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Abstract
This research project aims to develop a computer-
checked library of category theory within the Lean
proof assistant, with a specific emphasis on con-
cepts and examples relevant to functional program-
ming. Category theory offers a robust mathematical
framework that allows for the abstraction and com-
prehension of concepts across diverse fields, in-
cluding computer science. Additionally, the project
will explore the application of final coalgebras, par-
ticularly in the context of understanding infinite
data structures. By creating a formalized cate-
gory theory library within Lean, our objective is to
enhance our understanding of functional program-
ming and programming language concepts. More-
over, we aim to facilitate the study of these topics
by providing a comprehensible library and a rigor-
ous foundation for program reasoning, thereby ben-
efiting researchers and practitioners in the field.

1 Introduction
Category theory and functional programming are two inter-
connected fields that have gained significant attention in com-
puter science and mathematics [1]. Category theory provides
a mathematical language for comprehending and abstracting
concepts, allowing the study of relationships and structures
across diverse domains, including computer science. On the
other hand, functional programming offers a paradigm that
emphasizes the use of pure functions and immutable data
structures to develop reliable and modular software.

Computer proof assistants offer a formal environment
where we can interactively construct and verify definitions,
theorems, proofs, and examples based on rigorous mathemat-
ical foundations. By formalizing category theory concepts in
a computer-checked environment, we enhance the reliability
and correctness of our implementations, thereby mitigating
the risk of introducing errors [2].

This paper presents a research project focused on creating a
computer-checked library of category theory within the Lean
proof assistant, with a specific emphasis on concepts and ex-
amples relevant to functional programming. In this particular
paper, we will place a specific focus on coalgebras and their
application to infinite data structures. Coalgebras provide a
way to model and reason about potentially infinite sequences
or structures [3]. By exploring coalgebras within the context
of category theory and functional programming, we aim to
shed light on their practical significance and implications.

The key question we aim to address is ”How can define
streams in a computer-checked library of category theory in
the Lean proof assistant?” With that, we must also answer the
following sub-questions:

• What are the necessary formalizations, definitions, and
proofs required to establish a solid foundation for cat-
egory theory, and coalgebra, within the Lean environ-
ment?

• How can the library facilitate the exploration and under-
standing of category theory concepts and their practical

implications in the context of functional programming?

• How does the library compare to existing works regard-
ing comprehensiveness, correctness, and usability?

The primary objective of this project is to provide a com-
prehensive understanding of category theory concepts and
their application in functional programming to the participat-
ing students. By developing a library that formalizes these
concepts, the project also aims to create a valuable educa-
tional resource. This resource will empower students and
researchers to explore the depths of category theory and its
practical significance in the realm of functional program-
ming.

While this work may not be considered groundbreaking, it
contributes to an existing body of libraries that serve a simi-
lar purpose. However, our library distinguishes itself by pri-
oritizing understandability and educational value over sheer
generality and completeness. Unlike many other libraries that
aim to cover a wide range of topics, our primary focus is on
the practical application of category theory to functional pro-
gramming. By emphasizing clarity and educational value, our
library aims to provide a resource that facilitates a deeper un-
derstanding of the relationship between category theory and
functional programming, making it accessible and valuable to
students and researchers in the field.

The subsequent sections of this paper will outline the re-
search questions, methodology, and expected contributions
of this project. In Chapter 2 we will present the method we
chose for implementing our library as well as how the re-
search group collaborated and contributed. Chapter 3 will
delve into the theory behind categories and their implemen-
tation in Lean. Chapter 4 will discuss functors and their im-
plementation, and provide examples of functional program-
ming. Chapter 5 will explore coalgebras and how they can be
used to understand infinite data structures. The order of these
chapters is essential, as each concept builds upon the previous
one. Additionally, we will include a chapter discussing re-
sponsible research practices and another chapter addressing
the challenges encountered during the project and how our
library compares with prior work. Finally, we will present
a comprehensive conclusion summarizing the entirety of our
work and reflecting on the library we have constructed.

2 Methodology
The methodology employed for this research project involves
a systematic approach to the development of a computer-
checked library of category theory in the Lean proof assistant,
with a specific emphasis on concepts and examples relevant
to functional programming.

The project began with an extensive review by the students
of the existing literature on category theory, functional pro-
gramming, and their intersection, in order to learn and under-
stand the concepts of the field. This served as the foundation
for identifying the specific areas of category theory to be cov-
ered in the library, focusing on their relevance to functional
programming and potential impact in the field. Concurrently
we also studied and experimented with Lean, which is a lan-
guage we didn’t have previous experience with.



2.1 Lean
Computer proof assistants play a crucial role in enabling the
formal verification of mathematical theorems and ensuring
the correctness of complex systems [2]. These software tools
provide an environment where users can interactively con-
struct and verify proofs, define formal specifications, and es-
tablish the properties of mathematical objects or programs.
By leveraging proof assistants, researchers can achieve a
higher level of confidence in the accuracy and validity of their
work.

In the context of this project, a proof assistant is an in-
dispensable tool. It allows us to construct and verify proofs
within a formal framework, providing a solid foundation for
our exploration of category theory and functional program-
ming concepts. By using a proof assistant, we can ensure that
our proofs adhere to the rules of inference and type check-
ing, minimizing the risk of errors and logical inconsistencies.
This level of rigor is essential for building a reliable and trust-
worthy library of category theory in the context of functional
programming.

Lean, as a well-established and actively maintained proof
assistant, offers a robust platform for our project. It has been
developed over many years and benefits from extensive com-
munity support [4; 5]. Lean provides a high-level language,
interactive proof development, a powerful type system, and
a wide range of libraries. These features make Lean an ex-
cellent choice for formalizing category theory and functional
programming concepts, as it facilitates rigorous verification
and enables insightful exploration of the subject matter.

Furthermore, it is worth noting that numerous category the-
ory concepts have already been extensively explored in other
proof assistants, such as Agda [6; 7; 8]. These explorations
are not limited to research papers and formalized develop-
ments but also encompass educational resources, such as lec-
ture notes and videos. In the case of Lean, there is even an
official category theory library available[9]. However, it is
important to recognize that the focus of this library is primar-
ily on providing a practical tool for experienced users, rather
than serving as an educational resource for learning category
theory from scratch. As a result, individuals who already pos-
sess a solid understanding of category theory concepts can ef-
fectively leverage Lean’s library, but it may not be the most
suitable resource for newcomers aiming to learn category the-
ory.

Overall, the choice of Lean as our proof assistant provides
us with a powerful and well-supported tool for formalizing
category theory in the context of functional programming.
Its robust features and extensive libraries, combined with the
rigorous verification capabilities, ensure the reliability and
soundness of our work, leading to a valuable resource for re-
searchers, students, and practitioners in the field.

2.2 Reproducing our work
This section outlines the steps required to reproduce our work
and provides information on accessing and compiling our
code base.

To reproduce our work locally, please follow the instruc-
tions below:

• Obtain the source code: The source code for our li-
brary is hosted on a public Git repository. You can
clone the repository using the following Git command:
git clone https://github.com/sgciprian/ct

• Install Lean: To compile and run the code, you will need
to have the Lean proof assistant installed on your ma-
chine, we used Lean 3 for this project1. You’ll also need
to install leanproject1.

• Build the code: Once Lean is installed, navigate to
the cloned repository directory and use the leanproject
build command to build the library. This command will
only return ok if all code in the library is error-free.
leanproect build

In addition, we have implemented a pipeline on Gitlab to
ensure that our code base consistently compiles. This pipeline
automates the compilation process and helps maintain the in-
tegrity of the library. You can access and review the pipeline
configuration files in the repository to gain insights into our
continuous integration setup.

If you wish to test a specific part of our code, Lean offers
an online platform called the Lean Web Editor2 that can be
used for testing and experimenting with our library without
the need for local installation. However, it’s important to note
that the availability and functionality of the Lean Web Editor
may vary, and it is not guaranteed to support all the features
and dependencies required by our library.

2.3 Two phases
The library development process is divided into two phases.
The first phase involves creating a common ”core” of the li-
brary that establishes a solid basis for subsequent develop-
ments. The team collaboratively implements the fundamen-
tal concepts, as well as examples, of category theory in the
Lean proof assistant, ensuring correctness and verification
through the formal methods provided by the tool. Regular
meetings and discussions are conducted to address any chal-
lenges, make decisions, and coordinate the development ef-
forts.

In the second phase, each team member selects a specific
area of category theory, such as universal properties, functors
and algebras, functors and coalgebras, monads, or adjunc-
tions. They undertake an in-depth exploration of their chosen
area, studying relevant literature and identifying key defini-
tions, theorems, and examples to be included in the library.
The implementation and formalization of these selected con-
cepts are carried out in collaboration with the team, ensuring
coherence and compatibility with the existing core library. In
this paper, the second phase will focus on the examination of
functors and final coalgebras.

Throughout the project, effective coordination and commu-
nication play a crucial role. Regular meetings and discussions
are held to facilitate information exchange, foster collabora-
tion, and ensure alignment among team members. Online
collaboration tools and version control systems are utilized

1https://leanprover-community.github.io/get started.html
2https://leanprover-community.github.io/lean-web-editor/
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to manage the development process and track progress effi-
ciently. Clear communication channels are established to ad-
dress any challenges, provide support, and ensure a cohesive
and synchronized development effort.

Evaluation and iteration are essential components of the
project. The library’s correctness, usability, and practical rel-
evance to functional programming are regularly evaluated and
tested. Feedback from team members and our supervisors is
actively sought and incorporated into the library’s develop-
ment, allowing for iterative improvements and refinements.

By following this methodology, the research project aims
to achieve its objectives of creating a computer-checked li-
brary of category theory in the Lean proof assistant. The
collaborative nature of the project, coupled with the rigor-
ous verification provided by the proof assistant, ensures the
reliability and quality of the library, thereby providing a valu-
able resource for researchers, practitioners, and students in-
terested in exploring the connections between category theory
and functional programming.

3 Category Theory
Category theory is a branch of mathematics that provides a
powerful framework for understanding and abstracting con-
cepts, relationships, and structures across various domains.
It has found significant applications in computer science,
physics, biology, and other disciplines as a unifying language
for describing and studying phenomena.[10; 11; 12]

One of the key strengths of category theory lies in its ability
to capture common patterns and structures across different
domains. By focusing on the relationships between objects
rather than their internal details, category theory provides a
high-level perspective that enables us to identify and analyze
universal properties and concepts.

3.1 Definition
At the heart of category theory is the notion of a category,
which consists of objects and arrows (also known as mor-
phisms) that represent relationships between objects. The ob-
jects can be anything from sets, types, or mathematical struc-
tures, while the arrows capture transformations or mappings
between these objects.

In a category, there are two fundamental operations: com-
position and identity. Composition allows us to combine ar-
rows, representing the successive application of transforma-
tions. Identity arrows provide a notion of self-transformation
for each object in the category. These operations satisfy cer-
tain axioms, such as associativity and identity laws, which
ensure the coherence and consistency of the category struc-
ture.

Formally, a category C can be defined as follows, inspired
by the definition used in Leinster’s book ”Basic Category
Theory” [13]:
A category C consists of:

• A collection C0 of objects.

• For every pair of objects X,Y ∈ C0, a collection
C0(X,Y ) (also denoted as Hom(X,Y )) of morphisms
from X to Y .

• For every triple of objects X,Y, Z ∈ C0, a composition
operation ◦ : C0(Y, Z) ◦ C0(X,Y ) → C0(X,Z) that
allows the composition of morphisms.

• For each object X ∈ C0, an identity morphism 1X ∈
C0(X,X) that serves as the neutral element for compo-
sition.

The category C must satisfy the following axioms:
• Associativity: For any morphisms f ∈ C0(X,Y ), g ∈
C0(Y, Z), and h ∈ C0(Z,W ), the composition (h◦g)◦f
is equivalent to h ◦ (g ◦ f).

• Identity Laws: For any morphism f ∈ C0(X,Y ), the
compositions f ◦ 1X and 1Y ◦ f are equal to f .

In Lean we offered the following definition for categories3:
structure category :=
--attributes
(C0 : Sort u)
(hom : Π (X Y : C0), Sort v)
(id : Π (X : C0), hom X X)
(compose : Π {X Y Z : C0} (g : hom Y Z)

(f : hom X Y), hom X Z)
--axioms
(left_id : ∀ {X Y : C0} (f : hom X Y),

compose f (id X) = f)
(right_id : ∀ {X Y : C0} (f : hom X Y),

compose (id Y) f = f)
(assoc : ∀ {X Y Z W : C0} (f : hom X Y)

(g : hom Y Z) (h : hom Z W),
compose h (compose g f) =

compose (compose h g) f)

3.2 Examples
One notable example of a category is the Set category, where
the objects are sets and the morphisms are functions between
sets. Leinste [13] describes it as follows.

There is a category Set described as follows. Its ob-
jects are sets. Given sets A and B, a map from A to
B in the category Set is exactly what is ordinarily
called a map (or mapping, or function) from A to
B. Composition in the category is ordinary compo-
sition of functions, and the identity maps are again
what you would expect.

However, in the context of functional programming, a rel-
evant category is the category of the programming language
itself, where objects are data types and morphisms are func-
tions that convert between types. The composition works as
a composition of functions and the identity is a function that
does nothing. Barr and Wells define the Functional Program-
ming Category as follows.

[10] A functional programming language L has a
category structure C(L) for which:

• FPC–1 The types of L are the objects of C(L).
• FPC–2 The operations (primitive and derived)

of L are the arrows of C(L).
3https://github.com/sgciprian/ct/blob/main/src/category/

category.lean
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• FPC–3 The source and target of an arrow are
the input and output types of the correspond-
ing operation.

• FPC–4 Composition is given by the composi-
tion constructor, written in the reverse order.

• FPC–5 The identity arrows are the do-nothing
operations.

We have implemented the category of sets in the file
Set category.lean4. And because Lean types are treated the
same way as sets we will use the Set category for our future
constructions and definitions of types.
def Set : category :=
{
-- Type 0 in Lean is essentialy a set.
C0 := Type*,

-- A morphism between two sets maps the
-- elements from one set to the other, same
-- as what a function between types does.
hom := λ X Y, X → Y,

-- The identity morphism maps each element to
-- itself.
id := λ X, λ (x : X), x,

-- Each morphism is a function, so morphism
-- composition is the same as composition of
-- the underlying functions.
compose := λ {X Y Z} (g : Y → Z) (f : X → Y),

g f,

-- We can use the proofs from function.comp.
left_id :=
begin
intros,
apply function.comp.right_id,

end,
right_id :=
begin
intros,
apply function.comp.left_id,

end,
assoc :=
begin
intros,
apply function.comp.assoc,

end,
}

4 Functors
Since categories are also a mathematical structure we can
construct the category of categories. Its objects are, obvi-
ously, the categories and the morphisms are the functors. A
functor is a mapping between categories that preserves the

4https://github.com/sgciprian/ct/blob/main/src/instances/
Set category.lean

structure and relationships of the objects and morphisms. It
provides a way to transform categories, allowing us to ana-
lyze and compare them in a systematic manner.

Functors play a crucial role in relating different categories
and studying their properties. They allow us to translate
concepts and results from one category to another, uncov-
ering hidden connections and similarities. In the context of
functional programming, functors often capture the notion of
structure-preserving mappings between different types.

4.1 Definition
Let C1 denote a generic morphism C0(X,Y ) in C. Formally,
a functor F : C → D between two categories C and D con-
sists of the following components[14]:

• A mapping F0 : C0 → D0 that assigns each object X ∈
C to an object F0(X) ∈ D.

• A mapping F1 : C1 → D1 that assigns each morphism
f : X → Y in C to a morphism F1(f) : F0(X) →
F0(Y ) in D.

To be a valid functor, the following conditions must be sat-
isfied:

• Preservation of identities: For every object X ∈ C, the
identity morphism 1X : X → X in C is mapped to the
identity morphism 1F0(X) : F0(X) → F0(X) in D.

• Preservation of composition: For any pair of morphisms
f : X → Y and g : Y → Z in C, the composition
g ◦ f : X → Z is mapped to the composition F1(g) ◦
F1(f) : F0(X) → F0(Z) in D.

In Lean, we offered the following definition for functors5:

structure functor (C D : category) :=
(map_obj : C → D)
(map_hom : Π {X Y : C} (f : C.hom X Y),

D.hom (map_obj X) (map_obj Y))
(id : ∀ (X : C), map_hom (C.id X)

= D.id (map_obj X))
(comp : ∀ {X Y Z : C} (f : C.hom X Y)

(g : C.hom Y Z), map_hom (C.compose g f)
= D.compose (map_hom g) (map_hom f))

4.2 Examples
Functors play a fundamental role in functional programming,
enabling the transformation and manipulation of data struc-
tures while preserving the structure and relationships between
them. They provide a powerful abstraction that allows pro-
grammers to write generic code and express computations in
a composable and reusable manner. In this section, we will
discuss specific examples and use cases of functors, high-
lighting their practical significance and implications in func-
tional programming.

In programming, we have what are called type construc-
tors, things that take types and return new types. The most
used example is Lists, they are a constructor because a List

5https://github.com/sgciprian/ct/blob/main/src/functors/functor.
lean
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doesn’t exist as a type by itself, but given another type, such
as Int, it can construct the List of Int type.[15]

The List Functor: One of the most commonly encoun-
tered functors in functional programming is the List functor.
In this case, the functor maps objects of type X 7→ List(X)
and maps the morphisms using what most languages call the
maplist (or sometimes just map) function. It applies a func-
tion over each element of a list, producing a new list as a
result. This allows for transformations and operations to be
applied uniformly to every element in the list, promoting code
reusability and modularity.

Here is our code for the definitions of List, maplist (called
List.fmap) and the List functor:6

inductive List (α: Type) : Type
| nil : List
| cons (head: α) (tail: List) : List

def List.fmap {α β: Type} (f: α → β) :
List α → List β

| List.nil := List.nil
| (List.cons head tail) :=

List.cons (f head) (List.fmap tail)

def List.functor : Set Set :=
{
map_obj := λ A, List A,
map_hom := λ _ _ f, List.fmap f,

}

Objects are mapped to Lists and morphisms are mapped
using induction over the input List. In the base case, we re-
turn Nil, and when mapping Cons (head, tail) we apply the
given function to the head element and recursively continue
with the tail. For the proofs of the identity and composition
preservation rules refer to our file in the repository, but in both
cases, a proof by induction is used to leverage the fact List is
an inductive type.

The Maybe Functor: Another important functor in func-
tional programming is the Maybe functor, also known as the
Option functor. It is used to handle optional values or compu-
tations that may fail to produce a result. The Maybe functor
wraps a value, and applying a function to it results in a new
wrapped value. This allows for concise and safe handling of
optional values, eliminating the need for explicit null checks
or error-prone code. The Maybe functor is particularly use-
ful for writing robust and error-resistant code in functional
programming.

Here is our code for the definitions of Maybe, Maybe.fmap
and the Maybe functor:7

inductive Maybe (α : Type*)
| none : Maybe
| some : α → Maybe

def Maybe.fmap {α β : Type*} (f : α → β) :

6https://github.com/sgciprian/ct/blob/main/src/instances/
functors/List functor.lean

7https://github.com/sgciprian/ct/blob/main/src/instances/
functors/Maybe functor.lean

Maybe α → Maybe β
| Maybe.none := Maybe.none
| (Maybe.some x) := Maybe.some (f x)

def Maybe.functor : Set Set :=
{
-- Objects are mapped to the Maybe type.
map_obj := λ A, Maybe A,
-- Morphisms are mapped by chosing between two cases.
-- 1) Given input None, None is returned.
-- 2) Given input Some a, Some (f a) is returned.
map_hom := λ _ _ f, Maybe.fmap f,

}

Objects are mapped to the Maybe type and morphisms are
mapped by choosing between two cases, given input None,
None is returned, and given input Some a, Some (f a) is re-
turned. Again, for the proofs of the identity and composition
preservation rules refer to our file in the repository, but once
more in both cases, a proof by induction is used to leverage
the fact Maybe is an inductive type, both the base case and
the inductive case have straight forward solutions and Lean
solves them by itself.

These are just a few examples of how functors are used in
functional programming. They provide a mechanism for en-
capsulating and transforming data, allowing for the creation
of generic and reusable code. Functors enable programmers
to write code that is concise, expressive, and modular, pro-
moting the principles of functional programming such as im-
mutability, purity, and composability.

The practical significance of functors in functional pro-
gramming lies in their ability to abstract away the specific
details of data structures and computations, focusing on the
underlying patterns and transformations. By leveraging the
power of functors, programmers can write code that is eas-
ier to understand, test, and maintain. Additionally, the use
of functors can lead to more efficient and optimized code, as
they allow for high-level optimizations and transformations
to be applied uniformly across different data structures.

By incorporating the concept of functors into our
computer-checked library of category theory in Lean, we pro-
vide a formalized and rigorously verified foundation for rea-
soning about functors in functional programming. This en-
ables programmers and researchers to explore the practical
implications of functors, understand their underlying princi-
ples, and leverage them effectively in their software develop-
ment processes.

5 F-coalgebras
In category theory, F-coalgebras provide a dual perspective to
F-algebras (this concept will be explained below), focusing
on the generation and observation of structures rather than
their construction and manipulation. A coalgebra represents
a system or process that produces an infinite or potentially
infinite sequence of states or observations.

The formalism of F-coalgebras provides a rigorous foun-
dation for studying infinite or potentially infinite data struc-
tures, enabling reasoning and manipulation of such structures

https://github.com/sgciprian/ct/blob/main/src/instances/functors/List_functor.lean
https://github.com/sgciprian/ct/blob/main/src/instances/functors/List_functor.lean
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in a principled manner. By incorporating the concept of F-
coalgebras into our computer-checked library of category the-
ory in Lean, we aim to provide a solid framework for model-
ing and reasoning about infinite data structures and systems
in functional programming.

5.1 A quick note on F-algebras
Here we will give a simple explanation of F-algebras in or-
der to properly explain, its dual, the F-coalgebras, which
is our main object of study. A more detailed work on F-
algebras is being produced concurrently by my colleague
Rado Todorov[16]. Rutten [3] presents a good summary of
algebras and F-algebras as follows.

Algebras are presented as sets with operations. An exam-
ple is the algebra (N , 0, succ), where N = 0, 1, 2, . . ., (0 ∈
N ) and (succ(n) = n + 1), the algebra of natural numbers can
be presented as [zero, succ] : (1 + N ) → N . Where 1 = is
the singleton set with element , where 1 +N is the coproduct,
that is, the disjoint union, of 1 and N ; and where zero : 1 →
N , zero() = 0, succ : N → N , succ(n) = n + 1

Presented in this manner, the algebra of natural numbers
becomes an instance of the F-algebra categorical definition.
Let F : C → C be a functor from a category C to itself. An
F -algebra is a pair (A, α) consisting of an object A and an
arrow α : F (A) → A. We call F the type, A the carrier, and
α the structure map of the algebra (A, α).

Defining the functor N : Set → Set, for every set X, by
N (X) = 1 + X, we observe that (N , [zero, succ]) is an N -
algebra.

5.2 Definition
As we said, F-coalgebras are the dual concept of F-algebras.
Rutten [3] defines duality as ”the elementary process of ’re-
versing the arrows’ in a diagram. If this diagram was used to
give a definition or to express a property, then reversing the
arrows leads to a new definition or a new property, which is
called the dual of the original one.”

A F-coalgebra (C, ϕ) also consists of a carrier object C, and
a structure-preserving morphism that describes the transition
ϕ : C → F (C). Note how the morphism is ”flipped” in rela-
tion to the algebra morphism. The morphism of an F-algebra
can be understood as a mechanism for combining elements.
Similarly, in the context of an F-coalgebra (C, ϕ), the struc-
ture map ϕ provides insights into how we can break down or
unfold the elements of the coalgebra.

We also have a way to define morphisms between F-
coalgebras, these are called coalgebra homomorphisms. Let
F : C → C be a functor and let (C, ϕ) and (D, ψ) be F-
coalgebras. A homomorphism from (C, ϕ) to (D, ψ) is a
morphism f : C → D such that ψ ◦ f = F(f) ◦ ϕ

In our library we have defined F-coalgebras and their ho-
momorphisms as:8

structure coalgebra {C: category}
(F : functor C C) :=

(object : C.C0)
(morphism : object → (F.map_obj object))

8https://github.com/sgciprian/ct/blob/main/src/coalgebras/
coalgebra.lean

structure f_coalgebra_homomorphism
{C : category} {F : functor C C}
(A B : coalgebra F) :=

(morphism : C.hom A.object B.object)
(proof : B.morphism ◦ morphism

= (F.map_hom morphism) ◦ A.morphism)

5.3 Examples
Coalgebras find practical applications in various areas, in-
cluding the modeling of infinite data structures, stream pro-
cessing, probabilistic systems, and reactive systems[3]. In
functional programming, coalgebras provide a powerful tool
for reasoning about and manipulating infinite or potentially
infinite data.

In the context of functional programming, coalgebras are
particularly relevant for understanding and working with in-
finite data structures. Examples of infinite data structures in-
clude streams, lazy lists, and coinductive types. By modeling
these structures as coalgebras, we can capture their genera-
tion processes, observe their elements or states, and define
operations on them in a compositional and modular manner.

For instance, consider the coalgebraic representation of an
infinite stream of integers. The carrier object is the set of all
streams of integers, and the transition function describes how
to generate the next element of the stream given the current
state. By working with coalgebras, we can define operations
on streams, such as unfolding, mapping, ziping and filtering.

Unfortunately, coinductive data types[17] and corecursion
are not natively supported in Lean and this presented a signif-
icant challenge when it came to defining and reasoning about
coinductive data types such as streams. Since Lean primarily
focuses on inductive reasoning, which is well-suited for rea-
soning about finite structures, we had to find alternative ap-
proaches to work with potentially infinite objects. For stream,
we were able to define it using natural numbers, where given
the number n the stream would return the nth element. Unfor-
tunately, for trees, a similar approach would not be possible
therefore we were not able to extend our proofs for the data
structure, however, there is a file illustrating how a binary tree
could be defined if we had coinductive types defined9.

Our definitions of the stream data type, and its auxiliary
functions, can be found in the file stream dt.lean10

def stream (α : Type*) := nat → α

def cons {α : Type*} (a : α) (s : stream α)
: stream α

| nat.zero := a
| (nat.succ n) := s n

def head {α : Type*} (s : stream α) : α := s 0

def tail {α : Type*} (s : stream α) : stream α
:= λ i, s (nat.succ i)

9https://github.com/sgciprian/ct/blob/main/src/coalgebras/trees.
lean

10https://github.com/sgciprian/ct/blob/main/src/coalgebras/
stream dt.lean
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Streams are coalgebras of the functor X → (A × X), so to
define the coalgebra we need to first define this functor, which
can be found in the file stream functor.lean11. The composi-
tion and identity preservation proofs are left out of the paper
but can be found in the file, the proofs are made simple by
splitting the cases of the coproduct.

def stream_functor (α : Type)
:functor Types Types :=

{
map_obj := λ X, α × X,
map_hom := λ X Y f, λ p, (p.fst, f p.snd),

}

Our definitions of streams as a coalgebra can be found in
the stream.lean file12

def stream_coalgebra (α : Type)
: coalgebra (stream_functor α) :=

{
object := stream α,
morphism := λ s, (head s, tail s)

}

An important homomorphism of the stream coalgebra is
the unfold higher-order function, which generates a stream
from a seed element and a step function. Defined as

def unfolds {α β : Type*}
: (α → β × α) → (α) → stream β

| f a nat.zero := (f a).1
| f a (nat.succ n) := unfolds f (f a).2 (n)

The proof that unfold is a homomorphism of any coalgebra
of the functor X → (A × X) to the stream coalgebra that can
be found in the stream.lean file12 but it is too big to be added
here. We started by simplifying the compositions on both
sides of the proposition then applying the unfold definition
on both sides and finally using the definition of tail to prove
that the proposition holds.

5.4 Terminal F-coalgebras
One key concept related to coalgebras is the notion of final
(or terminal) coalgebras [18]. In fact, the reason why we are
interested in streams is that it is a final coalgebra, that’s why
we can write so many functions and operations that hold for
all instances of the coinductive data type. To define final coal-
gebras we must first define the category of coalgebras.

We call CoAlg(F) the category of all coalgebras of the
functor F . The objects are the F-coalgebras and the mor-
phisms are the homomorphisms between them. It is important
to note that not all CoAlg(F) will have a terminal object, but
for the case of the functor X → (A × X), we do. Here is our
definition of the CoAlg(F).13

def coalgebra_category {C: category}
(F : functor C C) : category :=

11https://github.com/sgciprian/ct/blob/main/src/coalgebras/
stream functor.lean

12https://github.com/sgciprian/ct/blob/main/src/coalgebras/
stream.lean

13https://github.com/sgciprian/ct/blob/main/src/coalgebras/
coalgebras category.lean

{ C0 := coalgebra F,
hom := λ A B, f_coalgebra_homomorphism A B,
id := λ A, {
morphism := C.id A.object,
proof := begin
intros,
simp [F.id, C.right_id, C.left_id],

end
},
compose := λ X Y Z g f, {
morphism := g.morphism ◦ f.morphism,
proof := begin
intros,
rw C.assoc,
rw g.proof,
rw ← C.assoc,
rw f.proof,
rw C.assoc,
repeat { rw f.proof },
rw functor.comp,

end
},

left_id :=
begin
intros,
simp [functor.id, C.left_id],
cases f,
refl,

end,
right_id :=
begin
intros,
simp [functor.id, C.right_id],
cases f,
refl,

end,
assoc :=
begin
intros,
simp [C.assoc],

end,
}

With the category CoAlg(F) we define the final coalgebra
as the coalgebra (ν, out), such that for any coalgebra (A, α)
there is one, and only one, homomorphism (A, α) → (ν, out),
and this unique morphism is called anamorphism

So, in Lean, we define a final coalgebra as a collection of
F-coalgebra, the anamorphism and a proof that this anamor-
phism is unique.14

structure final_coalgebra {C : category}
(F : functor C C) :=

(obj : coalgebra F)
(anamorphism : Π (A : coalgebra F),

(coalgebra_category F).hom A obj)
(unique : ∀ {A : (coalgebra_category F).C0}
14https://github.com/sgciprian/ct/blob/main/src/coalgebras/

final coalgebra.lean
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(f : (coalgebra_category F).hom A obj),
f = anamorphism A)

Finally, we tried to prove that stream is indeed a final coal-
gebra of the category CoAlg(X → (A × X)) with the unfold
homomorphism being the anamorphism. However, we were
not able to finish this proof in time. We had to prove that
any homomorphism applied to a generic coalgebra would be
equal to applying the anamorphism (in this case unfold using
the coalgebra morphism). We used induction on the stream
and for the base case we rewrote the general homomorphism
and applied the proof that the unfold homomorphism com-
mutes. For the inductive step we tried a similar approach and
after doing the substitutions we end with
⊢ f_morphism (A.morphism x).snd n

= unfolds A.morphism (A.morphism x).snd n

Although it seems obvious that this should be the inductive
hypothesis we were not able to make lean induce that way, it
applies induction only to n, so our hypothesis is
IH : f_morphism x n = unfolds A.morphism x n

Not being able to reconcile these I had to leave the proof
undone. The tactics used can be seen below or in the
streams.lean file.12

def proof_stream_is_final {α : Types.C0}
: final_coalgebra (stream_functor α) :=

{
obj := stream_coalgebra α,
anamorphism := unfold_homomorphism,
unique :=

begin
intros A f,
rw unfold_homomorphism,
cases f,

have h : f_morphism = unfolds A.morphism
:=
begin
funext x,
funext n,

induction n with n ih,

case nat.zero{ -- Case n = 0
rw unfolds,
have h : f_morphism x 0 =
(Types.compose prod.fst (Types.compose

(stream_coalgebra α).morphism
f_morphism)) x := by refl,

simp [h],
rw [f_proof],
refl,

},
case nat.succ{ -- Case n > 0
rw [unfolds],
-- unfold unfolds at IH,
-- rw [IH],

have h : f_morphism x n.succ =

(Types.compose prod.snd (Types.compose
(stream_coalgebra α).morphism

f_morphism)) x n := by refl,
simp [h],
rw [f_proof],

have h : Types.compose prod.snd
(Types.compose (

(stream_functor α).map_hom
f_morphism

) A.morphism) x n
= f_morphism (A.morphism x).snd n
:= by refl,

simp [h],

cases (A.morphism x) with a s,
simp,

-- exact inductive_hypothesis,
sorry,

},
end,
simp [h],

end
}

5.5 Anamorphism examples
We also provided practical examples of anamorphisms.

The first one is the function nats : N → Stream(N ) which
returns the stream of all natural numbers starting with the
number given as the argument. First we define a function
succ pair : N → N × N that takes a number n and pairs it
with its successor succ pair(n) = (n, n+1). With this we can
define the nats coalgebra which is a F-coalgebra of the X →
(N × X) functor, with N as the carrier object and succ pair
as the morphism. Now we define the nats homomorphism as
the unfold function using the succ pair function as the step
function. It is interesting to note how it corroborates with
our definition of unfold as a general homomorphism for any
coalgebra to the stream coalgebra. We don’t need to prove
this homomorphism is unique since all homomorphisms that
go to the stream coalgebra are unique since it is a terminal
coalgebra. Therefore unfold composed with succ pair is the
anamorphism that satisfies the above description.15

def succ_pair : N → N × N := λ n, (n, n + 1)

def nat_coalgebra
: coalgebra (stream_functor N) :=

{
object := N,
morphism := succ_pair

}

def nats_homomorphism
: f_coalgebra_homomorphism nat_coalgebra

(stream_coalgebra N) :=

15https://github.com/sgciprian/ct/blob/main/src/coalgebras/
nats stream.lean
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{
morphism := unfolds succ_pair,
proof := by refl,

}

The next one is the function zip : Stream(A)×Stream(B)
→ Stream(A × B) that zips the argument streams together.
First we define a function pair head tail : (stream α × stream
β) → (α × β) × (stream α × stream β) that takes a pair of
streams s and returns a product of products of the heads and
tails of the streams pair head tail(s) = ((head s.1, head s.2),
(tail s.1, tail s.2)). With this we can define the zip coalgebra
which is a F-coalgebra of the X → ((α × β) × X) functor,
with the product of streams (stream α × stream β) as the car-
rier object and pair head tail as the morphism. Now we de-
fine the zip homomorphism as the unfold function using the
pair head tail function as the step function. It is interesting to
note how it again corroborates with our definition of unfold
as a general homomorphism for any coalgebra to the stream
coalgebra. We don’t need to prove this homomorphism is
unique since all homomorphisms that go to the stream coal-
gebra are unique since it is a terminal coalgebra. Therefore
unfold composed with pair head tail is the anamorphism that
satisfies the above description.16

def pair_head_tail {α β : Type}
: (stream α × stream β) →

(α × β) × (stream α × stream β) :=
λ s, ((head s.1, head s.2),

(tail s.1, tail s.2))

def zip_coalgebra (α β : Type)
: coalgebra (stream_functor (α × β)) :=

{
object := stream α × stream β,
morphism := λ x, pair_head_tail x,

}

def zips_homomorphism (α β : Type)
: f_coalgebra_homomorphism

(zip_coalgebra α β)
(stream_coalgebra (α × β)) :=

{
morphism := unfolds pair_head_tail,
proof := by refl,

}

6 Responsible Research
In this section, we discuss the responsible research practices
taken into account throughout the project to uphold high stan-
dards of integrity, transparency, and ethical considerations.

6.1 Ethical Considerations
The nature of this research primarily revolves around logic
and mathematical methods, devoid of any direct involvement
with human subjects or sensitive data. As such, there are no
significant ethical issues associated with this research. All

16https://github.com/sgciprian/ct/blob/main/src/coalgebras/
zip ana.lean

the results presented in this paper are derived solely from
the code developed and the principles of category theory and
functional programming.

Furthermore, we have taken additional measures to ensure
the transparency and integrity of our work. The entire code
base, including the implemented library, is openly available
for public scrutiny and audit. This accessibility allows for in-
dependent verification and verification of the absence of any
malicious elements.

Throughout the research process, we have prioritized ad-
herence to the principles of responsible research and con-
ducted our work in a manner consistent with the highest ethi-
cal standards. Although the research does not raise any signif-
icant ethical concerns, we remain committed to upholding re-
sponsible research practices and contributing to the advance-
ment of the field of category theory and functional program-
ming.

6.2 Use of LLMs/AI tools
As part of our commitment to responsible research practices,
I must clarify I used LLM (Language Model) tools to aid
in the writing process of this paper. These tools were em-
ployed to enhance the clarity, coherence, and overall qual-
ity of the written content. By utilizing LLM tools, we were
able to benefit from their language generation capabilities, in-
cluding grammar and style suggestions, ensuring that the text
is well-structured and effectively communicates our research
findings.

It is important to note that while LLM tools provide valu-
able assistance in the writing process, the content and ideas
presented in this paper are the results of research and critical
thinking. The tools served as an aid to improve the writing,
but the responsibility for the accuracy and validity of the re-
search rests solely with the authors.

By leveraging LLM tools responsibly and in conjunction
with our domain knowledge, we aimed to optimize the clarity
and effectiveness of our written communication, ultimately
enhancing the overall quality of this research paper.

7 Results and Discussion
In this section, we present the results of our research project,
compare them to previous work, and provide a broader con-
text for their significance. We reflect on the conclusions
drawn from the results and discuss the methodology em-
ployed. Additionally, we attempt to provide possible expla-
nations for the observed outcomes.

7.1 Results
Our research project aimed to create a computer-checked li-
brary of category theory within the Lean proof assistant, with
a specific focus on concepts and examples relevant to func-
tional programming. We successfully developed and formal-
ized the core concepts of category theory, including cate-
gories, functors, and coalgebras, within the Lean environ-
ment.

The library we constructed demonstrates the application of
category theory to functional programming by providing for-
mal definitions, theorems, and examples. We implemented

https://github.com/sgciprian/ct/blob/main/src/coalgebras/zip_ana.lean
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key operations and properties associated with category the-
ory concepts, such as composition of morphisms, functorial
mapping, and unfolding of coalgebras.

7.2 Comparison to Previous Work
To evaluate the contributions of our library, we compared it to
existing works in the field of category theory and functional
programming. We examined other libraries and resources that
cover similar topics and serve a similar purpose. While our
library may not be the first of its kind, it differs by emphasiz-
ing understandability and educational value over generality
and completeness.

The most popular libraries publicly available are agda-
categories[7] and the category theory part of the official Lean
library mathlib[9]. They, as most libraries, aim to provide a
broad coverage of category theory concepts, catering to ad-
vanced users already familiar with the subject. They are very
difficult to understand from just reading the code, for some-
one who has not studied categories yet, and are not a viable
resource for starting out. In contrast, our library prioritizes
clarity and pedagogy, making it accessible to students and
researchers who are learning category theory and its applica-
tions to functional programming.

Furthermore, on the topic of coalgebras, it is very difficult
to find a library that covers it, in fact, agda-categories[7] is
the only one I could find doing so. Even in the literature,
many authors dismiss the concepts of coalgebra just as the
dual of algebra, without developing their concepts further[19;
20], Meijer et al.[20] for example, explain that if you con-
sider the CPO (complete partial order) category instead of the
set category you can use the same carriers for initial algebra
and and terminal coalgebras, in programming this translates
to how many languages deal with lazy evaluation.

Overall, our library compares favorably to existing works
in terms of its focus on educational value, correctness, and
usability. While it may not provide the same breadth of cov-
erage as some comprehensive libraries, it offers a unique per-
spective that facilitates learning and understanding of cate-
gory theory concepts in the context of functional program-
ming.

8 Conclusions
In this paper, we presented a research project focused on the
formalization of category theory concepts within the Lean
proof assistant, with a specific emphasis on their applica-
tion to functional programming. We developed a computer-
checked library that provides formal definitions, theorems,
and examples, enabling students and programmers to explore
the connections between category theory and functional pro-
gramming.

Throughout the project, we addressed research questions
related to the necessary formalizations, definitions, and
proofs required to establish a solid foundation for category
theory within the Lean environment. We also explored how
the library facilitates the understanding and exploration of
category theory concepts and their practical implications in
the context of functional programming. By comparing our
library to existing works, we highlighted its unique focus on
understandability and educational value.

In this particular paper, we wanted to learn how streams
can be defined in the computer-checked library. We success-
fully defined and formalized streams within our library. We
utilized the concept of coalgebras to model streams as final
coalgebras in the category of sets. By defining the neces-
sary structure maps and proving the associated properties, we
established a solid foundation for representing and manipu-
lating streams within the Lean proof assistant

In order to establish a solid foundation for category theory
and coalgebra within Lean, we formalized and defined sev-
eral key concepts. This included formalizing the notion of
categories and their associated operations such as composi-
tion and identity morphisms. We also defined functors, which
are mappings between categories, and studied their proper-
ties. Additionally, we introduced the concept of coalgebras
as the dual of algebras and demonstrated their relevance in
modeling infinite data structures.

Our library could play a role in facilitating the exploration
and understanding of category theory concepts in the context
of functional programming. By providing formal definitions,
theorems, and examples focused on programming, the library
serves as an educational resource that enables programmers
and students to delve into category theory. The use of the
Lean proof assistant ensures that the definitions and theorems
adhere to rigorous standards, enhancing confidence in their
accuracy and validity. Moreover, the library’s focus on under-
standability and pedagogy makes it accessible to individuals
who are learning category theory and its practical implica-
tions.

In conclusion, this research project has successfully
achieved its objectives by creating a computer-checked li-
brary of category theory within the Lean proof assistant, fo-
cusing on its application to functional programming. The re-
sults contribute to the dissemination of knowledge and pro-
vide a solid foundation for further exploration and research
in this field, while also serving as an educational resource for
students and researchers. The library’s success in addressing
the research questions validates the methodology employed
and reinforces the significance of the research conducted.
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