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Local Subspace Identification of
Distributed Homogeneous Systems With

General Interconnection Patterns

Chengpu Yu ∗ Michel Verhaegen ∗

∗ Delft Center for Systems and Control, Delft University, Delft
2628CD, Netherlands (c.yu-4@tudelft.nl, m.verhaegen@tudelft.nl)

Abstract: This paper studies the local identification of large-scale homogeneous systems
with general network topologies. The considered local system identification problem involves
unmeasurable signals between neighboring subsystems. Compared with our previous work in
Yu et al. (2014) which solves the local identification of 1D homogeneous systems, the main
challenge of this work is how to deal with the general network topology. To overcome this
problem, we first decompose the interested local system into separate subsystems using some
state, input and output transform, namely the spatially lifted local system has block diagonal
system matrices. We subsequently estimate the Markov parameters of the local system by solving
a nuclear norm regularized optimization problem. To realize the state-space system model from
the estimated Markov parameters, another nuclear norm regularized optimization problem is
provided by taking into account of the inherent dependence of a redundant parameter vector.
Finally, the overall identification procedure is summarized.
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1. INTRODUCTION

Nowadays, the research on distributed system identifica-
tion has attracted considerable attention. For a large-scale
networked system, it is usually impossible to collect all
the system input and output data, thus developing system
identification methods that can identify local dynamics us-
ing local system input and output measurements becomes
essential. In addition, the interconnected signals between
neighboring subsystems are generally unobservable, such
as the dynamics governed by PDEs, which poses an extra
challenge to the local identification problem. This paper
contributes to the local identification problem with un-
measurable interconnection signals.

In the literature, a number of identification algorithms
for distributed systems have been reported. By parame-
terizing the system dynamics in terms of transfer func-
tions, an instrumental variable technique is adopted in Ali
et al. (2011) to identify distributed identical subsystems
and a prediction method for closed-loop identification is
implemented in Hof et al. (2013) for the identification of
local modules in the network. In the above parameterized
methods, the interconnected signals between neighboring
subsystems are measurable, thus limiting their applica-
bilities. In Rice and Verhaegen (2011), the state-space
represented dynamical systems are parameterized by ex-
ploiting the SSS (Sequential, Semi-Separability) of the
system matrices, and the associated identification is dealt
with by solving a non-linear (non-convex) optimization
problem. One common feature of the above mentioned
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prediction error identification methods (PEM) is the non-
convex nature in general of the numerical solution.

Compared to the PEM, the subspace approaches can re-
liably obtain identification results using classic algebraic
computations such as QR and SVD decompositions, see
Verhaegen and Verdult (2007). When the concerned dis-
tributed and decomposable system has a circulant inter-
connection pattern, it is shown in Massioni and Verhaegen
(2008) that the whole system can be decomposed into sep-
arate subsystems by some state, input and output transfor-
m. The overall system identification can then be performed
by parallel identification of the individual subsystems. As
an extension, the distributed identification under general
network topologies is studied in Massioni et al. (2009).
In this work, the associated state-space realization is ac-
complished by solving a Bilinear Matrix Inequality (BMI)
problem; thus it is hard to ensure the global optimality
of the solution. Since the above identification approaches
require some global state, input and output transform,
they cannot be scaled to the identification of large-scale
systems.

When the interconnection signals are unmeasurable and
only the local system input and output measurements are
available, a subspace identification method is proposed in
Haber and Verhaegen (2014) which approximates the un-
observable neighboring states using a linear combination
of inputs and outputs of a local neighborhood of sub-
systems, and the identification performance relies on the
selection of that neighborhood. To avoid the neighborhood
selection, a nuclear norm optimization based approach is
presented in Matni and Rantzer (2014) by exploiting the
low-order local dynamics and high-order global dynamics.



In this work, the neighboring states are considered to be
energy-bounded disturbances and it only identifies impulse
response elements without state-space realization. In our
pervious work Yu et al. (2014), the local system identi-
fication is handled by solving a nuclear norm regularized
optimization problem which is formed by exploiting the
structure and low rank properties of the terms in the data
equation. Since this solution does not require any prior
knowledge of the energy upper bound of the unmeasurable
neighboring states, it can perform well under either weakly
or strongly coupled networked systems.

In Yu et al. (2014), the local identification of 1D distribut-
ed homogeneous systems is considered and the correspond-
ing solution relies on the block tri-diagonal properties of
the system matrices. As a consequence, it cannot be s-
traightforwardly applied to the identification of networked
systems with general network topologies. Inspired by i-
dentification algorithm in Yu et al. (2014) and the prop-
erties of decomposable systems in Massioni et al. (2009),
we propose a nuclear norm optimization based subspace
identification in this paper. The spatially lifted local sys-
tem is transformed into another state-space model with
block diagonal system matrices by some state, input and
output transform. Following the local system identification
procedures shown in Yu et al. (2014), the estimation of
Markov parameters and system matrices is carried out by
solving a nuclear norm regularized optimization problem.

The paper is organized as follows. Section 2 describes
the local identification problem of large-scale homoge-
neous systems. Section 3 proposes a subspace identifica-
tion method which estimates the Markov parameters first,
followed by the system realization. Section 4 summarizes
the whole system identification approach, followed by the
conclusions in Section 5.

2. PROBLEM FORMULATION

The considered networked system consists of a large num-
ber of identical subsystems, with the i-th subsystem Σi

having the following dynamics:

xi(k + 1) = Aaxi(k) +Ab

∑
j∈Ni

xj(k) +Bui(k)

yi(k) = Cxi(k) + wi(k),

(1)

where xi(k) ∈ R
n×1, ui(k) ∈ R

m×1, wi(k) ∈ R
p×1 and

yi(k) ∈ R
p×1 are the state, input, measurement noise and

output of the i-th subsystem, Ni denotes the set of the
neighboring subsystems of the i-th subsystem.

In the networked system description in (1), we assume
that C is a flat matrix, namely p ≤ n. Otherwise, if
C has a full column rank, the associated state can be
represented in terms of the system output, and the local
system identification boils down to the identification of
an errors-in-variables (EIV) model which can be solved
by many classic methods, see Chou and Verhaegen (1997);
Verhaegen and Verdult (2007). In addition, we assume that
the associated network topology is bidirectional, which is
common in state-space represented systems governed by
PDEs.

The problem of interest is to identify the system matrices
C,Aa, Ab, B up to a similarity transform given the local

Fig. 1. Diagram of a local system in a large-scale network.

system input and output data and the local interconnec-
tion pattern, where the local system refers to the system
contained in the ellipse in Fig. 1.

3. IDENTIFICATION METHOD

Denote by Ω = {Σ1,Σ2, · · · ,ΣN} the set of subsystems
in the local system and Ω̄ the set of subsystems outside
the local system, as shown in Fig. 1. Let NΩ be the set
of neighboring subsystems of Ω, namely the subsystems in
NΩ are directly connected to the local system. It follows
that NΩ ⊂ Ω̄. The spatially lifted state-space form of
the local networked system, which consists of subsystems
{Σi}Ni=1 as shown in Fig. 1, can be written as

x(k + 1) = (I ⊗Aa + P ⊗Ab)x(k) + (R⊗Ab) v(k)

+ (I ⊗B)u(k)

y(k) = (I ⊗ C)x(k) + w(k),

(2)

where x(k), u(k), y(k) and w(k) are the spatially lifted
state, input, output and measurement noise, respectively.
For example, for the local system illustrated in Fig. 1, x(k)

is defined as x(k) =
[
xT
1 (k) xT

2 (k) · · · xT
N (k)

]T
. v(k) is

an external signal for the local system which is stacked by
states {xi(k)}i∈NΩ . The matrix P is the pattern matrix
of the local system while R is a pattern matrix describing
the interconnection pattern between the subsystems in Ω
and Ω̄. It is noteworthy that the neighboring state vector
v(k) in the above system equation is unavailable.

Since the system matrices in (2) have no sparse or banded
structures, the identification problem seems to be challeng-
ing. However, we can observe that the local system model
(2) without the unknown system input term is a decom-
posable system model (see Massioni et al. (2009)); hence,
it can be transformed into another state-space model with
block diagonal system matrices by some state, input and
output transform.

Lemma 1. Let P = UΛUT with U an orthogonal matrix
and Λ a real diagonal matrix. The decomposable system
in (2) can be equivalently transformed into:



x̂(k + 1) = Ax̂(k) +
(
UTR⊗Ab

)︸ ︷︷ ︸
R

v(k) + (I ⊗B)︸ ︷︷ ︸
B

û(k)

ŷ(k + 1) = (I ⊗ C)︸ ︷︷ ︸
C

x̂(k) + ŵ(k),

(3)

where x̂(k) = (UT ⊗ I)x(k), û(k) = (UT ⊗ I)u(k),
ŵ(k) = (UT⊗I)w(k) and ŷ(k) = (UT⊗I)y(k). The system
matrix A is block diagonal and has the following forms:
A = I ⊗Aa + Λ⊗Ab.

The above lemma can be easily derived following the
results in Massioni et al. (2009).

3.1 Estimation of the Markov parameters

In (3), the system matrices A,B,C are block diagonal
except the matrix R. The associated data equation of (3)
can be written as

Ŷs,r = OsX̂r +Tu,sÛs,r +Tv,sV̂s,r + Ŵs,r, (4)

where Ŷs,r =

⎡
⎢⎢⎢⎣
ŷ(1) ŷ(2) · · · ŷ(r)

ŷ(2) ŷ(3) . .
.
ŷ(r + 1)

... . .
.

. .
. ...

ŷ(s) ŷ(s+ 1) · · · ŷ(T ).

⎤
⎥⎥⎥⎦ with the sub-

scripts s,r representing the numbers of vertical and hori-

zontal blocks, respectively. Ûs,r and Ŵs,r have the same

structure as Ŷs,r. Os =

⎡
⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎦ is the extended ob-

servability matrix. X̂r = [ x̂(1) · · · x̂(r) ] is a concatenat-

ed state sequence. Tu,s =

⎡
⎢⎢⎣

0
CB 0
...

. . .
. . .

CAs−2B · · · CB 0

⎤
⎥⎥⎦ and

Tv,s =

⎡
⎢⎢⎣

0
CR 0
...

. . .
. . .

CAs−2R · · · CR 0

⎤
⎥⎥⎦.

It is worth noting that the term OsX̂r in (4) has low rank

and the term Tv,sV̂s,r is totally unknown. Next, we shall

show that the sum OsX̂r + Tv,sV̂s,r has low rank under
some mild conditions.

Lemma 2. Denote by |Ω| the number of subsystems in Ω,

and |NΩ| for the set NΩ. The rank of the sum OsX̂r +

Tv,sV̂s,r satisfies that

rank
(
OsX̂r +Tv,sV̂s,r

)
≤ |Ω|n+ |NΩ|(s− 1)n.

From the above lemma, we can find that the sum OsX̂r +
Tv,sV̂s,r has a lower rank with relation to Ŷs,r if |Ω| �
|NΩ|, namely there are much more subsystems inside the
local system than its neighboring subsystems in NΩ.

In the sequel, we denoteN = |Ω|. By combining the N2SID
method in Verhaegen and Hansson (2014) and the low rank

property of the sum OsX̂r + Tv,sV̂s,r, we can derive the
following nuclear norm regularized optimization problem

min
Ỹs,r∈Hs,r,Tu,s∈Tu,s

T∑
k=1

‖ŷ(k)−ỹ(k)‖2F +α‖Ỹs,r−Tu,sÛs,r‖∗,

(5)
where α is a regularization parameter. Hs,r and Tu,s are
the sets of block Hankel and Toeplitz matrices having the
same structures of Ŷs,r and Tu,s, respectively. Ỹs,r is a
Hankel matrix constructed by {ỹ(k)}Tk=1, which has the

same structure as Ŷs,r.

By exploring the structure of Tu,s in (4), we can see that
its block entries are further block diagonal matrices. More
specially, the block entry CAiB can be explicitly written
as

CAiB =

⎡
⎢⎣C(Aa + λ1Ab)

iB
.. .

C(Aa + λNAb)
iB

⎤
⎥⎦ .

When solving the optimization problem in (5), the above
finer structures of Tu,s are imposed as constraints. For-
tunately, adding finer structure constraints does not af-
fect the convexity of the optimization problem. Thus, the
Markov parameters C(Aa + λiAb)

jB for 1 ≤ i ≤ N, 0 ≤
j ≤ s− 2 can be reliably obtained by solving (5).

3.2 Determine system matrices

After obtaining the Markov parameters, the realization
of state-space model in (1) will be investigated. To cope
with this problem, Massioni et al. (2009) proposes a new
method which is to solve a BMI problem. Due to the
lack of convexity, the obtained solution is likely to have
local optima. In this subsection, we shall develop a convex
solution for the realization problem.

For notational simplicity, we shall demonstrate the system
realization approach using Markov parameters up to the

fourth moment, i.e. {C(Aa + λiAb)
jB}N,4

i=1,j=0. For any

fixed j, we can see that C(Aa+λiAb)
jB can be expressed

by a linear combination of the parameters in the set
CA1A2 · · ·AjB with Al ∈ {Aa, Ab} for 1 ≤ l ≤ j.

Let φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB
CAaB
CAbB
CA2

aB
CAaAbB
CAbAaB
CA2

bB
...

CA4
bB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

be the parameter vector. Stacking

all the estimated Markov parameters together yields an

augmented vector ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB
C(Aa + λ1Ab)B

...
C(Aa + λNAb)B
C(Aa + λ1Ab)

2B
...

C(Aa + λNAb)
4B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. We can then

find a matrix H such that



Hφ = ψ. (6)

In the above equation, H and ψ are available, while φ is to
be estimated. AlthoughH might be a tall matrix, equation
(6) is generally under-determined.

Lemma 3. In equation (6), the coefficient matrix H has a
rank satisfying:

rank (H) ≤ 15p, (7)

where the equality holds when the pattern matrix P has
more than 5 different eigenvalues.

Proof. In the proof, we first consider the Markov param-
eters {C(Aa + λiAb)

jB} up to the second moment. The
corresponding linear estimation equation can be written
as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

I λ1I
I λ2I
· · · ·
I λN I

I λ1I λ1I λ2
1I

I λ2I λ2I λ2
2I

· · · · · · · · · ·
I λN I λN I λ2

N I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎢⎢⎣

CB
CAaB
CAbB

CA2
aB

CAaAbB
CAbAaB

CA2
bB

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB

C(Aa + λ1Ab)B
C(Aa + λ2Ab)B

· · ·
C(Aa + λNAb)B

C(Aa + λ1Ab)
2B

C(Aa + λ2Ab)
2B

· · ·
C(Aa + λNAb)

2B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ψ

,

where I has size p × p. From the structure of H we
can find that: when {λi}Ni=1 contains at least 3 different
elements, it has that rank (H) = (1 + 2 + 3)p = 6p.
By induction, the coefficient matrix H, corresponding to
the linear estimation using the Markov parameters up
to the fourth moment, has the following rank property:
rank (H) ≤ (1 + 2 + 3+ 4+ 5)p = 15p, where the equality
holds when there are more than 5 different elements in
the set {λi}Ni=1, namely P has more than 5 different
eigenvalues.

From the above lemma, we can see that the ill condition of
the linear estimation problem in (6) cannot be resolved by
including more subsystems in the local system. As long as
the pattern matrix P has more than 5 different eigenvalues,
the matrix H can reach its maximum rank.

By taking account of the displacement structure of the
parameter vector φ, we can find that the following matrix
constructed by the components of φ is of low rank

Γ(φ) =

⎡
⎢⎢⎢⎣

CB CAaB CAbB · · · CA2
bB

CAaB CA2
aB CAaAbB · · · CAaA

2
bB

CAbB CAbAaB CA2
bB · · · CA3

bB
...

...
... . .

. ...

CA2
bB CA2

bAaB CA3
bB · · · CA4

bB

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

C
CAa

CAb

...

CA2
b

⎤
⎥⎥⎥⎦[

B AaB AbB · · · A2
bB

]
.

(8)

By combining the under-determined equation (6) and the
low rank property of the matrix Γ(φ), we can derive the
following nuclear norm regularized optimization problem

min
φ

‖Hφ− ψ‖2F + β‖Γ(φ)‖∗, (9)

where β is a regularization parameter to trade off the least-
square term and the low-rank term.

Solving the optimization problem (9) yields the estimates
of φ and Γ(φ). Taking the SVD decomposition of Γ(φ)
yields that

Γφ = [Us Un ]

[
Σs

Σn

] [
V T
s

V T
n

]
, (10)

where Us ∈ R
7p×n and Vs ∈ R

7m×n are partial orthogonal
matrices, Σs ∈ R

n×n and Σn are diagonal matrices with
the nonzero entries of Σs being larger than those of Σn.

Let O = Us and C = ΣsV
T
s . According to the structure of

Γ(φ), we can establish that

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C
CAa

CAb

CA2
a

CAaAb

CAbAa

CA2
b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Π (11)

and

C = Π−1
[
B AaB AbB A2

aB AaAbB AbAaB A2
bB

]
(12)

where Π ∈ R
n×n is a nonsingular ambiguity matrix.

Then the estimates of C and B can be obtained as follows

Ĉ = O(1 : p, :),

B̂ = C(:, 1 : m).
(13)

In addition, the estimates of Aa and Ab can be estimated
as

Âa =

[
O(1 : p, :)

O(p+ 1 : 2p, :)
O(2p+ 1 : 3p, :)

]† [
O(p+ 1 : 2p, :)
O(3p+ 1 : 4p, :)
O(5p+ 1 : 6p, :)

]
,

Âb =

[
O(1 : p, :)

O(p+ 1 : 2p, :)
O(2p+ 1 : 3p, :)

]† [
O(2p+ 1 : 3p, :)
O(4p+ 1 : 5p, :)
O(6p+ 1 : 7p, :)

]
.

(14)

One inherent condition for the above system realization

is that

[
C

CAa

CAb

]
has a full column rank. If we estimate

the individual system matrices by adopting the Markov
parameters C(Aa + λiAb)

jB up to a higher moment, this
inherent condition can be relaxed.



4. SUMMARY OF THE IDENTIFICATION
ALGORITHM

The developed local system identification method for
large-scale homogeneous systems can be executed in three
steps: (a) take a state, input and output transform accord-
ing to the SVD decomposition of the local pattern matrix;
(b) estimate Markov parameters under local system input
and output data; (c) realize the state-space system model
of a single subsystem. To ease the reference, the identifi-
cation algorithm is summarized in Algorithm 1.

Algorithm 1: Local system identification of large-scale systems

1) Take the state, input and output transform according to (3);

2) Estimate the Markov parameters {C(Aa + λiAb)
jB}N,s−2

i=1,j=0

by solving the nuclear-norm optimization problem in (5);

3) Obtain the estimates of φ and Γ(φ) by solving
the optimization problem in (9);

4) Compute the SVD decomposition of Γ(φ) shown in (10);

5) Determine B and C as shown in (13);

5) Estimate Aa and Ab according to (14).

Since there are no specific constraints of the network
topology, the proposed local system identification method
possesses a wide range of applications. Specifically, the
two dimensional homogeneous system is special case of
distributed systems with general network topologies, so
its associated identification problem can be tackled by the
above presented method. In addition, for the developed
identification method, it only requires the local system to
be homogeneous; hence, it can be applied to the large-
scale systems with distributed clusters where the cluster
dynamics may be different from each other.

The developed identification algorithm is realized by solv-
ing two nuclear norm regularized optimization problems in
(5) and (9). It can deal with the identification using input
and output data with short lengths. For the regularization
parameters λ and β, they can be empirically chosen using
the cross-validation method described in Ljung (1999);
Verhaegen and Verdult (2007).

5. CONCLUSION

This paper has presented a subspace algorithm for the lo-
cal identification of large-scale homogeneous systems with
general network topologies. The crucial step in dealing
with the general topology is to transform the original
spatially lifted state-space system model into an equivalent
one with block diagonal system matrices by taking some
state, input and output transform. By taking account of
the finer structures and low rank properties of the terms
in the data equation, the associated Markov parameters
using only local input and output data have been reliably
obtained by solving a nuclear norm regularized optimiza-
tion problem. One condition for the above operation is
that the neighboring subsystems should be much less than
the local subsystems. Further, a convex solution has been
provided for the realization of the state-space model.

In this paper, the local interconnection pattern is assumed
to be known. In our future work, how to detect the
connections among local subsystems and further carry out
local subspace identification will be investigated.
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