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Abstract 
Introduction 

Calcaneus fractures represent 60% of tarsal bone fractures and are particularly challenging to assess 

when they involve the posterior talocalcaneal (PTC) facet. Accurate evaluation of intra-articular 

fractures, including metrics such as gap area and step-off, is crucial for treatment planning but remains 

difficult due to limitations of using 2D cross-sections from 3D CT imaging. Deciding between surgical 

or conservative management from these images often leads to significant inter- and intra-observer 

variability, complicating clinical decisions and affecting outcomes. This study aims to develop and 

validate an AI-based method for automatic segmentation and 3D quantitative analysis of PTC fractures, 

improving assessment and providing more objective data for decision-making.  

Methods 

A retrospective study was conducted on CT scans from 44 patients for training using 5-fold cross-

validation and 33 patients for external validation. The nnU-Net framework was trained to segment the 

PTC fragments and posterior talar facet (PTF). Automatic 3D measurements, including gap area, inter-

articular distances, maximal step-off, and maximal gap, were computed from the segmented models. 

Results were validated against manual 2D measurements performed by two observers, as well as through 

comparison with the external validation set. 

Results  

The nnU-Net achieved a Dice score of 0.78 for PTC segmentation in the training set and 0.75 in the 

external validation set. Moderate positive correlations were observed between the 3D automatic 

measurements and manual 2D measurements. Specifically, the correlation between 3D gap area and 2D 

maximal gap measurement was Spearman’s rho = 0.62, while the correlation between 3D and 2D 

maximal step-off measurements was rho = 0.52. Additional correlations were found between the 3D 

fracture area and the 2D maximal gap and step-off measurements, with rho values of 0.65 and 0.64, 

respectively, indicating that the 3D analysis is consistent with corresponding 2D measurements. 

Conclusion 

This study introduces an AI-based method for automatic 3D analysis of calcaneus fractures, offering 

faster and more detailed fracture metrics, which may improve treatment planning over traditional 2D 

slice evaluations. 
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1. | Introduction  
Calcaneus fractures account for 60% of tarsal bone fractures (1). These fractures typically result from 

concentrated axial loading forces, such as those occurring after a fall or jump from a height, or as a result 

of a road traffic incident, where the impact drives the talus bone distally into the calcaneus. Calcaneus 

fractures can be classified into extra- and intra-articular types. Intra-articular fractures involve the 

calcaneocuboid joint or any of the three subtalar joint surfaces. Among the subtalar joint surfaces, the 

posterior talocalcaneal (PTC) joint facet is the largest and serves as the primary weight-bearing surface 

of the calcaneus, forming a joint with the posterior talar facet (PTF) (Figure 1). The PTC is the most 

frequently fractured surface in displaced intra-articular calcaneal fractures (2). Achieving anatomical 

reduction of the PTC facet during calcaneus fracture surgery is essential, as it plays a pivotal role in 

determining the overall outcome and functionality of the foot (3,4).  

 

The primary goal of treating calcaneus fractures is to restore or maintain the congruent shape of the 

calcaneus, particularly the joint surfaces, maintain the height of the calcaneus, and the length and width 

of the heel. Treatment options considered vary between conservative, open reduction and internal 

fixation (ORIF), minimally invasive approaches, and primary joint arthrodesis. If calcaneus fractures 

are not properly managed, they can lead to deformities of the hindfoot and arthritis of the subtalar joint 

and calcaneocuboid joint. The optimal management approach, whether conservative or surgical, is 

determined by a range of factors, including fracture type (intra-articular or extra-articular), the extent of 

comminution, the degree of displacement, as well as additional radiological findings and patient-specific 

characteristics. These fractures are typically assessed and classified using computed tomography (CT) 

scans.  

 

Although the calcaneus is the most frequently fractured tarsal bone, there are numerous controversies 

surrounding the management of these fractures, particularly intra-articular fractures (5). The complexity 

is compounded by the inherent challenges observers face when interpreting CT scans, even with high-

resolution techniques. While CT scans provide detailed information, observers are limited by two-

dimensional (2D) slices or 3D reconstructions of entire bones, making it difficult to accurately evaluate 

joint surface areas. This limitation can hinder the evaluation of fracture fragment displacement, 

including critical metrics such as gap and step-off measurements. These measurements are particularly 

challenging, as they often span multiple slices and involve assessing the complex 3D relationships 

between fracture fragments, making it difficult to determine the true extent of displacement in intra-

articular fractures.  

 

To address these challenges, a broader effort in evaluating morphological aspects of fractures using 3D 

reconstructions has been initiated, as highlighted in the study by Wakker et al. (6), which introduced a 

novel method for performing detailed morphological measurements on three-dimensional models. 

Building on this, the present study focuses on the application of AI-based automatic analysis specifically 

for intra-articular fractures of the PTC of the calcaneus. 

 

Moreover, there is currently no universally established protocol that unequivocally prescribes open 

reduction for intra-articular calcaneus fractures. The Sanders classification, which categorizes fractures 

based on the number of fracture lines and their involvement in the PTC, is widely used but remains a 

subject of ongoing debate and does not fully resolve this issue (7,8). These complexities often result in 

significant inter- and intra-observer variability in Sanders classification(9–11) and the assessment of 

fracture displacement, including gap and step-off (12). While few studies have focused specifically on 

calcaneus fractures, similar issues have been observed with other types of fractures (13). Additionally, 
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due to the difficulties in consistently classifying fractures and assessing displacement, it is challenging 

to determine whether a patient would benefit from a particular treatment in terms of achieving a better 

clinical outcome (8). 

 

Lastly, the comprehensive analysis required for accurate interpretation of CT scans can be time-

consuming. Due to these limitations, quantitative measurements on CT scans for calcaneus fractures are 

not frequently performed in clinical practice. The inherent variability in observer assessments, coupled 

with the time-intensive nature of reviewing multiple imaging planes, makes these measurements 

challenging to implement consistently. Consequently, the choice of treatment often relies on the 

surgeon's clinical judgment, specific case findings, and personal preferences, rather than on 

standardized, objective parameters(14,15).  

 

Recent advancements in artificial intelligence (AI) tools have already shown promise in automating 

objective parameter evaluation of fractures (16–18). These AI-based quantitative measurements 

leverage machine learning algorithms to analyze medical imaging data for fracture detection and to 

extract relevant fracture parameters automatically (19,20). However, these studies have primarily 

focused on fracture detection and classification based on 2D information, such as X-ray images. Relying 

solely on 2D images to assess fractures poses challenges in capturing the complete extent of injuries, 

especially for intra-articular fractures, where three-dimensional (3D) displacement, such as gaps and 

step-offs, may occur across multiple image slices. Furthermore, certain studies have investigated 

quantitative measurements on 3D models for fractures other than calcaneal fractures. However, these 

methodologies typically require multiple manual interventions, preventing the measurements from being 

fully automated (13,21). 

 

To address the challenges inherent in the diagnostic process and ensure objective fracture evaluation of 

intra-articular fractures of the PTC of the calcaneus, the implementation of AI-based automatic analysis 

using 3D models derived from CT imaging, and resulting objective parameters offers a promising 

solution.  

  

Figure 1: Anatomical overview of the calcaneus, talus, posterior talocalcaneal facet (PTC) and posterior talar facet (PTF). 

Axial view with flipped talus (left) and lateral view with talus in correct position (right) (22). 
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2. | Methods  
This section delineates our approach in the following order: (1) patient selection and data acquisition, 

(2) automatic segmentation, (3) automatic 3D measurements, (4) 2D measurements, and (5) statistical 

analysis. 

2.1 | Patient selection  

In this retrospective multicenter study, the dataset consisted of patients with one or multiple calcaneus 

fractures who underwent diagnostic imaging studies between 2006 and 2021 at ErasmusMC or between 

2019 and 2023 at Maasstad Hospital. All data were anonymized before use. The inclusion criteria for 

the dataset were: (1) both the calcaneus and talus bones were fully visible on the CT scan, (2) the patient 

age was 16 years or older, (3) the talus was not fractured and (4) slice thickness was less or equal to 1 

mm. An external validation set (2014–2024) adhered to the same inclusion criteria. The local Medical 

Research Ethics Committee (No. MEC-2024-0380) reviewed and exempted the study protocol. 

Considering the study's design, the committee waived the requirement for obtaining informed consent 

from the participants. 

2.2 | Automatic segmentation  

In order to perform automatic 3D measurements, the generation of accurate 3D models through 

automated segmentation is essential. The subsequent sections outline the methods for creating these 

models, as well as the training and application of the automated segmentation algorithms utilized in this 

study. See Figure 3 for all steps in the automatic segmentation method.  

2.2.1 | 3D model creation 

For the training of the automated segmentation model, 3D models were manually segmented by a single 

observer for all patients in the training dataset. These 3D models were generated from the original CT 

data using the Mimics Research software package (Version 26.0, Materialise, Leuven, Belgium). First, 

the CT data (DICOM files) were imported, and bony tissue was extracted by creating a mask using a 

threshold (Hounsfield units > 226). The mask was then split to ensure separate masks were created for 

the talus and calcaneus. The region-growing tool was applied to remove noise and exclude adjacent 

bony structures. The PTC surface of the calcaneus mask and talus mask was refined using smart fill to 

enhance mask accuracy.  

 

The talus and calcaneus masks were then transformed into objects to allow import into the Materialise 

3-matic software package (Version 18.0, Materialise, Leuven, Belgium), where a smoothing algorithm 

was applied to refine the model surfaces by removing sharp edges and smoothing rough areas. The 

fragmented PTC and PTF surfaces were manually marked to extract these regions. From these surfaces, 

3D segments were created by moving the surface 2 mm inward, generating 3D segments with a thickness 

of 2 mm for each marked surface. 

 

These 3D segments were re-imported into Mimics and transformed back into masks to verify 

correspondence with the original CT data, and adjustments were made as necessary. See Figure 2 for an 

overview of the 3D model creation steps. Along with the PTF and PTC fragment masks, the complete 

talus mask was also retained for subsequent steps. The images, including the masks of the 3D segments 

and the entire talus, each represented by a uniform intensity value, were then exported as DICOM files. 
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Figure 2: Workflow for 3D model creation. CT data is imported into Mimics, transferred to 3-matic for surface marking, and 

3D segments are created. The segments are then imported back into Mimics for verification. 

2.2.2 | Preprocessing 

All DICOM files containing segmentations were converted into label masks in the Neuroimaging 

Informatics Technology Initiative (NIfTI) format using Python, as required for the subsequent 

processing steps. Additionally, the raw images, without segmentations, were also converted to NIfTI 

format. After conversion, label values were assigned to the segmentations: the background was assigned 

a label value of 0, the PTF a label value of 1, and the PTC fragments a label value of 2. By assigning 

these distinct label values, the automated segmentation method was able to correctly identify and 

segment the different structures. 

2.2.3 | Automatic segmentation 

The NIfTI files containing the PTC and PTF label masks, along with the unsegmented NIfTI images, 

were used to train the automatic segmentation framework. The framework utilized nnU-Net, a deep 

convolutional neural network (CNN) developed by Isensee et al. The nnU-Net was trained using a 5-

fold cross-validation with the 3D low-resolution configuration, splitting the data 80:20 between training 

and validation sets. This approach enabled the model to automatically segment the PTC fragments and 

the PTF. Additionally, another nnU-Net model was trained for the segmentation of the entire talus, using 

the same configuration and cross-validation process as for the PTC and PTF. The training, inference, 

and postprocessing of both models were executed on a GPU cluster using a SLURM script, with details 

provided in Appendix A. Pre- and post-processing steps, such as resampling, normalization, and 

connected component analysis, were handled automatically by nnU-Net. 

 

Once the automated configuration and training were completed, an ensemble of the fully trained models 

from the 5 folds was used to make predictions on unseen images. 
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Figure 3: Overview of the automatic segmentation process. The left panel shows the raw DICOM files overlayed with the label 

masks of the PTC, PTF and talus which are then converted into NIfTI format, which are then used to train the nnU-Net model 

(right panel). The right panel illustrates the U-Net architecture used by nnU-Net for segmentation, where the input image tile 

is processed through convolutional layers, max pooling, and upsampling to produce the final output segmentation map(23) 

2.3 | Automatic 3D measurements  

To perform quantitative analyses of the fractures, 3D measurements were required based on the 

automatically segmented models. The following sections describe the methodology for creating and 

processing 3D models, including the calculation of gap areas, inter-articular distances, surface and 

fracture areas, and maximal step-off and maximal gap measurements, using a series of custom scripts 

and established algorithms (Figure 4). 

 

Figure 4: Overview of the steps for automatic 3D measurements. nnU-Net segmentations of the PTC, PTF, and talus are 

converted from NIfTI to STL format. The generated STL meshes are then aligned using mean shape models. Subsequently, gap 

area and inter-articular distance measurements are computed. Fracture area measurements follow, along with maximal step-off 

and maximal gap calculations. 

2.3.1 | Creation of STL Models 

A custom Python script was developed to convert the voxel-based NIfTI label masks into STL files. 

Segmented regions corresponding to the talus, the PTF, and the PTC fragments were identified from the 

NIfTI files. The Marching Cubes algorithm was employed with a threshold of 0,5 to generate 3D surface 

meshes from these segmented regions. 

 

For the PTC, where all fragments initially shared the same label, a connectivity-based region-growing 

algorithm was applied as post-processing to separate and label each fragment individually. This allowed 

for the generation of separate STL files for each PTC fragment.  

 

Additionally, Laplacian smoothing to the STL files of the PTC fragments, PTF, and talus was applied to 

reduce noise and improve surface quality. The smoothing process iteratively adjusted the mesh vertices 

based on the Laplacian of the vertex adjacency graph, with a smoothing factor (λ = 0.05) and 10 

iterations. The values for λ and the number of iterations were chosen iteratively after visual inspection 

to ensure that the surfaces were smoothed without creating gaps or losing other important structural 

information. All resulting smoothed STL files were saved for subsequent analysis. 
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2.3.2 | Alignment of STL Models 

The generated STL meshes of the talus were aligned using a mean shape model of the right talus, and a 

mirrored version of the mean shape model for the left talus, ensuring consistent positioning within the 

same world coordinate system, as described by Wakker et al. (24). The PTF and PTC fragments were 

translated and rotated using the same transformation matrix as the talus, preserving their relative 

positions. The aligned 3D models were saved for further analysis. Additionally, a mean shape model of 

the calcaneus, positioned at the average anatomical location relative to the mean talus shape model, was 

available and used for subsequent analysis. (See Appendix C for the Python script corresponding to 

sections 2.3.1 and 2.3.2) 

2.3.3 | Gap Area Calculation 

Following the alignment of the talus, PTC fragments, and PTF, several steps were performed to quantify 

potential gaps in articulation. First, a convex hull was generated to enclose all points of the PTC 

fragments. This convex hull was created by projecting the 3D points onto the first two principal 

components derived from the Principal Components Analysis (PCA), creating a 2D convex hull as the 

smallest convex polyhedron enclosing all PTC fragments. The convex hull was then translated by a 

factor of 3 along the third principal component to position it both anterocranial and posterocaudal to the 

PTC fragments. The value of 3 was chosen iteratively, ensuring that the PTC fragments of the training 

cases were positioned correctly between the two convex hulls. 

 

The points of the convex hulls were scaled inward by a factor of 0.8 toward their centroid to ensure that 

no gap areas were erroneously detected along the outer boundary of the PTC. The value of 0.8 was 

chosen iteratively by adjusting the scaling factor and visually inspecting the results for all training cases 

to confirm that the gap area did not extend beyond the actual fragments.  

 

An interpolation method was applied to generate evenly distributed points over the entire surfaces of the 

convex hulls for further analysis. Then rays were traced from the evenly distributed points on the convex 

hull at the anterocranial position of the PTC fragments towards the convex hull positioned posterocaudal 

to the PTC fragments. If a ray did not intersect with the PTC fragments but only with the posterocaudal 

convex hull, the presence of a gap was indicated. Refer to Figure 5 for the visual representation of the 

gap area calculation steps. 

The gap area percentage 𝐺 was calculated as the ratio of the number of rays that intersected only the 

convex hull to the total number of rays traced:  

 

𝐺 =
𝑁𝑔𝑎𝑝

𝑁𝑡𝑜𝑡𝑎𝑙
𝑋 100%      (2) 

 

Where 𝑁𝑔𝑎𝑝 is the number of rays that intersected only the posterocaudal convex hull, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the 

total number of rays traced.  
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Figure 5: (a) Smoothed STL meshes of PTC fragments, (b) convex hull (blue) of PTC fragments, (c) convex hull at 

anterocranial position of PTC fragments  (green) and convex hull at posterocaudal position of PTC fragments (green), (d) 

intersection points (red points) of the traced rays on the posterocaudal convex hull. 

2.3.4 | Interarticular distance calculations 

Several steps were conducted to calculate the distance between the PTC fragments and the PTF.  

First, the normal vectors 𝑛𝑃𝑇𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    and 𝑛𝑃𝑇𝐹𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   were calculated for each of the triangular faces on the surface 

mesh of the PTC fragments and the PTF. Thereafter, normal vectors were excluded based on their 

angular similarity to a reference direction vector 𝑑 . The reference direction vector of the PTC fragments 

𝑑𝑃𝑇𝐶
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ was determined as the vector pointing from the center of mass (COM) of the mean shape model 

of the calcaneus towards the COM of the PTC fragments. For the PTF, the reference direction vector 

𝑑𝑃𝑇𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ was the vector pointing from the COM of the talus to the COM of the PTF. Then, the dot product 

was calculated and was used to calculate the cosine of the angles between each normal vectors 𝑛𝑃𝑇𝐶𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

and 𝑛𝑃𝑇𝐹𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and the reference direction vectors 𝑑𝑃𝑇𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑑𝑃𝑇𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, separately for both the PTC and PTF.  

A normal vector was retained if the cosine of the dot product indicated an angle smaller than the 

predefined threshold of 50 degrees: 

 

cos(𝜃𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ≥ 𝑛𝑖⃗⃗  ⃗ ∙ 𝑑      (3) 

 

The threshold of 50 degrees was determined iteratively on the training dataset by testing different values 

and visually inspecting the results to ensure that the correct points directly opposite each other were 

captured without filtering out too many important vectors. After this filtering step, the points 𝑝𝑃𝑇𝐹𝑖 and 

𝑝𝑃𝑇𝐶𝑖
corresponding to the remaining normal vectors 𝑛𝑃𝑇𝐹𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑛𝑃𝑇𝐶𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   of the PTF and PTC meshes were 

saved. From the points 𝑝𝑃𝑇𝐹𝑖, rays were traced towards the PTC fragments in the direction of the 

corresponding normal vectors 𝑛𝑃𝑇𝐹𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . The points where the rays intersected the PTC fragments surfaces, 

𝑞𝑃𝑇𝐶𝑖
, were saved. 

 

After this filtering step, the remaining points 𝑞𝑃𝑇𝐶𝑖
 were systematically redistributed to achieve an even 

spatial distribution across the entire region previously covered by the set of points 𝑞𝑃𝑇𝐶𝑖
.  

For every point 𝑞𝑃𝑇𝐶𝑖
, a 1-nearest neighbor search was conducted, using KD-tree search algorithm, to 

find the closest corresponding point 𝑝𝑃𝑇𝐶𝑖
.  

Then from the corresponding 𝑝𝑃𝑇𝐶𝑖
 points rays are traced towards the PTF the Euclidean distance 

between the points 𝑝𝑃𝑇𝐶𝑖
 on the PTC fragment meshes and the intersection points 𝑟𝑃𝑇𝐹𝑖 on the PTF 

mesh was calculated using the following formula: 

 

𝑑𝑖 = ‖𝑝𝑃𝑇𝐶𝑖
− 𝑟𝑃𝑇𝐹𝑖‖     (4) 
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The double ray tracing process ensures that the points where the distances are measured lie directly 

opposite to each other on both the PTF and PTC, capturing the true articulation between the two surfaces.  

The results for each patient were visualized accordingly, as illustrated in Figure 6. Additionally, the 

standard deviation of the inter-articular distances 𝑑𝑖 for each patient was computed. Where the standard 

deviation 𝜎𝑑 provides information on the consistency of the articulation across the joint surface, and 

therefore indicates if fragments are displaced. (See Appendix D for the Python script corresponding to 

sections 2.3.3 and 2.3.4).  

 
Figure 6: (a) The points 𝑝𝑃𝑇𝐶𝑖

 on the PTC mesh (orange) are color-coded according to their Euclidean distance 𝑑𝑖  from the 

intersection points 𝑟𝑃𝑇𝐹𝑖
 on the PTF, transitioning smoothly from green for the points with the smallest distances, 𝑑𝑖, to purple 

for the points with the longest distances 𝑑𝑖. The minimum and maximum distance values are calculated per patient, ensuring 

that the color coding reflects the individual variation in distances for each case. (b) Visualized together with transparent 

corresponding PTF mesh.  

2.3.5 | Surface- and fracture area analysis 

To accurately assess the surface areas of the PTC fragments and identify the total fracture area, which 

includes both the total gap and total step within the PTC, a comprehensive series of mesh processing 

steps were undertaken.  

 

While the STL meshes generated by the marching cubes algorithm typically represent both upper and 

lower surfaces of 3D objects, only a single surface per fragment was required for surface area 

measurement. The first step in this process involved detecting sharp edges in the mesh, indicative of 

fragment boundaries, by evaluating the dihedral angle between adjacent triangular faces of the smoothed 

STL files. The dihedral angle 𝜃 between two faces with normals 𝑛1 and 𝑛2 is calculated as: 

 

cos(𝜃) =
𝒏1∙𝒏2

‖𝒏1‖‖𝒏2‖
      (5)  

 

If 𝜃 exceeds a threshold of 10 degrees, the edge between these faces is classified as sharp, indicating a 

fragment boundary. The threshold of 10 degrees was determined iteratively by evaluating the training 

set, ensuring that the boundary edges were fully extracted without including edges inside the fragments. 

The sharp edges, where the dihedral angle exceeded the threshold, along with their corresponding 

triangle surfaces, were retained if at least five connected sharp edges were identified through connected 

component analysis. These connected sharp edges represented the contiguous boundaries of the 

fragments. The threshold of five connected edges was iteratively determined using the training set to 
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ensure that boundary edges were accurately extracted, while filtering out small, erroneously detected 

edges within the fragments. Once identified, these connected components, along with their 

corresponding triangles, were used to generate individual mesh files for each fragment, precisely 

capturing the detected boundaries. Excluding fragments with fewer than five connected edges may omit 

very small fragments, which is clinically appropriate, as these small fragments are unlikely to impact 

treatment decisions. From this boundary STL mesh, all points were extracted and used to generate 

surface meshes of each fragment through Delaunay triangulation. Delaunay triangulation ensures that 

no points lie inside the circumcircle of any triangle in the mesh, providing a stable and accurate surface 

representation. The surface area 𝐴 of each fragment was computed by summing the areas of the 

individual triangles in the surface mesh. The area of a single triangle 𝑇𝑖 with vertices 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗  and, 𝑣3⃗⃗⃗⃗  is 

given by: 

𝐴𝑖 =
1

2
∥ (𝑣2⃗⃗ ⃗⃗  − 𝑣1⃗⃗ ⃗⃗  ) × (𝑣3⃗⃗ ⃗⃗  − 𝑣1⃗⃗ ⃗⃗  ) ∥    (6) 

The total surface area of the fragment is then:  

𝐴𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 = ∑ 𝐴𝑖
𝑁
𝑖=1      (7)  

Where 𝑁 is the number of triangles in the fragment's surface mesh. For each patient, the individual 

surface meshes were combined to form a unified surface mesh representing the entire PTC. The total 

surface area 𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 of this unified mesh was calculated using the same approach as for individual 

fragments. The fracture area 𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  was determined by subtracting the sum of the areas of all 

fragments from the combined surface area: 

𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 = 𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 − ∑ 𝐴𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑖
𝑀
𝑖=1   (8)  

Where 𝑀 is the number of fragments. The magnitude of 𝐴𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 provided insight into the degree of 

fragment displacement or misalignment. A larger fracture area indicates a more significant translation 

of the fragments relative to their original positions, involving either vertical displacement, horizontal 

separation, or both. See Figure 7 for a visual representation of the measurements. The surface areas of 

the fragments and the fracture area were reported for each patient, providing quantitative measures of 

the fractures present. Refer to Appendix E for the Python script associated with Section 2.3.5, and to 

Appendix J for the visualization of an example patient from the training dataset for Section 2.3.5. 

 

Figure 7: Visual representation of boundary extraction (a), fragment surface calculations (b), and fracture area calculations (c) 

for PTC fragments.  
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2.3.6 | Maximal Step-off and maximal gap analysis  

To assess the maximal step-off and gap in the articular surface of the PTC, the distances were measured 

between vertically displaced fracture fragments for step-off and horizontally separated fragments for 

gap. The step-off and gap represent the discontinuity or misalignment in the joint surface caused by the 

vertical and horizontal displacement of fragments respectively.  

The boundary points of each fragment were first extracted from the edge STL files generated during the 

fracture area calculations. These points, representing the fragment boundaries, were captured as point 

clouds.  

A convex hull of the combined calcaneus fragments for each patient was generated and used as the 

reference plane for the articular surface. This convex hull was computed in two dimensions by projecting 

the point cloud of the boundaries of all calcaneus fragments onto a plane spanned by the first two 

principal components derived from PCA. The third principal component, representing the normal vector 

to the articular surface, was then used to measure the displacement of the fragments perpendicular to 

this reference plane. 

Next, the boundary points of each fragment were projected perpendicularly onto the combined convex 

hull along the direction of the third principal component. For each pair of fragments, the closest points 

between the projected boundary points were identified based on their distances within the two-

dimensional convex hull plane. Mutual closest-point pairs were confirmed by ensuring that each point 

in the pair was the closest to the other in both directions. Additionally, a check was performed to ensure 

no other projected points intersected the line connecting the mutually closest pair, as such an intersection 

would indicate that another fragment intercepted the line along the third principal component direction. 

See Figure 8A for a visual representation.  

The maximal step-off was calculated as the maximum absolute value of the perpendicular distances 

between the original boundary points of the fragments and their corresponding projections onto the 

convex hull plane for the mutually closest point pairs. In contrast, the maximal gap was determined as 

the maximum distance between the projected boundary points of the mutually closest point pairs within 

the 2D convex hull (Figure 8B). (See Appendix F for the Python script corresponding to section 2.3.6) 

 

Figure 8: (A) The 2D convex hull of the combined fragments (light blue) with the boundary point clouds of each fragment. 

Mutual closest point pairs are shown with their projection lines (green) onto the convex hull. The purple lines represent 

distances between these projected pairs on the convex hull. (B) The red line indicates the maximal perpendicular distance 

between mutual closest points, representing the maximal step-off. The orange line shows the maximal distance between 

projected pairs on the 2D convex hull, representing the maximal gap.  
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2.4 | Manual 2D measurements 

To compare automatic 3D measurement methods with current clinical practice, conventional 2D 

measurements were performed on each patient in the training dataset by two observers, an expert trauma 

surgeon and a general trauma surgeon (MV, VvW). A Graphical User Interface (GUI) was developed in 

MevisLab™ alongside a standardized measurement protocol to ensure consistent and uniform 

measurements across cases. See Appendix G for the MeVisLab tool.  

The CT scans were first resliced so that the subtalar joint surface was parallel to the axial plane and 

perpendicular to the other planes. Using the resliced coronal images, the observers applied the Sanders 

classification system, categorizing fractures as type 0 (no intra-articular fracture on the PTC surface) or 

as types 1, 2, 3, or 4 (7). Observers then independently measured the maximal 2D gap (the distance 

between fracture fragments along the articular surface) and the maximal 2D step-off (the largest 

displacement perpendicular to the articular surface) on the coronal or sagittal plane, depending on where 

the measurements were most clearly identified. 

3. | Experiments and Results  

3.1 | Data 

The dataset used for training and quantitative evaluation of the automatic segmentation framework, 

through 5-fold cross-validation, and for the development of the automatic 3D measurement method, 

included 44 patients: 8 from ErasmusMC and 36 from Maasstad Hospital. The patients had a mean age 

of 43.8 years, with 61% being male and 39% female, slice thickness ranged between 0.4 mm and 1 mm. 

33 Patients were included in the anonymized external validation set; no patient demographics were 

available for this dataset due to anonymization procedures. The external dataset was divided into two 

groups: 10 patients with manual segmentations performed by one observer and 23 patients without 

manual segmentations. The slice thicknesses for the external validation set ranged from 0.2 mm to 1 

mm. In cases where multiple filters or reconstructions were available per patient, the dataset used the 

reconstruction with the bone filter and the smallest slice thickness.  

3.2 | Automatic segmentation  

3.2.1 | Quantitative evaluation 

The Dice similarity coefficient was used as a quantitative evaluation metric to assess the nnU-Net's 

ability to accurately segment the fractured PTC, PTF, and talus. The Dice coefficient measures the 

overlap between the predicted and ground truth segmentation masks. It provides a quantitative measure 

of segmentation accuracy by comparing how closely the predicted mask matches the actual fracture 

region. The Dice coefficient is calculated using the formula: 

 

𝐷𝑖𝑐𝑒 =
2∣𝐴∩𝐵∣

∣𝐴∣+∣𝐵∣
      (1) 

 

Where 𝐴 is the set of pixels in the predicted mask, 𝐵 is the set of pixels in the ground truth mask, ∣ 𝐴 ∩

𝐵 ∣ represents the intersection of the predicted and ground truth regions. The Dice coefficient ranges 

from 0 to 1, where 0 indicates no overlap between the predicted and ground truth segmentations, and 1 

indicates perfect overlap, with higher values reflecting more accurate segmentation. 

Table 1 presents the quantitative results of both trained nnU-Net models. The model trained for talus 

segmentation achieved the highest Dice score, with a value of 0.98 for both the training set after 5-fold 

cross-validation and the first group of the dataset used for external validation. The PTC fragments 
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segmentation achieved a Dice score of 0.78 for the training set during cross-validation and 0.75 for the 

external validation set. For the PTF segmentations, the Dice scores were 0.85 for the training set and 

0.83 for the external validation set. 

Table 1: Quantitative results of nnU-Net segmentations for PTC, PTF, and talus, including Dice similarity coefficients for the 

internal 5-fold cross-validation (ErasmusMC and Maasstad datasets) and external validation. 

 

 

 

 

 

 

When examining the individual Dice scores for each patient, six cases in the training set and three cases 

in the external validation set had a Dice score below 0.7 for either the PTF or PTC segmentations. 

3.2.2 | Qualitative evaluation  

For qualitative assessment, two independent observers with expertise in CT segmentation and fracture 

assessment evaluated the segmentations independently by visual inspection using a five-point Likert 

scale. A score of 1 indicated strong disagreement, while 5 indicated strong agreement, with higher scores 

reflecting better performance. Each observer assessed the segmentations for each patient in the external 

validation set based on the following criteria: (1) the accuracy of the PTF segmentation, (2) the accuracy 

of the PTC segmentation, (3) the ability of the model to correctly distinguish fracture fragments, 

ensuring that segments meant to be separated by fracture lines, and (4) whether the generated 

segmentation was adequate for subsequent automatic 3D measurements. The full Likert scale 

questionnaire used for this assessment is provided in Appendix B. 

Mean Likert scores and standard deviations were calculated for each aspect of the segmentation. Table 

2 presents the qualitative evaluation results for 10 patients of the external validation set. 

 

Table 2: Qualitative evaluation of nnU-Net segmentations for 10 patients of the external validation set, assessing PTF and PTC 

segmentation accuracy, fragment separation quality, and suitability for further analysis (Mean ± SD). 

Evaluation criteria  Mean ± SD 

PTF segmentation accuracy 4.9 ± 0.32 

PTC segmentation accuracy  4.8 ± 0.42 

Fragment separation quality 4.7 ± 0.48 

Suitable for further analysis 5 ± 0 

SD = standard deviation, PTC = posterior calcaneal facet, PTF = posterior talar facet  

The remaining 23 patients in the external validation set underwent qualitative evaluation by visual 

inspection only. All segmentations were considered sufficient for further analysis. See Table 3 for details. 

 

Type validation set 
 

Dice 

Avg PTC PTF 

5-fold cross validation (44) PTC & 

PTF 

0.81 0.78 0.85 

Talus 0.98 - - 

External validation (10) PTC & 

PTF 

0.79 0.75 0.83 

Talus  0.98 - - 

Avg = average, PTC = posterior calcaneal facet, PTF = posterior talar facet  
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Table 3: Qualitative evaluation of nnU-Net segmentations for the 23 patients of the external validation set, assessing PTF and 

PTC segmentation accuracy, fragment separation quality, and suitability for further analysis (Mean ± SD). 

Evaluation criteria  Mean ± SD 

PTF segmentation accuracy 5 ± 0 

PTC segmentation accuracy  4.94 ± 0.25 

Fragment separation quality 4.61 ± 0.49 

Suitable for further analysis 4.96 ± 0.21 

SD = standard deviation, PTC = posterior calcaneal facet, PTF = posterior talar facet  

3.3 | Automatic 3D measurements  

Automatic 3D measurements were performed for all patients in the training dataset, and all patients in 

the external validation set. The distances, gap area, surface areas of each fragment, the combined surface 

area, the fracture area, the maximal step-off and maximal gap were compiled for each patient and saved 

to an Excel spreadsheet, providing a comprehensive overview of the surface areas and fracture 

characteristics. 

 

Table 4 presents the results of the automatic 3D measurements for all patients in the training data. Refer 

to Appendix H for the inter-articular distance plots, and Appendix I for the gap area plots, of all patients 

from the training set and external validation set. 

Table 4: Automatic 3D measurements of PTC fragments for all patients in the training dataset, including mean distance, gap 

area, number of fragments, total fragment area, fracture area, and maximal step-off (Mean, Median, Standard Deviation, 

Minimum, Maximum). 

Variable  Mean SD Minimum Maximum 

Gap area (%) 16.05 15.03 0 55.26 

Mean distance (𝑚𝑚) 3.59 1.28 1.89 6.67 

SD of the mean distance 2.20 1.01 0.32 4.45 

Number of fragments  2.32 0.98 1 5 

Area of all fragments (𝑚𝑚2) 1546.51 424.30 822.24 2660.93 

Fracture area (𝑚𝑚2) 174.04 159.45 0 568.79 

Maximal step-off (𝑚𝑚) 3.98 3.67 0 15.34 

Maximal gap (𝑚𝑚) 4.14 3.38 0 14.30 

SD = standard deviation  

For the 10 patients included in both the quantitative and qualitative analysis of the external validation 

set, 3D measurements were conducted on both the manually created and nnU-Net-generated 

segmentations. Figure 9 provides a patient-level comparison between the two segmentation methods, 

while the results of the mean statistics for each segmentation method are presented in Table 5. 
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Table 5: Full comparison of means and standard deviations for each 3D measurement of the 10 patients in the external 

validation set where both qualitative and quantitative evaluation was conducted.  

Metric Mean (manual) SD (manual) Mean  

(nnU-Net) 

SD  

(nnU-Net) 

Percentage of gap area (%) 14.28 13.46 14.22 13.13 

Mean distance (𝑚𝑚) 3.83 1.45 3.69 0.82 

SD of the mean distance 2.78 2.09 2.45 1.25 

Number of fragments 2 1 2.2 1.32 

Area of all fragments (𝑚𝑚2) 2558.87 3607.33 1199.84 303.58 

Fracture area (𝑚𝑚2) 269.88 474.39 111.83 130.10 

Maximal step-off (𝑚𝑚) 2.14 2.30 2.71 3.41 

Maximal gap (𝑚𝑚) 5.26 8.07 3.37 4.21 

SD = standard deviation 

For the remaining 23 patients, 3D measurements based on the nnU-Net segmentations are shown in 

Table 6. 

Figure 9: Patient level comparison of 10 patients in the external validation set where 3D measurements are based on manually segmented 

3D models and 3D models based on nnU-Net segmentations. 
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Table 6: Automatic 3D measurements on 3D models based on nnU-Net segmentations for 23 patients in the external validation 

dataset, including mean distance, gap area, number of fragments, total fragment area, fracture area, and maximal step-off (Mean, 

Median, Standard Deviation, Minimum, Maximum). 

Variable  Mean SD Minimum Maximum 

Gap area (%) 14.81 11.67 0 39.77 

Mean distance (𝑚𝑚) 3.59 1.12 1.77 6.34 

SD of the mean distance 2.01 0.80 0.53 3.2 

Number of fragments  1.96 0.71 1 3 

Area of all fragments (𝑚𝑚2) 1223.09 340.08 629.50 1736.18 

Fracture area (𝑚𝑚2) 103.62 82.60 0 228.77 

Maximal step-off (𝑚𝑚) 3.54 3.03 0 11.22 

Maximal gap (𝑚𝑚) 3.38 3.012 0 9.73 

SD = standard deviation 

All 3D measurements were visualized per patient to facilitate a thorough visual inspection. This process 

allowed for the assessment of the quality of the mesh processing steps, the representativity of the 

computed measurements, and the overall extent of the fracture. 

The average total time required for the entire method, from automatic segmentation to obtaining the 3D 

measurement results, was 4 minutes and 37 seconds per patient. All steps were executed sequentially. 

The segmentation process was performed on a single GPU, utilizing 128 GB of RAM and 10 CPU cores 

per job. The subsequent 3D measurements and calculations were carried out using a single CPU. 

3.4 | Manual 2D measurements 

Manual 2D measurements were performed for all patients in the training set by two independent 

observers. To assess the interobserver agreement for the Sanders classification, Cohen's kappa was 

calculated, while the Interclass Correlation Coefficient (ICC) was used for the maximal gap and maximal 

step-off measurements. IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY, USA) 

was used for both analyses. A two-way mixed-effects model with absolute agreement for multiple raters 

was applied for the ICC measurements (25). The required sample size for assessing interobserver 

reliability was estimated using an online ICC hypothesis testing calculator, based on the method 

developed by Walter et al. (26,27). A minimum of 41 participants was determined to be necessary for 

each group. This calculation was made under the assumption of 2 observers, a significance level (alpha) 

of 0.05, a power of 80% (beta of 0.20), a minimum acceptable reliability of 0.4, an expected reliability 

of 0.7, and no anticipated drop-outs. 

The Cohen's kappa for the Sanders classification was 0.26 (95% CI: 0.08-0.47), indicating fair 

agreement (28). The ICC (95% CI) between both observers for the maximal gap measurement and 

maximal step-off measurement resulted in 0.60 (0.07-0.82) and 0.59 (0.10-0.81), respectively, indicating 

moderate agreement between the two observers (25). An overview of the measurements can be found in 

Table 7. 
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Table 7: Results of manual 2D measurements for all 44 patients in the training dataset by two independent observers, 

including the Interclass Correlation Coefficient between the observer and the 95% confidence interval.  

Variable  Mean 

(observer 1) 

SD  

(observer 1) 

Mean  

(observer 2) 

SD  

(observer 2) 

Agreement (95% CI) 

Sanders classification 2.66 1.01 2.18 1.13 Cohen’s kappa = 0.26 

(0.08-0.47) 

Maximal step-off 

(𝑚𝑚2) 

8.14 5.02 4.99 4.47 ICC = 0.60 (0.07-0.82) 

Maximal gap (𝑚𝑚2)  5.55 3.11 3.59 2.65 ICC = 0.59 (0.10-0.81) 

SD=standard deviation, ICC = Interclass Correlation Coefficient  

3.5 | Correlation calculations 

Correlations between the average 2D manual measurements from both observers and the 3D automatic 

measurements for all patients in the training dataset were evaluated using Spearman’s rank correlation 

for continuous variables and Kendall’s Tau for ordinal variables, such as the Sanders classification. A p-

value of <0.05 was considered statistically significant. The correlation analyses between 2D and 3D 

measurements were performed using Python libraries, including pandas and pingouin. 

A moderate positive correlation (29) was found between the maximal 2D gap measurement and the 3D 

gap area (%) (Spearman’s rho = 0.62, p<0.001) (Figure 10A). Also, moderate positive correlations were 

observed between the maximal 2D step-off measurement and the maximal 3D step-off measurement, as 

well as between the maximal 2D gap measurement and the maximal 3D gap measurement, with 

Spearman’s rho values of 0.52 (p<0.001) and 0.65 (p<0.001), respectively (Figures 10B and 10C). 

Since both 2D gap and step-off lengths may relate to overall fracture size, these measurements were 

correlated with the 3D fracture area. The correlation between the maximal 2D gap and the 3D fracture 

area resulted in a Spearman’s rho of 0.65 (p<0.001). Likewise, the correlation between the maximal 2D 

step-off and the 3D fracture area was Spearman’s rho = 0.64 (p<0.001), indicating moderate positive 

correlations between these variables (Figures 10D and 10E). The Sanders classification also 

demonstrated a moderate positive correlation with the number of fracture fragments (Kendall’s Tau = 

0.57, p<0.001), suggesting that higher Sanders classifications are associated with a greater number of 

fragments (Figure 10F).  
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4. | Discussion 

This study focuses on developing an automatic segmentation and 3D measurement method tailored for 

intra-articular calcaneus fractures, particularly targeting the PTC joint surface. The method uses deep 

learning, specifically the nnU-Net framework, to create accurate 3D segmentations of key anatomical 

structures from CT scans. These segmentations are then used to generate precise 3D measurements of 

fracture characteristics, such as gap area and step-off, providing a more comprehensive evaluation of 

calcaneal fractures compared to traditional 2D methods. 

A key finding of the study is that moderate positive correlations were identified between manual 2D gap 

measurements and 3D gap area (Spearman’s rho = 0.62), as well as between 2D and 3D step-off 

measurements (rho = 0.52). Furthermore, the Sanders classification correlated moderately with the 

number of fracture fragments found in 3D (Kendall’s Tau = 0.57). These results suggest that the proposed 

automatic method aligns with current state-of-the-art approaches in terms of evaluating fracture 

characteristics and may serve as a robust and objective tool for assessing intra-articular calcaneus 

fractures. 

The method enhances clinical assessment by providing structured, quantitative 3D measurements, which 

hold potential to improve treatment planning for complex intra-articular calcaneus fractures, offering a 

promising complement to existing manual techniques. 

 

When assessing interobserver variability for the Sanders classification, the Cohen’s kappa value of 0.26 

found in this study was lower than those reported by Bhattacharya et al. (9) (Cohen’s kappa = 0.32) and 

Humphrey et al. (10) (Cohen’s kappa = 0.41). However, for the maximal 2D gap and step-off 

Figure 10: Correlation plots between manual 2D and automatic 3D measurements. (A) Maximal 2D gap measurement vs. 3D gap area. (B) 
Maximal 2D step-off vs. maximal 3D step-off. (C) Maximal 3D gap vs. maximal 2D gap. (D) Maximal 2D gap vs. 3D fracture area. (E) Maximal 
2D step-off vs. 3D fracture area. (F) Sanders classification vs. number of fracture fragments. Red lines indicate linear regression, with pink 
shaded areas showing the 95% confidence intervals. 
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measurements, the ICC for the gap (0.59) was comparable to the value reported by Roelofs et al.(13) for 

distal radius fractures (ICC = 0.54). In contrast, the ICC for the step-off (0.60) was notably higher than 

the value reported by Roelofs et al. for distal radius fractures (ICC = 0.21).  

The mean combined area of the PTC fragments in this study is similar to the mean PTC area of 14.5 cm² 

reported by Qiang et al. (30). However, differences in sex, ethnicity, and population characteristics 

between the two studies should be considered when interpreting this comparison. For the other 3D 

measurements, we were unable to identify comparable analyses in the available literature. 

 

In 6 cases from the training dataset and 3 cases from the first group of the external validation set, a Dice 

score below 0.7 was observed. However, upon visual inspection, the segmentations of these cases all 

received a Likert score of 5 for being sufficient for further analysis. The primary reason for the lower 

Dice scores was the presence of parts of the calcaneus and talus from the contralateral side in the CT 

images. While nnU-Net included these contralateral structures in its segmentation, the manual 

segmentation masks did not, leading to a discrepancy that negatively affected the Dice score.  

Aside from such discrepancies, another important factor influencing Dice scores is the size of the 

segmentation mask. A larger overall mask tends to result in more overlap, leading to a higher Dice score. 

This explains why the Dice score for the entire talus segmentation is higher compared to that of the PTC 

and PTF surface segmentations. The higher Dice score for the full talus does not necessarily reflect 

better segmentation quality but rather the greater overlap due to the larger mask. Nevertheless, the Dice 

score for the surface segmentation remains relatively high, especially considering that it is calculated 

from small masks that are only 2 mm thick. 

 

The automatic segmentation framework occasionally produced minor connections between PTC 

fragments, particularly in cases of non-displaced fractures, as observed during qualitative analysis. 

Although these connections are unlikely to have clinical implications, since non-displaced fractures are 

generally treated conservatively and do not influence treatment decisions (31), they can still affect 

metrics such as the number of fragments, area per fragment, fracture area, and maximal step-off. This 

occurs because non-displaced fractures, which should delineate separate fragments, may instead result 

in the merging of fragments, potentially obscuring larger fracture areas or significant step-offs elsewhere 

in the structure. Expanding the training dataset to include more cases of non-displaced fractures could 

enhance the model's ability to differentiate these fine details in future implementations.  

Additionally, no definitive ground truth is available for parameters such as gap area, inter-articular 

distances, fragment and fracture area, or maximal step-off. These 3D measurements were compared with 

manual 2D measurements, where the observed ICC values ranged from 0.59 to 0.60, indicating moderate 

agreement between the two observers. Although the absence of an absolute standard is common in this 

area of research, the manual assessments still provide a valuable reference point for comparison. While 

they cannot be considered definitive, they offer important insights that help guide the evaluation of the 

3D measurements. 

 

A limitation of this study is that the ground truth used for model training was derived from manual 

segmentations performed by a single observer. These segmentations were based on CT scans in which 

the cartilage surfaces were not visible, making it difficult to accurately delineate the PTC area. As a 

result, the segmentation boundaries in regions involving cartilage may be uncertain, potentially 

impacting the accuracy of the model's predictions in these areas. 

 

For future research, in addition to expanding the training dataset for nnU-Net to improve segmentation 

accuracy, the automatically calculated 3D measurements hold promise as decision-support tools in 

clinical treatment planning. To validate the utility of these parameters, a retrospective study should be 
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conducted, incorporating follow-up data and building a prediction model. This model could help 

determine whether 3D metrics such as gap size, inter-articular distances, maximal step-off, and fracture 

area provide meaningful insights for selecting optimal treatment options and improving outcomes in 

calcaneal fracture management. 

 

5. | Conclusion 
This study successfully demonstrates the development and validation of a complete method for the 

automatic segmentation and automatic 3D quantitative analysis of intra-articular calcaneus fractures in 

the PTC surface. The ability to automatically generate accurate 3D measurements within minutes has 

the potential to streamline clinical workflows and enhance decision-making in the management of 

calcaneus fractures.   
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Appendices 

Appendix A: nnU-Net SLURM script  

#!/bin/bash 

#SBATCH --ntasks=10          ### How many CPU cores do you need? 

#SBATCH --mem=128G           ### How much RAM memory do you need? 

#SBATCH -p long              ### The queue to submit to: express, short, long, interactive 

#SBATCH --gres=gpu:1         ### How many GPUs do you need? #  

#SBATCH -t 2-00:00:00        ### The time limit in D-hh:mm:ss format 

#SBATCH -o out_%j.log        ### Where to store the console output (%j is the job number) 

#SBATCH -e error_%j.log      ### Where to store the error output 

#SBATCH --job-name=PTC_pred  ### Name your job so you can distinguish between jobs 

 

# Load the modules 

module purge  

module load Python/3.9.5-GCCcore-10.3.0   

source /mnt/trtm0001/data/Alex/venvs/nnUnet_env/bin/activate 

 

 

# To set up the correct environment for nnUNet, follow the following steps from the command line 

before running the slurm script:  

# module load Python/3.9.5-GCCcore-10.3.0 

# python3 -m venv nnunet_env 

# pip install --upgrade pip wheel  

# pip install numpy  

# pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117  

# pip install nnunetv2  

# pip install --upgrade git+https://github.com/FabianIsensee/hiddenlayer.git 

# pip install ipython 

 

export nnUNet_preprocessed="/mnt/trtm0001/data/Alex/nnUnet/nnUNet_preprocessed" 

export nnUNet_results="/mnt/trtm0001/data/Alex/nnUnet/nnUNet_results" 

export nnUNet_raw="/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw" 

 

 

## Follow the following steps to run the entire pipeline of nnU-Net:  

 

#***See if all data is in correct order and have the correct names:*** 

 nnUNetv2_plan_and_preprocess -d 602 --verify_dataset_integrity 

 

#**Train nnUNet:*** 

 nnUNetv2_train 602 3d_lowres 4 --npz 

 

#***Run best configuration :*** 

 nnUNetv2_find_best_configuration 602 -c 3d_lowres # Output will tell what interference + post-

processing should be run 

 

#***Run inference like this:*** 

 nnUNetv2_predict -d Dataset602_fractured_calcaneusPTC_talusPTC -i imagesTs -o 

output_predictions -f  0 1 2 3 4 -tr nnUNetTrainer -c 3d_lowres -p nnUNetPlans 

 

#***Once inference is completed, run postprocessing like this:*** 

nnUNetv2_apply_postprocessing -i output_predictions -o output_predictions_and_postprocessing -

pp_pkl_file 

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_results/Dataset602_fractured_calcaneusPTC_talusPTC/nnUNetT

rainer__nnUNetPlans__3d_lowres/crossval_results_folds_0_1_2_3_4/postprocessing.pkl -np 8 -

plans_json 

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_results/Dataset602_fractured_calcaneusPTC_talusPTC/nnUNetT

rainer__nnUNetPlans__3d_lowres/crossval_results_folds_0_1_2_3_4/plans.json 

 

#***Evaluate the predictions from imagesTs compared to labelsTs:*** 

nnUNetv2_evaluate_folder -djfile 

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/dataset.jso

n -pfile 

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/output_pred

ictions/plans.json 

/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/labelsTs 
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/mnt/trtm0001/data/Alex/nnUnet/nnUNet_raw/Dataset602_fractured_calcaneusPTC_talusPTC/output_pred

ictions_and_postprocessing 

 

 

echo 'The slurm script has ended' 
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Appendix B – Likert questionnaire  

Q1. I found the segmentations of the PTC surface to be visually accurate and representative of the 
joint anatomy. 

o Strongly 
disagree 

o Disagree o Neither 
agree nor 
disagree 

o Agree o Strongly 
agree 

 
Q2. I found the segmentations of the PTF surface to be visually accurate and representative of the 
joint anatomy. 

o Strongly 
disagree 

o Disagree o Neither 
agree nor 
disagree 

o Agree o Strongly 
agree 

 
Q3. I found that the individual fragments identified during the segmentation process were correctly 
separated and represented the appropriate anatomical structures. 

o Strongly 
disagree 

o Disagree o Neither 
agree nor 
disagree 

o Agree o Strongly 
agree 

 
Q4. I found the segmentations produced to be sufficient for further 3D analysis and measurement. 

o Strongly 
disagree 

o Disagree o Neither 
agree nor 
disagree 

o Agree o Strongly 
agree 

 

  



 

29 

Appendix C- STL creation and alignment with talus  

import os 

import re 

import nibabel as nib 

import numpy as np 

from stl import mesh 

from skimage import measure 

import tkinter as tk 

from tkinter import filedialog 

import open3d as o3d 

import copy 

import trimesh 

import pyvista as pv 

import open3d as o3d 

import copy 

import matplotlib.pyplot as plt 

from skimage import measure, morphology 

import time 

from scipy.ndimage import binary_closing 

import networkx as nx 

import scipy.sparse 

from scipy.ndimage import binary_closing 

 

# Define Laplacian smoothing function 

def laplacian_smoothing(vertices, faces, iterations=10, lambda_=0.05): 

    """Smooth the mesh using Laplacian smoothing.""" 

    mesh = trimesh.Trimesh(vertices=vertices, faces=faces) 

    adjacency_graph = mesh.vertex_adjacency_graph 

    adjacency_matrix = nx.to_scipy_sparse_array(adjacency_graph)  # Updated to use 

to_scipy_sparse_array 

    adjacency_matrix = scipy.sparse.csr_matrix(adjacency_matrix)  # Ensure it's a sparse 

matrix 

    laplacian = scipy.sparse.csgraph.laplacian(adjacency_matrix, normed=False) 

    identity = scipy.sparse.identity(laplacian.shape[0]) 

    smoothing_matrix = identity - lambda_ * laplacian 

 

    smoothed_vertices = vertices.copy() 

    for _ in range(iterations): 

        smoothed_vertices = smoothing_matrix.dot(smoothed_vertices) 

        displacement = smoothed_vertices - vertices 

        max_displacement = np.percentile(np.linalg.norm(displacement, axis=1), 95) 

        displacement = np.clip(displacement, -max_displacement, max_displacement) 

        smoothed_vertices = vertices + displacement 

         

    return smoothed_vertices 

 

# Function to check if normals are correctly oriented 

def check_normals(mesh_obj): 

    face_normals = mesh_obj.face_normals 

    face_centroids = mesh_obj.triangles_center 

    mesh_centroid = mesh_obj.centroid 

    vectors_from_centroid = face_centroids - mesh_centroid 
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    dot_products = (face_normals * vectors_from_centroid).sum(axis=1) 

    if (dot_products < 0).mean() > 0.5: 

        print("Normals are pointing inward, inverting normals...") 

        return False 

    else: 

        print("Normals are correctly pointing outward.") 

        return True 

 

# Function to save STL with smoothing 

def save_stl(mask, output_path, affine, apply_closing=False, apply_smoothing=True, 

iterations=10, lambda_=0.05): 

    if np.any(mask): 

        if apply_closing: 

            mask = binary_closing(mask, structure=np.ones((3, 3, 3))) 

 

        # Marching cubes to extract surface 

        verts, faces, _, _ = measure.marching_cubes(mask, level=0.5) 

 

        # Apply the affine transformation to the vertices 

        verts_homogeneous = np.hstack([verts, np.ones((verts.shape[0], 1))]) 

        verts_transformed = verts_homogeneous.dot(affine.T)[:, :3] 

 

        # Optionally apply Laplacian smoothing to the vertices 

        if apply_smoothing: 

            verts_transformed = laplacian_smoothing(verts_transformed, faces, 

iterations=iterations, lambda_=lambda_) 

 

        # Create the STL mesh 

        mesh_data = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) 

        for i, f in enumerate(faces): 

            for j in range(3): 

                mesh_data.vectors[i][j] = verts_transformed[f[j], :] 

 

        # Save the STL file 

        mesh_data.save(output_path) 

        print(f"Saved STL file: {output_path}") 

 

        # Load mesh using trimesh and check normals 

        mesh_obj = trimesh.load(output_path) 

        if not check_normals(mesh_obj): 

            # If normals are inward, invert and save 

            mesh_obj.invert() 

            mesh_obj.export(output_path) 

            print(f"Normals inverted and saved for {output_path}") 

 

# Function to process NIFTI to STL with smoothing 

def nifti_to_stl(nifti_file, base_output_dir, label_name, subdir): 

    print(f"Loading NIFTI file: {nifti_file}") 

    img = nib.load(nifti_file) 

    data = img.get_fdata() 

    affine = img.affine 

     

    # Extract numeric part and side indicator from file name 
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    file_name = os.path.basename(nifti_file) 

    match = re.search(r'(\d+)([RL])', file_name) 

    if match: 

        numeric_part = match.group(1).zfill(3)  # Format the numeric part 

        side_indicator = match.group(2) 

    else: 

        print(f"No side indicator found in file name: {file_name}") 

        return 

     

    # Create output directories based on the formatted numeric part and side indicator 

    patient_dir = os.path.join(base_output_dir, f"{numeric_part}{side_indicator}") 

    output_dir = os.path.join(patient_dir, subdir) 

    os.makedirs(output_dir, exist_ok=True) 

 

    if subdir == 'talus_PTC': 

        mask = (data == label_name) 

        stl_path = os.path.join(output_dir, 

f'{numeric_part}{side_indicator}_talus_PTC.stl') 

        save_stl(mask, stl_path, affine, apply_closing=False, apply_smoothing=True)  # No 

closing for talus_PTC 

 

    elif subdir == 'talus': 

        mask = (data == label_name) 

        stl_path = os.path.join(output_dir, f'{numeric_part}{side_indicator}_talus.stl') 

        save_stl(mask, stl_path, affine, apply_closing=True, apply_smoothing=True)  # 

Apply closing for talus 

 

    elif subdir == 'calcaneus_PTC_fragments': 

        calcaneus_mask = (data == label_name) 

        labeled_calcaneus, num_labels = measure.label(calcaneus_mask, return_num=True, 

connectivity=3) 

        print(f"Found {num_labels} fragments in calcaneus.") 

 

        for label in range(1, num_labels + 1): 

            fragment_mask = (labeled_calcaneus == label) 

            calcaneus_stl_path = os.path.join(output_dir, 

f'{numeric_part}{side_indicator}_calcaneus_{label}.stl') 

            save_stl(fragment_mask, calcaneus_stl_path, affine, apply_closing=False, 

apply_smoothing=True) 

 

def select_folders(title): 

    root = tk.Tk() 

    root.withdraw()  # Hide the main window 

    folder = filedialog.askdirectory(title=title) 

    if not folder: 

        print(f"No folder selected for {title}.") 

        return None 

    return folder 

 

# Folder selection for NIFTI to STL processing 

nifti_folder_fragments = select_folders("Select input folder where the NIFTI masks of the 

PTC fragments are stored") 
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nifti_folder_talus = select_folders("Select input folder where the NIFTI masks of the 

complete talus are stored") 

base_output_dir = select_folders("Select Output Folder for the STL files") 

 

# Process the NIFTI files into STL with optional Laplacian smoothing 

if nifti_folder_fragments and nifti_folder_talus and base_output_dir: 

    # Process all NIFTI files for talus_PTC 

    for nifti_file in os.listdir(nifti_folder_fragments): 

        if nifti_file.endswith('.nii') or nifti_file.endswith('.nii.gz'): 

            nifti_path = os.path.join(nifti_folder_fragments, nifti_file) 

            nifti_to_stl(nifti_path, base_output_dir, 1, 'talus_PTC') 

            print(f"Processing of {nifti_file} from NIFTI to STL (talus_PTC) is 

complete.") 

     

    # Process all NIFTI files for talus 

    for nifti_file in os.listdir(nifti_folder_talus): 

        if nifti_file.endswith('.nii') or nifti_file.endswith('.nii.gz'): 

            nifti_path = os.path.join(nifti_folder_talus, nifti_file) 

            nifti_to_stl(nifti_path, base_output_dir, 1, 'talus') 

            print(f"Processing of {nifti_file} from NIFTI to STL (talus) is complete.") 

     

    # Process all NIFTI files for calcaneus_PTC_fragments 

    for nifti_file in os.listdir(nifti_folder_fragments): 

        if nifti_file.endswith('.nii') or nifti_file.endswith('.nii.gz'): 

            nifti_path = os.path.join(nifti_folder_fragments, nifti_file) 

            nifti_to_stl(nifti_path, base_output_dir, 2, 'calcaneus_PTC_fragments') 

            print(f"Processing of {nifti_file} from NIFTI to STL (calcaneus_PTC_fragments) 

is complete.") 

else: 

    print("Folder selection was not completed.") 

 

 

######  Align_parts_with_talus ####### 

 

def calculate_mass_properties(root, file): 

    your_mesh = trimesh.load_mesh(os.path.join(root, file)) 

    mass_properties = your_mesh.mass_properties 

    volume = mass_properties['volume'] 

    cog = mass_properties['center_mass'] 

    inertia = mass_properties['inertia'] 

    return volume, cog, inertia 

 

## Comment from here if the alignemtn is already done 

def draw_registration_result_PTC_joint(moving, fixed, talus_PTC, calc_PTCs, 

transformation): 

    moving_temp = copy.deepcopy(moving) 

    fixed_temp = copy.deepcopy(fixed) 

    talus_PTC_temp = copy.deepcopy(talus_PTC) 

    calc_PTCs_temp = [copy.deepcopy(calc) for calc in calc_PTCs] 

 

    moving_temp.paint_uniform_color([1, 0.706, 0])  # Yellow for moving 

    fixed_temp.paint_uniform_color([0, 0.651, 0.929])  # Blue for fixed 
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    talus_PTC_temp.paint_uniform_color([0, 1, 0])  # Green for talus_PTC 

     

    # Generate a unique color for each calcaneus fragment using HSV colormap 

    n = len(calc_PTCs_temp) 

    colors = plt.cm.get_cmap("hsv", n)(np.arange(n))[:, :3]  # Ensuring unique colors 

 

    for calc_temp, color in zip(calc_PTCs_temp, colors): 

        calc_temp.paint_uniform_color(color.tolist())  # Apply color 

        calc_temp.transform(transformation)  # Apply transformation 

     

    moving_temp.transform(transformation) 

    talus_PTC_temp.transform(transformation) 

 

    o3d.visualization.draw_geometries([moving_temp, fixed_temp, talus_PTC_temp] + 

calc_PTCs_temp) 

    return [moving_temp, talus_PTC_temp] + calc_PTCs_temp 

 

def align_calc_based_on_talus_PTC_joint(filename_talus, filename_talus_PTC, 

filenames_calc_PTC,  

                                        root_folder_talus, root_folder_talus_PTC, 

root_folder_calc_PTC, 

                                        fixed_talus_mesh, fixed_talus_cog): 

    # Start time tracking (processing only, excluding visualization) 

    start_time = time.time() 

    moving_mesh_talus = o3d.io.read_triangle_mesh(os.path.join(root_folder_talus, 

filename_talus)) 

    moving_mesh_talus_PTC = o3d.io.read_triangle_mesh(os.path.join(root_folder_talus_PTC, 

filename_talus_PTC)) 

    moving_mesh_calc_PTCs = [o3d.io.read_triangle_mesh(os.path.join(root_folder_calc_PTC, 

filename))  

                             for filename in filenames_calc_PTC] 

 

    volume_moving, cog_moving, inertia_moving = 

calculate_mass_properties(root_folder_talus, filename_talus) 

    difference = fixed_talus_cog - cog_moving 

 

    moving_mesh_talus.translate(difference) 

    moving_mesh_talus_PTC.translate(difference) 

    for moving_mesh_calc_PTC in moving_mesh_calc_PTCs: 

        moving_mesh_calc_PTC.translate(difference) 

 

    fixed_talus = fixed_talus_mesh.sample_points_uniformly(20000) 

    moving_talus = moving_mesh_talus.sample_points_uniformly(20000) 

 

    voxel_size = 1 

    moving_down, moving_fpfh = preprocess_point_cloud(moving_talus, voxel_size) 

    fixed_down, fixed_fpfh = preprocess_point_cloud(fixed_talus, voxel_size) 

 

    result_ransac = execute_global_registration(moving_down, fixed_down, moving_fpfh, 

fixed_fpfh, voxel_size) 

    result_icp = refine_registration(moving_talus, fixed_talus, moving_fpfh, fixed_fpfh, 

voxel_size, result_ransac) 
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    # Stop the time tracking before visualization 

    end_time = time.time() 

 

    # Calculate and print the total elapsed time (processing only, excluding 

visualization) 

    elapsed_time = end_time - start_time 

    print(f"Alignment processing time (excluding visualization): {elapsed_time:.2f} 

seconds.") 

 

    all_new_locations = draw_registration_result_PTC_joint( 

        moving_mesh_talus, 

        fixed_talus_mesh, 

        moving_mesh_talus_PTC, 

        moving_mesh_calc_PTCs, 

        result_icp.transformation) 

 

    poisson_meshes = [o3d.geometry.TriangleMesh.compute_triangle_normals(mesh) for mesh in 

all_new_locations] 

    o3d.visualization.draw_geometries(all_new_locations) 

 

    return poisson_meshes 

 

def preprocess_point_cloud(pcd, voxel_size): 

    pcd_down = pcd.voxel_down_sample(voxel_size) 

    radius_normal = voxel_size * 2 

    pcd_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, 

max_nn=30)) 

    radius_feature = voxel_size * 50 

    pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature( 

        pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100)) 

    return pcd_down, pcd_fpfh 

 

def execute_global_registration(moving_down, fixed_down, moving_fpfh, fixed_fpfh, 

voxel_size): 

    distance_threshold = voxel_size * 20000 

    result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching( 

        moving_down, fixed_down, moving_fpfh, fixed_fpfh, True, 

        distance_threshold, 

        o3d.pipelines.registration.TransformationEstimationPointToPoint(False), 

        3, [ 

            o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), 

            o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(distance_thres

hold) 

        ], o3d.pipelines.registration.RANSACConvergenceCriteria(1000000, 50000)) 

    return result 

 

def refine_registration(moving, fixed, moving_fpfh, fixed_fpfh, voxel_size, 

result_ransac): 

    distance_threshold = voxel_size * 5000 

    result = o3d.pipelines.registration.registration_icp( 

        moving, fixed, distance_threshold, result_ransac.transformation, 

        o3d.pipelines.registration.TransformationEstimationPointToPoint()) 
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    print(result) 

    return result 

 

# Stop the commenting here to remain with the output folders 

# Select template STL folders and files 

root_folder_fixed_talus_left = select_folders("Select the folder where the left foot talus 

template STL file is stored") 

filename_fixed_talus_left = filedialog.askopenfilename(title="Select the left foot talus 

template STL file", filetypes=[("STL files", "*.stl")]) 

 

root_folder_fixed_talus_right = select_folders("Select the folder where the right foot 

talus template STL file is stored") 

filename_fixed_talus_right = filedialog.askopenfilename(title="Select the right foot talus 

template STL file", filetypes=[("STL files", "*.stl")]) 

 

# Load the left and right talus template meshes 

fixed_talus_mesh_left = o3d.io.read_triangle_mesh(filename_fixed_talus_left) 

volume_fixed_left, cog_fixed_left, inertia_fixed_left = 

calculate_mass_properties(root_folder_fixed_talus_left, 

os.path.basename(filename_fixed_talus_left)) 

 

fixed_talus_mesh_right = o3d.io.read_triangle_mesh(filename_fixed_talus_right) 

volume_fixed_right, cog_fixed_right, inertia_fixed_right = 

calculate_mass_properties(root_folder_fixed_talus_right, 

os.path.basename(filename_fixed_talus_right)) 

 

# Loop over all patient directories within the selected base output directory 

for patient_dir in os.listdir(base_output_dir): 

    patient_path = os.path.join(base_output_dir, patient_dir) 

    if os.path.isdir(patient_path): 

        # Determine side from the patient directory name 

        match = re.search(r'([RL])$', patient_dir) 

        if match: 

            side_indicator = match.group(1) 

        else: 

            print(f"No valid side indicator found in patient directory name: 

{patient_dir}") 

            continue 

 

        # Select the appropriate template based on the side indicator 

        if side_indicator == 'L': 

            fixed_talus_mesh = fixed_talus_mesh_left 

            fixed_talus_cog = cog_fixed_left 

        elif side_indicator == 'R': 

            fixed_talus_mesh = fixed_talus_mesh_right 

            fixed_talus_cog = cog_fixed_right 

        else: 

            print(f"Unexpected issue with side indicator extraction for directory: 

{patient_dir}") 

            continue 

 

        input_root_talus_PTC = os.path.join(patient_path, 'talus_PTC') 

        input_root_talus = os.path.join(patient_path, 'talus') 
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        input_root_calc_PTC = os.path.join(patient_path, 'calcaneus_PTC_fragments') 

 

        # Define new output folders for aligned files 

        output_root_talus_PTC = os.path.join(patient_path, 'Aligned_with_talus', 

'talus_PTC') 

        output_root_talus = os.path.join(patient_path, 'Aligned_with_talus', 'talus') 

        output_root_calc_PTC = os.path.join(patient_path, 'Aligned_with_talus', 

'calcaneus') 

 

        os.makedirs(output_root_talus_PTC, exist_ok=True) 

        os.makedirs(output_root_talus, exist_ok=True) 

        os.makedirs(output_root_calc_PTC, exist_ok=True) 

 

        # Process and align STL files for the current patient directory 

        for filename_talus, filename_talus_PTC in zip(os.listdir(input_root_talus), 

os.listdir(input_root_talus_PTC)): 

            filenames_calc_PTC = os.listdir(input_root_calc_PTC) 

 

            new_locations = align_calc_based_on_talus_PTC_joint( 

                filename_talus, filename_talus_PTC, filenames_calc_PTC,  

                input_root_talus, input_root_talus_PTC, input_root_calc_PTC, 

                fixed_talus_mesh, fixed_talus_cog) 

 

            # Save individual aligned parts 

            o3d.io.write_triangle_mesh(os.path.join(output_root_talus, filename_talus), 

new_locations[0]) 

            o3d.io.write_triangle_mesh(os.path.join(output_root_talus_PTC, 

filename_talus_PTC), new_locations[1]) 

 

            for idx, (filename, mesh) in enumerate(zip(filenames_calc_PTC, 

new_locations[2:])): 

                o3d.io.write_triangle_mesh(os.path.join(output_root_calc_PTC, filename), 

mesh) 

 

print("Alignment and saving of STL files completed.") 
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Appendix D – Calculations gap area and inter-articular distances 

import os 

import pyvista as pv 

import numpy as np 

import csv 

from scipy.spatial import cKDTree 

from scipy.stats import shapiro 

from scipy.spatial import ConvexHull, Delaunay 

from scipy.interpolate import interp1d 

from sklearn.decomposition import PCA 

import trimesh 

import re 

from tkinter import filedialog, Tk 

from matplotlib.colors import LinearSegmentedColormap 

import time 

from scipy.interpolate import griddata 

 

# Define function to select file and directories 

def select_file(title): 

    root = Tk() 

    root.withdraw()  # Hide the main window 

    file_path = filedialog.askopenfilename(title=title) 

    return file_path 

 

def select_directory(title): 

    root = Tk() 

    root.withdraw()  # Hide the main window 

    folder_path = filedialog.askdirectory(title=title) 

    return folder_path 

 

# Select template files and base output directory 

input_talus_template_left = select_file("Select the left talus template STL file") 

input_talus_template_right = select_file("Select the right talus template STL file") 

input_calcaneus_template_left = select_file("Select the left calcaneus template STL file") 

input_calcaneus_template_right = select_file("Select the right calcaneus template STL 

file") 

base_output_dir = select_directory("Select the base output directory where the output of 

the alignments are stored e.g. D:\Afstuderen Technical Medicine\data\STL") 

 

# Start timing after file selection 

start_time = time.time()  # Record the start time 

 

# Define base name for combined STL outputs 

output_file = 'combined_calcaneus' 

 

combined_distances = [] 

percentage_holes = [] 

filenames = [] 

std_devs = [] 

results = [] 
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def filter_normals_by_angle(mesh, direction_vector, angle_threshold=50): 

    """Filter normals of a mesh by an angle threshold with a direction vector.""" 

    # Compute cosine of the threshold angle 

    cos_threshold = np.cos(np.radians(angle_threshold)) 

 

    # Normalize the direction vector 

    norm = np.linalg.norm(direction_vector) 

    if norm == 0: 

        return [], [], []  # Handle case where the direction vector is zero 

    direction_norm = direction_vector / norm 

 

    # Get the normals from the mesh 

    normals = mesh.point_normals 

    points = mesh.points 

 

    # Calculate the dot products of the normals with the direction vector 

    dot_products = np.dot(normals, direction_norm) 

 

    # Find normals within the specified angle threshold 

    indices = np.where(dot_products <= cos_threshold)[0] 

 

    # Extract the corresponding normals 

    filtered_normals = normals[indices] 

    filtered_points = points[indices] 

 

    return filtered_normals, indices, filtered_points 

 

def create_glyphs_from_normals(mesh, indices, normals): 

    """Create glyphs from the normals of a mesh.""" 

    # Extract points corresponding to the normals 

    points = mesh.points[indices] 

 

    # Create a PolyData object from these points and normals 

    point_cloud = pv.PolyData(points) 

    point_cloud['normals'] = normals 

 

    # Create glyphs from the normals 

    arrows = point_cloud.glyph(orient='normals', scale=True, factor=1) 

    return arrows 

 

def distance_PTC_joint(normal_array, normals_points, mesh_tal): 

    """ 

    Compute distances between points on a surface (represented by normals) and another 

mesh 

    (represented by mesh_tal) along given directions (normal_array). 

    """ 

    # Lists to store results 

    intersection = [] 

    distances = [] 

    new_points = [] 

    original_points = [] 

    original_vectors = [] 
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    for point, vector in zip(normals_points, normal_array): 

        scalar = 20000 

        new_point = point + scalar * vector 

 

        vector_flipped = -1 * vector 

        new_point_flipped = point + scalar * vector_flipped 

 

        # Trace the ray from the point along the direction of vector to see if it 

intersects with mesh_tal 

        result, ind = mesh_tal.ray_trace(point, new_point) 

        result_flipped, ind_flipped = mesh_tal.ray_trace(point, new_point_flipped) 

 

        # Check if result or result_flipped is empty by evaluating their length 

        if len(result) == 0 and len(result_flipped) == 0: 

            # No intersection found for both 

            intersection.append(0) 

        else: 

            # Intersection found 

            intersection.append(1) 

            # Calculate distance for non-empty result 

            distance = np.linalg.norm(point - result[0]) if len(result) > 0 else 

float('inf') 

            # Calculate distance for non-empty result_flipped 

            distance_flipped = np.linalg.norm(point - result_flipped[0]) if 

len(result_flipped) > 0 else float('inf') 

            # Choose the smaller distance 

            original_points.append(point) 

            original_vectors.append(vector) 

            if distance_flipped < distance: 

                distances.append(distance_flipped) 

                new_points.append(result_flipped[0]) 

            elif distance != float('inf'): 

                distances.append(distance) 

                new_points.append(result[0]) 

 

    return distances, new_points, original_points, original_vectors 

 

def distance_PTC_joint_convex_hull(normal_array, normals_points, mesh_hull, 

convex_hull_mesh): 

    """ 

    Compute distances between points on a surface (convex_hull_PTC, so in the middle of 

the PTC joint) and another mesh 

    (represented by mesh_tal) along given directions (normal_array). Additionally, check 

for 

    intersections with a convex hull mesh, distal from the PTC joint. 

    """ 

    # Lists to store results 

    distances = [] 

    new_points = [] 

    original_points = [] 

    original_vectors = [] 

    hull_intersections = [] 
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    for point, vector in zip(normals_points, normal_array): 

        scalar = 20000 

        new_point = point + scalar * vector 

 

        vector_flipped = -1 * vector 

        new_point_flipped = point + scalar * vector_flipped 

 

        # Trace the ray from the point along the direction of vector to see if it 

intersects with mesh_tal 

        result, ind = mesh_hull.ray_trace(point, new_point) 

        result_flipped, ind_flipped = mesh_hull.ray_trace(point, new_point_flipped) 

 

        # Trace the ray from the point along the direction of vector to see if it 

intersects with convex_hull_mesh 

        hull_result, hull_ind = convex_hull_mesh.ray_trace(point, new_point) 

        hull_result_flipped, hull_ind_flipped = convex_hull_mesh.ray_trace(point, 

new_point_flipped) 

 

        # Check if result or result_flipped is empty by evaluating their length 

        if len(result) == 0 and len(result_flipped) == 0: 

            # Check if the ray intersects with the convex hull mesh 

            if len(hull_result) > 0: 

                hull_intersections.append(hull_result[0]) 

            elif len(hull_result_flipped) > 0: 

                hull_intersections.append(hull_result_flipped[0]) 

        else: 

            # Intersection found 

            original_points.append(point) 

            original_vectors.append(vector) 

            if len(result) > 0: 

                distance = np.linalg.norm(point - result[0]) 

                distances.append(distance) 

                new_points.append(result[0]) 

            elif len(result_flipped) > 0: 

                distance_flipped = np.linalg.norm(point - result_flipped[0]) 

                distances.append(distance_flipped) 

                new_points.append(result_flipped[0]) 

 

    return distances, new_points, original_points, original_vectors, hull_intersections 

 

def combine_stl_files(input_directory, output_directory, base_output_file, patient_number, 

side_indicator): 

    os.makedirs(output_directory, exist_ok=True) 

    stl_files = [f for f in os.listdir(input_directory) if f.endswith('.stl')] 

     

    # List to store all meshes for the current patient 

    patient_meshes = [] 

 

    for stl_file in stl_files: 

        mesh = trimesh.load_mesh(os.path.join(input_directory, stl_file)) 

        patient_meshes.append(mesh) 

 

    if patient_meshes: 
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        combined_mesh = trimesh.util.concatenate(patient_meshes) 

        combined_output_file = 

f"{base_output_file}_patient{patient_number}_{side_indicator}.stl" 

        output_path = os.path.join(output_directory, combined_output_file) 

        combined_mesh.export(output_path) 

        print(f"Combined STL file for patient {patient_number} ({side_indicator}) saved as 

{output_path}") 

 

# Function to load and decimate the mesh 

def load_and_decimate_mesh(filepath, point_threshold, target_reduction=0.7): 

    """ 

    Load a mesh and decimate it if the number of points exceeds the threshold. 

 

    Parameters: 

    - filepath: str, path to the mesh file 

    - point_threshold: int, threshold for the number of points 

    - reduction_factor: float, fraction to reduce the mesh by (0 < reduction_factor < 1) 

 

    Returns: 

    - mesh: PyVista mesh object, possibly decimated 

    """ 

    mesh = pv.read(filepath) 

    num_points = mesh.n_points 

    if num_points > point_threshold: 

        mesh = mesh.decimate(target_reduction=target_reduction) 

    return mesh 

 

# Function to compute the center of a point cloud 

def compute_center_of_point_cloud(cloud_data, com_talus_ptc, com_calcaneus_ptc, 

scale_factor=0.8, translation_factor=3.0): 

    """ 

    Determines the center of 3D points in 3D space using PCA and convex hull methods. 

    Shrinks the convex hull by moving points closer to the centroid and translates 

    the hull in the direction of the 3rd principal component (longitudinal axis). 

    """ 

    # Compute the mean of the point cloud 

    cloud_mean = np.mean(cloud_data, axis=0) 

 

    # Calculate the direction vector from cloud mean to com_calcaneus 

    direction_vector = com_calcaneus - cloud_mean 

    direction_vector /= np.linalg.norm(direction_vector)  # Normalize the direction vector 

 

    # Perform PCA to get principal components 

    _, _, principal_components = np.linalg.svd(cloud_data - cloud_mean) 

 

    # Ensure the 3rd principal component points in the positive X or Y direction 

    if principal_components[2][1] < 0:  # Check the Y component if X is zero 

        principal_components[2] = -principal_components[2] 

 

    # Use the corrected 3rd principal component for translation 

    translation_vector = translation_factor * principal_components[2] 

    translation_vector_ptc = 15 * principal_components[2] 
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    # Project points onto plane defined by the first two principal components 

    projected_points_2d = np.dot(cloud_data - cloud_mean, principal_components[:2].T) 

 

    # Add small noise to avoid degenerate geometry 

    noise = np.random.normal(scale=1e-6, size=projected_points_2d.shape) 

    projected_points_2d += noise 

 

    # Compute convex hull in 2D space 

    hull = ConvexHull(projected_points_2d) 

    hull_points = projected_points_2d[hull.vertices] 

 

    # Compute the centroid of the convex hull 

    hull_centroid = np.mean(hull_points, axis=0) 

 

    # Shrink the convex hull points towards the centroid 

    shrunk_hull_points = hull_centroid + scale_factor * (hull_points - hull_centroid) 

 

    spacing = 0.5  # Adjust spacing as needed 

    filled_points_2d = generate_points_in_hull(shrunk_hull_points, spacing) 

 

    # Project the shrunk hull points back to 3D space 

    shrunk_hull_points_3d = shrunk_hull_points @ principal_components[:2] + cloud_mean 

    shrunk_hull_points_3d_ptc_joint = filled_points_2d @ principal_components[:2] + 

cloud_mean 

 

    # Translate the convex hull points in the direction of the direction vector 

    translated_hull_points_3d = shrunk_hull_points_3d + translation_vector 

    translated_hull_points_3d_ptc_joint = shrunk_hull_points_3d_ptc_joint - 

translation_vector 

 

    # Close the convex hull loop 

    closed_hull_points = np.vstack([translated_hull_points_3d, 

translated_hull_points_3d[0, :]]) 

    closed_hull_points_ptc_joint = np.vstack([translated_hull_points_3d_ptc_joint, 

translated_hull_points_3d_ptc_joint[0, :]]) 

 

    # Calculate cumulative distance along the hull edges 

    cumulative_distances = np.cumsum(np.sqrt(np.sum(np.diff(closed_hull_points, axis=0) ** 

2, axis=1))) 

    cumulative_distances = np.insert(cumulative_distances, 0, 0) 

 

    # Interpolate to get even distribution of points on the translated convex hull 

    num_points = 100 

    fx = interp1d(cumulative_distances, closed_hull_points[:, 0], kind='linear') 

    fy = interp1d(cumulative_distances, closed_hull_points[:, 1], kind='linear') 

    fz = interp1d(cumulative_distances, closed_hull_points[:, 2], kind='linear') 

    even_distances = np.linspace(0, cumulative_distances[-1], num_points) 

    evenly_distributed_points = np.column_stack([fx(even_distances), fy(even_distances), 

fz(even_distances)]) 

 

    # Compute the mean of the evenly distributed points 

    mean_evenly_distributed_points = np.mean(evenly_distributed_points, axis=0) 
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    # Project the center point back to 3D space 

    center_point_3d = mean_evenly_distributed_points 

 

    return center_point_3d, evenly_distributed_points, principal_components, 

closed_hull_points_ptc_joint 

 

# Helper function to generate points within a convex hull 

def generate_points_in_hull(hull_points, spacing): 

    """Generate points within the convex hull of a given set of points.""" 

    # Get the bounding box of the convex hull 

    min_x, min_y = np.min(hull_points, axis=0) 

    max_x, max_y = np.max(hull_points, axis=0) 

 

    # Generate a grid of points over the bounding box 

    x = np.arange(min_x, max_x, spacing) 

    y = np.arange(min_y, max_y, spacing) 

    xx, yy = np.meshgrid(x, y) 

    grid_points = np.c_[xx.ravel(), yy.ravel()] 

 

    # Filter points inside the convex hull 

    hull_path = Delaunay(hull_points) 

    mask = hull_path.find_simplex(grid_points) >= 0 

    points_in_hull = grid_points[mask] 

 

    return points_in_hull 

 

# Function to map distance to a fixed color based on defined ranges 

def get_colored_distance(distance, min_distance, max_distance, cmap): 

    """ 

    Maps distance to a color using a custom colormap. 

     

    Parameters: 

    - distance: The distance value. 

    - min_distance: The minimum distance in the dataset. 

    - max_distance: The maximum distance in the dataset. 

    - cmap: The colormap to use for mapping distances to colors. 

     

    Returns: 

    - A numpy array representing the color. 

    """ 

    # Normalize the distance to be within [0, 1] 

    normalized_distance = (distance - min_distance) / (max_distance - min_distance) 

     

    # Get the color from the colormap 

    color = cmap(normalized_distance) 

     

    # Matplotlib returns colors in RGBA, we only need RGB 

    return np.array(color[:3]) 

 

def evenly_distribute_points_on_surface(points_3d, spacing=0.5): 

    """ 

    Distribute points evenly over the surface area covered by points_3d using a grid. 
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    Parameters: 

    - points_3d: np.array, original 3D points on the surface. 

    - spacing: float, the spacing between points in the grid. 

     

    Returns: 

    - grid_points_3d: np.array, evenly distributed points on the surface. 

    """ 

    # Delaunay triangulation of the original points 

    tri = Delaunay(points_3d[:, :2])  # Using only the first two components for 2D 

triangulation 

     

    # Generate a grid over the bounding box of the original points 

    min_bounds = np.min(points_3d, axis=0) 

    max_bounds = np.max(points_3d, axis=0) 

     

    # Create a uniform grid within the bounds 

    x = np.arange(min_bounds[0], max_bounds[0], spacing) 

    y = np.arange(min_bounds[1], max_bounds[1], spacing) 

    xx, yy = np.meshgrid(x, y) 

    grid_points_2d = np.c_[xx.ravel(), yy.ravel()] 

     

    # Filter grid points that are inside the convex hull of the original points 

    mask = tri.find_simplex(grid_points_2d) >= 0 

    grid_points_2d = grid_points_2d[mask] 

     

    # Interpolate the z values for the grid points based on the original points 

    grid_z = griddata(points_3d[:, :2], points_3d[:, 2], grid_points_2d, method='linear') 

     

    # Combine x, y, and interpolated z values into new 3D points 

    grid_points_3d = np.column_stack([grid_points_2d, grid_z]) 

     

    return grid_points_3d 

 

# Define the number of patients per row and initialize counters 

patients_per_row = 10 

num_patients = len([d for d in os.listdir(base_output_dir) if 

os.path.isdir(os.path.join(base_output_dir, d))]) 

num_rows = (num_patients + patients_per_row - 1) // patients_per_row 

distance_plotter = pv.Plotter(shape=(num_rows, patients_per_row), window_size=[1600, 400 * 

num_rows]) 

gap_area_plotter = pv.Plotter(shape=(num_rows, patients_per_row), window_size=[1600, 400 * 

num_rows]) 

results = [] 

 

def write_results_to_csv(results, output_dir): 

    csv_file_path = os.path.join(output_dir, "distance_and_gap.csv") 

    with open(csv_file_path, "w", newline="") as file: 

        writer = csv.writer(file, delimiter=';') 

        writer.writerow(["Patient", "Mean Distance (mm)", "Standard Deviation (mm)", "Gap 

Area (%)"]) 

        for result in results: 

            mean_distance = f"{result[1]:.2f}".replace('.', ',') 

            std_dev = f"{result[2]:.2f}".replace('.', ',') 
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            gap_area = f"{result[3]:.2f}".replace('.', ',') 

            writer.writerow([result[0], mean_distance, std_dev, gap_area]) 

 

for patient_index, patient_dir in enumerate(os.listdir(base_output_dir)): 

    patient_path = os.path.join(base_output_dir, patient_dir) 

    if os.path.isdir(patient_path): 

        match = re.search(r'(\d+)([RL])$', patient_dir) 

        if match: 

            patient_number = match.group(1) 

            side_indicator = match.group(2) 

            patient_name = f"{patient_number}{side_indicator}" 

        else: 

            print(f"No valid side indicator found in patient directory name: 

{patient_dir}") 

            continue 

 

        input_calcaneus = os.path.join(patient_path, 'Aligned_with_talus', 'calcaneus') 

        input_calcaneus_ptc_combined = os.path.join(patient_path, 'Aligned_with_talus', 

'combined_calc_stl') 

        input_talus = os.path.join(patient_path, 'Aligned_with_talus', 'talus') 

        input_talus_ptc = os.path.join(patient_path, 'Aligned_with_talus', 'talus_PTC') 

 

        # Create the combined calcaneus file per patient with patient number and side 

indicator 

        combine_stl_files(input_calcaneus, input_calcaneus_ptc_combined, output_file, 

patient_number, side_indicator) 

 

        for filename_calcaneus, filename_calcaneus_ptc_combined, filename_talus, 

filename_talus_ptc in zip( 

                os.listdir(input_calcaneus), os.listdir(input_calcaneus_ptc_combined), 

                os.listdir(input_talus), os.listdir(input_talus_ptc)): 

 

            filenames.append(f"{patient_name}_{filename_calcaneus}") 

 

            calcaneus_mesh = load_and_decimate_mesh(os.path.join(input_calcaneus, 

filename_calcaneus), point_threshold=5000) 

            calcaneus_ptc_mesh = 

load_and_decimate_mesh(os.path.join(input_calcaneus_ptc_combined, 

filename_calcaneus_ptc_combined), point_threshold=5000) 

 

            if side_indicator == 'L': 

                talus_template_path = input_talus_template_left 

                calcaneus_template_path = input_calcaneus_template_left 

            elif side_indicator == 'R': 

                talus_template_path = input_talus_template_right 

                calcaneus_template_path = input_calcaneus_template_right 

            else: 

                print(f"Unknown side indicator {side_indicator} for patient 

{patient_number}. Skipping.") 

                continue 

 

            talus_mesh = load_and_decimate_mesh(os.path.join(input_talus, filename_talus), 

point_threshold=5000) 
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            talus_mesh_template = load_and_decimate_mesh(talus_template_path, 

point_threshold=5000) 

            talus_ptc_mesh = load_and_decimate_mesh(os.path.join(input_talus_ptc, 

filename_talus_ptc), point_threshold=5000) 

 

            calcaneus_template_mesh = load_and_decimate_mesh(calcaneus_template_path, 

point_threshold=5000) 

 

            com_calcaneus = calcaneus_mesh.center_of_mass() 

            com_calcaneus_ptc = calcaneus_ptc_mesh.center_of_mass() 

 

            direction_calc_to_ptc_joint = com_calcaneus_ptc - com_calcaneus 

 

            com_talus = talus_mesh.center_of_mass() 

            com_talus_ptc = talus_ptc_mesh.center_of_mass() 

 

            direction_talus_to_ptc_joint = com_talus_ptc - com_talus 

 

            center_tub, cloud_tub, principal_components, cloud_ptc = 

compute_center_of_point_cloud( 

                calcaneus_ptc_mesh.points, com_talus_ptc, com_calcaneus_ptc) 

 

            normals_ptc_calcaneus = calcaneus_ptc_mesh.compute_normals(cell_normals=False) 

            normals_ptc_talus = talus_ptc_mesh.compute_normals(cell_normals=False) 

 

            filtered_normals_calcaneus, indices_calcaneus, filtered_points_calcaneus = 

filter_normals_by_angle( 

                normals_ptc_calcaneus, direction_calc_to_ptc_joint) 

 

            if len(filtered_points_calcaneus) == 0:  # Fallback: Use all points and 

normals if filtering fails 

                filtered_points_calcaneus = normals_ptc_calcaneus.points 

                filtered_normals_calcaneus = normals_ptc_calcaneus.point_normals 

 

            filtered_normals_talus, indices_talus, filtered_points_talus = 

filter_normals_by_angle( 

                normals_ptc_talus, direction_talus_to_ptc_joint) 

 

            print(f"Processing patient {patient_number} ({side_indicator})") 

            if filtered_points_calcaneus.size == 0: 

                print(f"No filtered points for calcaneus in patient {patient_number} 

({side_indicator})") 

 

            # Ensure there are filtered points and normals to process 

            if len(filtered_points_calcaneus) > 0: 

                convex_hull_mesh = pv.PolyData(cloud_tub) 

                convex_hull_mesh_ptc = pv.PolyData(cloud_ptc) 

                filled_convex_full_mesh = convex_hull_mesh.delaunay_2d() 

                filled_convex_full_mesh_ptc = convex_hull_mesh_ptc.delaunay_2d() 

                normal_filled_convex_full_mesh_ptc = 

filled_convex_full_mesh_ptc.compute_normals(cell_normals=False) 

                normals_filled_convex_full_mesh_ptc = 

normal_filled_convex_full_mesh_ptc.point_normals 
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                distances_to_calc, corresponding_point_calc, original_points, 

original_vectors, _ = distance_PTC_joint_convex_hull( 

                    filtered_normals_talus, filtered_points_talus, calcaneus_ptc_mesh, 

filled_convex_full_mesh) 

 

                _, _, _, _, hull_intersections = distance_PTC_joint_convex_hull( 

                    normals_filled_convex_full_mesh_ptc, 

filled_convex_full_mesh_ptc.points, 

                    calcaneus_ptc_mesh, filled_convex_full_mesh) 

 

                hull_intersections_array = np.array(hull_intersections) 

 

                mean_distance_PTC_joint = np.mean(distances_to_calc) 

                # percentage_threshold = 0.50 

                # distance_threshold = mean_distance_PTC_joint * (1 + 

percentage_threshold) 

 

                filtered_distances = [dist for dist in distances_to_calc] #if dist <= 

distance_threshold] 

                filtered_points = [point for dist, point in zip(distances_to_calc, 

corresponding_point_calc)]# if dist <= distance_threshold] 

                 

 

                if len(filtered_points) == 0: 

                    print(f"No filtered points after distance thresholding in patient 

{patient_number} ({side_indicator})") 

 

                # Ensure there are filtered points to work with 

                if len(filtered_points) > 0: 

                    filtered_points_3d = np.array(filtered_points) 

 

                    # Apply the evenly distribute points function to filtered points 

                    evenly_distribute_points_3d = 

evenly_distribute_points_on_surface(filtered_points_3d) 

 

                    # Perform distance calculations using the evenly distributed points 

                    tree = cKDTree(filtered_points_calcaneus) 

                    closest_points_indices = tree.query(evenly_distribute_points_3d, 

k=1)[1] 

                    closest_points_calcaneus = 

np.array(filtered_points_calcaneus)[closest_points_indices] 

                    closest_normals_calcaneus = 

np.array(filtered_normals_calcaneus)[closest_points_indices] 

 

                    distances_to_talus, corresponding_point_talus, original_point_calc, 

original_vector_calc = distance_PTC_joint( 

                        closest_normals_calcaneus, closest_points_calcaneus, 

talus_ptc_mesh) 

 

                    # Filter distances and points again based on the threshold 

                    filtered_points_calc = [(dist, point) for dist, point in 

zip(distances_to_talus, original_point_calc)]# if dist <= distance_threshold] 
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                    # Extract distances and points for further analysis 

                    distances = [dist for dist, point in filtered_points_calc] 

                    std_dev = np.std(distances) 

                    std_devs.append(std_dev) 

                    mean_distance_between_bones = np.mean(distances) 

                    combined_distances.append(mean_distance_between_bones) 

 

                    # Update points with filtered values 

                    points = [point for dist, point in filtered_points_calc] 

                    points_3d = np.array(points) 

 

                    # Calculate percentage of holes 

                    if cloud_ptc.size > 0: 

                        percentage_hole = (len(hull_intersections_array) * 100) / 

len(cloud_ptc) 

                    else: 

                        percentage_hole = 0 

 

                    # Store patient results 

                    results.append([patient_name, mean_distance_between_bones, std_dev, 

percentage_hole]) 

                else: 

                    print(f"Skipping patient {patient_number} ({side_indicator}) due to 

insufficient data.") 

                    results.append([patient_name, float('nan'), float('nan'), 0]) 

            else: 

                print(f"Skipping patient {patient_number} ({side_indicator}) due to 

insufficient data.") 

                results.append([patient_name, float('nan'), float('nan'), 0]) 

 

            # Prepare for visualization 

            if len(filtered_points) > 0: 

                colors = [ 

                    (0.0, 1.0, 0.0),  # Green 

                    (0.0, 0.8, 0.8),  # Blue-Green 

                    (0.0, 0.0, 1.0),  # Blue 

                    (0.5, 0.0, 1.0),  # Purple-Blue 

                    (1.0, 0.0, 1.0),  # Purple 

                ] 

 

                # Create a custom colormap 

                custom_cmap = LinearSegmentedColormap.from_list('custom_cmap', colors, 

N=256) 

 

                pca = PCA(n_components=2) 

                projected_points_2d = pca.fit_transform(points_3d) 

                mean_3d = np.mean(points_3d, axis=0) 

                projected_points_3d = projected_points_2d @ pca.components_[:2, :] + 

mean_3d 

                min_dist = min(distances) 

                max_dist = max(distances) 

 



 

49 

                colors_1 = np.array([get_colored_distance(d, min_dist, max_dist, 

custom_cmap) for d in distances]) 

                row_idx = patient_index // patients_per_row 

                col_idx = patient_index % patients_per_row 

 

                # Add each patient's results to the distance plotter's subplot 

                distance_plotter.subplot(row_idx, col_idx) 

                distance_plotter.add_points(points_3d, scalars=colors_1[:, :3], rgb=True, 

point_size=3, render_points_as_spheres=True) 

                #distance_plotter.add_mesh(talus_ptc_mesh, color="cyan", opacity=0.5) 

                distance_plotter.add_mesh(calcaneus_ptc_mesh, color="orange") 

                distance_plotter.add_text(f"{patient_name}", font_size=12) 

 

                center_PTC_joint_calcaneus = pv.PolyData(com_calcaneus_ptc) 

                convex_hull_ptc_calcaneus = pv.PolyData(cloud_tub) 

                center_ptc_calcaneus = pv.PolyData(center_tub) 

                start_point = center_tub 

                end_point = center_tub + principal_components[2] * 10 

 

                gap_area_plotter.subplot(row_idx, col_idx) 

                #gap_area_plotter.add_mesh(center_ptc_calcaneus, color='pink', 

point_size=7.0, render_points_as_spheres=True) 

                gap_area_plotter.add_mesh(calcaneus_ptc_mesh, color="orange", opacity=0.5) 

                gap_area_plotter.add_mesh(pv.Line(start_point, end_point), color='green', 

line_width=5, label='3rd Principal Component') 

 

                if hull_intersections: 

                    gap_area_plotter.add_points(hull_intersections_array, color='red', 

point_size=5, label='Hull Intersections') 

 

                gap_area_plotter.add_mesh(filled_convex_full_mesh, color='lightblue', 

opacity=0.5, label='Convex Hull') 

                gap_area_plotter.add_mesh(filled_convex_full_mesh_ptc, color='lightgreen', 

opacity=0.5, label='Convex Hull') 

                gap_area_plotter.add_axes() 

                gap_area_plotter.add_text(f"{patient_name}", font_size=12) 

 

# Display all patients' distance plots together 

distance_plotter.show() 

 

# Display all patients' gap area plots together 

gap_area_plotter.show() 

 

# Calculate the mean 

mean_distance = np.mean(combined_distances) 

 

# Save results to a CSV file in the base output directory 

write_results_to_csv(results, base_output_dir) 

 

# Stop timing before the script ends 

end_time = time.time()  # Record the end time 

elapsed_time = end_time - start_time 
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minutes, seconds = divmod(elapsed_time, 60) 

hours, minutes = divmod(minutes, 60) 

 

print(f"Total runtime (excluding folder selection): {int(hours)}h {int(minutes)}m 

{int(seconds)}s") 
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Appendix E – Number of fragments, fragment area, and fracture area 

calculations  

import os 

import numpy as np 

from stl import mesh 

import pyvista as pv 

from collections import defaultdict 

import tkinter as tk 

from tkinter import filedialog 

import trimesh 

import scipy.sparse 

import networkx as nx 

from scipy.spatial import Delaunay 

import pandas as pd 

import time 

 

def calculate_normal(v0, v1, v2): 

    """Calculate the normal vector of the triangle.""" 

    return np.cross(v1 - v0, v2 - v0) 

 

def dihedral_angle(normal1, normal2): 

    """Calculate the dihedral angle between two normals.""" 

    cosine_angle = np.dot(normal1, normal2) / (np.linalg.norm(normal1) * 

np.linalg.norm(normal2)) 

    cosine_angle = np.clip(cosine_angle, -1.0, 1.0) 

    return np.arccos(cosine_angle) 

 

def find_sharp_edges(stl_mesh, threshold_angle): 

    """Find sharp edges in the mesh based on the dihedral angle threshold.""" 

    edges = {} 

    for i, face in enumerate(stl_mesh.vectors): 

        normal = calculate_normal(face[0], face[1], face[2]) 

        for j in range(3): 

            edge = tuple(sorted((tuple(face[j]), tuple(face[(j + 1) % 3])))) 

            if edge not in edges: 

                edges[edge] = [] 

            edges[edge].append((i, normal)) 

     

    sharp_edges = [] 

    threshold_radians = np.radians(threshold_angle) 

    for edge, normals in edges.items(): 

        if len(normals) == 2: 

            angle = dihedral_angle(normals[0][1], normals[1][1]) 

            if angle > threshold_radians: 

                sharp_edges.append((edge, [n[0] for n in normals])) 

     

    return sharp_edges 

 

def build_edge_graph(sharp_edges): 

    """Build a graph of sharp edges where vertices are connected edges.""" 

    edge_graph = defaultdict(set) 
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    for edge, _ in sharp_edges: 

        v0, v1 = edge 

        edge_graph[v0].add(edge) 

        edge_graph[v1].add(edge) 

    return edge_graph 

 

def find_connected_components(edge_graph): 

    """Find connected components in the edge graph.""" 

    visited = set() 

    components = [] 

 

    def dfs(node, component): 

        stack = [node] 

        while stack: 

            v = stack.pop() 

            if v not in visited: 

                visited.add(v) 

                component.add(v) 

                for neighbor_edge in edge_graph[v]: 

                    for neighbor in neighbor_edge: 

                        if neighbor not in visited: 

                            stack.append(neighbor) 

     

    for node in edge_graph: 

        if node not in visited: 

            component = set() 

            dfs(node, component) 

            components.append(component) 

     

    return components 

 

def filter_connected_sharp_edges(sharp_edges, min_size=5): 

    """Filter sharp edges to keep only those in large connected components.""" 

    edge_graph = build_edge_graph(sharp_edges) 

    components = find_connected_components(edge_graph) 

     

    # Filter out small components, keeping only large connected components 

    large_components = [comp for comp in components if len(comp) > min_size] 

 

    connected_sharp_edges = [] 

    for edge, triangles in sharp_edges: 

        v0, v1 = edge 

        for comp in large_components: 

            if v0 in comp or v1 in comp: 

                connected_sharp_edges.append((edge, triangles)) 

                break 

     

    return connected_sharp_edges 

 

def create_region_mesh(stl_mesh, sharp_edges): 

    """Create a mesh of all triangles encaptured by sharp edges and return the triangles 

array.""" 

    edge_triangles = set() 
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    for edge, triangle_indices in sharp_edges: 

        for triangle_index in triangle_indices: 

            edge_triangles.add(triangle_index) 

 

    triangles = [] 

    for triangle_index in edge_triangles: 

        triangles.append(stl_mesh.vectors[triangle_index]) 

 

    return np.array(triangles) 

 

def save_mesh_as_stl(triangles, file_path): 

    """Save the triangles as an STL file.""" 

    if triangles.size == 0: 

        print(f"No triangles to save for {file_path}") 

        return 

 

    region_mesh = mesh.Mesh(np.zeros(triangles.shape[0], dtype=mesh.Mesh.dtype)) 

    for i, triangle in enumerate(triangles): 

        region_mesh.vectors[i] = triangle 

 

    region_mesh.save(file_path) 

 

def extract_boundary_points(sharp_edges): 

    """Extract boundary points from sharp edges.""" 

    points = set() 

    for edge, _ in sharp_edges: 

        points.add(edge[0]) 

        points.add(edge[1]) 

    return np.array(list(points)) 

 

def create_surface_mesh(boundary_points): 

    """Create a surface mesh using Delaunay triangulation.""" 

    if len(boundary_points) < 3: 

        print("Not enough points to perform triangulation.") 

        return None 

     

    tri = Delaunay(boundary_points[:, :2])  # Perform 2D Delaunay triangulation on the XY 

plane 

    triangles = boundary_points[tri.simplices] 

    return triangles 

 

def save_surface_mesh(triangles, file_path): 

    """Save the surface mesh as an STL file.""" 

    if triangles is None or triangles.size == 0: 

        print(f"No triangles to save for {file_path}") 

        return 

 

    surface_mesh = mesh.Mesh(np.zeros(triangles.shape[0], dtype=mesh.Mesh.dtype)) 

    for i, triangle in enumerate(triangles): 

        surface_mesh.vectors[i] = triangle 

 

    surface_mesh.save(file_path) 

    print(f"Saved surface mesh to {file_path}") 
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def calculate_surface_area(triangles): 

    """Calculate the surface area of the mesh.""" 

    if triangles.size == 0: 

        return 0.0 

 

    def triangle_area(triangle): 

        a = np.linalg.norm(triangle[1] - triangle[0]) 

        b = np.linalg.norm(triangle[2] - triangle[0]) 

        c = np.linalg.norm(triangle[2] - triangle[1]) 

        s = (a + b + c) / 2 

        return np.sqrt(s * (s - a) * (s - b) * (s - c)) 

 

    return sum(triangle_area(triangle) for triangle in triangles) 

 

def create_and_save_surface_mesh(sharp_edges, output_path): 

    """Extract boundary points, create a surface mesh, and save it as an STL file.""" 

    boundary_points = extract_boundary_points(sharp_edges) 

    surface_triangles = create_surface_mesh(boundary_points) 

    save_surface_mesh(surface_triangles, output_path) 

    return surface_triangles 

 

def process_individual_file(file_path, output_path, surface_output_path, 

threshold_angle=10, min_size=20): 

    """Process a single STL file for edge detection and save the region mesh and surface 

mesh.""" 

    stl_mesh = mesh.Mesh.from_file(file_path) 

    sharp_edges = find_sharp_edges(stl_mesh, threshold_angle) 

    connected_sharp_edges = filter_connected_sharp_edges(sharp_edges, min_size) 

     

    region_triangles = create_region_mesh(stl_mesh, connected_sharp_edges) 

    save_mesh_as_stl(region_triangles, output_path) 

     

    surface_triangles = create_and_save_surface_mesh(connected_sharp_edges, 

surface_output_path) 

    return surface_triangles 

 

def create_combined_surface_mesh(surface_folder, combined_output_path): 

    """Create a combined surface mesh from all surface meshes in the surface folder.""" 

    boundary_points = [] 

 

    for filename in os.listdir(surface_folder): 

        if filename.endswith(".stl"): 

            surface_mesh = mesh.Mesh.from_file(os.path.join(surface_folder, filename)) 

            for v in surface_mesh.vectors: 

                boundary_points.extend(v) 

 

    boundary_points = np.array(boundary_points) 

    if len(boundary_points) < 3: 

        print("Not enough points to perform triangulation.") 

        return 
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    combined_surface_triangles = create_surface_mesh(boundary_points) 

    save_surface_mesh(combined_surface_triangles, combined_output_path) 

    return combined_surface_triangles 

 

def visualize_all_stl(input_folder, edge_folder, surface_folder, combined_surface_path, 

areas): 

    """Visualize original STL files, edges, and surface meshes.""" 

    input_files = [f for f in os.listdir(input_folder) if f.endswith('.stl')] 

     

    # Filter out fragments with no valid surface area 

    valid_areas = [i for i, area in enumerate(areas[:-1]) if "fragment_area" in area] 

    num_valid_fragments = len(valid_areas) 

     

    plotter = pv.Plotter(shape=(num_valid_fragments + 1, 3), window_size=[1200, 400 * 

(num_valid_fragments + 1)]) 

 

    for i, valid_index in enumerate(valid_areas): 

        filename = input_files[valid_index] 

        input_file = os.path.join(input_folder, filename) 

        edge_file = os.path.join(edge_folder, 

f"{os.path.splitext(filename)[0]}_region.stl") 

        surface_file = os.path.join(surface_folder, 

f"{os.path.splitext(filename)[0]}_surface.stl") 

 

        original_mesh = pv.read(input_file) 

 

        # Check if the edge file exists 

        if os.path.exists(edge_file): 

            edge_mesh = pv.read(edge_file) 

        else: 

            edge_mesh = None 

            print(f"Edge file not found: {edge_file}") 

 

        # Check if the surface file exists 

        if os.path.exists(surface_file): 

            surface_mesh = pv.read(surface_file) 

        else: 

            surface_mesh = None 

            print(f"Surface file not found: {surface_file}") 

 

        plotter.subplot(i, 0) 

        plotter.add_mesh(original_mesh, color='white') 

        plotter.add_title(f'Original {filename}\nArea: 

{areas[valid_index]["fragment_area"]:.2f} mm²', font_size=10) 

 

        plotter.subplot(i, 1) 

        plotter.add_mesh(original_mesh, color='white', opacity=0.7) 

        if edge_mesh: 

            plotter.add_mesh(edge_mesh, color='red') 

        plotter.add_title(f'Edges {filename}', font_size=10) 
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        plotter.subplot(i, 2) 

        if surface_mesh: 

            plotter.add_mesh(surface_mesh, color='blue') 

            plotter.add_title(f'Surface {filename}\nArea: 

{areas[valid_index]["fragment_area"]:.2f} mm²', font_size=10) 

 

    # Visualize combined surface mesh 

    combined_surface_mesh = pv.read(combined_surface_path) 

    combined_area = areas[-1]["combined_area"] 

    fracture_area = combined_area - sum(area["fragment_area"] for area in areas[:-1] if 

"fragment_area" in area) 

    plotter.subplot(num_valid_fragments, 2) 

    plotter.add_mesh(combined_surface_mesh, color='green') 

    plotter.add_title(f'Combined Surface Mesh\nCombined Area: {combined_area:.2f} 

mm²\nFracture Area: {max(fracture_area, 0):.2f} mm²', font_size=10) 

 

    plotter.show() 

 

if __name__ == "__main__": 

    root = tk.Tk() 

    root.withdraw() 

 

    base_input_folder = filedialog.askdirectory(title="Select the base directory 

containing patient folders") 

    if not base_input_folder: 

        print("No directory selected. Exiting.") 

        exit() 

 

    base_output_folder = filedialog.askdirectory(title="Select the base directory for 

output files") 

    if not base_output_folder: 

        print("No output directory selected. Exiting.") 

        exit() 

 

    # Start timing after folder selection 

    start_time = time.time()  # Record the start time 

 

    threshold_angle = 10 

    min_size = 20 

 

    results = []  # List to store results for each patient and fragment 

 

    for patient_dir in os.listdir(base_input_folder): 

        patient_input_folder = os.path.join(base_input_folder, patient_dir, 

"Aligned_with_talus", "calcaneus") 

        edge_output_folder = os.path.join(base_output_folder, patient_dir, 

"Aligned_with_talus", "edges") 

        combined_output_folder = os.path.join(base_output_folder, patient_dir, 

"Aligned_with_talus", "combined_meshes_calc") 

        surface_output_folder = os.path.join(base_output_folder, patient_dir, 

"Aligned_with_talus", "surface_meshes") 
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        if not os.path.exists(patient_input_folder): 

            print(f"Input folder not found: {patient_input_folder}") 

            continue 

 

        if not os.path.exists(edge_output_folder): 

            os.makedirs(edge_output_folder) 

        if not os.path.exists(surface_output_folder): 

            os.makedirs(surface_output_folder) 

 

        stl_files = [f for f in os.listdir(patient_input_folder) if f.endswith(".stl")] 

 

        patient_areas = [] 

        fragment_triangles = [] 

 

        print(f"Processing patient: {patient_dir}") 

         

        # Count the number of fragments for this patient 

        num_fragments = len(stl_files) 

 

        for filename in stl_files: 

            input_path = os.path.join(patient_input_folder, filename) 

            edge_output_path = os.path.join(edge_output_folder, 

f"{os.path.splitext(filename)[0]}_region.stl") 

            surface_output_path = os.path.join(surface_output_folder, 

f"{os.path.splitext(filename)[0]}_surface.stl") 

 

            surface_triangles = process_individual_file(input_path, edge_output_path, 

surface_output_path, threshold_angle, min_size) 

 

            # Check if surface_triangles is None or has no size (skip fragment if so) 

            if surface_triangles is None or surface_triangles.size == 0: 

                print(f"Skipping fragment {filename} due to insufficient points for 

triangulation.") 

                continue  # Skip to the next fragment 

 

            # Calculate area of the fragment 

            fragment_area = calculate_surface_area(surface_triangles) 

            patient_areas.append({"filename": filename, "fragment_area": fragment_area}) 

 

            # Store fragment triangles for comparison 

            fragment_triangles.append(surface_triangles) 

 

        # Create combined surface mesh and calculate its area 

        combined_surface_path = os.path.join(surface_output_folder, 

"combined_surface.stl") 

        combined_surface_triangles = create_combined_surface_mesh(surface_output_folder, 

combined_surface_path) 

        combined_area = calculate_surface_area(combined_surface_triangles) 

        total_fragment_area = sum(area["fragment_area"] for area in patient_areas) 

        fracture_area = combined_area - total_fragment_area 

 

        # Determine the appropriate fracture area description 
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        if len(stl_files) == 1: 

            fracture_area_description = "No intra-articular fracture in the PTC joint 

surface" 

            fracture_percentage = "N/A" 

        elif fracture_area < 0: 

            fracture_area_description = "Fracture area is negligible" 

            fracture_area = 0.0  # Ensure fracture_area is zero for the percentage 

calculation 

            fracture_percentage = "N/A" 

        else: 

            fracture_area_description = f"{fracture_area}" 

            fracture_percentage = (fracture_area / combined_area) * 100 

 

        patient_areas.append({"filename": "combined_surface", "combined_area": 

combined_area, "fracture_area": fracture_area_description}) 

 

        # Add results for the patient including the number of fragments 

        results.append({ 

            "Patient": patient_dir, 

            "Number of Fragments": num_fragments,  # New field for the number of fragments 

            **{f"Area Fragment {i+1} (mm²)": area["fragment_area"] for i, area in 

enumerate(patient_areas[:-1])}, 

            "Area of All Fragments (mm²)": total_fragment_area, 

            "Combined Surface Area (mm²)": combined_area, 

            "Fracture Area (mm²)": fracture_area_description, 

            "Fracture Area (%)": fracture_percentage 

        }) 

        # Stop timing before visualizations 

        end_time = time.time()  # Record the end time 

 

        visualize_all_stl(patient_input_folder, edge_output_folder, surface_output_folder, 

combined_surface_path, patient_areas) 

 

     

 

    # Calculate the total elapsed time (in seconds) and convert to a readable format 

    elapsed_time = end_time - start_time 

    minutes, seconds = divmod(elapsed_time, 60) 

    hours, minutes = divmod(minutes, 60) 

 

    # Print the elapsed time 

    print(f"Total runtime (excluding folder selection and visualization): {int(hours)}h 

{int(minutes)}m {int(seconds)}s") 

 

    # Save results to Excel 

    df = pd.DataFrame(results) 

    column_order = ['Patient', 'Number of Fragments'] + sorted([col for col in df.columns 

if col.startswith("Area Fragment")], key=lambda x: int(x.split()[2])) + ['Area of All 

Fragments (mm²)', 'Combined Surface Area (mm²)', 'Fracture Area (mm²)', 'Fracture Area 

(%)'] 

    df = df[column_order] 
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    # Save the updated DataFrame to an Excel file 

    output_excel_path = os.path.join(base_output_folder, "surface_and_fracture_area.xlsx") 

    df.to_excel(output_excel_path, index=False) 
    print(f"Saved surface areas with percentage to {output_excel_path}") 
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Appendix F – Maximal step-off and maximal gap measurements 

import os 

import pyvista as pv 

import numpy as np 

import pandas as pd 

from tkinter import filedialog, Tk 

import time 

from scipy.spatial import ConvexHull, Delaunay 

import re 

import random 

 

# Define function to select directories 

def select_directory(title): 

    root = Tk() 

    root.withdraw()  # Hide the main window 

    folder_path = filedialog.askdirectory(title=title) 

    return folder_path 

 

# Select the base output directory 

base_output_dir = select_directory("Select the base output directory where the STL files 

are stored") 

 

# Start timing after file selection 

start_time = time.time()  # Record the start time 

 

combined_distances = []  # List to store distances for each patient 

results = [] 

 

# Function to shrink the convex hull by scaling points inward towards the centroid 

def shrink_convex_hull(points, scale_factor=1): 

    centroid = np.mean(points, axis=0) 

    shrunk_points = centroid + scale_factor * (points - centroid) 

    return shrunk_points 

 

# Function to project a point onto a plane defined by the combined convex hull and third 

component 

def project_onto_plane(point, plane_point, normal_vector): 

    vector = point - plane_point 

    distance_to_plane = np.dot(vector, normal_vector) 

    projected_point = point - distance_to_plane * normal_vector 

    return projected_point 

 

# Function to filter points inside the 2D convex hull 

def filter_points_in_hull(points_2d, hull_2d): 

    delaunay = Delaunay(hull_2d) 

    mask = delaunay.find_simplex(points_2d) >= 0  # Check if the points are inside the 

Delaunay triangulation 

    return points_2d[mask] 

 

# Function to check if any fragment intervenes within a specific radius of the mutual 

closest point line 
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def is_fragment_in_between_2d_radius(proj_point1, proj_point2, projected_fragments, 

exclude_indices, tolerance=0.1): 

    line_vector = proj_point2[:2] - proj_point1[:2] 

    line_length = np.linalg.norm(line_vector) 

    normalized_line_vector = line_vector / line_length 

 

    for idx, fragment in enumerate(projected_fragments): 

        if idx in exclude_indices:  # Skip the fragments that are being evaluated 

            continue 

 

        for point in fragment: 

            projection_length = np.dot((point[:2] - proj_point1[:2]), 

normalized_line_vector) 

            if 0 <= projection_length <= line_length: 

                closest_point_on_line = proj_point1[:2] + projection_length * 

normalized_line_vector 

                distance_to_line = np.linalg.norm(point[:2] - closest_point_on_line) 

 

                if distance_to_line <= tolerance: 

                    return True 

    return False 

 

# Function to find mutual closest pairs based on 2D distances on the convex hull after 

projection 

def find_mutual_closest_combined_line(fragment_hulls, combined_hull, third_component, 

tolerance=0.1): 

    longest_total_line = None 

    max_total_length = -np.inf 

    max_gap_pair = None 

    max_gap_length = -np.inf 

    mutual_closest_pairs = [] 

 

    projected_fragments = [] 

    original_fragments = [] 

 

    for fragment in fragment_hulls: 

        projected_points = [] 

        original_points = [] 

        for point in fragment.points: 

            projected_point = project_onto_plane(point, np.mean(combined_hull.points, 

axis=0), third_component) 

            projected_points.append(projected_point) 

            original_points.append(point) 

         

        projected_fragments.append(np.array(projected_points)) 

        original_fragments.append(np.array(original_points)) 

 

    for i in range(len(fragment_hulls)): 

        for j in range(i + 1, len(fragment_hulls)): 

            fragment1_projected = projected_fragments[i] 

            fragment2_projected = projected_fragments[j] 

            fragment1_original = original_fragments[i] 

            fragment2_original = original_fragments[j] 
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            for idx1, proj_point1 in enumerate(fragment1_projected): 

                min_distance = np.inf 

                closest_idx2 = None 

                for idx2, proj_point2 in enumerate(fragment2_projected): 

                    distance = np.linalg.norm(proj_point1[:2] - proj_point2[:2]) 

                    if distance < min_distance: 

                        min_distance = distance 

                        closest_idx2 = idx2 

 

                closest_back_idx1 = None 

                min_back_distance = np.inf 

                for idx_back, proj_point_back in enumerate(fragment1_projected): 

                    distance_back = np.linalg.norm(proj_point_back[:2] - 

fragment2_projected[closest_idx2][:2]) 

                    if distance_back < min_back_distance: 

                        min_back_distance = distance_back 

                        closest_back_idx1 = idx_back 

 

                if closest_back_idx1 == idx1: 

                    point1 = fragment1_original[idx1] 

                    point2 = fragment2_original[closest_idx2] 

                    projected1 = fragment1_projected[idx1] 

                    projected2 = fragment2_projected[closest_idx2] 

 

                    if not is_fragment_in_between_2d_radius(projected1, projected2, 

projected_fragments, exclude_indices=[i, j], tolerance=tolerance): 

                        mutual_closest_pairs.append((point1, point2, projected1, 

projected2)) 

 

                        gap_length = np.linalg.norm(projected1[:2] - projected2[:2]) 

                        if gap_length > max_gap_length: 

                            max_gap_length = gap_length 

                            max_gap_pair = (projected1, projected2) 

 

    for point1, point2, projected1, projected2 in mutual_closest_pairs: 

        length1 = np.linalg.norm(point1 - projected1) 

        length2 = np.linalg.norm(point2 - projected2) 

 

        side1 = np.sign(np.dot(point1 - np.mean(combined_hull.points, axis=0), 

third_component)) 

        side2 = np.sign(np.dot(point2 - np.mean(combined_hull.points, axis=0), 

third_component)) 

 

        if side1 == side2: 

            total_length = abs(length1 - length2) 

        else: 

            total_length = abs(length1 + length2) 

 

        if total_length > max_total_length: 

            max_total_length = total_length 

            longest_total_line = (point1, point2, projected1, projected2) 
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    return mutual_closest_pairs, longest_total_line, max_total_length, max_gap_length, 

max_gap_pair 

 

# Function to generate random colors 

def generate_random_color(): 

    return [random.uniform(0, 1) for _ in range(3)] 

 

# Function to create a 3D convex hull mesh and return it for plotting 

def create_transparent_convex_hull_mesh_3d(mesh, scale_factor=1): 

    points = mesh.points 

    if points.shape[0] > 0: 

        if points.shape[0] < 4: 

            print("Not enough points to create a 3D convex hull.") 

            return None, None, None 

 

        mean = np.mean(points, axis=0) 

        centered_points = points - mean 

        U, S, Vt = np.linalg.svd(centered_points) 

        principal_components = Vt[:2].T 

        third_component = Vt[2] 

        points_2d = centered_points @ principal_components 

 

        hull = ConvexHull(points_2d) 

        hull_points_2d = points_2d[hull.vertices] 

        shrunk_hull_points_2d = shrink_convex_hull(hull_points_2d, scale_factor) 

        shrunk_hull_points_3d = shrunk_hull_points_2d @ principal_components.T + mean 

        convex_hull_3d = ConvexHull(shrunk_hull_points_3d) 

        faces = convex_hull_3d.simplices 

        face_array = np.column_stack((np.full(len(faces), 3), faces)) 

        mesh = pv.PolyData(shrunk_hull_points_3d, face_array) 

        return mesh, principal_components, third_component 

    return None, None, None 

 

# Function to plot patient results with transparent convex hull 

def plot_patient(filled_hull, fragment_hulls, fragment_colors, patient_name, 

mutual_closest_pairs, longest_total_line=None, max_gap_pair=None): 

    plotter = pv.Plotter() 

 

    plotter.add_mesh(filled_hull, color='purple', opacity=0.2, line_width=1) 

 

    for hull, color in zip(fragment_hulls, fragment_colors): 

        plotter.add_mesh(hull, color=color, line_width=2, point_size=3.0, 

render_points_as_spheres=True) 

 

    for (point1, point2, projected1, projected2) in mutual_closest_pairs: 

        line1 = pv.Line(point1, projected1) 

        line2 = pv.Line(point2, projected2) 

        plotter.add_mesh(line1, color='green', line_width=2) 

        plotter.add_mesh(line2, color='green', line_width=2) 

        connection_line = pv.Line(projected1, projected2) 

        plotter.add_mesh(connection_line, color='purple', line_width=2) 

 

    if longest_total_line is not None: 
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        point1, point2, projected1, projected2 = longest_total_line 

        line1 = pv.Line(point1, projected1) 

        line2 = pv.Line(point2, projected2) 

        plotter.add_mesh(line1, color='red', line_width=3) 

        plotter.add_mesh(line2, color='red', line_width=3) 

        connection_line = pv.Line(projected1, projected2) 

        plotter.add_mesh(connection_line, color='lightblue', line_width=5) 

 

        length1 = np.linalg.norm(point1 - projected1) 

        length2 = np.linalg.norm(point2 - projected2) 

        side1 = np.sign(np.dot(point1 - np.mean(filled_hull.points, axis=0), 

third_component)) 

        side2 = np.sign(np.dot(point2 - np.mean(filled_hull.points, axis=0), 

third_component)) 

 

        if side1 == side2: 

            total_length = abs(length1 - length2) 

            print(f"Patient {patient_name} - Maximal Step: {length1:.2f} mm - 

{length2:.2f} mm = {total_length:.2f} mm (same side)") 

        else: 

            total_length = abs(length1 + length2) 

            print(f"Patient {patient_name} - Maximal Step: {length1:.2f} mm + 

{length2:.2f} mm = {total_length:.2f} mm (opposite sides)") 

 

    if max_gap_pair is not None: 

        projected1, projected2 = max_gap_pair 

        gap_line = pv.Line(projected1, projected2) 

        plotter.add_mesh(gap_line, color='orange', line_width=4) 

        gap_length = np.linalg.norm(projected1[:2] - projected2[:2]) 

        print(f"Patient {patient_name} - Maximal Gap: {gap_length:.2f} mm") 

 

    plotter.add_text(f"Patient {patient_name}: maximal step", font_size=12) 

    plotter.show() 

 

# Main processing loop 

for patient_dir in os.listdir(base_output_dir): 

    patient_path = os.path.join(base_output_dir, patient_dir) 

    if os.path.isdir(patient_path): 

        match = re.search(r'(\d+)([RL])$', patient_dir) 

        if match: 

            patient_number = match.group(1) 

            side_indicator = match.group(2) 

            patient_name = f"{patient_number}{side_indicator}" 

 

            combined_stl_file = os.path.join(patient_path, 'Aligned_with_talus', 

'combined_calc_stl', f"combined_calcaneus_patient{patient_number}_{side_indicator}.stl") 

            fragments_dir = os.path.join(patient_path, 'Aligned_with_talus', 'edges') 

 

            if os.path.exists(combined_stl_file) and os.path.exists(fragments_dir): 

                calcaneus_ptc_mesh = pv.read(combined_stl_file) 

                transparent_hull_mesh, principal_components, third_component = 

create_transparent_convex_hull_mesh_3d(calcaneus_ptc_mesh) 

                fragment_hulls = [] 
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                fragment_colors = [] 

 

                for stl_file in os.listdir(fragments_dir): 

                    if stl_file.endswith(".stl"): 

                        fragment_mesh = pv.read(os.path.join(fragments_dir, stl_file)) 

                        fragment_hull = shrink_convex_hull(fragment_mesh.points, 

scale_factor=0.9) 

                        if fragment_hull is not None: 

                            fragment_hulls.append(pv.PolyData(fragment_hull)) 

                            fragment_colors.append(generate_random_color()) 

 

                if len(fragment_hulls) > 1: 

                    mutual_closest_pairs, longest_total_line, max_total_length, 

max_gap_length, max_gap_pair = find_mutual_closest_combined_line( 

                        fragment_hulls, transparent_hull_mesh, third_component, 

tolerance=0.1 

                    ) 

 

                    combined_distances.append({ 

                        "Patient": patient_name,  

                        "Maximal step-off (mm)": max_total_length, 

                        "Maximal gap (mm)": max_gap_length 

                    }) 

 

                    plot_patient(transparent_hull_mesh, fragment_hulls, fragment_colors, 

patient_name, mutual_closest_pairs, longest_total_line, max_gap_pair) 

                else: 

                    print(f"Skipping patient {patient_name}: No valid convex hulls or only 

one fragment found.") 

                    combined_distances.append({ 

                        "Patient": patient_name,  

                        "Maximal step-off (mm)": 0, 

                        "Maximal gap (mm)": 0 

                    }) 

            else: 

                print(f"Combined STL file or edges folder not found for {patient_name}. 

Skipping this patient.") 

                combined_distances.append({ 

                    "Patient": patient_name,  

                    "Maximal step-off (mm)": 0, 

                    "Maximal gap (mm)": 0 

                }) 

        else: 

            print(f"Skipping patient {patient_dir}: no valid side indicator found.") 

            combined_distances.append({ 

                "Patient": patient_dir,  

                "Maximal step-off (mm)": 0, 

                "Maximal gap (mm)": 0 

            }) 

 

# Stop timing before the script ends 

end_time = time.time() 

elapsed_time = end_time - start_time 
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minutes, seconds = divmod(elapsed_time, 60) 

hours, minutes = divmod(minutes, 60) 

print(f"Total runtime: {int(hours)}h {int(minutes)}m {int(seconds)}s") 

 

# Save combined distances to Excel file with correct column names 

df = pd.DataFrame(combined_distances) 

output_file = os.path.join(base_output_dir, "maximal_step_and_maximal_gap_3d.xlsx") 

df.to_excel(output_file, index=False) 

print(f"Results saved to {output_file}") 
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Appendix G – Manual measurements tool in MEVISLAB  

Overview of the model connections:  

The tool was designed by connecting various MeVisLab modules to enable seamless interaction between the 

visualization and analysis of patient data, supporting both manual measurement and classification 

workflows. 

 

Figure 11: Overview of the model connections 

MEVISLAB script 

Custom scripting was integrated to automate data processing steps and enhance user interaction, allowing 

efficient calculation of maximal gap and step-off distances directly from the patient’s CT scans. 

Interface { 

  Parameters { 

    Field Sanders_classification { 

      type = String 

      value = 0,1,2,3,4 

    } 

    Field targetFileName { type = string isFilePath = Yes} 

    Field targetSavePath { type = string isFilePath = Yes} 

     

  } 

} 

 

Window { 

  title = "Sander Classification" 

  Horizontal "Sanders classification and gap and step measurements"{ 

    Splitter { 

      Category { 

        Field ImageLoad.filename { 

          title      = "Browse for CT scans" 

          browseMode = open 

          expandX    = Yes 

          expandY    = Yes 

        } 

        Box  { 

          Button ImageFromFile.openInputFile { 

            title   = "Load File" 
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            expandX = Yes 

            expandY = Yes 

          } 

        }      

        viewer OrthoView2D.self { 

          type    = SoRenderArea 

          ph      = 1024 

          pw      = 1024 

          expandX = true 

          expandY = true 

        } 

       

        Button { 

          title   = "Save DICOM"  

          expandX = True 

          expandY = True 

        } 

      } 

    } 

            

    Category  { 

      Box "User guided interface Sander Classification"  { 

        HyperText { 

          text    = " 

          <h2>Adjust Image:</h2> 

          <ul> 

          <li>Dragging: <b>Shift</b> + click mousewheel</li> 

          <li>Zooming: <b>Ctrl</b> + click mousewheel</li> 

          <li>Brightness: Right click</li> 

          </ul> 

 

          <hr> 

 

          <h2>Sanders Classification:</h2> 

          <p>Choose the correct Sanders classification type from the drop-down menu(Sanders type 1, 2, 3, or 4). 

          <hr> 

 

          <h2>Gap and Step Measurements:</h2> 

          <p>Measure the largest gap and step present in the PTC 

          <h3>Gap Measurement</h3> 

           

          <ul> 

          <li>Press <b>Alt</b> and left-click for the first point of the measurement.</li> 

          <li>Move the line to the desired second point.</li> 

          <li>Press <b>Alt</b> and set the second point of the gap measurement.</li> 

          </ul> 

 

          <h3>Step Measurement</h3> 

          <ul> 

          <li>Press <b>Alt</b> and left-click for the first point of the measurement.</li> 

          <li>Move the line to the desired second point.</li> 

          <li>Press <b>Alt</b> and set the second point of the step measurement.</li> 

          </ul> 

 

          <p>If the measurements are incorrect, press the 'Delete all lines' button. Note: both lines will be removed.</p> 

 

          <p>When you are satisfied with the measurements, save the data by clicking the 'Save data' button. After that, you can load in a new 

patient.</p>"  

          ph = 400 

          pw = 700 

        }  

        viewer View2D.self { 

          type    = SoRenderArea 
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          ph      = 300 

          pw      = 700 

          expandX = true 

          expandY = true 

        } 

         

        Box { 

          expandY = True 

          expandX = True 

            title  = "Sanders Classification" 

            alignX = Center 

          ComboBox StringUtils.string1 { 

          comboField = Sanders_classification 

          editable = False 

            width = 512 

          }} 

        Box  { 

          title = "Measure largest step and Gap" 

          alignX = Center 

          width  = 512 

           

          expandX = True 

          expandY = True 

          Field CSOInfo_Gap.csoLength { 

            title  = "Largest Gap in mm" 

            width  = 512 

            alignX = Center 

          } 

          Field CSOinfo_Step.csoLength { 

            title  = "Largest Step in mm" 

            width  = 512 

            alignX = Center 

          } 

          Button CSOListContainer.clear { 

            title   = "Delete all lines"  

            expandX = True 

            expandY = True 

          } 

        } 

       Box {  

         Button RunPythonScript.execute { 

           title   = "Save Data"  

           expandX = True 

           expandY = True 

         } 

      } 

    } 

  }   

}   

}  

  
      
MEVISLAB Graphical User Interface (GUI) 

A user-friendly GUI was developed, providing surgeons with an intuitive interface for performing manual 

measurements and assigning a Sanders classification to each patient. The interface also included an 

instructions section to guide users through the measurement process, further streamlining the evaluation 

procedure. The files uploaded in the GUI were the NIfTI files of the CT scans, which were resliced parallel 



 

70 

to the joint surfaces of the subtalar joint.

 

Figure 12: GUI used for manual measurements 
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Appendix  H – distance plots 

Plots for all 44 patients from the training dataset 

 

Figure 13: distance plots of the 44 patients from the training dataset. The points are color-coded according to their distance from the PTF, transitioning smoothly from green for the closest points, to purple for the 

most distant points. The PTC surface mesh is visualized in orange. 



 

72 

Plots for 10 patients from the external validation dataset – segmentations by nnU-Net 

 

Figure 14: distance plots of the 10 patients from the external validation dataset, where the segmentations are made by nnU-Net. The points are color-coded according to their distance from the PTF, transitioning 

smoothly from green for the closest points, to purple for the most distant points. The PTC surface mesh is visualized in orange. 

Plots for 10 patients from the external validation dataset – segmentations manual  

 

Figure 15: distance plots of the 10 patients from the external validation dataset, where the segmentations are made manually. The points are color-coded according to their distance from the PTF, transitioning 

smoothly from green for the closest points, to purple for the most distant points. The PTC surface mesh is visualized in orange. 
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Plots for 23 patients from the external validation dataset – segmentations by nnU-Net 

 

Figure 16: distance plots of the 23 patients from the external validation dataset, where the segmentations are made by nnU-Net. The points are color-coded according to their distance from the PTF, transitioning 

smoothly from green for the closest points, to purple for the most distant points. The PTC surface mesh is visualized in orange. 
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Appendix I – Gap area plots  

Gap area plots for all 44 patients from the training dataset 

 

Figure 17: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for all 44 

patients from the training data set. 
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Gap area plots for 10 patients from the external validation dataset – segmentations by nnU-Net 

 

Figure 18: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for 10 

patients from the external validation dataset, where segmentations were created by nnU-Net. 

Gap area plots for 10 patients from the external validation dataset – segmented manually 

 

Figure 19: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for 10 

patients from the external validation dataset, where segmentations were created manually. 
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Gap area plots for 23 patients from the external validation dataset – segmentations by nnU-Net

 

Figure 20: The intersection points (red points) of the rays from the anterocranial convex hull (green) on the posterocaudal convex hull (light blue) and the PTC fragment surfaces (yellow) were plotted for 23 

patients from the external validation dataset, where segmentations were created by nnU-Net 
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Appendix J – Example patient: fragment and fracture area visualization 

 

A = created smoothed STL files per fragment of example patient from training set, B = fragments including boundary mesh visualized in red, C = fragment surface area after Delaunay triangulation, D = surface 

area of all fragments combined after Delaunay triangulation 
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Appendix K – Maximal step-off and maximal gap visualization  

Maximal step-off and maximal gap visualization of all 44 patients from training dataset  

 

Figure 21: Maximal step-off (red lines) and maximal gap (orange line) for all 44 patients in the training dataset. When only one line is shown, a single mutual closest point pair represents both the maximal step-off 

and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations. 
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Maximal step-off and maximal gap visualization of 10 patients from external validation dataset – segmented manually  

 

Figure 22: Maximal step-off (red lines) and maximal gap (orange line) for 10 patients in the external validation dataset where segmentation were created manually. When only one line is shown, a single mutual 

closest point pair represents both the maximal step-off and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations. 

Maximal step-off and maximal gap visualization of 10 patients from external validation dataset – segmented by nnU-Net 

 

Figure 23: Maximal step-off (red lines) and maximal gap (orange line) for 10 patients in the external validation dataset where segmentation were created by nnU-Net. When only one line is shown, a single mutual 

closest point pair represents both the maximal step-off and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations. 
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Maximal step-off and maximal gap visualization of 23 patients from external validation dataset – segmented by nnU-Net 

 

Figure 24: Maximal step-off (red lines) and maximal gap (orange line) for 23 patients in the external validation dataset where segmentation were created by nnU-Net. When only one line is shown, a single mutual 

closest point pair represents both the maximal step-off and maximal gap. For patients without measurements, only one fragment was present, preventing maximal step-off or gap calculations 

 

 

 


