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Abstract
This research paper focuses on the complex do-
main of alert-driven attack graphs. SAGE is a tool
which generates such attack graphs (AGs) by us-
ing a suffix-based probabilistic deterministic finite
automaton (S-PDFA). One of the substantial prop-
erties of this algorithm is to detect infrequent se-
vere alerts while maintaining the context of attacks
via the help of sink states and state IDs. This is
a modelling assumption that we validate by an-
swering the question driving this research: How
does allowing the sink states to merge with other
sink states affect the generated alert-driven attack
graphs? Our research used a transparent method-
ology to obtain size, complexity and completeness
statistics of the two algorithms. Afterwards, out-
standing values in size and complexity allow us to
filter insightful attack graphs, subject to head-to-
head comparisons concerning their interpretability.
We discovered that many remarkable changes hap-
pen in the outputted attack graphs, leading to an ev-
ident decrease in interpretability and increased loss
of context. Concurrently, we do not detect substan-
tial changes in size, complexity and completeness,
leading us to believe that it is possible to unlock
SAGE’s full potential by adding specific thresholds
for merging sink states. One proposed constraint is
allowing only the merges of sinks at equal distance
to the victim node. This alteration leads to simi-
lar results in all metrics, including interpretability,
where some AGs show improvements.
Index Terms: Alert-driven attack graphs, SAGE,
Sink states, S-PDFA, Context

1 Introduction
Working in a Security Operations Centre (SOC) is a highly
complex task for security analysts who manually scrutinise
numerous alerts to comprehend the tactics employed by at-
tackers [1]. The volume of alerts received daily is stagger-
ing and generated by an Intrusion Detection System (IDS),
which leads to an unproductive and stressful work environ-
ment associated with the development of the ’threat alert fa-
tigue’ phenomenon [2].

Using attack graphs (AGs) is a viable option to use these
alerts for visualising the strategies attackers use to infiltrate a
network. Nevertheless, creating such a hypothetical view of a
network requires a list of pre-existing vulnerabilities, network
topology, and expert knowledge [3]. Unfortunately, most of
those AGs present a substantial quantity of data and need to
be better optimised to provide fast and reliable intelligence to
security analysts.

On the other hand, Nadeem et al. worked on an AG gen-
erator SAGE, which uses a suffix-based probabilistic deter-
ministic finite automaton (S-PDFA) to learn directly from in-
trusion alerts without any expert knowledge of the network
topology [1]. SAGE manages to compress over a million in-
trusion alerts into less than 500 AGs, allowing forensic ana-

lysts to compare attack strategies generated through a suffix-
based model, which makes it possible to detect infrequent
severe alerts and models the semantics of alerts using inter-
pretable merging criteria [4], [5]. The sink state is a critical
fundamental concept that allows capturing such infrequent
alerts because those are not used whilst learning the S-PDFA
model. Since merging those could result in the algorithm in-
ferring incorrect conclusions, SAGE removes them, and the
states with medium or high severity are reintroduced in post-
processing to showcase the full context to the cybersecurity
analyst. The generated AGs aim to show what has happened
on the network regarding attack episodes by providing a vi-
sual overview of what an intrusion detection system observes
over time in a highly interpretable manner, allowing cyberse-
curity analysts to fix different security concerns.

This research area has a knowledge gap because of the need
for a validation process for an unsupervised model. There-
fore, this project will tackle this problem by learning a model
similar to the initial S-PDFA with a different modelling as-
sumption where the sinks can be merged with other sink
states. We chose this specific difference in modelling as-
sumptions because further investigating the role of sink states
in SAGE could reveal multiple insights into how they can be
used to increase the quality of AGs. The attack graphs gener-
ated by this slightly different model will be directly compared
with those generated by the initial implementation regarding
size, complexity, interpretability, and completeness.

To successfully evaluate SAGE’s quality, the aim will be to
answer the following research question: How does allowing
the sink states to merge with other sink states affect the gen-
erated alert-driven attack graphs? Successfully answering
this question helps validate the performance of SAGE. Also,
a slightly altered algorithm that uses the sink states differently
to improve the current implementation according to the above
mentioned metrics has been proposed.

Before conducting the experiments to try and answer this
question, multiple hypothesises have been proposed:

• All of the sink states will convert to normal states.

• The interpretability of the AGs will decrease.

• The completeness will not be affected.

• The merges between sinks will lead to a loss of context.

We assess if these hypotheses were correct by following a
strict methodology presenting multiple metrics for evaluation
regarding size, complexity, interpretability and completeness
and how these can be measured in alert-driven attack graphs.

The rest of the paper follows the subsequent structure. Sec-
tion 2 delves deeper into the existing literature about alert-
driven attack graphs and other related tools. Section 3 de-
scribes our comparison methodology, and we present the ex-
perimental setup in Section 4. Section 5 presents the results
obtained, their discussion and a proposed improved merging
criteria. The conclusions drawn from those are shared in Sec-
tion 6 alongside any future work remarks. Finally, Section 7
approaches the research’s reproducibility and integrity, whilst
Section 8 contains the acknowledgements.



2 Related work
Due to the progress made in cybersecurity research, countless
methods and models are now available for assessing computer
systems’ security, such as alert-driven attack graphs. This
paper focuses on validating and enhancing an existing tech-
nology, namely, SAGE, which is a tool that generates such
attack graphs (AGs) by using a suffix-based probabilistic de-
terministic finite automaton (S-PDFA) which is learnt with
the help of Flexfringe [1], [6]. This section aims to explore
attack graphs and the tools used to generate them in detail,
analysing their advantages and limitations.

2.1 Attack Graphs
In the field of network security and risk management, attack
graphs are a highly valuable tool. They depict multiple attack
paths, which are a series of ”atomic attacks”that an attacker
may use to obtain administrative access to a severe element
of the network [7].

Phillips and Swiler first proposed attack graphs in 1998 [8].
Since then, they have undergone substantial evolutions, with
various algorithms and methods developed to optimise their
creation and analysis, becoming a standard in the industry.
With this visualisation technique, cybersecurity analysts can
thoroughly understand the security vulnerabilities in their net-
work and how attackers could exploit them.

However, creating and interpreting attack graphs can be
complex because most AGs need to present a substantial
quantity of data in a readable format, which leads to the need
for optimisation in order to provide fast and reliable intelli-
gence to security analysts. Another challenge is the scale of
networks, such as the ones of enterprises, which can contain
thousands of hosts, requiring efficient and real-time methods
to generate valuable AGs [9].

There have been many proposed solutions to deal with
these problems. Some of these solutions, like SAGE, which
will be subsequently described, have shown potential in mak-
ing it easier to manage attack graphs and improving their use-
fulness in assessing risks.

2.2 SAGE
SAGE is a tool that has been developed by Nadeem et al., and
it introduces the concept of alert-driven attack graphs [1].
Generating AGs directly from intrusion alerts, SAGE is able
to detect infrequent severe alerts while maintaining the con-
text of attacks via the help of sink states, which are not elim-
inated or merged during the S-PDFA learning process [1].
By taking advantage of this property, the algorithm man-
ages to compress over 330k alerts into 93 different AGs,
each containing a victim, its attackers and all possible attack
paths [10]. An example of such an attack graph can be seen
in Figure 1 alongside its legend in Figure 2.

2.3 FlexFringe
FlexFringe is an open-source tool for inferring deterministic
finite automata (DFA) and has been used for the learning pro-
cess of the S-PDFA model with specific parametrisation [6].
This model was specifically tuned to accentuate infrequent
alerts and summarise attack paths leading to high severity
nodes [1].

Figure 1: AG on
victim-10.0.0.2-DATA

MANIPULATION.

Figure 2: Legend for edges
and nodes of an AG

generated by SAGE [4].

3 Methodology
This section proposes the rigorous methodology used in this
research. Subsection 3.1 presents the problem statement and
is followed by the hypotheses presentation in Subsection 3.2.
Afterwards, Subsection 3.3 presents the experimental work-
flow followed by the metrics defined in Subsection 3.4.

3.1 Problem Statement
A hard problem SAGE is currently facing is the side-effect
of including high-severity sinks in the state sequences, which
rarely leads to distinct objective types being displayed as sim-
ilar in the corresponding AG [1]. Alongside the fact that the
sink states are currently not used in the learning process, dif-
ferent modelling assumptions regarding their use should be
tested to validate SAGE’s performance and investigate possi-
ble improvements that mitigate such problems. The follow-
ing methodology has been specifically designed to evaluate
the current implementation of SAGE compared to a variation
allowing merges between sink states.

3.2 Hypotheses
By comparing the AGs on the overall sets and head-to-head
between individual matching attack graphs, we intend to eval-
uate the correctness of the following hypotheses based on the
metrics which will be subsequently presented:

• Allowing the sinks to merge will lead to the disappear-
ance of all sink nodes because they will either be merged
with similar nodes or transformed into normal nodes.

• Interpretability will decrease in the implementation
which allows the sink states to merge because the edge
count will remain relatively consistent. However, the
node count will decrease, leading to increased global
density and difficulty in correctly following a path.

• There will only be no logic changes between the two im-
plementations and, therefore, completeness. This is be-
cause the traces which generate the edges will not suffer
any changes by allowing the sinks to merge.

• Due to the merges between sink states, the context will
not be preserved because the cybersecurity analysts can
interpret the AGs differently than they are intended when
two states at different stages of the attack get merged.



3.3 Experimental Workflow
Firstly, the research was established by running SAGE with
the original parameters and the mergesinks parameter set to
one on CPTC 2017 and 2018 datasets [11]. Subsequently,
the data underwent analysis using various statistical methods
such as the percentage of attack graphs affected, average size
delta, average simplicity delta, evolution in the presence of
sinks, and the evolution in the number of objectives.

Following this, the insightful attack graphs were filtered
using different techniques to narrow the data, such as detect-
ing graphs transitioning from simple to complex or inverse.
This fact was individually assessed for all graphs using a lin-
ear regression model. Finally, apart from these graphs, those
showing the largest delta in size and complexity were selected
for further head-to-head analysis regarding interpretability.

3.4 Metrics Definition
Our evaluation metrics consist of size, complexity, inter-
pretability, and completeness, each playing a distinct role
in the overall assessment. Size allows us to understand
the breadth and depth of each graph, while complexity pro-
vides insight into the sophistication and intricacy of attack
paths. Interpretability estimates the ease of understanding the
graphs, a crucial aspect for cybersecurity analysts who must
make efficient and correct decisions based on these graphical
models. Finally, completeness ensures that all possible attack
scenarios are adequately represented in the respective graphs.

Size
Size is the first metric we implemented. It is represented by
the number of nodes an attack graph contains. We chose this
definition of size because the number of nodes is highly rep-
resentative of the size of an attack graph, unlike other val-
ues, such as the number of edges which can be much more
representative of other metrics, as will be highlighted in the
subsequent sections.

According to one of the hypotheses previously mentioned,
which states that sink states will disappear from the attack
graphs, we can expect great deltas in terms of size accord-
ing to the number of sink states an attack graph contained in
the baseline implementation output. Therefore, we chose this
metric to allow the possibility of filtering out multiple insight-
ful attack graphs and providing great general statistics in the
two sets of attack graphs, such as the overall development of
the average size.

Complexity
Complexity is a critical metric to consider in our comparison,
and the chosen implementation is the one referenced in the
paper describing the original implementation of SAGE, sim-
plicity [1], [12]. Simplicity can be used to great extents in the
context of graph representation and can be computed for each
attack graph as:

Simplicity =
Number of nodes
Number of edges

. (1)

This simplicity value can help filter out the insightful AGs
because a high difference is due to many merges happening
in the merge sinks implementation. Concurrently, this value

is not always representative since very large or small attack
graphs can be wrongly classified. Therefore, we have used
linear regression to classify whether an attack graph is simple
or complex [12].

Figure 3: Simplicity over
Size values plotted for

baseline (Blue) and merge
sinks (Orange)

implementations.

Figure 4: Communities
detected in the AG in

Figure 5 which are going to
be used to compute

modularity.

We constructed the linear regression model that can be seen
in Figure 3 upon the following expert assumption: an attack
graph containing less than 11 nodes can be automatically con-
sidered simple, whereas one containing at least 23 nodes can
be automatically considered complex. Those values represent
the 25th and 75th percentiles regarding size in the data, which
is why the AGs that fall under these two categories can be au-
tomatically categorized as simple or complex. This led to
the need to classify all the attack graphs with sizes between
11 and 23, and for this, a linear regression model was used
where the line generated represents the boundary between
simple and complex. Any attack graph which would reside
below the line is complex, whereas any attack graph above
the line is considered simple. This classification allowed us to
observe attack graphs which were simple in the baseline im-
plementation output but became complex after allowing the
sink states to merge and the opposite. Further investigating
into why this happened will lead to intriguing insights once
the head-to-head comparison is complete and patterns of be-
haviour can be detected.

Interpretability
Interpretability can be considered the most critical metric in
this comparison because a cybersecurity analyst using SAGE
needs to understand the attack graphs generated to make the
correct decisions. At the same time, interpretability is a con-
cept hard to quantify. In the context of the AGs generated
by SAGE, it is accomplished by comparing the two AGs re-
garding their readability and assessing whether there is any
relative loss of context. This metric will help prove the hy-
pothesis made regarding the fact that merging the sink states
will lead to an overall loss in interpretability.

Readability
Readability measurements have been chosen because it is a
very closely aligned field that is especially representative in
the context of cybersecurity analysts needing to be highly effi-
cient working with these attack graphs so that future breaches
can be avoided.

According to a paper published in the field of Neuroscience
on the topic of modular organization in the context of brain



networks, there exists a very well-known concept of always
desiring a network to have low global density but high local
density because of the benefits in robustness, readability and
many other essential attributes of graphs [13].

In order to compute the global density, the following for-
mula has been used, which was found in a paper which re-
gards general concepts of readability in the sphere of graphs,
and was afterwards adjusted to normalize the result with the
help of the maximum number of edges possible [14]:

GlobalDensity =

√
Number of edges

Number of nodes2
. (2)

We then computed the local density with the help of a
Greedy version of the Louvain Community Detection Algo-
rithm and obtained communities just like the one in Figure
4 [15]. After separating the attack graph in multiple commu-
nities, one can easily compute the modularity of those com-
munities and obtain the local density with the following for-
mula, which was first created by M. E. J. Newman and then
simplified by Clauset et al. [16], [17]:

LocalDensity =

n∑
c=1

[
Lc

m
− γ(

kc
2m

)2], (3)

where c represents a community, n the number of communi-
ties, m the edges, kc is the sum of degrees of the nodes, and
γ is the resolution parameter.

By computing these two measurements for each pair of in-
sightful graphs, we can asses if one proves to be more read-
able than another in a quantifiable manner, but these values
sometimes tend to be very close, and without any significance
analysis, those are not enough to draw such a complex con-
clusion. Therefore a Readability Protocol was created to be
used as another method to assert which attack graph is more
interpretable, but from a qualitative expert analysis point of
view. This protocol was created based on a similar proto-
col developed for general graphs and was adjusted to fit the
needs of a security analyst [14]. The protocol consists of the
following steps:

1. Estimate the number of nodes
2. Estimate the number of attack paths
3. Locate a node based on a given label
4. Locate all medium-severity states
5. Locate all high-severity states
6. Follow an attack path from a start state to the victim state
7. Detect the three most important nodes
After completing the protocol, the results are assessed, and

if all estimations and localizations are correct, it can safely be
concluded that the graph is highly interpretable. In order to
assess which is more interpretable, the time it took to com-
plete the tasks for each AG is considered.

For step 7 of the protocol, a further explanation must be
provided to assess if the responses are correct. We will com-
pare the nodes provided by the expert to those obtained using
the formula for degree centrality to fetch the three most im-
portant nodes [18]. We expect complete similarity between

the expert’s choice and the theoretical answer to consider the
response correct.

Context
The initial suffix tree used by SAGE showcases all the data as
it is but does not show any similarities between the elements
and is generally too large to interpret as a whole [1]. All
merges that happen afterwards cause a loss of context since
the context is denoted by the state identifiers in the original
SAGE paper [1]. This is why only probabilistically similar
states are merged to reduce the loss of context and have an
acceptable tradeoff between context and efficiency for the cy-
bersecurity analyst.

The two selected AGs can be compared based on whether
the one generated by allowing the merging of sinks makes
any extra merge that leads to a loss of context in any of the
following two manners:

1. The security analyst can correctly identify all paths in an
AG but might believe that they have similar behaviours
when that is not the case due to certain merges

2. The security analyst can incorrectly identify a wrong
path because of the multigraph nature of the AG, which
is highly accentuated by certain merges between sinks

Completeness
Completeness is represented based on the alert sequences be-
cause of the lack of a ground truth. The downside of us-
ing this approach is that systems like SAGE need to make
inevitable trade-offs between efficiency and correctness that
lead to the appearance of adverse effects such as false neg-
atives [19]. This notion should be dealt with in the data-
cleaning stage of any complete AG generator. However, the
upside is that our changes in the process of merging sinks af-
fect the results at a later stage, leading to the possibility of
considering the alert sequences as ground truth.

Now that a solution without ground truth has been defined,
we decided to apply the following two of completeness cur-
rently used in knowledge graphs to the AGs generated by
SAGE because of their adaptability.

Population Completeness
This first concept refers to how well the distribution of the
used data reflects reality. In the context of AGs, we made the
parallelization to how many high-severity alerts SAGE rep-
resents in the AGs over their totality. The adjusted formula
is:

PopulationComp =
No of unique objectives in AGs

No of unique objectives
. (4)

Schema Completeness
This definition refers to the levels of representability of a real
object’s properties in the data, missing definitive attributes
leading to a natural drop in completeness. In our case, not
representing all attack paths due to interpretability concerns
can lead to the loss of valuable information, and we chose to
represent this with the following formula:

SchemaComp =
No of paths present in AGs

No of total paths
. (5)



4 Experimental Setup
In order to set up this experiment, the first step was to ob-
tain used in the original SAGE paper, CPTC-2017 and CPTC-
2018 [1], [11]. Some highly important insights into the alerts
present in the two datasets can be seen in Table 1. The first
reason for this choice is to ensure that the obtained results are
easily linkable with the initial evaluation results. In contrast,
the second one relates to the possibility of encountering un-
expected phenomena due to the new data selected and not due
to SAGE’s algorithm.

CPTC-2017 CPTC-2018

Team Raw
alerts

Filtered
alerts Team Raw

alerts
Filtered
alerts

T2 2923 2904 T1 39710 26651
T3 3353 3293 T2 5012 4922
T4 7801 7232 T5 18447 11918
T5 1912 1890 T7 10001 8517
T6 8413 7485 T8 15560 9037
T7 4712 4220 T9 12841 10081
T8 7150 4944
T9 2233 2199
T10 5105 4949

Table 1: Insights into data - number of raw and filtered alerts for
each team contained by CPTC-2017 and CPTC-2018.

Afterwards, the SAGE tool has been run with the recom-
mended parameters alert-filtering-window = 1.0 and alert-
aggr-window = 150. Running the algorithm for the previ-
ously mentioned datasets fetched the baseline implementa-
tion’s AGs and the merge sinks implementation’s AGs after
changing the following parameter to the spdfaconfig.ini file:
mergesinks = 1. We then analysed the data with the help of
the stats analyzer.ipynb file that can be found on GitHub [20].
One of the main tools used in the analysis process was Net-
workx, which allowed the fast and reliable matching of .dot
files and their further processing for head-to-head compar-
isons, such as community modularity and global density.

Concurrently, the alert sequences needed for the complete-
ness analysis have been extracted and processed in the fol-
lowing manner:

1. For each attack path, the first edge has been mapped and
stored as [victim IP, end prev, mcat, protocol].

2. If the attack path was represented in any episode of any
sequence, it is filtered out.

3. The paths not ending in a high-severity node have been
filtered out since they are outside the scope of SAGE.

4. The remaining alerts have been manually analysed to de-
tect potential misses.

5 Results and Discussions
This section presents the results obtained during this research
and an in-depth discussion of the underlying reasons for ob-
taining them. First, some consequences are explained and are
followed by the comparison between AGs on the four met-
rics described in Subsection 3.4. Finally, a proposed merging
criterion is presented and evaluated.

5.1 Discovered Consequences
Some general consequences of allowing the sinks to merge,
which are not captured by the metrics, are given in Table 2.
In terms of AGs generated by the two implementations, there
are no differences regarding the total number, meaning that
the same number of victims have been represented. Upon
further investigation, the victims are the same, and all graphs
generated can be matched. Furthermore, the number of start-
ing states is the same (apart from a difference of 2 for the
CPTC-2018, which is due a correct merge between 3 iden-
tical sink start states) and those correspond to each other in
each pair of AGs paired. This leads to the critical observation
that all attack paths represented in the baseline implementa-
tion are still present after allowing the sinks to merge with
other sinks.

Concurrently, some objectives are missing after the new
merges. This is due to the existence of multiple similar such
states, which were also sinks and were therefore merged. All
logic elements were left intact through these merges. Lastly,
as hypothesised, all the sink states have disappeared, becom-
ing normal states. This took effect in all 91 AGs where sinks
were present, but, as another statistic highlights, only 41 AGs
suffered changes to their node count or edge count.

CPTC-2017 CPTC-2018
Base Sinks Base Sinks

AGs 108 108 75 75
AGs affected N/A 29 N/A 12

AGs with sinks 52 0 39 0
Sink States 135 0 130 0
Objectives 262 251 174 168
Start States 314 314 203 201

Table 2: Statistics on the AGs generated by the two implementa-
tions.

5.2 Size Analysis
Table 3 presents the overall amount of nodes slightly de-
creases for both datasets, but not in a substantial enough man-
ner to offer any advantages to either implementation. This
minimal loss is due to the extra merges between sinks, and
for the same reason, the AGs containing the most sinks are
losing the most states. After applying these many merges,
those AGs will be further investigated in Subsection 5.4 to
establish the effects on the AG’s interpretability.

CPTC-2017 CPTC-2018
Base Sinks Base Sinks

Max nr of nodes 48 44 34 30
Avg nr of nodes 17.7 17.0 11.9 11.6

Overall Loss N/A 4% N/A 2%
Biggest Increase N/A 0 N/A 0
Biggest Decrease N/A 10 N/A 5

Table 3: Comparison on the AGs generated by the two implementa-
tions based on size.



5.3 Complexity Analysis
Table 4 shows that the overall change in the average value for
simplicity for an AG is around 1%. This happens because of
the MultiGraph nature of the generated AGs, which allows
multiple edges between two nodes, leading to minimal differ-
ences in simplicity in most paired AGs.

Furthermore, there are multiple pairs of AGs which, ac-
cording to the linear regression model, transition from simple
to complex due to decreased nodes count and relatively con-
stant edges. On the other side, no pairs of AGs transition
from complex to simple. This is due AGs either maintaining
the same number of nodes or having it decreased, whereas
the edges are consistent since merging doesn’t affect the se-
quences of episodes from which those are generated. There-
fore, complexity-wise, the differences are not substantial on
the holistic level. Still, the base implementation performs at
least as well as the merge sinks in the generation of each AG.

CPTC-2017 CPTC-2018
Base Sinks Base Sinks

Complex 53 57 39 40
Simple 55 51 36 35

Simple->Complex N/A 4 N/A 1
Complex->Simple N/A 0 N/A 0

Overall Loss N/A 1% N/A 1%

Table 4: Complexity values for the two implementations.

5.4 Interpretability Analysis
Readability
The results for readability consist of the quantitative and qual-
itative head-to-head analysis completed over all the filtered
AGs. The results were consistent between all 25 pairs of AGs,
14 filtered from CPTC-2017 and 11 from CPTC-2018. The
pair of AGs for victim-10.0.0.72-DATAEXFILTRATIONsmtp
is especially representative of the findings of this investiga-
tion and will be presented in-depth.

The density comparison and protocol completion results
can be seen in Table 5. We can quickly notice that the global
density is lower for the baseline implementation AG, whereas
the local density is higher. According to the definition given
in Subsection 3.4, this observation can lead to the base imple-
mentation AG being considered more readable than the merge
sinks implementation. This can be further supported by the
result of the protocol, which was completed successfully for
both AGs, but with a substantial gap of 38 seconds in favour
of the baseline implementation.

Baseline MergeSinks
Global Density 0.05 0.1
Local Density 0.57 0.39

Protocol Complete Y Y
Protocol Time 85s 123 s

Table 5: Direct comparison between two matched AGs.

This head-to-head comparison between the AGs in Figure
5 and Figure 6 plainly presents why merging the sink states

with other sink states after the main merging process can be
a good idea if further parameterised. By following the attack
paths of the AG from the victim node, we can notice the first
merge between all three instances of ACCOUNT MANIPU-
LATION snmp. In this case, this merge undoubtedly leads to
a decrease in readability, but if it had only happened between
the respective sink states on the right side of the baseline AG,
the result would have been the opposite. The same argument
can be made for the following states: BRUTE FORCE CRE-
DENTIALS pop3 and REMOTE SERVICE EXPLOIT snmp.

Figure 5: Readability - AG generated by baseline implementation
for victim-10.0.0.72 DATA EXFILTRATION smtp where the 3 sets

of sinks discussed are highlighted before being merged.

Figure 6: Readability - AG generated by merge sinks
implementation for victim-10.0.0.72 DATA EXFILTRATION smtp
where the sinks were merged and their new position is highlighted.

Context
In regards to the loss of context, we can see that between the
AGs in Figure 7 and Figure 8, some of the context has been
lost in both meanings defined in Subsection 3.4:

1. The cybersecurity analyst can analyze the attack paths
and wrongly consider that an attack starting from DATA



DELIVERY unknown might lead to the objective in just
one step, which is different from the baseline implemen-
tation since it does not allow such an interpretation.

2. The cybersecurity analyst can still analyze all attack
paths correctly but might consider that two different at-
tacks made by Attacker: 10.0.254.31 which pass through
DATA DELIVERY unknown showcase the same attacker
behaviour, which due to the loss of ID happening in the
merge is no longer true.

Figure 7: Context - AG generated by baseline implementation for
victim-10.0.0.22-DATA EXFILTRATION unknown where the 3
sets of sinks to be merged are highlighted before being merged.

Figure 8: Context - AG generated by merge sinks implementation
for victim-10.0.0.22-DATA EXFILTRATION unknown where the 3

states representing the 3 states from Figure 7 are highlighted.

By allowing the merges between sink states, the two DATA
DELIVERY unknown states have been merged as showcased
in Figure 9. The states highlighted have the appearance count
set to two and four, making them highly infrequent states,
sinks. By allowing this merge, FlexFringe considered the
two states to be probabilistically similar, which, in this case,
couldn’t be further from the truth. This led to the loss of
context described above, and in order to avoid such merges,

some constraints need to be added. Subsection 5.6 presents a
possible solution which mitigates this issue.

Figure 9: FlexFringe representation of the AG before and after the
merge between two DATA DELIVERY unknown nodes, generated

with Jegor Zelenjak’s tool [21].

5.5 Completeness Analysis
As it was briefly presented in the complexity analysis, the
number of edges between the two versions of the SAGE im-
plementation does not change. We can translate this into the
fact that merging the sink states with other sink states doesn’t
lose any extra attack paths compared to the baseline imple-
mentation. Following the manual check on the episodes, we
can safely say that both implementations have the same level
of completeness, as seen in Table 6. These values showcase a
high number of false negatives, and the main reason for those
is the condition that SAGE implements regarding the discard-
ing of episodes with less than three alerts.

CPTC-2017 CPTC-2018
Population Comp 82.44% 76.53%

Schema Comp 87.33% 88.01%

Table 6: Completeness values for the 2 datasets.

5.6 Proposed Merging Criterion
During the data analysis of this research, we have experi-
mented with some modifications to the AGs’ dot files to try
and generate the ideal AG. During this process, we uncov-
ered the idea of only allowing sink states to merge in post-
processing if they are at an equal distance (number of nodes)
from the objective. By adding this constraint, we aim to mit-
igate the loss in context and decrease the loss in readability
whilst maintaining the same properties discovered from the
size, complexity and completeness analysis. The new AGs
have been generated by taking all the node and edge informa-
tion from the dot files generated by the baseline, merging all
the sink states which satisfy the earlier-mentioned constraint
and finally reconstructing the AG.

Applying the methodology described in Section 3 to com-
pare the new AGs with the original ones generated by the
baseline implementation, we obtained highly insightful re-
sults, which can be summarised as follows:

• Size: A negligibly smaller number of nodes and the
same number of edges. This is better than the merge
sinks implementation, which loses a small number of
edges due to merging sub-objectives, an undesired prop-
erty due to loss of attacker behaviour.



• Complexity: 28 AGs have suffered changes in both
datasets, which would affect this metric, and the values
obtained for those AGs are all very similar to the base-
line. Only 3 AGs converted from simple to complex in
comparison to 5 in the merge sinks implementation.

• Completeness: Completeness values are unchanged
since all edges from the baseline are drawn with this
proposed implementation, and those represent the same
attack episodes as the baseline.

• Interpretability: After manually analysing all 28 AGs
that presented merges, we have discovered that the val-
ues obtained for density and the protocol are better than
the previous merge sinks algorithm but still narrowly
worse overall than the baseline. Most importantly, no
loss of context has been detected since merges between
nodes showcasing different attacker behaviours were not
allowed because those happen at different levels.

One example where this algorithm creates an improved AG
in terms of interpretability is for Victim-10.0.0.22 DATA EX-
FILTRATION unknown and can be seen in Figure 10. The
global and local density values can be seen in Table 7 and
showcase a clear improvement over the merge sinks imple-
mentation. Compared to the baseline, the global density is
slightly higher due to the size reduction. Nonetheless, an es-
sential aspect is that the local density is higher than in the
baseline implementation, which is a highly desirable property
for any graph.

Figure 10: Generated AG for victim-10.0.0.22-DATA
EXFILTRATION unknown with the constraint of allowing the

merging of sinks only at equal distance from the victim node, the
same sets of sinks are highlighted as in Figure 7 and Figure 8.

Compared to the AG in Figure 7, it partially allowed the
merging of BRUTE FORCE CREDENTIALS unknown and
ACCOUNT MANIPULATION snmp in the top side of the
AG, without merging nodes such as BRUTE FORCE CRE-
DENTIALS unknown — ID 879, which is in the lower side

of the AG. Also, the DATA DELIVERY unknown nodes have
not been merged for the same reason. This leads to no loss
of context according to the definition in Subsection 3.4 and,
therefore, no loss in interpretability.

Baseline MergeSinks Proposed
Global Density 0.081 0.153 0.116
Local Density 0.494 0.421 0.505

Table 7: Local and Global Density for Victim 10.0.0.22 DATA EX-
FILTRATION unknown (CPTC-2017) for the baseline, merge sinks
and proposed implementations.

6 Conclusions and Future Work
In conclusion, this research showcases the effects of allowing
the sink states to merge with other sink states on individual
attack graphs and the overall generated suits. The key dis-
coveries were:

• All sink states transformed into normal states.
• A small overall deficit in the average size of attack

graphs has been observed.
• The baseline implementation was consistently less or

equally complex to the merge sinks implementation.
• Interpretability has decreased substantially in all AGs af-

fected by the change due to the loss of context, increased
global density, decreased local density and a negative
difference in the ability to follow paths correctly and
consistently.

• Completeness remained consistent at a level of approx-
imatively 80% because the extra merges happening are
not affecting the episodes processing, and the number of
edges remains consistent.

• The proposed merging criteria performs clearly better
according to the metrics than the merge sinks implemen-
tation.

• The proposed merging criteria performs at a similar
level to the baseline implementation, having very sim-
ilar AGs, which showcase no extra loss in context and
similar readability values.

These showcased effects help validate the current mod-
elling assumptions of SAGE since they prove that just allow-
ing the sink states to merge with other sink states will lead
to worse individual and holistic results for a security analyst.
We also noticed that merging only the sink states, which are
at an equal distance to the victim node, will lead to a simi-
lar performance to the current SAGE implementation and im-
proves the interpretability for certain AGs. Such ideas should
be considered in the future work of validating and improving
SAGE.

Lastly, the research successfully helped validate the current
implementation of SAGE and even proposed a merging crite-
rion which possibly improves the current implementation in
certain regards. Additionally, it helped in improving the cor-
rectness of the results generated by fixing five minor bugs,
which had multiple negative effects on the results.



7 Responsible Research
The results obtained in this research are entirely reproducible
by following the steps presented in section 4. By running
SAGE, one should obtain the same AGs regardless of the ma-
chine it runs the algorithm on due to its deterministic nature.
The only thing that needs to be kept in mind is that both SAGE
and FlexFringe need to be run on the latest versions available
in June 2023. Afterwards, the results mentioned in section
5 are obtained by doing the analysis described in section 3
with the help of multiple ipynb files, which can be found on
GitHub [20].

Additionally, regarding the ethics involved in this re-
search, we made decisions intending to uncover truths about
SAGE. Each evaluation was done critically and supported
with proper arguments. All results obtained were evaluated to
eliminate any bias that might have occurred. However, some
aspects of the qualitative analysis, such as the interpretability
results, are of such a nature that the cognitive bias could only
be limited [22].

Another element of ethics encountered was the discovery
and fixing of five bugs in SAGE, leading to incorrect results.
Such results can have severe consequences because security
analysts can interpret them wrongly and not fix major system
breaches. Such problems might still be present in SAGE, but
detecting and solving these correctness issues is outside the
scope of this research. For all problems of this nature that we
have seen throughout this research, we let the authors of the
code know of their existence and proposed fixes.
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