
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Approximated
Computing for Build
Jobs in Continuous
Integration
A Catchy Optional Subtitle
that Grabs the Attention

MSc Thesis
Natália Struharová

Approximated
Computing for Build
Jobs in Continuous

Integration
A Catchy Optional Subtitle
that Grabs the Attention

by

Natália Struharová

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday 23rd of May, 2024 at 9:30 AM.

Student number: 4935519

Project duration: September 15, 2023 – May 23, 2024

Thesis committee: Prof. dr. A. van Deursen, TU Delft

L. Miranda da Cruz TU Delft

June Sallou TU Delft

Jana Webber TU Delft

Supervision: Prof. dr. A. van Deursen, TU Delft

L. Miranda da Cruz TU Delft

June Sallou TU Delft

This thesis is confidential and cannot be made public until December 31, 2024.

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA

under CC BY-NC 2.0 (Modified)

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Continuous Integration (CI) has become a cornerstone of modern software development, gaining

widespread adoption due to its ability to facilitate frequent and dependable code integration. However,

its benefits are offset by high computational costs and energy consumption, particularly in the build

phase. With its growing popularity, it is crucial to reflect on the efficiency of the CI process. This

thesis proposes a novel framework to optimise energy consumption in the build jobs of CI pipelines,

with primary focus on minimising compilation workload. Leveraging static dependency analysis

and commit information, the framework introduces guided partial compilation, targeting only files

affected by changes. The results demonstrate its ability to maintain CI reliability while significantly

reducing energy consumption in real-world projects, with a 22% reduction of energy consumption in

compilation-only experiments, and up to 63% energy savings in experiments that extrapolate the effects

of partial compilation across the rest of the build job. The contributions in this research offer a stepping

stone toward the imperative establishment of sustainable standards within the CI practice.

keywords: Sustainable Continuous Integration (CI), Build Job, Guided Partial Compilation

i

Preface

I would like to start by expressing my gratitude to Dagmar and Vlado, my parents, who not only made it

possible for me to pursue higher education, but also gave me the space to explore new things and make

my own decisions along the way. It gave me a sense of empowerment that I hope to keep throughout

the next stages of my life, and for which I will be eternally grateful to both of you. I also want to thank

my sisters, Naďa, Saša and Hana, who have been my cheerleaders and emotional support ever since my

first years at TU Delft.

Next I want to thank my friends, Dan Andrescu, Ion Babalau, Orestis Kanaris, Marko Matušovič, Laura

Muntenaar, Dan Plamadau, Radu Rebeja, Mariana Samardzic, Ioana Savu and Tamara Trubačová. All

of you have made it easier for me to achieve this with your constant support, which I am immensely

grateful for, just as I am grateful to have you all in my life.

I would like to thank June Sallou for being an excellent supervisor to me. Besides being a great research

mentor, she taught me to be more confident in the decisions I make and have a healthier relationship

with the work I do. Both on a personal and a professional level, I am very grateful for being able to

work with her on this project. I would also like to thank Luís Cruz for introducing me to sustainable

software engineering through his great Master course, and for continually helping to shape this Master

thesis with his knowledge and insights. Finally, I would like to thank Arie van Deursen for advising on

this thesis and making the time to be a part of this process.

Natália Struharová
Delft, May 2024

ii

Contents

Abstract i

Preface ii

1 Introduction 1
1.1 Context . 1

1.2 Problem Statement . 2

1.3 Solution Proposal . 3

1.4 Research Questions . 4

1.5 Contributions . 4

1.5.1 Build-optimising Framework for CI . 4

1.5.2 Energy-measuring Tool for CI execution . 5

1.5.3 Enhancements to Energy-measuring Plugin . 5

1.6 Thesis Overview . 5

2 Background 7
2.1 Fundamental concepts . 7

2.1.1 Continuous Software Engineering . 7

2.1.2 Approximate Computing . 8

2.2 Static Dependency Analysis . 8

2.2.1 Call & Caller Graphs . 8

2.2.2 Inheritance . 9

2.3 Tools . 10

2.3.1 Maven . 10

2.3.2 GitHub & GitHub Actions . 13

2.3.3 Artifacts . 15

2.3.4 GitHub Actions API . 15

2.3.5 Git Hooks . 16

2.3.6 EcoCI . 16

3 Related Work 18
3.1 Build Optimisation . 18

3.1.1 Incremental Builds . 18

3.1.2 Caching . 19

3.2 Optimisations of Build Jobs in CI . 19

3.2.1 Test Selection in CI . 21

3.3 Measuring Energy Consumption . 21

4 Approach 22
4.1 Framework Overview . 22

4.1.1 Commit Analysis . 23

4.1.2 Dependency Analysis . 23

4.1.3 Partial Compilation Mechanism . 24

4.2 Git-related Use Cases . 25

4.3 Change-related Use Cases . 26

4.3.1 Classes . 26

4.3.2 Methods & Fields . 28

4.3.3 Combination of Changes . 29

4.3.4 Experimental Setup . 29

4.4 Sample Project for Evaluation . 31

iii

Contents iv

5 Implementation 34
5.1 Framework Implementation . 35

5.1.1 Inputs . 35

5.1.2 Finding Changes . 35

5.1.3 Parsing & Construction of Graphs . 36

5.1.4 Saving the State . 37

5.1.5 File Selection for Partial Compilation . 38

5.1.6 Editing the Configuration . 40

6 Experimentation 41
6.1 Experimental Pipeline . 41

6.1.1 Experiment Manager & Data Collector . 41

6.2 Experimental Set-up . 41

6.2.1 Hardware . 41

6.2.2 Energy Metrics . 42

7 Results 43
7.1 Validity in an In-Vitro Project . 43

7.1.1 Experimental Set-Up . 43

7.1.2 Validity Results . 43

7.2 Energy Consumption in Controlled Environment . 44

7.3 Energy Efficiency in Real Repositories . 44

7.3.1 Experimental Set-up . 44

7.3.2 Real-world Project . 44

7.3.3 Experimental Set-Up . 45

7.4 Energy Consumption in Practice . 46

8 Discussion 48
8.1 Validity & Energy Efficiency in Controlled Environment 48

8.1.1 Validity . 48

8.1.2 Energy Consumption in an In-Vitro Project . 48

8.2 Energy Consumption in a Real-World Project . 49

8.2.1 Energy Consumption in Compilation . 49

8.2.2 Energy Consumption in a Full Build Job . 50

8.2.3 General Conclusion on Energy Consumption . 50

8.3 Threats to Validity . 51

8.3.1 Internal Threats to Validity . 51

8.3.2 External Threats to Validity . 52

8.4 Limitations . 52

8.4.1 Static Dependency Analysis . 52

8.4.2 Solution Integration . 53

9 Conclusion & Future Work 54
9.1 Future work . 54

9.1.1 Immediate Future . 54

9.1.2 Further Future . 56

Bibliography 57

1
Introduction

This chapter lays the groundwork for the thesis, establishing the context by introducing the background of
continuous integration (CI) practices and the associated challenges. It then presents the problem statement,
articulates the research questions, outlines the methodology, and elucidates the contributions of the thesis. Finally,
the chapter concludes by providing an overview of the subsequent chapters, setting the stage for the exploration of
CI build job optimisation.

1.1. Context
Continuous integration (CI) is a modern software development practice that allows frequent yet reliable

code contributions to be merged into the code base. Through applying developer-defined checks to

new commits, CI ensures that a predetermined minimum quality standard is always maintained in

the latest version of application code. Techniques used in the practice of CI, such as self-testing and

general automation of builds have been shown to directly improve the overall level of software quality

[8]. One of the greatest additional benefits of CI to developers come from the efficiency it brings to

development by enabling teams to release twice as fast on average [16]. These features together with the

ability to automate these checks make CI an increasingly popular practice in the software development

community, proved by the wide-spread adoption of the practice by major tech companies such as Google

or Mozilla [20].

However, the benefits of CI are currently being counteracted by significant drawbacks. Particularly,

these drawbacks most often manifest as high cost of computational resources and long waiting time for

the CI pipeline feedback.

As the code base grows, so does the number of tasks in building and testing in CI pipelines, making the

execution more computationally expensive [8]. For example, Google’s TAP (Tools for Developers), which

is the CI system used by all Google sub-projects, costs millions of dollars for computation only, which

excludes the cost of developers who work on and maintain TAP [16]. Another commercial example is

Mozilla, which estimates the cost of CI to be greater than $200,000 per month [26].

From the practical standpoint, another major problem is the time-consuming nature of the CI pipeline.

An extensive study that reviewed over a one and a half million of builds has found that a build job can

take up to 83 minutes to run on a new commit [16]. Developers often have to wait for the result of the

CI pipeline executed on their new code contribution to be able to work with the most up-to-date code

version for their next task. In case the commit does not pass the CI pipeline, they must also introduce

new fixes and rerun the pipeline for the amended code. For many of them, the lengthy feedback loop

presents a substantial limitation for using CI in their everyday work [28].

Both of these drawbacks, the monetary costs and the long execution times, together called for ideas

on how to improve the efficiency of CI. In response to this demand, research has produced multiple

different strategies of minimising the workload that had to be executed in the pipeline. Some existing

research has focused on identifying the patterns of commits where developers manually skipped the

CI pipeline execution, and used them to create heuristics that determine commits for which the CI

1

1.2. Problem Statement 2

execution can be safely skipped [2][1]. Other research has been exploring the dependencies between

different tasks of the CI pipeline and introducing parallel computing to situations in which it can be

applied without losing the quality of the result [9]. The existing studies have addressed the costs and

the time-consuming nature of CI. However, the solutions also come with limitations. One of them is

the coarse granularity of operation, where the solutions either skip the CI execution or run it in its

entirety, without attempting workload reduction in each commit. Another one is that while the costs

and duration may be reduced by approaches such as parallelisation, such solutions do not target the

reduction of another strongly correlated aspect - the energy consumption.

While it is directly linked to high costs and slow feedback loops, there is little attention dedicated

to measuring the energy output of CI pipelines or efforts to investigate possible improvements in

energy-related terms. Besides the time- and cost-efficiency of CI, a major external motivation for

examining the energy consumption is the high and rapidly-growing demand for energy in data centres,

on which tech companies often delegate responsibilities such as running of their CI pipelines. Based on

the IEA report from 2023 on the worldwide energy consumption, the energy demand of data centres

and transmission networks accounted for up to 1.5% of the electricity used globally [17]. According to

the report, despite efficiency improvements in the recent years, the workloads handled by data centres

have been growing rapidly over the past years, ranging between 20% to 40% of growth annually. The

organisation itself has attributed most of this growth to tech companies, as it has recorded that the

combined energy demand of Amazon, Microsoft, Google and Meta has more than doubled between

2017 and 2021. In terms of the goals to get on track to establish net zero CO2 for the global energy sector

by 2050, the IEA itself marked the data centre sector as one that requires more efforts in improving its

energy efficiency, further highlighting the necessity of investigating the possible improvements in the

workload handled by these centres, such as CI.

One of the few works related to energy consumption in CI pipelines published by Limbrunner in 2023

provides a comprehensive analysis of usage of different types of jobs in the CI pipeline as well as their

respective energy consumption figures [22].

The study has found that out of all job categories, the build job, which is responsible for compiling and

subsequent construction of application code, consumes 37184 J (joules) per job on average. Out of all the

job categories included in this study, the build jobs consume the most energy during pipeline execution.

The individual steps of the build job, which are smaller units of workload the job is comprised of, were

observed to be the most energetically demanding out of all other steps. The energy required to execute

a step of a build job amounts to 3903.80 J on average. For perspective, this accounts for over 45% of

the energy consumption of all categories of steps, with the second highest step energy requirement,

that of the test job, being measured at a drastically lower average of 657.43 J. The findings are visually

represented in a bar chart shown in Figure 1.1, highlighting the substantially higher energy consumption

associated with build job steps compared to other job categories.

In a separate study, an analysis of repositories using TravisCI showed that build jobs are the second

most commonly used within their respective CI pipelines [7]. Given the widespread adoption of build

jobs in CI pipelines alongside their notable relative energy consumption, the category of build jobs

makes for a compelling field for research aimed at enhancing its efficiency. Targeting the build phase of

the pipeline for optimisations has the potential to bring significant reductions to the entire pipeline, all

the while forming the path to a more sustainable standard of CI.

1.2. Problem Statement
Given the current state of research and existing data on energy efficiency of CI pipelines, the underlying

problem can be extracted into a more concise formulation:

1. Popularity of CI utilisation is high and rising, however, it is a highly energetically demanding
process: CI is already a popular tool in development, and it is projected to be adopted even more

often in the future [16]. The rising trend of adoption further exacerbates the situation in terms of

energy consumption, as the current power demands of data centres are already problematically

high and therefore in an urgent need of efficiency improvements.

2. The CI optimisation research field is lacking in energy-focused improvements: While there are

some recent works that have focused on measuring the energy consumption of jobs and steps

1.3. Solution Proposal 3

Figure 1.1: The mean energy consumption for steps in each CI job category (based on Limbrunner’s research [22])

involved in CI, there is limited investigation into possible improvements of its energy efficiency.

One problem is that most existing research has focused on efficiency improvements, but rather

than investigating the energy-related optimisation, the work has focused on improving the speed

reducing the workload done in the pipeline. However, as has been proven by existing research,

the correlation between execution time is not directly correlated with energy consumption [3].

Therefore, to understand the energy output and efficiency of the CI pipeline, we must directly

measure how much energy does the process consume.

3. Most existing CI-optimising tools operate with coarse granularity: Research into optimisations

of CI has given rise to some tools that reduce the workload of CI pipelines, however, majority

of past solutions are built to it either skips the execution of the pipeline all-together or execute

it in its entirety depending on the nature of the associated commit. Considering that there

are ways to optimise jobs and steps of the pipeline, the solutions that run the whole pipeline

instead of skipping it may still be executing redundant workload. Therefore, we propose that the

opportunities of optimising different jobs of the pipeline are explored, such that every CI pipeline

is executed with higher efficiency.

4. One of the most substantial contributors of energy consumption within the CI pipeline is the
build job category: The existing literature shows that the build jobs are a significant contributor

to the overall energy requirements of the CI process overall. A highly energy-demanding yet

commonly used category of jobs such as the build category presents a problem which must be

addressed in order to bring efficiency improvements into the CI process. Given that it is one of

the most energy-consuming jobs, optimising builds is likely to show greater improvements in the

overall energy consumption compared to other jobs in the pipeline.

1.3. Solution Proposal
To fill the existing gaps, it is crucial to seek ways of keeping the benefits of CI while reducing its energy

consumption, and in doing so, reducing its impact on the environment. To address the urgent problems

presented above, this thesis proposes a solution in form of a framework that optimises the energy

consumption of the build phase of CI pipelines, particularly the compilation. The central idea of the

solution is applying approximate computing in the form of partial compilation. Partial compilation

refers to the act of compiling a subset of the entire set of source files in the project. As a result, when

applied in the pipeline, the compilation of some files is skipped, and thus the workload done is reduced,

1.4. Research Questions 4

leading to potential energy efficiency improvements. Every individual commit is a candidate for partial

compilation. Therefore, the approach can potentially bringing improvement in energy efficiency in

every individual CI pipeline run, increasing the granularity in workload selection compared to existing

solutions. Finally, the framework focuses on reduction of workload in the build phase by employing

partial compilation in the compiling stage. By targeting one of the primary contributors to overall CI

energy consumption, it paves the way for substantial energy savings. Through this approach, we aim

not only to enhance the efficiency of CI processes but also to contribute towards a more sustainable and

environmentally conscious software development paradigm.

With the aim of maintaining reliability of the pipeline’s results, the solution employs two main sources

information to construct the partial compilation sequence. Inspired by an existing, proven solution on

test selection in CI pipelines, it uses statically-extracted dependency relations between different parts of

the code base together with the information on changes made within the related commit. Having shown

effectiveness in test selection in choosing a relevant subset of tests to be executed, this thesis adopts the

underlying mechanism to guide the partial compilation by selecting relevant files in a similar manner.

1.4. Research Questions
In formal terms, the core focus of this thesis is summarised in the following research question and its

sub-questions:

1. Can static dependency analysis and commit information be leveraged to produce guided partial

compilation in a CI pipeline build job in order to improve its energy efficiency?

a) Does the produced partial compilation sequence catch the breaks in the code as reliably as

the full compilation sequence?

b) To what extent can the guided partial compilation improve the energy efficiency of the CI

pipeline in real-world projects?

The main objective of the research is to study the partial compilation guided by commit changes and

static dependency analysis, specifically applied in the context of build jobs in CI. There are two attributes

that this thesis explores in detail, targeted by the two sub-questions.

The first sub-question investigates the ability of this approach in maintaining reliability of the CI results.

For developers to be able to eventually use this approach in practice, it is important to know if the

validity of CI checks can be maintained despite conducting only the partial compilation guided by

dependencies and changes.

The second sub-question explores the capacity of the approach to bring tangible improvements in the

energy efficiency of build jobs. By studying the effects this approach has on reducing the energetic

impact of the pipelines utilised in real-world projects, we illuminate the potential power of this partial

compilation approach in improving the general sustainability of the CI process.

1.5. Contributions
This thesis report encapsulates the exploratory study of CI build job optimisations using guided partial

compilation. With that, during this study, several contributions have been produced. We use this section

to briefly explain each major contribution.

1.5.1. Build-optimising Framework for CI
The main contribution of this thesis is the CI build-optimising framework that aims to improve the

energy efficiency of the build job in the pipeline. The framework uses the commit information and

dependency analysis to produce a partial compilation sequence, targeting only the files that could have

been affected by the changes made in the commit. The framework is a proof of concept for this specific

approach rather than being a guaranteed optimal solution. With our experiments, we show that the

technique used by the framework captures the build breaks in all use cases in the defined scope. The

framework has been also been shown to successfully reduce the total energy consumption of the build

job, proving that the approach has the potential to increase the energy efficiency of its execution.

As has been mentioned earlier in the introduction, existing solutions aim to optimise the CI pipeline

1.6. Thesis Overview 5

execution in different manners. The framework, which is our proposed solution that addresses the same

problems, features its own approach, different in several ways. One of the significant contributions is

its fine granularity in operation - by targeting the build job within each CI pipeline, the framework

can potentially bring an energy efficiency improvement to each CI run. Another distinct feature of the

framework is its focus on the nature of changes made within a commit. The framework is sensitive to

the changes made in the code, basing its partial compilation decisions on the type and location of the

change made. Different code changes can cause different effects, therefore understanding the changes

made in context of the code structure helps the framework identify the relevant files that could be

potentially affected by a given change. Finally, the framework is aware of dependencies on a method-

and field-level, such that if a method is changed, only the files dependent on that particular method

will be marked for compilation rather than all files that are dependent on the changed file. The high
specificity of dependencies helps narrow down the extent of the changes made in the commit compared

to a coarser granularity which may cause unnecessary compilation files that are loosely related, but

could not have been affected by the change.

The framework is written in Python, and has been made open-source such that it can be used, tested and

enhanced further by the online software developer community. The future vision for the framework is

that the proof of concept will be further studied and developed such that it can be used in practice by

developers in their projects’ respective CI to improve its energy efficiency.

1.5.2. Energy-measuring Tool for CI execution
Another contribution of this thesis is the tool we created to conduct experiments in which we measure

the energy consumption and efficiency of the CI pipeline execution. While the tool has been developed

primarily for experimentation, it can be used in practice by developers to gain insights into the energy

efficiency of CI used in their own projects. Given the commit unique IDs (SHA), the framework

automatically identifies the commits in the chosen repository and runs the CI pipeline for all the

commits. The tool can be configured to conduct a custom number of reruns of the pipelines in a

pseudo-random order. After each pipeline run, the build- and energy-related data. These results can

then be reviewed by developers for better insights on the energy efficiency of their custom CI pipelines.

Similarly to the build-optimising framework, this tool is written in Python and is an open-source project

as well, accessible to the public for utilisation and enhancement.

1.5.3. Enhancements to Energy-measuring Plugin
During our experiments, we used an open-source energy-estimating tool called EcoCI [15]. However, to

ensure that the tool fulfils the needs of our study to the greatest extent possible, we made the following

amendments to the EcoCI code base.

• Adding a new CPU model: The central processing unit is a major determinant of the estimation.

To ensure that we get the most accurate estimation of energy consumption, we extended the list of

supported CPU models added the CPU model of the hardware used to run the experiments in

this study. Particularly, we added support for AMD Ryzen 9 7900X.

• Adding duration into reporting: The EcoCI estimation tool also measures the duration of the

measured job or step execution in the CI pipeline. However, during preliminary research, we have

noticed that the duration is not included in the JSON report on energy-related metrics. To ensure

we could also collect the time data, we included the duration in seconds to be extracted and stored

in the file with the other metrics.

1.6. Thesis Overview
The remainder of this thesis work is structured in the following way: Chapter 2 explains the fundamental

concepts that the proposed solution relies on. Chapter 3 follows with an in-depth analysis of the related

work in terms of existing efforts in optimising CI. The subsequent Chapter 4 explains the approach which

this thesis employs in order to address the identified challenges and answer the research questions.

Chapter 5 follows the methodology by explaining the solution from a technical standpoint. In Chapter

6, the results of experiments that validate the proposed solution are presented and analysed. Chapter 7

discusses the findings and their implications. Finally, Chapter 8 raises ideas for future refinement work

1.6. Thesis Overview 6

and concludes the research covered by this thesis.

2
Background

This chapter explains the concepts essential to understand the remainder of this thesis. All concepts and tools are
presented in detail to help the reader understand the design of the solution.

2.1. Fundamental concepts
To enable to readers to better comprehend the ideas behind the solution proposed by this thesis, we

use this section to elaborate on the conceptual ideas related the the context of the problem and the

construction of the solution.

2.1.1. Continuous Software Engineering
Continuous software engineering is the practice which organisations employ to rapidly develop and

deploy new versions of software applications. While it is a wide field subsuming several different

processes and operations, the technical part of continuous software engineering revolves around three

concepts: continuous integration (CI), continuous delivery (CDE) and continuous deployment (CD). CI

is an often automated process which merges code contributions from multiple developers, often several

times a day. In this process, it is ensured that the incoming changes undergo a code quality change

consisting of building and subsequently testing the application in its current state. CDE is employed to

ensure that the latest application version is always in a production-ready state ready to be deployed,

given that all builds and tests are successful. CD is an extension of CDE, in which, provided that the

building and testing phases pass, the new version of the application is deployed automatically. With

that, CD is meant to be a fully automated process of delivering up-to-date applications directly to its

users. In practice, developers assemble pipelines in which the primary step is the CI. While this step can

also be used on its own, it is commonly followed by the secondary step of either CDE or CD. Whether an

organisation employs CDE or CD, conducting code quality checks on the most recent software version

within the CI process is essential in advancing to the next step of the continuous development pipeline.

This pipeline is often referred to as the CI/CD pipeline. A scheme of such pipeline is illustrated in

Figure 2.1 [27].

As can be seen in Figure 2.1, the CI/CD pipeline starts with the CI as the first phase. This initial step, and

with it the pipeline, is triggered when a developer commits code changes to the source repository which

stores the application’s code base. As most organisations use version or source control for development,

such pipeline is usually integrated within source control tools, such as Git [REF to git]. As the pipeline

is triggered, a feedback loop is created in which developers receive a passing or failing result from the

different steps in the pipeline. If they receive a passing result from the last step, the CDE or the CD, the

commit changes are merged, and the updated application is marked as production-ready or deployed

respectively. In this case, the feedback loop is closed. However, if they receive a failing result from

either CI or CDE/CD, they must locate the source of the problem and update their changes to fix the

break [27]. When they upload these changes, developers again wait for the results of the pipeline. This

feedback loop continues until the pipeline eventually passes and the code changes are accepted and

merged into the application’s code base.

7

2.2. Static Dependency Analysis 8

Figure 2.1: The relations between continuous integration, delivery and deployment [27]

Continuous Integration
Continuous integration (CI) is an automated pipeline which first builds the code, and often follows this

step by testing it to ensure a certain code quality standard. As can be seen in Figure 2.1, CI pipeline

starts when a developer commits a code change to the source repository. To verify these changes, the

pipeline takes as input the updated application, created by applying these changes to the code base

stored in the repository. This updated version then undergoes the first phase of the pipeline: the build

phase. In this phase, the necessary dependencies are downloaded and installed, after which the code

is compiled [16]. While this phase also serves as a validity check, it also ensures that the code can be

executed. This is the essential reason for taking precedence in order before the test phase, in which the

code is run against a series of tests. For both the build and the test phase, the specific steps and tests to

be run are predefined by the CI operator who assembles the pipeline.

2.1.2. Approximate Computing
Approximate computing (AC) is a computational paradigm rooted in the recognition that exact

computation or unwavering adherence to peak-level service demands typically entail significant

resource consumption. Instead, AC allows for selective approximation or occasional deviation from

specifications, aiming to achieve efficiency gains disproportionate to the resources expended. Its strategy

lies in balancing trade-off between accuracy and resource efficiency, enabling significant energy savings

[24].

Partial compilation is a technique that falls under the approximate computing category. In particular, it

is the decision to compile only a subset of a given set of files rather than the whole set. With regards

to continuous integration, specifically the build jobs in which the source code files are compiled, this

thesis employs partial compilation to reduce the number of files that are compiled, and through this,

reduce the energetic output of the build jobs.

2.2. Static Dependency Analysis
Static dependency analysis examines the relations between different parts of the code base without

compiling or running the code. Dynamic analysis, in which the code is compiled and run, is not

always a viable option. For example testing, which is a practice of dynamic analysis, can become very

time-consuming and energetically expensive to conduct for larger code bases or extensive test suites. In

case of non-deterministic behaviour in concurrent systems, collecting dependencies dynamically may not

cover all program traces. Given the limited application opportunities and the possibly time-consuming

nature of dynamically obtaining dependencies, static analysis is a cheaper and more versatile way of

finding dependencies [21].

After the code is parsed and processed statically, different types of dependencies can be extracted. For

this thesis, it is important to understand two different types of dependencies.

2.2.1. Call & Caller Graphs
A commonly used static dependency analysis technique used directly on methods of classes is a call

graph. A call graph for a given method A is a directed graph in which the set of nodes represent all

methods of the program, including method A. If method A calls any other method B, this relation

2.2. Static Dependency Analysis 9

is represented by an edge directed from the node of method A to the node of method B. The set of

equations 2.1 formally defines a call graph for method 𝐴 represented by node 𝐴.

𝑁 = {𝐴, 𝐵1 , 𝐵2 , . . . , 𝐵𝑛},
𝐸 = {(𝐴, 𝐵𝑖)|𝐴 calls method 𝐵𝑖}.

(2.1)

Call graph must be distinguished from a caller graph, which is also a directed graph that explains

the relations between the program’s methods However, while the node set is identical to the one in

a call graph, the edges in a caller graph carry a different significance. In a caller graph for method

A, there exists an edge from any method B that invokes method A. Figure 2.2 shows an example of a

caller graph analysis. In the UML graph shown Figure 2.2a, it can be observed that the application has

two classes, the Owner and the Dog class, each defining one public instance method. The connection

between these two methods is depicted in Figure 2.2b, where a part of the 𝑂𝑤𝑛𝑒𝑟.𝑟𝑒𝑤𝑎𝑟𝑑𝐷𝑜𝑔 method’s

implementation is shown. On line 4, the Dog object, passed as a parameter to this function, invokes

the method 𝑒𝑎𝑡𝑇𝑟𝑒𝑎𝑡 defined in class Dog. The respective caller graph for function 𝐷𝑜𝑔.𝑒𝑎𝑡𝑇𝑟𝑒𝑎𝑡 is

shown in Figure 2.2c. Since the method 𝐷𝑜𝑔.𝑒𝑎𝑡𝑇𝑟𝑒𝑎𝑡 is invoked by the method 𝑂𝑤𝑛𝑒𝑟.𝑟𝑒𝑤𝑎𝑟𝑑𝐷𝑜𝑔,

the 𝑂𝑤𝑛𝑒𝑟.𝑟𝑒𝑤𝑎𝑟𝑑𝐷𝑜𝑔 becomes the caller of 𝐷𝑜𝑔.𝑒𝑎𝑡𝑇𝑟𝑒𝑎𝑡, the caller graph, in this minimal example,

consists of the caller and the called method nodes and an arrow pointing from the caller to the called

method.

(a) The UML diagram for classes Owner and Dog

1 class Owner {
2 public void rewardDog(Dog dog) {
3 ... // Code local to Owner.rewardDog
4 dog.eatTreat()
5 ... // Code local to Owner.rewardDog
6 }
7 }

(b) The definition of the 𝑟𝑒𝑤𝑎𝑟𝑑𝐷𝑜𝑔(𝐷𝑜𝑔)method defined on class Owner

(c) The caller graph for the method 𝐷𝑜𝑔.𝑒𝑎𝑡𝑇𝑟𝑒𝑎𝑡

Figure 2.2: An example of a caller graph based on the method dependencies

2.2.2. Inheritance
Inheritance is a concept native to object oriented programming, which allows a class to inherit properties

and methods from a different class. When class 𝐷𝑜𝑔 inherits from class 𝐴𝑛𝑖𝑚𝑎𝑙, the 𝐷𝑜𝑔 class can also

be referred to as a subclass of class Animal. In the same scenario, class 𝐴𝑛𝑖𝑚𝑎𝑙 is the super-class of class

𝐷𝑜𝑔. The purpose of applying inheritance in object oriented programming is to create a hierarchical

system for the classes, in which the sub-classes can reuse the behaviour defined in their respective

super-class.

In Figure 2.3, such situation is depicted. The UML representation of the inheritance relationship

mentioned above can be seen in Figure 2.3a, in which the relation of class 𝐷𝑜𝑔 inheriting from class

Animal is represented by a solid line pointing from the subclass to the super-class. As a result, Figure 2.3a

2.3. Tools 10

shows a valid example of a method declared in class 𝐷𝑜𝑔, which reuses a method defined on class

Animal using the keyword 𝑠𝑢𝑝𝑒𝑟.

(a) A sample UML diagram displaying class 𝐷𝑜𝑔 that inherits from class

𝐴𝑛𝑖𝑚𝑎𝑙

1 public void bark() {
2 super.makeSound() // Calls the implementation of Animal.makeSound
3 System.out.println("Woof!")
4 }

(b) A code snippet of class 𝐷𝑜𝑔 defining its local method using a method of super-class Animal

Figure 2.3: A sample UML diagram and the associated code snippet

To construct the partial compilation sequence, the calls made by a subclass to a super-class through the

use of the 𝑠𝑢𝑝𝑒𝑟 keyword must also be detected, as they present a method-level dependency of the

same significance as any dependency captured by a caller graph. However, since caller graphs do not

always capture these dependencies, the proposed solution includes detection of inheritance and calls

involving the 𝑠𝑢𝑝𝑒𝑟 keyword to capture these dependencies as well Figure 2.3.

Both inheritance detection and caller graph construction are static analyses technique that capture

connections between different parts of the code which hint at their possible interactions during runtime.

This feature makes them an important concept for this thesis, as these two techniques are used to detect

these interactions, which in turn guide the partial compilation used in the proposed solution.

2.3. Tools
Following the conceptual explanations for better understanding, this section lists the tools used in the

rest of this study. By using the term .

2.3.1. Maven
Maven is a software project management tool, often also referred to as a package manager, made to

build and manage Java-based projects. The main functions of Maven and other package managers for

Java, such as Gradle, is to allow the developer to easily comprehend the state of development of a given

application, as well as manage and configure it. Maven is based around a concept referred to as the

build life cycles, which define the sequence of steps involved in building and distributing a particular

project. Maven builds the Java by using the Project Object Model, or POM, which is an XML file written

with a Maven-specific syntax to define the configuration of the project. The file, named within the

project as pom.xml, encapsulates all project-related information, offering a comprehensive overview

of the project to the developer, as well as the ability to quickly add dependencies, plugins, and other

attributes to the project’s configuration.

The Build Life Cycle
There are three built-in build life cycles defined in Maven: default, clean and site. The default life cycle

executed the steps necessary to deploy the project, while clean and site handle cleaning the project and

2.3. Tools 11

deploying the project’s website respectively. Each life cycle consists of an ordered sequence of phases,

where each phase refers to a particular process. In this thesis, clean and site life cycles are not used,

therefore, only the default life cycle will be explained in detail.

The default life cycle, which handles project deployment, comprises of several phases:

1. validate: checks that the project is correct and all necessary information is available

2. compile: compiles the source files in the project

3. test: runs the unit tests defined in the test suite of the project using the compiled sources

4. package: packages the compiled code in its respective distributable format, such as JAR

5. verify: runs integration tests against the existing code

6. install: install the packaged version of the project for other projects to use it as a dependency

7. deploy: copies the packaged version of the project to a remote repository to share it with other

developers and projects

These phases are executed sequentially, as every phase in the life cycle depends on the phases executed

before. For example, the package phase depends on the validate phase, which ensures the code is

correct, then the compile phase, where the source code files are compiled, and finally the test phase,

which runs the unit tests defined for the code. Only when all these phases are sequentially executed

and successful, Maven can execute the package phase, which handles the packaging of the checked,

compiled and tested code into JAR files.

Instead of running the default life cycle in its entirety, developers also have the option to calling only

a specific phase of the life cycle. For example, if the developer only needs to see if the project’s unit

tests run without failure, the developer can call 𝑚𝑣𝑛𝑡𝑒𝑠𝑡 command, which summons Maven to execute

the phases from the default life cycle sequence up to the 𝑡𝑒𝑠𝑡 phase. That is, the 𝑚𝑣𝑛𝑡𝑒𝑠𝑡 command

would run the ‘validate‘ and ‘compile‘ phase before running the ‘test‘ phase and output the results.

For the purposes of these thesis and understanding the proposed solution, understanding the function

and process of 𝑚𝑣𝑛 < 𝑝ℎ𝑎𝑠𝑒 > command is important. For Java-based projects that use Maven as its

package manager, these commands are often part of the CI pipeline, especially for building and testing

the project. As the solution targets the compilation process executed upon the source code files, this

thesis will use and evaluate the proposed solution using the commands that run phases from the default

cycle that include the ‘compile‘ phase.

POM Structure & Syntax
As was mentioned before, POM file centralises project-related configuration in one place. As projects

grow, however, several POM files may be necessary to define. Often, real-world projects are composed

of several modules, or packages, which could be considered as sub-projects of the main project. They

are often used to separate a sizeable code base into a sum of smaller structures, where each structure is

a logical grouping of class files. When a project contains multiple modules, several POM files must be

defined. Particularly, if there is N modules, the project normally contains 𝑁 + 1 POM files. One POM is

the project POM, also called the parent POM, and the rest are the child POM files. The parent POM

resides at the root of the project and holds the common, global configuration which is automatically

which the child POM files can read, given that they reference the parent POM. Each of the N modules

contains exactly one child POM, and this child POM defines the configuration for the module it resides

in. Usually, this POM either contains configuration that is not global, but only local to the related

module, or alternatively, it can override the global configuration in the parent POM to fit the custom

needs for that particular module. In this thesis, the configuration relevant to the solution will be applied

globally, and therefore, it is only concerned with defining the configuration of the parent POM.

To explain the relevant XML tags in the POM syntax, it is best to put them in context. To illustrate this, a

minimal POM sample file is shown in Figure 2.4.

2.3. Tools 12

1 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema -instance"

2 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0␣https://maven.apache.org/
xsd/maven -4.0.0.xsd">

3 <modelVersion>4.0.0</modelVersion>
4

5 <!-- The Basics -->
6 <groupId>org.samples</groupId>
7 <artifactId>sample-project -1</artifactId>
8 <version>1.0</version>
9 <properties>

10 <maven.compiler.source>1.7</maven.compiler.source>
11 <maven.compiler.target>1.7</maven.compiler.target>
12 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
13 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
14 </properties>
15

16 <!-- Build Settings -->
17 <build>
18 <pluginManagement>
19 <plugins>
20 <plugin>
21 <groupId>org.apache.maven.plugins</groupId>
22 <artifactId>maven-compiler -plugin</artifactId>
23 <version>3.12.1</version>
24 <configuration>
25 <source>17</source>
26 <target>17</target>
27 <useIncrementalCompilation>false</useIncrementalCompilation>
28 <includes>
29 <include>core/Dog.java</include>
30 </includes>
31 </configuration>
32 </plugin>
33 </plugins>
34 </pluginManagement>
35 </build>
36 </project>

Figure 2.4: A sample pom.xml file containing the parent POM configuration

Starting at the beginning of the parent POM file, line 1 defines the < 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 > element, inside of which

the rest of the POM configuration lies. The configuration of the < 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 > from line 1 through line

2 can be considered boiler-plate code necessary to define for the POM to be recognised by Maven.

Similarly, the < 𝑚𝑜𝑑𝑒𝑙𝑉𝑒𝑟𝑠𝑖𝑜𝑛 > element on line 3, which defines the version for POM to be 4.0.0, is a

necessary part of the global configuration. The customisation of the global configuration starts with

the basic information defined between lines 6 and 8. The 𝑔𝑟𝑜𝑢𝑝𝐼𝑑 defines the name for the group of

projects the current project belongs to, and the 𝑎𝑟𝑡𝑖 𝑓 𝑎𝑐𝑡𝐼𝑑 defines the name for the current project, as

well as the respective POM. The 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 element defines the version of the project. These three elements

must be defined in the parent POM, as this information is then used by child POM files to reference

the parent. The next important category of configurable elements is the build settings category. The

< 𝑏𝑢𝑖𝑙𝑑 > element generally handles the declaration of the project’s directory structure as well as the

management of plugins. In this case, the the directory structure is not explicitly defined, and therefore

the default settings are used. The part important to understand the workings of the proposed solution is

the < 𝑝𝑙𝑢𝑔𝑖𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 > element. This element is only meant to be defined in the parent POM, as

the < 𝑝𝑙𝑢𝑔𝑖𝑛𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 > ensures that the plugins defined within its structure are inherited by the

child POM files referencing this parent POM. Inside the element, < 𝑝𝑙𝑢𝑔𝑖𝑛𝑠 > element is defined, in

which each plugin has its own individual definition and configuration within its respective < 𝑝𝑙𝑢𝑔𝑖𝑛 >
element. While there are many plugins a developer could make use of in the build stage, there is one

particular plugin, the Maven Compiler Plugin, which is a vital part of the proposed solution.

2.3. Tools 13

Maven Compiler Plugin
As the name suggests, the Maven Compiler Plugin is used to compile the sources of the project. It is

implicitly included in the project with its default configuration, however, as for other plugins, these

settings can be overridden by adding and configuring the plugin as it is shown in Figure 2.4 between

lines 20 and 29. This configuration is the base for the one used in the proposed solution. In the

configuration, the non-optional < 𝑔𝑟𝑜𝑢𝑝𝐼𝑑 >, < 𝑎𝑟𝑡𝑖 𝑓 𝑐𝑡𝐼𝑑 > and < 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 > elements are defined to

reference the compiler project and its specific version. The remainder of the plugin definition consists of

an optional < 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > element [29].

This plugin is directly responsible for executing the partial compilation of source files, which can be

defined within the < 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > element. First, the < 𝑠𝑜𝑢𝑟𝑐𝑒 > and < 𝑡𝑎𝑟𝑔𝑒𝑡 > elements are

defined, where the former refers to the Java version of the source code and the latter defines the target

compiled byte code version. The < 𝑢𝑠𝑒𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙𝐶𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛 > element is an important part of

this configuration. In this base configuration, its value is set to false, because it is not desirable for the

incremental compilation mechanism to interfere with the workings of the proposed solution. By default,

however, incremental compilation is enabled, and will serve as the baseline that the proposed solution is

compared. Incremental compilation can be considered an alternative solution to the proposed solution,

and will be further elaborated on in 3. To inform the plugin that some files will be compiled and some

will not, the < 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 > element is created. Within this element, an < 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 > element can be

added. This element then holds each file name, or alternatively, a regex pattern to define a set of files

included in the compilation. An example of this configuration which defines a partial compilation

sequence can be seen between lines 28 and 30. Particularly, line 29 defines the inclusion of file 𝐷𝑜𝑔.𝑗𝑎𝑣𝑎
from the 𝑐𝑜𝑟𝑒 package to be compiled. The use of the < 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 > element automatically configures

the plugin to exclude all files that are not defined in this element.

Lastly, it is important to note that to use the configuration for the Maven Plugin Compiler, the Maven

command must explicitly declare this to avoid falling back to the default setting. To do this, particularly

for running the compile phase, we use the 𝑚𝑣𝑛𝑐𝑜𝑚𝑝𝑖𝑙𝑒 : 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟 − 𝑓 𝑝𝑜𝑚.𝑥𝑚𝑙 instead of a simple

𝑚𝑣𝑛𝑐𝑜𝑚𝑝𝑖𝑙𝑒 command. Using this command, Maven will be instructed to use the compiler configuration

from the 𝑝𝑜𝑚.𝑥𝑚𝑙 file.

2.3.2. GitHub & GitHub Actions
To implement the CI pipeline within a version control system as explained previously, this thesis makes

use of Git as the version control system. In particular, GitHub is used as the platform where the

repository is stored and operated upon [13]. GitHub also provides an integrated service called GitHub

Actions that enables developers to define and run CI/CD pipelines. These pipelines are defined in files

that are referred to as workflows. To execute a given workflow, GitHub Actions uses servers referred to as

runners [14].

Workflows & Runners
To define the specific steps of the CI pipeline, developers must write the configuration and the sequence

of steps into a YAML file, which is referred to as the workflow. To allow a workflow file to be used, it

must be added to the ".GitHub/workflows" directory of a given repository.

2.3. Tools 14

1 name: npm-example
2

3 on: [push]
4

5 jobs:
6 check-bats-version:
7 runs-on: ubuntu-latest
8

9 steps:
10 - uses: actions/checkout@v4
11

12 - uses: actions/setup-node@v4
13 with:
14 node-version: ’20’
15

16 - run: npm install -g bats
17

18 - run: bats -v

(a) A code snippet of class Dog defining its local method using a method of super-class Animal

(b) GitHub Actions visualisation of 𝑛𝑝𝑚 − 𝑒𝑥𝑎𝑚𝑝𝑙𝑒

Figure 2.5: A sample GitHub Actions workflow and its respective visualise execution sequence

An example of such workflow together with its visualisation in GitHub Actions can be seen in Figure 2.5.

Before breaking down the workflow file in Figure 2.5a, it is important to understand the fundamental

terminology used in GitHub Actions and its implementation of the CI pipeline:

• Workflow is an implementation of the CI pipeline process, which is composed of one or multiple

jobs (for example, the build job, or the build and the test jobs). The workflow is implemented via a

YAML file, in which the metadata of the workflow resides, as well as the jobs of the CI pipeline.

• Job is a sub-process of the CI pipeline process, such as the build job, which is composed of

smaller sub-processes, or steps. Jobs represent the stages of the CI pipeline. When the workflow is

executed, the result of each job is reported.

• Step is an individual task that can be defined within a job that exists in a workflow. It is the

smallest building block of the CI pipeline process. It is responsible for running specific commands

on the commit, such as the 𝑚𝑣𝑛𝑐𝑙𝑒𝑎𝑛𝑐𝑜𝑚𝑝𝑖𝑙𝑒 command.

2.3. Tools 15

In short, a workflow defines the CI pipeline, where different stages of the CI pipeline map to jobs. These

jobs then contain specific, actionable steps that execute commands on the code. With that, we come

back to the sample workflow in Figure 2.5a. Line 1 defines the name of the workflow, in this case,

𝑛𝑝𝑚 − 𝑒𝑥𝑎𝑚𝑝𝑙𝑒. In line 3, the configuration defines the set of events that trigger the execution of this

workflow. In this case, the workflow would be triggered at every instance of a developer pushing their

commits to the repository. Between lines 5 and 17, the list of jobs for the 𝑛𝑝𝑚 − 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 is defined.

Notice that this workflow only defines one job, the 𝑐ℎ𝑒𝑐𝑘 − 𝑏𝑎𝑡𝑠 − 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 job. It is mandatory for the

developer to first define the runner on which a particular job is executed. Note that jobs can be executed

on different runners, however, all steps within a job have to be executed on the job-assigned runner. In

this case, the 𝑐ℎ𝑒𝑐𝑘− 𝑏𝑎𝑡𝑠 − 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 job is set up to run on a GitHub-hosted runner which uses the latest

version of the Linux Ubuntu operating system. GitHub Actions also offers different operating systems

for the developers to run their workflow jobs on. Alternatively, developers can also use their own servers

to run the CI pipeline. In this case, the configuration would be 𝑟𝑢𝑛𝑠 − 𝑜𝑛 : 𝑠𝑒𝑙 𝑓 − ℎ𝑜𝑠𝑡𝑒𝑑, possibly with

more optional parameters in case the developers have more self-hosted runners available. When the

runner environment is defined, steps can be defined for the particular job. The 𝑐ℎ𝑒𝑐𝑘 − 𝑏𝑎𝑡𝑠 − 𝑣𝑒𝑟𝑠𝑖𝑜𝑛
job involves four distinct steps. Jobs always execute the steps sequentially, in the order they are defined

in. The first step configured on line 10 is defined with the 𝑢𝑠𝑒𝑠 keyword that runs 𝑣4 version of

the 𝑎𝑐𝑡𝑖𝑜𝑛𝑠/𝑐ℎ𝑒𝑐𝑘𝑜𝑢𝑡 action. This step checks out the repository code such that the remainder of

the steps can be run against the code. The second step defined on line 13 uses the 𝑣4 version of the

𝑎𝑐𝑡𝑖𝑜𝑛𝑠/𝑠𝑒𝑡𝑢𝑝 − 𝑛𝑜𝑑𝑒 action which installs the version of node specified in line 14. These preparation

steps are then followed by two steps defined with the 𝑟𝑢𝑛 keyword, which tells the job to execute a

specific command on the runner. In this case, the step defined on line 16 runs the command that installs

the 𝑏𝑎𝑡𝑠 package using 𝑛𝑝𝑚. The final step of the job, defined on line 18, runs the 𝑏𝑎𝑡𝑠 command which

outputs the version of the package.

The workflow workflow and its execution in GitHub Actions is visualised in Figure 2.5b. When the

𝐸𝑣𝑒𝑛𝑡 happens, in this case, when code is pushed, GitHub Actions starts and attaches a new process

which runs the workflow, and thus executed the CI pipeline. This can be seen on the right side of the

visualisation. The workflow is attached to a runner of type 𝑢𝑏𝑢𝑛𝑡𝑢 − 𝑙𝑎𝑡𝑒𝑠𝑡, and the process defines

the job to be run together with the associated steps. While the workflow is being executed, the runner

outputs the logs generated by running the jobs and uploads them to the GitHub Actions process,

together with the results for each job. The GitHub Actions platform provides these logs and results to

the developer. In case of failure, the developers can find exactly the step of the job that has caused it to

fail, enabling them to rapidly identify where the detected problem has occurred.

GitHub Actions offers developers the option of using a GitHub-hosted runner to complete the workflow

tasks, and also provides the option to the developers to use their own servers as runners. This can

be enabled by setting the value of 𝑟𝑢𝑛𝑠 − 𝑜𝑛 for a given job to 𝑠𝑒𝑙 𝑓 − ℎ𝑜𝑠𝑡𝑒𝑑 instead of defining the

operating system of a GitHub-hosted runner. In this case, the runner can be configured to simulate

the environment necessary to run the workflow steps on a particular code repository, for example, the

necessary JDK can be installed in the environment prior to running the workflow jobs [14].

2.3.3. Artifacts
In some cases, developers want to make use of the data generated while the workflow has been run. To

provide such option, GitHub Actions allow the creation of storage of artifacts, which persist defined

data after a job is completed. Artifact uploading has to be set up in the workflow file as a particular step

within the target job. While artifacts can be uploaded in order to be used by subsequent jobs, they are

often also uploaded for the developers to analyse when the workflow is executed. This often applies to

artifact types such as log files or test results.

In case of the proposed solution, artifacts are used to retain the build metadata and energy consumption

data, which are a crucial element in its validation and evaluation.

2.3.4. GitHub Actions API
To interact with the GitHub Actions tool, GitHub provides an API for developers to operate upon

GitHub Actions set up from outside the platform. While there are many different API points and

associated functions, for the purposes of this thesis, there are three functions necessary to know in order

2.3. Tools 16

to understand the evaluation process of the proposed solution:

1. Collecting workflow runs: Given the unique workflow ID, the collection of runs can be fetched

by the API.

2. Rerunning a given run: Given the unique ID of a workflow run, the API can be used to trigger a

rerun.

3. Downloading artifacts of a run: Given the unique ID of a workflow run, the API can download

the associated artifacts of the run.

This set of functions of the GitHub Actions API is used to automate the validation and evaluation

process of the proposed solution [12].

2.3.5. Git Hooks
Given an existing git repository, Git Hooks provide a mechanism for the developer to define specific

behaviour which is meant to happen at different events related the usage of git. Such hook is essentially a

script that the git system triggers when a specific event happens. Every git repository provides template

files for hooks contained in .𝑔𝑖𝑡/ℎ𝑜𝑜𝑘𝑠 folder, where each template file is named based on the event

that triggers the script contained inside the file. For example, developers can edit the 𝑝𝑟𝑒 − 𝑐𝑜𝑚𝑚𝑖𝑡
template file and add a script to it which they want to be executed every time before a commit happens.

The pre-commit hook is especially important for the technical part of the proposed solution, as it is

used to automatically apply the script that manages the construction of the guided partial compilation

sequence.

2.3.6. EcoCI
EcoCI is a tool that aims to make CI pipelines more transparent in terms of their energy consumption.

Using the information available on the hardware on which the CI pipeline is executed on, EcoCI

estimates the energy consumption of the pipeline, or a specific part of the pipeline, and delivers the

estimates to the developer. To give a well-rounded perspective on the energy consumption, it estimates

four different values: the total energy output in joules, the average CPU utilisation in percentages, the

average power output in watts, and the duration measured in seconds.

To allow for simple integration of EcoCI, it has been made available as a GitHub Actions plugin. This

enables developers to make use of the tool by simply adding the EcoCI tool in their workflow file. A

sample of such use is shown in the Figure 2.6, which is a workflow file derived from Figure 2.5a after

integrating EcoCI in the pipeline.

To allow for simple integration of EcoCI, it has been made available as a GitHub Actions plugin. This

enables developers to make use of the tool by simply adding the EcoCI tool in their workflow file. A

sample of such use is shown in the Figure 2.6, which is a workflow file derived from Figure 2.5a after

integrating EcoCI in the pipeline.

In this case, the EcoCI is integrated with the goal of measuring the energy consumption of a step in

the job instead of the entire workflow job. Particularly, it estimates the energy consumption repository

checkout step of the 𝑐ℎ𝑒𝑐𝑘 − 𝑏𝑎𝑡𝑠 − 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 job. In total, three steps that operate EcoCI have been added

to the workflow: the EcoCI initialisation, the energy measurement execution, and the retrieval of the

energy consumption data. The first step in the updated workflow is now the 𝑠𝑡𝑎𝑟𝑡 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
task, which sets up the EcoCI and starts the energy consumption estimation before the repository

checkout step is executed. The repository check out step is then followed by the 𝑔𝑒𝑡 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
task of EcoCI, which logs the energy consumption estimation up until this point, with the starting point

being the EcoCI initialisation. This measurement period is also referred to as a lap. The rest of the

steps in the workflow are carried out as before, until the job reaches its last step. In this step defined

on line 31, an artifact is uploaded to the GitHub Actions process. The 𝑖 𝑓 keyword set to 𝑎𝑙𝑤𝑎𝑦𝑠()
ensures that this step is executed regardless of the results of the previous job steps. This means that

this artifact will be uploaded even despite potential prior failures within the pipeline. The remainder

of the configuration instructs to runner to fetch the lap energy consumption estimation data, in this

case, the energy consumption estimation of the repository checkout action. The developer can then

2.3. Tools 17

1 name: custom-workflow
2

3 on: [push]
4

5 jobs:
6 check-bats-version:
7 runs-on: ubuntu-latest
8

9 steps:
10 - uses: green-coding-solutions/eco-ci-energy-estimation@v2
11 with:
12 task: start-measurement
13

14 - uses: actions/checkout@v4
15

16 - uses: green-coding-solutions/eco-ci-energy-estimation@v2
17 with:
18 task: get-measurement
19 label: ’repository checkout’
20

21 - uses: actions/setup-node@v4
22 with:
23 node-version: ’20’
24

25 - run: npm install -g bats
26

27 - run: bats -v
28

29 - uses: actions/upload-artifact@v3
30 if: always()
31 with:
32 name: lap-energy-data
33 path: /tmp/eco-ci/lap-data.json

Figure 2.6: Usage of EcoCI for the 𝑐𝑢𝑠𝑡𝑜𝑚 − 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤 sample

download this artifact, which is, in this case, the 𝑙𝑎𝑝 − 𝑑𝑎𝑡𝑎.𝑗𝑠𝑜𝑛 file containing the four different energy

consumption-related estimates for the measured step [15].

EcoCI provides the energy measurements for validating the efficacy of the proposed solution. As

contributions have been made to improve EcoCI, it is important to note that instead of using an official

release of EcoCI, most workflows used in the practical part of this thesis will use a specific commit made

to EcoCI. As will be explained later, these commits are part of our contributions made to match the

hardware requirements of the runners used for running the experiments in this work.

3
Related Work

This chapter examines the existing literature related to the topic in question. It extracts the relevant information
as well as limitations of past solutions in order to form the solution to the main problem. It also reviews the
alternative tools to those used in the proposed solution.

3.1. Build Optimisation
The build system of an application handles the translation of source code into deliverables, in most

cases, both the documentation and the executables. Depending on the complexity of the code base and

the requirements for the deliverables, the build system may involve thousands of commands that result

in undesirably long execution times. The build process is one that developers must often interact with

several times in a day, to check whether the changes they have made to the product have not broken the

build. The use of build is often direct and local in these cases, when the developers check the builds on

their machines after making a change [23]. While optimising build jobs directly within CI pipelines

has only recently started receiving attention in scientific literature, optimising builds locally, or outside

the pipeline, has been a subject of intensive research efforts for longer. Some approaches have even

developed into features that are commonly used in real-world practices. One of them is an approach

similar to partial compilation concept, known as incremental builds. The other is caching, which can be

applied in many different fields, however in this section it will be reviewed in the context of the build

process.

3.1.1. Incremental Builds
For the purpose of faster and cheaper building of the application code, package managers have

recently started developing features that can save builds. One these features is incremental building, or

incremental compilation, which aims to leverage changes made in the code base since the last build

process to determine which parts of the next build process are necessary and which are safe to skip.

For Java, the most common package managers that offer a version of such feature are Gradle and Maven.

Gradle explains its concept of incremental build as "a build that avoids running tasks whose inputs

have not changed since the previous build". To use this feature, developers define tasks and their

respective inputs and outputs, where the task pertains the build flow itself, with input being the code

base and the outputs contain the build results, such as compilation and test results. Given these tasks,

or builds, if no changes have been made to the inputs of the task, the task itself is not executed in the

next build. It is only executed if there have been changes made to the input, or in this case, the code base.

Especially for multi-task projects, where developers may define separate build tasks for each module,

this approach has potential to skip a significant amount of compilation and test execution compared to

the more traditional approach of building the entire code base with every build command [18]. The

alternative popular Java package manager, Maven, also offers incremental compilation feature as a part

of its compiler plugin used in the builds. When enabled, its incremental compilation approach, all

sources are recompiled if any files have been added, deleted or modified. The modules are recompiled

separately in case the JAR files they depend on have changed. If the incremental compilation is disabled,

18

3.2. Optimisations of Build Jobs in CI 19

Maven only compiles the changed classes. However, Maven documentation itself advises against this

option, as the classes that may depend on the changed files are not identified or recompiled, leading to

a high probability of skipping compilation of files that were broken by proxy [29].

The incremental building, or incremental compilation, implemented by the mention package managers

show potential in saving the workload in each build job by use of caching and change-guided selection

of the subset of files that need recompilation. However, the main limitation of using incremental

build in Gradle is its heavy dependence on manual configuration by the developer. As per Gradle’s

documentation on their Incremental Build feature, the Gradle tasks must be defined with their respective

inputs and outputs, where the selective building hinges on whether the inputs have changed since the

last build. In case that the developers define as input the whole source code related to the project, many

non-breaking changes may pose as triggers to running the build, even if the changes detected do not

require the whole build to be executed. To our best knowledge, there is no sufficient research into how

much build savings can Gradle’s incremental building yield in an average project, whether built locally

or in the CI process. In case of Maven’s incremental compilation, there is a lack of granularity when it

comes to determining of recompilation. If sources are added, deleted or changed, full recompilation is

triggered, regardless of the real extent of the effect of the changes made. These limitations, mainly the

requirement of developer’s designing of tasks together with coarse granularity with which builds are

saved, call for additional investigation into lowering the amount of manual configuration necessary as

well as finding the real extent of the effects of changes made since the last build.

3.1.2. Caching
Caching refers to saving of results of computations for the purpose of reusing them rather than

generating them again. Applicable especially in cases when results do not need to be updated from job

to job, caching can save computation efforts in many different applications. The work of Gallaba et al.

has explored application of caching mechanism in build execution of CI pipelines. The authors motivate

the use of caching as an alternative to or in combination with the existing approaches such as Gradle’s

dependency-based optimisations. The presented approach, KOTINOS, uses caching of initialisation and

installation of dependencies by encapsulating them in a Docker container. If the dependencies and

related scripts have not changed between the CI runs, the Docker environment that was constructed at

the first build is reused again instead of being built anew. If the dependencies or the scripts did change,

the Docker container is rebuilt such that it can be used in the subsequent pipeline runs. This approach

has shown that in 91% of studied cases, cached build results can be used, validating the concept of using

caches in CI build jobs [10].

While caching is not directly used within the proposed solution of this thesis, it is an idea central to

the future integration of the proposed solution in real-world practice. Its use in Gallaba et al. proves

that there is promise in reusing build results. While the mentioned work does not cache compiled files

but rather dependencies and installed environments, this research raises an opportunity to cache other

parts of the build process, such as the compiled version of files.

3.2. Optimisations of Build Jobs in CI
An important interaction with building is related to CI, where the CI server regularly builds the

latest code with the goal of identifying possible breaks early on [23]. According to Gallaba et al.,

35% of the CI runtime is spent on building, or compilation and testing, making it the most time- and

resource-demanding job in the CI process. With that, the authors call for more research effort to be put

into making compilation and testing more efficient, as these improvements will yield largest reductions

to CI workload, and as a result, reductions to both energy demands and duration of the CI process [11].

While it is a new, emerging field scientific literature, several works have already proposed different ways

of approaching optimisation of the build jobs within the CI process.

The work of Abdalkareem et al. published in 2019 started investigating possible ways of reducing the

overall workload by examining the commits for which the developers manually skipped CI pipeline

execution. Under the assumption that developers only order CI pipeline skipping in cases where

they deemed it completely safe, the authors manually examined a commit database of TravisCI and

extracted the patterns found in CI-skipped commits. The patterns found were split up into two main

categories based on whether the authors could identify the reasons for skipping CI solely from the

3.2. Optimisations of Build Jobs in CI 20

repository, or not. For the first category, they found that most of the commits developers decide to skip

CI pipeline execution for are those that change non-source code files, such as documentation files. For

the other category, where the authors could not identify the precise reason for skipping CI, most of the

commits involved changes made to source code files. For the first category, with reasons for skipping

CI easily collected from the repository, the authors derived a rule-based technique that was meant

to automatically detect and label commits that were safe to skip. The latter category of reasons was

omitted from further optimisation efforts due to the difficulties of extracting specific rules from these

commits. The technique showed promise with its ability to reduce the number of commits that trigger

the CI pipeline by 18.16% on average on unseen data. It also consulted developers to evaluate the real

need for a tool that automatically flags commits to skip the CI pipeline for. They found that 75% of

developers deem it to be nice, important or even very important to have such tool available, further

motivating the efforts done in the CI optimisation field [2].

Abdalkareem et al. continued to build upon their previous findings in 2020, when the authors published

a paper presenting a machine learning approach to predict the commits for which CI process can be

skipped. To train the machine learning model, specifically a tree classifier model, they use 23 features.

Particularly, they allocate 5 features to reflect the rules defined in their previous work from 2019, 17

features for other commit-level features from the TravisCI database of CI-skipped commits, and finally

one feature to consider the commit message, as it is believed that this description developers provide

for the changes can increase the accuracy of prediction. When tested on unseen data, the classifier

developed in this work yielded an average F1-score of 0.79, which shows that the combined level of

precision and recall is 2.4-times higher than that of the random-guesser baseline. Compared to the

state-of-the-art technique - the rule-based techniques - the tree classifier showed 56% improvement [1].

Jin et al approached the optimisation from a different perspective, mainly by examining the results of

CI pipelines and using the patterns found to predict failures in builds. The paper has found that on

average, 84% of all builds in the CI pipelines are passing builds, which supports the motivation for

building a CI-skipping framework by offering potential for substantial cost savings. Arguing that the

existing predictors heavily rely on the past results of build execution, the authors make a distinction

between first and subsequent failures, aiming to predict the former. Their solution, SmartBuildSkip,

predicts the first failures using build features and project features. To collect build features, the authors

extract information from the code base the changes it is subject to, such as the number of source files

changed since the last build. The project features are concerned with meta-data such as the number

of developers working on the project. Following the in-depth research into these features and their

correlation with build failures, it has been shown that build features, particularly the number of source

code files and lines changed since last build, have proven to be the most significantly correlated features

in first failures, meaning that the higher the number of source code-related changes, the higher the

probability of build failure. The technique showed an improvement compared to the baseline machine

classifier of failures with up to 9% improvement in recall and 7% improvement in precision of safe build

skipping. In terms of the potential to save builds using their predictor, the technique was found to be

capable of saving up to 61% builds, although with only catching 73% of failures immediately [19].

Building on their past solution, SmartBuildSkip, together with reviewing and making use of the CI-skip

rules developed by Abdalkareem et al. [2][1], Jin et al propose an even more sophisticated solution,

PreciseBuildSkip. The first part of their research focused on evaluation the CI-skip rules and found that

neither of the rules guarantee that the pipeline execution in builds can be safely skipped, and many of

them provide few or no opportunities for cost savings. Therefore, the authors supplemented the existing

rules with additional ones, referred to as CI-Run rules. These consider change-specific information as

well as meta-data, such as changes in configuration files and addition of new platforms respectively.

For their proposed solution called PreciseBuildSkip, which predicts the builds that can be skipped, the

authors train it as a cross-project predictor using several different projects in its training process. In its

most conservative configuration, which is also the safest, it provides 5.5% cost savings while correctly

predicting all build failures. While other configurations can bring up to 48% savings in costs, they also

lower the number of failures caught to roughly 45% [20].

Despite the successful applications and promising results of the papers mentioned above, the previous

works share certain parameters to their solutions, leading to targeting only a very specific subset of

possibilities with regards to optimising the CI process. One of the common attributes is their focus

3.3. Measuring Energy Consumption 21

on commit-level skipping of pipeline execution, where rule-based techniques and machine learning

approaches decide whether the CI pipeline is completely executed, or alternatively, completely skipped

for a given commit. Another shared limitation of the previous works is the focus on non-source code

changes - most rules are based on changes in documentation files or meta files such as .𝑔𝑖𝑡𝑖𝑔𝑛𝑜𝑟𝑒. Due

to the complicated nature of application code, these works often seize to analyse and therefore create

rules for skipping any commits that involve a source code change. Recalling the findings of Jin et al.

which show strong correlation between source code changes and build breaks, the situation demands

more investigation into how changes in source code affect the CI pipeline build execution.

3.2.1. Test Selection in CI
Although the primary focus of this thesis is not on the test phase of CI, its integral relationship with build

jobs in terms of environment and processes makes it an area worth investigating further to augment the

research done in this thesis.

A paper from 2019 by Li et al. targets the test phase of the CI pipeline, and aims to optimise it by

performing guided test selection. The underlying mechanism of their test-selecting framework is static

dependency analysis aided by a set of dynamic rules. This combination of techniques is applied to a

new commit pushed to the repository and as a result, the test phase of the CI pipeline is amended to

only execute the tests for the code that has been marked as affected. In terms of improving efficiency of

computation, it can reduce the test suite size executed in the pipeline by CI 92% when compared to

running the full test suite, and by 48% when compared to ClassSRTS (the baseline) [21].

The results of this approach prove that it can yield significant savings in the test phase of CI. Considering

the direct dependency of testing on the compilation of files, which is the main subject of this research,

this work has inspired the approach we later use in determining the partial compilation sequence. The

assumption is that this connection and the similarities between the building, specifically the compilation,

and the testing could mean that building could be optimised in a manner much like testing - specifically,

by using static dependency analysis.

3.3. Measuring Energy Consumption
Energy consumption patterns of CI pipelines and measuring of real consumption inside the runners

has recently been addressed in a thesis work by Limbrunner (2023), mentioned in Chapter 1. In this

thesis, the author developed a framework, called the Planterary Framework that measures the energy

consumption of the hardware that executed the CI pipeline. The tool offers a fine-granularity in

measuring, where each step of the pipeline can be measured separately. The framework, which can be

integrated into the CI pipeline and report on its energy consumption patterns, retrieves existing logs

from DevOps platforms and runner’s API technology to calculate the relevant energy metrics. Besides

providing an in-depth analysis of energy consumption of different jobs and job steps in the pipeline

explained in Chapter 1, the author also suggests some category-related, generic ideas for potential

improvements in energy efficiency. For the build job category, the main suggestions include caching of

build results and skipping of unaffected build steps [22].

The solution of Limbrunner is one of the first elaborate investigations into CI-related energy consumption.

While the analysis of consumption patterns sheds light on this uncharted field, the integration of this

framework presented some difficulties in preliminary research done for this thesis. The implementation

of the Planetary Framework is accessible freely on GitHub, however, the integration of the framework

into the CI pipeline used in this thesis proved difficult, partly due to outdated language versions in

the code base. The second reason for difficulty of use could be attributed to the proprietary nature of

some components. The thesis of Limbrunner was written in collaboration with a private company, and

as a result, some necessary components of the Planetary Framework are not freely available. Therefore,

instead, this thesis adopted EcoCI, a GitHub Actions-based plugin for CI pipeline energy consumption

estimation, explained in better detail previously in Chapter 2.

4
Approach

This chapter introduces the conceptual overview of the proposed solution. The fundamental principles are explained
from a high-level perspective to present to the reader how the solution addresses the challenges outlines in the
problem statement.

4.1. Framework Overview
The main objective of the framework is the optimisation of the CI pipeline in terms of energy consumption.

The framework targets a specific stage of the CI pipeline - the build job. One of the main tasks carried

out within such build job is the compilation of source code files. With the aim of reducing the build job

workload, which in turn reduces energy consumption, the framework employs partial compilation, a

concept explained earlier on in Chapter 2. The framework operates on component-level, where by the

term component we mean the methods and fields of classes.

To present a clear idea of how the framework integrates into the regular interaction between the

developer and the CI process, the pipeline and the application moment for the framework is illustrated

in Figure 4.1.

Figure 4.1: Framework integration in practice

First, the developer makes changes to the original, or pre-commit version of the code base. Then, at the

moment they commit these changes to the remote repository, the framework intercepts the pipeline.

Normally, the next step would be pushing the post-commit code to the remote repository and running

CI as normal. However, when the framework is used, it processes the commit and outputs the updated

configuration for the CI pipeline, which contains the instructions for the framework-derived partial

compilation. Then, when the developer pushes the commit, the updated code is pushed as well as the

output of the framework - the CI configuration. The CI pipeline is then amended accordingly, and the

cycle continues as it normally would.

22

4.1. Framework Overview 23

The central idea of the framework is to use partial compilation to reduce the workload without sacrificing

the reliability of the result. In short, the partial compilation sequence should be capable of catching

errors that full compilation does. However, for this to be true, files to be compiled cannot just be chosen

randomly. To select relevant files for compilation and filter out files that do not need to be compiled,

the framework uses two main inputs: the changes made in the current commit and the dependencies

between different parts of the code.

4.1.1. Commit Analysis
The idea of using the code changes that have been made in the commit revolves around the assumption

that the previous commit, has passed the CI pipeline, and therefore, the framework considers the

previous version of the code as checked. Given that the last version is marked as checked by CI, and that

the latest commit introduced a set of changes made on top of this checked version, it can be derived that

the next CI pipeline must only check the validity of the updated code, or the part of the code base that

has been affected by the changes made in the commit, while skipping the checking of files that have not

been affected since the last version. In the scenario specific for the proposed solution, in the upcoming

CI pipeline process, pertaining to the latest commit, only the files affected by the latest commit changes

would be compiled, and the files that remained unaffected since the previous version would not be

compiled.

However, the set of changes in the commit does not present enough information for the framework

to build the partial compilation sequence. This is due to the fact that the code base is inherently

interconnected, as some parts of the code base use other parts of the code base. Assuming that each

class is fully contained in its respective file, a given class 𝐷𝑜𝑔, which contains 𝑚𝑒𝑡ℎ𝑜𝑑1(), is called by

𝑚𝑒𝑡ℎ𝑜𝑑2() that resides in class 𝐶𝑎𝑡. In case the latest commit makes changes to 𝑚𝑒𝑡ℎ𝑜𝑑1() in class

Dog, and the framework would only compile the files where the changes have been made, then the

file of the Dog class would be compiled. However, the changed made to 𝑚𝑒𝑡ℎ𝑜𝑑1()may also reflect in

𝑚𝑒𝑡ℎ𝑜𝑑2()residing in the 𝐶𝑎𝑡 class file. Since there were no changes to this file, the 𝐶𝑎𝑡 class will not be

recompiled, and the possible breaks inflicted in 𝑚𝑒𝑡ℎ𝑜𝑑2() of class Cat will go uncaught. This simple

scenario would already violate the validity of partial compilation guided solely by the file changes

pertaining to the latest commit.

The problem could be simply reformulated as follows. The commit information provides a list of

explicitly changed files, however, due to the dependencies inherent to the application code, these explicit
effects alone do not provide sufficient information for constructing a partial compilation sequence that

would be as reliable as full compilation. This is because of implicit effects, in which explicit changes can

affect unchanged files via dependencies that connect the explicit change with said file.

4.1.2. Dependency Analysis
The framework identifies the dependencies using dependency analysis techniques. It does so by

capturing three types of dependencies. The first one is the dependency created by inheritance, which

works on the class level. The second one is the dependency derived from caller graphs and abstract

syntax trees (ASTs), which works on the component-level, where under the term component we refer to

class methods and fields. Finally, the third type of dependency that is extracted is the type dependency,

where a field or a method parameter or return type is a custom class in the code base. The results of

such analysis can be visualised as three graphs, each depicting the network of one of these types of

dependencies.

For the first graph, the node set is composed of nodes that correspond to all classes in the code base. All

existing edges represent an inheritance relation between the two classes that the edge connects. Every

edge is directed, originating in the super-class and pointing to its respective sub-class. Note that in a

regular UML graph, the dependency is usually drawn in the opposite direction, i.e. the edge normally

originates at the sub-class and points towards the super-class. However, for the custom dependency

graph used by the framework, the goal is to model the graph such that when it starts at a node which is

a super-class, it can easily track the outgoing edges to get to nodes that are dependent on the considered

node.

In the second graph, nodes correspond to all methods and fields that exist in the code base. For

convenience, we refer to methods and fields as components. In this graph, edges are created between

4.1. Framework Overview 24

the nodes in case one of the components refer to or call another components. These edges are also

directed, originating at the component being referred or called, and pointing to the method that calls it,

signifying that the destination node of the edge is dependent on the implementation of the origin node.

In the third graph, we also use directed edges, which signify the dependency of a field or a method on

a specific type. The origin node is always a class, as it represents a type, and the destination node is

always a method or a field node. Such a dependency exists when a method has parameters of this type

or returns an object of the type. Similarly, a field is always dependent on its type. If this type is a custom

class defined in the code base, there is an existent dependency that translates into an edge in this graph,

pointing from the type class to the field.

An example of such graphs is shown in Figure 4.2. The inheritance graph in Figure 4.2a shows all three

classes in the respective sample code base - 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, 𝐶𝑎𝑟 and 𝐷𝑟𝑖𝑣𝑒𝑟. In this case, class 𝐶𝑎𝑟 inherits

from class 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, and the relation is depicted in the inheritance dependency graph with an edge

directed from the super-class 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 to its respective sub-class 𝐶𝑎𝑟. Since there are no sub-classes

or super-classes to the 𝐷𝑟𝑖𝑣𝑒𝑟 class, there are no outgoing or incoming edges from or to its node. In

Figure 4.2b, all methods and fields of the code base are represented by the nodes in the graph. For

simplicity, we only look at the connections related to the 𝐷𝑟𝑖𝑣𝑒𝑟 car and its only method, 𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟(),
and disregard the grayed-out nodes of unrelated methods and fields in the code base. There are two

incoming edges to its node labelled 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟(). The leftmost edge originating at the field

𝑖𝑠𝑀𝑜𝑣𝑖𝑛𝑔 of class 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 signifies a dependency of 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟() in on this field, which was

found by analysing the AST analysis, revealing that 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟()references 𝑉𝑒ℎ𝑖𝑐𝑙𝑒.𝑖𝑠𝑀𝑜𝑣𝑖𝑛𝑔.

The rightmost edge originating at the node of method 𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒() defined in class 𝐶𝑎𝑟 signifies that

this method is a caller of𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟(). Finally, in the type dependency graph in Figure 4.2c, the

graph contains both class and component nodes. The connection between class 𝐶𝑎𝑟 and the field 𝑐𝑎𝑟
declared in class 𝐷𝑟𝑖𝑣𝑒𝑟 signifies that the type of the field is 𝐶𝑎𝑟. As the edges point from the class to

the dependent component, we have a directed edge originating at 𝐶𝑎𝑟 class, pointing to the 𝐷𝑟𝑖𝑣𝑒𝑟.𝑐𝑎𝑟
field.

Note that these three graphs could be connected into one larger graph, in which the node set is composed

from classes and components. Dependencies are considered to be of equal importance, therefore, it

would not be necessary to differentiate the different types of edges. We separate the graphs here for

logical simplicity.

4.1.3. Partial Compilation Mechanism
The commit information and the dependency graphs are used in combination by the framework in the

process of selecting relevant files to compile. The conceptual overview of the process can be seen in

Figure 4.3.

The pipeline consists of three main stages. After the developer commits their changes, the framework

reviews the commit and extracts the information about the changes made to the original, or pre-commit

version of the code, as described in 4.1.1. In this example, the only change in the commit was made to the

method 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒(). Next, the framework constructs the dependency graph from the post-commit

version of the code as described in 4.1.2. In this stage, it also reviews the information extracted from

the commit to find the explicit changes. In this case, the changes have been made in 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒()
method. Consequently, the framework marks the corresponding nodes in the dependency graphs.

In case of the component dependency graph, it marks the node of the changed method, while in the

inheritance graph it marks the class in which this method is defined. In the type dependency graph,

we mark the 𝐶𝑎𝑟 class as changed. When all explicit changes are marked in the dependency graph

(marked in the graph by red colour), for each marked method, the graphs are walked by following all the

outgoing edges and tracking all nodes visited until all paths are fully explored. For distinction between

the explicit and implicit changes, they are marked by red and blue colour in the graph respectively. In

this case, an explicit change was made in the𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒()method which is connected has one node

dependent on it - the 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟()method. When all paths originating at the 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒()
node in the component graph are explored, all nodes visited during the traversal process are marked.

In this case, it is only one path, which leads to marking of 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟() node. In the inheritance

graph, the framework follows the same approach, however in this case, class 𝐶𝑎𝑟 does not have any

sub-classes and therefore there are no outgoing edges from its node. As a result, there are no implicit

4.2. Git-related Use Cases 25

(a) Inheritance-derived dependency graph

(b) Caller graph- & AST-derived dependency graph

(c) Type-dependency Graph

Figure 4.2: Dependency graph construction

changes made in this graph. Similarly, in the type dependency graph, we mark the 𝐷𝑟𝑖𝑣𝑒𝑟.𝑐𝑎𝑟 node as

an implicit change, since it depends on an explicitly changed class 𝐶𝑎𝑟. In the final stage, where the

files to be compiled are selected, the framework collects the methods corresponding to all the marked

nodes in the dependency graph, both the explicit and the implicit changes found (i.e. both the red and

the blue nodes). Finally, the marked methods are mapped back to their classes, and these classes are

then mapped to the files they reside in, also referred to as parent files. These files are then all marked to

be compiled in the respective build process within the CI pipeline, automatically omitting all files that

have not been affected by changes, and therefore do not need to be checked in the CI.

4.2. Git-related Use Cases
The framework, given its approach, is suited to a specific scenario in terms of the Git commit history.

The scenario is visualised in Figure 4.4.

The figure depicts the line of commit history leading up to the latest commit. The initial commit of

the history is fully compiled. Every addition to the initial code version introduced with commit #0 is

compiled in the subsequent commits, as it would be classified as an explicit change. Therefore, it can be

4.3. Change-related Use Cases 26

Figure 4.3: Framework pipeline

derived that every commit after the initial commit would be valid in terms of the CI pipeline, regardless

of whether full compilation or partial compilation was used between the commits. Recalling the

assumption that the CI pipeline is always passing for the previous commit, the framework is specifically

suited to be applied if the commit before the latest one did not exhibit any issues that would cause the

pipeline to fail. In this case, it is safe to assume that the version of the latest commit is quality-checked

by CI, and this in turn allows the framework to instruct the latest commit CI configuration to only

compile the explicit changes and their effects.

4.3. Change-related Use Cases
When a developer interacts with the source code, there is a number of different changes that can be done.

Classes, methods and fields can be added or deleted, or alternatively, changes can be made to existing

code components. The solution proposed in this thesis reacts to all the different types of changes to the

method by checking where additions or deletions have been made. Subsequently, it uses these changes

to find all class files potentially affected by the changes made. This section unpacks each particular use

case and explains how the mechanism of the framework operates to target each situation with relation

to the commit information and the dependency graph. The assumption for each use case below is that

the changes happen in isolation, that means, if the given use case is the singular change in the latest

commit. 4.3.3 explains how the framework addresses commits with different combinations of changes.

4.3.1. Classes
Classes can be either added, changed or deleted from the code base. While some of these changes can

be solved by only compiling the explicitly changed files, changes that alter the dependency graph may

trigger compilation of some implicitly affected related files in the respective pipeline.

An important thing to note is that in this section, we explain the class-level use cases which mainly

deal with class-level dependencies. Therefore, within this section, when we refer to the dependency

graph, we mean to refer to the class dependency graph only, as the component dependency graph is not

relevant for this category of use cases.

Addition
With regards to the mechanism of the framework, addition of a new class in a new file always leads to

the same result in terms of partial compilation decision. Assuming that the addition of a new class

is the singular change in the commit, the only file that is marked for compilation is the file where the

class was added. The reason behind this behaviour is that when a class is added to the code base, the

only dependencies that can be created are the dependencies of the new class on other classes. There is

4.3. Change-related Use Cases 27

Figure 4.4: Framework application in Git history

no way to create dependencies of existing components on the new class without editing the existing

components themselves. Therefore, if the addition of a new class file is the only change made within a

commit, it will be the only file that is compiled in the next build job. Since it is an explicit change, it

will always be compiled. Consequently, any potential break introduced with the addition of this file is

guaranteed to be reported. This implies that the result of partial compilation will never miss a break,

and therefore always reliably provides a result identical to that of a build job with full compilation.

Change
The developer can also make changes to existing classes. The framework distinguishes two types of

such changes. The first type of change is the one made to the "outer" definition of the class, such as

its name or its definition in terms of extending a class. The second type of change is that made to the

implementation of the class, in which the changes are made to its components - methods and fields.

This section discusses the first type of change, while the second type of change will be discussed in 4.3.2.

When the outer definition of the class is changed, the decision of the framework in which files should be

compiled again hinges on how the class is related to other classes in the class graph. An example such

inheritance dependency graph can be seen in Figure 4.2a.

• Changing a class that has no dependencies or only incoming dependencies: If a class definition

is changed and the class itself has no other classes dependent on it, i.e. no incoming edges in the

dependency graph, only the changes class itself is marked for compilation. For demonstration,

given a dependency graph in Figure 4.2a, if the name of class Driver is changed, only that class file

would be recompiled, as there are no other files dependent on it.

• Changing a class that has outgoing dependencies: In case the class that is changed has sub-

classes, the class itself is marked for compilation as well as all sub-classes. This is because the

implementation of sub-classes depends on the changed super-class, therefore, their validity may

be compromised and must be checked in the build job. For example, given the dependency graph

in Figure 4.2a, if the name of class Vehicle is changed, its file would be marked for compilation

as it contains an explicit change, but with it, the file of class Car would also be compiled as it is

inheriting from class Vehicle.

In summary, if there are no classes that inherit from the changed class, only the parent file of the class

that has changed is marked for compilation, as it contains an explicit change. In case there are class

that inherit from the changed class, they are also marked for compilation. Note again that this only

applies to changes made to the outer class definition, for example class access level, class name and its

inheritance relations. Changes to the internal implementation of classes is more nuanced and therefore

the framework analyses these changes on a lower granularity level, particularly, method- and field-level,

4.3. Change-related Use Cases 28

discussed in 4.3.2.

Deletion
Similarly to the case of class changes, when class deletion is encountered in the commit, the framework

constructs the partial compilation sequence based on which of the following situations applies to the

circumstances. In summary, deletion of a class will only cause its former sub-classes to compile in the

build job, while in the other cases, no files will be compiled. Note again that the other dependency

leveraged by the framework hinges on the use of methods and fields. In case that the methods and

fields inside the deleted method are referenced by other components, it is addressed with a specific

approach explained in 4.3.2.

4.3.2. Methods & Fields
Additions, changes and deletions of methods are addressed in the same way as they are for fields.

Therefore, in this section, we discuss the use cases that apply to both of them. For simplicity, we refer to

methods and fields as components.

It is also important to note that when a change is made in a component, it is reflected in both the

inheritance dependency graph and the component dependency graph, unlike in the case of changes to

classes, where only the inheritance dependency graph is used to determine partial compilation.

Addition
Given that additions of new classes that may include components have already been discussed in 4.3.1,

this section explains the case of adding a component to an existing class.

In case of adding a component, the same mechanism applies as it does with adding a class. In simple

terms, if a component is added to the class, the parent file of that class is explicitly changed, and

therefore automatically marked to be compiled in the subsequent CI build job. While this component

can change the dependency graph when being added, for example, by calling an existing method from

an existing class, this process can only make the added method dependent on other components, not

vice versa. To create such dependency, the other component would have to be changed, implying that

its parent file would also be explicitly changed, hence marking it to be compiled as well. As a result, the

parent file of the component would always be the only file marked for compilation.

Change
In case of an existing method, the developer can decide to make changes to the method. The framework

treats the whole method as one unit, such that if a change is made anywhere in the method, the method

is marked as explicitly changed in the dependency graph. This also implies that in practice, whether a

change is made in the signature, i.e. the input parameters or the return type of the method, or a change

is made inside a method’s body, the outcome for the framework is the same - the method has simply

been changed, and therefore it is marked for compilation.

Rather than the nature of the change made, what essentially determines the partial compilation sequence

is the changed component’s connections in the dependency graphs. To determine which files must

be compiled given a change is made to a certain component, the same procedure of graph walking

is applied as it is in case of class changes. However, instead of only traversing the inheritance graph,

the framework traverses the component dependency graph as well. An example of how this works is

depicted in Figure 4.3. First, the component that has changed, in this case the 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒()method

is marked in the component dependency graph. Subsequently, the class 𝐶𝑎𝑟, which has been affected

by the change made in its method, is marked in the class dependency graph. Both graphs are traversed

from the explicit change to gather implicit changes. Finally, the affected files are collected and marked

to be compiled.

Deletion
Deletion of a component entails the removal of all lines that define the component. Identically to when

a change is made to a component, the selection of files to be compiled in case of a component deletion

is determined by the dependencies of the deleted component. Therefore, the framework approaches

deletion in the same way as the changes explained in 4.3.2.

4.3. Change-related Use Cases 29

4.3.3. Combination of Changes
Developers can also make multiple changes in a commit, and these changes can be of multiple different

types. For example, a developer can change a method in class A as well as delete class B in the same

commit.

The framework also has the capability to process such multi-change commits. It does so by targeting

each change, one at a time. Given the pipeline shown in Figure 4.3, the whole pipeline would be run for

each change in the commit. When all changes are processed, all files that were marked for compilation

in each pipeline are gathered into a set. Finally, the build job is instructed to compile this accumulated

set of files, targeting the potential breaks of each change within the one CI pipeline run.

4.3.4. Experimental Setup
The first part of the composite research question addressed by this thesis concerns itself with the

reliability of the approach of partial compilation construction explained in this section. Given the

Git-related and change-based use cases, the validity of the approach in the defined scope can be

evaluated by targeting these use cases. This subsection explains how the experiments for the validity

were devised and how the results of these experiments aid in answering the first sub-question.

Build Outcome
Given the description of the mechanism used internally within the framework, there are two main

distinctions to be made with regards to testing the validity. The first one is the outcome of the build job,

which can be either a passing, or a failing result. For demonstration, an example of the two outcomes of

compilation is depicted on Figure 4.5.

(a) Successful compilation

(b) Failed compilation

Figure 4.5: Two outcomes of the build job

In this sample code base, there are only three files for simplicity, marked 1, 2 and 3. Figure 4.5a shows a

build job with a passing outcome, where all three files are compiled successfully. Figure 4.5b shows a

build job with a failing outcome, where a mistake in file 3 leads to a failing compilation, which translates

into the build job failing. To explain the relevant cases for checking the validity of the framework, it is

important to compare the situations from both the baseline and the optimised build job execution, or

full compilation and partial compilation respectively. In the passing case, both the full compilation and

4.3. Change-related Use Cases 30

the partial compilation will always deliver the correct result. Regardless of the partial compilation file

set, i.e. whether one, two or no files are compiled, all files will be compiled successfully. However, this

is not guaranteed in the failing case. Since it compiles all files, full compilation is guaranteed to find the

compilation-breaking fault present in file 3 in the failing case in Figure 4.5b. However, in case of partial

compilation, the set of compiled files may not contain the faulty file 3. In this case, if, for example, only

files 1 and 2 would be compiled, the fault would be missed, leading to an invalid passing result. With

that, to evaluate whether the used partial compilation technique delivers a valid, reliable result, it is

only relevant to test whether the partial compilation can catch the same faults as the full compilation

approach.

Category of Breaking Change
Another categorisation relevant to validity evaluation of our partial compilation approach is the

categorisation of changes. There are two main types of changes differentiated by the framework. The

first one are the explicit changes, which are all the changes done by the developer and reported in the

commit information. The second category includes all changes that have not been made directly by the

developer, but are rather the effects of the explicit changes made through their connecting dependencies.

As explained earlier in this chapter, to ensure all explicit changes are checked in the next build job,

all files that were explicitly edited by the developer are automatically marked for compilation in the

next CI build. Since we narrowed down the experiments to check validity of build failures only, we

need to look at two types of breaks - those made explicitly and those that arise in implicit changes. If a

break appears in an explicitly changed file, this break would always be checked in both full and partial

compilation approach, as all explicit changes are automatically compiled. Therefore, in this case, partial

compilation would always give a valid result - identical to the one produced with full compilation. This

leaves the breaks made by implicit changes. Full compilation would always find catch such a break

in the code base, as it compiles all source files. However, in case of partial compilation, what must be

tested is whether the breaks in implicitly changed files are caught. This is an essential validity check, as

it will show whether the partial compilation technique applied in the proposed solution manages to

capture all relevant implicit changes.

Category of Explicit Change
Finally, it is important that the framework can detect faults in all the listed use cases. Given the

scope presented in terms of what changes are processed by the framework, the set of experiments

must cover each use case listed. To demonstrate the ability of the framework to detect different types

of dependencies, the experiments test for implicit breaks inflicted through vertical and horizontal

dependencies separately.

Recalling the use cases, the scope covers additions, deletions and changes made to classes, methods and

fields. Changes done to methods and fields are addressed in the same way, however, for completion, they

are evaluated as separate categories. What is omitted from the tests is addition of classes and components,

as addition cannot introduce breaks in implicitly changes files. With that, the experiments must cover

deletion, implicit breaks by vertical dependency, and implicit breaks by horizontal dependency for

classes, methods and fields.

To summarise all mentioned requirements, all validity experiments to be conducted in order to answer

RQ1a are presented below:

• Classes

– Implicit break by deletion

* Vertical dependency

* Type dependency

– Implicit break by change

* Vertical dependency

* Type dependency

• Methods

– Implicit break by deletion

4.4. Sample Project for Evaluation 31

* Vertical dependency

* Horizontal dependency

– Implicit break by change

* Vertical dependency

* Horizontal dependency

• Fields

– Implicit break by deletion

* Vertical dependency

* Horizontal dependency

– Implicit break by change

* Vertical dependency

* Horizontal dependency

4.4. Sample Project for Evaluation
To evaluate the validity of the framework by conducting the experiments listed above, we created a

project that contains the necessary data structures and dependencies between them.

For simplicity, the project features three classes in their respective file, namely 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, 𝐶𝑎𝑟 and 𝐷𝑟𝑖𝑣𝑒𝑟
class. The sample project code is shown in Figure 4.6. Its UML diagram and the corresponding

framework dependency graphs are shown in Figure 4.7.

The sample project was specifically designed to be light-weight and fit the needs of the experimental

setup. To fulfil the requirements for experiments, there is exactly one link made between classes and

components for each use case.

From Figure 4.7b, we can see that there is a vertical dependency created by having class 𝐶𝑎𝑟 inherit

from class 𝑉𝑒ℎ𝑖𝑐𝑙𝑒. For simplicity, in the graph, the only class that lists its methods is the 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class,

as the information we extract from this graph is the inheritance relationship as well as the super-class

implementation, namely the field 𝑖𝑠𝑀𝑜𝑣𝑖𝑛𝑔 and the method 𝑠𝑡𝑎𝑟𝑡𝐸𝑛𝑔𝑖𝑛𝑒(𝑓 𝑢𝑒𝑙𝑇𝑦𝑝𝑒), such that we

know which methods defined on the super-class 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 can affect its sub-class 𝐶𝑎𝑟. The inheritance

on its own enables us to test whether the framework can catch a break caused by the super-class being

changed or deleted. The use of the inherited field 𝑖𝑠𝑀𝑜𝑣𝑖𝑛𝑔 and the method 𝑠𝑡𝑎𝑟𝑡𝐸𝑛𝑔𝑖𝑛𝑒(𝑓 𝑢𝑒𝑙𝑇𝑦𝑝𝑒)
in class 𝐶𝑎𝑟 enables us to evaluate how the framework addresses breaking deletion and changing of

components with vertical dependency.

Finally, Figure 4.7c is more relevant for the experiments related to horizontal dependencies, i.e. when a

field or a method are used by another component. Since the method 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟(𝑐𝑎𝑟) uses the

𝐶𝑎𝑟.𝑚𝑜𝑑𝑒𝑙 field and also calls the 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒()method, this enables us to test whether breaking

deletion and change of these components are caught by the framework.

Note that for the experiments, some dependencies may be dropped purposefully to isolate different use

case experiments.

4.4. Sample Project for Evaluation 32

Listing 4.1: Car class

1 package dummy;
2

3 class Car extends Vehicle {
4 String model;
5

6 {
7 System.out.println("Static initializer: Value of x in superclass: " + isMoving);
8 }
9

10 @Override
11 public void startEngine(String fuelType) {
12 super.startEngine(fuelType);
13 }
14

15 public void startDrive() {
16 System.out.println("Starting the drive...");
17 }
18

19 public void stopDrive() {
20 System.out.println("Stop the drive...");
21 }
22 }

Listing 4.2: Driver class

1 package dummy;
2

3 class Driver {
4 Car car;
5

6 public void driveCar(Car car) {
7 System.out.println("Driver is driving the car...");
8 car.startDrive();
9 if (car.model == "Q7") {

10 System.out.println("This car is cool.");
11 }
12 }
13 }

Listing 4.3: Vehicle class

1 package dummy;
2

3 class Vehicle {
4 boolean isMoving;
5

6 public void startEngine(String fuelType) {
7 System.out.println("Vehicle is starting engine with " + fuelType);
8 }
9 }

Figure 4.6: Sample project code base

4.4. Sample Project for Evaluation 33

(a) UML of the sample project

(b) Inheritance-derived graph for sample project

(c) Caller graph- & AST-derived dependency graph for sample project

Figure 4.7: UML and dependency graphs for sample project

5
Implementation

This chapter explains the technical aspects of the solution in detail. This chapter focuses on explaining how the
fundamental concepts of the proposed solution outlined in the previous chapter are implemented in practice.

Before explaining the implementation of the framework, it is important to recall our assumption of full

compilation being done before we use the framework. Given that the code base has been fully compiled

and that since this full compilation there have only been passing pipelines, we can guarantee the validity

of the code base in its latest version.

For a better understanding of how the framework operates in practice, its integration into the developers

interaction with Git and the CI process is shown in Figure 5.1.

Figure 5.1: Framework integration into the developer-CI process interaction scenario

Before the framework is used to enable partial compilation in the CI pipeline, it must be initialised

within the code base where it is to be applied. This is a one-time entry point for the framework which

must happen before any changes to the latest version are made. This initialisation moment enables the

developer to then use the framework in the cycle of making changes, committing them, and pushing

them to the GitHub platform which employs GitHub Actions to execute the CI checks.

After the initialisation, changes are made to the code base by the developer. When they are satisfied

with their changes, they perform the 𝑔𝑖𝑡𝑐𝑜𝑚𝑚𝑖𝑡 command to save the new state of the code base. It is

at this moment that the framework applies itself, determines the partial compilation configuration for

34

5.1. Framework Implementation 35

the CI process and updates the commit data to reflect this. This entire process is taking place on the

local machine used by the developer. Later, by performing the 𝑔𝑖𝑡𝑝𝑢𝑠ℎ command, the developer-made

changes and the framework-made configuration for the CI process are uploaded to the remote repository

on GitHub, where GitHub actions executes the CI pipeline process. The receiving of result of the CI

feedback closes an instance of such cycle. For the next commit, since the framework has been initiated

and it has saved the state of the latest commit, the developer does not have to initialise again, nor take

any extra action to make use of the framework in the future cycles.

5.1. Framework Implementation
The pipeline of the framework in terms of its inputs, outputs and the internal components is shown in

Figure 5.2.

Figure 5.2: Framework pipeline: inputs (green), outputs (orange) and internal processes

As can be seen from the figure, the framework must first collect the commit information and the results of

the static dependency analysis (SDA) to be able to function and product the partial compilation sequence

in form of a list of files to compile. This section will explain each component of the implementation in

greater detail.

All components of the framework are written as Python scripts. This architecture was chosen to allow

for modular changes, as is explained in the subsections below.

5.1.1. Inputs
The two inputs the framework must get prior to being applied are the commit information and the

static dependency analysis. By commit information, we mean the data we can extract from the commit,

particularly the names of changed files and the types of changes made to them. This includes information

about whether a given file has been added or deleted, or in case of changed files, which lines were

added or deleted. For this implementation, we use Git and its interface to extract this information. For

the static dependency analysis, in this thesis, we make use of Doxygen, a dependency analysis tool

suitable for Java-based projects [6].

The components dedicated to processing each of the inputs are separated. This is to allow developers to

change the input sources, for example change the static dependency analysis tool to some other tool than

Doxygen. To do so and still be able to use framework, they would have to change only the component

that processes that input source, for the example above, they would need to adjust the parsing process

to fit the format of the incoming data.

5.1.2. Finding Changes
To extract the changes made within the commit, we use the Python 𝑅𝑒𝑝𝑜 library which allows the

script to communicate with the local Git system. Encapsulated in the 𝑑𝑖 𝑓 𝑓 _𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟.𝑝𝑦 file, the main

purpose of the script is to find all changed files and all changed lines within them. As the 𝑅𝑒𝑝𝑜 library

can access the commit information directly from the code, no explicit input is necessary. To satisfy the

use cases within our scope, we do not differentiate between line additions and deletions, and simply

find the range of lines that have been changed. The result of this component is a Python dictionary

object, where the keys are the names of the files changed, and the associated value for each key is the set

of line numbers that have been changed within the file.

5.1. Framework Implementation 36

5.1.3. Parsing & Construction of Graphs
In the parsing phase, the results of the SDA are processed and translated into data structures which

model the classes, methods and fields and the connections between them. It is this phase in which the

SDA is mapped into the dependency graphs that are later used together with the changes made to

determine which files must be compiled. The parser, encapsulated in the 𝑠𝑑𝑎𝑝𝑎𝑟𝑠𝑒𝑟.𝑝𝑦 file, takes as

input the XML files produced by Doxygen, where each class has its respective documentation file. In

these files, Doxygen encodes the information about the classes themselves as well as their super-classes

(or sub-classes) to inform on vertical dependencies. It also contains documentation of horizontal

dependencies, for example, for each of its methods, the class file documentation also lists its callers

across itself and other classes. As well as these dependencies, these files store information on types that

are referred to by components, for example, if a field has a custom type, there is an explicit reference to

that type in this XML documentation.

To construct the dependency graphs, the framework makes use of two custom objects, the 𝐶𝑙𝑎𝑠𝑠 and the

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 object for the inheritance-derived and the caller graph- and AST-derived graphs respectively.

Since the framework treats class methods and fields similarly, the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 class is used to represent

both these components. The UMLs for these two classes are depicted in Figure 5.3.

Figure 5.3: Custom objects for the technical representation of the dependency graphs

Note that the two attributes shared by 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 𝐶𝑙𝑎𝑠𝑠 object are the 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑖𝑑 or 𝑐𝑙𝑎𝑠𝑠_𝑖𝑑
respectively, and the attribute called 𝑝𝑎𝑟𝑒𝑛𝑡_ 𝑓 𝑖𝑙𝑒. The IDs of both objects are necessary for identification

within the graphs, and the path of the respective parent file is needed to easily add the relevant file

to the partial compilation sequence whenever the class or the component are marked for compilation.

In terms of changes to a class, the framework does not differentiate between the changes based on

where in the class have they occurred. Therefore, it is sufficient to only store the corresponding file, as

any change in the class will lead to marking the parent file for compilation. However, to maintain a

finer-granularity when it comes to components, the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 class contains two additional pieces of

data - the 𝑠𝑡𝑎𝑟𝑡_𝑙𝑖𝑛𝑒 and the 𝑒𝑛𝑑_𝑙𝑖𝑛𝑒 of its declaration, which respectively hold the number of the first

and the last line within which that component is declared. Having this information, the framework can

later map the lines that may have changed to the exact lines where the components occur in the code

base, and use this information to identify the implicit changes.

The parser sequentially reads all the provided XML files that contain class documentation and subjects

these XML files to further processing. From each file, the parser first extracts the class definition and

creates the corresponding 𝐶𝑙𝑎𝑠𝑠 object and with that also extracts its inheritance-related dependencies,

i.e. its super-class or its sub-classes. Following this, the parser continues to analyse the code in greater

depth by parsing the data on existing methods and fields within that class. When reading this data,

it also extracts the horizontal dependencies for each component, i.e. the callers of methods and the

components referencing fields, as well as the type dependencies of fields and methods. Finally, when all

files are fully processed, the parser outputs five different data structures, particularly dictionaries, or

maps. Two of the dictionaries are the 𝑐𝑙𝑎𝑠𝑠_𝑑𝑖𝑐𝑡 and the 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑑𝑖𝑐𝑡, which map the IDs of classes

and components to their corresponding 𝐶𝑙𝑎𝑠𝑠 and 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 object respectively. The other three

dictionaries track the dependencies - the 𝑐𝑙𝑎𝑠𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡 and 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡
store the dependencies between classes and components respectively. The 𝑡𝑦𝑝𝑒_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡
holds the dependencies between classes, or types, and components. The keys and the values of the

class and component dependency graphs are the class and component IDs respectively. Given a key

ID of a class 𝑘, and the set of values that map to this key, which are the IDs of a class 𝑣1 , 𝑣2 , ..., 𝑣𝑛 ,

all these classes are dependent on class 𝑘. Same applies in case of the 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡
and 𝑡𝑦𝑝𝑒_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡. This enables a simple look up of a class’ or a component’s information

5.1. Framework Implementation 37

as well as its associated dependencies. Essentially, these five dictionaries together model the directed

dependency graphs explained in ??. An example of how the 𝑐𝑙𝑎𝑠𝑠_𝑑𝑖𝑐𝑡 and the 𝑐𝑙𝑎𝑠𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡
together model the inheritance dependency graph is depicted in Figure 5.4.

(a) 𝑐𝑙𝑎𝑠𝑠_𝑑𝑖𝑐𝑡: ID-to-Object class dictionary

(b) 𝑐𝑙𝑎𝑠𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡: ID-to-IDs class dependency dictionary

(c) Inheritance graph

Figure 5.4: Framework-built class dictionaries translating into the corresponding inheritance graph

In this example, we have three classes in the code base: 𝑉𝑒ℎ𝑖𝑐𝑙𝑒, 𝐶𝑎𝑟 and 𝐷𝑟𝑖𝑣𝑒𝑟. In the 𝑐𝑙𝑎𝑠𝑠_𝑑𝑖𝑐𝑡 in

Figure 5.4a, the IDs of the classes represent the keys (on the left-hand side) that map to the corresponding

𝐶𝑙𝑎𝑠𝑠 object. Then, we have the Figure 5.4b dictionary, in which each class ID maps to a set of class IDs.

In this case, the class IDs that correspond to 𝐶𝑎𝑟 and 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class are empty, indicating that there are

no classes that inherit from them. The 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class ID maps to the ID of class 𝐶𝑎𝑟, indicating that

𝐶𝑎𝑟 inherits from 𝑉𝑒ℎ𝑖𝑐𝑙𝑒. Connecting the information contained in the dictionaries, this data can be

mapped into the inheritance graph in Figure 5.4c and vice versa.

5.1.4. Saving the State
While this step of the pipeline is not directly necessary to the commit being currently processed by the

framework, saving of the state is necessary to perform to ensure correct processing of the next commit.

In this case, the state refers to the classes and components in the code base as well as their dependencies.

Therefore, in implementation, this refers to creating a persistent storage for the 𝑐𝑙𝑎𝑠𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡,
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡 and 𝑡𝑦𝑝𝑒_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡, such that this data can be reused by the

next execution of the framework. This function is encapsulated in the 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑖𝑐𝑘𝑙𝑒.𝑝𝑦 script, in which

these four dictionaries are "pickled" using the Python module 𝑝𝑖𝑐𝑘𝑙𝑒. This process essentially serialises

Python objects, and since dictionaries are considered objects as well, pickling the dictionaries converts

them into a byte stream which is saved in a file with a .𝑝𝑖𝑐𝑘𝑙𝑒 extension. Later, when the original state

of dependencies are reused, this file is "unpickled" and the byte stream is deserialised into the three

dependency dictionaries dictionaries such that they can be used in the code again.

Conceptually, saving of the state is an important part of the process, because the performance of the

framework hinges on comparing the original state, i.e. before the commit changes have been made,

5.1. Framework Implementation 38

and the latest state of the code structure and dependencies. This is particularly aimed at the deletion

use cases. If deletion occurs in the current, whether it is of a class or a component, taking into account

only the latest state is not sufficient. This is due to the fact that if the state is fetched after such deletion,

the new state will not be aware of the deleted class or component, neither will it reflect the previously

existing dependencies. This situation is visualised in Figure 5.5

(a) Dependency graph before deleting the 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒()method

(b) Dependency graph after deleting the 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒()method

Figure 5.5: Changes in state and the resulting loss of information

In this example, assume that the only change in the current commit would be the deletion of

𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒(). Given that there are no other changes made in the commit, it means that the effects of

this deletion have not been corrected in the method that calls the deleted method - 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟(𝑐𝑎𝑟).
As this method depends on the 𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒(), it should be marked as an implicit change, and

should be compiled to check for potential breaks. In the situation where we would only consider

the state of the code base as it is in Figure 5.5b, the framework is not aware that there is a method

𝐶𝑎𝑟.𝑠𝑡𝑎𝑟𝑡𝐷𝑟𝑖𝑣𝑒(). Furthermore, it also loses the notion of the dependency between the deleted method

and 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟(𝑐𝑎𝑟)method, and as a result, falsely does not mark it for compilation, leaving a

potential break in the 𝐷𝑟𝑖𝑣𝑒𝑟.𝑑𝑟𝑖𝑣𝑒𝐶𝑎𝑟(𝑐𝑎𝑟)method unchecked. For this reason, deletion, and in some

cases changes, can only be performed correctly when the framework knows the original state of the code

base and compare it to the latest state, ensuring that components and dependencies lost between the

two code base versions are taken into consideration when constructing the partial compilation sequence.

5.1.5. File Selection for Partial Compilation
The final stage of the framework’s production of the partial compilation file set harnesses all the

intermediate outputs of the stages before hand and processes them to find the correct files. Besides

the class and component dependency dictionaries and the commit changes, for this phase it is also

necessary to collect the state of the original version of the code, before the commit changes happen.

For reference, this previous state either comes from the previous run of the framework, or in case of a

cold start, it is produced in the initialisation phase. The algorithm for this final stage can be seen in

Algorithm 1.

The core of the algorithm can be divided into four logical modules. We start by comparing the

dependency dictionaries created from the latest code version, i.e. the state of the code base at commit

moment, and the previously saved state. Here we compare the dependencies - if a dependency exists in

the old state but does not exist in the new state, we ensure that the components that were the dependent

5.1. Framework Implementation 39

Algorithm 1 Identification of files for partial compilation in pseudocode

1: Input: changedFiles, changedLines, classDict, componentDict, oldClassDependencyDict, oldCompo-

nentDependencyDict, oldTypeDependencyDict, classDependencyDict, componentDependencyDict,

typeDependencyDict

2: changedComponents← []

3: changedClasses← []

4: filesToCompile← []

5: // Step 1a: Compare class dependencies from past to latest

6: for all classDependency in oldClassDependencyDict do
7: if classDependency not in classDependencyDict then
8: for all dependentClass in oldClassDependencyDict (recursively) do
9: add dependentClass.ID to changedClasses

10: end for
11: end if
12: end for
13: // Step 1b: Compare component dependencies from past to latest

14: for all componentDependency in oldComponentDependencyDict do
15: if componentDependency not in componentDependencyDict then
16: for all dependentComponent in oldComponentDependency (recursively) do
17: add dependentComponent.ID to changedComponents

18: end for
19: end if
20: end for
21: // Step 1c: Compare type dependencies from past to latest

22: for all typeDependency in oldTypeDependencyDict do
23: if typeDependency not in typeDependencyDict then
24: for all dependentComponent in oldTypeDependencyDict (recursively) do
25: add dependentComponent.ID to changedComponents

26: end for
27: end if
28: end for
29: // Step 2: Given the changed files, find all classes and components

30: for file ∈ changedFiles do
31: fileComponents← findComponentsInFile(file, componentDict)

32: for line ∈ changedLines[file] do
33: for component ∈ fileComponents do
34: if line overlaps with component then
35: add component.ID to changedComponents

36: end if
37: end for
38: end for
39: fileClass← findClassOfFile(file, classDict)

40: add fileClass.ID to changedClasses

41: end for
42: // Step 3: Analyze implicit changes in components and classes (recursive)

43: for changedComponentID ∈ changedComponents do
44: find all dependentComponents of changedComponentID in componentDependencyDict (recur-

sively)

45: for dependentComponentID ∈ dependentComponents do
46: add dependentComponentID to changedComponents

47: end for
48: end for
49: for changedClassID ∈ changedClasses do
50: find all dependentClasses of changedClassID in classDependencyDict (recursively)

51: for dependentClassID ∈ dependentClasses do
52: add dependentClassID to changedClasses

53: end for
54: find all dependentComponents of changedClassID in typeDependencyDict (recursively)

55: for dependentComponentID ∈ dependentComponents do
56: add dependentComponentID to changedComponents

57: end for
58: end for
59: // Step 4: Find parent files for each list of changes and add them to filesToCompile

60: for changedList ∈ [changedComponents, changedClasses] do
61: for item ∈ changedList do
62: parentFile← findParentFile(item, classDict, componentDict)

63: if parentFile not in filesToCompile then
64: add parentFile to filesToCompile

65: end if
66: end for
67: end for
68: Output: filesToCompile

5.1. Framework Implementation 40

ones in the lost dependency are marked for compilation. Then, framework finds which components

and classes have been changed by iterating through the changed files and matching them to 𝐶𝑙𝑎𝑠𝑠
objects, and then iterating through changed lines to 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 objects. All classes and components

that were changed are then marked in the dependency graphs. For each marked class, all class IDs that

map to it in 𝑐𝑙𝑎𝑠𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡 are marked as changed. Same happens for the component and

type dependencies with their respective 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡 and 𝑡𝑦𝑝𝑒_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑑𝑖𝑐𝑡
structures. Finally, when all explicitly and implicitly changed classes and components are gathered, we

find their respective parent files which together form the list of files to compile.

5.1.6. Editing the Configuration
For the partial compilation to be executed when building, the configuration of the CI process has to be

edited before it is executed.

In the framework, we use the Maven 𝑝𝑜𝑚.𝑥𝑚𝑙 to configure the compilation process. After the partial

compilation is determined and the framework produces the list of files to be compiled, it passes the this

list to the module called 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑒𝑑𝑖𝑡𝑜𝑟.𝑝𝑦. This script edits the 𝑝𝑜𝑚.𝑥𝑚𝑙 of associated with the

code base by finding or creating the necessary XML tags to configure the Maven Compiler Plugin and

overrides the full compilation by listing the files selected to be compiled.

This is the final stage of the framework pipeline. After this step is executed, the configuration in the

𝑝𝑜𝑚.𝑥𝑚𝑙 together with the code changes made in the commit is uploaded to GitHub where the CI

pipeline is triggered and executed by GitHub Actions with the amended configuration.

6
Experimentation

This chapter explains the set up that has been produced in order to run CI execution experiments. It describes
what an experiment entails, as well as the experimental environment in terms of hardware and configuration.

6.1. Experimental Pipeline
In our study, an experiment entails a set number of executions of the CI pipeline on a specific commit,

or in other words, a specific version of the code base. Our experiments are initiated by an automated

pipeline which pushes the specific commits to GitHub, which triggers the GitHub Actions-hosted CI

execution.

We run each experiment in two different versions. The first version is the baseline, which refers to the

execution of an experiment without applying the framework. In the other version which we refer to as

optimised, we apply the framework which updates the CI configuration before pushing it to GitHub and

running the pipeline. This is an essential part of our experimentation, as we are ultimately comparing

the results of the optimised version, in which we use our framework, to the baseline version of the CI

execution, in which we do not apply the framework.

Note that the every aspect of the experiment is identical for both runs, except the 𝑝𝑜𝑚.𝑥𝑚𝑙 file, as in the

optimised version, the framework edits the 𝑝𝑜𝑚.𝑥𝑚𝑙 configuration before finalising the commit. This

means that the YAML file that defines the workflow for the CI pipeline remains identical, as well as all

other files in the code base.

6.1.1. Experiment Manager & Data Collector
To automate the running of experiments, we created an experimental tool that takes as input the unique

IDs of commits (SHA) and runs experiments on these commits a custom number of times in the two

versions - baseline and optimised. When a certain commit run is finished, the experimental tool collects

specified data for our results. This must happen before the experiment is run the next time, as logs and

artifacts for the commit-related CI pipeline are only stored for the latest run. After the data is collected

and downloaded by the tool locally, the running of the experiments continues in this manner until all

experiments are done. In the end, the results of the experiment, both the baseline and the optimised

versions, are gathered in a specified directory, ready for analysis and post-processing.

6.2. Experimental Set-up
In this section, we navigate through the technical aspects of the environment in which we conduct our

experiments.

6.2.1. Hardware
This section describes the details of the hardware used to perform the experiments. It is particularly

important, as energy consumption estimation produced by EcoCI is heavily dependent on the hardware

41

6.2. Experimental Set-up 42

specifications.

Runner
To maintain a consistent environment for our CI pipeline execution, we created a runner from an

Ubuntu-based Docker image which was operating on a remote server. The Dockerfile that defines

this Docker image creates the complete environment necessary for running the workflows used in our

experiments. We opted for the ephemeral runner, which shuts down when a workflow job is finished,

and automatically restarts itself to take on the next workflow job. Such runner is well-suited for the

energy experiments we conduct in this thesis, as every runner execution goes through an identical cycle

of start up, execution, and shut down.

The machine that runs the Docker image, informally known as GreenServer, For reproducibility, the

mentioned Dockerfile is made available on GitHub [25].

Experiment Management & Data Collection
To mitigate the limitation of the GitHub Actions platform due to which artifacts from a given run are

lost if another run is initiated, we combined the automated experiment manager with the data collector.

This enabled us to collect data from a given workflow run immediately after that run was executed, and

continue with re-running the experiments only when we have collected the data from the previous run.

The experiment manager and data collector scripts were run on MacBook Pro 15" 2019. Note that

this machine was used to instruct the runner to run the experiments via GitHub API and collect the

run-related artifacts via the same API. Since the runner is an independent machine, the validity and

energy consumption data are independent from this device.

6.2.2. Energy Metrics
In some of the conducted CI execution experiments, our main focus is the measurement of energy

consumption and other metrics that can capture potential improvements in efficiency. To record this data,

we use the EcoCI GitHub Actions plugin, which measures these energy metrics during a pre-defined

phase of the CI pipeline execution. We use this section to explain the four different metrics:

• CPU Utilisation (%): The CPU utilisation, measured in percentages, is the ratio between the time

that CPU is actively executing instructions and the total time. For example, if the total duration of

the measured execution was 100 seconds, and the CPU utilisation would be 8%, it would mean

that 8 seconds out of the whole execution time. Higher CPU utilisation may signify that the

processing unit needs to use up more of its capacity to execute the instruction sequence as it must

process the workload for a longer amount of time. On the other hand, a lower CPU utilisation

percentage suggests that the currently executed instructions are not excessively straining on the

available resources, and therefore may be more efficient.

• Total Energy Consumption (Joules): The total energy consumption, measured in Joules (J), is the

value that represents how much energy has been used to execute the measured experiment. The

higher the total consumption, the more energy must be used to execute the experiment, while

lower total consumption would signify that less energy had to be spent.

• Average Power Output (Watts): The average power output value shows us how much power is

produced by the system over a given period of time, in our case, during the experiment. If we

compare this value between two different experiments, we can conclude which experiment is

more energy-efficient relative to the other experiment.

• Duration (seconds): The duration is simply the number of seconds it takes to execute the

experiment - in our case, how long does it take to execute the build job within our CI pipeline.

While shortening the duration of the build job is not the primary focus of this study, it is closely

correlated with the total energy output, and can shed light on the overall workload executed in

each experiment.

7
Results

This chapter introduces the results of the experiments that were executed to answer the presented research questions.

7.1. Validity in an In-Vitro Project
First, we show the results of the validity-focused experiments run on the sample project presented in ??.

Before showing the results of the experiments, we present a short description of experimental setting

specific for these experiments.

7.1.1. Experimental Set-Up
The experiments are heavily dependent on the configuration of the workflow file containing the build

job specification. The pom.xml and its configuration is closely linked to the workflow, as the pom.xml

file holds the configuration for the Maven commands. However, in this case, for simplicity, we show only

the workflow build command and explain what Maven life cycle phases it executes in practice based on

the pom.xml configuration. The build job portion of the workflow file can be seen in Section 7.1.1.

With this command, we first execute the 𝑚𝑣𝑛𝑐𝑙𝑒𝑎𝑛 command to ensure a clean environment for the

experiment, as this removes any cached content that may interfere with the experiments. This is followed

by a 𝑚𝑣𝑛𝑐𝑜𝑚𝑝𝑖𝑙𝑒 command, written with the configuration 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟 : 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 − 𝑓 𝑝𝑜𝑚.𝑥𝑚𝑙. This

ensure that in the compilation phase, the build process uses the compiler plugin configuration defined

in the 𝑝𝑜𝑚.𝑥𝑚𝑙 file.

7.1.2. Validity Results
The RQ1a is concerned with the reliability or the validity of the CI process result when the proposed

solution is applied. To answer this subquestion, we executed the experiments that were devised to

cover the scope we defined for the proposed solution. These experiments are listed in ??. In this section,

we present the results that prove the validity within the defined scope, collected in Table 7.1. We also

present the energy results from the 10 experiments conducted.

The table shows the meta data about the CI process of each experiment, comparing the baseline and the

optimised results. The "Captured Break" column is the most important one in answering the research

question, as it shows whether the partial compilation managed to catch the break in the code in the same

way as the full compilation, which is the baseline. The last two columns show the number of classes

that were compiled in the process during full compilation and the partial compilation respectively.

1 run: mvn clean compiler:compile -f pom.xml

43

7.2. Energy Consumption in Controlled Environment 44

Table 7.1: Comparison of Baseline and Optimised Results

Category Experiment Break Captured Baseline # Classes Optimised # Classes
Class Deletion ✓ 2 1

Change ✓ 3 2

Type deletion ✓ 2 1

Type change ✓ 3 2

Field Deletion (horizontal) ✓ 3 2

Deletion (vertical) ✓ 3 2

Change (horizontal) ✓ 3 2

Change (vertical) ✓ 3 2

Method Deletion (horizontal) ✓ 3 2

Deletion (vertical) ✓ 3 2

Change (horizontal) ✓ 3 2

Change (vertical) ✓ 3 2

7.2. Energy Consumption in Controlled Environment
While the first sub-question of our research questions focused mainly on the validity of the CI process

outcome, we also conducted a preliminary study into the energy consumption of the pipeline during

these experiments. The boxplot results for all four estimates - the CPU utilisation (in percentages),

energy consumption (in Joules), power output (in Watts) and duration (in seconds) can be seen in

Figure 7.1.

7.3. Energy Efficiency in Real Repositories
In order to answer the second sub-question, our experiments investigated whether the proposed solution

can reduce the energy consumption in CI pipelines in real-world projects and their respective commits.

This section describes the experimental set up for answering RQ1b as well as the results of the associated

experiments.

7.3.1. Experimental Set-up
We conduct two experiments to investigate the impact of the framework on the CI pipeline energy

efficiency. The first experiment focuses on compilation only, which leads to a simpler integration into an

existing workflow and demonstrates the effect of the framework in the compile phase in isolation. In the

second experiment, we apply the framework to the original command from the project’s CI workflow,

such that we can observe the effect the workflow may have in practice.

7.3.2. Real-world Project
The main aspect is meant to illuminate to what extent can the proposed solution reduce energy

consumption in the CI process.

To evaluate the performance of the proposed solution in a real-world scenario, we chose an open-source

project from the Apache Community with several requirements:

1. The majority of the code is written in Java: Since the workflow only considers Java source

files, it is important to select a project with enough Java files to avoid unexpected situations and

possible associated complications, such as erroneous partial compilation sequences due to missing

dependencies and disregard for non-Java files.

2. The project contains a GitHub workflow with Maven commands: This is important as the

framework exclusively uses the Maven package manager and its commands to configure the CI

pipeline execution.

3. The project’s workflow contains at least one build-related command that compiles the source
code: A command that runs the compilation process is necessary such that we can observe the

effect of the framework, as it targets compilation in particular.

To satisfy these requirements, we chose an Apache Community project 𝑐𝑜𝑚𝑚𝑜𝑛𝑠 − 𝑏𝑐𝑒𝑙. With that, we

7.3. Energy Efficiency in Real Repositories 45

(a) CPU Utilisation (%) (b) Energy Output (Joules)

(c) Average Power Output (Watts) (d) Duration (seconds)

Figure 7.1: Four subfigures arranged in two rows.

1 run: mvn clean compiler:compile -f pom.xml

1 run: mvn --show-version --batch-mode --no-transfer -progress -DtrimStackTrace=
false -Ddoclint=none -Dcommons.japicmp.
breakBuildOnBinaryIncompatibleModifications=false

also chose a random passing commit from the repository’s commit history.

7.3.3. Experimental Set-Up
For each of the two experiments, the CI process is run with a different workflow command. The

workflows for the compile-only experiment and the original command experiment can be seen in

Section 7.3.3 and Section 7.3.3.

For the compoile-only workflow, we use a command identical to the one used for the in-vitro project

experiments, shown in Section 7.1.1. It simply compiles the source files, specifying that the compiler

plugin should use the configuration from the 𝑝𝑜𝑚.𝑥𝑚𝑙 file. The original command workflow is more

nuanced. All the flags that follow the 𝑚𝑣𝑛 command are meant to make for simple and clean logging of

the build process within the CI environment, with the exception being the last two flags. These two flags

override the 𝑝𝑜𝑚.𝑥𝑚𝑙 settings such that the Java 8 DocLint feature is disabled and therefore cannot

break the build. The last flag is specific to the 𝑗𝑎𝑝𝑖𝑐𝑚 Maven plugin, ensuring that if the plugin detects

binary incompatibilities, it will not break the build, and therefore will not cause the CI pipeline process

to return a failing result. The most interesting feature of this command in terms of energy consumption

readings is the different Maven life cycle phases triggered within this process. While no specific Maven

command has been included in the instruction, given the 𝑝𝑜𝑚.𝑥𝑚𝑙 configuration and the workflow

command for building, the CI process will execute all life cycle phases up until the 𝑣𝑒𝑟𝑖 𝑓 𝑦 phase. This

7.4. Energy Consumption in Practice 46

implies more workload in the latter experiment compared to the first, simpler experiment, where we

only run the 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 and the 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 life cycle phases. The Maven life cycle is explained in greater

detail in 2.

7.4. Energy Consumption in Practice
The results of the energy consumption of the compile-only experiment and the experiment with the

original Maven command from the workflow file are shown in Figure 7.3 and Figure 7.4 respectively.

(a) CPU utilisation (%) (b) Total energy consumption (Joules)

(c) Average Power Output (Watts) (d) Duration (seconds)

Figure 7.3: Comparing the optimised and baseline energy measurements for the compile-only workflow in common-bcel

experiment

7.4. Energy Consumption in Practice 47

(a) CPU utilisation (%) (b) Total energy consumption (Joules)

(c) Average power output (Watts) (d) Duration (seconds)

Figure 7.4: Comparing the optimised and baseline energy measurements for the original workflow in common-bcel experiment

8
Discussion

This chapter analyses the results presented in the previous chapter in detail.

The experiments conducted in this study yielded results which were summarised in the previous

chapter. To better understand the behaviour of the proposed solution, we use this chapter of the report

to analyse the results.

8.1. Validity & Energy Efficiency in Controlled Environment
We first analysed the results of the RQ1a-related experiments in the sample project, or in other words,

the controlled environment. We analyse the validity results as well as the energy results collected

during the experiments.

8.1.1. Validity
In terms of validity, the Table 7.1 shows that all experiments devised to cover the use cases for the

framework have produced a result identical to the full compilation. That is, the partial compilation

solution has managed to catch the respective break of every particular experiment and as a result, it has

also produces the same feedback as the baseline. The table also shows other meta data, such as the

number of classes that are compiled by the proposed solution and the number of classes compiled by the

baseline. Comparing these two columns shows that partial compilation is being employed successfully,

as the partial compilation compiles less files than the full compilation without compromising the CI

execution result.

8.1.2. Energy Consumption in an In-Vitro Project
In terms of energy consumption data from the sample project, the results show counter-intuitive

numbers. Despite the fact that we compile less files in the optimised version of the CI execution, the

total energy consumption, CPU utilisation and the average power output estimates are higher when

the solution is applied. While the result may be unexpected, there are several reasons why the energy

output of the optimised version of the framework may be higher than the baseline.

The first aspect which may be causing the problem may be bias in the measurements. When reviewing

the graphs shown in Figure 7.1, it can be seen that the Y-axis scale is very granular, and that the

differences between the mean values as well as the outliers compared between the optimised and the

baseline version are minimal. For example, the CPU utilisation in percentages displayed in Figure 7.1a

shows less than a 0.5% difference between the mean values for the optimised and baseline experiment,

with the means being 3.75% and 3.6% respectively. If we compare the total energy consumption of

the optimised and the baseline version of CI execution in Figure 7.1b, we can observe that the mean

values of energy consumption are 351 and 347 Joules respectively. In case of the average power shown in

Figure 7.1c, we can see even smaller, decimal-scale differences, with the optimised and baseline power

output at 65.75 and 65.68 Watts respectively. However, if we compare the duration of the CI execution in

Figure 7.1d, we can see that the mean time it takes to execute the build job is equal for the optimised

48

8.2. Energy Consumption in a Real-World Project 49

and the baseline version. In fact, the outlier values for the two experiments show lower outliers for the

optimised version, where the duration could get as low as 6.84 seconds, while the lowest baseline outlier

appears at 6.93 seconds. The baseline experiment also exhibits outliers above the mean time, where

an execution took 7.08 seconds. While these differences may be insignificant in practice in case of all

four measurements, the duration values show more favourable results for the optimised version while

other values demonstrate more efficient result in the baseline version. This inconsistency in behaviour,

especially between strongly related variables such as the total energy consumption and time execution,

further strengthens the theory that there may be bias present in the measurements.

While bias may be a more likely explanation for the small difference between the optimised and baseline

energy-related values, there is a possibility that optimised version may present additional overhead

within the CI pipeline due to the additional configuration. When Maven reads the 𝑝𝑜𝑚.𝑥𝑚𝑙 file with

the configuration produced by the framework, it must perform more parsing to read the files to include

in compilation, and possibly also more processing later, in which it has to match the source files to the

ones marked to be compiled during the compilation stage. While such overhead may be insignificant in

a larger repository, in a small-scale project such as the one designed to test the framework’s reliability in

the defined scope, it may be adding more workload for the CI execution machine without a significant

compensation in compilation-related energy savings.

Perhaps the most important take-away from these results is that the workload savings brought by the

framework may not be significant in small-scale projects. In each validity experiment, we only skip one

source file compilation process. These results show that in such cases, the framework is not yielding

the desired results as it works on file basis. If a project contains a small amount of files to begin with,

partial compilation does not yield significant benefits in terms of energy efficiency, if compared to full

compilation.

8.2. Energy Consumption in a Real-World Project
To evaluate the benefit that may be brought about by the framework in a real-world scenario, this study

has conducted experiments to simulate practical operation of the framework as reliably as possible. To

do so, and to observe the effects of the framework in different extents of operation, we conducted two

experiments - the compile-only workflow experiment and the original build command experiment. The

results can be seen in Figure 7.3 and Figure 7.4.

8.2.1. Energy Consumption in Compilation
Since the framework targets compilation in the CI pipeline build job, we conducted the compile-only

experiment to observe the energy efficiency improvements for this particular phase. As can be seen in

all four energy metrics graphs in Figure 7.3, the proposed solution outperforms the baseline in each

metric. An interesting contrast can be seen in the total energy consumption in Figure 7.3b. The partial

compilation in the optimised version saves energy compared to the baseline, where the optimised and

baseline mean energy consumption is 603.02 and 775.59 Joules respectively, bringing 22.2% improvement

in energy efficiency. Similarly, we see that the recorded CPU utilisation is also lower in the partial

compilation experiment, with the mean values being 6.96% and 8.11% respectively. The lower CPU

utilisation value shows us that when the optimising solution is used, the CPU has less workload to

process in general, leading to having the CPU execute instructions for less time. A closely related metric

to the processing unit utilisation is the average power output of the experiment. The average power

output of the optimised experiment with partial compilation was measured at 100.50 Watts, while

the baseline experiment power output value was 110.80 Watts. A lower average power output in the

optimised experiment indicates that the system consumed less energy, on average, over the measured

period. This suggests that partial the optimised framework has effectively reduced energy consumption

compared to the baseline. The last metric we measured was the duration in seconds. The optimised

version execution being by 0.4 second faster on average compared to the baseline. While we would

expect a greater duration improvement considering the closely correlated total consumption, the reason

for a small improvement in this metric may be due to the fact that we cannot collect sufficiently precise

time-related data due to its coarse granularity. The reporting used for the results can only measure the

runs in full seconds, but no decimal points. This may mean that these results may not be capturing the

smaller differences in duration brought about by the proposed optimisation, which may explain its

8.2. Energy Consumption in a Real-World Project 50

unexpectedly insignificant correlation with the total energy consumption. While the difference may not

seem significant, the shorter duration in the optimised version still shows that less workload is being

processed in the CI execution, which is a desirable direct effect of the partial compilation mechanism

being utilised. The fact that the CI pipeline-executing hardware executes the build job faster while the

other energy metrics are kept low, suggests that the partial compilation version is more efficient than

the baseline version with full compilation.

8.2.2. Energy Consumption in a Full Build Job
To explore the possibilities of integrating the framework into existing workflows as well as its potential

effect on the developer-defined build job as a whole, we also conducted an experiment in which the

framework is applied to the original command in an existing workflow. This application has shown

great potential for both energy consumption and execution duration improvements. The results are

shown in Figure 7.4.

In the optimised version of this experiment, we observed a very significant improvement in the total

energy consumption of the CI build job. Compared to the baseline, in which the mean value of total

energy consumed was 7825.58 Joules, the optimised version saved around 62.47% of energy, with its

mean consumption of 2938.52 Joules. Such a difference measured over 30 experiments shows that

the optimised version using partial compilation approach is consistently performing more efficiently

than the full compilation in the baseline version. For the duration of the build job, which is closely

correlated with the total consumption metric, we observe a very similar trend. While the full compilation

experiment took 63.4 seconds to complete on average, the optimised version exhibits greater efficiency,

reducing this duration to a mean of 24.53 seconds, yielding a 61.3% improvement in time requirements

of the CI build process. A counter-intuitive result was observed in the remaining two efficiency-related

metrics, particularly the CPU utilisation and the closely correlated average power output. The CPU

utilisation has been shown to be higher for the optimised version with a mean value of 15.1%, compared

to the baseline version with a mean of 14.74%. Similarly, the power output overtime was measured

at 126.88 and 126.38 Watts for the optimised and the baseline version respectively. This presents a

result that appears to be opposing to the observations we gathered in the compilation-only experiment,

in which we have seen the optimised version of our experiment exhibit a lower value for each of

these metrics. Given these results and the results for the compile-only experiment, it appears that

the behaviour of the CPU utilisation and the power output may be build command-dependent. The

𝑚𝑣𝑛 𝑣𝑒𝑟𝑖 𝑓 𝑦 command has more instructions to execute than the 𝑚𝑣𝑛 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 command, which is

likely the reason why the processing unit utilisation and the power output are higher overall for the

latter experiment. Given the results of the two experiments with different commands, it is possible that

the optimised version, which has an effect on the execution of Maven life cycle goals, may be adding

extra workload and raising these metrics as a result. However, it is also important to note that the

differences between the optimised and the baseline version’s metrics in the compile-only experiments

are more significant than those in the original command experiment. For example, while the average

power output in the baseline is more than 10 Watts, or 10% higher in the compile-only run, the difference

between the means in the original command experiment is only 0.5 Watts, or roughly 0.4%. Comparing

these values, we see that the increase in CPU utilisation and power output is less significant in the

original command experiment compared to the increase in these metrics in the compile-only experiment.

Finally, while these metrics illuminate the efficiency of the hardware managing the given workload,

our main focus throughout this study is the total energy consumption, which was improved by the

optimised version in every conducted experiment.

8.2.3. General Conclusion on Energy Consumption
In both experiments, the compile-only and the original command experiment, we observed a higher total

energy consumption by the build job, proving that the proposed solution utilising partial compilation

has the potential to execute the CI process more efficiently.

The experiment where we integrated the proposed solution into the original workflow showed the

greatest improvements. These results provide an enlightening insight into the capabilities our proposed

solution has in terms of bringing efficiency on a full build job scale, including phases such as testing on

top of compilation. The improvements are likely brought about by the fact that skipping compilation

also includes exclusion of test files, and consequently the conducted tests. However, while these results

8.3. Threats to Validity 51

are an exciting perspective of the framework’s potential in the future, it is important to build up to such

integration through systematic research starting with the compilation-only experiment we conducted.

On the other hand, the compile-only experiment serves as a direct answer to the RQ1b research question,

proving that in the compilation step of the build job, the proposed solution can reduce the workload

conducted, leading to lower energy consumption as well as the duration of the compilation build

step. We found that the solution can save 22% of the total energy consumption, which proves that the

proposed solution is a viable concept in increasing the energy efficiency within the CI build process. It

is possible that this number could be even higher for other projects, however, even if we consider the

recorded savings and extrapolate this scenario to every commit, this solution can make a considerable

leap towards making the build process more sustainable. Moreover, as we have seen in the original

command experiment, the improvements made by the solution in the compilation stage may propagate

and multiply the energy savings across other parts of the build job in the future.

8.3. Threats to Validity
Before drawing conclusions from the presented results, it is important to understand the various factors

that may compromise the integrity and generalisability of the study. In the following section we examine

the internal and external threats to validity and discuss how they can be mitigated.

8.3.1. Internal Threats to Validity
In this section we investigate the potential problems that may compromise the reliability of our results.

We discuss different aspects that may be affecting the results of our experiment in ways that we

cannot accurately account for. We examine these confounding variables and also present the employed

strategies to mitigate their undesirable effects.

Energy Measurements
A major aspect of validity regarding the energy consumption results is the accuracy of its measurement.

Conducting only one run of an energy consumption experiment does not yield enough certainty in

its validity. The measurement we conduct may be an outlier to the true underlying distribution of the

energy consumption, which would give a false base for generalisation. As the energy consumption

depends on a myriad of factors, some of which are difficult to quantify, we conduct several measurements

to mitigate the bias. Specifically, we conduct each experiment with 30 repetitions and average the results

to minimise the effect of potential outliers.

Energy consumption of software execution is strongly correlated to the hardware on which it is run, as

well as the state of the hardware prior to running the experiments. If an experiment is run immediately

after the machine boots, it is likely that the internal temperature of the hardware will be cooler, leading

to less energy being consumed compared to the situation in which the hardware has been warmed up

before. Therefore, before running the CI execution experiments, we include a set up procedure during

which we push the base commit for our experiments and trigger its CI execution. This procedure sets

the necessary state for the experiments, it also warms up the runner for the experiments upcoming

experiments. Additionally, we also randomise the execution on experiment level. Specifically, for each

experiment, we run each the optimised and the baseline version 30 times such that the order of execution

of the 60 individual CI pipeline executions in total is randomised.

Another hardware-related aspect that could hinder the validity of the result is the length of pause

between the experiments. From an experimental point of view, it is difficult to find the exact moment of

CI execution termination, as the communication with GitHub Actions API is periodic and initiated from

outside of the platform. This means that if we check for termination of the current experiment 𝑛 every

𝑋 seconds, and then set a pause time of 𝑌 seconds, the range of the pause between the termination of

experiment 𝑛 and the initiation of experiment 𝑛 + 1 ranges from 𝑌 to nearly 𝑋 + 𝑌. This uncertainty

of the real pause duration between experiments could lead to changes in the state of the hardware

which we cannot account for [4]. With the purpose of mitigating this problem, we set the runner to be

ephemeral, forcing it to shut down after each job and restart for the next one. This way, the runner shuts

down exactly when a experiment is finished, and turns back on when another experiment is started,

minimising the range of inter-experiment pause duration.

8.4. Limitations 52

Finally, it is important to note that the energy consumption measurements provided by EcoCI are

estimated by hardware specifications. If the CPU model of the used runner machine is not recognised

by EcoCI, the tool generalises the attributes of the CPU such as Thermal Design Power (TDP) or the total

number of threads. Since these attributes have great influence over the final estimate, such generalisation

may yield results that are less precise. To mitigate this, we add the specification of the runner’s CPU

model into the EcoCI open-source project and use it to obtain more accurate results of the real energy

consumption during CI pipeline execution.

8.3.2. External Threats to Validity
In this section, we examine the potential problems that with generalising the proposed solution.

Project Setup
While the underlying mechanism of the proposed solution leverages characteristics that could be

extracted from other programming languages, applying the framework to a project with a different

language does not guarantee the performance observed in this study. A valid use of the underlying

partial compilation mechanism hinges on an accurate dependency representation obtained using static

dependency analysis. With other languages, it is not guaranteed that the dependency analysis results

will capture the same types of structures and their connecting links. In case it would fail to do so, the

partial compilation may not be determined correctly, leading to invalid results. We targeted Java because

of its popularity and widespread use over the last decades, with the purpose of ensuring that a large

number of existing and new projects could apply the framework to increase the CI process efficiency.

Similarly, we used Doxygen as our static dependency analysis tool for the in-vitro and real-world Java

projects. However, different SDA tools may have different capabilities and scopes when it comes to

capturing the types of dependencies necessary for our solution. Moreover, different SDA tools may

report results in different formats which require different. We encourage future users who may want to

use a different SDA tool to first understand the tool’s approach and working, as well as its results. To

allow for this, we ensure that the module for parsing the SDA results is separated from the other logic

in the framework’s code base, allowing the developer to change the internal parsing, only needing to

ensure that the protocol with the next layer is satisfied.

It is important to understand the scope of using our proposed solution, in terms of use cases in both the

Git perspective and the code changes made in each commit. In terms of using Git, we can guarantee

that making a new commit with a given set of changes is processed as documented and shown in the

experimental setup. However, cases such as amending a commit, or creating a commit after a rebase

or a merge operation, have not been tested within this study, and therefore can not be guaranteed to

work as expected. For the change-related use cases, we have scoped the types of changes that the

framework covers and processes, however, this list may not be exhaustive when it comes to all possible

code changes.

8.4. Limitations
Here we list the known limitations of the proposed solution and its integration in practice. We list the

limitations and how they may impact the use of the framework. Later, in the 9, we address how these

limitations may be mitigated in the future.

8.4.1. Static Dependency Analysis
As we explained in the 2, static dependency analysis is a technique of obtaining the dependencies

between different parts of the application code. However, while we do not need to execute the code to

find these dependencies, there is a subset of potentially important dependencies that may be missed by

static analysis. Past work has observed that when conducting static analysis, the resulting dependency

graph do not contain some other dependencies that can be find only by running the code or using a form

of dynamic rules. Therefore, the validity of the proposed solution hinges on the type of dependencies

within the code, as we make partial compilation decisions based on only the dependencies which can be

extracted statically.

8.4. Limitations 53

8.4.2. Solution Integration
The proposed solution and the configuration it produces is strongly connected with the configuration

file for the project. In our case, the two most relevant configuration files are the workflow file and

the (parent) 𝑝𝑜𝑚.𝑥𝑚𝑙, where the latter file can prove problematic in terms of integrating the solution.

The 𝑝𝑜𝑚.𝑥𝑚𝑙 file contains the configuration for all project-related processes, including the behaviour

during local and CI builds. Due to existing configuration and potential interfering plugins, there may be

problems later on with Maven attempting to parse the configuration. Following is the list of problems

we have encountered when setting up the experiments:

• When the 𝑝𝑜𝑚.𝑥𝑚𝑙 is edited, the license is automatically removed, often causing a failure in the

build due to license enforcing rules

• Exclusion or inclusion of files from or in the compilation may already be present, potentially

clashing with the compiler configuration devised by the framework

• If caching is used, it often has to be configured for every plugin used in the build configuration.

9
Conclusion & Future Work

In this thesis, we have shown that the proposed solution has the potential to bring notable energy

savings into the CI process. It is not only the partial compilation that has shown its advantages. What is

more, the techniques that together guide the file selection have managed to do so in a manner that, in

the defined scope, captures an identical result to the baseline, which is the full compilation of all source

files in the code base.

9.1. Future work
While this work is not the first one to provide viable solutions of removing redundant workload from the

CI pipeline process, it enters this field of research in its emerging stages. To the best of our knowledge,

it is the first work that focuses on improving the CI process with the emphasis on energy consumption

and a strong commitment to guaranteed reliability of the results despite the lowering of the overall

workload. With the rapidly growing need for reflection on the energy consumption, the proposed

solution is meant to offer a starting point for a more versatile solution. This envisioned solution will,

in its ideal state, make reliable partial compilation, and possibly partial or selective testing, the new,

sustainable standard of the CI process.

We consider the proposed solution to be one of the first building blocks to a new standard, and with

that, know that the future holds many possibilities for improvement of its current version. To present

the envisioned development of the proposed solution, we split the ideas into two main categories. The

first category lists the improvements that are necessary to make the proof of concept more robust as

well as ideas for improvement that are viable in the immediate future. The latter category presents the

vision of the bigger picture in which the proposed solution figures as the base mechanism, listing ideas

involving more extensive research and development on the path to shifting the standard CI pipelines to

a less energy-demanding yet persistently reliable level of operation.

9.1.1. Immediate Future
In this section, we list and elaborate on the enhancements we believe are necessary to enhance the

framework’s robustness and safety in the near future. At the end, we also mention other research to

illuminate the real impact of the existing solution.

Caching
In our solution, we made use of the caching mechanism within the workflow file to cache all compiled

classes instead of recomputing all of them. However, this proved to be a relatively complicated task, as

the caching has to be propagated to all involved plugins and processes via 𝑝𝑜𝑚.𝑥𝑚𝑙. The idea behind

this approach is that caching would provide the least invasive way of conducting the partial compilation.

To elaborate, instead of only delivering the subset of compiled classes to subsequent processes such

as testing, we would deliver the full set of compiled classes in the previous CI run, with only the files

defined in the partial compilation sequence updated, replacing their outdated cached versions. With

54

9.1. Future work 55

1 public static void main(String[] args){
2 Car[] cars = [new Car("Audi Q7"), new Car("Fiat Punto")]
3 for (int i = 0; i < cars.length, i++) {
4 cars[i].honk();
5 }
6 }

(a) Traditional for-loop in Java

1 public static void main(String[] args){
2 Car[] cars = [new Car("Audi Q7"), new Car("Fiat Punto")]
3 for (Car car : cars) {
4 car.honk();
5 }
6 }

(b) Enhanced for-loop in Java

Figure 9.1: Sample code of a traditional for-loop and the enhanced for-loop syntax

that, we believe that implementing caching such that all relevant configuration would be updated as

well, is the next step in enabling easier integration of the framework into a real-world project.

Static Dependency Analysis Research
During the research conducted in this study, our primary focus was understanding and working with

SDA tools and dependencies they produced. There are generally two different aspects we recommend

be researched in the future: the functionality and the efficiency of SDA tools.

When using Doxygen, we found that some dependencies are missed even though we would expect

them to be recognised by an SDA tool. Particularly, we found that the tool cannot capture two expected

dependencies. The first missing detection is that of a 𝑠𝑢𝑝𝑒𝑟 call, in which a sub-class calls a particular

method of its respective super-class. The 𝑠𝑢𝑝𝑒𝑟 keyword is not detected as an important keyword. With

that, Doxygen also does not match the call with a specific method. The second important dependency

that is missed is that in case of using an enhanced for-loop when iterating through collections of items.

Specific to Java, but also used in other languages, its syntax looks as shown in Figure 9.1.

The sample code snippet in Figure 9.1 shows a sample implementation of Java’s traditional and enhanced

for statement in Figure 9.1a and Figure 9.1b. In our preliminary research, we found that Doxygen will

capture the dependency of method 𝑚𝑎𝑖𝑛 which calls the 𝐶𝑎𝑟.ℎ𝑜𝑛𝑘()method in case of the traditional

for-loop, however, it will fail to capture the same dependency in the enhanced for-loop, despite the

two expressions being synonymous. According to the documentation, the enhanced for statement is

meant to make "loops more compact and easy to read". The authors of the Java documentation also

explicitly suggest that developers use the enhanced version of the for loop. Given this preference, it is

likely that the enhanced for statement is a popular choice when it comes to iterating through collections.

As a result, many existing projects that may want to utilise our proposed framework, cannot use the

framework reliably due to dependencies created in enhanced for loops being missed. With this, we

suggest that more research effort is dedicated to better understanding of dependencies and how to

ensure that SDA tools are up to date with the latest versions of Java and other programming languages.

The second important aspect that warrants further investigation is the efficiency of SDA tools. Depending

on the size of the code base, SDA tools may consume a significant amount of energy and time to

produce the data on existing code dependencies. From our preliminary research, the SDA tools do

not use caching or change-specific analysis that would consider the previous state of the code base

in terms of dependencies. Therefore, to better understand the energetic impact of conducting SDA

and consequently create a more efficient solution, we call for more research into making these tools

more sustainable, which is a particularly important task in minimising the extra energy required by our

proposed solution.

Repository Size Threshold
In our energy-related results from using the framework within our minimal in-vitro project, we observed

that the framework has not produced the desirable energy savings. However, we have seen on our

9.1. Future work 56

other experiments, particularly those conducted on a larger, real-world repository, that in this case, the

framework has managed to save energy. These results point to the fact that there may be a threshold to

the repository size in terms of number of lines of code as well as the number of files, such that partial

compilation could omit a sufficient amount of files from compiling and thus save a significant amount

of energy. With that, we believe it is important to find this threshold in future research to ensure we

only apply the framework in cases where it has the potential to yield energy savings.

Energy Demands of the Solution
In this thesis work, we have proven that the proposed solution has the potential to make the CI

build process more energy efficient. However, in this work, we do not take into account the energy

consumption of the proposed solution.

One reason for this is that one of strongly correlated factors that determine the energy consumption of

the framework itself is the SDA. Depending on the size of the code base, SDA may take a long time to

complete, consuming a great amount of energy resources as it executes the analysis. This factor is quite

variable, as the energy consumption varies between different SDA tools, as they use different processes.

For the SDA tool alone, a separate research effort may be necessary to ensure that the SDA process

becomes more energy-efficient. This could be done in terms of the framework’s context only by, for

example, running the SDA only on the files affected by the commit-changes.

Regarding the framework itself, in the near future, the pipeline of the framework could be measured on

a local machine by different tools [5]. For a better understanding of how the process is correlated with

the size of or the number of dependencies in the underlying code base. Finding out the energy-related

behaviour of the framework would allow us to compare it to the energy savings in the CI pipelines,

enabling calculation of the net benefit that the framework can produce.

9.1.2. Further Future
In this section, we introduce the larger scale on which we see this framework fully utilised to deliver

maximum possible efficiency improvements.

Scope extension
Knowing the limitations of static dependency analysis, it is necessary to find the scope of build breaks

that can be covered by this approach, and with that, identify other cases which this technique may

miss. We know from previous work that static analysis methods may not be sufficient in capturing all

relevant dependencies for a robust test selection. With that, this work also combines the static analysis

approach with defined dynamic rules that extend the scope covered with only static methods [21]. To

enhance our proposed solution and enable its usage across all cases, we propose additional research

into build-breaking cases caused by missing dependencies. This could be done systematically, using the

knowledge of dependency analysis and sampling more cases, or by an exploratory study, in which the

framework is used across the pipelines alongside full compilation, to identify the cases in which it cannot

reliably catch a build job break.Finding and covering all currently missed cases, by, for example, adding

dynamic rules to catch the missing dependencies, will enable developers to safely use the framework

without having to match it to the currently specific scope of usage.

Fail-safe Mechanism
While the ideal vision for the framework is that in which it is capable of catching any source-caused

build break, identifying and covering all the cases is a difficult task. The situation is made worse by the

fact that programming languages are always developing, possibly creating new potential for failures

with every new functionality feature. For this reason, a viable future path for the proposed solution is

its integration in a bigger framework that executes a fail-safe mechanism. For example, after a custom

number of rounds of using partial compilation, we force a full compilation in CI execution to ensure that

a break that may have been missed by the framework is caught eventually. The negative consequence

of this approach is that developers must account for a possibly delayed accurate feedback. They may

also have to get more involved in the configuration, and find the desirable trade-off level between

accurate in-time response and the amount of energy-saving efforts. An addition to this approach

could be combining the framework with existing successful approaches, such as SmartBuildSkip or

PreciseBuildSkip, which could also serve as an indicator for break-prone commits and signal the instances

in which full compilation may be preferable [19][20].

Bibliography

[1] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. “A machine learning approach to improve

the detection of ci skip commits”. In: IEEE Transactions on Software Engineering 47.12 (2020),

pp. 2740–2754.

[2] Rabe Abdalkareem et al. “Which commits can be CI skipped?” In: IEEE Transactions on Software
Engineering 47.3 (2019), pp. 448–463.

[3] David Brooks, Vivek Tiwari, and Margaret Martonosi. “Wattch: a framework for architectural-level

power analysis and optimizations”. In: SIGARCH Comput. Archit. News 28.2 (May 2000), pp. 83–94.

issn: 0163-5964. doi: 10.1145/342001.339657. url: https://doi-org.tudelft.idm.oclc.org/
10.1145/342001.339657.

[4] Luís Cruz. Green Software Engineering Done Right: a Scientific Guide to Set Up Energy Efficiency
Experiments. http://luiscruz.github.io/2021/10/10/scientific-guide.html. Blog post.

2021. doi: 10.6084/m9.figshare.22067846.v1.

[5] Luís Cruz. Tools to Measure Software Energy Consumption from your Computer. http://luiscruz.
github.io/2021/07/20/measuring-energy.html. Blog post. 2021. doi: 10.6084/m9.figshare.
19145549.v1.

[6] Dimitri van Heesch. Doxygen. YYYY. url: https://www.doxygen.nl.

[7] Thomas Durieux et al. “An analysis of 35+ million jobs of Travis CI”. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE. 2019, pp. 291–295.

[8] Omar Elazhary et al. “Uncovering the Benefits and Challenges of Continuous Integration Practices”.

In: IEEE Transactions on Software Engineering 48.7 (2022). 2570. doi: 10.1109/TSE.2021.3064953.

url: http://dx.doi.org/10.1109/TSE.2021.3064953.

[9] Keheliya Gallaba. “Improving the Robustness and Efficiency of Continuous Integration and

Deployment”. In: 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME).
2019, pp. 619–623. doi: 10.1109/ICSME.2019.00099.

[10] Keheliya Gallaba et al. “Accelerating continuous integration by caching environments and inferring

dependencies”. In: IEEE Transactions on Software Engineering 48.6 (2020), pp. 2040–2052.

[11] Keheliya Gallaba et al. “Lessons from Eight Years of Operational Data from a Continuous

Integration Service: An Exploratory Case Study of CircleCI”. In: 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). 2022, pp. 1330–1342. doi: 10.1145/3510003.3510211.

url: http://dx.doi.org/10.1145/3510003.3510211.

[12] GitHub. GitHub Actions REST API Documentation. Accessed on: 20/04/2024. 2024. url: https:
//docs.github.com/en/rest/actions?apiVersion=2022-11-28.

[13] GitHub. GitHub Documentation. Accessed on: 04/04/2024. 2024. url: https://docs.github.com/.

[14] GitHub Actions. GitHub. url: https://github.com/features/actions.

[15] Green Coding Solutions. Eco-CI: Energy Estimation for Continuous Integration. 2024. url: https:
//github.com/green-coding-solutions/eco-ci-energy-estimation.

[16] Michael Hilton et al. “Usage, costs, and benefits of continuous integration in open-source projects”.

In: Proceedings of the 31st IEEE/ACM international conference on automated software engineering. 2016,

pp. 426–437.

[17] IEA. Data Centres and Data Transmission Networks. 2023. url: https://www.iea.org/energy-
system/buildings/data-centres-and-data-transmission-networks#tracking.

[18] Incremental Build. url: https://docs.gradle.org/current/userguide/incremental_build.
html.

57

https://doi.org/10.1145/342001.339657
https://doi-org.tudelft.idm.oclc.org/10.1145/342001.339657
https://doi-org.tudelft.idm.oclc.org/10.1145/342001.339657
http://luiscruz.github.io/2021/10/10/scientific-guide.html
https://doi.org/10.6084/m9.figshare.22067846.v1
http://luiscruz.github.io/2021/07/20/measuring-energy.html
http://luiscruz.github.io/2021/07/20/measuring-energy.html
https://doi.org/10.6084/m9.figshare.19145549.v1
https://doi.org/10.6084/m9.figshare.19145549.v1
https://www.doxygen.nl
https://doi.org/10.1109/TSE.2021.3064953
http://dx.doi.org/10.1109/TSE.2021.3064953
https://doi.org/10.1109/ICSME.2019.00099
https://doi.org/10.1145/3510003.3510211
http://dx.doi.org/10.1145/3510003.3510211
https://docs.github.com/en/rest/actions?apiVersion=2022-11-28
https://docs.github.com/en/rest/actions?apiVersion=2022-11-28
https://docs.github.com/
https://github.com/features/actions
https://github.com/green-coding-solutions/eco-ci-energy-estimation
https://github.com/green-coding-solutions/eco-ci-energy-estimation
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks#tracking
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks#tracking
https://docs.gradle.org/current/userguide/incremental_build.html
https://docs.gradle.org/current/userguide/incremental_build.html

Bibliography 58

[19] Xianhao Jin and Francisco Servant. “A cost-efficient approach to building in continuous integra-

tion”. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 2020,

pp. 13–25.

[20] Xianhao Jin and Francisco Servant. “Which builds are really safe to skip? Maximizing failure

observation for build selection in continuous integration”. In: Journal of Systems and Software 188

(2022), p. 111292.

[21] Yingling Li et al. “Method-level test selection for continuous integration with static dependencies

and dynamic execution rules”. In: 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security (QRS). IEEE. 2019, pp. 350–361.

[22] Nikolai Limbrunner. Dynamic macro to micro scale calculation of energy consumption in CI/CD pipelines.
2023.

[23] Shane McIntosh et al. “An empirical study of build maintenance effort”. In: Proceedings of the 33rd
International Conference on Software Engineering. 2011, p. 141. doi: 10.1145/1985793.1985813. url:

http://dx.doi.org/10.1145/1985793.1985813.

[24] Sparsh Mittal. “A Survey of Techniques for Approximate Computing”. In: ACM Comput. Surv. 48.4

(Mar. 2016). issn: 0360-0300. doi: 10.1145/2893356. url: https://doi.org/10.1145/2893356.

[25] nstruharova. CIPipeline. https://github.com/nstruharova/CIPipeline.git. 2024.

[26] John O’Duinn. The Financial Cost of a Checkin - Part 2. https://oduinn.com/2013/12/13/the-
financial-cost-of-a-checkin-part-2/. Dec. 2013.

[27] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “Continuous Integration, Delivery and

Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices”. In: IEEE
Access 5 (2017), pp. 3909–3943. doi: 10.1109/ACCESS.2017.2685629.

[28] Daniel Ståhl, Torvald Mårtensson, and Jan Bosch. “The continuity of continuous integration:

Correlations and consequences”. In: Journal of Systems and Software 127 (2017), pp. 150–167. issn:

0164-1212. doi: https://doi.org/10.1016/j.jss.2017.02.003.

[29] The Apache Software Foundation. Apache Maven. 2024. url: https://maven.apache.org.

https://doi.org/10.1145/1985793.1985813
http://dx.doi.org/10.1145/1985793.1985813
https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://github.com/nstruharova/CIPipeline.git
https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/https://doi.org/10.1016/j.jss.2017.02.003
https://maven.apache.org

	Abstract
	Preface
	Introduction
	Context
	Problem Statement
	Solution Proposal
	Research Questions
	Contributions
	Build-optimising Framework for CI
	Energy-measuring Tool for CI execution
	Enhancements to Energy-measuring Plugin

	Thesis Overview

	Background
	Fundamental concepts
	Continuous Software Engineering
	Approximate Computing

	Static Dependency Analysis
	Call & Caller Graphs
	Inheritance

	Tools
	Maven
	GitHub & GitHub Actions
	Artifacts
	GitHub Actions API
	Git Hooks
	EcoCI

	Related Work
	Build Optimisation
	Incremental Builds
	Caching

	Optimisations of Build Jobs in CI
	Test Selection in CI

	Measuring Energy Consumption

	Approach
	Framework Overview
	Commit Analysis
	Dependency Analysis
	Partial Compilation Mechanism

	Git-related Use Cases
	Change-related Use Cases
	Classes
	Methods & Fields
	Combination of Changes
	Experimental Setup

	Sample Project for Evaluation

	Implementation
	Framework Implementation
	Inputs
	Finding Changes
	Parsing & Construction of Graphs
	Saving the State
	File Selection for Partial Compilation
	Editing the Configuration

	Experimentation
	Experimental Pipeline
	Experiment Manager & Data Collector

	Experimental Set-up
	Hardware
	Energy Metrics

	Results
	Validity in an In-Vitro Project
	Experimental Set-Up
	Validity Results

	Energy Consumption in Controlled Environment
	Energy Efficiency in Real Repositories
	Experimental Set-up
	Real-world Project
	Experimental Set-Up

	Energy Consumption in Practice

	Discussion
	Validity & Energy Efficiency in Controlled Environment
	Validity
	Energy Consumption in an In-Vitro Project

	Energy Consumption in a Real-World Project
	Energy Consumption in Compilation
	Energy Consumption in a Full Build Job
	General Conclusion on Energy Consumption

	Threats to Validity
	Internal Threats to Validity
	External Threats to Validity

	Limitations
	Static Dependency Analysis
	Solution Integration

	Conclusion & Future Work
	Future work
	Immediate Future
	Further Future

	Bibliography

