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Nonlinear Fourier Transform Algorithm Using a
Higher Order Exponential Integrator

Shrinivas Chimmalgi Peter J. Prins Sander Wahls
Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands

s.chimmalgi@tudelft.nl

Abstract: We present a nonlinear Fourier transform algorithm whose accuracy, at a
comparable runtime and for moderate step sizes, is orders of magnitude better than that of the
classical Boffetta-Osborne method.

OCIS codes: 060.4370, 060.2330.

1. Introduction and Theory

The exploitation of nonlinear Fourier transforms (NFTs) in optical communication has recently gained significant
attention [1]. Many of the communication schemes being developed rely on numerical NFT algorithms to compute the
reflection coefficient (one part of the nonlinear Fourier spectrum) accurately and efficiently1. Although several NFT
algorithms have been proposed for this purpose, the classical algorithm based on a one-step exponential integrator (BO)
in [2] seems to remain the standard method. BO provides a good trade-off between accuracy, computation time and
ease of implementation. In this work, we present a new algorithm based on a commutator-free fourth-order integrator
(CF4) [3]. At similar runtimes, the new algorithm is significantly more accurate than BO, which e.g. would allow us
to decrease the sampling rates in NFT-based communication systems or the computational costs of simulations.
The reflection coefficient ρ(λ ) of any signal q(t) that vanishes sufficiently fast for t →±∞ is found by solving the
Zakharov-Shabat scattering problem [4]. Here λ ∈ R is a parameter. For numerical schemes, the computation domain
is fixed to t ∈ [T−,T+], which results in a step-size h = (T+−T−)/(D−1). The given samples are qk := q(tk), where
tk = T−+kh, k = 0, ...,D−1. The scattering problem is then solved in [2] by multiplying individual scattering matrices
(Uk), one for each sample. We follow exactly the same approach as [2], but instead apply CF4 [3] to determine the
per-sample scattering matrices. That is, we replace [2, Eq. 4.2] with

Uk = exp

([
−iλ/2 r(1)k

−r(1)∗k iλ/2

]
h

)
exp

([
−iλ/2 r(2)k

−r(2)∗k iλ/2

]
h

)
, (1)

where r(1)k := (q(1)k +q(2)k )/4+
√

3(q(2)k −q(1)k )/6, r(2)k := (q(1)k +q(2)k )/4−
√

3(q(2)k −q(1)k )/6, q(1)k := q(tk− (
√

3/6)h)

and q(2)k := q(tk +(
√

3/6)h), k = 0,1, ...,D−1. The new scattering matrices therefore require nonequispaced samples.
In many cases it is not practical to obtain such nonequispaced samples. Hence, we use local cubic interpolation to
obtain the nonequispaced samples at the required time instants. Specifically, we obtain the nonequispaced samples
q(1)k and q(2)k by interpolation of the given equispaced samples qk.

2. Numerical Example

We choose the signal q(t) = 4.4isech(t) for the numerical example. We let the domain of computation be [−34.2,34.2]
such that |q(t)| < 100ε ∀ t /∈ [−34.2,34.2], where ε = 2.2204e−16 (machine epsilon), in order to avoid truncation
errors. As a result more samples than usual are required to reach acceptable step sizes. The closed form of the reflection
coefficient is given by ρa(λ ) =

isin(4.4π)
cosh(πλ ) .

Γ(0.5−iλ+4.4)Γ(0.5−iλ−4.4)
Γ2(0.5−iλ ) , where Γ is the gamma function [6, Eq. 27]. Let the

numerically computed reflection coefficient be ρn(λ ). The relative L2-error ‖ρa(λ )−ρn(λ )‖2/‖ρa(λ )‖2, |λ |< λmax,
is used as the measure of accuracy. The CF4 algorithm is compared against BO and the Implicit-Adams method (IA2),
which is another higher order method; its use for NFTs has been recently proposed in [7, IA2]. As with the linear

1The method presented in this paper can also be applied to the so-called b-coefficient recently considered in [8].
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Fourier transform, the sampling process limits the range |λ | < λmax that we can resolve. Since we are not aware
of a theoretical quantification of this effect, we plot |ρa(λ )| and the error |ρa(λ )− ρn(λ )| for D = 28 for the three
algorithms in Fig. 1. Based on this plot, we choose |λ |< 3 to compute the relative L2-error for increasing number of
samples. The results are shown in Fig. 2.
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Fig. 1: Absolute error in reflection coefficient.
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Fig. 2: Error in reflection coefficient vs number of samples.

From Fig. 1 it is clear that the CF4 integrator can compute the spectrum more accurately than BO and IA2. Fig. 2
gives a better visualization of the scale of improvement. As the interpolation step effectively doubles the number of
values used by the CF4 method, we compare the error at D = 28 given samples for CF4 with the error at D = 29 for
BO and IA2. The relative error for CF4 is roughly 80 times smaller than BO and 10000 times smaller than IA2. Both
IA2 and CF4 converge with order 4, but IA2 becomes better than BO only for D > 212. We remark that the runtimes of
CF4 with D = 28 and BO with D = 29 are almost identical. We have verified that the ideas used in [5, 6] to make BO
fast also apply to CF4, leading to a fast and highly accurate NFT algorithm. The details will be published elsewhere.

3. Conclusion and Discussion

An NFT algorithm which uses a fourth order exponential integrator was proposed and shown to compute the reflection
coefficient better than the current standard algorithm [2]. The algorithm is fourth order convergent and can be made
fast. In Fig. 2, as the number of samples is increased, the error of CF4 reaches a minimum and starts rising again. The
underlying cause of the error rise is under investigation, but it is not a result of the cubic interpolation used to obtain
the nonequispaced samples. We however point out that the minimal error achieved by CF4 is very low.
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