
Testing the Performance of Automated Documentation Generation with Included
Inline Comments

Balys Morkūnas
Supervisor(s): Annibale Panichella, Leonhard Applis

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
A number of Machine Learning models utilize
source code as training data for automating soft-
ware development tasks. A common trend is to
omit inline comments from source code in order to
unify and standardize the examples, even though
the additional information can capture important
aspects and better explain algorithms. We claim
that models, utilizing the supplementary data, are
able to produce more fluent translations for Auto-
matic Documentation Generation task. We test this
by creating two datasets and measuring the perfor-
mance difference. The results show that there is a
slight improvement in translation accuracy when a
dataset contains inline comments, with stop words
removed. Further research needs to be done to op-
timize the preprocessing of data and to more accu-
rately detect the scope of inline comments.

1 Introduction
During software development, code documentation is an es-
sential part of the process. Natural language descriptions re-
duce the time needed to understand and maintain code, as
well as lower the chance of code defects [1]. Current ad-
vancements in Artificial Intelligence make Automatic Docu-
mentation Generation possible by utilizing Neural Machine
Translation [2], Deep Reinforcement Learning [3], Natural
Language Processing [4], [5], or Keyword Discovery [6], [7]
techniques. Ongoing research explores the possibilities to al-
low developers to be more resourceful and optimize work-
flows by skipping manual documentation. Aforementioned
techniques rely on analysing context-free grammars or by
training models with data to make predictions.

An important observation, common throughout many mod-
els, is that commented out code, inline comments, or unreach-
able code are removed from the training examples. Models
omit such information to unify and standardize data, even
though these additions capture important aspects and some-
times can be crucial to understand the inner workings of an
algorithm. We are specifically interested in the value that
inline comments bring, as they often contain keywords that
elaborate on ambiguous lines of code.

This work aims to measure and understand the impact
that inline source comments have on the performance
of one of the aforementioned models. More precisely,
sequence-to-sequence model code2seq [2]. The model uses
Abstract Syntax Trees (ASTs) to represent and analyse code
structures. It was developed as a tool to generate natural
language sequences given a piece of code and in addition to
Code Documentation can also be used for Code Summariz-
ing and Code Captioning. The focus of this work is Code
Documentation, the hypothesis to be tested is formulated as
follows:

Inline source code comments increase the performance
and accuracy of machine learning models for Automatic
Documentation Generation.

To test the impact of code comments, the training data is
specifically encoded. Code and comments were tokenized
and grouped based on specific rules to create ASTs. The
tree, capturing additional information, is then used for model
training. The performance of the trained model is compared
to the original code2seq model by using BLEU [8] and F1
[9] scores, that evaluate machine translation and accuracy, re-
spectfully.

The rest of this research paper will be organized as follows.
Section 2 explains the relevant topics required to understand
the research, Section 3 gives the methodology of the experi-
ment, and Section 4 presents the obtained results. Interesting
work, utilizing inline comments, is given in Section 5. The re-
sults are then discussed in Section 6. Finally, Section 7 raises
ethical considerations and Section 8 concludes the work.

2 Background
This section focuses on explaining ASTs in the context of
code2seq and the process it uses to generate documentation.
The model solves a Neural Machine Translation (NMT) [10]
problem, where the input is source code and the output is a
natural language sequence, describing the input.

2.1 Abstract Syntax Trees
An AST represents a code snippet with terminal and non-
terminal nodes. The former nodes abstract user defined val-
ues and are the leaf nodes in a tree, the latter, non-leaf nodes,
are representations of structures in the given language, e.g., if
statements, loops, etc. The applications for ASTs are broad
and are used for compiler development, code duplication de-
tection, and other static analysis tasks. A number of program-
ming languages utilize ASTs when converting source code to
machine code, for this reason all comments are removed and
most AST implementations do not support comment recogni-
tion. While our focus is only on representing code, ASTs are
also used to represent other types of structured data.

Figure 1 gives an example of a simple Java method and its
corresponding AST. The terminal nodes are represented with
boxes, while the non-terminals are in ovals. The code2seq
model then uses the generated tree to produce paths between
terminal and non-terminal nodes.

The ability to organize and attach comments is important to
our research. We aim to take the generated ASTs and supple-
ment them with inline comments. The original preprocessing
implementation will have to be altered, as it currently ignores
any type of comments.

2.2 Neural Machine Translation
NMT was initially designed to improve Deep Neural Net-
works for human language translation. It uses an artificial
neural network to predict the likelihood of a sequence of
words, like sentences. A popular application of NMT is
Google Translate. In this scenario, code2seq utilizes the same
methods to translate code samples into natural language sen-
tences. The NMT approach consists of an encoding and
a decoding layer. The encoding layer maps code tokens
x = (x1, ..., xn) to an intermediate sequence representation
z = (z1, ..., zm). The decoder generates an output sequence
y = (y1, ..., yk) given z.

2



1 public int fooBar() {
2 return 2 + 3;
3 }

(a) Java method.

member (MethodDeclaration)

body (BlockStmt) type (PrimitiveType) name (SimpleName)

statement (ReturnStmt)

expression (BinaryExpr)

operator='PLUS' value='2' value='3'

type='INT' identifier='fooBar'

(b) Corresponding AST.

Figure 1: Java method and an Abstract Syntax Tree representing the
methods structure.

The code2seq model aims to solve an NMT problem and
follows an encoder-decoder architecture [11]. The model pre-
pares the input code by generating an AST and extracting
paths between terminal and non-terminal nodes, a generated
path is denoted by x. For the encoding, code2seq uses a
bidirectional Long-Short Term Memory (LSTM) [12] to cre-
ate vector representations for each generated path. LSTMs
are a special kind of Recurrent Neural Networks (RNNs)
[13], capable of learning and remembering dependencies be-
tween long sequences. By having an additional internal state,
LSTMs are able to weigh the importance of observed infor-
mation and discard or keep only what is contextually relevant.
The LSTM nodes take a path x and encode it as z. Each path
element can be represented by a learned embedding matrix,
which the LSTM uses to encode the entire sequence. The use
of LSTMs are important for this research, as Automatic Doc-
umentation Generation attempts to produce relatively long se-
quences.

Finally, an LSTM decoder generates the output sequence
in natural language by using an attention model [14], [15].
Decoding with attention means that each part of the input has
an attention weight. The weights denote how relevant the
part of the input is for the current decoding step in the given
context. Instead of having a single context vector, generated
from the encoders last hidden state, attention allows for the
decoder to focus on parts that are the most important when
generating output. The decoder attends the output z of the
encoder to generate the final output y. For formal and more
concrete implementation details, please refer to the code2seq
paper [2].

3 Methodology
The process to test the hypothesis can be split into four steps.
The first step concerns the data used for training the model.

The second step is the preparation of the data. The third and
fourth steps are model training and evaluation.

3.1 Dataset
The dataset used for this experiment was taken from the
CodeSearchNet project [16]. This dataset was chosen as a re-
placement because the majority of the original code2seq data
did not have a corresponding Javadoc comment. The Code-
SearchNet dataset consists of 454k (comment, code) pairs in
the Java programming language. More specifically, a com-
ment is a top-level function or method Javadoc description,
and code is the function or method that the comment belongs
to. Table 1 provides statistics for the used CodeSearchNet
dataset. It shows that out of all training examples, around
109k contain inline comments. Furthermore, the calculated
length statistics for code and comment examples are illus-
trated in Table 2. The mode and median metrics are calcu-
lated by counting the number of words in each example.

It is important to mention that only the first sentence of the
Javadoc comment was used as a label, as it typically summa-
rizes the functionalities of the methods. This decision is based
on the official Javadoc documentation1. HTML tags, line sep-
arators, comments with only a single word are removed. The
data is partitioned into training, validation, and testing sets.
Lastly, the gathered data was only taken from open source
libraries.

3.2 Preprocessing
During the preprocessing step, we had to decide on how the
inline comments will be encoded into the code part of the
training data. Using a Java parsing library2, we classify ob-
served comments into inline, and block comments. The com-
ments are stripped of any stop words (e.g., the, and, but) as
they bring no important information. We check each com-
ment string against a list of most popular stop words3. Addi-
tionally, we check to omit commented out code, as such infor-
mation is not the focus of this experiment and could influence
the performance in unforeseen ways. We search for com-
mented code by matching a regex string. If the string starts
with an open comment symbol and ends in a semi-column, it
is classified as code. In addition, we look for keywords like
void, int, string, to capture lines that do not end in a semi-
column.

Since the library is able to generate an AST from the given
input, it is possible to attach the inline comments to specific
nodes. This is important since the generated paths would
make little sense when they would include the comment but
not the node it refers to. The Java parser library assumes
that the inline comment node parent is the code below the
comment or the code on the same line, if any. Some inline
comments, that are not above or on the same line as code, are
classified as orphan comments, meaning they exist without
a parent node. As the model generates paths between con-
nected nodes, orphan comments cannot be utilized.

1https://www.oracle.com/technical-
resources/articles/java/javadoc-tool.html

2https://javaparser.org/
3https://www.computerhope.com/jargon/s/stopword.htm#basic

3



Table 1: Dataset example statistics.

Pairs Inline
Comments

Unique
Code

Tokens

Unique
Comment

Tokens
454,451 109,457 2,042,229 345,202

Table 2: Raw code and comment length statistics.

Code

Avg Lines Avg Words Mode Median
17 114 37 67

Comments

Avg Lines Avg Words Mode Median
5 45 4 29

Figure 2 illustrates how an inline comment attaches to an
AST node. The comment, marked in blue, is a direct child
node of the return statement. While this is a primitive ex-
ample, it is easy to see that when generating paths between
terminal and non-terminal nodes, the model training data is
complimented with additional keywords. To accommodate
the supplementary information, we increase the maximum
length of a path in case a comment node extends the depth
of a tree.

3.3 Training
As the main task that code2seq solves is method name pre-

diction (Code Summarization), the model first had to be re-
configured to take in Javadoc comments as target labels in-
stead of method names. Previously, the preprocessing step
would replace the original method name with a temporary
masking keyword. In our case, we keep the method name
and alter the program to add the Javadoc comment as the tar-
get label.

After the preprocessing, we are able to train the model.
The training was done on a high-performance computer con-
taining Intel XEON E5-6248R 24 Core 3.0 GHz processor
and an NVIDIA Tesla V100S 32 GB graphics card. It took
around ten hours for the CodeSearchNet Java set to converge.
Converging is defined as performance not increasing for ten
consecutive training epochs.

It is important to mention that we also prepare a baseline
model with the original code2seq preprocessing script and
a model that contains inline comments with stop words in-
cluded to act as comparison units. Both trained on the Code-
SearchNet dataset.

3.4 Evaluation
To evaluate and measure the difference between a model with
inline comments and without, we use two metrics. The fol-
lowing subsections will explain the BLEU and F1 scores in
more detail. Furthermore, we explain two statistical tests to
see if the observed results are significant.

1 public int fooBar() {
2 // Addition
3 return 2 + 3;
4 }

(a) Java method with an inline comment.

member (MethodDeclaration)

body (BlockStmt) type (PrimitiveType) name (SimpleName)

statement (ReturnStmt)

expression (BinaryExpr) comment (LineComment)

operator='PLUS' value='2' value='3' content='Addition'

type='INT' identifier='fooBar'

(b) Corresponding AST.

Figure 2: Java method with an inline comment and an Abstract Syn-
tax Tree representing the method’s structure.

BLEU
Bilingual Evaluation Understudy is a method used to com-
pare a machine produced candidate translation with an exist-
ing human reference sequence. BLEU is a popular metric and
often used for evaluation of NMT tasks [17]. The main idea
behind BLEU is to count the matching n-grams in the ma-
chine produced and human reference sequences. The n-gram
denotes the granularity of the sequences, where n = 1 means
that each token is matched and n = 2 mean that each word
pair is matched. The order of the produced sequence is not
relevant for the BLEU score.

The BLEU score is calculated by using the following for-
mula:

BLEU = BP × exp

(
N∑

n=1

wn log pn

)
(1)

The BP stand for Brevity Penalty, which is a value that de-
pends on the difference of the generated and reference se-
quence lengths. If c and r are the lengths of the candidate and
reference translations, then the value of BP is:

BP =

{
1 if c > r

e1−r/c if c ≤ r
(2)

Furthermore, wn is the n-gram weight calculated as 1/n, and
pn is the ratio of the number of subsequences of length n in
the candidate translation that are also in the reference string.
As the generated sequences are relatively long, we have se-
lected the value of n to be equal to 4.

F1
The F1 score is a combination of two other scores – precision
and recall. Precision is defined as the ratio between the num-
ber of shared words, separated by spaces, in two sequences

4



and the total amount of words in the generated sequence. Re-
call is the ratio between the number of shared words and the
total amount of words in the reference sequence. Combin-
ing the two, F1 measures the harmonic mean of precision and
recall and is calculated with the following formula:

F1 = 2× precision× recall

precision+ recall
(3)

We calculate precision and recall by tokenizing the gen-
erated sequence and checking if the tokens are contained in
the original string. This is done so that the order of the to-
kens would not be a confounding factor in the calculations.
The reason we decided to include the F1 measure is that by
having supplementary information, in the form of inline com-
ments, might lead to higher recollection. Additionally, the
wider range of context options might reduce the precision of
the model.

Wilcoxon Rank Sum Test & Cliff’s Delta Effect Size
The Wilcoxon Rank Sum test [18] is a non-parametric, statis-
tical test to compare two groups and prove if there is signif-
icant difference between their distributions. The tested null
hypothesis is that two populations have the same distribu-
tions. We reject the null hypothesis when we have sufficient
evidence that one distribution is shifted, implying the differ-
ence in populations and significance in findings. The test re-
quires responses to be ordinal, and it assumes that the data
from both groups is independent and continuous. Our data
samples are obtained by independently training and evalu-
ating the models. The test allows us to compare and make
claims about the observed differences in results.

The Cliff’s Delta [19] measures the number of times a
value from one group is larger than one from the other group.
Values closer to ±1 imply that there is little overlap, and val-
ues closer to 0 show strong overlap between the given sample
distributions. We use the result of Cliff’s Delta to compli-
ment the null hypothesis test and help quantify the size of the
difference, beyond the calculated p-values.

4 Results
The section presents and discusses the obtained results of the
experiment. To begin, we give an overview of the experimen-
tal setup. Then, the scores together with statistical analysis
are presented. Lastly, interesting examples that portray how
inline comments affect the generated sequences are provided.

4.1 Setup
By following the process in Section 3 we prepared the target
labels of the dataset by taking the first sentence, removing
unicode symbols, and process the code to leave or remove in-
line comments, etc. We create three datasets, called NOCO for
a baseline, no inline comment model, ICOS for inline com-
ments with stop words left in, and ICO for a dataset with pro-
cessed inline comments. These datasets are used to train their
corresponding models. We limit the training to produce com-
ments of thirty seven words maximum and use four LSTM
encoders and two LSTM decoders, as per the recommenda-

Table 3: Result comparison of with and without comment models.
BLEU is measured from 0 to 100 and the rest are from 0 to 1.

BLEU Precision Recall F1 Time
NOCO 6.22 0.428 0.387 0.406 11h
ICOS 5.97 0.437 0.370 0.400 8h
ICO 6.28 0.450 0.391 0.418 12h

tions of the code2seq authors4. Additionally, the maximum
amount of contexts was left unchanged and set to 100, the
training algorithm samples a different subset of this size at
each epoch. Results presented in the following subsections
were calculated using the test set.

4.2 Scores
Table 3 portrays the results achieved by the two models.
The ICO model, containing inline comments, slightly outper-
formed the NOCO model for both the BLEU and F1 measures.
We use the Wilcoxon Rank Sum test to better understand the
underlying meaning of the results and identify if there are dif-
ferences in the distributions. To apply the test, we calculated
Jaccard distance and BLEU score between the predicted and
reference test set sequences for both models. Both tests re-
turned a p-value lower than 0.05. The p-values indicate that
we can reject the null hypothesis and state that there is sig-
nificant difference in the distributions of the model results.
The Cliff’s delta, however, suggests that the significance is
weak, as both tests returned a value close to zero. It is im-
portant to note that the model with inline comments and no
stop word filtering (ICOS) performed noticeably worse than
both of its counterparts. The lower BLEU scores suggests
that the stop words only populate the possible options for the
model to choose from, but provide no meaning to the overall
generated sequence.

The results show a slight improvement in model perfor-
mance and accuracy with included inline comments, given
that the stop words are removed (BLEU of 6.28 compared to
6.22). It must be noted that even though the models achieved
results that were significant, compared to previous research,
the BLEU score is low. Alon et al. [2] achieve a BLEU score
of 14.53 for Documentation Generation task. This is reflected
in a considerable amount of incomprehensible generation at-
tempts by our model.

4.3 Generated Examples
To better visualize the differences between comments, we
provide examples in Table 4. The first column is the origi-
nal documentation string, written by a human, the following
two columns are generated by the ICO and the NOCO models.
Overall, it is evident that both models are able to pick up the
general meaning of the given input and produce a somewhat
understandable sequence. In some cases, the model with in-
line comments is able to better depict the meaning of the code
sequence as compared to the model without. It is also impor-

4https://github.com/tech-srl/code2seq/issues/45#issuecomment-
624539251

5



Table 4: Generated documentation examples with author highlights. Green indicates an overlap between the original docstring and the
translation. Red indicates meaningless or inaccurate translations.

Original Docstring ICO Docstring NOCO Docstring
buffer when possible this method is called when

the buffer is read
reads up to code len bytes
from stream

gets the children of this
directory

gets the list of children of
the current project

returns the list of all
children from the directory

returns a host specifier
built from the provided
specifier

returns the name of the host create a host from a string

returns the innermost cause
of code throwable

returns the root cause of the
given throwable

cause the cause of the given
throwable

returns an unmodifiable view
of code iterable

returns an unmodifiable view
of the specified iterable
that wraps the specified
iterable

returns an iterable that
contains the given iterable

tant to mention that the human created comment is not neces-
sarily meaningful in every example.

A common trend throughout the generated examples is that
they are long or contain repeating information. We speculate
that this is due to an erroneous hyperparameter set up. The
length for generated sequences was set to 37 which is higher
than most input labels. This causes the examples to often
repeat the same word. Such looping behaviour could also
suggest overfitting. Additionally, some target labels contain
Javadoc links, that associate a comment with other classes or
packages and populate the comments with out-of-place key-
words (e.g., code, see).

5 Related Work
This section aims to provide an overview of relevant research
done with code comments and place our contribution within
the appropriate context. In particular, the described work
shapes the field of code comment analysis and gives sugges-
tions on possible applications and methods.

5.1 Code Comments in Software Defect Prediction
Recent work by Huo et al. [20] analyses the impact of code
comments on the accuracy of Software Quality Assurance
tasks. They claim that analysing only source code to detect
defects rarely produces optimal results. The work proposes
that code comments bring additional semantic features and
can supplement the existing feature extraction methods that
predict bugs in software. Their introduced Deep Learning
model called CAP-CNN uses Convolution Neural Networks
in order to abstract additional comments into training exam-
ples. The performance of the model indicates that the extra
information improves the results of vulnerability detection
and is an improvement over other state-of-the-art methods.
While the CAP-CNN model focuses on top-level documen-
tation for additional information, the work is still an indica-

tor that natural language supplements lead to more sophisti-
cated models. Since comments and source code are made up
of different structural semantics, the work uses distinct en-
coders for comments and source code. Our work only adds
inline comments as an addition to the code part. Implement-
ing a layer that handles comment feature extraction separately
might lead to additional improvements.

5.2 Code Redocumentation
An interesting approach to code redocumentation was sug-
gested by Geist et al. [21]. Code redocumentation is the
process of identifying, reevaluating, and refurbishing docu-
mentation of a given code base. Such techniques are usually
applied on large scale legacy projects, where manual analysis
and classification is economically infeasible. The process is
also used during code migrations, reengineering, or software
maintenance. For such tasks, the information in source code,
like inline code comments, is viewed as a valuable resource,
by the authors. While not all redocumentation techniques uti-
lize such data due to the additional work required (e.g., anno-
tating legacy software), the authors state that comments are
extremely important and carry the intent behind various de-
sign choices. The research proposes multiple heuristic and
Deep Learning models to classify inline or block comments
as useful for the redocumentation task. Being able to measure
the relevance or usability of an inline comment could prove
useful if implemented in the preprocessing step of our work.
Currently, some inline comments are bits of commented code,
URLs, or hardly understandable sequences.

5.3 Source Code Comment Scope
By design, Javadoc comments describe the contents of a
method or a class that they are related to. Inline and block
comments, however, usually appear in more random places
throughout the code base. Chen et al. suggest a method

6



for classifying the scope of such comments by identifying
comment-code relationships [22]. Using machine learning,
the authors are able to outperform heuristic approaches for
scope detection. Typical use cases are detecting outdated
comments and mining repositories for comment generation.
The latter, is specifically of interest to our research, as having
numerous inline comments with correctly associated scopes,
could lead to higher performance for the code2seq model.
Currently, comments with unidentified scopes are classified
as orphan and omitted from the training examples.

6 Discussion & Future Work
The main objective of this work was to measure the effect
of inline comments for software engineering tasks. The re-
sults suggest that there is a relatively small benefit, with spe-
cific caveats. Mainly that the comments have to be filtered
properly, and have stop words removed. Currently, the filter-
ing process is very straightforward and could be improved by
utilizing more advanced keyword extraction techniques. The
work shows that the keywords that are extracted create more
sophisticated context pools for the model to make predictions
from. Overall, we recommend to leave inline comments in,
assuming there are enough time resources to allocate for fil-
tering.

For future work, the most important aspect to consider
is measuring how effective various keyword extraction tech-
niques are for inline comments. Furthermore, more attention
must be given to orphan comments. Methods to detect the
scope of a comment can be applied in conjunction with this
work to obtain a training corpus that contains a higher num-
ber of examples with more precise associations. Lastly, the
results suggest that the hyperparameters also require adjust-
ments. Measuring the effect of the target label lengths and
increasing or decreasing the size of context pools must be
done with hyperparameter optimization techniques.

7 Responsible Research
This section includes a discussion on the responsibility as-
pects of the research. It explores the ethical concerns related
to the experiment and describes any validity issues related to
the outcome. Finally, the section ends with a discussion on
reproducibility.

7.1 Ethical Aspects
From an ethical point of view, it is important to consider how
the research impacts the environment and its users. Foremost,
the prolonged and expensive computations have an environ-
mental cost. Recent studies show that energy consumption
for Deep Learning tasks has a noticeable carbon footprint
[23]. One of the mitigations mentioned in the article is eq-
uitable access to computational resources. Having a central-
ized computational unit, shared between researchers, is more
cost-effective than renting cloud computing services. Inline
with the recommendations, we used a server, provided by the
Technical University of Delft, to carry out our experiments.
Another worthy consideration regarding energy consumption
is that the dataset with inline comments is 7.2% larger than its
commentless counterpart. This raises the question if the extra

energy for processing and training is worth the 0.9% increase
in performance scores.

An ethical aspect related to users is data reuse. By cre-
ating a model that automatically generates documentation, it
creates a situation where future research might reuse the gen-
erated comments for other experiments, constructing a feed-
back loop. While feedback loops often lead to increased per-
formance, developers need to be wary of any biases that might
occur. As this research only spans the field of programming,
we do not consider it to be a critical issue.

7.2 Threats to Validity
To strengthen the argument we make, it is important to think
about the possible threats that might influence the outcome of
the experiment. The most easily identifiable threat is the size
of the dataset. The code2seq authors used three datasets of
varying sizes. The largest was around fifteen million entries,
more than 40 times larger than CodeSearchNet dataset. By
using a significantly smaller dataset, our observed delta is in-
fluenced. Another aspect to be wary of is that we only used
a single dataset, made up of Java examples. Expanding the
possible range of data might have an impact on the outcome
of the experiment.

7.3 Reproducibility
The initial code2seq project was forked, and all changes made
to the codebase can be observed online5. The usage of ver-
sion control allows for complete transparency regarding the
implementation changes and the testing setup. Additionally,
the codebase and the dataset are openly available to download
and are licenced under the MIT licence. One can reproduce
the results by cloning the repository or by following Section
3. The current implementation strives to produce a clean and
regular collection of examples.

8 Conclusions
The paper raised the hypothesis that including inline com-
ments in Automatic Documentation Generation model train-
ing data would increase the performance and produce more
accurate natural language sequences. It formulated the
methodology of attaching inline comments for specific nodes
of Abstract Syntax Trees (ASTs). The paths from the ASTs
were used to train a model that produces an output sentence
given source code as input. The hypothesis was confirmed
as the model, trained with the additional information, outper-
formed the baseline by 0.9% and showed significance in dif-
ference of distributions. However, including inline comments
without any filtering results in worse performance. We en-
courage other researchers to explore more sophisticated key-
word extraction techniques and implement comment scope
detection.

5https://zenodo.org/record/6659797

7



References
[1] N. Khamis, R. Witte, and J. Rilling, “Automatic

quality assessment of source code comments: The
javadocminer,” in International Conference on Appli-
cation of Natural Language to Information Systems,
Springer, 2010, pp. 68–79.

[2] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq:
Generating sequences from structured representations
of code,” in International Conference on Learning
Representations, 2019. [Online]. Available: https : / /
openreview.net/forum?id=H1gKYo09tX.

[3] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and
P. S. Yu, “Improving automatic source code summa-
rization via deep reinforcement learning,” in Proceed-
ings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 397–
407.

[4] M. P. Arthur, “Automatic source code documentation
using code summarization technique of nlp,” Proce-
dia Computer Science, vol. 171, pp. 2522–2531, 2020,
Third International Conference on Computing and
Network Communications (CoCoNet’19), ISSN: 1877-
0509. DOI: https://doi.org/10.1016/j.procs.2020.04.
273. [Online]. Available: https: / /www.sciencedirect .
com/science/article/pii/S1877050920312655.

[5] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Jsummarizer: An automatic generator of
natural language summaries for java classes,” in 2013
21st International Conference on Program Compre-
hension (ICPC), IEEE, 2013, pp. 230–232.

[6] P. W. McBurney and C. McMillan, “Automatic docu-
mentation generation via source code summarization
of method context,” in Proceedings of the 22nd In-
ternational Conference on Program Comprehension,
2014, pp. 279–290.

[7] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker, “Towards automatically generating
summary comments for java methods,” in Proceedings
of the IEEE/ACM international conference on Auto-
mated software engineering, 2010, pp. 43–52.

[8] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
A method for automatic evaluation of machine trans-
lation,” in Proceedings of the 40th annual meeting of
the Association for Computational Linguistics, 2002,
pp. 311–318.

[9] Y. Sasaki, “The truth of the f-measure,” Teach Tutor
Mater, Jan. 2007.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” Advances in
neural information processing systems, vol. 27, 2014.

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[13] S. Dupond, “A thorough review on the current advance
of neural network structures,” Annual Reviews in Con-
trol, vol. 14, pp. 200–230, 2019.

[14] R. Desimone and J. Duncan, “Neural mechanisms of
selective visual attention,” Annual review of neuro-
science, vol. 18, no. 1, pp. 193–222, 1995.

[15] M.-T. Luong, H. Pham, and C. D. Manning, “Effective
approaches to attention-based neural machine transla-
tion,” arXiv preprint arXiv:1508.04025, 2015.

[16] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt, “CodeSearchNet challenge: Evalu-
ating the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[17] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush, “Opennmt: Open-source toolkit for neural ma-
chine translation,” arXiv preprint arXiv:1701.02810,
2017.

[18] F. Wilcoxon, “Individual comparisons by ranking
methods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–
83, 1945, ISSN: 00994987. [Online]. Available: http :
//www.jstor.org/stable/3001968 (visited on 2022-06-
07).

[19] N. Cliff, “Dominance statistics: Ordinal analyses to
answer ordinal questions.,” Psychological bulletin,
vol. 114, no. 3, p. 494, 1993.

[20] X. Huo, Y. Yang, M. Li, and D.-C. Zhan, “Learn-
ing semantic features for software defect prediction by
code comments embedding,” in 2018 IEEE interna-
tional conference on data mining (ICDM), IEEE, 2018,
pp. 1049–1054.

[21] V. Geist, M. Moser, J. Pichler, R. Santos, and V.
Wieser, “Leveraging machine learning for software
redocumentation—a comprehensive comparison of
methods in practice,” Software: Practice and Experi-
ence, vol. 51, no. 4, pp. 798–823, 2021.

[22] H. Chen, Y. Huang, Z. Liu, X. Chen, F. Zhou, and
X. Luo, “Automatically detecting the scopes of source
code comments,” Journal of Systems and Software,
vol. 153, pp. 45–63, 2019.

[23] E. Strubell, A. Ganesh, and A. McCallum, Energy and
policy considerations for deep learning in nlp, 2019.
DOI: 10.48550/ARXIV.1906.02243. [Online]. Avail-
able: https://arxiv.org/abs/1906.02243.

8

https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/https://doi.org/10.1016/j.procs.2020.04.273
https://doi.org/https://doi.org/10.1016/j.procs.2020.04.273
https://www.sciencedirect.com/science/article/pii/S1877050920312655
https://www.sciencedirect.com/science/article/pii/S1877050920312655
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
https://doi.org/10.48550/ARXIV.1906.02243
https://arxiv.org/abs/1906.02243

	Introduction
	Background
	Abstract Syntax Trees
	Neural Machine Translation

	Methodology
	Dataset
	Preprocessing
	Training
	Evaluation
	BLEU
	F1
	Wilcoxon Rank Sum Test & Cliff's Delta Effect Size


	Results
	Setup
	Scores
	Generated Examples

	Related Work
	Code Comments in Software Defect Prediction
	Code Redocumentation
	Source Code Comment Scope

	Discussion & Future Work
	Responsible Research
	Ethical Aspects
	Threats to Validity
	Reproducibility

	Conclusions

