computa-
tionally expensive than random walk-based methods, and Node2Vec+ is more expensive because it has to
account for edge weights. The differences in regression learning methods, at least at this scale, are very
limited. However, we can clearly see that XGB is more expensive than RF and LR.

Finally, what should be noted is that with the current model zoo sizes, the majority of the runtime of
our method consists of embedding the target dataset. This takes between 3–55 seconds for text datasets
and 9–255 seconds for image datasets.

6.3. Summary 52

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

10
2

1.05 × 10
2

1.1 × 10
2

1.15 × 10
2

1.2 × 10
2

1.25 × 10
2

1.3 × 10
2

1.35 × 10
2

1.4 × 10
2

Ti
m

e
(s

ec
on

ds
)

Image Datasets

0.1 0.3 0.5 0.7 0.9 1.0
Model Ratio

2.2 × 10
1

2.4 × 10
1

2.6 × 10
1

2.8 × 10
1

3 × 10
1

3.2 × 10
1

3.4 × 10
1

3.6 × 10
1

Ti
m

e
(s

ec
on

ds
)

Text Datasets

TG:LR:GAT
TG:LR:GraphSAGE
TG:LR:N2V

TG:LR:N2V+
TG:RF:GAT
TG:RF:GraphSAGE

TG:RF:N2V
TG:RF:N2V+
TG:XGB:GAT

TG:XGB:GraphSAGE
TG:XGB:N2V
TG:XGB:N2V+

Figure 6.9: Average runtime in seconds for obtaining the transferability estimationwhen varying the graph learning and
regression learning methods, for image datasets (left) and text datasets (right).

6.3. Summary
In this chapter, the performance of various configurations of TransferGraphwas compared against two state-
of-the-artmethods: LogME(You et al. 2021) andReg-HScore (Ibrahimet al. 2023). All twelve combinations
of graph learners and regression learning methods are assessed, both in terms of effectiveness as efficiency.

We evaluated the effectiveness according to commonly used metrics; Pearson correlation, weighted
Kendall’s rank correlation and relative top-k accuracy. We have shown that except for weighted Kendall
correlation on text datasets, our most competitive method outperforms the baselines on all evaluation met-
rics. Especially on lower values of k, our method is better at identifying a pre-trained model with a good
accuracy for the target task.

Given the complete model zoo, using GAT (Veličković et al. 2018) as graph learner combined with
XGB (T. Chen & Guestrin 2016) to train the regression model has been shown to achieve the best perfor-
mance on average, closely followed by using GraphSAGE. Even though Node2Vec (Grover & Leskovec
2016) and Node2Vec+ (R. Liu et al. 2023) outperform the other methods on text datasets, the performance
difference is only minor. Node2Vec and Node2Vec+ do have the advantage that they perform more stable
when reducing the number of pre-trained models.

Finally, we have shown that TransferGraph is significantly faster than the state-of-the-art methods. As
discussed in earlier chapters, a major downside of these methods is that they require a forward pass over
the pre-trained model using the entire dataset, making their runtime dependent on both the model size
and dataset size. On the largest image task, our method is 106 times faster, and on the largest text task, it is
110 times faster. While our method requires significant preparation effort, we have argued in this chapter
that, given the increasing richness and structure of metadata in model zoos, this preparation can be done
offline.

Summary of contributions

• In contrast to related wroks, we propose a more consistent approach to measure the effec-
tiveness of transferability estimation methods over multiple tasks, which may vary in terms
of how much they benefit from transferability estimation.

• We show that TransferGraph outperforms the state-of-the-art transferability estimationmeth-
ods LogME (You et al. 2021) and Reg-HScore (Ibrahim et al. 2023) in terms of effectiveness
on most evaluation metrics.

• We show that TransferGraph can estimate transferability orders of magnitude faster than
these methods.

• We show that TransferGraph’s performance is stable when varying the model zoo size in
terms of number of pre-trained models to choose from.

7
Conclusion and Outlook

As model zoos mature and offer practitioners a growing choice of pre-trained models, it is becoming more
and more challenging to choose the right model for a new task, even for experts. Brute-force fine-tuning
all pre-trained models to find the best one in such a model zoo, which can be in the thousands, has become
infeasible in terms of required computational resources. In the past years, various transferability estimation
methods have been proposed to offer an efficient heuristic to find the best pre-trained model to fine-tune.
The most successful methods rely solely on the features extracted by a pre-trained model and the target
labels of the dataset. Doing so, they disregard any additional (meta-)information of these pre-trained
models and datasets, such as the architecture of the pre-trainedmodel or the number of classes in a dataset.
These indicators have been shown to be useful to incorporate when estimating transferability, especially in
diverse model zoos.

In this thesis, we have investigatedwhetherwe canmore effectively predict a pre-trainedmodel which
has a high performance on a new, downstream task. The main goal of this thesis was to find out:

RQ: How can transferability estimation be performed more effectively and efficiently in large
and diverse model zoos?

Since existing surveys only provided an overview of some transferability estimationmethods, the first
subgoal we set to find out was:

RQ1: Which methodologies for transferability estimation have been introduced in existing literature?

In Chapter 2, we identified 29 published methods and divided them into six categories; dataset sim-
ilarity with source embedding, dataset similarity with optimal transport, model similarity, source-target
label comparison, source embedding, and methods that learn from fine-tuning history. Each of these cat-
egories of related work captures a relation between the source and the target task. Dataset similarity and
source-target label comparisonmethods exploit the similarities of the source and target datasets to estimate
transferability. Source embedding methods explore the relation between the source pre-trainedmodel and
target task through extracted features. Model similarity methods the relationship between the source and
target model. Methods that learn from fine-tuning history learn the relationship of source model and tar-
get task through historic fine-tuning performances, and additionally use metadata of pre-trained models
and datasets to learn this relation. Given these relationships and available metadata, the next sub-goal was
to explore:

RQ2: What types of metadata can be used to effectively estimate transferability?

This was done in Chapter 3. We identified two types of dataset metadata and six types of pre-trained
model metadata that have been shown to be useful in predicting fine-tuning performance. Examples of
indicators are those of hardness and complexity, such as the number of labels of a dataset, the number
of parameters of a model, and its architecture. We also identify two types of relationships, which can
be obtained efficiently. First, dataset-dataset relationships, which represent their similarity and can be
computed through extracting their features by a probe model and computing the distance. The second
relation represents past fine-tuning performances between pre-trained models and target datasets. Using
these relations and metadata, the next sub-goal was to find out:

53

7.1. Recommendations for Future Work 54

RQ2: How can we improve the effectiveness of transferability estimation in diverse model zoos?

In the data lake community, datasets and their relations have been modelled using a graph. Given
these rich relationships between datasets and pre-trained models, in Chapter 3, we motivated our hypoth-
esis that modeling transferability estimation as a graph learning problem could improve effectiveness. By
modeling datasets and pre-trained models as nodes, and their relationships as edges, we converted trans-
ferability estimation to a link prediction problem on a graph. In this setting, the goal is to predict a positive
link between a new target dataset and a pre-trained model, if its fine-tuning performance is good.

In Chapter 4, we introduced our novel framework for transferability estimation: TransferGraph. To
evaluate TransferGraph, we constructed two model zoos; one with 184 pre-trained image classification
models, and one with 164 pre-trained text classification models. The details of setting up these model zoos
for our experiments are covered in Chapter 5. For both model zoos, we test the transferability estimation
performance of our method on eight target datasets compared to state-of-the-art methods: LogME and
Reg-HScore. With the constructed graph, we evaluated the performance of 12 variations of our method in
different sizes of model zoos. These variations use different graph learning methods, as well as different
regression learning methods. The evaluated graph learning methods are Node2Vec, Node2Vec +, Graph-
SAGE and Graph Attention Networks (GAT) and the evaluated regression learning methods are linear
regression (LR), random forest (RF) and eXtreme gradient boosting (XGB).

In Section 6.1, we have shown that GAT in combination with XGB has the best average performance
in terms of relative top-1 accuracy among these variations. When reducing the size of the model zoo, we
have shown that Node2Vec and Node2Vec+ have more stable performance. Furthermore, we have shown
that compared to the state-of-the-art, our variation using GAT and XGB could more effectively estimate
transferability. On average, this variation outperformed the baselines in all evaluation metrics, except for
one in the text classification experiments. Especially on datasets which were hard to predict a fitting pre-
trained model, our method significantly outperformed the baselines.

Although our method might be more effective, the main goal behind transferability estimation is to
find an efficient way to measure the potential fine-tuning performance of a pre-trained model. A crucial
question is therefore to ask:

RQ3: How can transferability estimation be made more efficient in large model zoos?

Not all of these metadata and relationships can be retrieved efficiently; model-model similarity re-
quires fine-tuning of a (small) target model to compute the similarity to the others. Source embedding
methods have to do a forward pass over all the pre-trained models to extract their specific features to do
analysis on. While both are orders of magnitude more efficient than brute-force fine-tuning, with a grow-
ing number of pre-trained models to choose from, the effort is still significant. The relation in the form of
past fine-tuning performance is not easy to obtain either. However, the advantage is that this only has to
be done once and can be obtained incrementally.

The state-of-the-art methods in transferability estimation are source embedding methods, which re-
quire a forward pass over the source pre-trained model’s feature extractor layer of the entire target dataset,
for every pre-trained model. In our experiment set-up, we include up to 184 pre-trained models. While
public model zoos have thousands of pre-trained models, already in our small set-up, we have shown that
these methods take up to hours to execute. By learning from past fine-tuning performances, we do not
have to perform this expensive step and have shown that all variations of our method only take up to five
minutes to perform the estimation on all pre-trained models, as shown in Section 6.2. When comparing
among our variations, the Node2Vec and Node2Vec+ methods are especially efficient, but as mentioned
previously, they trade this efficiency for slightly reduced effectiveness.

To conclude and answer the goal of this thesis, we have shown that transferability estimation can
be improved in terms of both effectiveness and efficiency, by utilizing additional dataset and pre-trained
modelmetadata to reframe the problem as a link prediction problem on a graph. This proposed framework,
TransferGraph, outperforms the state-of-the-art, ismost effectivewhen usedwithGAT andXGB as learning
methods, and is most efficient when used with Node2Vec.

7.1. Recommendations for Future Work
In this thesis, we conducted an initial study on the use of graph learning to tackle transferability estimation.
While we have explored various aspects, many areas remain open for further investigation. Below, we
provide recommendations for future research. We first cover additional research that could be conducted
within the scope of this thesis, followed by potential future work beyond its scope.

7.1. Recommendations for Future Work 55

7.1.1. Within the Scope of this Thesis
Hyperparameter Search for (Graph) Learning Methods In Chapter 4, we explain the covered
graph and supervised learning methods and our used hyperparameters. Future work could improve the
effectiveness of this approach, by performing hyperparameter optimization for both learning approaches.
For all graph learning methods, this could mean exploring the effect of changing the embedding dimen-
sion, both in terms of effectiveness as efficiency, since a higher dimension will require more computational
resources.

For Node2Vec and Node2Vec+, the parameters p and q could be adjusted, to, for example, favor cap-
turing the local or global structure. Integrating hyperparameter search as part of the framework could
also improve the stability of our approach, since differently structured graphs may benefit from different
hyperparameters. Similarly, for GraphSAGE and GAT, future works could study the effect of adjusting the
optimizer and loss functions.

Inductive Graph Node Embedding When we introduced the different graph embeddings methods
in Section 2.4, a mentioned advantage of some graph learningmethods is that they are inductive, instead of
transductive. In our setting, this essentially means that when a new target dataset is introduced which we
want to do transferability estimation for, the graph does not have to be learned from scratch to embed the
new target dataset node. This is especially useful in the case of very large graphs. Future research could
study the effect of allowing this framework tomake inductive embeddings and predictions for GraphSAGE
andGAT,which support inductive embeddings. Especially for larger experiment setups, this could amount
to significant efficiency gains.

7.1.2. Beyond the Scope of this Thesis
Large (Generative) (Language) Models In this thesis, we studied transferability estimation in the
context of image and text sequence classification, for models with up to 393 million parameters. This is
relatively small compared to today’s large (language) models. Today’s OpenAI flagship model, GPT-4o,
has 175 billion parameters. Fine-tuning models at this scale and in the setting of generative models is still
largely undiscovered, let alone applying transferability estimation in these settings. A major challenge in
research in this area is the cost and environmental impact of fine-tuning models at this scale.

Lin et al. (2024) pioneers research in the field of applying transferability estimation in the setting
of generative language models. Y.-K. Zhang et al. (2024) study applying transferability estimation in the
setting of fine-tuning large language models to do classification tasks. However, more research is needed
to successfully apply transferability estimation in the case of large language models.

Transferability Estimation for Selecting Efficient Models Works on transferability estimation
have a heavy focus on selecting the most effective model for the downstream task. A critical reader that
has some deep learning experience might ask: “Why do you not just select a very large model, instead of trying
to estimate transferability?”. This would be a decent strategy in general, larger models often generalize good
over unseen tasks. However, this cannot offer a reasonable alternative to transferability estimation for two
reasons. Firstly, especially for harder to learn task, we have observed large variation even among the largest
models. For example, the best performing model on the Stanfordcars dataset is Facebook/convnext-large-
384-22k-1k, with an accuracy of 0.824. At 197 million parameters, it is 1.5 times smaller than the largest
model in our zoo: Facebook/convnext-xlarge-224-22k. This pre-trained model only achieved an accuracy
of 0.721. Second, this wouldmean you always choose the most inefficient model to use in terms of memory
consumption and inference time.

Some works do incorporate efficiency into the choice of selecting a pre-trained mode. In SHiFT, Reng-
gli et al. (2022), the user of their transfer learning engine is allowed to filter models by their number of pa-
rameters. This essentially allows practitioners to set resource constraints in terms of memory consumption
and inference time. Deep learning models are growing in size at a staggering rate, with all associated com-
putational and thus environmental impact. Future works could further investigate the above approach, by
capturing the user’s preference for effectiveness over efficiency when recommending pre-trained models
after transferability estimation.

Bibliography

Achille, Alessandro, Michael Lam, Rahul Tewari, Avinash Ravichandran, SubhransuMaji, Char-
less C Fowlkes, Stefano Soatto & Pietro Perona (2019). “Task2vec: Task embedding for meta-
learning”. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 6430–
6439.

Agostinelli, Andrea, Michal Pándy, Jasper Uijlings, Thomas Mensink & Vittorio Ferrari (2022).
“How Stable Are Transferability Metrics Evaluations?” In: Computer Vision – ECCV 2022,
pp. 303–321.

Alvarez-Melis, David & Nicolo Fusi (2020). “Geometric Dataset Distances via Optimal Trans-
port”. In: Advances in Neural Information Processing Systems. Vol. 33, pp. 21428–21439.

B, Vimal K, Saketh Bachu, Tanmay Garg, Niveditha Lakshmi Narasimhan, Raghavan Konuru
& Vineeth N Balasubramanian (2023). “Building a Winning Team: Selecting Source Model
Ensembles using a Submodular Transferability Estimation Approach”. In: 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 11575–11586.

Bai, Jun, Xiaofeng Zhang, Chen Li, Hanhua Hong, Xi Xu, Chenghua Lin & Wenge Rong (2023).
“How to Determine the Most Powerful Pre-trained Language Model without Brute Force
Fine-tuning? An Empirical Survey”. In: Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 5369–5382.

Bao, Yajie, YangLi, Shao-LunHuang, LinZhang, LizhongZheng,AmirZamir&LeonidasGuibas
(2019). “An Information-Theoretic Approach to Transferability in Task Transfer Learning”.
In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2309–2313.

Barbieri, Francesco, Jose Camacho-Collados, Luis Espinosa Anke & Leonardo Neves (2020).
“TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification”. In:
Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1644–1650.

Bassignana, Elisa,MaxMüller-Eberstein,MikeZhang&Barbara Plank (2022). “Evidence \textgreater
Intuition: Transferability Estimation for Encoder Selection”. In: Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 4218–4227.

Ben-David, Shai & Reba Schuller (2003). “Exploiting Task Relatedness for Multiple Task Learn-
ing”. In: Learning Theory and Kernel Machines. Lecture Notes in Computer Science, pp. 567–
580.

Birhane, Abeba&VinayUdayPrabhu (2021). “Large image datasets: A pyrrhicwin for computer
vision?” In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,
pp. 1536–1546.

Bolya, Daniel, Rohit Mittapalli & Judy Hoffman (2021). “Scalable Diverse Model Selection for
Accessible Transfer Learning”. In: Advances in Neural Information Processing Systems. Vol. 34,
pp. 19301–19312.

Castro Fernandez, Raul, ZiawaschAbedjan, FamienKoko,GinaYuan, SamuelMadden&Michael
Stonebraker (2018). “Aurum: AData Discovery System”. In: 2018 IEEE 34th International Con-
ference on Data Engineering (ICDE), pp. 1001–1012.

56

Bibliography 57

Chen, Fenxiao, Yun-Cheng Wang, Bin Wang & C.-C. Jay Kuo (2020). “Graph representation
learning: a survey”. In: APSIPA Transactions on Signal and Information Processing 9, e15.

Chen, Tianqi & Carlos Guestrin (2016). “XGBoost: A Scalable Tree Boosting System”. In: Proceed-
ings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and DataMining.
KDD ’16, pp. 785–794.

Chen, Zuohui, Yao Lu, Wen Yang, Qi Xuan & Xiaoniu Yang (2021). “Graph-Based Similarity of
Neural Network Representations”. In: ArXiv.

Chib, Pranav Singh&Pravendra Singh (2023). “Recent advancements in end-to-end autonomous
driving using deep learning: A survey”. In: IEEE Transactions on Intelligent Vehicles.

Cimpoi,Mircea, SubhransuMaji, IasonasKokkinos, SammyMohamed&AndreaVedaldi (2014).
“Describing Textures in the Wild”. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3606–3613.

Cui, Yin, Yang Song, Chen Sun, Andrew Howard & Serge Belongie (2018). “Large scale fine-
grained categorization and domain-specific transfer learning”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 4109–4118.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li & Li Fei-Fei (2009). “ImageNet: A large-
scale hierarchical image database”. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255.

Deshpande, A., A. Achille, Avinash Ravichandran, Hao Li, L. Zancato, Charless C. Fowlkes,
Rahul Bhotika, Stefano Soatto & P. Perona (2021). “A linearized framework and a new bench-
mark for model selection for fine-tuning”. In: ArXiv pre-print.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee & Kristina Toutanova (2019). “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186.

Ding, Nan, Xi Chen, Tomer Levinboim, Soravit Changpinyo & Radu Soricut (2022). “PACTran:
PAC-Bayesian Metrics for Estimating the Transferability of Pretrained Models to Classifica-
tion Tasks”. In: Computer Vision – ECCV 2022. Vol. 13694, pp. 252–268.

Dong, Qishi, Awais Muhammad, Fengwei Zhou, Chuanlong Xie, Tianyang Hu, Yongxin Yang,
Sung-Ho Bae & Zhenguo Li (2022). “Zood: Exploiting model zoo for out-of-distribution gen-
eralization”. In: Advances in Neural Information Processing Systems 35, pp. 31583–31598.

Dong, Shi, Ping Wang & Khushnood Abbas (2021). “A survey on deep learning and its applica-
tions”. In: Computer Science Review 40, p. 100379.

Dosovitskiy,Alexey, Lucas Beyer,AlexanderKolesnikov,DirkWeissenborn, XiaohuaZhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit & Neil Houlsby (2021). “An Image is Worth 16x16 Words: Transformers for Im-
age Recognition at Scale”. In: 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021.

Dwivedi, Kshitij, Jiahui Huang, Radoslaw Martin Cichy & Gemma Roig (2020). “Duality Dia-
gram Similarity: A Generic Framework for Initialization Selection in Task Transfer Learning”.
In: Computer Vision – ECCV 2020, pp. 497–513.

Dwivedi, Kshitij & Gemma Roig (2019). “Representation Similarity Analysis for Efficient Task
Taxonomy&Transfer Learning”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 12379–12388.

Bibliography 58

Eaton, Eric, Marie desJardins & Terran Lane (2008). “Modeling Transfer Relationships Between
Learning Tasks for Improved Inductive Transfer”. In:Machine Learning and Knowledge Discov-
ery in Databases, pp. 317–332.

Engelen, Jesper E. van & Holger H. Hoos (2019). “A survey on semi-supervised learning”. In:
Machine Learning 109.2, pp. 373–440.

Fagin, Ronald, Ravi Kumar & D. Sivakumar (2003). “Comparing Top k Lists”. In: SIAM Journal
on Discrete Mathematics 17.1, pp. 134–160.

Fei-Fei, Li, R. Fergus & P. Perona (2004). “Learning Generative VisualModels from Few Training
Examples: An Incremental Bayesian Approach Tested on 101 Object Categories”. In: 2004
Conference on Computer Vision and Pattern Recognition Workshop, pp. 178–178.

Goerttler, Thomas & Klaus Obermayer (2024). “Unveiling the Dynamics of Transfer Learning
Representations”. In: ICLR 2024 Workshop on Representational Alignment.

Grover, Aditya & Jure Leskovec (2016). “node2vec: Scalable Feature Learning for Networks”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’16, pp. 855–864.

Hai, Rihan, Christos Koutras, Christoph Quix &Matthias Jarke (2023). “Data Lakes: A Survey of
Functions and Systems”. In: IEEE Transactions on Knowledge and Data Engineering PP, pp. 1–20.

Hamilton, William L., Rex Ying & Jure Leskovec (2017). “Inductive representation learning on
large graphs”. In:Proceedings of the 31st International Conference onNeural Information Processing
Systems. NIPS’17, pp. 1025–1035.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren& Jian Sun (2016). “Deep Residual Learning for Im-
age Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778.

He, Xin, Kaiyong Zhao & Xiaowen Chu (2021). “AutoML: A survey of the state-of-the-art”. In:
Knowledge-Based Systems 212, p. 106622.

Hu, Edward J, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. (2021). “LoRA: Low-Rank Adaptation of Large Language Models”. In: Interna-
tional Conference on Learning Representations.

Huang, Jiaji, Qiang Qiu & Kenneth Church (2021). “Exploiting a Zoo of Checkpoints for Unseen
Tasks”. In: Advances in Neural Information Processing Systems. Vol. 34, pp. 19423–19434.

Huang, Long-Kai, Junzhou Huang, Yu Rong, Qiang Yang & Ying Wei (2022). “Frustratingly
Easy Transferability Estimation”. In: Proceedings of the 39th International Conference onMachine
Learning, pp. 9201–9225.

Ibrahim, Shibal, Natalia Ponomareva & Rahul Mazumder (2023). “Newer is Not Always Better:
Rethinking Transferability Metrics, Their Peculiarities, Stability and Performance”. In: Ma-
chine Learning and Knowledge Discovery in Databases. Vol. 13713, pp. 693–709.

Ilnicka, A. &G. Schneider (2023). “Designingmolecules with autoencoder networks”. In:Nature
Computational Science 3.11, pp. 922–933.

Kandwal, Siddharth & Vibha Nehra (2024). “A Survey of Text-to-Image Diffusion Models in
Generative AI”. In: 2024 14th International Conference on Cloud Computing, Data Science & En-
gineering (Confluence). IEEE, pp. 73–78.

Kendall, M. G. (1938). “A New Measure of Rank Correlation”. In: Biometrika 30.1/2, pp. 81–93.

Bibliography 59

Khoshraftar, Shima &Aijun An (2024). “A Survey on Graph Representation LearningMethods”.
In: ACM Transactions on Intelligent Systems and Technology 15.1, 19:1–19:55.

Kipf, Thomas N & Max Welling (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

Kornblith, Simon, Mohammad Norouzi, Honglak Lee & Geoffrey Hinton (2019). “Similarity of
Neural Network Representations Revisited”. In: Proceedings of the 36th International Conference
on Machine Learning, pp. 3519–3529.

Krause, Jonathan, Michael Stark, Jia Deng & Li Fei-Fei (2013). “3D Object Representations for
Fine-Grained Categorization”. In: 2013 IEEE International Conference on Computer Vision Work-
shops, pp. 554–561.

Krizhevsky,Alex (2012). “LearningMultiple Layers of Features fromTiny Images”. In:University
of Toronto.

Kumari, Nupur, Richard Zhang, Eli Shechtman & Jun-Yan Zhu (2022). “Ensembling Off-the-
shelfModels for GANTraining”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10641–10652.

Lecun, Y., L. Bottou, Y. Bengio & P. Haffner (1998). “Gradient-based learning applied to docu-
ment recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

Li, Hao, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika &
Stefano Soatto (2020). “Rethinking the Hyperparameters for Fine-tuning”. In: International
Conference on Learning Representations.

Li, Hao, Charless Fowlkes, Hao Yang, Onkar Dabeer, Zhuowen Tu & Stefano Soatto (2023).
“Guided Recommendation for Model Fine-Tuning”. In: 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3633–3642.

Li, Qing,WeidongCai, XiaogangWang, YunZhou,DavidDagan Feng&MeiChen (2014). “Med-
ical image classification with convolutional neural network”. In: 2014 13th International Con-
ference on Control Automation Robotics & Vision (ICARCV), pp. 844–848.

Li, Yandong, Xuhui Jia, Ruoxin Sang, Yukun Zhu, Bradley Green, Liqiang Wang & Boqing Gong
(2021). “Ranking neural checkpoints”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2663–2673.

Li, Z, R Hai, A Bozzon & A Katsifodimos (2022). “Metadata Representations for Queryable ML
Model Zoos”. In: ICML 2022 Workshop: DataPerf Benchmarking Data for Data-Centric AI.

Li, Ziyu, Mariette Schönfeld, Wenbo Sun, Marios Fragkoulis, Rihan Hai, Alessandro Bozzon &
Asterios Katsifodimos (2023). “Optimizing ML Inference Queries Under Constraints”. In:
Web Engineering. Lecture Notes in Computer Science, pp. 51–66.

Li, Ziyu, Hilco van der Wilk, Danning Zhan, Megha Khosla, Alessandro Bozzon & Rihan Hai
(2024). “Model Selection with Model Zoo via Graph Learning”. In: 2024 IEEE 40th Interna-
tional Conference on Data Engineering (ICDE).

Lin, Haowei, Baizhou Huang, Haotian Ye, Qinyu Chen, Zihao Wang, Sujian Li, Jianzhu Ma, Xi-
aojun Wan, James Zou & Yitao Liang (2024). “Selecting Large Language Model to Fine-tune
via Rectified Scaling Law”. In: arXiv preprint.

Liu, Renming, Matthew Hirn & Arjun Krishnan (2023). “Accurately modeling biased random
walks on weighted networks using node2vec+”. In: Bioinformatics 39.1, btad047.

Bibliography 60

Liu, Zhen,Wenbo Zuo, Dongning Zhang&Chuan Zhou (2024). “Self-Attention EnhancedAuto-
Encoder for Link Weight Prediction With Graph Compression”. In: IEEE Transactions on Net-
work Science and Engineering 11.1, pp. 89–99.

LLaMA (2024). LLaMA: Open and Efficient Foundation Language Models - Meta Research. nl. URL:
https://research.facebook.com/publications/llama- open- and- efficient- foundation-
language-models/ (visited on 03/25/2024).

Loshchilov, Ilya & Frank Hutter (2018). “Decoupled Weight Decay Regularization”. In: Interna-
tional Conference on Learning Representations.

Luo, Yifei, Minghui Xu & Deyi Xiong (2022). “CogTaskonomy: Cognitively Inspired Task Tax-
onomy Is Beneficial to Transfer Learning in NLP”. In: Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 904–920.

Martínez, Víctor, Fernando Berzal & Juan-Carlos Cubero (2017). “A Survey of Link Prediction
in Complex Networks”. In: ACM Computing Surveys 49.4, pp. 1–33.

Meiseles, Amiel & Lior Rokach (2020). “Source Model Selection for Deep Learning in the Time
Series Domain”. In: IEEE Access 8, pp. 6190–6200.

Mikolov, Tomas, Kai Chen, Greg Corrado & Jeffrey Dean (2013a). “Efficient estimation of word
representations in vector space”. In: arXiv preprint.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado & Jeff Dean (2013b). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems. Vol. 26.

Mitchell,Margaret, SimoneWu,AndrewZaldivar, Parker Barnes, LucyVasserman, BenHutchin-
son, Elena Spitzer, Inioluwa Deborah Raji & Timnit Gebru (2019). “Model Cards for Model
Reporting”. In: Proceedings of the Conference on Fairness, Accountability, and Transparency. FAT*
’19, pp. 220–229.

Nargesian, Fatemeh,KenQ. Pu, ErkangZhu, BaharGhadiri Bashardoost&Renée J.Miller (2020).
“Organizing Data Lakes for Navigation”. In: Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1939–1950.

Netzer, Yuval, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
(2011). “Reading digits in natural imageswith unsupervised feature learning”. In:NIPSwork-
shop on deep learning and unsupervised feature learning. Vol. 2011. 5. Granada, Spain, p. 7.

Nguyen, Cuong, Tal Hassner, Matthias Seeger & Cedric Archambeau (2020). “LEEP: A New
Measure to Evaluate Transferability of Learned Representations”. In: Proceedings of the 37th
International Conference on Machine Learning, pp. 7294–7305.

Nilsback, Maria-Elena & Andrew Zisserman (2008). “Automated Flower Classification over a
Large Number of Classes”. In: 2008 Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pp. 722–729.

Niu, Shuteng, Yongxin Liu, Jian Wang & Houbing Song (2020). “A Decade Survey of Transfer
Learning (2010–2020)”. In: IEEE Transactions on Artificial Intelligence 1.2, pp. 151–166.

Nori, N., D. Bollegala & M. Ishizuka (2011). “Interest prediction on multinomial, time-evolving
social graphs”. In: pp. 2507–2512.

OpenAI et al. (Mar. 2024). GPT-4 Technical Report. arXiv:2303.08774 [cs]. DOI: 10.48550/arXiv.
2303.08774. URL: http://arxiv.org/abs/2303.08774 (visited on 03/25/2024).

https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/
https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://arxiv.org/abs/2303.08774

Bibliography 61

Pan, Sinno Jialin & Qiang Yang (2010). “A Survey on Transfer Learning”. In: IEEE Transactions
on Knowledge and Data Engineering 22.10, pp. 1345–1359.

Pandy, Michal, Andrea Agostinelli, Jasper Uijlings, Vittorio Ferrari & Thomas Mensink (2022).
“Transferability Estimation using Bhattacharyya Class Separability”. In: 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 9162–9172.

Pang, Bo & Lillian Lee (2005). “Seeing Stars: Exploiting Class Relationships for Sentiment Cat-
egorization with Respect to Rating Scales”. In: Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05), pp. 115–124.

Parkhi, OmkarM, Andrea Vedaldi, Andrew Zisserman &C. V. Jawahar (2012). “Cats and dogs”.
In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505.

Pearson, Karl (1895). “Note on Regression and Inheritance in the Case of Two Parents”. In: Pro-
ceedings of the Royal Society of London 58, pp. 240–242.

Perozzi, Bryan, Rami Al-Rfou & Steven Skiena (2014). “DeepWalk: online learning of social rep-
resentations”. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. KDD ’14, pp. 701–710.

Puigcerver, Joan, Carlos Riquelme Ruiz, Basil Mustafa, Cedric Renggli, André Susano Pinto, Syl-
vain Gelly, Daniel Keysers & Neil Houlsby (2020). “Scalable Transfer Learning with Expert
Models”. In: International Conference on Learning Representations.

Raiaan, Mohaimenul AzamKhan, Md SaddamHossainMukta, Kaniz Fatema, NurMohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali
& Sami Azam (2024). “A review on large Language Models: Architectures, applications, tax-
onomies, open issues and challenges”. In: IEEE Access.

Renggli, Cedric, Xiaozhe Yao, Luka Kolar, Luka Rimanic, Ana Klimovic & Ce Zhang (2022).
“SHiFT: an efficient, flexible search engine for transfer learning”. In: Proceedings of the VLDB
Endowment 16.2, pp. 304–316.

Ridnik, Tal, Emanuel Ben-Baruch, Asaf Noy & Lihi Zelnik-Manor (2021). “ImageNet-21K Pre-
training for the Masses”. In: Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Rosenstein, Michael T, Zvika Marx, Leslie Pack Kaelbling & Thomas G Dietterich (2005). “To
transfer or not to transfer”. In: NIPS 2005 workshop on transfer learning. Vol. 898. 3.

Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner & Gabriele Monfardini
(2009). “The Graph Neural Network Model”. In: IEEE Transactions on Neural Networks 20.1,
pp. 61–80.

Schlegel, Marius & Kai-Uwe Sattler (2023). “Management of machine learning lifecycle artifacts:
A survey”. In: ACM SIGMOD Record 51.4, pp. 18–35.

Shao, Wenqi, Xun Zhao, Yixiao Ge, Zhaoyang Zhang, Lei Yang, Xiaogang Wang, Ying Shan
& Ping Luo (2022). “Not All Models Are Equal: Predicting Model Transferability in a Self-
challenging Fisher Space”. In: Computer Vision – ECCV 2022. Vol. 13694, pp. 286–302.

Shu, Yang, Zhi Kou, Zhangjie Cao, Jianmin Wang & Mingsheng Long (2021). “Zoo-Tuning:
Adaptive Transfer from A Zoo of Models”. In: Proceedings of the 38th International Conference
on Machine Learning, pp. 9626–9637.

Smith, Leslie N. (2017). “Cyclical Learning Rates for Training Neural Networks”. In: 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), pp. 464–472.

Bibliography 62

Song, Jie, Yixin Chen, Xinchao Wang, Chengchao Shen & Mingli Song (2019). “Deep Model
Transferability from Attribution Maps”. In: Advances in Neural Information Processing Systems.
Vol. 32.

Spearman, C. (1904). “The Proof andMeasurement of Association between Two Things”. In: The
American Journal of Psychology 15.1, pp. 72–101.

Tan, Chuanqi, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang & Chunfang Liu (2018).
“A Survey on Deep Transfer Learning”. In: Artificial Neural Networks and Machine Learning –
ICANN 2018. Lecture Notes in Computer Science, pp. 270–279.

Tan, Yang, Yang Li & Shao-LunHuang (2021). “OTCE: A transferability metric for cross-domain
cross-task representations”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 15779–15788.

Tan, Yang, EnmingZhang, YangLi, Shao-LunHuang&Xiao-PingZhang (2024). “Transferability-
guided cross-domain cross-task transfer learning”. In: IEEE Transactions on Neural Networks
and Learning Systems.

Tran, Anh T, Cuong V Nguyen & Tal Hassner (2019). “Transferability and hardness of super-
vised classification tasks”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1395–1405.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser & Illia Polosukhin (2017). “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Vol. 30.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò & Yoshua
Bengio (2018). “Graph Attention Networks”. In: International Conference on Learning Represen-
tations.

Vu, Tu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew
Mattarella-Micke, SubhransuMaji &Mohit Iyyer (2020). “Exploring and Predicting Transfer-
ability across NLP Tasks”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 7882–7926.

Wang, Alex, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy & Samuel Bowman (2018).
“GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understand-
ing”. In: Proceedings of the 2018 EMNLPWorkshop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pp. 353–355.

Wang, Shoujin, L Hu, Yan Wang, Xiangnan He, Quan Z Sheng, Mehmet A Orgun, Longbing
Cao, Francesco Ricci & S Yu Philip (2021). “Graph Learning based Recommender Systems:
A Review”. In: pp. 4644–4652.

Wang, Zirui, ZihangDai, Barnabas Poczos& JaimeCarbonell (2019). “Characterizing andAvoid-
ing Negative Transfer”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 11285–11294.

Wortsman, Mitchell, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith & Ludwig
Schmidt (2022). “Model soups: averaging weights of multiple fine-tuned models improves
accuracywithout increasing inference time”. In: Proceedings of the 39th International Conference
on Machine Learning, pp. 23965–23998.

Xia, Feng, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan & Huan Liu (2021). “Graph
Learning: A Survey”. In: IEEE Transactions on Artificial Intelligence 2.2, pp. 109–127.

Bibliography 63

You, Kaichao, Yong Liu, Jianmin Wang & Mingsheng Long (2021). “LogME: Practical Assess-
ment of Pre-trained Models for Transfer Learning”. In: Proceedings of the 38th International
Conference on Machine Learning, pp. 12133–12143.

Yu, Xin, Zhiding Yu & Srikumar Ramalingam (2018). “Learning Strict Identity Mappings in
DeepResidualNetworks”. In: 2018 IEEE/CVFConference on Computer Vision and Pattern Recog-
nition, pp. 4432–4440.

Zhang, Daokun, Jie Yin, Xingquan Zhu & Chengqi Zhang (2020). “Network Representation
Learning: A Survey”. In: IEEE Transactions on Big Data 6.1, pp. 3–28.

Zhang, Yi-Kai, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan & Han-Jia Ye (2024). “Model
spider: Learning to rank pre-trained models efficiently”. In: vol. 36.

Zhang, Yi & Zachary G. Ives (2020). “Finding Related Tables in Data Lakes for Interactive Data
Science”. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’20, pp. 1951–1966.

Zhuang, Fuzhen, Zhiyuan Qi, KeyuDuan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong
& Qing He (2021). “A Comprehensive Survey on Transfer Learning”. In: Proceedings of the
IEEE 109.1, pp. 43–76.

Zitnik, Marinka, Monica Agrawal & Jure Leskovec (2018). “Modeling polypharmacy side effects
with graph convolutional networks”. In: Bioinformatics 34.13, pp. i457–i466.

A
Benchmark Suite Code Samples

In this chapter of the appendix, we provide some code samples on how our system can be used for new
experiment setups and can be easily extended to newbaselines. FigureA.1 showshowwe configure loading
datasets. While text and image classification datasets can be loaded using HuggingFace into a consistent
interface, their input and label keys are not consistent. Our system adds functionality to easily define
configuration of datasets. This includes a source on where it should be loaded from. This can currently
be either local or from HuggingFace. The rest of the configuration lies in defining which key to use as the
input and which as the label for classification.

A.1. Dataset Configuration
"glue": {
"source": "huggingface",
"tasks": {

"cola": {
"all_feature_key": ["sentence"],
"label_key": "label"

},
"mnli": {

"all_feature_key": ["premise", "hypothesis"]
},
"sst2": {...},
...

}
}

Figure A.1: Example configuration for datasets. This example shows small changes to be made when configuring new
datasets to load.

64

A.2. Collecting Baseline Transferability Scores 65

A.2. Collecting Baseline Transferability Scores
Another important component of our system collects transferability estimation scores that were proposed
by related works we discussed in Chapter 2. We currently support scores by a few of the most competitive
source embedding methods, including the ones used for our own experiments. However, this can be easily
extended to add new methods, as shown in Figure A.2.

class TransferabilityEstimatorSourceEmbedding:
def __init__(

self,
dataset: BaseDataset,
model: PreTrainedModel,
all_baseline: list,
args: argparse.Namespace

):
self.dataset = dataset
self.model = model
self.all_baseline = all_baseline
self.args = args

def score(self):
features_tensor, labels_tensor, _ = extract_features(self.dataset.train_loader, self.model)

for baseline_method in self.all_baseline:
if baseline_method == TransferabilityMethod.LOG_ME:

from .methods.logme import LogME
metric = LogME()

elif baseline_method == TransferabilityMethod.NLEEP:
from .methods.nleep import NLEEP
metric = NLEEP()

elif baseline_method == TransferabilityMethod.PARC:
from .methods.parc import PARC
metric = PARC(TransferabilityDistanceFunction.CORRELATION)

elif baseline_method == TransferabilityMethod.H_SCORE:
from .methods.hscore import HScore
metric = HScore()

elif baseline_method == TransferabilityMethod.REG_H_SCORE:
from .methods.hscore_reg import HScoreR
metric = HScoreR()

else:
raise Exception(f"Unexpected TransferabilityMetric: {baseline_method}")

score = metric.score(features_tensor, labels_tensor)

Figure A.2: Code sample from our benchmark suite that shows how it can be easily extended to add new baselines.

A.3. Collecting Fine-tuning Performances
Figure A.3 gives an example of our main function to fine-tune a pre-trained model using a new target
dataset. What can be seen is howwe use our implementation to loadHuggingFace datasets and pre-trained
models and do the required configuration for fine-tuning, such as defining the hyperparameters and indi-
cating whether to enable experiment tracking.

A.3. Collecting Fine-tuning Performances 66

def main(args: argparse.Namespace):
if args.task_type == TaskType.IMAGE_CLASSIFICATION:

dataset = HuggingFaceDatasetImage.load(
dataset_path=args.dataset_path,
dataset_name=args.dataset_name,
batch_size=args.batch_size,
image_processor=AutoImageProcessor.from_pretrained(args.model_name)

)
config = AutoConfig.from_pretrained(

args.model_name,
num_labels=len(dataset.all_class),
i2label={label: str(i) for i, label in enumerate(dataset.all_class)},
label2id={str(i): label for i, label in enumerate(dataset.all_class)},
finetuning_task=args.task_type.value,

)
model = AutoModelForImageClassification.from_pretrained(

args.model_name,
config=config,
ignore_mismatched_sizes=True,

)
elif args.task_type == TaskType.SEQUENCE_CLASSIFICATION:

dataset = HuggingFaceDatasetText.load(
dataset_path=args.dataset_path,
dataset_name=args.dataset_name,
batch_size=args.batch_size,
tokenizer=AutoTokenizer.from_pretrained(args.model_name)

)
config = AutoConfig.from_pretrained(

args.model_name,
num_labels=len(dataset.all_class),
i2label={label: str(i) for i, label in enumerate(dataset.all_class)},
label2id={str(i): label for i, label in enumerate(dataset.all_class)},
finetuning_task=args.task_type.value,

)
model = AutoModelForSequenceClassification.from_pretrained(

args.model_name,
config=config,
ignore_mismatched_sizes=True,

)
else:

raise Exception(f"Unexpected task_type: {args.task_type}")

all_training_argument = TrainingArguments(
output_dir=os.path.join(get_root_path_string(), "models"),
num_train_epochs=args.num_train_epochs,
lr_scheduler_type=args.lr_scheduler_type,
learning_rate=args.learning_rate,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
fp16=False,
seed=args.seed,
push_to_hub=args.push_to_hub,
push_to_hub_organization=args.push_to_hub_organization,

)
trainer = AccelerateTrainer(model, dataset, all_training_argument, args.task_type, args)
trainer.train()

Figure A.3: Code sample for using our system to fine-tune a pre-trained model. Includes examples on how to load
datasets and pre-trained models and use our trainer class to fine-tune.

	Preface & Acknowledgements
	Introduction
	Transferability Estimation
	Effectiveness of Extracted Features in Diverse Model Zoos
	Efficiency Matters in Large Model Zoos

	Introducing TransferGraph
	Research Questions
	Thesis Outline and Contributions

	Background & Related Work
	Transfer Learning
	Model Zoos
	Transferability Estimation
	Nomenclature and Notations
	Types of Transferability Estimation Methods
	Other related work

	Graph Learning
	How to Represent a Graph
	Traditional Graph Embedding Methods
	Factorization-based
	Random Walk-based
	GNN-based Graph Embedding

	Summary

	Transferability Estimation as a Graph Learning Problem
	Problem Definition
	Example Use Cases
	Problem Formalization
	How to Measure the Success of Transferability Estimation Methods?
	Limitations and challenges

	Solution Overview
	Motivation for Graph Representation
	Basic Metadata
	Transferability Estimation as Graph Link Prediction

	Summary

	System Design: TransferGraph
	TransferGraph Overview
	Stage 1: Metadata Collection
	Dataset Embeddings
	Training Performances
	Transferability Scores

	Stage 2: Graph Construction & Learning
	Graph Construction
	Graph Learning

	Stage 3: Regression Learning
	Stage 4: Transferability Estimation
	Summary

	Metadata Collection & Benchmark Suite
	Experiment setup
	Target tasks
	Pre-trained models
	Baselines

	Metadata Collection
	Dataset Loading and Preprocessing
	Pre-trained Model Loading
	Dataset Embedding
	Collecting Baseline Transferability Scores
	Collecting Fine-Tuning Performances

	Summary

	Evaluating TransferGraph
	Evaluation: Effectiveness
	Evaluation setup
	Evaluation metric
	Hardware
	Main findings
	Effect of Graph Learning- and Regression learning method
	Effect of k
	Effect of Number of Pre-trained Models

	Evaluation: Efficiency
	Runtime Steps
	Main findings
	Effect of Graph Learning- and Regression Learning Method

	Summary

	Conclusion and Outlook
	Recommendations for Future Work
	Within the Scope of this Thesis
	Beyond the Scope of this Thesis

	Benchmark Suite Code Samples
	Dataset Configuration
	Collecting Baseline Transferability Scores
	Collecting Fine-tuning Performances

