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We show that the annihilation dynamics of excess quasiparticles in superconductors may result in the
spontaneous formation of large spin-polarized clusters. This presents a novel scenario for spontaneous spin
polarization. We estimate the relevant scales for aluminum, finding the feasibility of clusters with total spin
S ≃ 104ℏ that could be spread over microns. The fluctuation dynamics of such large spins may be detected
by measuring the flux noise in a loop hosting a cluster.
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Various experiments using superconductors have been
interpreted in terms of a long-lived, nonequilibrium quasi-
particle population that persists at low temperatures [1–21].
Such quasiparticles may be created, for example, by
Cooper pair breaking due to the absorption of stray photons
or cosmic rays—the dominant mechanism is not clear at the
moment. The bottleneck for their evacuation is the two-
particle recombination mediated by the electron-phonon
interaction. A simple balance predicts a residual quasi-
particle density n ∼ c0 ¼ ð2A=Γ̄Þ1=2, where A is the rate of
nonequilibrium generation of quasiparticles per unit
volume, and Γ̄ is a material constant characterizing the
inelastic quasi-particle relaxation due to the electron-
phonon interaction. The subject has attracted much interest
recently as excess quasiparticles will ultimately limit
the performance of many superconducting devices
[3,5,6,9–11,13]. Therefore one needs to deepen earlier
studies on quasiparticle relaxation as, e.g., Ref. [23].
Several strategies, such as quasiparticle trapping in normal
islands or vortices [1,9,12,18] and quasiparticle pumping
with microwave pulse sequences [24], can be used to
evacuate quasiparticles from the region of interest and lead
to a better device performance. By contrast, unintentional
trapping of quasiparticles in bound states below the super-
conducting gap edge, present in disordered superconduc-
tors, may slow down the relaxation dramatically at low
concentrations [25] since the recombination requires two
quasiparticles and thus is exponentially suppressed for
those in distant bound states.
All above considerations neglect the quasiparticle spin.

We note the spin selectivity of the recombination process in
the absence of interactions violating spin conservation, the
recombination only proceeds if two quasiparticles are in a
spin-singlet state. In this Letter, we show that this spin
selectivity may become a mechanism of nonequilibrium
spin polarization. The quasiparticles align their spins

forming a polarized cluster with greatly enhanced concen-
tration, the number of particles in the cluster and its size
being limited by spin relaxation processes. We derive the
corresponding conditions for a fully gapped super-
conductor, such as aluminum, showing the feasibility of
the clusters of ∼104 quasiparticles that could be spread over
microns. The polarization of the cluster slowly fluctuates in
time, and we propose a simple setup where the resulting
noise can be utilized for the experimental observation of the
phenomenon.
A cluster consists of an ensemble of quasiparticles with

mutually overlapping wave functions. In the presence of
spin-singlet recombination, a cluster of N quasiparticles is
stable only if no pair of quasiparticles has an overlap with a
spin-singlet state. This is the case if the cluster is in a
maximal spin state, with total spin S ¼ N=2 (in units with
ℏ ¼ 1). Let us align the z axis with the cluster polarization.
If a new quasiparticle is added to such a cluster, the

number of quasiparticles changes by 1: N → N0 ¼ N þ 1,
whereas the total spin changes by �1=2: S → S0 ¼
S� 1=2 ¼ ðN � 1Þ=2. The z projection of the spin is
S0z ¼ N=2þ sz, where sz ¼ �1=2 is the z projection of
the spin of the incoming particle. Thus, if sz ¼ 1=2, we
obtain the maximal spin state jS0 ¼ ðN þ 1Þ=2; S0z ¼
ðN þ 1Þ=2i. By contrast, if sz ¼ −1=2, there are two
possible spin states: jS0 ¼ ðN � 1Þ=2; S0z ¼ ðN − 1Þ=2i.
The relative probabilities of these two possibilities are
determined by the corresponding Clebsch-Gordan coeffi-
cients, which are given in Sec. I of the Supplemental
Material [26]. Note that jS0 ¼ ðN þ 1Þ=2; S0z ¼ ðN − 1Þ=2i
is also a maximal spin state, though its polarization is
not along the z axis anymore. Since the orientation of the
incoming spin is random, the probabilities for being
and not being in a maximal spin state are thus given as
½1þ 1=ðN þ 1Þ�=2 and ½1 − 1=ðN þ 1Þ�=2, respectively.
As a consequence, the probability that the new cluster is
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stable is larger than the probability that the new cluster
can decay. This asymmetry thus favors the growth of spon-
taneously polarized clusters of quasiparticles. The polari-
zation axis of such a cluster is not fixed, but it changes
randomly and slightly with each new quasiparticle added.
From this consideration, we construct a simple model for

the spin dynamics of excess quasiparticles. To do so, we
consider N quasiparticles in a volume V. We assume
N=V ≪ νΔ, where ν is the normal density of states and
Δ is the superconducting gap. This condition ensures that
the quasiparticles occupy a tiny fraction of the available
states within the cluster’s volume. (The results presented
below remain well within this regime.) We also assume that
the diffusion of the particles is sufficiently fast that the
spatial structure of their wave functions does not affect the
spin dynamics [27] and concentrate on spin effects only.
Let us consider clusters that are close to the stable
configuration with maximal spin S ¼ N=2. We choose
the instantaneous spin quantization axis such that Sz ¼ S
and describe the cluster’s deviation from the maximal spin
state with the integerm ¼ N=2 − S,m ≪ N, S, which is the
number of flipped spins with respect to the cluster’s
magnetization direction.
We consider four different processes that can change the

state ðN;mÞ of the cluster. (1) Quasiparticle injection:
quasiparticles are injected with a rate AV and arbitrary spin.
Thus, half of them are aligned with the polarization axis of
the existing cluster, whereas half of them are antialigned. If
the spin is antialigned, we find that the probability of
creating an additional spin flip, m → mþ 1, is
ðN −mÞ=ðN −mþ 1Þ. The possible processes are thus
ðN;mÞ → ðN þ 1; mÞ with rate AV½1þ 1=ðN −mþ 1Þ�=2
and ðN;mÞ → ðN þ 1; mþ 1Þ with rate AV½1 − 1=
ðN −mþ 1Þ�=2. (2) Singlet annihilation: such annihilation
processes are possible only if the system is not in a maximal
spin state. At a small concentration of spin flips, m ≪ N,
the corresponding rate is, thus, proportional to m. In
particular, the process ðN;mÞ → ðN − 2; m − 1Þ happens
with rate Γ̄ðN −mÞm=V. (3) Spin flips: spin-orbit coupling
admits for inelastic spin-flips via the electron-phonon
interaction. We assume that each spin may flip independ-
ently. As for the injection process, a spin flip does not
necessarily change the total spin; however, we will neglect
the corresponding 1=N-corrections to the rates. The rate
for the process ðN;mÞ → ðN;mþ 1Þ is then given as
ðN −mÞ=τs, where 1=τs is the spin flip rate for a single
spin. Similarly the process ðN;mÞ → ðN;m − 1Þ has the
rate m=τs. And (4) triplet annihilation: in the presence of
spin-orbit coupling, pairs of quasiparticles may annihilate
even when they are in a spin-triplet state. To account for
such processes, we introduce a weak spin-independent
annihilation, Γ̄t ≪ Γ̄. Taking into account all possible
orientations of the spins of the annihilated particles, this
adds the following processes: ðN;mÞ → ðN − 2; mÞ with
rate Γ̄tðN −mÞ2=ð2VÞ as well as ðN;mÞ → ðN − 2; m − 1Þ

with rate Γ̄tðN −mÞm=V and ðN;mÞ → ðN − 2; m − 2Þ
with rate Γ̄tm2=ð2VÞ.
With this, the dynamics are described by a master

equation explicitly given in Sec. II of the Supplemental
Material [26]. As a first step, we derive the mean field
solutions for the most probable N and m. The evolution
equations for these quantities read:

dN
dt

¼ AV − 2
Γ̄
V
ðN −mÞm −

Γ̄t

V
N2; ð1Þ

dm
dt

¼ AV
2

�
1 −

1

N −m

�
−
Γ̄
V
ðN −mÞm

−
Γ̄t

V
Nmþ 1

τs
ðN − 2mÞ: ð2Þ

Assuming m ≪ N, Eq. (1) yields the stationary solution

m0 ¼
AV2 − Γ̄tN0

2Γ̄N0

: ð3Þ

Substitution into Eq. (2) gives an equation for the average
N in the cluster:

0 ¼ AV
N0

−
2

τs
N0 −

Γ̄t

V
N2

0: ð4Þ

We can distinguish two regimes, depending on whether
spin relaxation (SR) or triplet annihilation (TA) dominates.
In the SR regime, Eq. (4) yields NðsÞ

0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AVτs=2

p
, while in

the TA regime, one finds NðtÞ
0 ¼ ðAV2=Γ̄tÞ1=3. The corre-

sponding values form are given asmðsÞ
0 ¼ ðV=Γ̄τsÞNðsÞ

0 and
mðtÞ

0 ¼ ½ðAV2Γ̄2
t Þ1=3=2Γ̄�NðtÞ

0 , respectively. Comparing the
two expressions for N0, we conclude that the TA regime
requires A > V=ðΓ̄2

t τ
3
sÞ, that is, a sufficiently high injection

rate at any given volume.
The above equations allow us to derive the requirements

for the cluster to be highly polarized, that is, N0 ≫ m0. Let
us first consider a small A such the cluster is in the SR
regime. In this case, a sufficiently small volume V ≪
Vc ≡ Γ̄τs is required. If at a given V < Vc we increase A,
and therefore the number of particles in the cluster, we
cross-over to the TA regime, and a high polarization
persists up to A ≃ AcðVc=VÞ2 with Ac ≡ Γ̄=ðΓ̄tτsÞ2. This
requirement is convenient to express in terms of the number
of particles in the cluster, N ≲ Nc ≡ Γ̄=Γ̄t [28].
Note that, in a polarized cluster, N0 largely exceeds the

value Nunpol ¼ c0V expected for an unpolarized system. It
is constructive to express the concentrations as follows: in
the SR regime,

NðsÞ
0 =V ¼ c0

2
ζ−1=2s ; mðsÞ

0 =V ¼ c0
2
ζ1=2s ; ð5Þ

with ζs ≡ V=Vc ≪ 1, and in the TA regime,
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NðtÞ
0 =V ¼ c0

2
ζ−1=2t ; mðtÞ

0 =V ¼ c0
2
ζ1=2t ; ð6Þ

with ζt ≡ ðAV2=AcV2
cÞ1=3=2 ≪ 1. The regions where a

polarized state is expected are illustrated in Fig. 1, see
also Sec. III of the Supplemental Material [26] for more
details.
Let us estimate the relevant material parameters Γ̄, Γ̄t,

and τs. In aluminum, the phonon-assisted recombination
rate for quasiparticles near the gap edge is characterized by
Γ̄ ≃ 18 s−1 μm3 [29]. As to the triplet annihilation rate, it
involves a phonon emission accompanied by a spin-flip,
and is estimated as Γ̄t ∼ α2soKΓ̄, where αso ∼ 10−2 is the
dimensionless spin-orbit strength, and the suppression
factor K reflects the smallness of the momentum transfer
in the course of the emission. As such, K crucially depends
on the wave vector q of the phonon involved that is set by
the energy∼Δ released, cq ≃ Δ, c being the sound velocity.
In the absence of disorder, K ≃ ðqaÞ2 [30], a being the
interatomic distance scale. With the disorder setting a mean
free path l, K ≃ ðqlÞ−1 for 1≲ ql≲ ðl=aÞ2=3, K ≃ ql for
q≲ l−1 [31]. To have a disorder-independent estimation,
we resort to the least suppressed case, K ¼ 1. This
gives Γ̄t ∼ α2soΓ̄ ∼ 10−4Γ̄.
It may seem that the relevant spin-flip rate is determined

by elastic spin-orbit processes as it is usual in the context of
spin transport [32], 1=τso ∼ α2soðδϵ=ΔÞ1=2=τel, where τel is
the elastic scattering time, and δϵ≲ Δ characterizes the
energy window for the excess quasiparticles above the
superconducting gap [33], which is sensitive to the temper-
ature. However, this estimation holds for propagating
electron waves rather than for the localized states we are
dealing with. As explained in [34], elastic spin-orbit
interaction is inefficient in relaxing the spin of localized
states, not lifting the Kramers degeneracy. Therefore
the spin flips should involve inelastic processes. We
assume that the dominant spin-flip process is the phonon
emission or absorption in the presence of spin-orbit

coupling. The corresponding rate is then estimated as
1=τs ∼ α2soðδϵ=ΔÞ7=2K=τ0, where τ0 ∼ 400 ns in Al is the
normal-state inelastic phonon scattering time at energy ∼Δ
[23]. The first and second suppression factors reflect the
smallness of the spin-orbit interaction and the reduction of
the density of states [23], and the factor K now corresponds
to the energy transfer δϵ ≃ cq. As above, we resort to the
least suppressed choice K ¼ 1. Even this choice gives very
long spin-flip times: at δϵ ≃ 0.1Δ we estimate τs ≃ 10 s.
With this, we estimate the critical volume

Vc ¼ τsΓ̄ ∼ 180 μm3. This implies that the spin-polarized
cluster can be spread over micron lengths and Vc is not a
very restrictive parameter. In particular, we do not expect
our results to be very sensitive on the temperature in the
currently studied aluminum-based devices. A more
severe restriction comes from the triplet annihilation that
sets the maximum number of particles in the cluster,
Nc ¼ Γ̄=Γ̄t ∼ 104. The critical injection rate, where the
crossover from spin-flip limited to triplet-annihilation
limited clusters size takes place, is then estimated as
Ac ∼ 105 s−1 μm−3. (A similar injection rate was reported
in Ref. [17].) The quasiparticle density is enhanced
compared to the unpolarized case, if V < Vc and
A < AcðVc=VÞ2.
It is important to note that the number of particles in the

cluster strongly fluctuates. The mean-field solution gives
the most probable number of particles in the cluster, N0,
while hNi differs from N0 by a factor and the fluctuations
⟪N2⟫ ¼ hN2i − hNi2 are of the order N2

0. To quantify the
fluctuations, we utilize a Fokker-Planck equation,
cf. Sec. II of the Supplemental Material [26], which gives
the distribution function

PðNÞ ¼ CN2 exp

�
−

2Γ̄t

3AV2
N3 −

2

AVτs
N2

�
; ð7Þ

where the constant C ensures the normalization. For the SR
and TA regimes, this gives, respectively,

hNiðsÞ ¼ 2ffiffiffi
π

p NðsÞ
0 ; hN2iðsÞ ¼ 3

2
ðNðsÞ

0 Þ2; ð8Þ

hNiðtÞ ¼ Γð1
3
Þ

181=3
NðtÞ

0 ; hN2iðtÞ ¼ 24=3π

35=6Γð1
3
Þ ðN

ðtÞ
0 Þ2: ð9Þ

A comparison with the classical model [25] is provided in
Sec. IV of the Supplemental Material [26].
While the quasiparticle system is polarized, its spin

quantization axis is not fixed but diffuses with time, along
with the number of the polarized particles. This produces a
measurable spin noise that can be utilized for the experi-
mental verification of the polarization, using the setup
sketched in Fig. 2 as explained below. The spin noise for a
certain spin component can be estimated in terms of the
noise of the number of particles SN , Sspin ≃ 1

3
SN ≃ ⟪N2⟫tf.

FIG. 1. Unpolarized and polarized regimes versus the cluster
volume and the injection rate, according to Eqs. (5) and (6). Here
Vc ¼ Γ̄τs, Ac ¼ Γ̄=ðΓ̄tτsÞ2, and Nc ¼ Γ̄=Γ̄t.
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Here, tf is a characteristic timescale for the fluctuations,
which is estimated as tf ≃ N0ðN0=AVÞ; it yields tf ≃ τs and
tf ≃ ðAΓ̄t=VÞ−1=3 in the SR and TA regimes, respectively.
We have evaluated numerically the particle number zero-
frequency noise in these two regimes to find SNð0Þ ¼
0.5⟪N2⟫τs and SNð0Þ ¼ 0.6⟪N2⟫ðAΓ̄2

t =VÞ−1=3 where the
variances ⟪N2⟫ in the regimes are given by Eqs. (8)
and (9).
A flux noise of substantial amplitude SΦ ≃ 10−12Φ2

0=Hz
at low frequencies is routinely measured in super-
conducting quantum interference devices (SQUIDs), here
Φ0 is the flux quantum. This noise limits the performance
of superconducting qubits, that motivated its thorough
investigation [35–37]. Nowadays its origin is commonly
attributed to the slow dynamics of localized spins at the
surface of a superconductor [38–40]. We note that the spins
of nonequilibrium quasiparticles may also contribute to this
noise. In fact, the polarization mechanism predicted in this
Letter make these spins very effective noise sources: N
quasiparticle spins combined in a polarized cluster produce
the same noise as N2 localized spins, provided the time-
scale of their dynamics is the same. In distinction from
localized spins, the quasiparticles can be brought to the
superconductor in a controllable way, for instance, by
injection through a normal lead separated from the super-
conductor by a tunnel barrier [41].
This leads us to the suggestion of a concrete experi-

mental setup to observe the predicted polarized state. As
depicted in Fig. 2, one makes a quasiparticle trap embedded
in the arm of a superconducting loop by reducing the
superconducting gap locally, and injects the quasiparticles
into the trap from a normal lead that is biased at a voltage
that slightly exceeds the reduced gap. The flux noise is
monitored at different injection rates corresponding to
different quasiparticle numbers N0. Assuming a width of
100 nm for the SQUID arm, one spin induces a flux
≃10−7Φ0 through the SQUID loop [35]. For the following
estimations, we assume that triplet annihilation dominates,

N0 ¼ 104, and the trap volume is ð100 nmÞ3. At these
conditions, tf ≃ 0.5 × 10−4 s, and the fluctuations of the
polarized state produce the noise SΦ ≃ 10−12Φ2

0=Hz, that
exceeds the commonly observed level. If the particles were
not polarized, the flux noise would be four orders of
magnitude lower. An advantage of the setup is that the
number of quasiparticles induced, as well as the fluctua-
tions of this number, can be monitored through the high-
frequency inductance and inductance noise of the super-
conducting sample [42].
In this work, we assume that a possible external magnetic

field does not polarize the quasiparticle spins. This is valid
provided the corresponding Zeeman energy EZ ≪ δϵ. On
the level of the master equation, the polarizing effect of the
magnetic field can be taken into account by assigning an
anisotropy to the spin relaxation, but we have not inves-
tigated this.
In conclusion, we propose a novel scenario for sponta-

neous spin polarization of a finite system under out-of-
equilibrium conditions. We predict that, owing to the spin
selectivity of recombination, the excess quasiparticles in a
superconductor may spontaneously polarize in clusters.
The underlying mechanism differs from that considered in
Ref. [43] for homogeneous quasiparticle states. For para-
meters of Al, such a polarized cluster may contain 104

quasiparticles and spread over microns. We show that the
polarization can be detected as an excess flux noise.
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