

Automatic 3D Quantitative Analysis of

Intra-Articular Calcaneus Fractures in the

Posterior Talocalcaneal Joint: Development

and Validation of a Segmentation and

Measurement Method

Cile van Holthe

MSc Thesis Technical Medicine

November 2024

Automatic 3D Quantitative Analysis of Intra-

Articular Calcaneus Fractures in the Posterior

Talocalcaneal Joint: Development and Validation of a

Segmentation and Measurement Method

Cile van Holthe

4644557

02-11-2024

Thesis in partial fulfilment of the requirements for the joint degree of Master of Science in

Technical Medicine

 Leiden University ; Delft University of Technology ; Erasmus University Rotterdam

Master thesis project (TM30004),

Erasmus MC,

Image Guided Interventions and Therapy

Department of Radiology & Department of Trauma Surgery

Chair/Technical Supervisor: Dr. ir. T. (Theo) van Walsum, Erasmus MC

Medical Supervisor: Dr. M.G. (Mark) van Vledder, Erasmus MC

Daily Supervisor: A. (Alexander) Wakker, Erasmus MC

Independent Thesis Committee member: Dr. M. (Monique) Reijnierse, Leiden University

Medical Center

An electronic version of this thesis is available at: http://repository.tudelft.nl/

http://repository.tudelft.nl/

Contents

Abstract .. 4

1. | Introduction .. 5

2. | Methods .. 7

2.1 | Patient selection ... 7

2.2 | Automatic segmentation ... 7

2.2.1 | 3D model creation .. 7

2.2.2 | Preprocessing .. 8

2.2.3 | Automatic segmentation ... 8

2.3 | Automatic 3D measurements .. 9

2.3.1 | Creation of STL Models ... 9

2.3.2 | Alignment of STL Models ... 10

2.3.3 | Gap Area Calculation ... 10

2.3.4 | Interarticular distance calculations ... 11

2.3.5 | Surface- and fracture area analysis ... 12

2.3.6 | Maximal Step-off and maximal gap analysis .. 14

2.4 | Manual 2D measurements .. 15

3. | Experiments and Results .. 15

3.1 | Data .. 15

3.2 | Automatic segmentation ... 15

3.2.1 | Quantitative evaluation .. 15

3.2.2 | Qualitative evaluation .. 16

3.3 | Automatic 3D measurements .. 17

3.4 | Manual 2D measurements .. 19

3.5 | Correlation calculations ... 20

4. | Discussion ... 21

5. | Conclusion .. 23

References ... 24

Appendices .. 26

4

Abstract
Introduction

Calcaneus fractures represent 60% of tarsal bone fractures and are particularly challenging to assess

when they involve the posterior talocalcaneal (PTC) facet. Accurate evaluation of intra-articular

fractures, including metrics such as gap area and step-off, is crucial for treatment planning but remains

difficult due to limitations of using 2D cross-sections from 3D CT imaging. Deciding between surgical

or conservative management from these images often leads to significant inter- and intra-observer

variability, complicating clinical decisions and affecting outcomes. This study aims to develop and

validate an AI-based method for automatic segmentation and 3D quantitative analysis of PTC fractures,

improving assessment and providing more objective data for decision-making.

Methods

A retrospective study was conducted on CT scans from 44 patients for training using 5-fold cross-

validation and 33 patients for external validation. The nnU-Net framework was trained to segment the

PTC fragments and posterior talar facet (PTF). Automatic 3D measurements, including gap area, inter-

articular distances, maximal step-off, and maximal gap, were computed from the segmented models.

Results were validated against manual 2D measurements performed by two observers, as well as through

comparison with the external validation set.

Results

The nnU-Net achieved a Dice score of 0.78 for PTC segmentation in the training set and 0.75 in the

external validation set. Moderate positive correlations were observed between the 3D automatic

measurements and manual 2D measurements. Specifically, the correlation between 3D gap area and 2D

maximal gap measurement was Spearman’s rho = 0.62, while the correlation between 3D and 2D

maximal step-off measurements was rho = 0.52. Additional correlations were found between the 3D

fracture area and the 2D maximal gap and step-off measurements, with rho values of 0.65 and 0.64,

respectively, indicating that the 3D analysis is consistent with corresponding 2D measurements.

Conclusion

This study introduces an AI-based method for automatic 3D analysis of calcaneus fractures, offering

faster and more detailed fracture metrics, which may improve treatment planning over traditional 2D

slice evaluations.

5

1. | Introduction
Calcaneus fractures account for 60% of tarsal bone fractures (1). These fractures typically result from

concentrated axial loading forces, such as those occurring after a fall or jump from a height, or as a result

of a road traffic incident, where the impact drives the talus bone distally into the calcaneus. Calcaneus

fractures can be classified into extra- and intra-articular types. Intra-articular fractures involve the

calcaneocuboid joint or any of the three subtalar joint surfaces. Among the subtalar joint surfaces, the

posterior talocalcaneal (PTC) joint facet is the largest and serves as the primary weight-bearing surface

of the calcaneus, forming a joint with the posterior talar facet (PTF) (Figure 1). The PTC is the most

frequently fractured surface in displaced intra-articular calcaneal fractures (2). Achieving anatomical

reduction of the PTC facet during calcaneus fracture surgery is essential, as it plays a pivotal role in

determining the overall outcome and functionality of the foot (3,4).

The primary goal of treating calcaneus fractures is to restore or maintain the congruent shape of the

calcaneus, particularly the joint surfaces, maintain the height of the calcaneus, and the length and width

of the heel. Treatment options considered vary between conservative, open reduction and internal

fixation (ORIF), minimally invasive approaches, and primary joint arthrodesis. If calcaneus fractures

are not properly managed, they can lead to deformities of the hindfoot and arthritis of the subtalar joint

and calcaneocuboid joint. The optimal management approach, whether conservative or surgical, is

determined by a range of factors, including fracture type (intra-articular or extra-articular), the extent of

comminution, the degree of displacement, as well as additional radiological findings and patient-specific

characteristics. These fractures are typically assessed and classified using computed tomography (CT)

scans.

Although the calcaneus is the most frequently fractured tarsal bone, there are numerous controversies

surrounding the management of these fractures, particularly intra-articular fractures (5). The complexity

is compounded by the inherent challenges observers face when interpreting CT scans, even with high-

resolution techniques. While CT scans provide detailed information, observers are limited by two-

dimensional (2D) slices or 3D reconstructions of entire bones, making it difficult to accurately evaluate

joint surface areas. This limitation can hinder the evaluation of fracture fragment displacement,

including critical metrics such as gap and step-off measurements. These measurements are particularly

challenging, as they often span multiple slices and involve assessing the complex 3D relationships

between fracture fragments, making it difficult to determine the true extent of displacement in intra-

articular fractures.

To address these challenges, a broader effort in evaluating morphological aspects of fractures using 3D

reconstructions has been initiated, as highlighted in the study by Wakker et al. (6), which introduced a

novel method for performing detailed morphological measurements on three-dimensional models.

Building on this, the present study focuses on the application of AI-based automatic analysis specifically

for intra-articular fractures of the PTC of the calcaneus.

Moreover, there is currently no universally established protocol that unequivocally prescribes open

reduction for intra-articular calcaneus fractures. The Sanders classification, which categorizes fractures

based on the number of fracture lines and their involvement in the PTC, is widely used but remains a

subject of ongoing debate and does not fully resolve this issue (7,8). These complexities often result in

significant inter- and intra-observer variability in Sanders classification(9–11) and the assessment of

fracture displacement, including gap and step-off (12). While few studies have focused specifically on

calcaneus fractures, similar issues have been observed with other types of fractures (13). Additionally,

6

due to the difficulties in consistently classifying fractures and assessing displacement, it is challenging

to determine whether a patient would benefit from a particular treatment in terms of achieving a better

clinical outcome (8).

Lastly, the comprehensive analysis required for accurate interpretation of CT scans can be time-

consuming. Due to these limitations, quantitative measurements on CT scans for calcaneus fractures are

not frequently performed in clinical practice. The inherent variability in observer assessments, coupled

with the time-intensive nature of reviewing multiple imaging planes, makes these measurements

challenging to implement consistently. Consequently, the choice of treatment often relies on the

surgeon's clinical judgment, specific case findings, and personal preferences, rather than on

standardized, objective parameters(14,15).

Recent advancements in artificial intelligence (AI) tools have already shown promise in automating

objective parameter evaluation of fractures (16–18). These AI-based quantitative measurements

leverage machine learning algorithms to analyze medical imaging data for fracture detection and to

extract relevant fracture parameters automatically (19,20). However, these studies have primarily

focused on fracture detection and classification based on 2D information, such as X-ray images. Relying

solely on 2D images to assess fractures poses challenges in capturing the complete extent of injuries,

especially for intra-articular fractures, where three-dimensional (3D) displacement, such as gaps and

step-offs, may occur across multiple image slices. Furthermore, certain studies have investigated

quantitative measurements on 3D models for fractures other than calcaneal fractures. However, these

methodologies typically require multiple manual interventions, preventing the measurements from being

fully automated (13,21).

To address the challenges inherent in the diagnostic process and ensure objective fracture evaluation of

intra-articular fractures of the PTC of the calcaneus, the implementation of AI-based automatic analysis

using 3D models derived from CT imaging, and resulting objective parameters offers a promising

solution.

Figure 1: Anatomical overview of the calcaneus, talus, posterior talocalcaneal facet (PTC) and posterior talar facet (PTF).

Axial view with flipped talus (left) and lateral view with talus in correct position (right) (22).

7

2. | Methods
This section delineates our approach in the following order: (1) patient selection and data acquisition,

(2) automatic segmentation, (3) automatic 3D measurements, (4) 2D measurements, and (5) statistical

analysis.

2.1 | Patient selection

In this retrospective multicenter study, the dataset consisted of patients with one or multiple calcaneus

fractures who underwent diagnostic imaging studies between 2006 and 2021 at ErasmusMC or between

2019 and 2023 at Maasstad Hospital. All data were anonymized before use. The inclusion criteria for

the dataset were: (1) both the calcaneus and talus bones were fully visible on the CT scan, (2) the patient

age was 16 years or older, (3) the talus was not fractured and (4) slice thickness was less or equal to 1

mm. An external validation set (2014–2024) adhered to the same inclusion criteria. The local Medical

Research Ethics Committee (No. MEC-2024-0380) reviewed and exempted the study protocol.

Considering the study's design, the committee waived the requirement for obtaining informed consent

from the participants.

2.2 | Automatic segmentation

In order to perform automatic 3D measurements, the generation of accurate 3D models through

automated segmentation is essential. The subsequent sections outline the methods for creating these

models, as well as the training and application of the automated segmentation algorithms utilized in this

study. See Figure 3 for all steps in the automatic segmentation method.

2.2.1 | 3D model creation

For the training of the automated segmentation model, 3D models were manually segmented by a single

observer for all patients in the training dataset. These 3D models were generated from the original CT

data using the Mimics Research software package (Version 26.0, Materialise, Leuven, Belgium). First,

the CT data (DICOM files) were imported, and bony tissue was extracted by creating a mask using a

threshold (Hounsfield units > 226). The mask was then split to ensure separate masks were created for

the talus and calcaneus. The region-growing tool was applied to remove noise and exclude adjacent

bony structures. The PTC surface of the calcaneus mask and talus mask was refined using smart fill to

enhance mask accuracy.

The talus and calcaneus masks were then transformed into objects to allow import into the Materialise

3-matic software package (Version 18.0, Materialise, Leuven, Belgium), where a smoothing algorithm

was applied to refine the model surfaces by removing sharp edges and smoothing rough areas. The

fragmented PTC and PTF surfaces were manually marked to extract these regions. From these surfaces,

3D segments were created by moving the surface 2 mm inward, generating 3D segments with a thickness

of 2 mm for each marked surface.

These 3D segments were re-imported into Mimics and transformed back into masks to verify

correspondence with the original CT data, and adjustments were made as necessary. See Figure 2 for an

overview of the 3D model creation steps. Along with the PTF and PTC fragment masks, the complete

talus mask was also retained for subsequent steps. The images, including the masks of the 3D segments

and the entire talus, each represented by a uniform intensity value, were then exported as DICOM files.

8

Figure 2: Workflow for 3D model creation. CT data is imported into Mimics, transferred to 3-matic for surface marking, and

3D segments are created. The segments are then imported back into Mimics for verification.

2.2.2 | Preprocessing

All DICOM files containing segmentations were converted into label masks in the Neuroimaging

Informatics Technology Initiative (NIfTI) format using Python, as required for the subsequent

processing steps. Additionally, the raw images, without segmentations, were also converted to NIfTI

format. After conversion, label values were assigned to the segmentations: the background was assigned

a label value of 0, the PTF a label value of 1, and the PTC fragments a label value of 2. By assigning

these distinct label values, the automated segmentation method was able to correctly identify and

segment the different structures.

2.2.3 | Automatic segmentation

The NIfTI files containing the PTC and PTF label masks, along with the unsegmented NIfTI images,

were used to train the automatic segmentation framework. The framework utilized nnU-Net, a deep

convolutional neural network (CNN) developed by Isensee et al. The nnU-Net was trained using a 5-

fold cross-validation with the 3D low-resolution configuration, splitting the data 80:20 between training

and validation sets. This approach enabled the model to automatically segment the PTC fragments and

the PTF. Additionally, another nnU-Net model was trained for the segmentation of the entire talus, using

the same configuration and cross-validation process as for the PTC and PTF. The training, inference,

and postprocessing of both models were executed on a GPU cluster using a SLURM script, with details

provided in Appendix A. Pre- and post-processing steps, such as resampling, normalization, and

connected component analysis, were handled automatically by nnU-Net.

Once the automated configuration and training were completed, an ensemble of the fully trained models

from the 5 folds was used to make predictions on unseen images.

9

Figure 3: Overview of the automatic segmentation process. The left panel shows the raw DICOM files overlayed with the label

masks of the PTC, PTF and talus which are then converted into NIfTI format, which are then used to train the nnU-Net model

(right panel). The right panel illustrates the U-Net architecture used by nnU-Net for segmentation, where the input image tile

is processed through convolutional layers, max pooling, and upsampling to produce the final output segmentation map(23)

2.3 | Automatic 3D measurements

To perform quantitative analyses of the fractures, 3D measurements were required based on the

automatically segmented models. The following sections describe the methodology for creating and

processing 3D models, including the calculation of gap areas, inter-articular distances, surface and

fracture areas, and maximal step-off and maximal gap measurements, using a series of custom scripts

and established algorithms (Figure 4).

Figure 4: Overview of the steps for automatic 3D measurements. nnU-Net segmentations of the PTC, PTF, and talus are

converted from NIfTI to STL format. The generated STL meshes are then aligned using mean shape models. Subsequently, gap

area and inter-articular distance measurements are computed. Fracture area measurements follow, along with maximal step-off

and maximal gap calculations.

2.3.1 | Creation of STL Models

A custom Python script was developed to convert the voxel-based NIfTI label masks into STL files.

Segmented regions corresponding to the talus, the PTF, and the PTC fragments were identified from the

NIfTI files. The Marching Cubes algorithm was employed with a threshold of 0,5 to generate 3D surface

meshes from these segmented regions.

For the PTC, where all fragments initially shared the same label, a connectivity-based region-growing

algorithm was applied as post-processing to separate and label each fragment individually. This allowed

for the generation of separate STL files for each PTC fragment.

Additionally, Laplacian smoothing to the STL files of the PTC fragments, PTF, and talus was applied to

reduce noise and improve surface quality. The smoothing process iteratively adjusted the mesh vertices

based on the Laplacian of the vertex adjacency graph, with a smoothing factor (λ = 0.05) and 10

iterations. The values for λ and the number of iterations were chosen iteratively after visual inspection

to ensure that the surfaces were smoothed without creating gaps or losing other important structural

information. All resulting smoothed STL files were saved for subsequent analysis.

10

2.3.2 | Alignment of STL Models

The generated STL meshes of the talus were aligned using a mean shape model of the right talus, and a

mirrored version of the mean shape model for the left talus, ensuring consistent positioning within the

same world coordinate system, as described by Wakker et al. (24). The PTF and PTC fragments were

translated and rotated using the same transformation matrix as the talus, preserving their relative

positions. The aligned 3D models were saved for further analysis. Additionally, a mean shape model of

the calcaneus, positioned at the average anatomical location relative to the mean talus shape model, was

available and used for subsequent analysis. (See Appendix C for the Python script corresponding to

sections 2.3.1 and 2.3.2)

2.3.3 | Gap Area Calculation

Following the alignment of the talus, PTC fragments, and PTF, several steps were performed to quantify

potential gaps in articulation. First, a convex hull was generated to enclose all points of the PTC

fragments. This convex hull was created by projecting the 3D points onto the first two principal

components derived from the Principal Components Analysis (PCA), creating a 2D convex hull as the

smallest convex polyhedron enclosing all PTC fragments. The convex hull was then translated by a

factor of 3 along the third principal component to position it both anterocranial and posterocaudal to the

PTC fragments. The value of 3 was chosen iteratively, ensuring that the PTC fragments of the training

cases were positioned correctly between the two convex hulls.

The points of the convex hulls were scaled inward by a factor of 0.8 toward their centroid to ensure that

no gap areas were erroneously detected along the outer boundary of the PTC. The value of 0.8 was

chosen iteratively by adjusting the scaling factor and visually inspecting the results for all training cases

to confirm that the gap area did not extend beyond the actual fragments.

An interpolation method was applied to generate evenly distributed points over the entire surfaces of the

convex hulls for further analysis. Then rays were traced from the evenly distributed points on the convex

hull at the anterocranial position of the PTC fragments towards the convex hull positioned posterocaudal

to the PTC fragments. If a ray did not intersect with the PTC fragments but only with the posterocaudal

convex hull, the presence of a gap was indicated. Refer to Figure 5 for the visual representation of the

gap area calculation steps.

The gap area percentage 𝐺 was calculated as the ratio of the number of rays that intersected only the

convex hull to the total number of rays traced:

𝐺 =
𝑁𝑔𝑎𝑝

𝑁𝑡𝑜𝑡𝑎𝑙
𝑋 100% (2)

Where 𝑁𝑔𝑎𝑝 is the number of rays that intersected only the posterocaudal convex hull, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the

total number of rays traced.

11

Figure 5: (a) Smoothed STL meshes of PTC fragments, (b) convex hull (blue) of PTC fragments, (c) convex hull at

anterocranial position of PTC fragments (green) and convex hull at posterocaudal position of PTC fragments (green), (d)

intersection points (red points) of the traced rays on the posterocaudal convex hull.

2.3.4 | Interarticular distance calculations

Several steps were conducted to calculate the distance between the PTC fragments and the PTF.

First, the normal vectors 𝑛𝑃𝑇𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and 𝑛𝑃𝑇𝐹𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ were calculated for each of the triangular faces on the surface

mesh of the PTC fragments and the PTF. Thereafter, normal vectors were excluded based on their

angular similarity to a reference direction vector 𝑑 . The reference direction vector of the PTC fragments

𝑑𝑃𝑇𝐶
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ was determined as the vector pointing from the center of mass (COM) of the mean shape model

of the calcaneus towards the COM of the PTC fragments. For the PTF, the reference direction vector

𝑑𝑃𝑇𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ was the vector pointing from the COM of the talus to the COM of the PTF. Then, the dot product

was calculated and was used to calculate the cosine of the angles between each normal vectors 𝑛𝑃𝑇𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

and 𝑛𝑃𝑇𝐹𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and the reference direction vectors 𝑑𝑃𝑇𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝑑𝑃𝑇𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, separately for both the PTC and PTF.

A normal vector was retained if the cosine of the dot product indicated an angle smaller than the

predefined threshold of 50 degrees:

cos(𝜃𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ≥ 𝑛𝑖⃗⃗ ⃗ ∙ 𝑑 (3)

The threshold of 50 degrees was determined iteratively on the training dataset by testing different values

and visually inspecting the results to ensure that the correct points directly opposite each other were

captured without filtering out too many important vectors. After this filtering step, the points 𝑝𝑃𝑇𝐹𝑖 and

𝑝𝑃𝑇𝐶𝑖
corresponding to the remaining normal vectors 𝑛𝑃𝑇𝐹𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and 𝑛𝑃𝑇𝐶𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ of the PTF and PTC meshes were

saved. From the points 𝑝𝑃𝑇𝐹𝑖, rays were traced towards the PTC fragments in the direction of the

corresponding normal vectors 𝑛𝑃𝑇𝐹𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . The points where the rays intersected the PTC fragments surfaces,

𝑞𝑃𝑇𝐶𝑖
, were saved.

After this filtering step, the remaining points 𝑞𝑃𝑇𝐶𝑖
 were systematically redistributed to achieve an even

spatial distribution across the entire region previously covered by the set of points 𝑞𝑃𝑇𝐶𝑖
.

For every point 𝑞𝑃𝑇𝐶𝑖
, a 1-nearest neighbor search was conducted, using KD-tree search algorithm, to

find the closest corresponding point 𝑝𝑃𝑇𝐶𝑖
.

Then from the corresponding 𝑝𝑃𝑇𝐶𝑖
 points rays are traced towards the PTF the Euclidean distance

between the points 𝑝𝑃𝑇𝐶𝑖
 on the PTC fragment meshes and the intersection points 𝑟𝑃𝑇𝐹𝑖 on the PTF

mesh was calculated using the following formula:

𝑑𝑖 = ‖𝑝𝑃𝑇𝐶𝑖
− 𝑟𝑃𝑇𝐹𝑖‖ (4)

12

The double ray tracing process ensures that the points where the distances are measured lie directly

opposite to each other on both the PTF and PTC, capturing the true articulation between the two surfaces.

The results for each patient were visualized accordingly, as illustrated in Figure 6. Additionally, the

standard deviation of the inter-articular distances 𝑑𝑖 for each patient was computed. Where the standard

deviation 𝜎𝑑 provides information on the consistency of the articulation across the joint surface, and

therefore indicates if fragments are displaced. (See Appendix D for the Python script corresponding to

sections 2.3.3 and 2.3.4).

Figure 6: (a) The points 𝑝𝑃𝑇𝐶𝑖

 on the PTC mesh (orange) are color-coded according to their Euclidean distance 𝑑𝑖 from the

intersection points 𝑟𝑃𝑇𝐹𝑖
 on the PTF, transitioning smoothly from green for the points with the smallest distances, 𝑑𝑖, to purple

for the points with the longest distances 𝑑𝑖. The minimum and maximum distance values are calculated per patient, ensuring

that the color coding reflects the individual variation in distances for each case. (b) Visualized together with transparent

corresponding PTF mesh.

2.3.5 | Surface- and fracture area analysis

To accurately assess the surface areas of the PTC fragments and identify the total fracture area, which

includes both the total gap and total step within the PTC, a comprehensive series of mesh processing

steps were undertaken.

While the STL meshes generated by the marching cubes algorithm typically represent both upper and

lower surfaces of 3D objects, only a single surface per fragment was required for surface area

measurement. The first step in this process involved detecting sharp edges in the mesh, indicative of

fragment boundaries, by evaluating the dihedral angle between adjacent triangular faces of the smoothed

STL files. The dihedral angle 𝜃 between two faces with normals 𝑛1 and 𝑛2 is calculated as:

cos(𝜃) =
𝒏1∙𝒏2

‖𝒏1‖‖𝒏2‖
 (5)

If 𝜃 exceeds a threshold of 10 degrees, the edge between these faces is classified as sharp, indicating a

fragment boundary. The threshold of 10 degrees was determined iteratively by evaluating the training

set, ensuring that the boundary edges were fully extracted without including edges inside the fragments.

The sharp edges, where the dihedral angle exceeded the threshold, along with their corresponding

triangle surfaces, were retained if at least five connected sharp edges were identified through connected

component analysis. These connected sharp edges represented the contiguous boundaries of the

fragments. The threshold of five connected edges was iteratively determined using the training set to

13

ensure that boundary edges were accurately extracted, while filtering out small, erroneously detected

edges within the fragments. Once identified, these connected components, along with their

corresponding triangles, were used to generate individual mesh files for each fragment, precisely

capturing the detected boundaries. Excluding fragments with fewer than five connected edges may omit

very small fragments, which is clinically appropriate, as these small fragments are unlikely to impact

treatment decisions. From this boundary STL mesh, all points were extracted and used to generate

surface meshes of each fragment through Delaunay triangulation. Delaunay triangulation ensures that

no points lie inside the circumcircle of any triangle in the mesh, providing a stable and accurate surface

representation. The surface area 𝐴 of each fragment was computed by summing the areas of the

individual triangles in the surface mesh. The area of a single triangle 𝑇𝑖 with vertices 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ and, 𝑣3⃗⃗⃗⃗ is

given by:

𝐴𝑖 =
1

2
∥ (𝑣2⃗⃗ ⃗⃗ − 𝑣1⃗⃗ ⃗⃗) × (𝑣3⃗⃗ ⃗⃗ − 𝑣1⃗⃗ ⃗⃗) ∥ (6)

The total surface area of the fragment is then:

𝐴𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 = ∑ 𝐴𝑖
𝑁
𝑖=1 (7)

Where 𝑁 is the number of triangles in the fragment's surface mesh. For each patient, the individual

surface meshes were combined to form a unified surface mesh representing the entire PTC. The total

surface area 𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 of this unified mesh was calculated using the same approach as for individual

fragments. The fracture area 𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 was determined by subtracting the sum of the areas of all

fragments from the combined surface area:

𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 = 𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 − ∑ 𝐴𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑖
𝑀
𝑖=1 (8)

Where 𝑀 is the number of fragments. The magnitude of 𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 provided insight into the degree of

fragment displacement or misalignment. A larger fracture area indicates a more significant translation

of the fragments relative to their original positions, involving either vertical displacement, horizontal

separation, or both. See Figure 7 for a visual representation of the measurements. The surface areas of

the fragments and the fracture area were reported for each patient, providing quantitative measures of

the fractures present. Refer to Appendix E for the Python script associated with Section 2.3.5, and to

Appendix J for the visualization of an example patient from the training dataset for Section 2.3.5.

Figure 7: Visual representation of boundary extraction (a), fragment surface calculations (b), and fracture area calculations (c)

for PTC fragments.

14

2.3.6 | Maximal Step-off and maximal gap analysis

To assess the maximal step-off and gap in the articular surface of the PTC, the distances were measured

between vertically displaced fracture fragments for step-off and horizontally separated fragments for

gap. The step-off and gap represent the discontinuity or misalignment in the joint surface caused by the

vertical and horizontal displacement of fragments respectively.

The boundary points of each fragment were first extracted from the edge STL files generated during the

fracture area calculations. These points, representing the fragment boundaries, were captured as point

clouds.

A convex hull of the combined calcaneus fragments for each patient was generated and used as the

reference plane for the articular surface. This convex hull was computed in two dimensions by projecting

the point cloud of the boundaries of all calcaneus fragments onto a plane spanned by the first two

principal components derived from PCA. The third principal component, representing the normal vector

to the articular surface, was then used to measure the displacement of the fragments perpendicular to

this reference plane.

Next, the boundary points of each fragment were projected perpendicularly onto the combined convex

hull along the direction of the third principal component. For each pair of fragments, the closest points

between the projected boundary points were identified based on their distances within the two-

dimensional convex hull plane. Mutual closest-point pairs were confirmed by ensuring that each point

in the pair was the closest to the other in both directions. Additionally, a check was performed to ensure

no other projected points intersected the line connecting the mutually closest pair, as such an intersection

would indicate that another fragment intercepted the line along the third principal component direction.

See Figure 8A for a visual representation.

The maximal step-off was calculated as the maximum absolute value of the perpendicular distances

between the original boundary points of the fragments and their corresponding projections onto the

convex hull plane for the mutually closest point pairs. In contrast, the maximal gap was determined as

the maximum distance between the projected boundary points of the mutually closest point pairs within

the 2D convex hull (Figure 8B). (See Appendix F for the Python script corresponding to section 2.3.6)

Figure 8: (A) The 2D convex hull of the combined fragments (light blue) with the boundary point clouds of each fragment.

Mutual closest point pairs are shown with their projection lines (green) onto the convex hull. The purple lines represent

distances between these projected pairs on the convex hull. (B) The red line indicates the maximal perpendicular distance

between mutual closest points, representing the maximal step-off. The orange line shows the maximal distance between

projected pairs on the 2D convex hull, representing the maximal gap.

15

2.4 | Manual 2D measurements

To compare automatic 3D measurement methods with current clinical practice, conventional 2D

measurements were performed on each patient in the training dataset by two observers, an expert trauma

surgeon and a general trauma surgeon (MV, VvW). A Graphical User Interface (GUI) was developed in

MevisLab™ alongside a standardized measurement protocol to ensure consistent and uniform

measurements across cases. See Appendix G for the MeVisLab tool.

The CT scans were first resliced so that the subtalar joint surface was parallel to the axial plane and

perpendicular to the other planes. Using the resliced coronal images, the observers applied the Sanders

classification system, categorizing fractures as type 0 (no intra-articular fracture on the PTC surface) or

as types 1, 2, 3, or 4 (7). Observers then independently measured the maximal 2D gap (the distance

between fracture fragments along the articular surface) and the maximal 2D step-off (the largest

displacement perpendicular to the articular surface) on the coronal or sagittal plane, depending on where

the measurements were most clearly identified.

3. | Experiments and Results

3.1 | Data

The dataset used for training and quantitative evaluation of the automatic segmentation framework,

through 5-fold cross-validation, and for the development of the automatic 3D measurement method,

included 44 patients: 8 from ErasmusMC and 36 from Maasstad Hospital. The patients had a mean age

of 43.8 years, with 61% being male and 39% female, slice thickness ranged between 0.4 mm and 1 mm.

33 Patients were included in the anonymized external validation set; no patient demographics were

available for this dataset due to anonymization procedures. The external dataset was divided into two

groups: 10 patients with manual segmentations performed by one observer and 23 patients without

manual segmentations. The slice thicknesses for the external validation set ranged from 0.2 mm to 1

mm. In cases where multiple filters or reconstructions were available per patient, the dataset used the

reconstruction with the bone filter and the smallest slice thickness.

3.2 | Automatic segmentation

3.2.1 | Quantitative evaluation

The Dice similarity coefficient was used as a quantitative evaluation metric to assess the nnU-Net's

ability to accurately segment the fractured PTC, PTF, and talus. The Dice coefficient measures the

overlap between the predicted and ground truth segmentation masks. It provides a quantitative measure

of segmentation accuracy by comparing how closely the predicted mask matches the actual fracture

region. The Dice coefficient is calculated using the formula:

𝐷𝑖𝑐𝑒 =
2∣𝐴∩𝐵∣

∣𝐴∣+∣𝐵∣
 (1)

Where 𝐴 is the set of pixels in the predicted mask, 𝐵 is the set of pixels in the ground truth mask, ∣ 𝐴 ∩

𝐵 ∣ represents the intersection of the predicted and ground truth regions. The Dice coefficient ranges

from 0 to 1, where 0 indicates no overlap between the predicted and ground truth segmentations, and 1

indicates perfect overlap, with higher values reflecting more accurate segmentation.

Table 1 presents the quantitative results of both trained nnU-Net models. The model trained for talus

segmentation achieved the highest Dice score, with a value of 0.98 for both the training set after 5-fold

cross-validation and the first group of the dataset used for external validation. The PTC fragments

16

segmentation achieved a Dice score of 0.78 for the training set during cross-validation and 0.75 for the

external validation set. For the PTF segmentations, the Dice scores were 0.85 for the training set and

0.83 for the external validation set.

Table 1: Quantitative results of nnU-Net segmentations for PTC, PTF, and talus, including Dice similarity coefficients for the

internal 5-fold cross-validation (ErasmusMC and Maasstad datasets) and external validation.

When examining the individual Dice scores for each patient, six cases in the training set and three cases

in the external validation set had a Dice score below 0.7 for either the PTF or PTC segmentations.

3.2.2 | Qualitative evaluation

For qualitative assessment, two independent observers with expertise in CT segmentation and fracture

assessment evaluated the segmentations independently by visual inspection using a five-point Likert

scale. A score of 1 indicated strong disagreement, while 5 indicated strong agreement, with higher scores

reflecting better performance. Each observer assessed the segmentations for each patient in the external

validation set based on the following criteria: (1) the accuracy of the PTF segmentation, (2) the accuracy

of the PTC segmentation, (3) the ability of the model to correctly distinguish fracture fragments,

ensuring that segments meant to be separated by fracture lines, and (4) whether the generated

segmentation was adequate for subsequent automatic 3D measurements. The full Likert scale

questionnaire used for this assessment is provided in Appendix B.

Mean Likert scores and standard deviations were calculated for each aspect of the segmentation. Table

2 presents the qualitative evaluation results for 10 patients of the external validation set.

Table 2: Qualitative evaluation of nnU-Net segmentations for 10 patients of the external validation set, assessing PTF and PTC

segmentation accuracy, fragment separation quality, and suitability for further analysis (Mean ± SD).

Evaluation criteria Mean ± SD

PTF segmentation accuracy 4.9 ± 0.32

PTC segmentation accuracy 4.8 ± 0.42

Fragment separation quality 4.7 ± 0.48

Suitable for further analysis 5 ± 0

SD = standard deviation, PTC = posterior calcaneal facet, PTF = posterior talar facet

The remaining 23 patients in the external validation set underwent qualitative evaluation by visual

inspection only. All segmentations were considered sufficient for further analysis. See Table 3 for details.

Type validation set

Dice

Avg PTC PTF

5-fold cross validation (44) PTC &

PTF

0.81 0.78 0.85

Talus 0.98 - -

External validation (10) PTC &

PTF

0.79 0.75 0.83

Talus 0.98 - -

Avg = average, PTC = posterior calcaneal facet, PTF = posterior talar facet

17

Table 3: Qualitative evaluation of nnU-Net segmentations for the 23 patients of the external validation set, assessing PTF and

PTC segmentation accuracy, fragment separation quality, and suitability for further analysis (Mean ± SD).

Evaluation criteria Mean ± SD

PTF segmentation accuracy 5 ± 0

PTC segmentation accuracy 4.94 ± 0.25

Fragment separation quality 4.61 ± 0.49

Suitable for further analysis 4.96 ± 0.21

SD = standard deviation, PTC = posterior calcaneal facet, PTF = posterior talar facet

3.3 | Automatic 3D measurements

Automatic 3D measurements were performed for all patients in the training dataset, and all patients in

the external validation set. The distances, gap area, surface areas of each fragment, the combined surface

area, the fracture area, the maximal step-off and maximal gap were compiled for each patient and saved

to an Excel spreadsheet, providing a comprehensive overview of the surface areas and fracture

characteristics.

Table 4 presents the results of the automatic 3D measurements for all patients in the training data. Refer

to Appendix H for the inter-articular distance plots, and Appendix I for the gap area plots, of all patients

from the training set and external validation set.

Table 4: Automatic 3D measurements of PTC fragments for all patients in the training dataset, including mean distance, gap

area, number of fragments, total fragment area, fracture area, and maximal step-off (Mean, Median, Standard Deviation,

Minimum, Maximum).

Variable Mean SD Minimum Maximum

Gap area (%) 16.05 15.03 0 55.26

Mean distance (𝑚𝑚) 3.59 1.28 1.89 6.67

SD of the mean distance 2.20 1.01 0.32 4.45

Number of fragments 2.32 0.98 1 5

Area of all fragments (𝑚𝑚2) 1546.51 424.30 822.24 2660.93

Fracture area (𝑚𝑚2) 174.04 159.45 0 568.79

Maximal step-off (𝑚𝑚) 3.98 3.67 0 15.34

Maximal gap (𝑚𝑚) 4.14 3.38 0 14.30

SD = standard deviation

For the 10 patients included in both the quantitative and qualitative analysis of the external validation

set, 3D measurements were conducted on both the manually created and nnU-Net-generated

segmentations. Figure 9 provides a patient-level comparison between the two segmentation methods,

while the results of the mean statistics for each segmentation method are presented in Table 5.

18

Table 5: Full comparison of means and standard deviations for each 3D measurement of the 10 patients in the external

validation set where both qualitative and quantitative evaluation was conducted.

Metric Mean (manual) SD (manual) Mean

(nnU-Net)

SD

(nnU-Net)

Percentage of gap area (%) 14.28 13.46 14.22 13.13

Mean distance (𝑚𝑚) 3.83 1.45 3.69 0.82

SD of the mean distance 2.78 2.09 2.45 1.25

Number of fragments 2 1 2.2 1.32

Area of all fragments (𝑚𝑚2) 2558.87 3607.33 1199.84 303.58

Fracture area (𝑚𝑚2) 269.88 474.39 111.83 130.10

Maximal step-off (𝑚𝑚) 2.14 2.30 2.71 3.41

Maximal gap (𝑚𝑚) 5.26 8.07 3.37 4.21

SD = standard deviation

For the remaining 23 patients, 3D measurements based on the nnU-Net segmentations are shown in

Table 6.

Figure 9: Patient level comparison of 10 patients in the external validation set where 3D measurements are based on manually segmented

3D models and 3D models based on nnU-Net segmentations.

19

Table 6: Automatic 3D measurements on 3D models based on nnU-Net segmentations for 23 patients in the external validation

dataset, including mean distance, gap area, number of fragments, total fragment area, fracture area, and maximal step-off (Mean,

Median, Standard Deviation, Minimum, Maximum).

Variable Mean SD Minimum Maximum

Gap area (%) 14.81 11.67 0 39.77

Mean distance (𝑚𝑚) 3.59 1.12 1.77 6.34

SD of the mean distance 2.01 0.80 0.53 3.2

Number of fragments 1.96 0.71 1 3

Area of all fragments (𝑚𝑚2) 1223.09 340.08 629.50 1736.18

Fracture area (𝑚𝑚2) 103.62 82.60 0 228.77

Maximal step-off (𝑚𝑚) 3.54 3.03 0 11.22

Maximal gap (𝑚𝑚) 3.38 3.012 0 9.73

SD = standard deviation

All 3D measurements were visualized per patient to facilitate a thorough visual inspection. This process

allowed for the assessment of the quality of the mesh processing steps, the representativity of the

computed measurements, and the overall extent of the fracture.

The average total time required for the entire method, from automatic segmentation to obtaining the 3D

measurement results, was 4 minutes and 37 seconds per patient. All steps were executed sequentially.

The segmentation process was performed on a single GPU, utilizing 128 GB of RAM and 10 CPU cores

per job. The subsequent 3D measurements and calculations were carried out using a single CPU.

3.4 | Manual 2D measurements

Manual 2D measurements were performed for all patients in the training set by two independent

observers. To assess the interobserver agreement for the Sanders classification, Cohen's kappa was

calculated, while the Interclass Correlation Coefficient (ICC) was used for the maximal gap and maximal

step-off measurements. IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY, USA)

was used for both analyses. A two-way mixed-effects model with absolute agreement for multiple raters

was applied for the ICC measurements (25). The required sample size for assessing interobserver

reliability was estimated using an online ICC hypothesis testing calculator, based on the method

developed by Walter et al. (26,27). A minimum of 41 participants was determined to be necessary for

each group. This calculation was made under the assumption of 2 observers, a significance level (alpha)

of 0.05, a power of 80% (beta of 0.20), a minimum acceptable reliability of 0.4, an expected reliability

of 0.7, and no anticipated drop-outs.

The Cohen's kappa for the Sanders classification was 0.26 (95% CI: 0.08-0.47), indicating fair

agreement (28). The ICC (95% CI) between both observers for the maximal gap measurement and

maximal step-off measurement resulted in 0.60 (0.07-0.82) and 0.59 (0.10-0.81), respectively, indicating

moderate agreement between the two observers (25). An overview of the measurements can be found in

Table 7.

20

Table 7: Results of manual 2D measurements for all 44 patients in the training dataset by two independent observers,

including the Interclass Correlation Coefficient between the observer and the 95% confidence interval.

Variable Mean

(observer 1)

SD

(observer 1)

Mean

(observer 2)

SD

(observer 2)

Agreement (95% CI)

Sanders classification 2.66 1.01 2.18 1.13 Cohen’s kappa = 0.26

(0.08-0.47)

Maximal step-off

(𝑚𝑚2)

8.14 5.02 4.99 4.47 ICC = 0.60 (0.07-0.82)

Maximal gap (𝑚𝑚2) 5.55 3.11 3.59 2.65 ICC = 0.59 (0.10-0.81)

SD=standard deviation, ICC = Interclass Correlation Coefficient

3.5 | Correlation calculations

Correlations between the average 2D manual measurements from both observers and the 3D automatic

measurements for all patients in the training dataset were evaluated using Spearman’s rank correlation

for continuous variables and Kendall’s Tau for ordinal variables, such as the Sanders classification. A p-

value of <0.05 was considered statistically significant. The correlation analyses between 2D and 3D

measurements were performed using Python libraries, including pandas and pingouin.

A moderate positive correlation (29) was found between the maximal 2D gap measurement and the 3D

gap area (%) (Spearman’s rho = 0.62, p<0.001) (Figure 10A). Also, moderate positive correlations were

observed between the maximal 2D step-off measurement and the maximal 3D step-off measurement, as

well as between the maximal 2D gap measurement and the maximal 3D gap measurement, with

Spearman’s rho values of 0.52 (p<0.001) and 0.65 (p<0.001), respectively (Figures 10B and 10C).

Since both 2D gap and step-off lengths may relate to overall fracture size, these measurements were

correlated with the 3D fracture area. The correlation between the maximal 2D gap and the 3D fracture

area resulted in a Spearman’s rho of 0.65 (p<0.001). Likewise, the correlation between the maximal 2D

step-off and the 3D fracture area was Spearman’s rho = 0.64 (p<0.001), indicating moderate positive

correlations between these variables (Figures 10D and 10E). The Sanders classification also

demonstrated a moderate positive correlation with the number of fracture fragments (Kendall’s Tau =

0.57, p<0.001), suggesting that higher Sanders classifications are associated with a greater number of

fragments (Figure 10F).

21

4. | Discussion

This study focuses on developing an automatic segmentation and 3D measurement method tailored for

intra-articular calcaneus fractures, particularly targeting the PTC joint surface. The method uses deep

learning, specifically the nnU-Net framework, to create accurate 3D segmentations of key anatomical

structures from CT scans. These segmentations are then used to generate precise 3D measurements of

fracture characteristics, such as gap area and step-off, providing a more comprehensive evaluation of

calcaneal fractures compared to traditional 2D methods.

A key finding of the study is that moderate positive correlations were identified between manual 2D gap

measurements and 3D gap area (Spearman’s rho = 0.62), as well as between 2D and 3D step-off

measurements (rho = 0.52). Furthermore, the Sanders classification correlated moderately with the

number of fracture fragments found in 3D (Kendall’s Tau = 0.57). These results suggest that the proposed

automatic method aligns with current state-of-the-art approaches in terms of evaluating fracture

characteristics and may serve as a robust and objective tool for assessing intra-articular calcaneus

fractures.

The method enhances clinical assessment by providing structured, quantitative 3D measurements, which

hold potential to improve treatment planning for complex intra-articular calcaneus fractures, offering a

promising complement to existing manual techniques.

When assessing interobserver variability for the Sanders classification, the Cohen’s kappa value of 0.26

found in this study was lower than those reported by Bhattacharya et al. (9) (Cohen’s kappa = 0.32) and

Humphrey et al. (10) (Cohen’s kappa = 0.41). However, for the maximal 2D gap and step-off

Figure 10: Correlation plots between manual 2D and automatic 3D measurements. (A) Maximal 2D gap measurement vs. 3D gap area. (B)
Maximal 2D step-off vs. maximal 3D step-off. (C) Maximal 3D gap vs. maximal 2D gap. (D) Maximal 2D gap vs. 3D fracture area. (E) Maximal
2D step-off vs. 3D fracture area. (F) Sanders classification vs. number of fracture fragments. Red lines indicate linear regression, with pink
shaded areas showing the 95% confidence intervals.

22

measurements, the ICC for the gap (0.59) was comparable to the value reported by Roelofs et al.(13) for

distal radius fractures (ICC = 0.54). In contrast, the ICC for the step-off (0.60) was notably higher than

the value reported by Roelofs et al. for distal radius fractures (ICC = 0.21).

The mean combined area of the PTC fragments in this study is similar to the mean PTC area of 14.5 cm²

reported by Qiang et al. (30). However, differences in sex, ethnicity, and population characteristics

between the two studies should be considered when interpreting this comparison. For the other 3D

measurements, we were unable to identify comparable analyses in the available literature.

In 6 cases from the training dataset and 3 cases from the first group of the external validation set, a Dice

score below 0.7 was observed. However, upon visual inspection, the segmentations of these cases all

received a Likert score of 5 for being sufficient for further analysis. The primary reason for the lower

Dice scores was the presence of parts of the calcaneus and talus from the contralateral side in the CT

images. While nnU-Net included these contralateral structures in its segmentation, the manual

segmentation masks did not, leading to a discrepancy that negatively affected the Dice score.

Aside from such discrepancies, another important factor influencing Dice scores is the size of the

segmentation mask. A larger overall mask tends to result in more overlap, leading to a higher Dice score.

This explains why the Dice score for the entire talus segmentation is higher compared to that of the PTC

and PTF surface segmentations. The higher Dice score for the full talus does not necessarily reflect

better segmentation quality but rather the greater overlap due to the larger mask. Nevertheless, the Dice

score for the surface segmentation remains relatively high, especially considering that it is calculated

from small masks that are only 2 mm thick.

The automatic segmentation framework occasionally produced minor connections between PTC

fragments, particularly in cases of non-displaced fractures, as observed during qualitative analysis.

Although these connections are unlikely to have clinical implications, since non-displaced fractures are

generally treated conservatively and do not influence treatment decisions (31), they can still affect

metrics such as the number of fragments, area per fragment, fracture area, and maximal step-off. This

occurs because non-displaced fractures, which should delineate separate fragments, may instead result

in the merging of fragments, potentially obscuring larger fracture areas or significant step-offs elsewhere

in the structure. Expanding the training dataset to include more cases of non-displaced fractures could

enhance the model's ability to differentiate these fine details in future implementations.

Additionally, no definitive ground truth is available for parameters such as gap area, inter-articular

distances, fragment and fracture area, or maximal step-off. These 3D measurements were compared with

manual 2D measurements, where the observed ICC values ranged from 0.59 to 0.60, indicating moderate

agreement between the two observers. Although the absence of an absolute standard is common in this

area of research, the manual assessments still provide a valuable reference point for comparison. While

they cannot be considered definitive, they offer important insights that help guide the evaluation of the

3D measurements.

A limitation of this study is that the ground truth used for model training was derived from manual

segmentations performed by a single observer. These segmentations were based on CT scans in which

the cartilage surfaces were not visible, making it difficult to accurately delineate the PTC area. As a

result, the segmentation boundaries in regions involving cartilage may be uncertain, potentially

impacting the accuracy of the model's predictions in these areas.

For future research, in addition to expanding the training dataset for nnU-Net to improve segmentation

accuracy, the automatically calculated 3D measurements hold promise as decision-support tools in

clinical treatment planning. To validate the utility of these parameters, a retrospective study should be

23

conducted, incorporating follow-up data and building a prediction model. This model could help

determine whether 3D metrics such as gap size, inter-articular distances, maximal step-off, and fracture

area provide meaningful insights for selecting optimal treatment options and improving outcomes in

calcaneal fracture management.

5. | Conclusion
This study successfully demonstrates the development and validation of a complete method for the

automatic segmentation and automatic 3D quantitative analysis of intra-articular calcaneus fractures in

the PTC surface. The ability to automatically generate accurate 3D measurements within minutes has

the potential to streamline clinical workflows and enhance decision-making in the management of

calcaneus fractures.

24

References

1. Galluzzo M, Greco F, Pietragalla M, De Renzis A, Carbone M, Zappia M, et al. Calcaneal fractures:

Radiological and CT evaluation and classification systems. Vol. 89, Acta Biomedica. Mattioli 1885;

2018. p. 138–50.

2. 77/ ACTA CHIRURGIAE ORTHOPAEDICAE ET TRAUMATOLOGIAE ČECHOSL CURREnT

COnCEPTS REvIEw SOUbORný REfERáT.

3. Zhao Z, Li J. Calcaneus Fractures. In: Orthopaedic Trauma Surgery [Internet]. Singapore: Springer

Nature Singapore; 2023. p. 397–432. Available from: https://link.springer.com/10.1007/978-981-16-

0215-3_12

4. Weisman G, Araujo MGS. Calcaneus Fractures. In: Orthopaedics and Trauma [Internet]. Cham: Springer

International Publishing; 2024. p. 613–21. Available from: https://link.springer.com/10.1007/978-3-031-

30518-4_48

5. Dhillon MS, Bali K, Prabhakar S. Controversies in calcaneus fracture management: A systematic review

of the literature. Vol. 95, Musculoskeletal Surgery. Springer-Verlag Italia s.r.l.; 2011. p. 171–81.

6. Wakker AM, Van Lieshout EMM, De Boer AS, Cornelissen BMW, Verhofstad MHJ, Van Walsum T, et

al. A novel method to perform morphological measurements on three-dimensional (3D) models of the

calcaneus based on computed tomography (CT)-imaging. Quant Imaging Med Surg. 2024 Jun

1;14(6):3778–88.

7. Jiménez-Almonte JH, King JD, Luo TD, Aneja A, Moghadamian E. Classifications in brief: Sanders

classification of intraarticular fractures of the Calcaneus. Vol. 477, Clinical Orthopaedics and Related

Research. Lippincott Williams and Wilkins; 2019. p. 467–71.

8. Leigheb M, Codori F, Samaila EM, Mazzotti A, Villafañe JH, Bosetti M, et al. Current Concepts about

Calcaneal Fracture Management: A Review of Metanalysis and Systematic Reviews. Vol. 13, Applied

Sciences (Switzerland). Multidisciplinary Digital Publishing Institute (MDPI); 2023.

9. Bhattacharya R, Vassan UT, Finn P, Port A. Sanders classification of fractures of the os calcis AN

ANALYSIS OF INTER-AND INTRA-OBSERVER VARIABILITY. 2005;87(2):205.

10. Humphrey CA, Dirschl DR, Ellis TJ. Interobserver Reliability of a CT-Based Fracture Classification

System [Internet]. Available from: http://journals.lww.com/jorthotrauma

11. Rahmaniar W, Wang WJ. Real-time automated segmentation and classification of calcaneal fractures in

CT images. Applied Sciences (Switzerland). 2019 Aug 1;9(15).

12. Ogawa BK, Charlton TP, Thordarson DB. Radiography versus computed tomography for displacement

assessment in calcaneal fractures. Foot Ankle Int. 2009 Oct;30(10):1005–10.

13. Roelofs LJM, Meesters AML, Assink N, Kraeima J, Van der Meulen TD, Doornberg JN, et al. A new

quantitative 3D gap area measurement of fracture displacement of intra-articular distal radius fractures:

Reliability and clinical applicability. PLoS One. 2022 Sep 1;17(9 September).

14. Griffin D, Parsons N, Shaw E, Kulikov Y, Hutchinson C, Thorogood M, et al. Operative versus non-

operative treatment for closed, displaced, intra-articular fractures of the calcaneus: Randomised

controlled trial. BMJ (Online). 2014 Jul 24;349.

15. Rodemund C, Krenn R, Kihm C, Leister I, Ortmaier R, Litzlbauer W, et al. Minimally invasive surgery

for intra-articular calcaneus fractures: a 9-year, single-center, retrospective study of a standardized

technique using a 2-point distractor. BMC Musculoskelet Disord. 2020 Dec 1;21(1).

16. Cha Y, Kim JT, Park CH, Kim JW, Lee SY, Yoo J Il. Artificial intelligence and machine learning on

diagnosis and classification of hip fracture: systematic review. Vol. 17, Journal of Orthopaedic Surgery

and Research. BioMed Central Ltd; 2022.

17. Kraus M, Anteby R, Konen E, Eshed I, Klang E. Artificial intelligence for X-ray scaphoid fracture

detection: a systematic review and diagnostic test accuracy meta-analysis. European Radiology. Springer

Science and Business Media Deutschland GmbH; 2023.

18. Langerhuizen DWG, Janssen SJ, Mallee WH, Van Den Bekerom MPJ, Ring D, Kerkhoffs GMMJ, et al.

What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and

25

Classification in Orthopaedic Trauma Imaging? A Systematic Review. Vol. 477, Clinical Orthopaedics

and Related Research. Lippincott Williams and Wilkins; 2019. p. 2482–91.

19. Lex JR, Di Michele J, Koucheki R, Pincus D, Whyne C, Ravi B. Artificial Intelligence for Hip Fracture

Detection and Outcome Prediction: A Systematic Review and Meta-analysis. JAMA Netw Open. 2023

Mar 17;6(3):E233391.

20. Ashkani-Esfahani S, Mojahed Yazdi R, Bhimani R, Kerkhoffs GM, Maas M, DiGiovanni CW, et al.

Detection of ankle fractures using deep learning algorithms. Foot and Ankle Surgery. 2022 Dec

1;28(8):1259–65.

21. Assink N, Kraeima J, Slump CH, ten Duis K, de Vries JPPM, Meesters AML, et al. Quantitative 3D

measurements of tibial plateau fractures. Sci Rep. 2019 Dec 1;9(1).

22. Anatomy3DAtlas [Internet]. [cited 2024 Oct 21]. Available from: https://anatomy3datlas.com/

23. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation.

2015 May 18; Available from: http://arxiv.org/abs/1505.04597

24. Wakker AM, Verhofstad MHJ, Visser JJ, Van Vledder MG, Van Walsum T. Talus-derived reference

coordinate system for 3D calcaneal assessment: A novel approach to improve morphological

measurements. Journal of Orthopaedic Research. 2024;

25. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for

Reliability Research. J Chiropr Med. 2016 Jun 1;15(2):155–63.

26. Arifin WN. Sample size calculator [Internet]. [cited 2024 Oct 4]. Available from:

https://wnarifin.github.io/ssc/ssicc.html

27. Walter SD, Eliasziw M, Donner A, The JP. SAMPLE SIZE AND OPTIMAL DESIGNS FOR

RELIABILITY STUDIES. Vol. 17, STATISTICS IN MEDICINE. 1998.

28. Sim J, Wright CC. Number 3 [Internet]. Vol. 85, Physical Therapy. 2005. Available from:

https://academic.oup.com/ptj/article/85/3/257/2805022

29. Mukaka MM. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research

[Internet]. Vol. 24, Malawi Medical Journal. 2012. Available from: www.mmj.medcol.mw

30. Qiang M, Chen Y, Zhang K, Li H, Dai H. Measurement of three-dimensional morphological

characteristics of the calcaneus using CT image post-processing. J Foot Ankle Res. 2014 Mar 14;7(1).

31. Jiménez-Almonte JH, King JD, Luo TD, Aneja A, Moghadamian E. Classifications in brief: Sanders

classification of intraarticular fractures of the Calcaneus. Vol. 477, Clinical Orthopaedics and Related

Research. Lippincott Williams and Wilkins; 2019. p. 467–71.

Appendices

Appendix A: nnU-Net SLURM script

#!/bin/bash

#SBATCH --ntasks=10 ### How many CPU cores do you need?

#SBATCH --mem=128G ### How much RAM memory do you need?

#SBATCH -p long ### The queue to submit to: express, short, long, interactive

#SBATCH --gres=gpu:1 ### How many GPUs do you need? #

#SBATCH -t 2-00:00:00 ### The time limit in D-hh:mm:ss format

#SBATCH -o out_%j.log ### Where to store the console output (%j is the job number)

#SBATCH -e error_%j.log ### Where to store the error output

#SBATCH --job-name=PTC_pred ### Name your job so you can distinguish between jobs

Load the modules

module purge

module load Python/3.9.5-GCCcore-10.3.0

source /mnt/trtm0001/data/Alex/venvs/nnUnet_env/bin/activate

To set up the correct environment for nnUNet, follow the following steps from the command line

before running the slurm script:

module load Python/3.9.5-GCCcore-10.3.0

python3 -m venv nnunet_env

pip install --upgrade pip wheel

pip install numpy

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117

pip install nnunetv2

pip install --upgrade git+https://github.com/FabianIsensee/hiddenlayer.git

pip install ipython

export nnUNet_preprocessed="/mnt/trtm0001/data/Alex/nnUnet/nnUNet_preprocessed"

export nnUNet_results="/mnt/trtm0001/data/Alex/nnUnet/nnUNet_results"

export nnUNet_raw="/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw"

Follow the following steps to run the entire pipeline of nnU-Net:

#***See if all data is in correct order and have the correct names:***

 nnUNetv2_plan_and_preprocess -d 602 --verify_dataset_integrity

#**Train nnUNet:***

 nnUNetv2_train 602 3d_lowres 4 --npz

#***Run best configuration :***

 nnUNetv2_find_best_configuration 602 -c 3d_lowres # Output will tell what interference + post-

processing should be run

#***Run inference like this:***

 nnUNetv2_predict -d Dataset602_fractured_calcaneusPTC_talusPTC -i imagesTs -o

output_predictions -f 0 1 2 3 4 -tr nnUNetTrainer -c 3d_lowres -p nnUNetPlans

#***Once inference is completed, run postprocessing like this:***

nnUNetv2_apply_postprocessing -i output_predictions -o output_predictions_and_postprocessing -

pp_pkl_file

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_results/Dataset602_fractured_calcaneusPTC_talusPTC/nnUNetT

rainer__nnUNetPlans__3d_lowres/crossval_results_folds_0_1_2_3_4/postprocessing.pkl -np 8 -

plans_json

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_results/Dataset602_fractured_calcaneusPTC_talusPTC/nnUNetT

rainer__nnUNetPlans__3d_lowres/crossval_results_folds_0_1_2_3_4/plans.json

#***Evaluate the predictions from imagesTs compared to labelsTs:***

nnUNetv2_evaluate_folder -djfile

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/dataset.jso

n -pfile

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/output_pred

ictions/plans.json

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/labelsTs

27

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/output_pred

ictions_and_postprocessing

echo 'The slurm script has ended'

28

Appendix B – Likert questionnaire

Q1. I found the segmentations of the PTC surface to be visually accurate and representative of the
joint anatomy.

o Strongly
disagree

o Disagree o Neither
agree nor
disagree

o Agree o Strongly
agree

Q2. I found the segmentations of the PTF surface to be visually accurate and representative of the
joint anatomy.

o Strongly
disagree

o Disagree o Neither
agree nor
disagree

o Agree o Strongly
agree

Q3. I found that the individual fragments identified during the segmentation process were correctly
separated and represented the appropriate anatomical structures.

o Strongly
disagree

o Disagree o Neither
agree nor
disagree

o Agree o Strongly
agree

Q4. I found the segmentations produced to be sufficient for further 3D analysis and measurement.

o Strongly
disagree

o Disagree o Neither
agree nor
disagree

o Agree o Strongly
agree

29

Appendix C- STL creation and alignment with talus

import os

import re

import nibabel as nib

import numpy as np

from stl import mesh

from skimage import measure

import tkinter as tk

from tkinter import filedialog

import open3d as o3d

import copy

import trimesh

import pyvista as pv

import open3d as o3d

import copy

import matplotlib.pyplot as plt

from skimage import measure, morphology

import time

from scipy.ndimage import binary_closing

import networkx as nx

import scipy.sparse

from scipy.ndimage import binary_closing

Define Laplacian smoothing function

def laplacian_smoothing(vertices, faces, iterations=10, lambda_=0.05):

 """Smooth the mesh using Laplacian smoothing."""

 mesh = trimesh.Trimesh(vertices=vertices, faces=faces)

 adjacency_graph = mesh.vertex_adjacency_graph

 adjacency_matrix = nx.to_scipy_sparse_array(adjacency_graph) # Updated to use

to_scipy_sparse_array

 adjacency_matrix = scipy.sparse.csr_matrix(adjacency_matrix) # Ensure it's a sparse

matrix

 laplacian = scipy.sparse.csgraph.laplacian(adjacency_matrix, normed=False)

 identity = scipy.sparse.identity(laplacian.shape[0])

 smoothing_matrix = identity - lambda_ * laplacian

 smoothed_vertices = vertices.copy()

 for _ in range(iterations):

 smoothed_vertices = smoothing_matrix.dot(smoothed_vertices)

 displacement = smoothed_vertices - vertices

 max_displacement = np.percentile(np.linalg.norm(displacement, axis=1), 95)

 displacement = np.clip(displacement, -max_displacement, max_displacement)

 smoothed_vertices = vertices + displacement

 return smoothed_vertices

Function to check if normals are correctly oriented

def check_normals(mesh_obj):

 face_normals = mesh_obj.face_normals

 face_centroids = mesh_obj.triangles_center

 mesh_centroid = mesh_obj.centroid

 vectors_from_centroid = face_centroids - mesh_centroid

30

 dot_products = (face_normals * vectors_from_centroid).sum(axis=1)

 if (dot_products < 0).mean() > 0.5:

 print("Normals are pointing inward, inverting normals...")

 return False

 else:

 print("Normals are correctly pointing outward.")

 return True

Function to save STL with smoothing

def save_stl(mask, output_path, affine, apply_closing=False, apply_smoothing=True,

iterations=10, lambda_=0.05):

 if np.any(mask):

 if apply_closing:

 mask = binary_closing(mask, structure=np.ones((3, 3, 3)))

 # Marching cubes to extract surface

 verts, faces, _, _ = measure.marching_cubes(mask, level=0.5)

 # Apply the affine transformation to the vertices

 verts_homogeneous = np.hstack([verts, np.ones((verts.shape[0], 1))])

 verts_transformed = verts_homogeneous.dot(affine.T)[:, :3]

 # Optionally apply Laplacian smoothing to the vertices

 if apply_smoothing:

 verts_transformed = laplacian_smoothing(verts_transformed, faces,

iterations=iterations, lambda_=lambda_)

 # Create the STL mesh

 mesh_data = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))

 for i, f in enumerate(faces):

 for j in range(3):

 mesh_data.vectors[i][j] = verts_transformed[f[j], :]

 # Save the STL file

 mesh_data.save(output_path)

 print(f"Saved STL file: {output_path}")

 # Load mesh using trimesh and check normals

 mesh_obj = trimesh.load(output_path)

 if not check_normals(mesh_obj):

 # If normals are inward, invert and save

 mesh_obj.invert()

 mesh_obj.export(output_path)

 print(f"Normals inverted and saved for {output_path}")

Function to process NIFTI to STL with smoothing

def nifti_to_stl(nifti_file, base_output_dir, label_name, subdir):

 print(f"Loading NIFTI file: {nifti_file}")

 img = nib.load(nifti_file)

 data = img.get_fdata()

 affine = img.affine

 # Extract numeric part and side indicator from file name

31

 file_name = os.path.basename(nifti_file)

 match = re.search(r'(\d+)([RL])', file_name)

 if match:

 numeric_part = match.group(1).zfill(3) # Format the numeric part

 side_indicator = match.group(2)

 else:

 print(f"No side indicator found in file name: {file_name}")

 return

 # Create output directories based on the formatted numeric part and side indicator

 patient_dir = os.path.join(base_output_dir, f"{numeric_part}{side_indicator}")

 output_dir = os.path.join(patient_dir, subdir)

 os.makedirs(output_dir, exist_ok=True)

 if subdir == 'talus_PTC':

 mask = (data == label_name)

 stl_path = os.path.join(output_dir,

f'{numeric_part}{side_indicator}_talus_PTC.stl')

 save_stl(mask, stl_path, affine, apply_closing=False, apply_smoothing=True) # No

closing for talus_PTC

 elif subdir == 'talus':

 mask = (data == label_name)

 stl_path = os.path.join(output_dir, f'{numeric_part}{side_indicator}_talus.stl')

 save_stl(mask, stl_path, affine, apply_closing=True, apply_smoothing=True) #

Apply closing for talus

 elif subdir == 'calcaneus_PTC_fragments':

 calcaneus_mask = (data == label_name)

 labeled_calcaneus, num_labels = measure.label(calcaneus_mask, return_num=True,

connectivity=3)

 print(f"Found {num_labels} fragments in calcaneus.")

 for label in range(1, num_labels + 1):

 fragment_mask = (labeled_calcaneus == label)

 calcaneus_stl_path = os.path.join(output_dir,

f'{numeric_part}{side_indicator}_calcaneus_{label}.stl')

 save_stl(fragment_mask, calcaneus_stl_path, affine, apply_closing=False,

apply_smoothing=True)

def select_folders(title):

 root = tk.Tk()

 root.withdraw() # Hide the main window

 folder = filedialog.askdirectory(title=title)

 if not folder:

 print(f"No folder selected for {title}.")

 return None

 return folder

Folder selection for NIFTI to STL processing

nifti_folder_fragments = select_folders("Select input folder where the NIFTI masks of the

PTC fragments are stored")

32

nifti_folder_talus = select_folders("Select input folder where the NIFTI masks of the

complete talus are stored")

base_output_dir = select_folders("Select Output Folder for the STL files")

Process the NIFTI files into STL with optional Laplacian smoothing

if nifti_folder_fragments and nifti_folder_talus and base_output_dir:

 # Process all NIFTI files for talus_PTC

 for nifti_file in os.listdir(nifti_folder_fragments):

 if nifti_file.endswith('.nii') or nifti_file.endswith('.nii.gz'):

 nifti_path = os.path.join(nifti_folder_fragments, nifti_file)

 nifti_to_stl(nifti_path, base_output_dir, 1, 'talus_PTC')

 print(f"Processing of {nifti_file} from NIFTI to STL (talus_PTC) is

complete.")

 # Process all NIFTI files for talus

 for nifti_file in os.listdir(nifti_folder_talus):

 if nifti_file.endswith('.nii') or nifti_file.endswith('.nii.gz'):

 nifti_path = os.path.join(nifti_folder_talus, nifti_file)

 nifti_to_stl(nifti_path, base_output_dir, 1, 'talus')

 print(f"Processing of {nifti_file} from NIFTI to STL (talus) is complete.")

 # Process all NIFTI files for calcaneus_PTC_fragments

 for nifti_file in os.listdir(nifti_folder_fragments):

 if nifti_file.endswith('.nii') or nifti_file.endswith('.nii.gz'):

 nifti_path = os.path.join(nifti_folder_fragments, nifti_file)

 nifti_to_stl(nifti_path, base_output_dir, 2, 'calcaneus_PTC_fragments')

 print(f"Processing of {nifti_file} from NIFTI to STL (calcaneus_PTC_fragments)

is complete.")

else:

 print("Folder selection was not completed.")

Align_parts_with_talus #######

def calculate_mass_properties(root, file):

 your_mesh = trimesh.load_mesh(os.path.join(root, file))

 mass_properties = your_mesh.mass_properties

 volume = mass_properties['volume']

 cog = mass_properties['center_mass']

 inertia = mass_properties['inertia']

 return volume, cog, inertia

Comment from here if the alignemtn is already done

def draw_registration_result_PTC_joint(moving, fixed, talus_PTC, calc_PTCs,

transformation):

 moving_temp = copy.deepcopy(moving)

 fixed_temp = copy.deepcopy(fixed)

 talus_PTC_temp = copy.deepcopy(talus_PTC)

 calc_PTCs_temp = [copy.deepcopy(calc) for calc in calc_PTCs]

 moving_temp.paint_uniform_color([1, 0.706, 0]) # Yellow for moving

 fixed_temp.paint_uniform_color([0, 0.651, 0.929]) # Blue for fixed

33

 talus_PTC_temp.paint_uniform_color([0, 1, 0]) # Green for talus_PTC

 # Generate a unique color for each calcaneus fragment using HSV colormap

 n = len(calc_PTCs_temp)

 colors = plt.cm.get_cmap("hsv", n)(np.arange(n))[:, :3] # Ensuring unique colors

 for calc_temp, color in zip(calc_PTCs_temp, colors):

 calc_temp.paint_uniform_color(color.tolist()) # Apply color

 calc_temp.transform(transformation) # Apply transformation

 moving_temp.transform(transformation)

 talus_PTC_temp.transform(transformation)

 o3d.visualization.draw_geometries([moving_temp, fixed_temp, talus_PTC_temp] +

calc_PTCs_temp)

 return [moving_temp, talus_PTC_temp] + calc_PTCs_temp

def align_calc_based_on_talus_PTC_joint(filename_talus, filename_talus_PTC,

filenames_calc_PTC,

 root_folder_talus, root_folder_talus_PTC,

root_folder_calc_PTC,

 fixed_talus_mesh, fixed_talus_cog):

 # Start time tracking (processing only, excluding visualization)

 start_time = time.time()

 moving_mesh_talus = o3d.io.read_triangle_mesh(os.path.join(root_folder_talus,

filename_talus))

 moving_mesh_talus_PTC = o3d.io.read_triangle_mesh(os.path.join(root_folder_talus_PTC,

filename_talus_PTC))

 moving_mesh_calc_PTCs = [o3d.io.read_triangle_mesh(os.path.join(root_folder_calc_PTC,

filename))

 for filename in filenames_calc_PTC]

 volume_moving, cog_moving, inertia_moving =

calculate_mass_properties(root_folder_talus, filename_talus)

 difference = fixed_talus_cog - cog_moving

 moving_mesh_talus.translate(difference)

 moving_mesh_talus_PTC.translate(difference)

 for moving_mesh_calc_PTC in moving_mesh_calc_PTCs:

 moving_mesh_calc_PTC.translate(difference)

 fixed_talus = fixed_talus_mesh.sample_points_uniformly(20000)

 moving_talus = moving_mesh_talus.sample_points_uniformly(20000)

 voxel_size = 1

 moving_down, moving_fpfh = preprocess_point_cloud(moving_talus, voxel_size)

 fixed_down, fixed_fpfh = preprocess_point_cloud(fixed_talus, voxel_size)

 result_ransac = execute_global_registration(moving_down, fixed_down, moving_fpfh,

fixed_fpfh, voxel_size)

 result_icp = refine_registration(moving_talus, fixed_talus, moving_fpfh, fixed_fpfh,

voxel_size, result_ransac)

34

 # Stop the time tracking before visualization

 end_time = time.time()

 # Calculate and print the total elapsed time (processing only, excluding

visualization)

 elapsed_time = end_time - start_time

 print(f"Alignment processing time (excluding visualization): {elapsed_time:.2f}

seconds.")

 all_new_locations = draw_registration_result_PTC_joint(

 moving_mesh_talus,

 fixed_talus_mesh,

 moving_mesh_talus_PTC,

 moving_mesh_calc_PTCs,

 result_icp.transformation)

 poisson_meshes = [o3d.geometry.TriangleMesh.compute_triangle_normals(mesh) for mesh in

all_new_locations]

 o3d.visualization.draw_geometries(all_new_locations)

 return poisson_meshes

def preprocess_point_cloud(pcd, voxel_size):

 pcd_down = pcd.voxel_down_sample(voxel_size)

 radius_normal = voxel_size * 2

 pcd_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal,

max_nn=30))

 radius_feature = voxel_size * 50

 pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(

 pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100))

 return pcd_down, pcd_fpfh

def execute_global_registration(moving_down, fixed_down, moving_fpfh, fixed_fpfh,

voxel_size):

 distance_threshold = voxel_size * 20000

 result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(

 moving_down, fixed_down, moving_fpfh, fixed_fpfh, True,

 distance_threshold,

 o3d.pipelines.registration.TransformationEstimationPointToPoint(False),

 3, [

 o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),

 o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(distance_thres

hold)

], o3d.pipelines.registration.RANSACConvergenceCriteria(1000000, 50000))

 return result

def refine_registration(moving, fixed, moving_fpfh, fixed_fpfh, voxel_size,

result_ransac):

 distance_threshold = voxel_size * 5000

 result = o3d.pipelines.registration.registration_icp(

 moving, fixed, distance_threshold, result_ransac.transformation,

 o3d.pipelines.registration.TransformationEstimationPointToPoint())

35

 print(result)

 return result

Stop the commenting here to remain with the output folders

Select template STL folders and files

root_folder_fixed_talus_left = select_folders("Select the folder where the left foot talus

template STL file is stored")

filename_fixed_talus_left = filedialog.askopenfilename(title="Select the left foot talus

template STL file", filetypes=[("STL files", "*.stl")])

root_folder_fixed_talus_right = select_folders("Select the folder where the right foot

talus template STL file is stored")

filename_fixed_talus_right = filedialog.askopenfilename(title="Select the right foot talus

template STL file", filetypes=[("STL files", "*.stl")])

Load the left and right talus template meshes

fixed_talus_mesh_left = o3d.io.read_triangle_mesh(filename_fixed_talus_left)

volume_fixed_left, cog_fixed_left, inertia_fixed_left =

calculate_mass_properties(root_folder_fixed_talus_left,

os.path.basename(filename_fixed_talus_left))

fixed_talus_mesh_right = o3d.io.read_triangle_mesh(filename_fixed_talus_right)

volume_fixed_right, cog_fixed_right, inertia_fixed_right =

calculate_mass_properties(root_folder_fixed_talus_right,

os.path.basename(filename_fixed_talus_right))

Loop over all patient directories within the selected base output directory

for patient_dir in os.listdir(base_output_dir):

 patient_path = os.path.join(base_output_dir, patient_dir)

 if os.path.isdir(patient_path):

 # Determine side from the patient directory name

 match = re.search(r'([RL])$', patient_dir)

 if match:

 side_indicator = match.group(1)

 else:

 print(f"No valid side indicator found in patient directory name:

{patient_dir}")

 continue

 # Select the appropriate template based on the side indicator

 if side_indicator == 'L':

 fixed_talus_mesh = fixed_talus_mesh_left

 fixed_talus_cog = cog_fixed_left

 elif side_indicator == 'R':

 fixed_talus_mesh = fixed_talus_mesh_right

 fixed_talus_cog = cog_fixed_right

 else:

 print(f"Unexpected issue with side indicator extraction for directory:

{patient_dir}")

 continue

 input_root_talus_PTC = os.path.join(patient_path, 'talus_PTC')

 input_root_talus = os.path.join(patient_path, 'talus')

36

 input_root_calc_PTC = os.path.join(patient_path, 'calcaneus_PTC_fragments')

 # Define new output folders for aligned files

 output_root_talus_PTC = os.path.join(patient_path, 'Aligned_with_talus',

'talus_PTC')

 output_root_talus = os.path.join(patient_path, 'Aligned_with_talus', 'talus')

 output_root_calc_PTC = os.path.join(patient_path, 'Aligned_with_talus',

'calcaneus')

 os.makedirs(output_root_talus_PTC, exist_ok=True)

 os.makedirs(output_root_talus, exist_ok=True)

 os.makedirs(output_root_calc_PTC, exist_ok=True)

 # Process and align STL files for the current patient directory

 for filename_talus, filename_talus_PTC in zip(os.listdir(input_root_talus),

os.listdir(input_root_talus_PTC)):

 filenames_calc_PTC = os.listdir(input_root_calc_PTC)

 new_locations = align_calc_based_on_talus_PTC_joint(

 filename_talus, filename_talus_PTC, filenames_calc_PTC,

 input_root_talus, input_root_talus_PTC, input_root_calc_PTC,

 fixed_talus_mesh, fixed_talus_cog)

 # Save individual aligned parts

 o3d.io.write_triangle_mesh(os.path.join(output_root_talus, filename_talus),

new_locations[0])

 o3d.io.write_triangle_mesh(os.path.join(output_root_talus_PTC,

filename_talus_PTC), new_locations[1])

 for idx, (filename, mesh) in enumerate(zip(filenames_calc_PTC,

new_locations[2:])):

 o3d.io.write_triangle_mesh(os.path.join(output_root_calc_PTC, filename),

mesh)

print("Alignment and saving of STL files completed.")

37

Appendix D – Calculations gap area and inter-articular distances

import os

import pyvista as pv

import numpy as np

import csv

from scipy.spatial import cKDTree

from scipy.stats import shapiro

from scipy.spatial import ConvexHull, Delaunay

from scipy.interpolate import interp1d

from sklearn.decomposition import PCA

import trimesh

import re

from tkinter import filedialog, Tk

from matplotlib.colors import LinearSegmentedColormap

import time

from scipy.interpolate import griddata

Define function to select file and directories

def select_file(title):

 root = Tk()

 root.withdraw() # Hide the main window

 file_path = filedialog.askopenfilename(title=title)

 return file_path

def select_directory(title):

 root = Tk()

 root.withdraw() # Hide the main window

 folder_path = filedialog.askdirectory(title=title)

 return folder_path

Select template files and base output directory

input_talus_template_left = select_file("Select the left talus template STL file")

input_talus_template_right = select_file("Select the right talus template STL file")

input_calcaneus_template_left = select_file("Select the left calcaneus template STL file")

input_calcaneus_template_right = select_file("Select the right calcaneus template STL

file")

base_output_dir = select_directory("Select the base output directory where the output of

the alignments are stored e.g. D:\Afstuderen Technical Medicine\data\STL")

Start timing after file selection

start_time = time.time() # Record the start time

Define base name for combined STL outputs

output_file = 'combined_calcaneus'

combined_distances = []

percentage_holes = []

filenames = []

std_devs = []

results = []

38

def filter_normals_by_angle(mesh, direction_vector, angle_threshold=50):

 """Filter normals of a mesh by an angle threshold with a direction vector."""

 # Compute cosine of the threshold angle

 cos_threshold = np.cos(np.radians(angle_threshold))

 # Normalize the direction vector

 norm = np.linalg.norm(direction_vector)

 if norm == 0:

 return [], [], [] # Handle case where the direction vector is zero

 direction_norm = direction_vector / norm

 # Get the normals from the mesh

 normals = mesh.point_normals

 points = mesh.points

 # Calculate the dot products of the normals with the direction vector

 dot_products = np.dot(normals, direction_norm)

 # Find normals within the specified angle threshold

 indices = np.where(dot_products <= cos_threshold)[0]

 # Extract the corresponding normals

 filtered_normals = normals[indices]

 filtered_points = points[indices]

 return filtered_normals, indices, filtered_points

def create_glyphs_from_normals(mesh, indices, normals):

 """Create glyphs from the normals of a mesh."""

 # Extract points corresponding to the normals

 points = mesh.points[indices]

 # Create a PolyData object from these points and normals

 point_cloud = pv.PolyData(points)

 point_cloud['normals'] = normals

 # Create glyphs from the normals

 arrows = point_cloud.glyph(orient='normals', scale=True, factor=1)

 return arrows

def distance_PTC_joint(normal_array, normals_points, mesh_tal):

 """

 Compute distances between points on a surface (represented by normals) and another

mesh

 (represented by mesh_tal) along given directions (normal_array).

 """

 # Lists to store results

 intersection = []

 distances = []

 new_points = []

 original_points = []

 original_vectors = []

39

 for point, vector in zip(normals_points, normal_array):

 scalar = 20000

 new_point = point + scalar * vector

 vector_flipped = -1 * vector

 new_point_flipped = point + scalar * vector_flipped

 # Trace the ray from the point along the direction of vector to see if it

intersects with mesh_tal

 result, ind = mesh_tal.ray_trace(point, new_point)

 result_flipped, ind_flipped = mesh_tal.ray_trace(point, new_point_flipped)

 # Check if result or result_flipped is empty by evaluating their length

 if len(result) == 0 and len(result_flipped) == 0:

 # No intersection found for both

 intersection.append(0)

 else:

 # Intersection found

 intersection.append(1)

 # Calculate distance for non-empty result

 distance = np.linalg.norm(point - result[0]) if len(result) > 0 else

float('inf')

 # Calculate distance for non-empty result_flipped

 distance_flipped = np.linalg.norm(point - result_flipped[0]) if

len(result_flipped) > 0 else float('inf')

 # Choose the smaller distance

 original_points.append(point)

 original_vectors.append(vector)

 if distance_flipped < distance:

 distances.append(distance_flipped)

 new_points.append(result_flipped[0])

 elif distance != float('inf'):

 distances.append(distance)

 new_points.append(result[0])

 return distances, new_points, original_points, original_vectors

def distance_PTC_joint_convex_hull(normal_array, normals_points, mesh_hull,

convex_hull_mesh):

 """

 Compute distances between points on a surface (convex_hull_PTC, so in the middle of

the PTC joint) and another mesh

 (represented by mesh_tal) along given directions (normal_array). Additionally, check

for

 intersections with a convex hull mesh, distal from the PTC joint.

 """

 # Lists to store results

 distances = []

 new_points = []

 original_points = []

 original_vectors = []

 hull_intersections = []

40

 for point, vector in zip(normals_points, normal_array):

 scalar = 20000

 new_point = point + scalar * vector

 vector_flipped = -1 * vector

 new_point_flipped = point + scalar * vector_flipped

 # Trace the ray from the point along the direction of vector to see if it

intersects with mesh_tal

 result, ind = mesh_hull.ray_trace(point, new_point)

 result_flipped, ind_flipped = mesh_hull.ray_trace(point, new_point_flipped)

 # Trace the ray from the point along the direction of vector to see if it

intersects with convex_hull_mesh

 hull_result, hull_ind = convex_hull_mesh.ray_trace(point, new_point)

 hull_result_flipped, hull_ind_flipped = convex_hull_mesh.ray_trace(point,

new_point_flipped)

 # Check if result or result_flipped is empty by evaluating their length

 if len(result) == 0 and len(result_flipped) == 0:

 # Check if the ray intersects with the convex hull mesh

 if len(hull_result) > 0:

 hull_intersections.append(hull_result[0])

 elif len(hull_result_flipped) > 0:

 hull_intersections.append(hull_result_flipped[0])

 else:

 # Intersection found

 original_points.append(point)

 original_vectors.append(vector)

 if len(result) > 0:

 distance = np.linalg.norm(point - result[0])

 distances.append(distance)

 new_points.append(result[0])

 elif len(result_flipped) > 0:

 distance_flipped = np.linalg.norm(point - result_flipped[0])

 distances.append(distance_flipped)

 new_points.append(result_flipped[0])

 return distances, new_points, original_points, original_vectors, hull_intersections

def combine_stl_files(input_directory, output_directory, base_output_file, patient_number,

side_indicator):

 os.makedirs(output_directory, exist_ok=True)

 stl_files = [f for f in os.listdir(input_directory) if f.endswith('.stl')]

 # List to store all meshes for the current patient

 patient_meshes = []

 for stl_file in stl_files:

 mesh = trimesh.load_mesh(os.path.join(input_directory, stl_file))

 patient_meshes.append(mesh)

 if patient_meshes:

41

 combined_mesh = trimesh.util.concatenate(patient_meshes)

 combined_output_file =

f"{base_output_file}_patient{patient_number}_{side_indicator}.stl"

 output_path = os.path.join(output_directory, combined_output_file)

 combined_mesh.export(output_path)

 print(f"Combined STL file for patient {patient_number} ({side_indicator}) saved as

{output_path}")

Function to load and decimate the mesh

def load_and_decimate_mesh(filepath, point_threshold, target_reduction=0.7):

 """

 Load a mesh and decimate it if the number of points exceeds the threshold.

 Parameters:

 - filepath: str, path to the mesh file

 - point_threshold: int, threshold for the number of points

 - reduction_factor: float, fraction to reduce the mesh by (0 < reduction_factor < 1)

 Returns:

 - mesh: PyVista mesh object, possibly decimated

 """

 mesh = pv.read(filepath)

 num_points = mesh.n_points

 if num_points > point_threshold:

 mesh = mesh.decimate(target_reduction=target_reduction)

 return mesh

Function to compute the center of a point cloud

def compute_center_of_point_cloud(cloud_data, com_talus_ptc, com_calcaneus_ptc,

scale_factor=0.8, translation_factor=3.0):

 """

 Determines the center of 3D points in 3D space using PCA and convex hull methods.

 Shrinks the convex hull by moving points closer to the centroid and translates

 the hull in the direction of the 3rd principal component (longitudinal axis).

 """

 # Compute the mean of the point cloud

 cloud_mean = np.mean(cloud_data, axis=0)

 # Calculate the direction vector from cloud mean to com_calcaneus

 direction_vector = com_calcaneus - cloud_mean

 direction_vector /= np.linalg.norm(direction_vector) # Normalize the direction vector

 # Perform PCA to get principal components

 _, _, principal_components = np.linalg.svd(cloud_data - cloud_mean)

 # Ensure the 3rd principal component points in the positive X or Y direction

 if principal_components[2][1] < 0: # Check the Y component if X is zero

 principal_components[2] = -principal_components[2]

 # Use the corrected 3rd principal component for translation

 translation_vector = translation_factor * principal_components[2]

 translation_vector_ptc = 15 * principal_components[2]

42

 # Project points onto plane defined by the first two principal components

 projected_points_2d = np.dot(cloud_data - cloud_mean, principal_components[:2].T)

 # Add small noise to avoid degenerate geometry

 noise = np.random.normal(scale=1e-6, size=projected_points_2d.shape)

 projected_points_2d += noise

 # Compute convex hull in 2D space

 hull = ConvexHull(projected_points_2d)

 hull_points = projected_points_2d[hull.vertices]

 # Compute the centroid of the convex hull

 hull_centroid = np.mean(hull_points, axis=0)

 # Shrink the convex hull points towards the centroid

 shrunk_hull_points = hull_centroid + scale_factor * (hull_points - hull_centroid)

 spacing = 0.5 # Adjust spacing as needed

 filled_points_2d = generate_points_in_hull(shrunk_hull_points, spacing)

 # Project the shrunk hull points back to 3D space

 shrunk_hull_points_3d = shrunk_hull_points @ principal_components[:2] + cloud_mean

 shrunk_hull_points_3d_ptc_joint = filled_points_2d @ principal_components[:2] +

cloud_mean

 # Translate the convex hull points in the direction of the direction vector

 translated_hull_points_3d = shrunk_hull_points_3d + translation_vector

 translated_hull_points_3d_ptc_joint = shrunk_hull_points_3d_ptc_joint -

translation_vector

 # Close the convex hull loop

 closed_hull_points = np.vstack([translated_hull_points_3d,

translated_hull_points_3d[0, :]])

 closed_hull_points_ptc_joint = np.vstack([translated_hull_points_3d_ptc_joint,

translated_hull_points_3d_ptc_joint[0, :]])

 # Calculate cumulative distance along the hull edges

 cumulative_distances = np.cumsum(np.sqrt(np.sum(np.diff(closed_hull_points, axis=0) **

2, axis=1)))

 cumulative_distances = np.insert(cumulative_distances, 0, 0)

 # Interpolate to get even distribution of points on the translated convex hull

 num_points = 100

 fx = interp1d(cumulative_distances, closed_hull_points[:, 0], kind='linear')

 fy = interp1d(cumulative_distances, closed_hull_points[:, 1], kind='linear')

 fz = interp1d(cumulative_distances, closed_hull_points[:, 2], kind='linear')

 even_distances = np.linspace(0, cumulative_distances[-1], num_points)

 evenly_distributed_points = np.column_stack([fx(even_distances), fy(even_distances),

fz(even_distances)])

 # Compute the mean of the evenly distributed points

 mean_evenly_distributed_points = np.mean(evenly_distributed_points, axis=0)

43

 # Project the center point back to 3D space

 center_point_3d = mean_evenly_distributed_points

 return center_point_3d, evenly_distributed_points, principal_components,

closed_hull_points_ptc_joint

Helper function to generate points within a convex hull

def generate_points_in_hull(hull_points, spacing):

 """Generate points within the convex hull of a given set of points."""

 # Get the bounding box of the convex hull

 min_x, min_y = np.min(hull_points, axis=0)

 max_x, max_y = np.max(hull_points, axis=0)

 # Generate a grid of points over the bounding box

 x = np.arange(min_x, max_x, spacing)

 y = np.arange(min_y, max_y, spacing)

 xx, yy = np.meshgrid(x, y)

 grid_points = np.c_[xx.ravel(), yy.ravel()]

 # Filter points inside the convex hull

 hull_path = Delaunay(hull_points)

 mask = hull_path.find_simplex(grid_points) >= 0

 points_in_hull = grid_points[mask]

 return points_in_hull

Function to map distance to a fixed color based on defined ranges

def get_colored_distance(distance, min_distance, max_distance, cmap):

 """

 Maps distance to a color using a custom colormap.

 Parameters:

 - distance: The distance value.

 - min_distance: The minimum distance in the dataset.

 - max_distance: The maximum distance in the dataset.

 - cmap: The colormap to use for mapping distances to colors.

 Returns:

 - A numpy array representing the color.

 """

 # Normalize the distance to be within [0, 1]

 normalized_distance = (distance - min_distance) / (max_distance - min_distance)

 # Get the color from the colormap

 color = cmap(normalized_distance)

 # Matplotlib returns colors in RGBA, we only need RGB

 return np.array(color[:3])

def evenly_distribute_points_on_surface(points_3d, spacing=0.5):

 """

 Distribute points evenly over the surface area covered by points_3d using a grid.

44

 Parameters:

 - points_3d: np.array, original 3D points on the surface.

 - spacing: float, the spacing between points in the grid.

 Returns:

 - grid_points_3d: np.array, evenly distributed points on the surface.

 """

 # Delaunay triangulation of the original points

 tri = Delaunay(points_3d[:, :2]) # Using only the first two components for 2D

triangulation

 # Generate a grid over the bounding box of the original points

 min_bounds = np.min(points_3d, axis=0)

 max_bounds = np.max(points_3d, axis=0)

 # Create a uniform grid within the bounds

 x = np.arange(min_bounds[0], max_bounds[0], spacing)

 y = np.arange(min_bounds[1], max_bounds[1], spacing)

 xx, yy = np.meshgrid(x, y)

 grid_points_2d = np.c_[xx.ravel(), yy.ravel()]

 # Filter grid points that are inside the convex hull of the original points

 mask = tri.find_simplex(grid_points_2d) >= 0

 grid_points_2d = grid_points_2d[mask]

 # Interpolate the z values for the grid points based on the original points

 grid_z = griddata(points_3d[:, :2], points_3d[:, 2], grid_points_2d, method='linear')

 # Combine x, y, and interpolated z values into new 3D points

 grid_points_3d = np.column_stack([grid_points_2d, grid_z])

 return grid_points_3d

Define the number of patients per row and initialize counters

patients_per_row = 10

num_patients = len([d for d in os.listdir(base_output_dir) if

os.path.isdir(os.path.join(base_output_dir, d))])

num_rows = (num_patients + patients_per_row - 1) // patients_per_row

distance_plotter = pv.Plotter(shape=(num_rows, patients_per_row), window_size=[1600, 400 *

num_rows])

gap_area_plotter = pv.Plotter(shape=(num_rows, patients_per_row), window_size=[1600, 400 *

num_rows])

results = []

def write_results_to_csv(results, output_dir):

 csv_file_path = os.path.join(output_dir, "distance_and_gap.csv")

 with open(csv_file_path, "w", newline="") as file:

 writer = csv.writer(file, delimiter=';')

 writer.writerow(["Patient", "Mean Distance (mm)", "Standard Deviation (mm)", "Gap

Area (%)"])

 for result in results:

 mean_distance = f"{result[1]:.2f}".replace('.', ',')

 std_dev = f"{result[2]:.2f}".replace('.', ',')

45

 gap_area = f"{result[3]:.2f}".replace('.', ',')

 writer.writerow([result[0], mean_distance, std_dev, gap_area])

for patient_index, patient_dir in enumerate(os.listdir(base_output_dir)):

 patient_path = os.path.join(base_output_dir, patient_dir)

 if os.path.isdir(patient_path):

 match = re.search(r'(\d+)([RL])$', patient_dir)

 if match:

 patient_number = match.group(1)

 side_indicator = match.group(2)

 patient_name = f"{patient_number}{side_indicator}"

 else:

 print(f"No valid side indicator found in patient directory name:

{patient_dir}")

 continue

 input_calcaneus = os.path.join(patient_path, 'Aligned_with_talus', 'calcaneus')

 input_calcaneus_ptc_combined = os.path.join(patient_path, 'Aligned_with_talus',

'combined_calc_stl')

 input_talus = os.path.join(patient_path, 'Aligned_with_talus', 'talus')

 input_talus_ptc = os.path.join(patient_path, 'Aligned_with_talus', 'talus_PTC')

 # Create the combined calcaneus file per patient with patient number and side

indicator

 combine_stl_files(input_calcaneus, input_calcaneus_ptc_combined, output_file,

patient_number, side_indicator)

 for filename_calcaneus, filename_calcaneus_ptc_combined, filename_talus,

filename_talus_ptc in zip(

 os.listdir(input_calcaneus), os.listdir(input_calcaneus_ptc_combined),

 os.listdir(input_talus), os.listdir(input_talus_ptc)):

 filenames.append(f"{patient_name}_{filename_calcaneus}")

 calcaneus_mesh = load_and_decimate_mesh(os.path.join(input_calcaneus,

filename_calcaneus), point_threshold=5000)

 calcaneus_ptc_mesh =

load_and_decimate_mesh(os.path.join(input_calcaneus_ptc_combined,

filename_calcaneus_ptc_combined), point_threshold=5000)

 if side_indicator == 'L':

 talus_template_path = input_talus_template_left

 calcaneus_template_path = input_calcaneus_template_left

 elif side_indicator == 'R':

 talus_template_path = input_talus_template_right

 calcaneus_template_path = input_calcaneus_template_right

 else:

 print(f"Unknown side indicator {side_indicator} for patient

{patient_number}. Skipping.")

 continue

 talus_mesh = load_and_decimate_mesh(os.path.join(input_talus, filename_talus),

point_threshold=5000)

46

 talus_mesh_template = load_and_decimate_mesh(talus_template_path,

point_threshold=5000)

 talus_ptc_mesh = load_and_decimate_mesh(os.path.join(input_talus_ptc,

filename_talus_ptc), point_threshold=5000)

 calcaneus_template_mesh = load_and_decimate_mesh(calcaneus_template_path,

point_threshold=5000)

 com_calcaneus = calcaneus_mesh.center_of_mass()

 com_calcaneus_ptc = calcaneus_ptc_mesh.center_of_mass()

 direction_calc_to_ptc_joint = com_calcaneus_ptc - com_calcaneus

 com_talus = talus_mesh.center_of_mass()

 com_talus_ptc = talus_ptc_mesh.center_of_mass()

 direction_talus_to_ptc_joint = com_talus_ptc - com_talus

 center_tub, cloud_tub, principal_components, cloud_ptc =

compute_center_of_point_cloud(

 calcaneus_ptc_mesh.points, com_talus_ptc, com_calcaneus_ptc)

 normals_ptc_calcaneus = calcaneus_ptc_mesh.compute_normals(cell_normals=False)

 normals_ptc_talus = talus_ptc_mesh.compute_normals(cell_normals=False)

 filtered_normals_calcaneus, indices_calcaneus, filtered_points_calcaneus =

filter_normals_by_angle(

 normals_ptc_calcaneus, direction_calc_to_ptc_joint)

 if len(filtered_points_calcaneus) == 0: # Fallback: Use all points and

normals if filtering fails

 filtered_points_calcaneus = normals_ptc_calcaneus.points

 filtered_normals_calcaneus = normals_ptc_calcaneus.point_normals

 filtered_normals_talus, indices_talus, filtered_points_talus =

filter_normals_by_angle(

 normals_ptc_talus, direction_talus_to_ptc_joint)

 print(f"Processing patient {patient_number} ({side_indicator})")

 if filtered_points_calcaneus.size == 0:

 print(f"No filtered points for calcaneus in patient {patient_number}

({side_indicator})")

 # Ensure there are filtered points and normals to process

 if len(filtered_points_calcaneus) > 0:

 convex_hull_mesh = pv.PolyData(cloud_tub)

 convex_hull_mesh_ptc = pv.PolyData(cloud_ptc)

 filled_convex_full_mesh = convex_hull_mesh.delaunay_2d()

 filled_convex_full_mesh_ptc = convex_hull_mesh_ptc.delaunay_2d()

 normal_filled_convex_full_mesh_ptc =

filled_convex_full_mesh_ptc.compute_normals(cell_normals=False)

 normals_filled_convex_full_mesh_ptc =

normal_filled_convex_full_mesh_ptc.point_normals

47

 distances_to_calc, corresponding_point_calc, original_points,

original_vectors, _ = distance_PTC_joint_convex_hull(

 filtered_normals_talus, filtered_points_talus, calcaneus_ptc_mesh,

filled_convex_full_mesh)

 _, _, _, _, hull_intersections = distance_PTC_joint_convex_hull(

 normals_filled_convex_full_mesh_ptc,

filled_convex_full_mesh_ptc.points,

 calcaneus_ptc_mesh, filled_convex_full_mesh)

 hull_intersections_array = np.array(hull_intersections)

 mean_distance_PTC_joint = np.mean(distances_to_calc)

 # percentage_threshold = 0.50

 # distance_threshold = mean_distance_PTC_joint * (1 +

percentage_threshold)

 filtered_distances = [dist for dist in distances_to_calc] #if dist <=

distance_threshold]

 filtered_points = [point for dist, point in zip(distances_to_calc,

corresponding_point_calc)]# if dist <= distance_threshold]

 if len(filtered_points) == 0:

 print(f"No filtered points after distance thresholding in patient

{patient_number} ({side_indicator})")

 # Ensure there are filtered points to work with

 if len(filtered_points) > 0:

 filtered_points_3d = np.array(filtered_points)

 # Apply the evenly distribute points function to filtered points

 evenly_distribute_points_3d =

evenly_distribute_points_on_surface(filtered_points_3d)

 # Perform distance calculations using the evenly distributed points

 tree = cKDTree(filtered_points_calcaneus)

 closest_points_indices = tree.query(evenly_distribute_points_3d,

k=1)[1]

 closest_points_calcaneus =

np.array(filtered_points_calcaneus)[closest_points_indices]

 closest_normals_calcaneus =

np.array(filtered_normals_calcaneus)[closest_points_indices]

 distances_to_talus, corresponding_point_talus, original_point_calc,

original_vector_calc = distance_PTC_joint(

 closest_normals_calcaneus, closest_points_calcaneus,

talus_ptc_mesh)

 # Filter distances and points again based on the threshold

 filtered_points_calc = [(dist, point) for dist, point in

zip(distances_to_talus, original_point_calc)]# if dist <= distance_threshold]

48

 # Extract distances and points for further analysis

 distances = [dist for dist, point in filtered_points_calc]

 std_dev = np.std(distances)

 std_devs.append(std_dev)

 mean_distance_between_bones = np.mean(distances)

 combined_distances.append(mean_distance_between_bones)

 # Update points with filtered values

 points = [point for dist, point in filtered_points_calc]

 points_3d = np.array(points)

 # Calculate percentage of holes

 if cloud_ptc.size > 0:

 percentage_hole = (len(hull_intersections_array) * 100) /

len(cloud_ptc)

 else:

 percentage_hole = 0

 # Store patient results

 results.append([patient_name, mean_distance_between_bones, std_dev,

percentage_hole])

 else:

 print(f"Skipping patient {patient_number} ({side_indicator}) due to

insufficient data.")

 results.append([patient_name, float('nan'), float('nan'), 0])

 else:

 print(f"Skipping patient {patient_number} ({side_indicator}) due to

insufficient data.")

 results.append([patient_name, float('nan'), float('nan'), 0])

 # Prepare for visualization

 if len(filtered_points) > 0:

 colors = [

 (0.0, 1.0, 0.0), # Green

 (0.0, 0.8, 0.8), # Blue-Green

 (0.0, 0.0, 1.0), # Blue

 (0.5, 0.0, 1.0), # Purple-Blue

 (1.0, 0.0, 1.0), # Purple

]

 # Create a custom colormap

 custom_cmap = LinearSegmentedColormap.from_list('custom_cmap', colors,

N=256)

 pca = PCA(n_components=2)

 projected_points_2d = pca.fit_transform(points_3d)

 mean_3d = np.mean(points_3d, axis=0)

 projected_points_3d = projected_points_2d @ pca.components_[:2, :] +

mean_3d

 min_dist = min(distances)

 max_dist = max(distances)

49

 colors_1 = np.array([get_colored_distance(d, min_dist, max_dist,

custom_cmap) for d in distances])

 row_idx = patient_index // patients_per_row

 col_idx = patient_index % patients_per_row

 # Add each patient's results to the distance plotter's subplot

 distance_plotter.subplot(row_idx, col_idx)

 distance_plotter.add_points(points_3d, scalars=colors_1[:, :3], rgb=True,

point_size=3, render_points_as_spheres=True)

 #distance_plotter.add_mesh(talus_ptc_mesh, color="cyan", opacity=0.5)

 distance_plotter.add_mesh(calcaneus_ptc_mesh, color="orange")

 distance_plotter.add_text(f"{patient_name}", font_size=12)

 center_PTC_joint_calcaneus = pv.PolyData(com_calcaneus_ptc)

 convex_hull_ptc_calcaneus = pv.PolyData(cloud_tub)

 center_ptc_calcaneus = pv.PolyData(center_tub)

 start_point = center_tub

 end_point = center_tub + principal_components[2] * 10

 gap_area_plotter.subplot(row_idx, col_idx)

 #gap_area_plotter.add_mesh(center_ptc_calcaneus, color='pink',

point_size=7.0, render_points_as_spheres=True)

 gap_area_plotter.add_mesh(calcaneus_ptc_mesh, color="orange", opacity=0.5)

 gap_area_plotter.add_mesh(pv.Line(start_point, end_point), color='green',

line_width=5, label='3rd Principal Component')

 if hull_intersections:

 gap_area_plotter.add_points(hull_intersections_array, color='red',

point_size=5, label='Hull Intersections')

 gap_area_plotter.add_mesh(filled_convex_full_mesh, color='lightblue',

opacity=0.5, label='Convex Hull')

 gap_area_plotter.add_mesh(filled_convex_full_mesh_ptc, color='lightgreen',

opacity=0.5, label='Convex Hull')

 gap_area_plotter.add_axes()

 gap_area_plotter.add_text(f"{patient_name}", font_size=12)

Display all patients' distance plots together

distance_plotter.show()

Display all patients' gap area plots together

gap_area_plotter.show()

Calculate the mean

mean_distance = np.mean(combined_distances)

Save results to a CSV file in the base output directory

write_results_to_csv(results, base_output_dir)

Stop timing before the script ends

end_time = time.time() # Record the end time

elapsed_time = end_time - start_time

50

minutes, seconds = divmod(elapsed_time, 60)

hours, minutes = divmod(minutes, 60)

print(f"Total runtime (excluding folder selection): {int(hours)}h {int(minutes)}m

{int(seconds)}s")

51

Appendix E – Number of fragments, fragment area, and fracture area

calculations

import os

import numpy as np

from stl import mesh

import pyvista as pv

from collections import defaultdict

import tkinter as tk

from tkinter import filedialog

import trimesh

import scipy.sparse

import networkx as nx

from scipy.spatial import Delaunay

import pandas as pd

import time

def calculate_normal(v0, v1, v2):

 """Calculate the normal vector of the triangle."""

 return np.cross(v1 - v0, v2 - v0)

def dihedral_angle(normal1, normal2):

 """Calculate the dihedral angle between two normals."""

 cosine_angle = np.dot(normal1, normal2) / (np.linalg.norm(normal1) *

np.linalg.norm(normal2))

 cosine_angle = np.clip(cosine_angle, -1.0, 1.0)

 return np.arccos(cosine_angle)

def find_sharp_edges(stl_mesh, threshold_angle):

 """Find sharp edges in the mesh based on the dihedral angle threshold."""

 edges = {}

 for i, face in enumerate(stl_mesh.vectors):

 normal = calculate_normal(face[0], face[1], face[2])

 for j in range(3):

 edge = tuple(sorted((tuple(face[j]), tuple(face[(j + 1) % 3]))))

 if edge not in edges:

 edges[edge] = []

 edges[edge].append((i, normal))

 sharp_edges = []

 threshold_radians = np.radians(threshold_angle)

 for edge, normals in edges.items():

 if len(normals) == 2:

 angle = dihedral_angle(normals[0][1], normals[1][1])

 if angle > threshold_radians:

 sharp_edges.append((edge, [n[0] for n in normals]))

 return sharp_edges

def build_edge_graph(sharp_edges):

 """Build a graph of sharp edges where vertices are connected edges."""

 edge_graph = defaultdict(set)

52

 for edge, _ in sharp_edges:

 v0, v1 = edge

 edge_graph[v0].add(edge)

 edge_graph[v1].add(edge)

 return edge_graph

def find_connected_components(edge_graph):

 """Find connected components in the edge graph."""

 visited = set()

 components = []

 def dfs(node, component):

 stack = [node]

 while stack:

 v = stack.pop()

 if v not in visited:

 visited.add(v)

 component.add(v)

 for neighbor_edge in edge_graph[v]:

 for neighbor in neighbor_edge:

 if neighbor not in visited:

 stack.append(neighbor)

 for node in edge_graph:

 if node not in visited:

 component = set()

 dfs(node, component)

 components.append(component)

 return components

def filter_connected_sharp_edges(sharp_edges, min_size=5):

 """Filter sharp edges to keep only those in large connected components."""

 edge_graph = build_edge_graph(sharp_edges)

 components = find_connected_components(edge_graph)

 # Filter out small components, keeping only large connected components

 large_components = [comp for comp in components if len(comp) > min_size]

 connected_sharp_edges = []

 for edge, triangles in sharp_edges:

 v0, v1 = edge

 for comp in large_components:

 if v0 in comp or v1 in comp:

 connected_sharp_edges.append((edge, triangles))

 break

 return connected_sharp_edges

def create_region_mesh(stl_mesh, sharp_edges):

 """Create a mesh of all triangles encaptured by sharp edges and return the triangles

array."""

 edge_triangles = set()

53

 for edge, triangle_indices in sharp_edges:

 for triangle_index in triangle_indices:

 edge_triangles.add(triangle_index)

 triangles = []

 for triangle_index in edge_triangles:

 triangles.append(stl_mesh.vectors[triangle_index])

 return np.array(triangles)

def save_mesh_as_stl(triangles, file_path):

 """Save the triangles as an STL file."""

 if triangles.size == 0:

 print(f"No triangles to save for {file_path}")

 return

 region_mesh = mesh.Mesh(np.zeros(triangles.shape[0], dtype=mesh.Mesh.dtype))

 for i, triangle in enumerate(triangles):

 region_mesh.vectors[i] = triangle

 region_mesh.save(file_path)

def extract_boundary_points(sharp_edges):

 """Extract boundary points from sharp edges."""

 points = set()

 for edge, _ in sharp_edges:

 points.add(edge[0])

 points.add(edge[1])

 return np.array(list(points))

def create_surface_mesh(boundary_points):

 """Create a surface mesh using Delaunay triangulation."""

 if len(boundary_points) < 3:

 print("Not enough points to perform triangulation.")

 return None

 tri = Delaunay(boundary_points[:, :2]) # Perform 2D Delaunay triangulation on the XY

plane

 triangles = boundary_points[tri.simplices]

 return triangles

def save_surface_mesh(triangles, file_path):

 """Save the surface mesh as an STL file."""

 if triangles is None or triangles.size == 0:

 print(f"No triangles to save for {file_path}")

 return

 surface_mesh = mesh.Mesh(np.zeros(triangles.shape[0], dtype=mesh.Mesh.dtype))

 for i, triangle in enumerate(triangles):

 surface_mesh.vectors[i] = triangle

 surface_mesh.save(file_path)

 print(f"Saved surface mesh to {file_path}")

54

def calculate_surface_area(triangles):

 """Calculate the surface area of the mesh."""

 if triangles.size == 0:

 return 0.0

 def triangle_area(triangle):

 a = np.linalg.norm(triangle[1] - triangle[0])

 b = np.linalg.norm(triangle[2] - triangle[0])

 c = np.linalg.norm(triangle[2] - triangle[1])

 s = (a + b + c) / 2

 return np.sqrt(s * (s - a) * (s - b) * (s - c))

 return sum(triangle_area(triangle) for triangle in triangles)

def create_and_save_surface_mesh(sharp_edges, output_path):

 """Extract boundary points, create a surface mesh, and save it as an STL file."""

 boundary_points = extract_boundary_points(sharp_edges)

 surface_triangles = create_surface_mesh(boundary_points)

 save_surface_mesh(surface_triangles, output_path)

 return surface_triangles

def process_individual_file(file_path, output_path, surface_output_path,

threshold_angle=10, min_size=20):

 """Process a single STL file for edge detection and save the region mesh and surface

mesh."""

 stl_mesh = mesh.Mesh.from_file(file_path)

 sharp_edges = find_sharp_edges(stl_mesh, threshold_angle)

 connected_sharp_edges = filter_connected_sharp_edges(sharp_edges, min_size)

 region_triangles = create_region_mesh(stl_mesh, connected_sharp_edges)

 save_mesh_as_stl(region_triangles, output_path)

 surface_triangles = create_and_save_surface_mesh(connected_sharp_edges,

surface_output_path)

 return surface_triangles

def create_combined_surface_mesh(surface_folder, combined_output_path):

 """Create a combined surface mesh from all surface meshes in the surface folder."""

 boundary_points = []

 for filename in os.listdir(surface_folder):

 if filename.endswith(".stl"):

 surface_mesh = mesh.Mesh.from_file(os.path.join(surface_folder, filename))

 for v in surface_mesh.vectors:

 boundary_points.extend(v)

 boundary_points = np.array(boundary_points)

 if len(boundary_points) < 3:

 print("Not enough points to perform triangulation.")

 return

55

 combined_surface_triangles = create_surface_mesh(boundary_points)

 save_surface_mesh(combined_surface_triangles, combined_output_path)

 return combined_surface_triangles

def visualize_all_stl(input_folder, edge_folder, surface_folder, combined_surface_path,

areas):

 """Visualize original STL files, edges, and surface meshes."""

 input_files = [f for f in os.listdir(input_folder) if f.endswith('.stl')]

 # Filter out fragments with no valid surface area

 valid_areas = [i for i, area in enumerate(areas[:-1]) if "fragment_area" in area]

 num_valid_fragments = len(valid_areas)

 plotter = pv.Plotter(shape=(num_valid_fragments + 1, 3), window_size=[1200, 400 *

(num_valid_fragments + 1)])

 for i, valid_index in enumerate(valid_areas):

 filename = input_files[valid_index]

 input_file = os.path.join(input_folder, filename)

 edge_file = os.path.join(edge_folder,

f"{os.path.splitext(filename)[0]}_region.stl")

 surface_file = os.path.join(surface_folder,

f"{os.path.splitext(filename)[0]}_surface.stl")

 original_mesh = pv.read(input_file)

 # Check if the edge file exists

 if os.path.exists(edge_file):

 edge_mesh = pv.read(edge_file)

 else:

 edge_mesh = None

 print(f"Edge file not found: {edge_file}")

 # Check if the surface file exists

 if os.path.exists(surface_file):

 surface_mesh = pv.read(surface_file)

 else:

 surface_mesh = None

 print(f"Surface file not found: {surface_file}")

 plotter.subplot(i, 0)

 plotter.add_mesh(original_mesh, color='white')

 plotter.add_title(f'Original {filename}\nArea:

{areas[valid_index]["fragment_area"]:.2f} mm²', font_size=10)

 plotter.subplot(i, 1)

 plotter.add_mesh(original_mesh, color='white', opacity=0.7)

 if edge_mesh:

 plotter.add_mesh(edge_mesh, color='red')

 plotter.add_title(f'Edges {filename}', font_size=10)

56

 plotter.subplot(i, 2)

 if surface_mesh:

 plotter.add_mesh(surface_mesh, color='blue')

 plotter.add_title(f'Surface {filename}\nArea:

{areas[valid_index]["fragment_area"]:.2f} mm²', font_size=10)

 # Visualize combined surface mesh

 combined_surface_mesh = pv.read(combined_surface_path)

 combined_area = areas[-1]["combined_area"]

 fracture_area = combined_area - sum(area["fragment_area"] for area in areas[:-1] if

"fragment_area" in area)

 plotter.subplot(num_valid_fragments, 2)

 plotter.add_mesh(combined_surface_mesh, color='green')

 plotter.add_title(f'Combined Surface Mesh\nCombined Area: {combined_area:.2f}

mm²\nFracture Area: {max(fracture_area, 0):.2f} mm²', font_size=10)

 plotter.show()

if __name__ == "__main__":

 root = tk.Tk()

 root.withdraw()

 base_input_folder = filedialog.askdirectory(title="Select the base directory

containing patient folders")

 if not base_input_folder:

 print("No directory selected. Exiting.")

 exit()

 base_output_folder = filedialog.askdirectory(title="Select the base directory for

output files")

 if not base_output_folder:

 print("No output directory selected. Exiting.")

 exit()

 # Start timing after folder selection

 start_time = time.time() # Record the start time

 threshold_angle = 10

 min_size = 20

 results = [] # List to store results for each patient and fragment

 for patient_dir in os.listdir(base_input_folder):

 patient_input_folder = os.path.join(base_input_folder, patient_dir,

"Aligned_with_talus", "calcaneus")

 edge_output_folder = os.path.join(base_output_folder, patient_dir,

"Aligned_with_talus", "edges")

 combined_output_folder = os.path.join(base_output_folder, patient_dir,

"Aligned_with_talus", "combined_meshes_calc")

 surface_output_folder = os.path.join(base_output_folder, patient_dir,

"Aligned_with_talus", "surface_meshes")

57

 if not os.path.exists(patient_input_folder):

 print(f"Input folder not found: {patient_input_folder}")

 continue

 if not os.path.exists(edge_output_folder):

 os.makedirs(edge_output_folder)

 if not os.path.exists(surface_output_folder):

 os.makedirs(surface_output_folder)

 stl_files = [f for f in os.listdir(patient_input_folder) if f.endswith(".stl")]

 patient_areas = []

 fragment_triangles = []

 print(f"Processing patient: {patient_dir}")

 # Count the number of fragments for this patient

 num_fragments = len(stl_files)

 for filename in stl_files:

 input_path = os.path.join(patient_input_folder, filename)

 edge_output_path = os.path.join(edge_output_folder,

f"{os.path.splitext(filename)[0]}_region.stl")

 surface_output_path = os.path.join(surface_output_folder,

f"{os.path.splitext(filename)[0]}_surface.stl")

 surface_triangles = process_individual_file(input_path, edge_output_path,

surface_output_path, threshold_angle, min_size)

 # Check if surface_triangles is None or has no size (skip fragment if so)

 if surface_triangles is None or surface_triangles.size == 0:

 print(f"Skipping fragment {filename} due to insufficient points for

triangulation.")

 continue # Skip to the next fragment

 # Calculate area of the fragment

 fragment_area = calculate_surface_area(surface_triangles)

 patient_areas.append({"filename": filename, "fragment_area": fragment_area})

 # Store fragment triangles for comparison

 fragment_triangles.append(surface_triangles)

 # Create combined surface mesh and calculate its area

 combined_surface_path = os.path.join(surface_output_folder,

"combined_surface.stl")

 combined_surface_triangles = create_combined_surface_mesh(surface_output_folder,

combined_surface_path)

 combined_area = calculate_surface_area(combined_surface_triangles)

 total_fragment_area = sum(area["fragment_area"] for area in patient_areas)

 fracture_area = combined_area - total_fragment_area

 # Determine the appropriate fracture area description

58

 if len(stl_files) == 1:

 fracture_area_description = "No intra-articular fracture in the PTC joint

surface"

 fracture_percentage = "N/A"

 elif fracture_area < 0:

 fracture_area_description = "Fracture area is negligible"

 fracture_area = 0.0 # Ensure fracture_area is zero for the percentage

calculation

 fracture_percentage = "N/A"

 else:

 fracture_area_description = f"{fracture_area}"

 fracture_percentage = (fracture_area / combined_area) * 100

 patient_areas.append({"filename": "combined_surface", "combined_area":

combined_area, "fracture_area": fracture_area_description})

 # Add results for the patient including the number of fragments

 results.append({

 "Patient": patient_dir,

 "Number of Fragments": num_fragments, # New field for the number of fragments

 **{f"Area Fragment {i+1} (mm²)": area["fragment_area"] for i, area in

enumerate(patient_areas[:-1])},

 "Area of All Fragments (mm²)": total_fragment_area,

 "Combined Surface Area (mm²)": combined_area,

 "Fracture Area (mm²)": fracture_area_description,

 "Fracture Area (%)": fracture_percentage

 })

 # Stop timing before visualizations

 end_time = time.time() # Record the end time

 visualize_all_stl(patient_input_folder, edge_output_folder, surface_output_folder,

combined_surface_path, patient_areas)

 # Calculate the total elapsed time (in seconds) and convert to a readable format

 elapsed_time = end_time - start_time

 minutes, seconds = divmod(elapsed_time, 60)

 hours, minutes = divmod(minutes, 60)

 # Print the elapsed time

 print(f"Total runtime (excluding folder selection and visualization): {int(hours)}h

{int(minutes)}m {int(seconds)}s")

 # Save results to Excel

 df = pd.DataFrame(results)

 column_order = ['Patient', 'Number of Fragments'] + sorted([col for col in df.columns

if col.startswith("Area Fragment")], key=lambda x: int(x.split()[2])) + ['Area of All

Fragments (mm²)', 'Combined Surface Area (mm²)', 'Fracture Area (mm²)', 'Fracture Area

(%)']

 df = df[column_order]

59

 # Save the updated DataFrame to an Excel file

 output_excel_path = os.path.join(base_output_folder, "surface_and_fracture_area.xlsx")

 df.to_excel(output_excel_path, index=False)
 print(f"Saved surface areas with percentage to {output_excel_path}")

60

Appendix F – Maximal step-off and maximal gap measurements

import os

import pyvista as pv

import numpy as np

import pandas as pd

from tkinter import filedialog, Tk

import time

from scipy.spatial import ConvexHull, Delaunay

import re

import random

Define function to select directories

def select_directory(title):

 root = Tk()

 root.withdraw() # Hide the main window

 folder_path = filedialog.askdirectory(title=title)

 return folder_path

Select the base output directory

base_output_dir = select_directory("Select the base output directory where the STL files

are stored")

Start timing after file selection

start_time = time.time() # Record the start time

combined_distances = [] # List to store distances for each patient

results = []

Function to shrink the convex hull by scaling points inward towards the centroid

def shrink_convex_hull(points, scale_factor=1):

 centroid = np.mean(points, axis=0)

 shrunk_points = centroid + scale_factor * (points - centroid)

 return shrunk_points

Function to project a point onto a plane defined by the combined convex hull and third

component

def project_onto_plane(point, plane_point, normal_vector):

 vector = point - plane_point

 distance_to_plane = np.dot(vector, normal_vector)

 projected_point = point - distance_to_plane * normal_vector

 return projected_point

Function to filter points inside the 2D convex hull

def filter_points_in_hull(points_2d, hull_2d):

 delaunay = Delaunay(hull_2d)

 mask = delaunay.find_simplex(points_2d) >= 0 # Check if the points are inside the

Delaunay triangulation

 return points_2d[mask]

Function to check if any fragment intervenes within a specific radius of the mutual

closest point line

61

def is_fragment_in_between_2d_radius(proj_point1, proj_point2, projected_fragments,

exclude_indices, tolerance=0.1):

 line_vector = proj_point2[:2] - proj_point1[:2]

 line_length = np.linalg.norm(line_vector)

 normalized_line_vector = line_vector / line_length

 for idx, fragment in enumerate(projected_fragments):

 if idx in exclude_indices: # Skip the fragments that are being evaluated

 continue

 for point in fragment:

 projection_length = np.dot((point[:2] - proj_point1[:2]),

normalized_line_vector)

 if 0 <= projection_length <= line_length:

 closest_point_on_line = proj_point1[:2] + projection_length *

normalized_line_vector

 distance_to_line = np.linalg.norm(point[:2] - closest_point_on_line)

 if distance_to_line <= tolerance:

 return True

 return False

Function to find mutual closest pairs based on 2D distances on the convex hull after

projection

def find_mutual_closest_combined_line(fragment_hulls, combined_hull, third_component,

tolerance=0.1):

 longest_total_line = None

 max_total_length = -np.inf

 max_gap_pair = None

 max_gap_length = -np.inf

 mutual_closest_pairs = []

 projected_fragments = []

 original_fragments = []

 for fragment in fragment_hulls:

 projected_points = []

 original_points = []

 for point in fragment.points:

 projected_point = project_onto_plane(point, np.mean(combined_hull.points,

axis=0), third_component)

 projected_points.append(projected_point)

 original_points.append(point)

 projected_fragments.append(np.array(projected_points))

 original_fragments.append(np.array(original_points))

 for i in range(len(fragment_hulls)):

 for j in range(i + 1, len(fragment_hulls)):

 fragment1_projected = projected_fragments[i]

 fragment2_projected = projected_fragments[j]

 fragment1_original = original_fragments[i]

 fragment2_original = original_fragments[j]

62

 for idx1, proj_point1 in enumerate(fragment1_projected):

 min_distance = np.inf

 closest_idx2 = None

 for idx2, proj_point2 in enumerate(fragment2_projected):

 distance = np.linalg.norm(proj_point1[:2] - proj_point2[:2])

 if distance < min_distance:

 min_distance = distance

 closest_idx2 = idx2

 closest_back_idx1 = None

 min_back_distance = np.inf

 for idx_back, proj_point_back in enumerate(fragment1_projected):

 distance_back = np.linalg.norm(proj_point_back[:2] -

fragment2_projected[closest_idx2][:2])

 if distance_back < min_back_distance:

 min_back_distance = distance_back

 closest_back_idx1 = idx_back

 if closest_back_idx1 == idx1:

 point1 = fragment1_original[idx1]

 point2 = fragment2_original[closest_idx2]

 projected1 = fragment1_projected[idx1]

 projected2 = fragment2_projected[closest_idx2]

 if not is_fragment_in_between_2d_radius(projected1, projected2,

projected_fragments, exclude_indices=[i, j], tolerance=tolerance):

 mutual_closest_pairs.append((point1, point2, projected1,

projected2))

 gap_length = np.linalg.norm(projected1[:2] - projected2[:2])

 if gap_length > max_gap_length:

 max_gap_length = gap_length

 max_gap_pair = (projected1, projected2)

 for point1, point2, projected1, projected2 in mutual_closest_pairs:

 length1 = np.linalg.norm(point1 - projected1)

 length2 = np.linalg.norm(point2 - projected2)

 side1 = np.sign(np.dot(point1 - np.mean(combined_hull.points, axis=0),

third_component))

 side2 = np.sign(np.dot(point2 - np.mean(combined_hull.points, axis=0),

third_component))

 if side1 == side2:

 total_length = abs(length1 - length2)

 else:

 total_length = abs(length1 + length2)

 if total_length > max_total_length:

 max_total_length = total_length

 longest_total_line = (point1, point2, projected1, projected2)

63

 return mutual_closest_pairs, longest_total_line, max_total_length, max_gap_length,

max_gap_pair

Function to generate random colors

def generate_random_color():

 return [random.uniform(0, 1) for _ in range(3)]

Function to create a 3D convex hull mesh and return it for plotting

def create_transparent_convex_hull_mesh_3d(mesh, scale_factor=1):

 points = mesh.points

 if points.shape[0] > 0:

 if points.shape[0] < 4:

 print("Not enough points to create a 3D convex hull.")

 return None, None, None

 mean = np.mean(points, axis=0)

 centered_points = points - mean

 U, S, Vt = np.linalg.svd(centered_points)

 principal_components = Vt[:2].T

 third_component = Vt[2]

 points_2d = centered_points @ principal_components

 hull = ConvexHull(points_2d)

 hull_points_2d = points_2d[hull.vertices]

 shrunk_hull_points_2d = shrink_convex_hull(hull_points_2d, scale_factor)

 shrunk_hull_points_3d = shrunk_hull_points_2d @ principal_components.T + mean

 convex_hull_3d = ConvexHull(shrunk_hull_points_3d)

 faces = convex_hull_3d.simplices

 face_array = np.column_stack((np.full(len(faces), 3), faces))

 mesh = pv.PolyData(shrunk_hull_points_3d, face_array)

 return mesh, principal_components, third_component

 return None, None, None

Function to plot patient results with transparent convex hull

def plot_patient(filled_hull, fragment_hulls, fragment_colors, patient_name,

mutual_closest_pairs, longest_total_line=None, max_gap_pair=None):

 plotter = pv.Plotter()

 plotter.add_mesh(filled_hull, color='purple', opacity=0.2, line_width=1)

 for hull, color in zip(fragment_hulls, fragment_colors):

 plotter.add_mesh(hull, color=color, line_width=2, point_size=3.0,

render_points_as_spheres=True)

 for (point1, point2, projected1, projected2) in mutual_closest_pairs:

 line1 = pv.Line(point1, projected1)

 line2 = pv.Line(point2, projected2)

 plotter.add_mesh(line1, color='green', line_width=2)

 plotter.add_mesh(line2, color='green', line_width=2)

 connection_line = pv.Line(projected1, projected2)

 plotter.add_mesh(connection_line, color='purple', line_width=2)

 if longest_total_line is not None:

64

 point1, point2, projected1, projected2 = longest_total_line

 line1 = pv.Line(point1, projected1)

 line2 = pv.Line(point2, projected2)

 plotter.add_mesh(line1, color='red', line_width=3)

 plotter.add_mesh(line2, color='red', line_width=3)

 connection_line = pv.Line(projected1, projected2)

 plotter.add_mesh(connection_line, color='lightblue', line_width=5)

 length1 = np.linalg.norm(point1 - projected1)

 length2 = np.linalg.norm(point2 - projected2)

 side1 = np.sign(np.dot(point1 - np.mean(filled_hull.points, axis=0),

third_component))

 side2 = np.sign(np.dot(point2 - np.mean(filled_hull.points, axis=0),

third_component))

 if side1 == side2:

 total_length = abs(length1 - length2)

 print(f"Patient {patient_name} - Maximal Step: {length1:.2f} mm -

{length2:.2f} mm = {total_length:.2f} mm (same side)")

 else:

 total_length = abs(length1 + length2)

 print(f"Patient {patient_name} - Maximal Step: {length1:.2f} mm +

{length2:.2f} mm = {total_length:.2f} mm (opposite sides)")

 if max_gap_pair is not None:

 projected1, projected2 = max_gap_pair

 gap_line = pv.Line(projected1, projected2)

 plotter.add_mesh(gap_line, color='orange', line_width=4)

 gap_length = np.linalg.norm(projected1[:2] - projected2[:2])

 print(f"Patient {patient_name} - Maximal Gap: {gap_length:.2f} mm")

 plotter.add_text(f"Patient {patient_name}: maximal step", font_size=12)

 plotter.show()

Main processing loop

for patient_dir in os.listdir(base_output_dir):

 patient_path = os.path.join(base_output_dir, patient_dir)

 if os.path.isdir(patient_path):

 match = re.search(r'(\d+)([RL])$', patient_dir)

 if match:

 patient_number = match.group(1)

 side_indicator = match.group(2)

 patient_name = f"{patient_number}{side_indicator}"

 combined_stl_file = os.path.join(patient_path, 'Aligned_with_talus',

'combined_calc_stl', f"combined_calcaneus_patient{patient_number}_{side_indicator}.stl")

 fragments_dir = os.path.join(patient_path, 'Aligned_with_talus', 'edges')

 if os.path.exists(combined_stl_file) and os.path.exists(fragments_dir):

 calcaneus_ptc_mesh = pv.read(combined_stl_file)

 transparent_hull_mesh, principal_components, third_component =

create_transparent_convex_hull_mesh_3d(calcaneus_ptc_mesh)

 fragment_hulls = []

65

 fragment_colors = []

 for stl_file in os.listdir(fragments_dir):

 if stl_file.endswith(".stl"):

 fragment_mesh = pv.read(os.path.join(fragments_dir, stl_file))

 fragment_hull = shrink_convex_hull(fragment_mesh.points,

scale_factor=0.9)

 if fragment_hull is not None:

 fragment_hulls.append(pv.PolyData(fragment_hull))

 fragment_colors.append(generate_random_color())

 if len(fragment_hulls) > 1:

 mutual_closest_pairs, longest_total_line, max_total_length,

max_gap_length, max_gap_pair = find_mutual_closest_combined_line(

 fragment_hulls, transparent_hull_mesh, third_component,

tolerance=0.1

)

 combined_distances.append({

 "Patient": patient_name,

 "Maximal step-off (mm)": max_total_length,

 "Maximal gap (mm)": max_gap_length

 })

 plot_patient(transparent_hull_mesh, fragment_hulls, fragment_colors,

patient_name, mutual_closest_pairs, longest_total_line, max_gap_pair)

 else:

 print(f"Skipping patient {patient_name}: No valid convex hulls or only

one fragment found.")

 combined_distances.append({

 "Patient": patient_name,

 "Maximal step-off (mm)": 0,

 "Maximal gap (mm)": 0

 })

 else:

 print(f"Combined STL file or edges folder not found for {patient_name}.

Skipping this patient.")

 combined_distances.append({

 "Patient": patient_name,

 "Maximal step-off (mm)": 0,

 "Maximal gap (mm)": 0

 })

 else:

 print(f"Skipping patient {patient_dir}: no valid side indicator found.")

 combined_distances.append({

 "Patient": patient_dir,

 "Maximal step-off (mm)": 0,

 "Maximal gap (mm)": 0

 })

Stop timing before the script ends

end_time = time.time()

elapsed_time = end_time - start_time

66

minutes, seconds = divmod(elapsed_time, 60)

hours, minutes = divmod(minutes, 60)

print(f"Total runtime: {int(hours)}h {int(minutes)}m {int(seconds)}s")

Save combined distances to Excel file with correct column names

df = pd.DataFrame(combined_distances)

output_file = os.path.join(base_output_dir, "maximal_step_and_maximal_gap_3d.xlsx")

df.to_excel(output_file, index=False)

print(f"Results saved to {output_file}")

67

Appendix G – Manual measurements tool in MEVISLAB

Overview of the model connections:

The tool was designed by connecting various MeVisLab modules to enable seamless interaction between the

visualization and analysis of patient data, supporting both manual measurement and classification

workflows.

Figure 11: Overview of the model connections

MEVISLAB script

Custom scripting was integrated to automate data processing steps and enhance user interaction, allowing

efficient calculation of maximal gap and step-off distances directly from the patient’s CT scans.

Interface {

 Parameters {

 Field Sanders_classification {

 type = String

 value = 0,1,2,3,4

 }

 Field targetFileName { type = string isFilePath = Yes}

 Field targetSavePath { type = string isFilePath = Yes}

 }

}

Window {

 title = "Sander Classification"

 Horizontal "Sanders classification and gap and step measurements"{

 Splitter {

 Category {

 Field ImageLoad.filename {

 title = "Browse for CT scans"

 browseMode = open

 expandX = Yes

 expandY = Yes

 }

 Box {

 Button ImageFromFile.openInputFile {

 title = "Load File"

68

 expandX = Yes

 expandY = Yes

 }

 }

 viewer OrthoView2D.self {

 type = SoRenderArea

 ph = 1024

 pw = 1024

 expandX = true

 expandY = true

 }

 Button {

 title = "Save DICOM"

 expandX = True

 expandY = True

 }

 }

 }

 Category {

 Box "User guided interface Sander Classification" {

 HyperText {

 text = "

 <h2>Adjust Image:</h2>

 Dragging: Shift + click mousewheel

 Zooming: Ctrl + click mousewheel

 Brightness: Right click

 <hr>

 <h2>Sanders Classification:</h2>

 <p>Choose the correct Sanders classification type from the drop-down menu(Sanders type 1, 2, 3, or 4).

 <hr>

 <h2>Gap and Step Measurements:</h2>

 <p>Measure the largest gap and step present in the PTC

 <h3>Gap Measurement</h3>

 Press Alt and left-click for the first point of the measurement.

 Move the line to the desired second point.

 Press Alt and set the second point of the gap measurement.

 <h3>Step Measurement</h3>

 Press Alt and left-click for the first point of the measurement.

 Move the line to the desired second point.

 Press Alt and set the second point of the step measurement.

 <p>If the measurements are incorrect, press the 'Delete all lines' button. Note: both lines will be removed.</p>

 <p>When you are satisfied with the measurements, save the data by clicking the 'Save data' button. After that, you can load in a new

patient.</p>"

 ph = 400

 pw = 700

 }

 viewer View2D.self {

 type = SoRenderArea

69

 ph = 300

 pw = 700

 expandX = true

 expandY = true

 }

 Box {

 expandY = True

 expandX = True

 title = "Sanders Classification"

 alignX = Center

 ComboBox StringUtils.string1 {

 comboField = Sanders_classification

 editable = False

 width = 512

 }}

 Box {

 title = "Measure largest step and Gap"

 alignX = Center

 width = 512

 expandX = True

 expandY = True

 Field CSOInfo_Gap.csoLength {

 title = "Largest Gap in mm"

 width = 512

 alignX = Center

 }

 Field CSOinfo_Step.csoLength {

 title = "Largest Step in mm"

 width = 512

 alignX = Center

 }

 Button CSOListContainer.clear {

 title = "Delete all lines"

 expandX = True

 expandY = True

 }

 }

 Box {

 Button RunPythonScript.execute {

 title = "Save Data"

 expandX = True

 expandY = True

 }

 }

 }

 }

}

}

MEVISLAB Graphical User Interface (GUI)

A user-friendly GUI was developed, providing surgeons with an intuitive interface for performing manual

measurements and assigning a Sanders classification to each patient. The interface also included an

instructions section to guide users through the measurement process, further streamlining the evaluation

procedure. The files uploaded in the GUI were the NIfTI files of the CT scans, which were resliced parallel

70

to the joint surfaces of the subtalar joint.

Figure 12: GUI used for manual measurements

71

Appendix H – distance plots

Plots for all 44 patients from the training dataset

Figure 13: distance plots of the 44 patients from the training dataset. The points are color-coded according to their distance from the PTF, transitioning smoothly from green for the closest points, to purple for the

most distant points. The PTC surface mesh is visualized in orange.

72

Plots for 10 patients from the external validation dataset – segmentations by nnU-Net

Figure 14: distance plots of the 10 patients from the external validation dataset, where the segmentations are made by nnU-Net. The points are color-coded according to their distance from the PTF, transitioning

smoothly from green for the closest points, to purple for the most distant points. The PTC surface mesh is visualized in orange.

Plots for 10 patients from the external validation dataset – segmentations manual

Figure 15: distance plots of the 10 patients from the external validation dataset, where the segmentations are made manually. The points are color-coded according to their distance from the PTF, transitioning

smoothly from green for the closest points, to purple for the most distant points. The PTC surface mesh is visualized in orange.

73

Plots for 23 patients from the external validation dataset – segmentations by nnU-Net

Figure 16: distance plots of the 23 patients from the external validation dataset, where the segmentations are made by nnU-Net. The points are color-coded according to their distance from the PTF, transitioning

smoothly from green for the closest points, to purple for the most distant points. The PTC surface mesh is visualized in orange.

74

Appendix I – Gap area plots

Gap area plots for all 44 patients from the training dataset

Figure 17: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for all 44

patients from the training data set.

75

Gap area plots for 10 patients from the external validation dataset – segmentations by nnU-Net

Figure 18: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for 10

patients from the external validation dataset, where segmentations were created by nnU-Net.

Gap area plots for 10 patients from the external validation dataset – segmented manually

Figure 19: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for 10

patients from the external validation dataset, where segmentations were created manually.

76

Gap area plots for 23 patients from the external validation dataset – segmentations by nnU-Net

Figure 20: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for 23

patients from the external validation dataset, where segmentations were created by nnU-Net

77

Appendix J – Example patient: fragment and fracture area visualization

A = created smoothed STL files per fragment of example patient from training set, B = fragments including boundary mesh visualized in red, C = fragment surface area after Delaunay triangulation, D = surface

area of all fragments combined after Delaunay triangulation

78

Appendix K – Maximal step-off and maximal gap visualization

Maximal step-off and maximal gap visualization of all 44 patients from training dataset

Figure 21: Maximal step-off (red lines) and maximal gap (orange line) for all 44 patients in the training dataset. When only one line is shown, a single mutual closest point pair represents both the maximal step-off

and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations.

79

Maximal step-off and maximal gap visualization of 10 patients from external validation dataset – segmented manually

Figure 22: Maximal step-off (red lines) and maximal gap (orange line) for 10 patients in the external validation dataset where segmentation were created manually. When only one line is shown, a single mutual

closest point pair represents both the maximal step-off and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations.

Maximal step-off and maximal gap visualization of 10 patients from external validation dataset – segmented by nnU-Net

Figure 23: Maximal step-off (red lines) and maximal gap (orange line) for 10 patients in the external validation dataset where segmentation were created by nnU-Net. When only one line is shown, a single mutual

closest point pair represents both the maximal step-off and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations.

80

Maximal step-off and maximal gap visualization of 23 patients from external validation dataset – segmented by nnU-Net

Figure 24: Maximal step-off (red lines) and maximal gap (orange line) for 23 patients in the external validation dataset where segmentation were created by nnU-Net. When only one line is shown, a single mutual

closest point pair represents both the maximal step-off and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations

