

Delft University of Technology

JCOMIX: a Search-based Tool to Detect XML Injection Vulnerabilities inWeb Applications
A search-based tool to detect XML injection vulnerabilities in web applications
Stallenberg, Dimitri Michel; Panichella, Annibale

DOI
10.1145/3338906.3341178
Publication date
2019
Document Version
Accepted author manuscript
Published in
The 27th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering

Citation (APA)
Stallenberg, D. M., & Panichella, A. (2019). JCOMIX: a Search-based Tool to Detect XML Injection
Vulnerabilities inWeb Applications: A search-based tool to detect XML injection vulnerabilities in web
applications. In S. Apel, M. Dumas, A. Russo, & D. Pfahl (Eds.), The 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering : Proceedings of the
2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (pp. 1090-1094). ACM. https://doi.org/10.1145/3338906.3341178
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3338906.3341178
https://doi.org/10.1145/3338906.3341178

JCOMIX: A Search-Based Tool to Detect XML Injection
Vulnerabilities in Web Applications

Dimitri Michel Stallenberg
d.m.stallenberg@student.tudelft.nl
Delft University of Technology

The Netherlands

Annibale Panichella
a.panichella@tudelft.nl

Delft University of Technology
The Netherlands

ABSTRACT
Input sanitization and validation of user inputs are well-established
protection mechanisms for microservice architectures against XML
injection attacks (XMLi). The effectiveness of the protection mech-
anisms strongly depends on the quality of the sanitization and
validation rule sets (e.g., regular expressions) and, therefore, se-
curity analysts have to test them thoroughly. In this demo, we
introduce JCOMIX, a penetration testing tool that generates XMLi
attacks (test cases) exposing XML vulnerabilities in front-end web
applications. JCOMIX implements various search algorithms, in-
cluding random search (traditional fuzzing), genetic algorithms
(GAs), and the more recent co-operative, co-evolutionary algorithm
designed explicitly for the XMLi testing (COMIX). We also show the
results of an empirical study showing the effectiveness of JCOMIX
in testing an open-source front-end web application.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; Software testing and debugging; • Security and
privacy→ Web application security.

KEYWORDS
XML injection, Search-based Software Engineering, Security Test-
ing, Test Case Generation
ACM Reference Format:
Dimitri Michel Stallenberg and Annibale Panichella. 2019. JCOMIX: A
Search-Based Tool to Detect XML Injection Vulnerabilities in Web Applica-
tions. In Proceedings of the 27th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3338906.3341178

1 INTRODUCTION
The typical architecture of modern web applications consists of
multiple internal web services that interact with one another by
exchanging data in well-defined and shared formats [5, 13], such
as XML or JSON. Typical examples of modern architectures are
the Service-Oriented Architectures (SOA) or microservices. On the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3341178

one hand, these architectures lead to web applications that are
more flexible, scalable, and maintainable than monolithic archi-
tectures [13]. On the other hand, the increasing communication
complexity leads to a larger attack surface that can be exploited by
attackers to compromise the system and data integrity [17].

To protect web application against security attacks, develop-
ers write validation and sanitization routines for users supplied
input [19] (e.g., username and password in authentication form)
to check for (validation) or remove (sanitization) malicious con-
tent. Usually, input sanitization and validation routines are part
of the front-end web applications, which process users inputs and
generate data messages (e.g., XML messages) for the internal web
services. In XML-based web applications, user inputs need to be
checked to avoid well-known yet widespread XMLi attacks, such as
XML Billion Laughs (BIL) and XML External Entities (XXE) [3, 12].
However, large applications with hundreds of input forms can often
have input fields that are not entirely validated [16].

Researchers have proposed various testing techniques to find
vulnerabilities in front-end web applications [1, 2, 6, 8, 10, 11, 18],
and their validation and sanitization routines in particular. White-
box techniques (e.g., [6, 18]) have been used in the literature to
detect various types of vulnerabilities, such as SQL Injection and
Cross-site Scripting. These techniques require that the source code
(or bytecode) of the web applications (both front-end and internal
services) is available to the tester, that the internal working can be
observed through instrumentation, and are language dependent.
Instead, black-box techniques [1, 2, 8, 10, 11] identify vulnerabilities
by inspecting the user-supplied inputs and the output generated
by web applications. Note that there is no one-to-one mapping
between user inputs and test output because input are processed
and transformed by the SUT. Black-box techniques do not require
access to the source code, are language independent, and can be
used for multiple types of vulnerabilities.

Random fuzzers (e.g., ReadyAPI [1], WSFuzzer [2]) try to send
some XML meta-characters (e.g., <) in a black-box fashion. Then,
they inspect the SUT responses search for abnormal or malicious be-
haviors. However, fuzzers are not very effective for complex vulner-
abilities [9], i.e., vulnerabilities that cannot be exploited by injecting
few meta-characters in one single input text box. Recently, Jan et
al. [8, 10, 11] applied different search-based testing algorithms suit-
ably defined for XMLi, such as traditional genetic algorithms (GAs),
many-objective GAs, local solvers and co-evolutionary algorithms.
Their study showed that search-based approaches outperform ran-
dom fuzzing [10] and that co-evolutionary algorithms discover
more XMLi vulnerabilities than other search algorithms [11].

In this paper, we present JCOMIX, a novel tool (in Java) that
implements co-evolutionary testing algorithms for XMLi attacks.

https://doi.org/10.1145/3338906.3341178
https://doi.org/10.1145/3338906.3341178

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia D. M. Stallenberg and A. Panichella

JCOMIX uses a grammar-based generator to synthesize malicious
XML messages (test objectives) that the front-end web application
should not generate. These test objectives are produced by leverag-
ing an attack grammar that injects malicious content into legitimate
XML messages, which can be obtained by functional tests or dur-
ing software execution in the field. Then, search-based algorithms
are used to search for user inputs to the front-end (i.e., strings
for the web application form) that lead to the generation of the
test objectives (malicious XML messages). The search is guided by
the edits distance and its faster variants [10, 11]. While this paper
describes our tool in the context of automated testing for XML in-
jections, JCOMIX can be extended to detect injection vulnerabilities
in front-end web application for other data formats, such as JSON.

Tool JCOMIX is publicly available on GitHub at the following
link: https://github.com/SERG-Delft/JCOMIX. A walk through ex-
ample of how to use JCOMIX is described in the README file of
the GitHub repository. A video of the JCOMIX at work is available
at: https://youtu.be/ZBqZk4qOtCk.

We also present an empirical study showing the effectiveness
of JCOMIX in finding XMLi attacks in an open-source front-end
application interacting with a bank card processing system.

2 THE TOOL
The goal of JCOMIX it to assess whether a malicious XML message
M can be obtained by the target front-endweb application (Software
Under Test) by providing a specific input X . This can be expressed
as a search problem: finding the user input X for the web-application
form such that the SUT generates the messageM that is harmful to
the internal web services. If such inputs exist, then the validation
and sensitization routines are not properly implemented, and the
testing approach exposes some vulnerabilities.

Therefore, there are twomain phases in thework-flow of JCOMIX
as depicted in Figure 1: (1) Test Objective Generation (TOG) and
Penetration Testing Generator (PTG). The first phase aims to gen-
erate malicious XML messages (Test Objectives [10], or TO for
brevity) that, if generated by the front-end web application, can
compromise the integrity and security of the internal web-services.
In the second phase, search algorithms are used to search for user
inputs that, upon validation and sanitization, results in malicious
XML message (TOs). These two phases work in synergy to find
security gaps in the validation and sanitization routines. The next
subsections describe the two phases in details.

2.1 Test Objective Generation (TOG)
To generate TOs, JCOMIX requires two inputs. The first input is
a legitimate XML message (i.e., without malicious content) that
can be extracted from functional tests. The second input is the
proxy.json file, which contains environmental parameters, such
as the language of the message (i.e., XML) and the name of the
text fields (tags) in the XML file that can be manipulated by user
inputs. First, JCOMIX uses ANTLR1 to parse the legitimate XML
message and check the validity of TOs generated via grammar-
based mutations. ANTLR is a tool for language recognition, and we
selected it because it is widely-used and support multiple languages.

1https://www.antlr.org

PTG

TOG

Example
message

Proxy
file

Parser

Attack Gen. Writer

WebAppSearch Proxy

Other

COMIX Single

Test Writer

Generated
JUnit TestsGenerated

Test Objectives

Config
file

Distance
function

Proxy
file

Generated
Test Objectives

Figure 1: JCOMIX workflow

TOs (or malicious XML messages) are generated by inserting
malicious content within the legitimate message using an attack
grammar. The attack grammar covers four main categories of XMLi
attacks [9, 10]: namely (1) replicating, (2) replacing, (3) deforming,
and (4) random closing tags. Replacing and replicating attacks embed
nested attacks (e.g., SQL injection) within XML messages. Deform-
ing attacks aim to crash the XML parser in the SUT by sending
malformed XML messages. Finally, random closing tags attacks use
extra closing tags to generate malformed XML messages that reveal
the hidden structure of the XML documents.

Malicious content is inserted by applying the attack grammar
and injecting malicious content into the text fields specified in the
file proxy.json. Finally, ANTLR is used to validate the generated
TOs to verify that the generated malicious messages are valid XML
messages. Valid TOs will be used in the second phase of JCOMIX.

While in this demo we focus on four types of XMLi attacks,
JCOMIX is easily extensible to other types of attacks and other data
formats besides XML. However, this requires to define an attack
grammar for the new attacks/data format.

2.2 Penetration Testing Generation (PTG)
The second phase aims to generate JUnit (e.g., executable) tests that
expose the XMLi vulnerabilities in the target front-end web appli-
cation. More specifically, given a set of well-formed yet malicious
TOs, search algorithms are used to search for inputs that lead the
SUT into producing the TOs. Note that JCOMIX uses black-box
search, i.e., it does not access the source code of the validation and
sanitization techniques. Besides, there is no one-to-one mapping
between user-supplied inputs and resulting XML messages because
inputs are processed and transformed by the SUT.

JCOMIX: A Search-Based Tool to Detect XML Injection Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

A candidate solution is a list of strings X = ⟨X1,X2, . . . ,XN ⟩ to
insert in the target input form, where Xi denotes the input for the
i-th input in the form. A random solution X consists of N strings of
variable lengths. Each string contains characters randomly taken
from the set of printable ASCII characters [10]. The fitness of each
solution (or individual) is measured using the edit distance (or its
variants [10]) between the XML message generated by the SUT and
the target TO. In general, the computation of the fitness function
involves the interception of the XML messages generated by the
SUT, which can be done through code instrumentation or pars-
ing the HTTP messages. In the current implementation, JCOMIX
includes a test execution engine to intercepts the produced XML
messages in the body of the HTTP response messages. For the
search, JCOMIX implements multiple alternative search algorithms,
which are summarized in the following paragraphs. The search
algorithms, as well as their internal parameters can be configured
by editing the config.json file.

Random search. It starts with a randomly generated test X ,
which is executed and evaluated using the fitness function. In each
subsequent iteration, a new random test X ′ is generated and evalu-
ated. If X has a better fitness value than X ′, it is kept as the current
solution; otherwise,X ′ replacesX in the next iterations. The search
continues until a given timeout is reached or if the current solution
X results into the SUT generating the target TO. The search process
is repeated multiple times, once for each target TO until all TOs
are considered in the search.

Traditional Genetic Algorithm. GAs are population-based
search algorithms that evolve a pool of solutions iteratively. In the
first iteration (also called generation),M random tests are generated,
executed, and evaluated using the fitness function (i.e., the edit
distance). In subsequent generations, pairs or tests (parents) are
selected based on their fitness values and combined in order to
create new tests (offspring) that inherit strings/characters from the
parents. New tests are synthesized using two genetic operators, the
crossover and mutation operators. The crossover creates new input
strings by mixing the input strings of the two selected parents; the
character mutation randomly changes, removes, or add characters
in the new tests. The search terminates when a given number of
iterations are performed or when a zero fitness function is obtained.
A zero fitness function (edit distance) indicates that GAs found a
test X that, when executed against the SUT, leads to the generation
of the target TO. Similarly to random search, GAs are executed
multiple times, once for each target TO until all TOs are considered
in the search.

Co-evolutionary Search. JCOMIX implements the co-operative,
co-evolutionarymany-objective algorithm proposed by Jan et al. [11]
and defined for XMLi attacks. COMIX co-evolves multiple popu-
lations rather than one single population as in traditional genetic
algorithms. Different sub-populations (or islands) evolve test cases
towards different TOs, one independent sub-population for each
TO. Sub-populations are initialized in the first iteration of the evo-
lutionary algorithm, similarly as done in traditional GAs. How-
ever, islands are evolved separately in each iteration using selection,
crossover, and mutation operators. This means that the offspring is
created within each island separately, and parents are selected from
the same island. Besides, at the end of each iteration, the strongest

class replace1Test {
private WebDriver driver;

@BeforeEach
void setup() throws Exception {...}

@AfterEach
void tearDown() {...}

@Test
public void aTest(){
String testObjective = "<...>";

driver.findElement(By.xpath("//input[@name='CardNumber']")).
↪→ sendKeys("123456789123456");

driver.findElement(By.xpath("//input[@name='BankCode']")).
↪→ sendKeys("0111</lu:IssuerBankCode> <!−− ");

driver.findElement(By.xpath("//input[@name='UserName']")).
↪→ sendKeys("wgen0001");

driver.findElement(By.xpath("//input[@name='RequestId']")).
↪→ sendKeys("0001User</lu:RequestId> <lu:CardNumber>
↪→ −−><lu:RequestId>0 or~/∗∗/1");

driver.findElement(By.xpath("//input[@name='submit']")). submit();

String actualXML = driver.findElement(By.cssSelector("pre")).getText().
replaceAll("\\s+", " ");

Assertions.assertNotEquals(testObjective, actualXML);
}

}

Listing 1: Example of test case generated by JCOMIX

individual from one island is copied into the other islands. This
operation, called migration, is widely-used in co-evolutionary to
improve genetic diversity [11]. To further reduce the likelihood that
the search gets stuck in local optima, COMIX restarts the islands
for which the corresponding fitness value has not improved in the
latest k subsequent iterations.

Compared to random search and traditional GAs, COMIX targets
all TOs at once. Therefore, it requires only one search process, thus,
overcoming the limitations of budget allocation strategies [11, 14].
Previous studies showed that multi-targets search outperforms
single-target ones for XMLi testing [11] as well as in other testing
contexts [4, 14, 15]. Furthermore, we implemented COMIX in our
tool since a prior study [11] showed that COMIX outperforms other
multi-target solvers (i.e., MOSA [14] and MIO [4]) in the context of
XMLi testing.

Post-processing. Generated tests that successfully lead to gen-
erating some TOs (malicious XMLmessages) when executed against
the SUT are stored into the final test suite. Therefore, successful
tests are post-processed and converted in JUnit test cases. An ex-
ample of a test case generated by JCOMIX for the TO in Figure 2 is
reported in Listing 1. The test case uses selenium to interact with
the web interface, inserts the test inputs and fails because the XML
generated by the SUT is equal to the target TO.

3 EVALUATION
To evaluate JCOMIX, we tested SBANK, which is a simplified and
anonymized version of a front-end application interacting with a
bank card processing system [10]. The version used in this study
contains HTML forms and implements input processing routines.
In our testing experiment, the internal web services are mocked to
avoid that our tool compromises them. Besides, SBANK contains

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia D. M. Stallenberg and A. Panichella

...
<lu:UserName>wgen0001</lu:UserName>
<lu:IssuerBankCode>0111</lu:IssuerBankCode> <!--</lu:IssuerBankCode>
<lu:RequestId>0001User</lu:RequestId>
<lu:CardNumber>--> <lu:RequestId>0 or~/**/1</lu:RequestId>
<lu:CardNumber>123456789123456</lu:CardNumber>

....

Figure 2: Example of target TO. The text highlight in red
color is the malicious content added using our grammar-
based TO generator.

Table 1: Number of TOs generated by JCOMIX for SBANK.

Attack Type #Input # Test Objectives

Replicating 1 12
4 12

Replacing 1 0
4 15

Deforming 1 28
4 28

Random Closing Tag 1 4
4 4

different forms with a different number of user inputs. In this experi-
ment, we use the formwith one and four inputs. The four inputs are:
UserName, IssuerBankCode, CardNumber, and RequestID. Note
that SBANK has been used in previous studies [10, 11] to assess the
effectiveness of different search algorithms (including COMIX) in
detecting XMLi vulnerabilities.

Test Objectives. For each form in SBANK, we use JCOMIX to
generate the target TOs using our attack grammar and based on
the attacks described in Section 2.1. Table 1 reports the number of
TODs generated by JCOMIX for SBANK and classified by attack
type. Note that attacks of type Replacing need at least two input
fields. Hence, JCOMIX did not generate any TO for this type of
attack for SBANK with one input (see Table 1). An excerpt of one
TO generated by JCOMIX for SBANK is depicted in Figure 2.

Fitness Functions. In our empirical evaluation, we selected
COMIX (i.e., the co-evolutionary algorithms) and compared three
different variants of the fitness function [10, 11]. The first variant
is the traditional edit distance (or Levenshtein distance) for strings,
which counts the minimum number of characters to add, delete, or
remove to/from a string A (XML message generated by the SUT) to
obtained another string B (the target TO).

The second variant is the real-coded edit distance proposed
in [10]. In this real-coded variant of the edit distance, the difference
between characters corresponds to the relative distance between
their corresponding ASCII codes. For example, let us consider the
strings A=abc and B=abb. The edit distance between A and B is one,
as we would need to replace one character (i.e., replace b with c) in
A to obtain B. Instead, with the real-coded edit distance between
A and B is ϕ(|98 − 99|), where ϕ(x) = x/(x + 1) is a normalization
function [10], while 98 and 99 are the ASCII codes for the characters
b and c, respectively.

However, the Levenshtein distance and the real-coded distance
are particularly expensive for long strings. More specifically, their

Table 2: Number of XMLi vulnerabilities detected by
JCOMIX on SBANK with different fitness functions within
5 min.

#Input Fit. Function Mean St. Dev. Mean #Iterations
1 Real-Coded Dist. 44 2.05 15,458
1 Linear Dist. 45 1.30 21,649
1 Edit Dist. 44 2.49 15,953
4 Real-Coded Dist. 14 4.39 4,192
4 Linear Dist. 12 3.76 4,250
4 Edit Dist. 12 43.56 4,062

computational cost is O(m × n), where m and n are the lengths
(number of characters) of the two strings to compare. Usually, XML
messages contain hundreds of characters, resulting in hundreds
of operations to perform to compare two strings. To reduce the
computational cost of the string comparison, Jan et al. [11] proposed
the linear distance:

d (A, B) = |n −m | +

min{m,n}∑
i=1

|ai − bi |
|ai − bi | + 1

(1)

where ai and bi denote the ASCII codes for the characters in position i of
A and B , respectively. Such a distance is less precise than the other two
variants, but it has a much lower computational cost of O (minm, n). The
linear distance is the third fitness function used in our evaluation

Parameter setting. In this evaluation, we use the parameter values
suggested in the related literature [10, 11]. More specifically, we applied the
character mutation with the probability pm = (1.75)/(λ

√
L), where L is

the length of the input string to mutate, and λ is the size of the islands. The
crossover is applied within each island with a probability pc=0.80. Parents
are selected using the tournament selection. Instead, the size of the islands
is dynamically computed and updated in COMIX [11]. We set an overall
search budget of five minutes. Note that other parameter values can be used
by editing the file config.json.

Results. We run JCOMIX five times for each fitness function variants
and for each SBANK form (i.e., with one and four inputs). Table 2 reports
the number of XMLi vulnerabilities detected by JCOMIX when using differ-
ent fitness functions. In all cases, JCOMIX was able to generate successful
XMLi attacks. For SBANK with one input, the linear distance detected 1
additional attack (on average) compared to the other fitness functions, also
showing a better (smaller) standard deviation. For SBANK with four input,
the real-coded distance led to discover more attacks than the alternative dis-
tances. Finally, our results confirm that the linear distance is less expensive
than the alternative distances since JCOMIX could perform more iterations
within five minutes. Listing 1 reports an example of successful XMLi attack
generated by JCOMIX for SBANK with four inputs using the linear distance.
The corresponding target TO is reported in Figure 2.

4 CONCLUSIONS
In this paper, we presented JCOMIX, a Java framework that generates
successful XMLi attacks using search-based testing approaches. JCOMIX
applies a two-steps approach: first, it generates malicious XML messages
using an attack grammar covering different types of XMLi attacks; then, it
uses a search algorithm to search for user inputs that, after being validated
and sanitized, lead the front-end web application toward the generation of
malicious XML messages.

We evaluate JCOMIX on a front-end application interacting with a bank
card processing system. Our results show that JCOMIX can generate test
cases exposing XMLi vulnerabilities. The general framework of JCOMIX can
be extended to injection attacks for other data formats, such as JSON. Our fu-
ture work will include other data formats, evaluate other search algorithms,
and using machine learning to predict the test execution results [7].

JCOMIX: A Search-Based Tool to Detect XML Injection Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] [n.d.]. SmartBear ReadyAPI. http://smartbear.com/product/ready-api/overview/.

Accessed: 2016-04-26.
[2] [n.d.]. WSFuzzer Tool. https://www.owasp.org/index.php/Category:OWASP_

WSFuzzer_Project. Accessed: 2016-04-26.
[3] [n.d.]. XML Vulnerabilities Introduction. http://resources.infosecinstitute.com/

xml-vulnerabilities/. Accessed: 2016-04-26.
[4] Andrea Arcuri. 2017. Many Independent Objective (MIO) Algorithm for Test Suite

Generation. In International Symposium on Search Based Software Engineering
(SSBSE).

[5] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi,
and Sanjiva Weerawarana. 2002. Unraveling the Web services web: an introduc-
tion to SOAP, WSDL, and UDDI. IEEE Internet computing 6, 2 (2002), 86–93.

[6] C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier. 2008. Detecting Buffer
Overflow via Automatic Test Input Data Generation. Computers & Operations
Research 35, 10 (Oct. 2008), 3125–3143. https://doi.org/10.1016/j.cor.2007.01.013

[7] Giovanni Grano, Timofey V Titov, Sebastiano Panichella, and Harald C Gall.
[n.d.]. Branch coverage prediction in automated testing. Journal of Software:
Evolution and Process ([n. d.]), e2158.

[8] Sadeeq Jan, Cu D. Nguyen, Andrea Arcuri, and Lionel Briand. 2017. A Search-
based Testing Approach for XML Injection Vulnerabilities in Web Applications.
In Proceedings of the 10th IEEE International Conference on Software Testing, Veri-
fication and Validation (ICST 2017).

[9] Sadeeq Jan, Cu D. Nguyen, and Lionel Briand. 2016. Automated and Effective
Testing of Web Services for XML Injection Attacks. In Proceedings of the 2016
International Symposium on Software Testing and Analysis (ISSTA).

[10] S. Jan, A. Panichella, A. Arcuri, and L. Briand. 2017. Automatic Generation
of Tests to Exploit XML Injection Vulnerabilities in Web Applications. IEEE

Transactions on Software Engineering PP, 99 (2017), 1–1. https://doi.org/10.1109/
TSE.2017.2778711

[11] Sadeeq Jan, Annibale Panichella, Andrea Arcuri, and Lionel Briand. 2019. Search-
basedmulti-vulnerability testing of XML injections in web applications. Empirical
Software Engineering (13 Apr 2019). https://doi.org/10.1007/s10664-019-09707-8

[12] Meiko Jensen, Nils Gruschka, and Ralph Herkenhöner. 2009. A Survey of Attacks
on Web Services. Computer Science - Research and Development 24, 4 (2009),
185–197. https://doi.org/10.1007/s00450-009-0092-6

[13] Sam Newman. 2015. Building Microservices. " O’Reilly Media, Inc.".
[14] Annibale Panichella, Fitsum Kifetew, and Paolo Tonella. 2017. Automated Test

Case Generation as a Many-Objective Optimisation Problem with Dynamic
Selection of the Targets. IEEE Transactions on Software Engineering (2017). To
appear.

[15] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2015. Refor-
mulating branch coverage as a many-objective optimization problem. In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International Conference
on. IEEE, 1–10.

[16] James Ransome and Anmol Misra. 2013. Core Software Security: Security at the
Source. CRC Press.

[17] S. Sharma, R. RV, and D. Gonzalez. 2017. Microservices: Building Scalable Software.
Packt Publishing. https://books.google.lu/books?id=zU8oDwAAQBAJ

[18] Julian Thomé, Alessandra Gorla, and Andreas Zeller. 2014. Search-based Security
Testing of Web Applications. In Proceedings of the 7th International Workshop
on Search-Based Software Testing (SBST 2014). ACM, New York, NY, USA, 5–14.
https://doi.org/10.1145/2593833.2593835

[19] Jeff Williams and Dave Wichers. 2013. OWASP, Top 10, The Ten Most Critical Web
Application Security Risks. Technical Report. The Open Web Application Security
Project.

http://smartbear.com/product/ready-api/overview/
https://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
https://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://resources.infosecinstitute.com/xml-vulnerabilities/
http://resources.infosecinstitute.com/xml-vulnerabilities/
https://doi.org/10.1016/j.cor.2007.01.013
https://doi.org/10.1109/TSE.2017.2778711
https://doi.org/10.1109/TSE.2017.2778711
https://doi.org/10.1007/s10664-019-09707-8
https://doi.org/10.1007/s00450-009-0092-6
https://books.google.lu/books?id=zU8oDwAAQBAJ
https://doi.org/10.1145/2593833.2593835

	Abstract
	1 Introduction
	2 The Tool
	2.1 Test Objective Generation (TOG)
	2.2 Penetration Testing Generation (PTG)

	3 Evaluation
	4 Conclusions
	References

