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Abstract: The previously described approximated transfer matrix model (ATMM) provides
insight into the strain distribution along on fibre Bragg grating (FBG) sensor. In this paper we
study the influence of matrix cracks in composites on the angular frequency of the side-lobes
of the FBG reflection spectra in frequency space.

OCIS codes: 060.3735, 070.2025, 050.1755, 130.6010, 280.4788.

1. Introduction

Fibre Bragg grating (FBG) sensors are traditionally used for point strain and temperature, vibration and pressure
measurement [1]. In addition, there has recently been an increased interest in using FBG sensors for the detection of
impact damages. This can be accomplished via dynamic measurements of the Bragg wavelength shifts of the FBG
at the time of the impact [2], or by analysing the static response of the FBG after the event [3]. This current study
belongs to the latter group. We present an analytical model for the reflection spectra from an FBG sensor embedded
in a composite structure which is mechanically loaded to induce matrix cracking. While previous studies have been
based on the extraction of statistical features [2, 3], in this paper we follow an analytical approach and derive a model
that can be used to detect cracks in proximity to the active length of the FBG sensor.

We consider an FBG sensor embedded between the layers of a healthy carbon fibre reinforced plastic (CFRP)
composite structure. Due to the brittle nature of the matrix material, an impact can result in matrix cracking. Some of
these cracks will be adjacent to the active length of the embedded FBG sensor. In such a case, the strain distribution
will show sharp amplitude changes along the length of the sensor, with local maxima at the crack location [4]. In
order to visualise this phenomenon, consider the schematic diagram of a virtual FBG sensor embedded between two
perpendicular layers of a unidirectional carbon fibre composite structure shown in Fig. 1a. Due to the presence of the
cracks and considering the mechanical properties of the composite laminates, McCartney’s theory for σz = 400 MPa
can be used to calculate the strain distribution along the length of the sensor, which is shown in Fig. 1b [4].
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Fig. 1. (a): A schematic of the formation of cracks in the proximity of an embedded FBG between layers of a composite
panel (b): The strain distribution along the length of the FBG, calculated using McCartney’s theory for σz = 400 MPa.

In [5] we presented a model for the analysis of FBG reflection spectra under non-uniform strain fields. Based on
this model, we presented a robust algorithm for calculating the mean strain of such non-uniform strain fields using a
(uniform) FBG sensor. Another direct result of this model was a closed-form approximation of the side-lobes of the
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FBG reflection spectra. In [5] we showed that in particular, these side-lobes carry important information about the
mean strain. Based on the model proposed in [5], we will show in this paper how we can derive an analytical model
for the FBG reflection spectra when the composite contains matrix cracks. Similar as the model presented in [5],
characterising these microscopic cracks is based on analysing the side-lobes of the FBG reflection spectra.

2. Approximated Transfer Matrix Model (ATMM)

FBG sensors have the important property that the shift of the Bragg wavelength changes linearly with the amount of
strain for a uniform axial strain distribution along the length of the sensor. Using coupled mode theory [6], one can de-
rive a closed form equation that characterises the reflection spectrum of the FBG under uniform fields. However, when
the strain field is non-uniform, the analytical expression for the reflection spectrum becomes much more complicated,
and modelling it using the coupled mode theory becomes rather cumbersome. A common way to tackle this problem
is to use the transfer matrix model, where the length of the FBG sensor is discretised into several smaller piecewise
uniform segments. In 1989, Yamada and Sakuda formulated the transfer matrices, and also the relations between the
forward and backward electric waves, propagating through the waveguide [7]. Based on the transfer matrix model, we
proposed in [5] a new model that approximates the transfer matrices to a simpler and more compact form, capable of
extracting more information about the strain field the sensor is subjected to [5]. Similar to the transfer matrix model,
we assumed the length of the sensor has been divided into M smaller piecewise uniform segments with length ∆z. The
forward propagating electric wave entering the i’th segment will be called Ai, and the backward propagating electric
wave, reflected from the i’th segment will be called Bi. In [5] we showed that for small enough ∆z, the relationship
between the forward and backward electric waves is characterised by the following relations.(

Ai
Bi

)
= Fi

(
Ai−1
Bi−1

)
, with Fi =

(
e− j(α−αi) − jκi∆zsinc(α−αi)

jκi∆zsinc(α−αi) e j(α−αi)

)
. (1)

Fi is the approximated transfer matrix of segment i with elements Fi11 , Fi12 , Fi21 and Fi22 . In these relations κi is the
coupling coefficient between the forward and backward waves,

α =
2πneff∆z

λ
and αi =

2πneff∆z
λi

. (2)

In these relations, λ is the wavelength range under analysis, λi is the Bragg wavelength of the i’th segment, and neff
is the effective refractive index of the core. It can be seen that the relation between the electric waves in the first and
the last segments can be derived as (

AM
BM

)
= F

(
A0
B0

)
, in which F =

M

∏
i=1

Fi. (3)

With the assumption that there is full transmission of the incident light in the last segment and no reflection from
further along the length of the sensor, i.e., A0 = 1 and B0 = 0, the reflection spectrum, say R(λ ), can be calculated as

R(λ ) =
∣∣∣∣BM

AM

∣∣∣∣2 = ∣∣∣∣F21

F11

∣∣∣∣2. (4)

2.1. Closed Form Approximation of the Side-lobes

Suppose an arbitrary non-uniform strain field is applied to the length of the sensor. In [5] we showed that under such
conditions, the reflection spectra for wavelengths λ that are sufficiently far away from the Bragg wavelength λB can
be approximated by

R(λ )≈

∣∣∣∣∣M−1

∑
i=1

(ξi−ξi+1)e
− j
(
(M−2i)α+ ∑

k≤i
αk− ∑

k>i
αk

)
+
(

ξMe jM(α−ᾱ)−ξ1e− jM(α−ᾱ)
)∣∣∣∣∣

2

, for |λ −λB|> λth, (5)

where λth > 0 is a threshold for which Eq. (5) holds, ᾱ = ∑
M
i=1 αi/M, and ξi =

κi∆z
2 j(α−αi)

. The particular λ range for
which the approximation in Eq. (5) holds corresponds with the side-lobes of the reflection spectra. In [5] we showed
that when the strain distribution is smooth (i.e., no sudden change of the strain in consecutive segments) ξi− ξi+1 is
much smaller than ξm or ξ1, and that as a consequence, the summation in Eq. (5) will be negligible compared to the
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other terms. For the rest of this paper, we consider the region where λ − λB > λth, which satisfies the condition in
Eq.( 5). Under smooth (but not necessarily uniform) strain distributions we have from Eq.(5)

Rs(λ )≈ |ξ1|2 + |ξM|2−2Re[ξ1ξ
∗
m]cos(2M(α− ᾱ)). (6)

When the strain distribution is not only smooth, but also uniform (i.e., ∀i, ξi = ξ̄ ), the summation in Eq. (5) will be
exactly zero, and the reflection spectra can be approximated as

R(λ )≈
∣∣∣ξ̄ e jM(α−ᾱ)− ξ̄ e− jM(α−ᾱ)

∣∣∣2 = (κL)2 sinc2 (M(α− ᾱ)) , for |λ −λB|> λth, (7)

3. Detection of Matrix Cracks

When the active length of the FBG sensor is in contact with matrix cracks transversal to its longitudinal axis, sudden
strain changes in consecutive segments of the FBG structure will appear at the locations of the cracks. Let us for
simplicity assume there is only one single transverse crack present, which is located at the t’th segment of the FBG
structure. This means that there will be a sudden change of strain from segment t − 1 to t and also from segment t
to segment t + 1, along with a smoothly varying strain distribution over the other segments of the model. Therefore,
neglecting the terms in Eq. (5) where the consecutive ξi values are rather similar, we obtain

Rc ≈

∣∣∣∣∣ t

∑
i=t−1

(ξi−ξi+1)e
− j
(
(M−2i)α+ ∑

k≤i
αk− ∑

k>i
αk

)
+
(

ξMe jM(α−ᾱ)−ξ1e− jM(α−ᾱ)
)∣∣∣∣∣

2

, for |λ −λB|> λth, (8)

where, compared to Eq. (7) we have a contribution of the ξi values around the tth segment due to the crack in segment
t. With this, the reflected side-lobe spectrum R can be written as

Rc ≈ Rs +ψ0 +2

ψ1︷ ︸︸ ︷
Re[(ξt−1−ξt)ξ

∗
M]cos

(
(2M−2t +2)α +θ1

)
−2

ψ2︷ ︸︸ ︷
Re[(ξt−1−ξt)ξ

∗
1 ]cos

(
(2t−2)α +θ2

)
+ (9)

2

ψ3︷ ︸︸ ︷
Re[(ξt −ξt+1)ξ

∗
M]cos

(
(2M−2t)α+θ3

)
−2

ψ4︷ ︸︸ ︷
Re[(ξt −ξt+1)ξ

∗
1 ]cos

(
2tα+θ4

)
+2

ψ5︷ ︸︸ ︷
Re[(ξt −ξt+1)(ξt−1−ξt)

∗]cos
(
2α +θ5

)
,

where ψ0 stands for the real value of a non-linear combination of the ξi parameters with no modulation, θi terms are
linear combinations of the αi parameters, and Re[ · ] stands for the real part of the complex value. In addition, because
ξi−1− ξi is typically smaller than ξ1 or ξM , usually the term ψ5 in Eq. (9) is relatively small compared to the other
terms. Comparing Rc with Rs in Eq. (6), it can be seen that the presence of a single crack reflects itself as five new
harmonic terms (ψ1 till ψ5). Note that all crack related harmonics have lower frequencies than the already existing
harmonic in Rs (with angular frequency 2Mα). Due to the decaying nature of the side-lobes of the reflection spectrum
(with an inverse square rate of decay), using a rectangular window on the side-lobes will result in broadened peaks
and also spectral leakage in the Fourier domain. In order to resolve this problem, and also to avoid the ambiguity of
defining a proper range for the side-lobes (defining a proper λth), we propose replacing the rectangular window with a
non-linearly scaled Hann window of the form:

w =
1
2
(

1+ cos(
2π(α−αc)

αub−αlb
)
)
(α−αB)

2, for λlb < λ < λub, (10)

where αB is a scalar, corresponding to the Bragg wavelength of the stressed sensor, αc corresponds to (λub +λlb)/2,
αlb and αub correspond to λlb and λub. The values of λlb and λub are set by the user, with the only condition that the
main lobe should not be included in their interval. The purpose of this window is to first, compensate for the decaying
factor of the side-lobes and create closer to delta responses in the Fourier domain (the (α −αB)

2 term), and second,
to lower the spectral leakage of the local peaks in the Fourier domain (the Hann window). Applying this window and
taking the Fourier transform of Eq. (9) (neglecting the last term) leads to:

F{Rc} ≈F{Rs}+F{ψow}+F{ψ1w}e± jθ1δ (ω∓ (2M−2t +2))−F{ψ2w}e± jθ2δ (ω∓ (2t−2)) (11)

+F{ψ3w}e± jθ3δ (ω∓ (2M−2t))−F{ψ4w}e± jθ4δ (ω∓ (2t))+F{ψ5w}e± jθ5δ (ω∓ (2)).

As it can be seen from Eq. (11), the new frequencies project themselves as new peaks in the amplitude of the Fourier
transform of the reflection spectrum. Therefore, regardless of the amplitude of the individual F{ψiw} terms, for a
perfectly produced sensor (with little bi-refringence), the mere existence of such high amplitude peaks in the range of
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ω = 0 to ω = 2M indicates sudden changes in the strain field, and possibly crack formation along the length of the
sensor. It is noteworthy that the local peaks which are not spatially separated enough (meaning ω = 2t and ω = 2t−2,
ω = 2M−2t +2 and ω = 2M−2t, and ω = 2 and ω = 0) are usually overlapped and form a single local peak due to
spectral smearing. Also note the ever-present high amplitude peak at ω = 1000 in F{Rs} in Eq. (11).

A simulated example of this phenomenon is shown in Fig. 2 where a sensor of length 10 mm with a nominal Bragg
wavelength of 1550 nm was designed to be in contact with a crack at position 2.5 mm from its start (the same structure
as Fig. 1, except having only the first crack at z = 2.5 mm position). The structure was assumed to have M = 500
segments, therefore the crack tip was located at t = 125. From Eq. (11) it is expected, from the amplitude graph, to
have peaks at locations ω = {0,250,750,1000}, which is evident in Fig. 2c. For comparison, the amplitude of the
Fourier transform of the side-lobes of an unstressed sensor is depicted as well, with its peaks at ω = {0,1000}.
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Fig. 2. (a): Reflection spectra of a sensor near a crack and the scaled Hann window. (b): Windowed side-lobes of the
reflection spectra. (c): Fourier transform of the windowed side-lobes for both stressed and unstressed sensors.

Note that the effect of formation of cracks at other segments (or an increase in the crack density) is an increased
number of terms in the summation term of Eq. (8), and therefore, more local peaks in the amplitude spectrum of Eq.
(11). By inspection of Fig. 2c, it can be seen that there is a clear difference between the Fourier transform of the
side-lobes of a sensor in proximity of cracks, and that of a sensor under smoothly varying strain fields. This difference
can be utilised to design a simple threshold level based classifier in order to detect cracks.

4. Conclusions

In this paper, using the properties of the newly developed ATMM model, we showed the potential of using the infor-
mation in the side-lobes of the reflection spectra of FBG sensors to detect cracks along the length of embedded FBGs
between the layers of composite structure. Simulation results showed a clear correspondence between the angular fre-
quency of the local peaks in the Fourier transform of the side-lobes of an FBG with a single crack, and those extracted
from the mathematical model.
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