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Abstract

Dimensionality reduction is essential for analyz-
ing high-dimensional datasets across various fields.
While t-SNE is a popular method for this purpose
in Euclidean spaces, recent advancements suggest
that hyperbolic spaces can better represent hierar-
chical structures. However, there is a notable lack
of data structures and algorithms tailored for hyper-
bolic spaces. This research addresses this gap by
implementing a hyperbolic quadtree structure in the
upper half-plane model [7] and integrating it into
the hyperbolic t-SNE framework. Our goal is to ac-
celerate the optimization of the hyperbolic t-SNE
while maintaining reasonable precision and recall.
We conduct rigorous benchmarking experiments to
evaluate the performance of this approach, compar-
ing it to existing methods. The findings provide
insights into the practical utility of using the hy-
perbolic quadtree structure in the upper half-plane
model in hyperbolic t-SNE embeddings.

1 Introduction

In the dynamic world of data analysis, the exploration and
interpretation of high-dimensional datasets have become es-
sential across diverse domains, ranging from sports analyt-
ics [20] to machine learning [17] applications. Central to
this endeavor is the technique of dimensionality reduction,
which facilitates the visualization and comprehension of in-
tricate data. A commonly used method for dimensionality
reduction is the t-distributed stochastic neighbor embedding
(t-SNE) [11]. This method is popular because it preserves lo-
cal neighborhoods when embedding the data, as can be seen
from the empirical study in Xia et al. [21]. While traditional
methods embed data into Euclidean spaces, recent advance-
ments [8], [5] have unveiled the potential of exploring alter-
native embedding spaces, particularly hyperbolic spaces.

Hyperbolic spaces offer distinct properties that render them
ideal for representing hierarchical structures, providing a
novel perspective for data analysis compared to the conven-
tional Euclidean counterparts. For instance, it has been shown
that it is possible to embed trees into hyperbolic space with
arbitrarily low distortion [13], given this property, previous
works have shown embeddings of social networks [16] and
the Internet [2] in hyperbolic space. However, despite the in-
terest in leveraging hyperbolic spaces for data analysis, there
exists a notable void in the development of tailored data struc-
tures and algorithms specifically designed for this geometric
setting.

Addressing this gap, recent research has proposed a novel
quadtree structure tailored for the upper half-plane model [7],
offering a promising avenue for efficient spatial partitioning
and nearest neighbor search in hyperbolic space. Building
upon this foundation, this research aims to implement and
utilize this hyperbolic quadtree structure within the context
of hyperbolic t-SNE. To motivate the need for accelerated
data structures for t-SNE, consider the computational com-
plexity for the t-SNE algorithm. The primary computational

bottleneck in t-SNE lies in the calculation of pairwise sim-
ilarities between data points, which has a time complexity
of O(n?). This quadratic complexity quickly becomes im-
practical as the number of data points n grows, rendering
t-SNE unsuitable for large datasets. The quadtree structure
suggested in Kisfaludi-Bak and Wordragen [7] offers building
time of O(n log(n)) and reduces the number of computations
for similarities by approximating distances efficiently.

The primary objective of this research is twofold: first,
to implement the hyperbolic quadtree structure proposed in
the aforementioned work [7] and second, to employ it in the
framework of hyperbolic t-SNE. By integrating the quadtree
structure into the t-SNE framework, we aim to accelerate the
optimization of the hyperbolic t-SNE while preserving rea-
sonable precision and recall.

In addition to implementation, this study aims to conduct
rigorous benchmarking experiments to evaluate the perfor-
mance of the hyperbolic quadtree-based approach compared
to existing methods, mainly the acceleration suggested in pre-
vious work [15].

Contributions

* Implemented a novel quadtree structure tailored for the
upper half-plane model in hyperbolic space.

¢ Integrated this quadtree structure into the hyperbolic t-
SNE framework.

* Conducted comprehensive benchmarking experiments
to evaluate the performance of the proposed approach.

The remainder of this paper is organized as follows: Sec-
tion 2 provides essential background information, including
an introduction to t-SNE, its Barnes-Hut acceleration struc-
ture, key concepts of hyperbolic spaces, the upper half-plane
model, and the construction of the hyperbolic quadtree struc-
ture. Section 3 reviews related work in the field, highlighting
previous research and existing solutions. Section 4 presents
the methodology of our proposed solution, detailing the in-
tegration of the hyperbolic quadtree structure into the hyper-
bolic t-SNE framework. Section 5 describes the experimental
setup and results, offering insights into the performance eval-
uation and comparisons with existing methods. Section 6 re-
flects on the ethical aspects of our research. Finally, Section 7
summarizes our findings, discusses open issues, and suggests
directions for future work.

2 Background Information

In this section, we present the techniques and concepts that
our method builds upon. We begin with an overview of t-
SNE, a popular technique for dimensionality reduction, and
its Barnes-Hut acceleration structure for efficient computa-
tion in Euclidean spaces. Following this, we explore the es-
sential concepts of hyperbolic spaces, focusing on the upper
half-plane model to highlight its unique properties. Finally,
we introduce a hyperbolic data structure, the quadtree in the
upper half-plane model, which will serve as the foundation
for our acceleration of the hyperbolic t-SNE.



2.1 t-distributed Stochastic Neighbor Embedding
The t-SNE is a popular technique for dimensionality reduc-
tion, particularly for visualizing high-dimensional data. It
works by converting high-dimensional Euclidean distances
into conditional probabilities that represent similarities and
then mapping these to a lower-dimensional space.

High-dimensional similarities
The similarity between two points x; and x; in the high-
dimensional space is given by:
exp (—|lz; — z;]?/207)
Dot €D (=i — a2 /207)
with the symmetrized joint probabilities:
il TP
v 2n
here p;; = 0 and o; is the variance of the Gaussian centered
at point x;.

bjli =

Low-dimensional similarities
The similarity in the low-dimensional space is represented us-
ing a Student’s t-distribution:
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where y; is a point in the low-dimensional embedding corre-
sponding to x;.

Cost function
t-SNE uses gradient descent to minimize the Kullback-
Leibler divergence between the high-dimensional distribution
P and the low-dimensional distribution Q:
Pij
€= KL(PIQ) = 3 Y pylog 2
i g K

Gradient
The gradient of the Kullback-Leibler divergence with respect
to the low-dimensional points y; is used to minimize the cost
function. The gradient is given by:

oC
i 4> (pij — 4i) (Wi — y) (L + llyi — y5l1*) !
J#i
This gradient is used in a gradient descent optimization pro-
cess to update the positions of the low-dimensional points y;.

The naive implementation takes O(n?) time. This can be seen
when rewriting the equation in the following way:

oC
0yi

=4 ZpijQijZ(yi —yj) + ZQ?jZ(yi —vj)
J#i J#i

Where Z = 37, (1 + [lye — wil|*)~". We will refer to the
first sum as positive forces and the second sum as negative
forces. The positive forces can be computed fast if the prob-
ability distribution is sparse however the negative forces re-
quire O(n?) time.

t-SNE is effective in preserving local structures [21], mak-
ing it valuable for visualizing clusters and patterns in high-
dimensional data. The method’s computational complexity is
O(n?), which is quite slow for large datasets. This prompts
the development of acceleration techniques like the Barnes-
Hut approximation, which will be discussed next.

2D example

Consider
Gopaider P00 .

particle

Figure 1: Demonstration of Barnes-Hut approximating with regards
to the red point. We can see how the green points are approximated
with the middle points (the orange triangles) of the cells. The image
was taken from Dierickx and Portillo [3].

2.2 Barnes-Hut Acceleration Structure for t-SNE

The Barnes-Hut algorithm is a hierarchical method that ap-
proximates the interaction between distant points to reduce
computational complexity. It works by recursively dividing
the data space into smaller regions using a quadtree (in two
dimensions) or an octree (in three dimensions). Each node in
the tree represents a region of space and contains a summary
of the points within that region. When evaluating the gradi-
ent for a point y;, we traverse the tree, and at every cell we
evaluate if the condition

Tcell <0 (1)
yi — Yeeul

holds, where 7.¢;; is the diagonal of the cell, y..;; is the mid-
point of the points in the cell, and € is a value we chose for
the approximation. If the equation holds we do not traverse
further but rather approximate all the points in the cell with
Yeell- This approximation reduces the time complexity from
O(n?) to O(nlog(n)) with not much error, given a suitable
0. Normally, 6 is set to be between 0.2 and 0.8 [10]. A visu-
alization of the method can be seen in Fig. 1.

2.3 Hyperbolic Space and the upper half-plane
model

Figure 2: Parallel rays in the half-plane model of hyperbolic geom-
etry [19].

Hyperbolic space is a non-Euclidean geometric space with
constant negative curvature, providing a natural framework
for representing hierarchical structures and complex networks
[2][16]. Unlike Euclidean space, hyperbolic space allows for



Figure 3: The Poincaré disk model of hyperbolic space with the
black lines parallel to the blue line [18].

exponential growth and better captures the relationships in
data with intrinsic hierarchical or tree-like properties.

Our data structure is built in the upper half-plane model,
see Fig.2. The upper half-plane model similar to the Poincare
disk model, see Fig.3, has the conformal property, which
helps in splitting the space into hierarchy. The upper half-
plane model maps the 2-dimensional hyperbolic space into
only the upper half plane (points (z,y) with z € IR and
yeR).

Formally, the upper half-plane model is the space H =
{{z,y)|ly > 0,z,y € R} with metric:

(dz)* + (dy)®
32
Where s measures the length along a possibly curved line.

The hyperbolic distance between two points (x1,y;) and
(2, y2) in the upper half-plane model is then given by:

(ds)? =

A" (21, 1), (v2,92)) = 2arsinh (N m“iti“”)

2.4 Quadtree in the upper half-plane model

Here we will present the main structure that we will use for
accelerating our computations.

Horobox

In Kisfaludi-Bak and Wordragen [7], horoboxes are intro-
duced as the hyperbolic counterpart to Euclidean axis-parallel
boxes in a fixed half-space model. These horoboxes are
defined by their corner points, (zmin(B),z2,(B)) and
(max(B), z4(B)), which are minimal and maximal in all
coordinates, respectively.

Definition. In a fixed half-space model, a cube-based
horobox C is an axis-parallel horobox with 21(9) — 9h and

2@ =
Emaa(Ctmin(C) — 4, where w = w(C) is called the width

zy
and h = h(C) is called the height of the horobox.

Horoboxes will be the cells of our tree. For a horobox C,
point (p,, p,) will be inside C' if i, (C) < Py < Tynax(C)
and z; (C) < p. < (C).

Initializing the root cell
For a given set of  points P =

{(P21, P2 ), P2y P22)s s (Do, p2,) ). First, we find
the bounding horobox C’ of P. The bounding horobox

is defined by the minimal and maximal coordinates of

all the given points in the x and z directions. Formally,
zmin(cl) = minlgignpacja xmax(ol) = mMaXji<i<n Pz;>»
and anlogically z(C") = ming<;<n, p,, and
z4(C") = maxi<i<nPs. Then if w(C’) < 1 and

h(C") < 1, we find the smallest £ € Z such that w(C’? < 2f
and h(C’) < 2¢ then we let w(C') = 2¢ and h(C) = 2. Oth-

erwise, we find the smallest £ € Z such that w(C") < 921
and h(C") < 2, then we let w(C) = 22~ and h(C) = 2°.

After that we let z; (C) = 2z, (C") and Zyin(C) = Zmin(C”).
Following the definition of a horobox after obtaining
h(C) and w(C), we set 4 (C) = 2z (C) x 2M) and
ZTmaz(C) = w(C) X 2,(C) + zmin(C). C will be the
root cell of our tree and ¢ indicates the level of the cell.
Given the way we initialized C, it can be easily seen that
24(C") < 24(C) and iz (C’) < Zinaa(C) and since C’
contained all the points in P, therefore, C' will also contain
P.

Spliting Criteria

For a cell C* if h(C*) < 1 we split it into 4 cells
along the axis-parallel lines (Zminttmas /o 1(C*)1(C*)),
if h(C*) > 1 first we split it along the z = /24 (C*)2T(C*).

This gives us two horoboxes with height h(g*) , where the

top one has width w(C*)/ 25~ but the bottom one still

w(C™*). Thus, we split the bottom cell into 2 5 cells each
h(C*)

having the same width w(C*)/2~ 2. We continue splitting
the cells while there are still points in them. A child node
will only contain the points from its parent that are within the
bounds of its box. In Fig. 4 we can see a visualization of the
tree.

\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure 4: An example of building the tree, the first plot shows the
root cell, the second and third show the next two levels, and the last
plot shows the whole tree.



Properties of the quadtree
Here we will present some properties of the quadtree that are
proven in Kisfaludi-Bak and Wordragen [7].

e At any level ¢, cells are cube-based horoboxes with
height 2¢.

« For ¢ > 0, the width is 22°~! and the diameter is
£
2arsinh(2? ~2).

e For ¢ < 0 the width is a2 and the diameter is
a24f+4(22°—1)2

7 ), where « is a cell-specific

2arsinh(3
value € (1/2,1)

¢ Cells of the same level ¢ > 0 are isometric, and cells
of level # < 0 are cube-based horoboxes with the same
height whose width differs by less than a factor two.

These properties offer us a promising structure to replace
the Barnes-Hut in the hyperbolic space. The bulding of this
structure given n points can be done in O(n log(n)). Approx-
imating the negative forces in the gradient can also be done
in O(nlog(n)) time, given an appropriate 6. The results of
the benchmarking of the building and the calculation of the
negative forces can be seen in Section 5.2 and Section 5.2.

2.5 [Einstein Midpoint

In the Barnes-Hut method, each cell has a center, which is
taken to be the arithmetic mean of all the points in the cell,
this mean is not available in hyperbolic space. In hyperbolic
space, we can instead take the Einstein midpoint of the points
in the cell. The Einstein midpoint is in the Klein model and
is calculated as follows:

mm#%)(%)”

where v(v;) = and v, are the coordinates of y; in

1
the Klein model. This point is suitable because it can be com-
puted in O(n) time for n points. This means that if our tree
takes n points at each level this will add O(n) time complex-
ity. Since the number of levels of our tree is approximated
to be O(log(n)), therefore for the whole construction of the
tree this will add O(n log(n)) time which will not affect the
overall complexity of building the tree O(n log(n)).

3 Related work

3.1 Dimensionality Reduction Methods

Dimensionality reduction techniques can be categorized
based on whether they use linear or non-linear embeddings
and whether they aim to preserve local or global distances. In
this work, we focus on t-SNE, a non-linear, locally preserving
method. Other methods in this category include Locally Lin-
ear Embedding (LLE) [14], Laplacian Eigenmaps (LE) [1],
Local Affine Multidimensional Projection (LAMP) [6], and
Uniform Manifold Approximation and Projection (UMAP)
[12]. Comprehensive surveys detail the advantages and draw-
backs of these techniques, often highlighting t-SNE’s supe-
rior performance in clustering tasks [21].

3.2 Hyperbolic Embeddings

Embedding data into hyperbolic space has shown significant
potential, particularly for representing hierarchical structures
inherent in many real-world graphs and networks. Studies
demonstrate that trees can be embedded into two-dimensional
hyperbolic space with low distortion [13]. This property ex-
tends to various real-world networks, such as embedding the
Internet [2] and social networks [16] in hyperbolic space.

3.3 Hyperbolic t-SNE Extensions

Several extensions of t-SNE to hyperbolic spaces have been
introduced to better capture the hierarchical nature of high-
dimensional data. Notable among these are Cauchy Origin-
SNE (CO-SNE) [4] and Poincare maps [8]. CO-SNE em-
ploys a Riemannian normal distribution for high-dimensional
data and a Cauchy distribution for low-dimensional proba-
bilities, adding terms to the cost function to maintain hier-
archical structures. Poincaré maps create a nearest-neighbor
graph and utilize Gaussian kernels for probability distribu-
tions while employing a symmetric Kullback-Leibler diver-
gence as the cost function.

3.4 Accelerating t-SNE

Acceleration methods for t-SNE, such as the Barnes-Hut ap-
proximation, see Section 2.2, and Fourier transform-based
approach [9], significantly reduce the computational com-
plexity in Euclidean spaces. However, these methods face
challenges when adapted to hyperbolic spaces due to the
non-linear nature and unique geometric properties of hyper-
bolic space. Previous work [15] has shown a quadtree in the
Poincare disk model that significantly accelerates the hyper-
bolic t-SNE. Our research will build on the implementation
of Skrodzki et al. [15] by implementing a hyperbolic quadtree
structure in the upper half-plane model [7].

4 Methodology

This section provides a detailed explanation of the method-
ology used in our research. We implemented the suggested
quadtree in the upper half-plane model (see Section 2.4) and
integrated it into the existing implementation of hyperbolic
t-SNE, which originally works for the Poincaré disk model
[15]. The following steps outline our approach to modify-
ing the hyperbolic t-SNE algorithm and incorporating our hy-
perbolic quadtree in the upper half-plane model for efficient
computation. The diagram in Fig. 5 shows the steps we make
at each step of the gradient descent.

4.1 Transformation Between Models

At each step of the gradient descent, we transformed the
points from the Poincare disk model to the upper half-plane
model. This transformation is essential for utilizing the
quadtree in the upper half-plane. A point (z,y) in the
2 2
$2+(21x_y)2 s I12+m(1_z)2) in the
upper half-plane model. Conversely, a point (z, y) in the up-

2,2 .
iy —1 ) in the

Poincare disk model maps to (

2z
w2 ()% 7 2 (14)°
Poincare disk model. The formulas are taken from Wikipedia
contributors [18].

per half-plane model maps to (
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Figure 5: Diagram of how the gradient descend step works for our
method.
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4.2 Quadtree Construction

After transforming the points to the upper half-plane model
we construct our quadtree as discussed in Section 2.4. Each
cell’s center was computed using the Einstein midpoint of
the points in it to ensure a reasonable approximation for the
points in the cell, see Section 2.5. A visualization of the tree
can be seen in Fig. 4.

4.3 Negative forces calculation and Integration

For each point, we traverse our tree in a similar manner as
Barnes-Hut (see Section 2.2), we stop when the condition in
(1) is satisfied and approximate each point in the cell with
the cell’s center (the Einstein midpoint of the points in the
cell). However, note that the Euclidian distance between the
point and the cell’s Einstein midpoint should be converted to
distance in the upper half-plane model. With these approxi-
mations, we then calculate the negative forces for each point.

4.4 Projection Back to the Poincare Disk Model

After the gradient was calculated, we projected the points
back to the Poincare disk model. This ensured compatibil-
ity with the original t-SNE implementation and allowed us to
leverage existing visualization tools.

4.5 Implementation Details

Our implementation of the quadtree is written in JAVA for
our convenience. The integration with the existing Python
and Cython implementation of hyperbolic t-SNE is achieved
through file-based data exchange. Specifically, the Python
code writes the Poincaré coordinates of the points and the
theta value to a file at each step of the gradient descent, then
the Python code runs our JAVA implementation. The JAVA
program then reads these files, converts the points to the upper
half-plane model, builds the quadtree, calculates the negative
forces, and writes the results to a file. Finally, the Python
program reads the negative forces from the file and uses them
to calculate the gradients of the points. We chose to use file-
based data exchange for ease of implementation, though we

acknowledge that this method is slower due to the overhead
of file I/O operations.

S Experimental Setup and Results

In this section, we describe the experimental setup used to
evaluate the performance of our hyperbolic quadtree-based
t-SNE approach. We detail the datasets, simulation environ-
ment, and metrics used. Subsequently, we present the results,
including precision, recall, the effect of the parameter 6, and
the time required to build the quadtree.

5.1 Experimental Setup
Datasets
We used publicly available datasets for our experiments, en-

suring a wide range of data characteristics and complexities,
see Table.1.

Name Data Type | # Points | # Dim. | # CL
PLANARIA single-cell 21,612 50 51
MNIST images 70,000 784 10
C_ELEGANS | single cell 89,701 | 20,222 37

Table 1: Data sets used in the experiments with the number of points,
the dimension, and the number of labeled classes.

Simulation Environment
The experiments were conducted on a HP ZBook Power G7:

* Processor: Intel(R) Core(TM) i7-10750H CPU @

2.60GHz
¢ Memory: 16,0 GB

Evaluation Metrics
To evaluate the performance of our approach, we used the
following metrics:

* Precision and Recall: To measure the accuracy of
neighborhood preservation. Refer to the evaluation in
Skrodzki et al. [15].

* Effect of 6: To analyze how different values of the pa-
rameter # impact the performance.

* Tree Construction Time: To assess the efficiency of
building the quadtree in the upper half-plane model.

¢ Negative forces calculation time: To assess the effi-
ciency of the summarizing our tree does.

5.2 Results

Precision and Recall

We calculated precision and recall to evaluate how well the
local neighborhood structure is preserved by our method
compared to the traditional quadtree in the Poincare disk
model, and the exact method. Following Skrodzki et al.
[15], to generate the precision and recall curve we did the
following:

We fixed a maximum neighborhood size k., = 30.
Then, for each k& € {1,2,...,kmnax}, We computed the
number of true positives as TP, = Ny, . (X) NN (Y), that

max
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Figure 6: A plot comparing the precision-recall of our quadtree in

the upper half-plane model, the quadtree in the Poincare disk model,
and the exact method with 10000 samples from the MNIST dataset
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Figure 7: A plot comparing the precision-recall of our quadtree in
the upper half-plane model, the quadtree in the Poincare disk model,
and the exact method with 10000 samples from the C-ELEGANS
dataset

is the points that are in the high-dimensional neighborhood
as well as in the low-dimensional neighborhood, given the
respective metric. From here, we obtain the precision as

PRy, = Lf:’*", and the recall as RC), = %

The results, see Figs.6, 7, and 8 demonstrated that our ap-
proach maintains high precision and recall values, however, it
does not outperform the existing solution based on a quadtree
in the Poincare disk model. Furthermore, the embeddings ob-
tained from both methods, see Fig.9, are quite similar, which
serves as a proof of concept.

Effect of 0

The parameter 6 controls the trade-off between accuracy and
computational efficiency in the Barnes-Hut approximation.
We varied 6 from (0.0,0.1,0.2...,1.0) and observed its effect
on precision, recall, and computation time. The results, illus-
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Figure 8: A plot comparing the precision-recall of our quadtree in
the upper half-plane model, the quadtree in the Poincare disk model,
and the exact method with 10000 samples from the PLANARIA
dataset

Figure 9: On the left we can see the final embedding obtained when
using our proposed method, and on the right is the embedding after
using the quadtree in the Poincare disk model. This is the MNIST
dataset with 10000 samples.

trated in Figure 10, show that generally smaller fs produce
better precision-recall curves, however, note that § = 0.8 and
= (.7 produce the best precision-recall curves, which means
that generally the best § depends on the sample. The com-
putational time for each step of the gradient descent can be
seen in Fig. 11. This shows that higher s approximate more
and run faster. Furthermore, when 8 = 0 the method doesn’t
do any approximations and arguably should be like the exact
solution with O(n?) time complexity, when we increase the
0 we can see how the runtime decreases drastically, which
shows the efficiency of our method.

Tree Construction Time

We measured the time required to build the quadtree in the
upper half-plane model for different sample sizes. The re-
sults, presented in Table 2, indicate that our approach scales
efficiently with the size of the sample.

Negative forces calculation time

We measured the time our method takes to calculate the nega-
tive forces used in the derivative for all the points. The results
can be seen in Table 3. This shows that our method scales
well with the size of the sample.
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Figure 10: A plot comparing the precision-recall of our method

given different 0s from (0,0.1,0.2,...,1). This is the MNIST
dataset with 10000 samples.
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Figure 11: A plot comparing the average time to calculate the nega-

tive forces of our method given different 6s from (0,0.1,0.2, ..., 1).
This is the MNIST dataset with 10000 samples.

5.3 Discussion

The results demonstrate that our hyperbolic quadtree-based
t-SNE approach effectively preserves local neighborhood
structures with high precision and recall, while also being
computationally efficient. The parameter 6 allows for a flex-
ible trade-off between accuracy and performance, and our
method scales well with increasing dataset sizes. These find-
ings suggest that the proposed approach is a viable and ef-
fective method for dimensionality reduction in hyperbolic
spaces.

6 Responsible Research

In conducting this research, several ethical considerations
were taken into account to ensure the integrity and reliabil-
ity of our findings. This section reflects on these aspects,
providing a comprehensive overview of our commitment to
responsible research practices.

Sample Size | Construction Time
1,000 29.95 ms
5,000 83.55 ms
10,000 120 ms
20,000 187.33 ms
40,000 308.32 ms

Table 2: Quadtree construction time for different sample sizes of the
MNIST dataset. We ran the gradient descent for each sample size
for around 150 steps and took the average time.

Sample Size | Negative forces time calculation
1,000 254.75 ms
5,000 1043.28 ms
10,000 2275.40 ms
20,000 5031.23 ms
40,000 12534.54 ms

Table 3: Time for calculation of the negative forces for different
sample sizes of the MNIST dataset. We ran the gradient descent for
each sample size for around 150 steps and took the average time.

6.1 Data Privacy and Confidentiality

One of the primary ethical concerns in data analysis is the
handling of data privacy and confidentiality. Our research
involves the use of publicly available high-dimensional
datasets, which are already anonymized and devoid of any
personally identifiable information (PII). Using these publicly
available datasets ensures that our study adheres to ethical
standards without compromising data privacy.

6.2 Transparency and Openness

Transparency is crucial in scientific research to build trust and
facilitate verification of results. In line with this principle, we
will make our code publicly available by adding it to a TU
Delft repository. This allows other researchers to replicate our
experiments, verify our findings, and build upon our work.

6.3 Use of AI Tools

To enhance the clarity and formality of this report, we utilized
ChatGPT, an Al-based language model, primarily for para-
phrasing and refining our written content. This tool helped
us ensure that the document is well-articulated and accessi-
ble to a broad audience. However, all the technical content,
data analysis, and conclusions presented in this report are the
result of our original research efforts.

7 Conclusions and Future Work

In this study, we tackled the challenge of dimensionality re-
duction in hyperbolic spaces by implementing a novel hy-
perbolic quadtree structure within the upper half-plane model
and integrating it into the hyperbolic t-SNE framework. Our
primary objectives were to enhance the preservation of lo-
cal neighborhood structures in high-dimensional data and to
evaluate the performance of this approach through rigorous
benchmarking experiments.

Our findings indicate that the proposed hyperbolic quadtree
structure is computationally efficient, maintaining high pre-
cision and recall values. However, it does not significantly



outperform the existing solution based on the quadtree in the
Poincare disk model. The embeddings obtained from both
methods are quite similar, which serves as a proof of concept
that our method is viable but not necessarily superior in terms
of precision and recall.

Future Work

To further enhance the effectiveness and efficiency of hyper-
bolic t-SNE embeddings, we recommend the following direc-
tions for future research:

¢ Implementation in C++: To reduce the overhead as-
sociated with writing the points and the negative forces
to files and reading back, the entire JAVA implementa-
tion can be developed in C++. This would potentially
streamline the process and enhance performance.

* Broader Applications: Applying our method to a wider
range of datasets could provide deeper insights into its
generalizability and robustness.

e Comparative Analysis: Conducting more extensive
comparative analyses with other state-of-the-art meth-
ods for hyperbolic embeddings could further demon-
strate the strengths and limitations of our approach.

* Exploring Other Models: Investigating other models
of hyperbolic space, beyond the upper half-plane and
Poincare disk, might reveal alternative approaches that
offer better performance or new insights into hyperbolic
embeddings.

In conclusion, this research provides a foundational step
towards efficient dimensionality reduction in hyperbolic
spaces, highlighting the potential and limitations of using a
quadtree structure in the upper half-plane model. While our
approach is effective, further refinements and optimizations
are necessary to fully capitalize on the benefits of hyperbolic
space for high-dimensional data analysis.
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