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Fractures of particle assemblies happen frequently in dense gas-solid systems leading to a notable
heterogeneity in the particle configuration, especially in case of cohesive powders and non-spherical par-
ticle interlocking. In this work, we investigate the influence of such heterogeneities on the hydrodynamic
drag by studying the idealized case of a random arrangement of spheres with a channel-like void region.
More specifically, we introduce this heterogeneity to a homogeneous particle arrangement by shifting
apart two bulk regions, such that a void channel divides particle bulk. Single-relaxation-time lattice
Boltzmann simulations were performed to resolve fluid flow through such arrested particle configura-
tions and calculate the corresponding gas-particle momentum exchange and pressure drop. The calcu-
lated drag forces acting on the solids for random sphere arrangement are in good agreement with
previously reported results of Hill et al. (2001b), Tenneti et al. (2011), and Tang et al. (2015). However,
the overall momentum exchange obtained for configurations containing a heterogeneity is significantly
lower. Obviously, the channel allows for a by-passing of a considerable amount of the flow leading to a
reduced overall pressure drop and thereby underestimating the minimum fluidization velocity in a flu-
idized bed. Based on these direct numerical simulations, we examine the overall pressure drop depen-
dence on the characteristic length scale (i.e. width) of the channel-like heterogeneity Lc , the superficial
Reynolds number (30 6 Re 6 300), and the solid volume fraction in the dense (i.e. bulk) region
(0.4 6 /p 6 0.55). The width of the channel is varied within the order of magnitude of particle diameter
Dp (1 6 Lc=Dp 6 4:36), decreasing an overall solid volume fraction (0.25 6 / 6 0.55). In addition to the
numerical simulations, we derive (semi)-analytic correlations for the dense bulk region as well as for
the channel. As the simulations range from laminar to transitional flow, providing a single pressure drop
correlation is very challenging. Therefore, we estimate the channel pressure drop with the appropriate
correlations selected according to calculated superficial Reynolds number. For laminar flow, we achieved
a good agreement between a combined (i.e. bulk and channel) analytical prediction of overall pressure
drop and our resolved numerical simulation. In the transitional regime, the pressure drop values are more
difficult to predict, with the better agreement as we approach the turbulent regime. We believe that this
work can act as a basis for the development of future drag laws accounting for channel-like sub-grid
heterogeneities.
� 2019 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Gas-particle flows often occur in various industrial applications
containing chemical (e.g. combustion, gasification) and physical
processes (e.g. granulation, segregation, coating, and drying) or
natural phenomena. These operations make use of advantageous
properties such as good fluid-solid contact characteristics
(Gilliland andMason, 1949;Mickley and Trilling, 1949). Fundamental
and quantitative understanding of gas-particle interactions is
necessary for the efficient processes and design improvement.

Computational fluid dynamics (CFD) simulations solve the aver-
aged multiphase flow equations and can augment the experimen-
tal studies supplying the detailed, otherwise obscured, data.
Numerous studies accomplished these simulations with either
the continuum Eulerian-Eulerian (EE) two-fluid approach
(Anderson and Jackson, 1967; Gidaspow, 1994; Schneiderbauer
et al., 2013) or the Euler-Lagrange (EL) approach (Zhou et al.,
2010; Tsuji et al., 2014; Lichtenegger and Pirker, 2018). The
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Euler-Lagrange coupling can either be resolved on unresolved. The
latter combines a discrete element method (DEM) for solids with a
continuum approach for the fluid phase where the Eulerian grid is
larger than the particle size. In these models, the averaged equa-
tion of motion is solved for the gas phase. When the flow past
the particles is not resolved, a term in the mean momentum con-
servation equation representing the average interphase momen-
tum transfer between the fluid phase and the solid particles is
required. This term is commonly referred to as the drag law, or
the drag correlation.

Different correlations for the drag laws where proposed from
theoretical, experimental and numerical investigations. Various
theoretical and experimental studies exist for Stokes flow through
porous media, packed bed of solids or ordered arrays of spheres
(Kozeny, 1927; Hasimoto, 1959; Sangani and Acrivos, 1982). As
theoretical methods are typically limited to low solid volume frac-
tions and low Reynolds number, experimentally based models
have a wide use when modeling the granular flow. Some of the
commonly employed empirical correlations based on experimental
pressure drop measurements are those by Ergun (1952) for dense
systems and Wen and Yu (1966) for dilute systems. Gidaspow
(1986) proposed an improved correlation combining these two
models, considering the particle bed porosity. In contrast to that,
Syamlal and O’Brien (1987) for instance derived their correlation
for a single particle and modified it with a relative velocity
correlation.

The study of the drag is more complicated for random arrays of
particles and a wider distribution of Re. With the increase of com-
putational power, DNS has become a powerful tool for directly
resolving the flow past solid particles which allows for more accu-
rate quantification of the gas-particle forces. Numerous studies
used the lattice Boltzmann method (LBM) to investigate the drag
forces and the pressure drop over a wide range of Re and particle
volume fractions / (Ladd, 1994; Hill et al., 2001b; Van der Hoef
et al., 2005; Bogner et al., 2015). The immersed boundary method
(IBM) was likewise applied for the case of fixed or moving arrays of
randomly arranged monodisperse spheres (Tenneti et al., 2011;
Tang et al., 2015). Tenneti et al. (2011) reported the dimensionless
average fluid-particle force for random assemblies of monodis-
perse spheres, extending the previous work of Hill et al. (2001b)
to a wider range of solid volume fractions / and Reynolds numbers
Re. Tang et al. (2016) analyzed the influence of particle mobility on
the gas-solid drag force and modified the existing drag correlation
they obtained from simulations of stationary particles. Kriebitzsch
et al. (2013) compared the finite-resolution fully resolved simula-
tion with the drag force values on a sphere in an ordered array (as
calculated by Hasimoto (1959)). They found a deviation between
the results even for low Re where it is possible to obtain the exact
solution.

The majority of DNS studies on drag forces deals with homoge-
neous systems of random spatially fixed particle arrangements,
where correlations are typically given as a function of Re and /.
Experimental and numerical studies of gas-particle systems such
as fluidized beds found the tendency to form channels for cohesive
(Baerns, 1996; Geldart, 1973; Pacek and Nienow, 1990; Raganati
et al., 2018) and non-spherical particles (Liu et al., 2008;
Vollmari et al., 2015; Mahajan et al., 2018) due to inter-particle
forces and interlocking, respectively. In this work, we introduce a
channel-like void region to the particle configuration. Channel
through a packed bed allows a by-passing of a considerable part
of the flow, leading to reduced forces on the particles. In larger sys-
tems, the formation of heterogeneous structures can occur on a
scale smaller than the grid resolution of a few particle diameters,
typically used in CFD-DEM simulations. Therefore, in an unre-
solved simulation, the entire here resolved domain might be repre-
sented by a single cell where only overall solid volume fraction of
the cell is known. Applying inadequate drag law would lead to a
vast drag overestimation for heterogeneous structures. Traditional
drag law closures might not be applicable to heterogeneous config-
urations without understanding the sub-grid heterogeneities. Con-
sequently, there is a clear need for a new correlation that accounts
for such heterogeneous particle arrangement.

Some of the approaches dealing with the influence of heteroge-
neous formations on the drag force are the energy minimization
method (EMMS) (Li and Kwauk, 1994; Liu et al., 2001; Wang and
Li, 2007) and coarse grid filtering of the fine grid simulations
(Yang et al., 2003; Igci et al., 2008; Parmentier et al., 2012;
Schneiderbauer et al., 2013; Schneiderbauer and Pirker, 2014).
Ma et al. (2009) performed simulations adopting Lagrangian-
Lagrangian schemes to observe and understand the mechanism
of particle clustering and its formation. Zhou et al. (2014) quanti-
fied the drag force dependence for heterogeneous flow past
spheres over distinct dilute-dense regions (stepwise heterogene-
ity). For this work, however, we examine higher solid volume
fractions.

In this paper, we perform LBM simulations to study the flow
past heterogeneous particle assemblies containing a channel-like
void region for various flow parameters (Re and /). Heterogeneity
is generated in form of a channel-like fracture dividing the particle
bulk into two parts which would not be captured in an unresolved
simulation where cells are larger than particles. Such structure
leads to higher fluid velocities in a channel-like region and lower
velocities in the surrounding dense particle phase, highly influenc-
ing the pressure drop and drag forces.

The paper is organized as follows. First, we introduce the
applied numerical method (LBM) for simulation of the flow (Sec-
tion 2). Then, we present several different simulation setups (Sec-
tion 3) and the results providing the values of the particle-fluid
forces (Section 4). With the numerical findings presented, we make
a semi-analytic approach combining the existing correlations for
pressure drop through particle bed and channels. (Section 5).
Finally, we state a conclusion and an outlook of future work and
improvements (Section 6).
2. Mathematical model

2.1. Lattice Boltzmann method

The lattice Boltzmann equation (LBE) originated from Ludwig
Boltzmann’s kinetic theory of gases (Guo et al., 2000; Bao and
Meskas, 2011). The LBM applies a mesoscopic simulation approach
where instead of directly solving the macroscopic fluid properties
(i.e. pressure and velocity), one models the evolution of discrete
particle distribution functions. The exchange of momentum is
achieved through particle collision and streaming and is modeled
by the Boltzmann transport equation:

@f
@t

þ u � rf ¼ X ð1Þ

where f ðx; tÞ is the particle distribution function, u is the particle
velocity and X is the collision operator.

The LBE can be viewed as a particular discrete form of the con-
tinuum Boltzmann equation (Eq. (1)). The domain is discretized in
uniform Cartesian cells that hold a fixed number of distribution
functions. For each particle on the lattice, such a discrete probabil-
ity distribution function describes the probability of streaming in
one particular direction (Succi, 2001; Iglberger et al., 2008; Bao
and Meskas, 2011).

In this paper, we simulate the flow using the single-relaxation-
time (SRT) D3Q19 model employing the Bhatnagar-Gross-Krook
(BGK) equation (Bhatnagar et al., 1954), broadly used due to its
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simplicity (Qian et al., 1992; Chen et al., 1992). This is a three-
dimensional model containing 19 velocities and particle distribu-
tion functions f a (Fig. 1). Based on the BGK model, update of the
distribution function is as:

f aðxi þ eadt; t þ dtÞ � f aðxi; tÞ ¼ �1
s
½f aðxi; tÞ � f ðeqÞa ðxi; tÞ� ð2Þ

Here, eadt is a vector pointing to neighboring lattice points, dt the
lattice time step, ea the discrete lattice velocity in direction aand
sthe dimensionless lattice relaxation time/parameter. The right side
of Eq. (1) here results in BGK collision operator:

Xaðf Þ ¼ 1
s
ðf a � f ðeqÞa Þ ð3Þ

The term f ðeqÞa is the equilibrium distribution function and is cal-
culated as:

f ðeqÞa ¼ xaq 1þ 3
c2

ea � uþ 9
2c4

ðea � uÞ2 � 3
2c2

u � u
� �

ð4Þ

where xa is the weighting factor related to the used LBM model, q
is the lattice fluid density, c ¼ 1=

ffiffiffi
3

p
is the lattice speed of sound, u

is the lattice fluid velocity. In the actual implementation of the
model the distribution function (Eq. (2)) is solved in two steps,
namely the collision step and the streaming step:

~f aðxi; t þ dtÞ ¼ f aðxi; tÞ � 1
s
½f aðxi; tÞ � f ðeqÞa ðxi; tÞ� ð5Þ

f aðxi þ eadt; t þ dtÞ ¼ ~f aðxi; t þ dtÞ ð6Þ
Eq. (5) represents the collision step that models interactions and
calculates the updated values of the distribution function. In the
streaming step (Eq. (6)), the distribution functions are streamed
to the neighboring lattice points.

2.2. Fluid-particle interaction

Bounce-back boundary conditions where a fluid particle scat-
ters back when reaching a boundary node are commonly used to
implement a no-slip condition. We use a linearly interpolated
bounce-back scheme for curved boundaries proposed by Bouzidi
et al. (2001) and extended by Lallemand and Luo (2003). With
the linear interpolation scheme for the no-slip boundary, the par-
allel code requires only one layer of ghost cells as opposed to
Fig. 1. D3Q19 lattice configuration.
two layers of a quadratic scheme, resulting in additional communi-
cation overhead. Given adequate resolution, the improvement in
solution accuracy with quadratic interpolation is negligible (Pan
et al., 2006; Kruggel-Emden et al., 2016). The particle surface can
cross the connection between two nodes at arbitrary distances.
This is termed as the fractional distance along the direction a
and is given by:

qa ¼ jrw � rij
jrb � rij ð7Þ

An example of a simple one-dimensional bounce-back bound-
ary scheme is shown in Fig. 2 with three possible situations, sum-
marized in two equations, depending on the value of qa:

f �aðxi; tÞ ¼ 2qaf aðxi þ eadt; tÞ þ ð1� 2qaÞf aðxi; tÞ; q < 0:5

f �aðxi; tÞ ¼ 1
2qa

f aðxi þ eadt; tÞ þ 2qa � 1
2qa

f �aðxi � eadt; tÞ; q P 0:5

ð8Þ

where f̂ a and f a are the distribution function before and after advec-
tion, and �a represents the direction opposite of a.
3. Numerical setup

Random sphere packages with an artificially arranged channel-
like void region are studied to examine the effects of such hetero-
geneities on the hydrodynamic drag and the pressure drop. The
simulations are set up within a framework of LB3D (Schmieschek
et al., 2017), a parallel-processing implementation of LBM
described in the former sections.

Prior to the LBM simulation, random configurations of spherical
particles need to be generated. Spherical particles are initially
placed in a face-centered-cubic (FCC) arrangement. In the FCC con-
figuration, for every sphere there is a gap enclosed by six other
spheres (octahedral) and two smaller gaps enclosed by four
spheres (tetrahedral) making for twelve neighbors (coordination
number 12, Fig. 3). The largest fraction of space occupied by solids
that can be reached with such packing is p=ð3

ffiffiffi
2

p
Þ ’ 0:74048. After

insertion, particles are randomly moved using a Monte-Carlo
Fig. 2. A simplified one-dimensional linearly interpolated bounce-back scheme.



Table 2
Example of simulation parameters defined as an input in lattice units resulting in
Re = 100. Here, the domain is discretized into 512 grid cells in each direction, ensuring
the flow is resolved in fine detail.

Parameter Value

Number of particles, np 384
Domain size in the x-direction, Lx 512

Fig. 3. Spheres are inserted in FCC arrangement (a) and randomly placed by Monte-Carlo method, /p ¼ / ¼ 0:55 (b). Local heterogeneity is created in the center of the
domain by moving the particles for the value of characteristic channel width Lc , so that /p ¼ 0:55; / ¼ 0:458 (c).
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numerical method. Here, we do not aim for maximum packing
density as the sphere radius must be reduced so there is enough
space to move the spheres and find the random positions. Addi-
tionally, the distance between the nearest neighbor spheres must
be at least one lattice space unit to resolve the flow around the
sphere. With those limitations, generating the densest random
packing requires a high domain resolution. To create a channel-
like heterogeneity, half of the particles are shifted in a positive
direction on the z-axis. In this way, we can control the heterogene-
ity magnitude of interest, i.e. the characteristic width of the chan-
nel in dependence of the particle diameter. Here, we separate two
quantities: solid volume fraction /p of the dense packed region and
overall solid volume fraction of the simulation domain / that takes
the void channel region into account (see Fig. 3).

Approximating a large system, the code is set to obey periodic
boundary conditions (PBC) in every Cartesian direction of the rect-
angular simulation domain. A fluid element transferred out of one
domain side enters the appropriate position on the opposite side.
For fluid-particle interactions, interpolated bounce-back is applied
to obtain high accuracy solution. The Reynolds number is based on
the magnitude of superficial fluid velocity us and the particle diam-
eter Dp, as Re ¼ usDp=m. The superficial velocity is a hypothetical
value calculated as if the fluid was the only phase and it is related
to the average fluid velocity u as us ¼ ð1� /Þu. The kinematic vis-
cosity of the fluid m is related to the relaxation time parameter s by
the expression m ¼ ðs� 0:5Þ=b0, where b0 ¼ 3 for the 19 velocity
vector model used here. The relaxation time needs to be within
the stability limits 1:9 > s > 0:5, effectively establishing limits on
the viscosity. The maximum lattice velocity is kept sufficiently
low to avoid compressibility effects. With these constraints we
limit the maximum solid volume fraction to / ¼ 0:55 and Reynolds
number to Re ¼ 300. Previous studies employing the LB3D code
investigated the simulation dependence on the grid resolution
and domain size (Sanjeevi and Padding, 2017; Sanjeevi et al.,
2018). The influence of grid resolution is stronger with increasing
Re, so here we keep high resolution throughout all instances
(360–576 grid cells in each direction with particle diameter
Dp = 63 grid cells, ensuring a precisely resolved flow).

We have investigated several combinations of Reynolds number
(30 6 Re 6 300Þ, solid volume fraction of the sphere bed region
(0:4 6 /p 6 0:55) and the overall solid volume fraction
(0:25 6 / 6 0:55), their ratio related to the channel width (Table 1).
Table 1
Range of varied dimensionless simulation parameters related to new drag correlation.

Property Value range

Solid volume fraction of entire domain, / 0.25–0.55
Solid volume fraction of dense packed region, /p 0.4, 0.5, 0.55
Reynolds number, Re 30, 100, 300
Depending on the number of particles and packing density, the
simulations are performed with different domain sizes. Through
all simulations, the dense region is maintained at least twice as
large as the channel in agreement with the assumption that
heterogeneities occur at relatively small scale compared to the par-
ticle bulk. We increase the size of the simulation box with increas-
ing channel width to prevent the periodic artifact from strongly
influencing the flow. However, completely removing any periodic-
ity effect would require a very large simulation box, so we
approach the issue with a balance between computational costs
and spatial resolution in mind (see Tables 2 and 3).

3.1. Drag force and pressure drop calculation

Fluid exerts two types of force on the particles: a force fd due to
the friction between the particles and the fluid at the particle sur-
face and a buoyancy force fb resulting from the average pressure
gradient in the fluid. Therefore, the total force experienced by the
particles is the sum of these forces fp�f ¼ fd þ fb. In the literature,
there is some ambiguity as to whether the contribution of the pres-
sure gradient should be included in the drag force definition (Hill
et al., 2001a; Van der Hoef et al., 2005; Tenneti et al., 2011; Tang
et al., 2015).

In this work, the total force acting on the particle array f f�p is
obtained from the simulations and the mean force per particle is
calculated as hf f�pi ¼ f f�p=np. There is no buoyancy force in our
direct numerical simulation setup, therefore fb ¼ 0. Hence, we pre-
sent the results for the dimensionless drag force normalized by
Stokes drag as FD ¼ hf f�pi=fStokes, where fStokes ¼ 3pqmDpjusjis the
drag acting on a single isolated sphere in a fluid moving at a rela-
tive velocity equal to the superficial velocity.

The total fluid-particle interaction force is related to the pres-
sure drop over the domain as:
Domain size in the y-direction, Ly 512
Domain size in the z-direction, Lz 512
Particle diameter, Dp 63.0
Fluid density, q 1
Solid volume fraction of particle bed region, /p 0.5
Solid volume fraction of the entire domain, / 0.429
Characteristic width of the channel, Lc 128
Superficial fluid velocity, us 0.0119
Relaxation time, s 0.575



Table 3
Average dimensionless drag force FD for different configurations (i.e. channel width), where np is the number of particles, Dp the particle diameter in lattice units (particle
resolution), Lz the size of computational domain in the z-direction in lattice units (domain resolution), Lc the characteristic width of the channel / overall solid volume fraction
over the entire domain and /p is the solid volume fraction inside the dense packed regions.

/p ¼ 0:4

np 125 125 125 180 180 180 244 244 244 319 319 319
Dp 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0
Lz 360 360 360 432 432 432 504 504 504 576 576 576
Lc 0 0 0 64 64 64 128 128 128 192 192 192
Re 30 100 300 30 100 300 30 100 300 30 100 300
/ 0.4 0.4 0.4 0.335 0.335 0.335 0.286 0.286 0.286 0.251 0.251 0.251

FD 18.3 28.5 50.6 5.91 11.0 23.5 1.38 3.23 9.01 0.57 1.32 4.55

/p ¼ 0:5

np 216 216 216 294 294 294 384 384 384 486 486 486
Dp 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0
Lz 384 384 384 448 448 448 512 512 512 576 576 576
Lc 0 0 0 72 72 72 144 144 144 216 216 216
Re 30 100 300 30 100 300 30 100 300 30 100 300
/ 0.5 0.5 0.5 0.429 0.429 0.429 0.375 0.375 0.375 0.333 0.333 0.333

FD 29.5 47.1 90.3 7.18 14.2 31.4 1.73 4.19 11.2 0.60 1.83 4.99

/p ¼ 0:55

np 216 216 216 294 294 294 384 384 384 486 486 486
Dp 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0
Lz 480 480 480 576 576 576 672 672 672 768 768 768
Lc 0 0 0 96 96 96 192 192 192 288 288 288
Re 30 100 300 30 100 300 30 100 300 30 100 300
/ 0.5 0.5 0.5 0.458 0.458 0.458 0.393 0.393 0.393 0.344 0.344 0.344

FD 36.9 54.2 93.2 4.42 10.3 23.0 0.72 2.09 5.02 0.25 0.52 2.44
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�rP ¼ np

V tot
hf f�pi ð9Þ

where V tot is the total volume of the system that contains np parti-
cles. It follows that the correlation between the thus calculated
dimensionless drag force FD and the overall pressure drop is:

�rP ¼ 18qm/us
FD

D2
p

ð10Þ
4. Results

For each time step, the solver outputs the values of x-, y- and z-
force and torque components on every solid particle (Schmieschek
et al., 2017). We display the dimensionless fluid velocity field con-
tours (u=us) obtained by resolving the flow around the spheres at
Fig. 4. zx-plane slices of the dimensionless x-velocity component contours for flow
three different packing densities (see Fig. 4). Velocity component
values in the x-direction u are normalized by a superficial velocity
us which is known beforehand and provided as an input constant
value (an example of input parameters shown in Table 2). Velocity
field contours for all 12 configurations with varying heterogeneity
magnitude are presented in Fig. 5 for a case of packing density
inside porous region of / ¼ 0:4.

Values of the dimensionless drag forces from various performed
simulations are presented in the Table 3. Simulations results are
obtained with the steady state reached, performing time averaging
when necessary. We plot the obtained values and compare the
simulation data with predictions obtained by applying established
correlation from the literature (Fig. 6, a similar approach for the
comparison was used by Tenneti et al. (2011) and Tang et al.
(2015)). The solid line with circles (�) represents our simulation
data, dashed lines (Hill et al., 2001b), dotted lines (Beetstra et al.,
around packed spheres / ¼ 0:4 (a), / ¼ 0:5 (b) and / ¼ 0:55 (c) at Re = 100.



Fig. 5. zx-plane plot slices of the normalized x-velocity component. Packing density inside the porous regions (disregarding imposed channel-like heterogeneity, as in a–c) is
/p ¼ 0:4. The fluid passes through the part with low flow resistance (channel) what results in significantly higher velocity relative to the one observed in dense parts. The
effect is especially prominent with low Re and high heterogeneity magnitude.
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Fig. 6. Dimensionless drag force dependency on the increase of Reynolds number at constant overall solid volume fractions /. Solid volume fraction inside the porous region
is given as /p (for /p = / heterogeneity not present, left column). The effect of channel-like heterogeneity is clearly demonstrated with an immense overestimation of the
dimensionless drag by homogeneous drag laws (right column). Note that the forces calculated by existing correlations are done using the value of overall solid volume
fraction /.

A. Vila et al. / Chemical Engineering Science: X 2 (2019) 100015 7
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2007), dash-dot lines (Tenneti et al., 2011) and dash-dot lines
marked with points (Tang et al., 2015) show values predicted by
the existing correlations.
5. Discussion

The calculated values of the drag force on the particles in a flow
over random sphere packings fall into an expected range between
other DNS-based drag predictions (Hill et al., 2001b; Tenneti et al.,
2011; Tang et al., 2015). However, even the data reported by the
existing literature is diverging; the results obtained by Tenneti
et al. (2011) and Beetstra et al. (2007) differ up to 30% at higher
Reynolds number. Tenneti et al. (2011) attribute the discrepancy
to the constant resolution used by Beetstra et al. (2007) for the
entire range of Re. However, Bogner et al. (2015) eliminated signif-
icant finite resolution effects and the results did not match pre-
cisely with the former studies. The results by Bogner et al. (2015)
are not shown in the Fig. 6 because their investigation is tied to
lower solid volume fractions (/ ¼ 0:1� 0:35). This shows the need
for further development of accurate simulation methods in the
future even for random homogeneous packings, especially in case
of high Re. We suspect a more accurate interpolation scheme is
Fig. 7. Dimensionless drag force dependence on the increase of Reynolds numbers for d
with a channel width increase.
needed to capture the effects of the thinner (momentum) bound-
ary layers.

In this work, we focus on the heterogeneous structures. The
inclusion of a channel-like heterogeneity to the configuration leads
to a significant drag reduction when compared to the flow over a
random sphere array with an equal porosity (Fig. 6, right). The
obtained forces are lower as we further increase the magnitude
of the heterogeneity (Fig. 7). Fluid flows through the channel
region with low flow resistance which results in significantly
higher velocities relative to those observed in dense regions. The
difference between dimensionless velocity through two regions
can be observed in Figs. 8 and 9. We observe the same behavior
for the entire investigated range of Reynolds numbers and porosity
but it is especially prominent for low Re and high heterogeneity
magnitude.

In a large-scale granular system, the channel formation can
develop on a scale smaller than the grid resolution of the unre-
solved simulations. Consequently, the channels might be over-
looked leading to the application of inadequate drag law, where
the particle distribution is assumed as being homogeneous. This
inevitably would result in an overestimation of the pressure drop.
Our proposed analytical description of overall fluid-solid momen-
tum exchange might open the path towards the development of
ifferent normalized channel widths Lc=Dp . Overall solid volume fraction / reduces



Fig. 8. Dimensionless averaged velocity profiles for several different configurations. Velocity values are normalized by the superficial velocity. Radial position (rz , center in the
middle of the domain) is normalized with the particle diameter. The imposed channel region is marked by red vertical lines and the position of maximum velocity by a
magenta vertical line. It should be noted that the velocity scales are different for different flow configurations.

Fig. 9. Averaged dimensionless radial velocity profiles for a particle bed region (left) and channel/crack region (right). For lower Re, the flow profile is close to parabolic with
the expected uavg ¼ 2=3 umax, where uavg is calculated with an average velocity in the dense part up deducted. With higher Re, one can observe more evenly distributed flow
through the channel width the average value higher than parabolic 2=3 umax, indicating transient flow regime where flow is not completely dominated by viscous effect. It
should be noted that the velocity scales are different for each profile plot.
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specific sub-grid models for unresolved CFD-DEM simulations (i.e.
for the application in dense flows of cohesive powders).

5.1. Overall pressure drop

For heterogeneous particle arrangements containing a channel-
like void region, the simulations show a significant decrease in
overall pressure drop. Considering the immense impact of the
channel, the heterogeneity intensity is examined comparing the
velocities across the domain. For the majority of simulated cases,
the velocities through dense particle areas are significantly lower
than the overall superficial velocity us. Furthermore, we aim to
accompany the numerical results with a semi-analytical approach,
looking into existing correlations for pressure drop in dense parti-
cle beds and in channels (laminar and turbulent).

In our analysis, we assume the flow is under significantly differ-
ent conditions and regimes through the respective dense and chan-
nel regions. One can observe that this assumption holds better for
configurations with a wider channel and lower Reynolds number
flows (Figs. 8 and 9). However, the central channel is very clear
in the average axial velocity profile for every simulated case. The
flow through particle bed is estimated as uniform with an average
superficial velocity up and the channel average velocity as uc. In
this manner, total flow flux through the domain is divided into
two parts as:

Sus ¼ Spup þ Scuc ð11Þ
where S is total cross-sectional surface while Sp and Sc are cross-
sectional surfaces for porous and channel regions respectively. In
our configuration, therefore:

LyLzus ¼ LyðLz � LcÞup þ LyLcuc ð12Þ
Fig. 10. Configuration heterogeneity index is given as a ratio of the channel velocity and
ratios obtained from resolved simulations (f) and those calculated from the pressure drop
drops through the channel and dense region do not stay equal; instead, the friction factor
a change in the velocity ratios.
where Ly and Lz are the domain sizes in appropriate directions
orthogonal to the flow and Lc is the characteristic width of the
channel.

Because the channel is parallel to the flow, the pressure drop
through the two distinct regions must be equal:

dp
dx

����
channel

¼ dp
dx

����
porous

ð13Þ

Together with Eq. (12), Eq. (13) creates the basis for a simple
calculation of a pressure drop through investigated configurations.
Note that in the presence of a channel, the flow velocities in the
dense packed regions tend to be low. Using well-known equations,
it is possible to estimate the pressure drop and fluid velocity for
low Reynolds number flow through dense bed of spheres where
the viscous forces of the fluid dominate. Various established works
on the fluid flow through packed beds of spheres exist in the liter-
ature (Carman, 1937; Ergun, 1952; Wen and Yu, 1966). Average
velocity in the dense region is extracted from the simulation data
and local particle Reynolds number Rep can be calculated for these
regions only. Initially, we estimate the pressure drop for the flow
through a packed bed of solids using the Kozeny-Carman equation.

DP
Lx porous;Kozeny

¼ 150
/2

ð1� /Þ3
qm
D2

p

up ð14Þ

Conversely, the flow in the channel part is considerably faster.
The empirical Darcy-Weisbach equation relates the pressure drop
due to friction along a given length of the channel to the average
velocity of the fluid flow. It is valid for fully developed, steady state
and incompressible flow.

DP
Lx channel;Darcy�Weisbach

¼ kf
q
2
u2
c

D
ð15Þ
the velocity inside the packed bed. The comparison is made between the velocity
correlations assuming laminar flow in the channel region (n), Eq. (19). The pressure
of the channel increases faster (as the flow approaches turbulent regime), leading to
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where D ¼ 2Lc is a hydraulic diameter and kf the dimensionless fric-
tion factor, which depends on the characteristics of the flow. In our
setup, the channel geometry is equivalent to a pair of rough infinite
(considering PBC) parallel plates. For laminar flow between two
smooth parallel plates the friction factor is inversely proportional
to the Reynolds number as kf ¼ 96=Re, matching the Hagen-
Poiseuille equation. Plane Poiseuille flow is a well-known theoreti-
cal case, which is analytically derived from the Navier-Stokes equa-
tion, that can serve as an initial point for the pressure drop
calculation through the channel region in the laminar regime.

DP
Lx channel;laminar

¼ 12qmuc

L2c
ð16Þ

The channel size can be written as a function of overall solid vol-
ume fraction and solid volume fraction of the dense packed region:

Lc ¼ Lzð1� /
/p

Þ ð17Þ

Herewe introduce the heterogeneity index f as the ratio between the
volume-averaged velocity through the channel uc and the
volume-averaged superficial velocity through the particle bed up,
Fig. 11. Left: Dimensionless pressure drop obtained from the simulations (LB3D) is com
considering only the fluid flow through the packed bed. Good agreement is achieved i
function of Re for different channel widths. The values are compared with laminar and tu
as it has a direct influence on the relative roughness. In the plot, the functions are color
representing an indicator of the heterogeneity influence on the flow
profile:

f ¼ uc

up
ð18Þ

Calculating the pressure drop for laminar flow through two dif-
ferent regions with Eq. (16) and (14), it is possible to calculate the
expected ratio of these distinct velocities:

n ¼ 12:5
/2

ð1� /Þ3
L2c
D2

p

ð19Þ

The velocity ratio calculated in this fashion (Eq. (19)) is inde-
pendent of Re. A comparison between the velocity ratios obtained
from resolved simulations and those calculated from the pressure
drop correlations for the laminar flow is shown in Fig. 10. There
is a good agreement between the approximation and numerical
results for Re ¼ 30. The channel influence is stronger for low Re
and larger channel size. This is expected because for higher Re
the channel flow is in a transitional regime, while the packed bed
flow remains laminar. The pressure drops in the channel and dense
region are expected to remain equal to each other; however, the
pared with the calculations performed using Tenneti et al. (2011) correlation (TSG),
n every instance. Right: Numerical values of the dimensionless friction factor as a
rbulent correlations from the literature. A function is plotted for each channel width
-coded with their corresponding numerical points.



Table 4
Comparison between the dimensionless pressure drop �rP�

LB3D obtained from the numerical simulation with the one calculated using Darcy-Weisbach equation �rP�
DW . The

friction factor is calculated combining the laminar (kf ¼ 96=Rec , for Re = 30) and Swamee-Jain (Eq. (20), for Re = 100, 300) expressions for the dimensionless friction factor.

/p ¼ 0:4

Dp 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0
Lz 432 432 432 504 504 504 576 576 576
Lc 72 72 72 144 144 144 216 216 216
Re 30 100 300 30 100 300 30 100 300
Rec 249 723 1860 421 1320 3600 511 1650 4580
/ 0.335 0.335 0.335 0.286 0.286 0.286 0.251 0.251 0.251

�rP�
LB3D 5.91 11.0 23.6 1.38 3.23 9.02 0.573 1.32 4.55

�rP�
DW 5.82 14.2 29.1 1.44 3.83 8.97 0.590 1.55 3.75

/p ¼ 0:5

Dp 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0
Lz 448 448 448 512 512 512 576 576 576
Lc 64 64 64 128 128 128 192 192 192
Re 30 100 300 30 100 300 30 100 300
Rec 307 874 2250 458 1430 3930 539 1750 4580
/ 0.429 0.429 0.429 0.375 0.375 0.375 0.333 0.333 0.333

�rP�
LB3D 7.18 14.2 31.4 1.73 4.19 11.2 0.596 1.83 4.99

�rP�
DW 7.28 21.1 43.1 1.62 4.44 10.7 0.609 1.69 3.67

/p ¼ 0:55

Dp 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0 66.0
Lz 576 576 576 672 672 672 768 768 768
Lc 96 96 96 192 192 192 288 288 288
Re 30 100 300 30 100 300 30 100 300
Rec 547 1350 3600 599 1890 5500 693 1860 6740
/ 0.458 0.458 0.458 0.393 0.393 0.393 0.344 0.344 0.344

�rP�
LB3D 4.42 10.03 23.0 0.718 2.09 5.06 0.246 0.519 2.44

�rP�
DW 4.30 11.3 25.8 0.687 1.96 5.26 0.269 0.513 2.09
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friction factor of the channel increases faster, and therefore the
equal pressure drop assumption leads to a change in the ratio of
channel velocity to packed bed velocity.

Consequently, it is necessary to adopt a different approach for
higher Re. Fully developed turbulent flow in a rough duct can be
defined by the Colebrook expression. However, due to the implicit
nature of this correlation, an alternative form was proposed by
Swamee and Jain (1976):

kf ¼ 1

4 log �=D
3:7 þ 5:74

Re9=10c

� �� �2 ð20Þ

where �=D is relative roughness and Reynolds number is calculated
for the channel based on the hydraulic diameter D ¼ 2Lc , i.e. as
Rec ¼ 2ucLc=m. We have estimated the relative roughness with aver-
age height of surface irregularities of one particle radius (� ¼ 0:5Dp).

The flow in our simulations is never fully turbulent but falls into
the transient flow regime. In general, the results in the transient
regime are harder to predict. Nevertheless for higher Re, the calcu-
lated channel pressure drop and the dimensionless friction factor
(with Eqs. (15) and (20), respectively) are closer to the numerical
results as the flow is closer to truly turbulent. As it was previously
indicated by the estimation of heterogeneity index, the laminar fric-
tion factor is matching the simulations for low Re (Fig. 11, right).

The pressure drop through the packed bed is easier to predict as
there we do not deal with the instabilities of the transient flow. The
appropriate literature correlation for the dimensionless drag force
chosen here is proposed by Tenneti et al. (2011) based on their DNS
results:

Fdð/;ReÞ ¼ Fdð0;ReÞ
ð1� /Þ2

þ 5:81/

ð1� /Þ2
þ 0:48

/1=3

ð1� /Þ3

þ ð1� /Þ/3Re 0:95þ 0:61/3

ð1� /Þ2
" #

ð21Þ
The single sphere drag correlation for Fdð0;ReÞ is used:

Fdð0;ReÞ ¼ 1þ 0:15Re0:687 Re < 1000
0:44Re=24 Re > 1000

(
ð22Þ

To avoid the heterogeneity influence, modified bed superficial
velocity u0

p is obtained from the numerical results taking into
account only dense regions sufficiently distant from the channel.
Therefore, the correlation (Eq. (21)) can be written as a function
of the bed solid volume fraction /p and particle Reynolds number,
calculated as Re0p ¼ u0

pDp=m, i.e. �rP ¼ f ðRe0p;/pÞ. The pressure drop
calculated in this manner predicts the numerical results very well
(Fig. 11, left). To observe the change in the pressure drop with Re
and channel width (Table 4), the obtained values are normalized
by the pressure drop calculated from the Eq. (9) with FD ¼ 1. For
the normalization, we take the overall solid volume fraction into
account, as if the particles are homogeneously distributed through
the simulation domain.

6. Conclusion and outlook

In this work, we studied fluid flow through static particle
arrangements by means of highly resolved lattice-Boltzmann sim-
ulations and evaluated fluid-solid momentum exchange and pres-
sure drop. In case of randomly arranged (i.e. homogeneously
distributed) spheres our numerical results agree very well with
previous studies (Hill et al., 2001b; Tenneti et al., 2011; Tang
et al., 2015).

In the case of heterogeneous particle arrangements comprising
a channel-like void region in between two dense bulk regions, our
simulations indicate a dramatic decrease in overall pressure drop
even for channel widths of only one particle diameter. We substan-
tiated this main finding by a series of numerical simulations vary-
ing superficial Reynolds number and the dense bulk volume
fraction.
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We further supplemented these purely numerical findings by a
combined analytical approach, by merging existing correlations for
pressure drop in homogeneous particle beds and in channels. Rel-
evant correlations were selected according to the superficial Rey-
nolds number, as the simulations range from laminar to
transitional flow. For laminar channel flow, our analytical predic-
tions are in good agreement with the numerical results. However,
friction and pressure drop in the transitional regime are character-
ized by instabilities and are difficult to predict. Nonetheless, as we
approach the turbulent flow the results are in closer agreement
with appropriate channel flow pressure correlations.

As the main message, this work underlines the significance of
channel/crack formation on fluid-solid momentum exchange and
overall pressure drop in dense particle arrangements. At the same
time, such sub-grid heterogeneities are commonly neglected in
unresolved CFD-DEM simulations of fluid flow through dense par-
ticle assemblies. In this regard, our proposed analytical description
of overall fluid-solid momentum exchange in particle arrange-
ments with channel-like heterogeneities might pave the way
towards the development of specific sub-grid drag models in unre-
solved CFD-DEM simulations of cohesive powders and interlocking
non-spherical particles.
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